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Introduction

Positronium is thebound state madeof an electron with a positron, in a seaof virtual particles (photons and
electron-positronpairs). The electromagnetic interaction is responsible for thebinding�hence positronium shares
many properties with the hydrogen atom. An important difference, however, is the possibilit y of annihilation
of the electron when it meets the positron, giving gammarays. Positronium is a short-lived system. Another
speci

�
city is the absence of strong interaction effects: the proton in the hydrogen atom is not an elementary

particle, but is a complicated aggregateof quarks, antiquarks and gluons. Positronium is purely electromagnetic�
QED is suf

�
cient, in principle, to predict all its properties to a very high accuracy. Both the weak and strong

interactions are present, but through highly suppressed corrections, and do not enter at the present level of
experimental or theoretical precision.

There are two motivations for studying the positronium system:because it is a standard test for QED, and
because it is a

�
rst approach to the more complicated problemof the quark structureof hadrons, and con

�
nement

in QCD.

QED Standard Tests

The Standard tests for QED,or alternatively the domains in which QEDhasbeen very successfully applied, are
of two types: elementary particle processes and low-energy bound state properties. For elementary particles,one
can distinguish:

1- High energy processes, like���	 
 ��, �
�� 
 �
�� with � any lepton (����� ). Such processes
typically test QED at several ��� , at facilities like���� ���� ���

which proceedby collidi ng positron
with electron beams. At such an energy scale, QED mustbe supplementedby strong andweak interaction
effects. No disagreement hasbeen reported.
2- The electron and muon anomalous moments �� and ��. By this is understood the deviation of the
magnetic moment � from its valueof  as predictedby the Dirac theory. The current achievements,both
theoretically and experimentally are impressive. On the theoretical side, the computation of thousandsof
multi-loop diagramshasbeen done. The agreement between theory and experiment is a great successof
QED.However, beyond the present level of precision, the anomalous moments can no longer be used as
pure tests for QED because strong interaction effectswill dominate.

Our main concern will bebound state-type QED tests. Again, we distinguish two types:

3- Spectroscopic propertiesof atom-like systems. Thevarious spacingsbetween the energy levelsof hy-
drogen havebeen both theoretically and experimentally very well studied. The most famoushistorically
is the Lamb shift: the spacing  !"#$ % &'()* of thehydrogen levels. The+ne and hyper+ne structure of
thehydrogen, helium and muonium (thehydrogen atom with a muon in placeof the proton) also provide
very accurate tests.
4- Positronium spectroscopy and lifetime.

For a more detailed presentation of all those tests,werefer to [16]. The distinction madebetweenelementary
particle and bound state tests is profound. One of the most natural frameworks of quantum +eld theory is
perturbation theory: the Feynman graphs with their associatedrules. For example, to describe the process
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to which corrections are then calculated, like for example

The theoretical computation is then ordered as a series in the1ne-structure constant 2 3 45467: each coupling
between a photon and a charged particle linebrings in a factor of 8 9 :;<2, with 8 the electric charge.Because
the constant 2 is much smaller than one, the whole computation method is under control. The only dif1culty
is the various divergencesoccurring in some graphs. Renormalizabilit y of QED ensures that a meaningful
answer can be obtained. Also, infrared divergenceshavebeen shown to exponentiate. At the end of the day, the
agreement between theory and experiment is avery stringent testof QED in its perturbative regime, and of the
associated theoretical tools.

On the other hand, abound state is intrinsically non-perturbative. It is the permanent exchangeof photons
between the constituents thatbinds them together

Theordering of processes in increasing ordersof 2 collapses. Perturbative quantum1eld theory is rather devoid
in front of such problems. Many standard theoretical methods explicitly assume the non-existence of bound
states.

Fortunately, there is away out. The idea is to change the basison which perturbation theory is built, i.e.
the lowestorder, and to consider alternative expansion parameters. For all spectroscopic observables, anatural
small parameter is the ratio of thebinding energy over the massesof the constituents. For thehydrogen atom, it
is=>?@AB C DEFG HIJKDDLHI M E NDOPQ. In other words, thenatural energy scaleof any process inside the
hydrogen atom is at the atomic level, a few RS . Equivalently, for such loosely bound systems, the constituent
velocities are small,TUV WW X, which is the expansion parameter used in practice. Since the system is essen-
tially non-relativistic, toYrstorder in thenew expansion parameter, onerecovers thenon-relativistic Schrödinger
equation with a Coulomb potential. That simpler problem can be solved exactly (i.e., non-perturbatively), and
will serve as anew basis for a perturbation theory. Graphically, the lowestorder is the so-called ladder approx-
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imation (technically, crossed ladders are neglected, and only Coulomb photon exchanges are considered in the
non-relativistic limit)

Both radiative and relativistic corrections to this Zrst approximation are then computed, in increasing order of
the small parameters ([ and \]^ say). These are thevery successful techniques used for the spectroscopic tests.1

Positronium is also a bound state, and the same techniqueshave been used. The smallbinding energy and\]^ are the expansion parameters: the system is treatednon-relativistically to lowestorder, and radiative and
relativistic corrections are then computed perturbatively. All this would be Zne, except for one point. The
positronium annihilates into photons. That process is intrinsically relativistic. The Schrödinger equation cannot
describe the disappearance of positronium into photons. Further, the atomic energy scaleof a few _` is no
longer natural, becauseof processes like

where the photons carry energiesof the order of the electron mass. The photons can serve as probes, giving
information on the internal structureof thebound state. When they arehard, they essentially see a slowly moving
electron-positron pair, while when they are soft, they are sensitive to thenon-perturbativebinding of the pair. In
this respect, positronium is a unique system. Itrequires a full understanding of bound states in the relativistic
quantumZeld theory framework. Most theoretical approachesrely on the same typeof approximations (mainly a
factorization of thebound statewavefunction and the annihilation mechanism). The subjectof the present thesis
is to test the theoretical consistency of those models.

QCD and Con
a
nement

Quarks are subject to the strong interaction. There are three typesof strong charges, called colors. Quantum
chromodynamics is the theory describing the interactions between quarks, antiquark and gluons. This theory
is similar to QED, except that gluons do carry a strong charge and therefore can interact among themselves.
Technically, QCD is a gauge theory with thenon-abelian bc def as gauge group. The eight gluonsbelong to the
adjoint representation, while the three colored quarks belong to the fundamental representation.g

For the hydrogen atom physics, yet another small expansion parameter has proven to be useful:hijklmn o pqrsss. This parameter
is important in the treatment of the proton recoil effects.
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Inprinciple, the consequencesof the gluoncharge lead to a small increaseof complexity: compared to QED,
oneonly has to consider new diagrams like

Unfortunately, the main characteristic of the strong interaction is, evidently, of being strong. In other words, the
coupling constant of QCD is much greater than one atordinary energies, and perturbation theory breaks down:
the two diagrams shown above cannot beordered in decreasing magnitude.

This pictureof the strong interaction is supportedby two main facts:

1- There is another consequenceof the gluoncharge. As the energy increases, the strong charge decreases.
At suf

t
ciently high energy, above a few GeV, QCD is perturbative, and can be directly tested. Various

processes athigh energy are consistently describedwithin the contextof QCD, and this is a great success.
The measured coupling constant, when extrapolated to low-energy, is indeed greater than unity.
2- Quarks and gluons have never been observed as free particles. Instead,one always sees aggregatesof
quarks and gluons, thebaryons (like protons, pions,...). This phenomenon is called con

t
nement. This is

understood as follows. If the interaction is very strong, a colorful particle cannot exist freely, its stable
statewill alwaysbe inside a colorless aggregate. For a group likeuv wxy, the most trivial aggregates are
the quark-antiquark and the three-quark bound states. This nicely

t
ts theobserved spectrumof particles.

It should be emphasized thatno rigorous proof that the stable statesof QCD are indeed theobservedhadrons
exists. Nobody has ever been able to compute the massof the pion or the proton in termsof the quark masses
and QCD coupling constant. Further, low-energy reactions (below z{|} ) among hadrons arenot quantitatively
described in terms of the underlying quark processes. This is a serious limitation. By comparison, the most
stringent testson QED do involve low-energy bound states. For QCD, quantitative tests areonly possible athigh
energy. The most promising testsof QCD at low energy seem to be lattice calculations,but they are still very far
from the precision achieved in QED.

The study of bound states in Quantum Field Theory is already a very dif
t

cult non-perturbative problem.
Con

t
nement adds to this complexity, and most methods used in QED are justno longer applicable. There isone

exception: heavy quarkonia. Suchstates are madeof a heavy quark ~or �with its corresponding antiquark. Being
very heavy (of a few

{|} ), one can hope that a
t

rstorder non-relativistic approximation is reliable. Of course,
the quarkonium wavefunctions are not known, since non-relativistically, QCD cannot just be a Coulomb-like
interaction (such a potential doesnot lead to con

t
nement). By studying quarkonium states,one gets information
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on the QCD potential. Quarkonium is therefore a crucial intermediate step to understand low-energy QCD.

The physicsof quarkonium is very similar to that of positronium. The spectroscopy is analogous, while
quarkonium decays through the annihilation of its constituents, like positronium. The techniques used for
quarkonium are inspired from the positronium ones. In particular, the same factorization hypothesis is used
in both problems to disentangle the perturbative and non-perturbative parts of the dynamics. The applicabilit y
of the positronium models to quarkonium will be analyzed in the present thesis.

Brief Outline of the Thesis

The goal is to address the relevance and consistency of the positronium models. Wewill show that abasicre-
quirement of Quantum Field Theory is violated in the current computations of positronium decay rates. The
probabilit y amplitudes for positronium decay arenot analytical. This is rather technical, but far reaching�a mod-
i
�

cation of the model is unavoidable. In fact,wewill see that the perturbationmethod designed for spectroscopic
studies cannot be used for decay processes. Thebinding energy expansion is in contradiction with quantum

�
eld

theory analyticity requirements. A natural solution is then to construct anew basis for an alternative perturba-
tion theory. This has to be donenon-perturbatively in the binding energy. There is an additional motivation for
this. In quarkonium physics, typical binding energies are much greater. Being able to treat them exactly will
unavoidably lead to interesting advances.

The thesis isorganized in four chapters,with the structure

Chapter 1 Positronium General Introduction and Standard Approaches
Chapter 2 Original Contributions
Chapter 3 Quarkonium General Introduction and Standard Approaches
Chapter 4 Original Contributions

Theoriginal discussions in chapter 2 and 4havebeen made as self-contained as possible. Chapter 1 and 3 serve
to set the stage, and introduce the standard material needed for our presentation.

Chapter 1 begins with a brief historical overview of positronium physics. Then, the present statusof both
experiment and theory is shortly reviewed. The

�
nal section describes the evolution of the theoretical models

designed todescribe the annihilationof positronium. By models is meant a schemeof computation: the de
�

nition
of a lowestorder approximation, exactly calculable, and of the perturbation theory. All t hose models introduce
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some kind of factorization of thebound state dynamics from the decay process

For instance, the simplestof all formulas is

� ��� � ��� � ��� � � �� ����� ������� ����� � � ¡¡¢£¤¥¦§ (1)

with ¨ the Schrödinger wavefunction encoding thenon-perturbativebound state dynamics, and © ª«¬«­ ® ¯°±
is the scattering cross section representing the perturbative decay process. More advanced techniqueswill be
described, and their factorization hypothesis emphasized.

Chapter 2 begins with a clari
²

cation of the physicsof the approximation done in de
²

ning the lowestorder
amplitude in standard approaches. In doing so, it will be seen immediately that this basis is in contradiction with
analyticity. By factorizing the process as pictured above, the photons are always emitted from charged particles.
If the photon is very soft, however, it should behave as emitted from a neutral boson (i.e. the positronium)
instead. It cannot discern the charged content of thebound state if itswavelength is much larger than the typical³´µ¶ separation. The binding of the electron and positron into a neutral boson becomesvery important for a
soft photon, or in other words,when the energy of the photon is of theorder of thebinding energy.

The goal is therefore to construct amplitudes so that the photons are always aware of the binding of the
charged particles. We propose such an alternative construction for the lowestorder amplitude,with no factoriza-



xi

tion. Graphically, it is

The decay amplitudes are constructed as closed loops. Thebound state dynamics is introducedvia a form factor
which is related to the Schrödinger wavefunction, hence contains the effectsof Coulomb photon exchanges.
Technically, by closing the loop (i.e. without factorization), the resummation of the Coulomb photon is no
longer independent of the decay process. As aresult, the·nal state photons do ¸feeļ thebinding, and behave as
if emitted from a trueneutral bound state.

For this construction to be awell-de·ned lowestorder amplitude, ithas to be calculable. To this end, we
found avery simple procedure, in which our new lowestorder amplitudes areobtained from standard QEDones.
We then show that indeed,our approach correctly describes soft photons. Many other interesting, but more
technical, propertiesof our approach will also be discussed.

The chapter ends with a systematic study of various decay processes. The implication for spectroscopic
studies is also sketched. Finally, some possible extensions are reviewed.

Chapter 3 is a very short introduction to the physics of the ¹¹ (charmonium) and the ºº (bottomonium)
heavy quark bound states. Itbegins with the spectroscopy of charmonium and bottomonium as established
experimentally. Then, the description of decay processes is presented. Most studiesrely on the extension of
the positronium decay formula (1) to the quarkonium case. The predictions for the decay ratesof »¼½ and¾¼» quarkonium states are systematically studied. Comparison with experimental branchings, along with the
extraction of ¿À, closes the chapter.

The last chapter presents the many problems and puzzlesof quarkonium physics. It is shown that binding
energy effects can explain most of them. A de·nite quantitative study hasnot been performed though, because
of the lackof information on the QCD potential. However, the resultsobtained are qualitatively independent of
the detailed form of it.

Three appendices supplement the textwith calculation details, proofs and numerical studies. The ·rst ap-
pendix contains additional information and detailed studiesrelevant for the chapter 2, while the second appendix
is related to chapter 3 and 4. The ·nal appendix contains useful formulas like special functions, dimensional
regularization formulas, phase-space analysis,...

Finally, the thesis endswith a bibliography. The references are ordered in sections (with no directrelation
to the sections of the text), and in each section, in chronologicalorder. This bibliography is intended to be more
or less complete for positronium (but someomissions are unavoidable). For quarkonium, a completereference
list would be too long, and only the papers directly related to our studies are quoted.





Chapter 1
Overview of Positronium Physics

This chapter presents the basicobservables of positronium physics. This chapter sets the stage for more
elaborated studies. For this presentation, wehave chosen a moreor lesshistorical Áow.

The Ârst section begins with the exposition of the theoretical status at the end of the forties, justbefore
the experimental evidence. Then, the Ârst confrontation of QED theory in positronium physics is presented.
In the second section, the most recent theoretical and experimental results are given and compared for both
spectroscopic and lifetimeobservables.

In the Ânal section, the evolution of the theoretical description of positronium decay is reviewed. The
hypotheses done are described. Their relevancewill be discussed in thenext chapter.

1.1 History

Historically, it wasÂrst postulated in ÃÄÅÆ by Mohorovicic [59] that an electron and its associated antimatter
particle could form a quasi-stable atom, oneyear after the experimental discovery of the positron by Anderson.
That statewasÂrst called positronium by Ruark in ÃÄÆÇ [33], who was unsuccessfully trying to observe it.

The propertiesof positronium,both spectroscopic and lifetime,were studied theoretically for about ÈÉ years.
TheÂrst experimental observation Ânally came in ÃÄÇÃ, in agreement with the expectations.

1.1.1 Theoretical Expectations (1934-1952)

TheÂrst approach to the positronium bound state isnon-relativistic. The quantum mechanical treatment of it is
exactly the same as that of the hydrogen atom, except for a changeof reduced mass. For instance, the energy
levels
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and corresponding wavefunctions can be speci
Ê

edby the same setof quantum numbers ËÌÍÌÎÏ Ì with Í ÐÑÌ ÒÒÒÌË Ó Ôand ÕÖ × ÓØÙ ÚÚÚØ. The energy levels exhibit thewell-known degeneracy in
Ø
andÕÖ:ÛÜÝÖÝÞß à áâãäåæä

where ç è éêå, é the electron mass. The ground state energy is thereforeëìíìíì è îïðñòó ô îõöò÷ øîùúû
eV (half thatof thehydrogen).

To the above quantum numbers, one has to add that of the spin. Two particlesof spin üýþ can give a total
spin angular momentum of ÿ or ü. The spin four-fold degeneracy of each of the levels drawn on the �gure is
split into a singlet spin ÿ state (parapositronium,�-��) and a triplet spin ü state (orthopositronium, �-��)2

Singlet
ü�þ ���	
 � �	�
�

Triplet ���
 
 ��� ���	
 � �	�
� 
 �		

The spin then combines with the orbital angular momentum to give the �nal total angular momentum. For
example, using the spectroscopic notation ������� with� � ������ � !!� the twelve"� states arrange as"� #12 states$ % &''('') Parapositronium *+,- 3 states

Orthopositronium ./,0 1 state./,- 3 states./,1 5 states

Graphically,

Fine and Hyper
2

ne Structure

At the lowestorder, there is ahigh degeneracy. This doesnot survive athigher orders. Pirenne (1947) [61]
and Berestetski (1949) [62]were the3rst to compute the3ne and hyper3ne structure of the positronium energy
levels. Their resultswere later correctedby Ferrell (1951) ([64], see also [26]), who found4567689: ; <=>?@A? BCDEFGHIIJKLKGMI with NOGFGHIIJKLKGMI P QR SSTUVW X YZ[\]^^_`\a^bc defghi

For the hydrogen atom, this classi
j

cation is not relevant because of the very small proton magnetic momentkl m nopqr ss tu vwxyz{ . For positronium, the magnetic moment is the same (in magnitude) for both constituents.
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where |}~�� � ��� ��� � � ������� � ����� � ������ � �� ������ �  ¡ ¢£¤� ¥ ¦§̈§© ª«¬­®«¬¯°®±«¬ª° ²³ ´ µ ¶ ·¸ ¹º»º¼½¾ ¿À Á ÂÃ ÄÅÆÇÅÈÉÅÆÇÊ ËÌ Í Î Ï Ð (1.1)

Hence,we can modify our spectral representation

with the transition frequencies (in GHz),

a ÑÒÓÔÕÖ× Hyper
Ø

ne Splitting
bÙÚ cÛdÛeÛ fÜ ÝÞßàá âÝãä Lyman å
g æçèé
h æéèç
i

çèêë
Lamb Shift

We have also indicated the commonly usednames for the most remarkable transitions. Physically, one has the
following selection rule for the dominant radiative transitions:

E1 ìíîïð ñ òóïô ñ òóõöï÷ø ù úûüý þþ M1 ÿ���� � ��� � ��	
��
 � ��	

where E1 are the electric dipole (or allowed) transitions (plain lineson the picture),by far the strongest transi-
tions. The forbidden transitions are the M1 magnetic dipole transitions (dashed lines).

The most interesting splitting is the
���� � ���� hyper

�
ne splitting of positronium, because it is the most

accessible both theoretically (1S states arerelatively simple to treat) and experimentally (thehigher excited states
are predicted to cascade decay into lower states quiterapidly). In (1.1), the ��� state,� � �, appears separately
becauseof the so-called annihilation graph. The hyper

�
ne splitting is computed from the expectation valuesof

the spin-spin and annihilation potentialsbetween ��� and ��� states
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(theother hyper
�
neoperators contribute equally to both � states, and are included in the exchange graph above).

The corresponding contributions to the splitting are [26]

Para Ortho
Fine Struct. (Spin-Spin) � !"#$ %&' ()(*+ ,-'

Annihilation . ()/ ,-'
Hyper

0
ne Splitting 1(+,-' (1.2)

Karplus and Klein (1952) [67], through their now standard computation, obtained the
0

rst radiative correc-
tion to thehyper

0
ne splitting:2345 6 789 : ;<= > ?@ :AB C DE == FF G HIJKJLMGHz

Many additional graphs contribute to thatorder, and we shall not detail their techniqueshere.

Annihilation Rates

The positronium is a short-lived system. It decays into photons. Thenumber of which can be deduced from
selection rules (Yang,

MNOI
[202] and Wolfenstein and Ravenhall,

MNOH [66], see also [9]).
A positronium state is an eigenstateof the parity P , charge conjugationQ and of the combinationQP3. The

eigenvaluesof thoseoperators can beobtained in termsof thoseof RST asU V WXYZ[\]^ _ `abcdefgh i jklmnop
These expressions areobtained from the intrinsic parities of the constituents and the antisymmetry requirement
on the exchange of the constituents. Parapositronium (orthopositronium) is a CP eigenstatewith eigenvalueklqrlm. Since a systemof s photons has a charge conjugation eigenvalueoft usvw x uyzw{
weobtain the selection rule uyzw|}~ � �����
We thereforewrite, up to � � � (the principal quantumnumber can take any value)������ ��� Number of � Dominant Annihilation mode��� ��� even �� ����� � ��� ¡ ¢££ odd ¤¥ ¦§¨©ª « ¬¬¬­®­ ¯°± odd ²³ µ́²µ¶ · ¸¸¸¹º» ¼½½ even

º¾ ¿ÀÁÂÃ Ä ÅÅÀÁÆ ÇÈÈ
even ÉÊ ËÌÉÍÎ Ï ÐÐÐÐÑÒÓ ÔÕÕ
even

ÒÖ ×ØÙÚÛ Ü ÝÝÞßÚ àáâ
even ãä åæçèé ê ëëæçè ìíí odd îï ðñòóô õ öööñò÷ øùù odd úû üýþÿ� � ����

This property, due to the special nature of positronium as a bound state made of an electron with a positron, has raised some interest in
positronium as a test of the discrete symmetries.
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The only mode that needs comment is �� ����	 
 ����. The two-photon mode is forbidden by the (Landau-
Pomeranchuk-)Yang theorem (1950) [202]: avector particle �
 � ��

cannot decay into two photons,becauseof
gauge invariance and specialrelativity. Most positronium state annihilation modeswill be suppressed compared
to their electric dipole transitions to lower states. Only the ground states��� and ��� are dominantly decaying
into photons,because the magnetic dipole transition ��� � ��� is highly suppressed.

In 1946, Pirenne [61] and Wheeler [60] separately developed a theoretical model to compute the decay rates
of positronium. Their model is� ��� � ��� � ��� � � � !"#�$ %&'()*+ %,-./ 0 1233456789
with:;<= therelativevelocity of the>?>@ pair in their center-of-mass frame, andA BCD the positronium Schrödinger
wavefunction, in con

E
guration space, at zero separation. One can understand this model as areplacement of the

scattering cross section initial Fux factor by the probabilit y of contact in thebound state. Obviously, this model
applies to G-state annihilations only, sinceH BCD is zero for I JK C

.
Pirenne and Wheeler were able to apply their formula to parapositronium LMNOP, while, in 1949, Ore and

Powell [63] used the same model to compute theorthopositronium LQNMP decay rate. The resultswereR ST-UV W XXY Z [\]̂ _ `abc^d efgh ijklmn op-qr s tttu v wxyz {|} ~���� � ������ ������
The orthopositronium lifetime is roughly 1000 times longer than the parapositronium one. At �rst sight, one
would have expected arelative factor of ��� � ���. Phase-space isresponsible for an additional factor of ��.
1.1.2 Discovery and First Measurements (1951)

The discovery came in 1951. Martin Deutsch found evidenceof orthopositronium formation in gases [34].His
technique isbasedon ��� the very different lifetime between both positronium species, and ��� the paramag-
netic propertiesof the�� gas. This moleculehas an isolated electron, hence is a catalyst for �-����� � -����� by electron exchange. Whenpositrons are slowed ina gas,bothorthopositronium and parapositronium
are produced. The lifetimeof the parapositronium is too short for its decay photons to be observed. Adjunc-
tion of a small amount �� gas therefore changes the observed gammaray spectrum. This is an evidence for
orthopositronium formation.
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By varying the gas pressures, the lifetime of orthopositronium at zero pressure can be extrapolated. The
resultwas ¡¢£¤ ¥¦-§¨© ª ¥«¬­ ® ¯°±² ³ ´µ¶·¸
This agreeswith the resultof Ore-Powell4.

The hyper
¹

ne splitting was measured in º»¼½, still by M. Deutsch and his colleagues [34].By using mag-
netic

¹
elds (Zeeman effects) and radio frequencies (rf quenching techniques), they found¾¿ÀÁÂÃÄ Å ÆÇÈÉÊÇ Ë ÈÊÉÌ

GHz

In good agreement with the theoretical expectation. Note that the precision is suf
Í

cient to test the presenceof
the annihilation potential contribution to thehyper

Í
ne splitting.

The
Í
rst measurement of the parapositronium lifetime was performed in ÎÏÐÑ by Hughes [36],with the

result ÒÓÔÕ Ö×-ØÙÚ Û ÖÑÜÝÝ Þ ßÜààá â ßàã äåæçè
in agreement with the Pirenne-Wheeler result.

Later, many transitions were observed, in good agreement with the theory. For example, in 1975 [40], the
Lamb shift was measured at éêëìíîïðñ ò óôõö÷ô øùõùùöú

GHzûüýþÿ��� � ����� GHz

where the	rstorder radiative corrections account for
�
�

MHz to �
������.
The agreement between experiment and theory is excellent. Even if the accuracy is not formidable, in view

of the theoretical complexity, and of the many different typesof effects already included, this was a great success
for QED.

1.2 Current Situation (2002)

A peculiarity of positronium physics is the recurrent occurrenceof �puzzles�: at different stages, discrepancies
occurredbetween theory and experiment. Ultimately, those disappeared throughcorrections to the computations,
or more careful measurements. Therecollection of thehistorical developments can be found in many places and
we do not intend to present it here [85], [87]. Instead,we directly state the most recent achievements, but it
should be clear that many groupswere involved, especially on the theoretical side, for the computation and
recomputation of the many loop diagramsnecessary for high order radiative corrections.

1.2.1 Experimental Achievements

The latest experimental results for the decay rateof the parapositronium are�����-�� � ��� !"" #$$% & $'( )*+,- Yale (Gas), 1967 [38]./001 2334 5678 9:;<= Ann Arbor (Gas), 1982 [42]>?@@A@ BCDE FCAG HIJKL AnnArbor (Gas), 1994 [56]
(1.3)M

By that time, the Ore-Powell prediction was not the only one on the market. TheNOP accuracy of the Deutsch measurement was
suf
Q
cient to discriminate among the various theoretical computations.
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The orthopositronium lifetime is experimentally simpler to measure, being RSSS times larger than the para-
positronium one. Resultsof various groups areTUVWX-YZ [ \]]]]̂]]]]_`abcdb efbg hijklm London (Gas), 1978 [41]nopqrp snpt uvwxlm Mainz (Vacuum), 1987 [46]nopqyz s{|} ~����� Tokyo (���� Powder), 1995 [57]������ ���� ������ Ann Arbor (Gas), 1989 [49]������ ���� � ¡¢£¤ Ann Arbor (Vacuum), 1990 [50]

(1.4)

The most recent Ann Arbor and Tokyo results are mutually exclusive. This is known as the orthopositronium
lifetime puzzle5. Note also that the medium usedvaries. It is instructive to represent the evolution of the
experimental measurements over the last three decades.References to the original experimental works can be
found in [101].

Year ¥¦§¨©-ª« Technique
1951 6.8¬­® gas
1968 7.29¬¯® gas
1973 7.262¬°±® gas
1973 7.275¬°±® gas
1976 7.104¬²® SiO³
1976 7.09¬´® vacuum
1978 7.056¬­® gas
1978 7.045¬²® gas

Year µ¶·¸©-ª« Technique
1978 7.050¬°¯® vacuum
1978 7.122¬°´® vacuum
1982 7.051¬±® gas
1987 7.031¬­® vacuum
1987 7.0516¬°¯® gas
1989 7.0514¬°¹® gas
1990 7.0482¬°²® vacuum
1995 7.0398¬´º® SiO³

Graphically, the decrease in the measuredrate isobvious (theoretical predictions are discussed in the next sec-
tion)

Gas experiments are performed atvarious pressures, and then theresult is extrapolated to vacuum, assuming
a linear dependence. In principle, the closer to zero pressure one can get, the more precise is the result. In
practice, a compromisehas to be found because the ef

»
ciency of positronium formation quickly decreaseswith

the pressure. Typically, at ¼atmosphere, as many as 25-50%of the incoming positrons bind into a positronium.½
In fact, it should be called the second orthopositronium lifetime puzzle. In the mid- and late seventies, a similar situation occurred. It

was later resolved in favor of the smallest lifetime measurement.
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The Tokyo experiment uses¾¿ÀÁ powder. For grained materials, the same strategy as for gases could in
principle be usedÂ namely the measurement at various densities, and then extrapolation to vacuum. However,
there is concern that the extrapolation to zero density may not be linear for powder, because positronium is
formed inside the powder grains. Varying the density only accounts for the effectsof the atomic collisions once
the positronium has escaped the grain. Therefore, different data analysis techniqueshave to be designed. The
Tokyo method doesnot rely on any sort of zero density extrapolation.

In conclusion, there seem to be arguments for the Tokyo result,while the consistency of both the gas and
vacuum measurements of Ann Arbor is in their favor. The situation is unclear and further measurements are
necessary.

Concerning hyper
Ã
ne splitting measurements, the most precise dateback to the late seventies- early eighties.

It was found, including theother measured transitions,

Name Splitting Experiment ÄGHzÅ ReferenceÆÇÈÉÊËÌ ÍÎÏÐ Ñ ÒÓÔÕ Ö×ØÙØÚÛÜ ÝÒÞß Brandeis, 1974 [39]Ö×ØÙØÚàáâ ãäåæ Yale, 1984 [43]çèéêëìíîïð ñòóô õ öòóô ö÷øøùúûü÷öýþ ÿöúû�
Stanford, 1989 [48]ö÷øøùúûü÷öù� ����
Stanford&Bell, 1993 [52]���	
��
�� ���� ����� ������� ����� �� � AnnArbor, 1987 [45]����!!"# $%&'( $)''( Mainz, 1993 [53]*+,-./0123 4563 789:; <=>??<= @=AB @AB
AnnArbor, 1987 [45]<=>?<8C8 @DEB @<FGH Mainz, 1993 [53]IJKLMNOPQ RSTU VWXYZ [\]^_] `Wab `_b AnnArbor, 1987 [45][\]W[c `W[b Brandeis, 1975 [40][\]Wcd[ `efg hifjg Mainz, 1993 [53]klmnopqrst utvw xywzw {{|{}{ ~{�� 1993 [54]{{|{}� ~�� ~�� 1994 [55]

Other experimental results include the study of the Zeeman and Stark effects, testsof discrete symmetries
C, P, T and CP, CPT (by setting upper boundson

w�� � ��� or ��� � �������, by the analysisof angular
correlations in ��� � ���,...) [44], [51], search for new light particles (axions, SUSY,...), search for the mirror
universe, search for positronium molecules, etc. Those studies lie somewhat out of our main concerns, and will
not be discussedhere.

1.2.2 Theoretical Achievements

The parapositronium and orthopositronium decay widths are����-�� � ���� ����� �� � ��  ¡¢ £� �¤� � �  ¥ ¦§¨©ª «¬­ ®§ ¯°± ²³́ µ¶ ·² ¸ ¹º» ²¼´¼ ¸½ ¾¿ÀÁÂÃ ÄÅÆÇÆÈÉÊ ËÌÍÎ Ï ÌÊÐ ÑÒÓÔÕÖ×ØÙ-ÚÛ Ü ÝÞßà áâã ä åæåç èéäêë ìí î ìïð ñò óô õö÷ôøùø ú ûüýþÿ ��� �ü � ����	 
� �� 
 ��� ��	� 
� ������ ��������  !�" # $%&'(
with coef

)
cients *+ , - ./01234 5 6789 :;<=>4 5 ?@7A8A :8=BCD E FGHIJ KLM NO E LFGHPQQFQ KLFMRO E JJGST UTVWXY Z S[S\] U\W^_` a bcde fdg
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The hij and hkj are the contributions from the four photon and lve photon lnal states,respectively. The para-
positronium result agreeswith the experiment, but the precision is not suflcient to testm nopq

radiative correc-
tions. For orthopositronium, the theoreticalvalue tends to favor the Tokyo group result,but again, experimental
precision is not suf

r
cient to test the s tuvw

radiative corrections (see picture in the previous section).
Thehyper

x
ne splitting is computed to the sameorder, but with an analytic resultyz{| } ~�� � ��� � �� ��� � ���� ������ �� ����� �� �� �� ¡ �¢ � ��£¤¥¦§¨©ª « ¬­­®®¦¦©ª « ®­¯ °± ² ³ ´µµ²¶ ·µ¸¯¹º»¼» ½¾¿ÀÁÂ ÃÄÂ Å Æ ÇÈ¿É ÃÄ Ê Ë ÌÍÎÏÐ ÑÒÓ ÔÕ Ö× Ø Ù ÚÛÜÝÞß àáâ ãäåæçèè éäåèêèèë éäåìäçèëí îï ë éäåèêìçëí é åååðñ òóôõôö÷øö ùú÷û

GHz

This result exceeds the experimental valuesof [43] and [39] by òõø and
ôõü

experimental standard deviations,
respectively. The discrepancy is not tooserious,but new measurements would really bewelcomed.

Concerning references, most papers cited in the ýPositronium Theoryý section of the bibliography concern
the computation of a part of the decay rateor hyper

þ
ne result. The latestresults are presented in [124], [130]

and [131].
Other theoretical predictionshavebeen obtained. In summary (see [132] and references cited there)

Name Quantity Theoryÿ��� ���� � ���	 
��
����� ���� GHz���� �� ���� ��� ! �"#$�$%& '%(
GHz)*+,-./ 0123 4 5678 59::;<=>9999 ?;@

GHzAB 9678 496CD EFGHIFJK LIMGHzNO JPQR STUVW XYZ[XT\X ]^_
GHz`abcde fghi jklmn opqkrst uvwGHzxy z{|} ~z}�} �������� ���GHz��-�� ���� � ����� �������� ����  ��¡ ¢£¤¥¦§¨

-©ª «¬­® ¯ °±²³± ´µ¶°··¸³ ¹º¶» ¼ ½¾¿ÀÁ
Some Peculiarities

The positronium perturbative serieshave twopeculiarities: corrections in ÂÃ Äappear, and theoverall conver-
gence israther slow. In this subsection, we intend to explain qualitatively why, leaving morere

Å
ned quantitative

arguments to thenext section.
The slow convergence feature is traced to the contribution of so-calledbinding graphs

whichaccount for roughly ÆÇÈ of ÉÊ [69] and roughly ËÇÈof ÉÌ [75], respectively. These diagramshave many
interesting features, and we will discuss about them later. For now, one can understand that such diagrams are
important because the exchanged photon is abinding photon, i.e. it is responsible for thebinding of the electron
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and positron. For such photons, the naive counting in powers of Í fails. More precisely, the dynamicsof the
above process is such that, for ÎÏÎÐ near the mass shell, there is ahuge enhancement factor, compensating the
additional coupling constant.

Logarithmic corrections arise typically from Ñwould-beÑ infrared singularities, i.e. singularitiesoccurring if
the electron and positron are on-shell. For example, the following diagrams introduce logarithmic corrections
[74]

In the Òrst case,one can see that logarithmic IR divergenceswill be introduced if the constituents are on-shell
becauseof the intermediate electron and photon propagators. At low momentum,however, such divergences are
cut-off by the binding energy ÓÔ Õ Ö ×ØÙ Õ ×ÙÚÛÜÝ. Hence, symbolically, one can understand that Þß à
corrections can arise from integrations likeá âãâäåæ çèè é êëì íîï ð ëìñ
That logarithmic correction is a soft-scale effect, i.e. arising from very soft momentum integration.

Similarly, the two-loop photon vacuum polarization insertion in the second graph introduces añò óôõ cor-
rection [70]. To see it,one justhas to know that the fourth-order vacuum polarization has threshold singularities
behaving like õò óô öööö÷ ø ùúûüû ýýýýwhere þÿ is the momentum transfer �owing through the diagram. In the case depictedon the �gure, that mo-
mentum isþÿ ��� � ��� ����� hence�� 	
 ����� 
 ����� ���� ������ �� �� ���

It is important to note that such logarithmic corrections are really speci
�

c to bound stateobservables� for
all of them, logarithmic corrections like �� � or �� �� occur. They are intimately linked to the binding energy
(mass defect). The current approach to these corrections ishowever quite different in that it uses the languageof
anomalous dimensions and renormalization group ow [128].

1.3 Theoretical Description of Positronium Decay

Now we turn to the theoretical description of bound state decays. It is not immediately obvioushow to extend
the quantum mechanical formalismsor the Bethe-Salpeter one� thosewere suited to the computation of energy
levelsor wavefunctions. To describe a decay process, some kind of model has to be constructed.Usually, such
model will i nvolve thebound statewavefunction in an essential way, so that all the previously cited formalisms
will still be important.

A good model (or scheme) is a model allowing for a perturbative expansion. The lowestorder approximation
should be well-de

�
ned,while corrections should be obtained in a systematicway. These two points are not so

easy to meet. Indeed, aswe will see, issuesof double counting plague decay computations. Further, there are
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many dif
!
culties associatedwith gauge invariance and infrared divergences. Finally, the relevanceof the lowest

order approximation is often problematic, aswill be exposed at length in thenext chapter.

1.3.1 Pirenne-Wheeler Formula

The simplestof all decay formulahas already been encountered" it is the Pirenne-Wheeler formula ([60], [61])# $%& ' ()* + ,-. / 0 12 34516 789:;<= 7>?@A B CDEEFGHIJK (1.5)

with LM NOPLQ the Schrödinger wavefunction. This formula relates the decay rate to the scattering of the con-
stituents at rest. The limit RSTU V W enforces the correct selection rule, i.e. X-YZ V [\]^ _ and `-YZ V[\] a bcd, because an efeg pair at rest can decay into two (three) photons only if i n a total spin h (b) state.
The results for the parapositronium and orthopositronium decay rateshave already been discussed, so we will
bevery brief and concentrateoni-jk l mm.

The lowestorder result isobtained from (
n o pqr with

p
the center-of-mass energy)s tuvwx y zz{|}~} � ������� ��� ���� � ��� � ���� ��� �� � ��� � � ¡¢ £¤¥ ¦ §¨ © ª« ¬ ­®¯°®« ± ²³́

With µ¶·¸ ¹ º»¼»½ ¾ ¿
, weÀnd Á ÂÃ-ÄÅ Æ ÇÇÈ É ÊË ÌÍÈÊÎ ÏÐÑÎÒÎ Ó ÒÑÔÕ

Radiative Corrections

The computation of the radiative corrections to Ö-×Ø Ù ÚÚ was achievedby Harris and Brown [65], [69],
[99], using the above formalism. The diagrams contributing, up to one-loop, to the scattering cross section are
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with in addition the crossed processes. TheÛrst one (Ü ) is the tree-level. Detailsof the calculations are in the
appendix A.1.3, and we quoteÝ Þß-àá â ããä å æç èéêëì íîïìðì ñòó ôõ ö÷ ó õøù ú û üýþÿ�� � (1.6)

The mass� and coupling constant � are renormalizedby the�� and ��	
 diagram,respectively.
Note that some IR divergences proportional to �ÿ�� have been cancelledby the limit �ÿ�� � 
 [99]. This

cancellation is a selection rule cancellation: the IR divergences in ���� ����� � ��� (
�
rstorder) cancel against

the IR bremsstrahlung divergencesof ���� �� �! " ###$. Since this last decay cannot contribute for an initial%&' state, the corresponding IR divergencesof ()%* +,-,. / 001 disappear when the initial 2324 pair is in a567 state.
The singularity for zero relative velocity is also an IR divergence, coming from the diagram8, the binding

graph. The treatment of this divergence is special. In fact, it has to be droppedbecause it is already included in
thewavefunction. Indeed, thewavefunction accounts for all the Coulomb photon exchangesbetween the 9:94.
The ;<=>?@ comes from the Coulomb part of the photon inA.

In a somewhat different reasoning, following Harris and Brown [69] (see also Schwinger [7], vol.III, pp99
and Merzbacher [3], pp249),one can remember from non-relativistic quantum mechanics that the long range
Coulomb interaction between the BCBD modi

E
eswavefunctions asFG HIJFK L MN OPQMK RSTUVWXYZ [ \]^_`abcde f gh ijkgl mno pqrstu v

wherew is the initial xyxzwavefunctionentering thescattering process(not to be confusedwith thebound state
wavefunction). This correction factor is called the Sommerfeld factor. As aresult, the Pirenne formula should
bewritten { |}~ � ��� � ��� � � �� ����� ����������� ����� � ����� ¡¢£¤
where, to order ¥, ¦§¨©ª «¬­¬® ¯ °±² ³́ µ ¶·¸¹º» ¼ ½ ¾ ¿ÀÁÀÂ Ã ÄÅÆ

TheÇnal form for the correction is now simplyÈ ÉÊ-ËÌ Í ÎÎÏ Ð ÑÒÓÔ ÕÖ× ØÙ ÚÛ Ü ÙÝÞ ßà (1.7)

1.3.2 Convolution Formula

To avoid the kind of pathological velocity singularity encountered above, a more sophisticated model has to be
built. To express the amplitude for thebound state decaying into a given ánal state, in termsof the amplitude for
its âãâä constituents to scatter into that ånal state, the årst step is to relate the positronium statevector to the
constituent statevectors. This is done through a convolution integral (see for example [17], [24]):æçè éêëì í îïð ñ òóôõö÷øùú õûø üýþÿ� �ýþÿ� ����� ���	
� � 

�� ��������������� (1.8)

The statevector of the bound state is the sumof the combined statevectors of the constituents weightedby the
momentum space Schrödinger wavefunction for thebound state. For the positronium ground state,� �� ! " �# $%&��' (&' '
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with ) *+, the con
-

guration spacewavefunction at zero separation and ./ 0 1/ 23456 (7 the electrom mass
and 3 the positronium mass). The 89:;

and <=>
are justnormalization factors for free states?@A B CDEFGHI JKL

and M NM O stand for polarization states,which combine to give a total spin P to thebound state.
This formula exhibits two important features :Qrst, the constituents are always on-shell. We are just aver-

aging over residualvelocity, with weights given by their respective probabilit y to occur inside the positronium,
i.e. by R STU

. On-shellnessof the VW is also obvious from their statenormalization. Second, non-perturbative
effects are introduced non-relativistically, through the function X YTU

.
From the expression of the statevector of thebound state,one de

Z
nes the amplitude for its decay as[ \]^ \_` a bc` d efg h ijklmnopq lko rstuv wstuvx yz{ |}~�� ~�� ������� � ��������� (1.9)

Now the amplitude inside the convolution integral is a scattering amplitude. It can be treated using quantum�eld
perturbation theory. Finally, thewidth is calculated as� ��� ��� � ��� � ��� ���   � ��¡ ¢ £¤¥¦ §̈ ©ª« ©¬­ ® ¯°­§± (1.10)

with ²³´µ the symmetry factor for the¶nal stateof ´ identical photons.
In the static limit, i.e. when · ¸ ¹, the convolution formula is equivalent to the Pirenne formula (1.5).

Indeed, if thevelocity-dependent part of the scattering amplitude isneglected,we can approximateº »¼½ »¾¿ À ÁÂ¿ Ã ÄÅ ÆÇÈÉÊËÌÍÎ ÉÏÌÐ ÑÒÓÒÔ Õ Ö×Ø ÙÚÛÜÝ ÛÞß àáâãäå æ çèåéêéëìíî ï ðñò óôõöõ÷ ø ùúû üýþÿ� þ�� ������ 	 
��
�
����
When integratedover phase-space, the factor in brackets is proportional to ������ ����� � �� !"#$%&'.

Radiative Corrections

If the static limit isnot taken, one can expect that the smearing introducedby the convolution will kill t he
velocity divergence encounteredbefore. This is indeed the case, and it is interesting to see in some detailhow it
happens (see [84], [87]). All follows from the recursive property of the Schrödinger wavefunction( )*+ , -./0*1 231 4 56789:;< =8> ?@ABC DEF
which is theBethe-Salpeter equation with a Coulomb ladder photon as kernel. Graphically,

(1.11)
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Now, looking back at the binding graph, one can see that when introduced in the convolution integral, its
Coulomb piecewill reproduce the lowestorder result

Mathematically, the Coulomb part of the diagramG, when the constituentshave momentumH, has a piece likeG I JKLHL MNOPMQ LHLK R SSS (1.12)

This is of order T sinceK U VWXY
. Now, when convolutedwith thewavefunction, the integral isZ [\] ^ _]` abcded fghifj dedk l mmmn o pq r stu

This explainshow the lowestorder is recovered. Therefore,by considering onlyone-loop graphs,onevnds (1.7).
There is also a straightforward relation with the Sommerfeld factor. If the term (1.12) is expanded aroundw x y, one gets zw{|} ~���~� }|}� � ��}|} � �������

This is a contribution to the amplitude. When squared, the result (1.6) is found. Obviously, this singularity
originates in the improper ordering of the limits� � �, ���� � �.

1.3.3 Bethe-Salpeter Loop

Using Bethe-Salpeter (BS) analyses,one startswith a four-dimensional integral [87]� ��� � ��� � � �������� �  ¡¢ £¤¥¦§¨©ªª £«¬ ­®¯° ± ²³ ´µ ­®¯° ¶ ·¸ ¹ º»¸¼
(1.13)

with ½¾¿ÀÁÁ the off-shell scattering amplitude and Â the positronium momentum. For example, in the caseofÃ-ÂÄ Å ÆÆ, it isÇÈÉÊËË Ì ÍÎÏÐÑÎÒÓ ÔÕÖ×Ø ÕÙÚ Û ÜÝ Þßà ÞáÜ âãäåæç è éêëç éìí è îï ðñò ðóî òôõö÷øù
The BS amplitude (1.13)has a loop-like structure. This becomes apparent after identi

ú
cation of the BS vertex

[19] û üýþ ÿ ��� � �� �� ��	
� �
� � �� 
� ����� ��� � �� �� ��
Hence����  !"# $ % &'()*+,' -. /012 34445 678 9 :; <= >?@ABCDD EFGFH I JKL MNO P QR ST UV W (1.14)
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In this representation, the BS vertex is an effective form factor for the bound state. Graphically, for the caseofX-YZ [ \\
Barbieri-Remiddi Reduction

As is well-known, the BS equation cannot be solved exactly, and one has to rely on some approximations
for the vertex (or wavefunction). The most popular one for positronium is thatof Barbieri-Remiddi [73],which
can be viewed as a four-dimensional generalization of the usual Schrödinger wavefunction. In general, the
wavefunction is approximated as] ^_` a b ^_cde fgd in (1.13), so that the decay amplitude is given by a
three-dimensional integral representation (see for example [87], [113]).

Speci
h

cally, theBarbieri-Remiddiwavefunction (BRW) isijklm nop q rst uvwxop uyz {|}~ ��� �������� ��� ������ ����� ����� ���� ���
where�� ¡ denotes the ground state, spin  �¡. The de¢nitions are£¤ ¥ ¦§¨ ©ª«¬ ­® ¯ °±²³ ´­®¬µ¶ ¯ ·µ«® ¸ ¹º» ¸¼½ ¾¿ÀÁÂÃÄ ÅÆÇ È ÉÊËÌ ÍÎÌ Ï ÐÑ ÒÓ ÔÕÖ ×ØÙ
For thewavefunction spin part ÚØØ Û Ü Ý ÞÝ Ý ß à Úáâ ã ä å æ ç èéê ê ë
where ìí is the polarization vector of the orthopositronium state. Finally, the Schrödinger wavefunction at the
heart of theBRW is as usual î ïðñ ò óô õö÷ïðø ù ÷øñø

To recover the three-dimensional convolution integral, it suf
ú

ces to note that the energy-dependent part of
theBRW is a delta-function representationûüýþÿ����� ��� �	
 ��� 
��� � �������� � ��� �� !"# $ %&' ()* (+,-. / 01 234-
whichamounts toneglecting thebinding energy in that part of thewavefunction. In that limit, up tonormalization
factors, the decay rate is5 267 8 9:- ; < =>?@ABCD E @?C FAGHIJ KLMN OPQR STU VWXYZ[\]^^ _̀ a bcd efg bhij k lmn opq rstu

(1.15)
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with v w xyz {|}, v~ � �������
and � � �� for parapositronium, � � �� for orthopositronium with polariza-

tion vector ��. The ��� ����
factor is the spin part of the wavefunction. Note well that compared to (1.13),

the scattering amplitude������ is now evaluated for an on-shell electron and positron.

The Starting Point

In general, there is great latitude in the treatment of the projectors. Usually, those are simpli�ed to [121]� ��  ¡ ¢£¤ ¥ ¦§¨ © ª«¬­®¯°± ² ­³° ´®µ¶·¸ ¹º»¼½¾¿ ÀÁÂÃÄÅÅ ÆÇÈ ÉÊË ÌÍÎ ÉÏÐÑ Ò ÓÔÕÖ
(1.16)

The difference between both formulasbeing treated as perturbations. Such a simpli
×

cation of the projectors
is very delicate,becauseof gauge invariance issues ((1.15) is gauge invariant thanks to the ØÙ ÚÛÜ and ÝÞ ßà
projectorson bothsidesof áâãäåå). However, the formula (1.16) is the starting point of most modern applications.
This is probably because (1.16) can beobtained simply from (1.9)by working out the constraint æ çæ è é ê.

Notewell that this formula is suf
ë

cient to obtain the leading order approximation for the decay rate.Hence,
it appears as a good perturbation basis. Further, it is rather simple sinceì íîï

is the Schrödinger wavefunction.
In other words, summing only the effectof the Coulomb instantaneous interaction into the wavefunction is
suf

ë
cient. A similar situation occurs for energy levels, since theBalmer formula is arather good approximation.

Wavefunction energy dependences,or departure from the simple Coulomb Schrödinger form, or corrections to
the spin and projector parts are treated as (relativistic) perturbations. They are typically of the order of ðñò

,
i.e. óô. To the relativistic corrections,one must addradiative corrections to the scattering amplitudeõö÷øùù. For
instance,order ú corrections are simply computed using (1.16) aswehave seen in the previous sections. At the
end of the day, a consistent perturbation basis isbuilt.

This closes the review of basic formulas used to compute decay rates in the standard approach. We have
reached avery general form (1.13). So general, in fact, that approximation methods are compulsory. Practically,
simpler expressions are used, and a consistent perturbation theory is built. Further, the non-relativistic QED
(NRQED) effective theory gives a systematics to this perturbation theory (see for example [16], [93], [105],
[109], [110], [112], [123]). This is the tool used inall recent advances inpositronium physics, and more generally
in QED bound state theory.



Chapter 2
A New Basisfor QED Bound States

The present chapter is the coreof the thesis. It consistsof three main parts: (1) the contradiction of standard
approaches with analyticity, (2) the resolution of the problem and (3) application to various processes. The
resultsof this chapter were presented in our papers [29], [30], [31] and [32].

In theûrst part, problemswith the standard approach perturbation theory are exposed. It is shown that the
standard basis chosen is inappropriate, because it is in contradiction with a fundamental theoremof Quantum
Field Theory (QFT), namely Lowüs theorem. The predictions of the standard basis for the energy spectra of
the photons produced in the annihilation of positronium are wrong. This ûrst result isvery straightforward in
the context of dispersion relations. To be more precise,we will clarify the approximation done in reducing the
Bethe-Salpeter loop into the three-dimensional convolution formula used as a perturbation basis. In this way, the
effects expanded perturbatively will be characterized.

In the second part, an alternative schemeof computation is presented. It amounts basically to a changeof
lowestorder amplitude. Compared to the perturbative expansion in the standard approach, this new lowestorder
amplitude is anon-perturbativeresummation of an inûnite classof corrections. This resummation will be shown
to be essential in order to dealwith soft photons. Indeed,in the standard non-relativistic QED (NRQED)
approach, there is an inconsistency in the treatmentof ýnal state photons when their energies areof the
order of the binding energy, because the NRQED momentum scaling rules areviolated.

To be able to useour new basis in practical applications, a simple computation method will be proposed.
Wewill show thatour non-perturbativebound state decay amplitudes are simply related to basic QED processes,
easily dealtwith using QFT perturbative techniques. At the end of the day, a consistent, well-deûned lowest
order basis for QED bound state decay computations isobtained.

The ûnal sections contain the application of the method to various processes. The analytical propertiesof
the amplitudes are analyzed and agreewith Lowüs theorem. Further, thebehavior of the series expansion is better
than in NRQED approaches. Finally, extensions to other bound state problems (positronium formation, radiative
transitions,hyperûne splitting,...) arebrie

þ
y discussed.

2.1 Critical Analysis of Standard Approach Decay Formula

The purposeof this section is to analyze the reduction of the four-dimensional Bethe-Salpeter loop (1.13)ÿ ��� � ��� � � 	
��
��
 �� �� ��������� ��� ����  !" #$% ���� &!" ' ()*+
(2.1)

to the three-dimensional convolution formula (1.16),-./ 0 123 4 567 8 9:;<=>?: @ <;? A=BCDE FGHIJKL MNOPQRR STU VWX YZ[ V\]^ _ `abc
(2.2)

whered efg is theBarbieri-Remiddiwavefunctionandh eij the Schrödinger one. Let usrecall that thereduction
usually proceedsby approximating the energy part of k lmj ask lmj n o lmpqr stq and neglecting some u
dependences in the projectors. Then, the standard approach is to treat the difference between both formulas
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ashigher order perturbations. In other words, (2.2) is the basisof standard perturbation theory for decay rate
computations.

Our goal is to use dispersion relation techniques to seewhether the above choice for the lowestorder is
appropriate. Also, concerning the many effects expanded perturbatively, wewant to address thebehavior of the
series expansion. The information gathered in the present section will motivate the form of the new basiswe
propose in thenext section.

2.1.1 Problematic Properties of the Convolution Formula

Wewould like to answer the following questions,which we divide into three classes.

Factorization

The basic factorizationof the bound state dynamics from the annihilation process. Aswe have seen, the
four-dimensional loop (2.1) is essentially a loop modelwith a form factor for thebound state (see (1.14)).Under
that form, both the bound state and decay dynamics are intimately linked. On the other hand, the convolution
formula exhibits a higher degreeof factorization of both processes, since the integration is only carried over
three dimensions.

Another way to look at this reduction is to remark that in the loop (2.1), the constituents areoff-shell, while
in the convolution formula, the constituents are on-shell. It is crucial to analyze how the off-shellnessof the
constituents can be reintroduced perturbatively starting from (2.2). This is especially important in view of the
present theoretical consideration, atorder v wxyz. Indeed, the non-perturbative phenomena responsible for the
off-shellnessof the electron and positron inside the positronium are of v wxyz (since positronium mass minus
twice the electron mass isof thatorder).

Violation of energy conservation ?Positronium being abound state,{ | }~ (� the positronium mass
and~ the electron mass). In (2.2), the total energy of the on-shell electron-positron pair entering the scattering
process is}��� ���, clearly greater than�, and getting worse as� increases in the integration. The same
observation can be made about all the convolution-type formulas. An interpretation for this fact would be
welcomed.

Projectors and Gauge Invariance

The enforcement of gauge invariancemay be problematic. This is more technical. In general, one has to
project the electron-positron pair into a spin state compatible with the total spin of the bound state. This bound
state spin state is usually treatednon-relativistically, introducing some potential threats to the gauge invariance
of the decay amplitude. More precisely, Ward identities are satis

�
ed if there are projectors on both sidesof the

scattering amplitudes, like for example as�� �� ��� ���������� ��� ���� �  ¡ ��� ¢ £¤¥ ¦§¨ ©ª«¬
In the static limit­ ® ­¯ ® °±²³²³²³´, this collapses toµ¶ ·¸¹º »¼½¾¿ÀÁÂÃÄÅÆÆ ÇÈÉ ÊËÌÍÎ ÌÈÏ ÐÑÒÓÔ Õ Ö×ØÙ
and one recognize the projector of (2.2). As aresult, it appears that (2.2) is gauge invariant only in the static
limit. If one is interested in the lowestorder staticresult, (2.2) is justÚne. If one wants to go beyond it, care is
needed in the treatment of the projectors.
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Another sourceof gauge invariance problems arises from the form of the Bethe-Salpeter loop itself (2.1).
This is in fact more problematic. To understand it, it suf

Û
ces to remember that to enforce the Ward identities,

one needs cancellation among the various amplitudes contributing to a given process (for example, there is six
diagrams contributing to Ü-ÝÞ ß ààà). Becauseof the momentum dependencesof the form factor (i.e. of the
wavefunction), this cancellation is spoiled, and the Ward identities areviolated.

Analyticity

The last, and more important point, is the analytical behavior in the soft photon limit.The consequencesof
gauge invariance are well-known: one getsvery tough constraints on the structure of amplitudes in the form of
Ward-Takahashi Identities. For instance, any amplitude involving an external photon,áâ ãäåä

, mustverify
the Ward Identity æäåä ç è

, with æä the photon momentum and éä its polarizationvector. In addition to gauge
invariance, since any probabilit y amplitude is an analytical function,åä êæë ìììí admits a Laurent expansion in
each of its variables. It was F.E. Low who, in theîfties [204],îrst realized that the Ward identity restricts the
form of theîrst two termsof the Laurent expansion in the external photon energy.

Lowïs theorem is a model-independent result,valid to all orders: for a complete amplitude, the soft-photon
limit only dependson the quantum numbers of the external particles, and not on the detailsof the intermediate
subprocesses. At the level of observables, the low-energy end of the photon spectrum isobtainedby combining
the amplitudebehavior with thatof the phase-space. The most characteristic spectra areð Charged particles and photons in external states. Thewell-known bremsstrahlung emissions lead to an

amplitude in ñòó for
ó ô õ

(
ó

is the energy of one of the emitted photons). At the decay rateor cross
section level, the IR divergent amplitude generates characteristic IR divergent spectra.ðOnly neutral self-conjugate bosons, including photons in external states.The amplitude is in

ó
for
ó ôõ

(
ó

is again the energy of one of the photon). This statement is much stronger than what is sometimes
thought of for anon-bremsstrahlung process.On general ground, it shows that feeling con

ö
dentwith an

IR safe computation is theoretically incorrect. IRsafety at the cross sectionor decay rate level is de
÷

nitely
not suf

÷
cient. When one constructs a model designed to describe some processes among neutral bosons

and photons,one must ensure that the amplitudevanishesin the soft-photon limit.

It will be shown in the following that the standard approach amplitudes are in contradiction with Lowøs the-
orem, at each order. Theorigin of the problem can already be explained from theoccurrenceof on-shell charged
particles in the intermediate stage. Indeed, models derived from Bethe-Salpeter analyses,or from QED non-
relativistic effective theory (NRQED), always connect the processof annihilation of bound charged particles to
that of scattering of real, asymptotic charged particles. The dif

÷
culty with such approaches is thereby appar-

ent: asymptotic and bound charged particleshave drastically different radiation properties: the former exhibit
bremsstrahlung-typeradiations,while the later do not radiate zero energy photons (for very low-energy photons,
a positronium state is just aneutral, self-conjugateboson, hence it doesnot radiate in that limit). In the literature,
it is assumed that the intermediate charged particle bremsstrahlung radiations are disposedoff simply by project-
ing onto the required positronium spin state. This is indeed the case for the singular part of thebremsstrahlung
radiation, but not for the constant part. In other words,Bremsstrahlung radiations typically lead to a Laurent
expansion for the amplitude as ùú ûüý þþþÿ � � û��üÿ� � û�ÿ� � ûüÿ
Low�s theorem states thatboth the termsof

� û��üÿ
and

� û�ÿ
must disappear [204]. While the cancellation of� û��üÿ

terms is automatic from selection rules, that of
� û�ÿ

terms is much more delicate. At the end of the
day, the amplitudes fail to vanish in the soft-photon limit.
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2.1.2 Dispersion Analysis of the BS Loop

Mostof the previous questions can be answered simply in the contextof dispersion relations. To begin with, let
us take a four-dimensional loop modelwith a general form factor.

A Generalized Loop Model

Basically, we assume a loop structure for the decay amplitudes, similar to theBethe-Salpeter loop. Positro-
nium decays into avirtual electron-positron pair which subsequently annihilates into realor virtual photons (an
oddnumber for ortho-states, an even number for para-states). The coupling of the positronium to its constituents
is describedby a form factor ��, times a Dirac matrix structure consistent with the bound state quantum num-
bers. Remark that a constant form factor would amount to consider positronium as a point-like bound state. As
wewill see,�� is in fact related to thebound statewavefunction.

For parapositronium decay into two photons,our model isrepresented

The corresponding amplitude is� 	
-�� 
 ��� � � �������� ���� ���  !" # $% !& #'()*+,-.. /01 2 34 56 78 9:;<=>;?@ (2.3)

with A the positronium four-momentum and BC D EF GHI JK L MN the form factor. The tensor OPQRSTUU is the
scattering amplitude for off-shell VWVX, with incoming momenta YZ[ \ ] and YZ[ ^ _, into two photons :`abcdeff g `abcdeff hij klmn o pqrs tuvw x yz { | }~�� � ������ ���� ��� � �� ��� ��� ������ � ���� ��  � ¡¢ £¤ ¥ £¦¡ ¥§¨©ª« (2.4)

Remarks :

1) The model is extended to orthopositronium decays through thereplacement of ª¬ by £©.
2 ) The electron and positron in the loop arenever on-shell, because­ ® ¯°.
3 ) ±² contains all the information about thebound state. Let us postulate a form for this coupling as (in
the positronium center-of-mass frame)±² ³ ´µ¶· ¹̧º »¼½¾ ¿ÀÁ ÂÃÄÅ (2.5)

with Æ a constant, and ÃÄ Ç ÈÄ É ÊËÌÍ related to the binding energy ÎÏ Ð Ñ Ò ÓÔ. In QED,ÕÏ
and Ö× arerelated to theØne structure constant asÙÚ Û ÜÝÞßàá and âß Û ÝßÞßàá.
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The Loop Model Reproduces Standard Decay Amplitudes

We can stateour result in three steps (details are found in the appendix A.1.1). First,we de
ã

neäåæ çè éê ë ìíî ïð-ñò ïñ óô õ ööô (2.6)

with the absorptive part given by the two vertical cuts

Then, using an unsubtracted dispersion relation (see [6], [219])with ÷ ø ùú:û üýþÿ � ��� ���� � 	
 � �
�� ��� ��� ��� ��� (2.7)

(� ���� �  !" #$%& since
$ ' ()), and changing variables, one recovers a factorized form (i.e. a

convolution type amplitude):* +,--. / 001 2 3( 4 56789:;< =>? @ABCDEFGH IJ KLM NOP QRST UVWXYY Z[\ ]̂ _` (2.8)

with a given by abcVWXYY Zde fgh ijk fglh m nno pqrstuvw and x y z{|}~� } �� � ��� ����, i.e. the same������ as
in (2.2). Finally, if one further identi

�
es � � ����� ��� � ��� �� ¡¢£

by neglecting the
¡

dependence in the projectors ¤¥¦ §̈ ©ª and «¥¬ §̈ ª, (2.8)reduces to (2.2).
As a corollary, the energy-dependence of the form factor is demonstrated to be irrelevant. Indeed, the

dispersion relation ­xes®¯ ° ±. From now on, wewill simplif y thenotation and identify ² ³́ µ¶·¸ ¹ º »¼½¾.
Discussion

First, factorization appears simply as a manifestation of the optical theorem: the appearanceof on-shell in-
termediate states is expected in the imaginary part. The dispersive integral ¿shifts¿ themoff-shell: the amplitude
at the physical point À ÁÂÃ is purely real, i.e.only off-shell ÄÅÄÆ circulate inside the loop. Also, the apparent
non-conservation of energy is explained, since the dispersive integral is done along the loop model imaginary
part cut, where the initial energy is indeed suf

Ç
cient to get on-shell constituents. In other words, the standard

approach convolution amplitudes are constructed like in Èold-fashioned perturbation theoryÈ. In the context of
quantum

Ç
eld theory, their natural framework is dispersion theory.

Second, the spin projections are treated covariantly, sincewe took theBSvertexÉÊË with its spin structure
replacedby ÌÍ or Î Ï (ÐÑ ÒÓÔ ÕÖ× is a scalar), a replacement dictatedby the bound state properties under parity
and charge conjugation. This allows us to identify the correct covariant spin projectors for the ØÙØÚ pair,
and to preserve manifest gauge invariance. This is more adequate since it is the moving electron-positron pair
annihilating into photons that mustbe constrained to the required spin state.

Using dispersion relations to reduce theBS loop has the great advantageover approximate methodsof being
exact. Starting with a four-dimensional BS form factor or vertex function ÛÜÝ Þ ßà áâã äåæ, the dispersion
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relations alone enforceçè é ê, i.e. the energy-dependence is set to zero, and no approximation for the energy
part of the wavefunction are needed. This allows us to work in a formally relativistic environmentë standard
Quantum Field Theory techniques are thereby applicable.

Finally, when there is avirtual photon, or for threeor more photon decay channels, the standard approach
formula appearshopelessly wrong, since it neglects all theoblique cuts

Indeed, it is important to realize that only the vertical cutsneed to be considered to reproduce (2.2). Since
Cutkoski rule implies that all the cuts mustbe taken into account in order to produce analytical decay amplitudes,
there is no way, using the standard formalism, to get analytical results. In other words, a perturbation theory
starting with (2.2) as the lowestorder basiswill predict incorrect photon spectra.

2.2 Lowest Order Decay Amplitudes

We have just seen that positronium amplitudes are built as loop amplitudes: the positronium couples to a vir-
tual ìíìî loop, to which a given number of photons are attached. This loop structure is essential, because
oblique cutshave to be included. The coupling of positronium to its constituents is essentially determinedby the
positronium quantumnumbers andwavefunction. Since the Schrödinger wavefunction contains the effectsof the
exchangeof in

ï
nitely many Coulomb photons among the constituents (in the ladder approximation) [73], these

effects are included also in the form factor. This choiceof lowestorder basis solves all the problems mentioned
in the previous section.

A very simple method can be used to effectively compute such loop amplitudes:any lowest order loop am-
plitudewith a Coulomb form factor is the derivativewith respect to the positronium mass of the corresponding
point-like amplitude. By point-like amplitude is meant the loop amplitudeobtained by replacing the compli-
cated Coulomb form factor for the bound stateby a constant form factor. Symbolically, for parapositronium
(orthopositronium) decay to an even (odd)number of realor virtual photons, the amplitude is

ð ññòó ôõõõõõõõö
÷øøøøøøøù
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whereú represents the Schrödinger wavefunction form factor, i.e.û
and dashed photon lines stand for Coulomb photons.

The loop amplitudewill constituteour new lowestorder basis for perturbation theory. Its propertieswill be
discussed later on. Extension to higher orders will bebrie

ü
y commented at the end of the chapter.

2.2.1 A Simple Formula

Let us express mathematically the previous qualitative assertion, using the languageof dispersion relations. The
point-like loop amplitude (subscript ý) can be computed from its imaginary partþÿ�� ���� � ��	
 ��
 ���� � ���
using an unsubtracted dispersion relation with


 � ��
:�� ���� � �� ! "#$% & '( ) *+,- .// 012 3456 789 (2.9)

(:6 ;<=> ? @ABC DEFG
sinceH I JK). The Schrödinger form factor which accounts for the non-trivial

coupling of thebound state to its constituent is of the formLM NOPQR S TUVW XYZ[ XYZ \]^_ with ` abcd e fghijk l hkmk (2.10)

whereone can recognizen opqr s tuv wxyzas the fundamental {| } ~� �-wave Schrödinger momentum space
wavefunction. When expressed in termsof the dispersion relation variable, this form factor is only a function of
the initial energy � (see appendix A.1.1): �� ��� } ��� ����� ���
The core of the derivative approach emerges from the observation that inserting �� in (2.9) is equivalent to
taking the derivativewith respect to ������� ���� � �� � �� ¡¢ £¤¤ ¥¦§¨© ª«¬ ­®¯°± ª²³´µ¶·¸¹ º» ¼ ½¾¿ÀÁ ÂÃÄÃ ÅÆÇÈÇ ÉÊËÌ
hence ÍÎÏÐÑ ÒÓÔÕ Ö ×ØÙÚÛÜÝÞß ààáâãä åæçè

(2.11)

which is the desiredresult. The caseof other parapositronium decay channels,or orthopositronium decay modes
is similarly treated (simply replaceéê by ëìwith ìí theorthopositronium polarization vector).

Remark that the form factor is inserted directly into the dispersion integral, and not in Feynman amplitudes
(like in (2.1)or (2.3)). These two approaches are equivalent only in the punctual case (consider the momentum
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ow through the form factor in each case). Working at the level of dispersion relations is much more in the spirit

of the Bethe-Salpeter equation. Indeed, the wavefunction is extracted from the four-point Greenïs function, i.e.
in con

ð
gurations with an off-shell bound state (above threshold), and on-shell constituents:

The picture shows that both the Bethe-Salpeter vertex and the dispersion integral (2.9) make useof the form
factor ñò with the same kinematical con

ð
guration (diagramswith bremsstrahlung radiation off the electron

lines are treated similarly). Further, wehave seen thatbecauseof the momentum dependenceof the form factor,
neither (2.1) nor (2.3) is gauge invariant. Now, since the imaginary part of the point-like amplitude is gauge
invariant, the decay amplitudes are constructed in a manifestly gauge invariant way.

The propertiesof our approach will be discussed at the end of the present section. Before,wewill gi ve two
illustrative examples.

2.2.2 First Example: Parapositronium to Two Photons

The point-like amplitude for the decay ó-ôõ ö ÷÷ is obtainedby replacing the positronium and its Coulomb
form factor by an elementary, point particle with a pseudoscalar ÷ø coupling to the electron current (with unit
coupling constant)

plus the crossed process. The point bound state amplitude is fully relativistic, and standard loop integration
techniques can be used. Explicitly, the point-like amplitude is (the subscript ù is areminder for point-like):úû üý-þÿ� ��� � ��� � �	
��
�	 �� ������� ���� �� ���� !� " #$ %&'( &)* +,-. /01 2345 /012 067 89:;< =>?: >@7 89;A BCD EFGH BCDE CIJ KL
Carrying the trace,wereadily obtainMN OP-QR S TTU V WXYZ[\]^_`abc_a[c̀ \] dabe \^ da[e fg hijklj
where the dimensionless6 loop integral form factor ismn op qr s tuvwxyz { |}~��� � with � ��� � �������� �� � ������ (2.12)�

This criterion comes in because the dispersion relations (2.9) is built on the whole amplitude, and not just the loop formfactor.
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(the form factor function � ��� for � � � can be de�ned from the above by analytic continuation). From the
amplitude, the decay width is�  ¡¢-£¤ ¥ ¦¦§ ¨ ©ª«¬­ ®­̄ °°±² ³́ µ¶··µ ¸ ¹º»µ¼½¾ ¿ÀÁ ÂÃÄÅÄÆ ¿ ÂÇÄ ÈÉÊËÌÍÎ ÏÐÑÒÎ (2.13)

whereÑÎ ÓÔÎ ÕÖ×ØÙ is related to thebinding energy ÚÛ Ü Ý Þßà.

Coulomb Form Factor

To get the physical positronium decay amplitude and rate, simply replace in (2.13) the loop form factoráâ ãäåæ
by its derivative çèéêë ìíîï ð ñòóôõö÷øù úúûüýþ ÿ���

(2.14)

where �� is the �-wave fundamental state Schrödinger wavefunction at zero separation, and � � �	
� is
obtainedby matching the static limit�i.e. 
 � �� with thewell-known lowestorder result��-�� � ����� (See
Appendix A.1.2). This gives �����  !"# $ %&'()* +,- ./01.2 *,3 4
The factor in squarebrackets is equal to 5 in the limit 3 6 7. Using 89: ;< = >?@?ABC, the decay rate into two
photons is D EF-GH I JJK L >MNO PQR STUVUW XXXXYZ [\]^[_ Ỳa XXXXb (2.15)

The decay rate is a decreasing function of thebinding energy:

Enhanced Convergence

Theresult (2.15) contains some effectsof the Coulomb interactions among the constituents, at allorders inc. Indeed, using db e fb ghbij k fbcbij, the form factor can be expanded as (see the discussion in the
appendix A.1.2)l mn-op q rrs t uvwx yz{ |}~�~� yz� �� �� � ���� ���� �� � �������� ���� ��� ��� �� �� ¡¢£ ¤¥¦§ ¨©ª«¬­®¯°±² ¨°³´´
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In other words, the binding energy effects included in our lowestorder computation already account for a great
dealof the relativistic and radiative corrections as presented in the literature (see chapter 1), namely,µ¶-·¸ ¹ º»¼½ ¾¿ À ÁÂÃ-ÄÅÆ (2.16)

where ÁÂÃ-ÄÅ Ç ÈÃ ÉÊ Ë ÌÉÍ ÎÏ ÐÑ ÒÓÔ ÑÍÕÍ Ö ×ØÙÚÛ ÜÝÞ ßØ à áâ ãäå æç èã é êëì ãíåí (2.17)

with îâ ï ðñòóôõö÷ ø ùúûü ýóþÿ �÷ ø ������ ����	
 � �
��� ���
Numerically, we can write ��-�� � ���� ����� �� !"#$!% ��&'( )* + ,-./-012
with the same series (2.17),but with the reduced coef

3
cients456 7 89:;<=>?@ A BCDBEFGH I JKLMNM

This last form isvery interesting becausebinding energy corrections (i.e.O dependent) are singledout,while
the resulting purely perturbative (radiative and relativistic) corrections are much reduced. This means that one
could, at least in principle, express the decay rate as a lowestorder result,non-perturbative in thebinding energy,
times arapidly converging perturbation seriesof radiative corrections. This is exactly whatwehave achieved.

Note Pnally that the corrections obtained here do not originate from oblique cuts, since there are no such
cuts for the two real photon decay. Rather, they originate in the many relativistic effectswe are summing by
considering a four-dimensional loop model, and from the inPnite sumof Coulomb photon contained inside
the form factor. In the appendix A.1.2, the relation between the above correction and the spreading of the
wavefunction (and to the Sommerfeld factor), are exposed.

2.2.3 Second Example: Paradimuonium and LowQs Theorem

The paradimuonium decay R-ST U VWXYZ is the simplest QEDbound state decay processwhere Low[s
theorem implications can be illustrated. The paradimuonium is the \]^, _X_Z electromagnetic bound state
[95], [111]. In appendix A.1.4, the decay `a b cdcef is presented. This elementary particle decay process
shares many interesting similaritieswith the present QEDbound state case, especially regarding the enforcement
of analyticity.

Following the same steps as for g-hi j ff, wekrst consider the point-like amplitude
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(plus the crossed diagram)with the resultlm no-pq r stsuvw x yz{|} ~�� ������ ��� ���� ���������� � ��� ���� (2.18)

with � ��� ���� � � ¡ ¢£¤ ¡¥¦ §̈ ©¤ ¡¥¦ª « ¢£¬ ¥­®¯° ±²³´µ¶· ¹̧ º »¼½¾ ¿ ÀÁÂÃÄÅÆ ÇÈÉ ÊË ÌÍÎÏÐÏ Ñ ÒÓ ÔÕÖ×Ø× ÙÙÚÛÜ ÝÞ
whereß is the muon mass,à the dimuonium mass,áÜ the reduced photon energy âãÜäà, åæ ç èéêëìíê

,éë the electron mass, and with the function î de
ï

ned in (2.12). In the limit ðñ ò ó, the spectrum ôõö÷ôøù
goes to zero asøúù as predictedby Lowûs theorem (the amplitudebehaves asüý , and an additional factor üý
comes from phase-space).

Taking the derivativeof þÿ to get the corresponding Coulomb form factor, we�ndþ���� ����	
� � 
�������� ������ ����� !" #$%&'( )*+ ,-. /012/3 4-5 6 789:;< =>?@=A9:B (2.19)

where CD E F GHIJI KL MNO P Q RSTUVW
The decay rate is then obtainedby replacing XY by XZ[\] in (2.18)^ _̀

-ab c defghi j klmno pmqrq stuvwx yz{ ||||}~ ������ �}� � ������ �������� ����� � ��� �������
Binding Energy Expansion and Analyticity

It is very instructive to analyze in some details this result. Consider the static limit� �   for the form
factor: ¡¢£¤¥¦§¨©ª« ¬­® ¯°±² ³ µ́ ¶·¸¹º» (2.20)

In that limit, the standard lowestorder result for the decay rate isrecovered¼ ½¾-¿À Á ÂÃÂÄÅÆ ÇÈÉÊ ËÌÍÎÏ Ð ÑÒÓÔÕ Ö×Ø Ù Ú×Ø ÛÜÝÞ×ßØ
However, the differential rateÖàáÖ×Øhas awrong behavior when ×Ø â ã. The spectrum is linear (in äå) in the
limit æ â ã, in contradiction with Lowçs theorem. Therefore, it appears that, contrary to the two real photon
case, the limit è é ê is far from smooth. It is inconsistent to consider both the soft-photon limit and theon-shell
limit simultaneously. Explicitly, the incompatibilit y of the two limits is obvious if ëì í î is taken ïrstðñòóôõö÷øùúû üýþÿ��� � �����	
 ��
� � ��� ������������ ��� � (2.21)� � !"#$ %$&'(& ) *+ , -(./0 ) 1112
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Mathematically, what these considerations show is that the limit 3 4 5 doesnot exist at67 8 5. It should be
clear thatoneof the main virtuesof our approach is itsnon-perturbative treatment of 3, leading to correct photon
spectra.

The contradiction between analyticity and the static limit, i.e. thebasis around which the NRQED perturba-
tion theory is built, can be tracedback to two different sources.

First, the second term of 9:;<= >?@ABC D (2.19) comes from the oblique cuts in the imaginary part (i.e.
processes likeE-FG H IJIKL timesIJIK MNO P QRQS TUV)

First term :

Second term :

Those are the processesneglected in standard approaches, because they are formally of order U relative to
vertical cuts processes (see (2.19)). This is an inconsistent approximation since it is the sumof the two termsofWXYZ[ \]^_`ab that enforces Lowcs theorem. This can be seen by plottingd efg hijkl m n o pqrsq tuvwtxsqtuvwtx rpq
for y z { and variousvaluesof |

Therefore, two terms that would be treated as different orders in the NRQED perturbati on series are
needed simultaneously to enforce Low}s theorem.

The second sourceof the NRQED problems is apparent on the picture and in (2.21). The form factor is not
analytical on the whole phase-spacewhen ~ � �. As the picture shows, even if ~�� �� �

for QED bound
states, the limit ~ � � is not to be taken because it is singular. A breakdown occurs when the energy of the
photon, ��, is of the order of ���. Furthermore, as a matter of principle, since the non-perturbative result is
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not analytic, it cannot be expanded as a series in �, and the NRQED perturbation series isnot to be expected to
converge. Needless to say, this is a serious drawback.

Total and Differential Rates

Thebinding energy effectson the spectrum and differential rate amount to overall suppression. As function
of thebinding energy, wehave, for �� � ���

Thevarious curves in the�rst graph correspond to� � �� ���� ��� ���
(top to bottom). The distortions generated

by the form factor on the low-energy end of the spectrum are not apparent, becauseof the spectrum function� ��� ����, which is highly peakednear � � � ��. In particular, the singular transition from a�¡¢ to a linear £¢
behavior near £¢ ¤ ¥ when ¦ § ¨ doesnot appear. Note that, as is the case for the two-photon decay mode, it
is the factor ©ª«¬­«

which is responsible for thenon-vanishing of the rate as® § ¯.
More importantly, it can be shown by anumerical integration that the contribution of theoblique cuts to the

total rate isof relative order ® and higher (their interference with vertical cut isof order ®, while alone, they
stand at the order ®«

). In other words,while their presence is essential to get a correct spectrum, they can be
omitted if one is interested in the total rate to lowest accuracy. The singular behavior of the spectrum is smeared
out by the phase-space integration.

2.2.4 Conclusion

A new lowestorder basis is proposed, along with a simple computation scheme. This new basis is manifestly
gauge invariant, and formally relativistic. Wewant now to spend some time toanalyze the enhanced convergence
property, and then the analytical properties.

To understand why the binding energy correction we obtained can be interpreted as part of the relativistic
and radiative corrections computed in the literature, it suf

°
ces to notice that the

°
rst order radiative corrections

do contain a Coulomb photon exchange. Further, some relativistic corrections are simply generated in our
approach because the propagatorsof the loop are treated exactly (no approximation for the spinors), and because
the spin part of the wavefunction is taken as covariant. What is interesting is that our approach offers a simple
computation scheme accounting for many non-trivial corrections. The remaining perturbation series converges
much more rapidly. The special featureof bound state perturbation series, i.e. their slow convergence, is clearly
identi

°
ed as abinding energy effect, and we are now able to factorize it from the start. Further, it is especially

clean in separating the effectsof the binding energy from the purely radiative corrections. This is of interest,
especially regarding QCDbound states, since there, thebinding energy is not simply related to ±².

The most interesting part of our result isof course its analytical properties. That iswhere it isreally superior
to the NRQED approach. The reason is simple to understand: when a soft photon is emitted, the scaling rulesof
NRQED are violated. The emitted photon energy is of the sameorder as thebinding energy. One can therefore
expect that aresummation of NRQED amplitudeswill benecessary. Let us seehow this arises.
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In the contextof NRQED,onewould consider theoblique cuts as arising from higher order corrections,

In the second graph, we have illustrated a possible higher order reconstruction of the oblique cut. However,
each of these graphs is separately badly behaved analytically, because at all stagesone is selecting an initial
state madeof f ree ³´³µ. In other words, for a given vertical cut, the corresponding oblique cuts are always
introduced athigher orders. Obviously, it is only by summing thewhole series that the emitted photon will t ruly
feel thebinding of the charged particles. Our method of integrating the loop with its Coulomb form factor sums
a minimal classof contributions so that the amplitude iswell-behaved analytically. In other words, the in

¶
nite

Coulomb photon summation contained in the form factor (or wavefunction) is not factorized from the decay
process. This is aradical differencebetween NRQED and our approach.

The fact that an in
¶

nite summation is necessary is especially obvious from thebehavior of thenon-perturba-
tive resultwe found. The energy spectrumof the photon in·-¸¹ º »¼»½¾ cannot be expressed perturbatively
as a series in ¾. Its low-energy point requires an exact treatment of ¾.

In conclusion, NRQED is unable to describe the end-points of energy spectra,becauseof a violation of the
momentum scaling rules at those phase-space points. Our method is a consistent resummation scheme, and,
being suf

¿
ciently non-perturbative in the binding energy, the photon spectrum becomeswell-behavedover the

whole phase-space. We thereforeobtainananalytical basis for perturbation theory. The perturbative treatment of
higher orders will be discussed later. For total rates,our method offers a possibilit y to factorize binding energy
corrections from purely radiative corrections.

2.3 Orthopositronium Decay

We now apply our method to the orthopositronium decay to three photons. This is avery interesting decay
process.

In the
¿
rst subsection, we shortly recall what is the lowestorder basis chosen in standard computations,

namely the Ore-Powell amplitude [63], and emphasize its analytical defects.
In the second subsection, the lowestorder resultwe will obtain by integrating the loop with the Coulomb

form factor inserted will be seen to be well-de
¿

ned analytically. Further, our result will again show that a
perturbation around À Á Â is ill-de

¿
ned. Also, we will again

¿
nd that the bulk of the radiative corrections is

accounted for already atour lowestorder.
In the appendix A.2, one can

¿
nd a detailed analysis of the three-photon phase-space, including tools to

integrateover that three-body phase-spacenumerically. Also, the derivationof the Euler-Heisenberg Lagrangian,
aswell as the explicit expressions for the two-point photon function to one and two loops and for the four-point
photon function to one loop are given.

2.3.1 Ore-Powell Spectrum

From the requirement of gauge invariance, and becauseof the quantumnumbers of the initial and
¿
nal particles

involved (neutral self-conjugatebosons), LowÃs theorem predicts that the decay amplitude must vanish linearly
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when the energy of one of the photons is going to zeroÄ ÅÆ-ÇÈ É ÊÊÊË ÌÍÎÏ Ð ÑÒÓ
with Ò the energy of oneof the photons. The squared modulusof the amplitude thereforebehaves asÔ ÕÒÖ× for
small photon energy. Aside from that, the three-photon phase-space alone (i.e.with a constant decay amplitude)
gives a differential rate as ØÙ ÚÛ-ÜÝ Þ ßßßàáâ ããããä åæçèéêëæìè í î (2.22)

with î ï ðñòó the reduced photon energy,
ó

the orthopositronium mass. Combining the amplitudewith the
phase-space,oneônds that the low-energy end of the photon spectrummust behave asõö ÷ø-ùú û üüüýþÿ ���� ��

The standard approach at lowestorder states that theorthopositronium decay rate is to be computedwith the
formula � ��-	
 � ���
 � �� �� ��
�� ������� �����  !!!""#$%&'(
with )*+, therelativevelocity of the -.-/ in their center-of-mass frame, and 0 123 the positronium Schrödinger
wavefunction at zero separation (4 is the electron mass).

As the picture shows (crossed processes are not drawn), this formula states that in 5rst approximation, the
positronium decay rate can be computed from the static limitof the scattering cross section 6768 9 ::: (initial
particles atrest). Equivalently, it is found from the squared modulus amplitude for an ;<;8 pair at rest into :::.
Summedover photon polarizations, this is easily shown to be [63]=>?@ABCDAEC?FG HHHI JKLMLNOPQRSTU V WWWXYYYZ [ \] ^_`ab_bb_bc d ef ^_bab_b̀_bc d ef ^_cab_b̀_bb
This modulus squaredbehaves as a constant when one of the

_g is vanishing (as can be seen by using energy-
momentum conservation hi j hk j hl m n, see appendix A.2 for detailson the three-photon phase-space
kinematics),while it should vanish ashkg from Lowos theorem. In turn, the well-known differential rate inherits
an incorrect analytical behavior pq rs-tu v wwwxpyz { |}~��� � ��z�
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where the spectrum function is� ���� � � ����� ��� ���� ������������  ¡ ¢¢¢£¤¤¤¥¦§¨©ª«¬ª«­® ¯ °¯ ±²³´²³ µ ¯ °¶ ±²³´²³°¯ ±²³´· µ ¸ ¹º» ¼½¾¿ÀÁ¾ Â ÃÄ ÂÀ¾¿ÁÃÅ ÂÀ¾¿ÆÇ ÈÉ ÊË ÌÍÎÏ (2.23)Ð ÑÒÓÎ Ô Õ Ö×ØÙÚ near ×Ù Û Ü
The (normalized) differential rate can be plotted

In the Ore-Powell model, the photon energy spectrum vanishesonly linearly near zero, insteadof the requiredÝ Þ×Ùß Û à áâãäå. In other words, this decay spectrum doesviolate thebasicrequirement of analyticity.
For completeness,recall that it is this differential rate that gives the total widthæ çè-éê ë ìììí î ï ðñò ó ôõôö ÷øù since ú ûü ýþûÿ �þû� � ö� � �

2.3.2 Point-like Amplitude

The point-like amplitude is the standard light-by-light box diagram

plus�ve other ordering of the photon insertions. The amplitude can be found in many places [113], [205], see
appendix A.2. The tensor ��	�
��� describing the transition from an off-shell photon to threeon-shell photons
of helicity states
�
�
� is such that������� ��������� ���������� ! "#$%& '( )*"+, -( )"*+, -( )+*",.
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where / 01234 5 / 067869 86: 8;4 (6< is the reduced energy of the photon = and > ? @ABCDB). The E F=GHI
are given in termsof individual dimensionlesshelicity amplitudes asE FJKLM N OL PPPQRSTUVV WXYZ[\\\] ^ \\\_`abccc defghiiia (2.24)j klkakm no pqrs tttuvwxyzz {|}~����� � }��� ���������� {}|~� �������� {}~|������{} ���� �� ������� �� ���� ���� �� ���������� �����   �� ¡¢������� �����££££¤
The helicity amplitudes¥¦§¨©ªª are complicated functions of «¬ and ­ given in appendix A.2. The decay rateof
a point-like vector positronium to three photons is then®¯ °±-²³ ´ µµµ¶ · ¹̧ º»¼½¾¿ À Á ÂÃÄÂÃÅ ÆÇ ÈÉÊËÌ Í Î ÏÊÉËÌ Í Î ÏËÉÊÌÐ
with the three-body phase spacewritten in termsof reduced photon energies asÑ ÒÓÔ Õ Ö× Ø ÙÚÛÙÚ×ÜÝÞßÔ
(see [113], [23], appendix C.3).

Of special interest is the behavior of the low-energy end of the differential rate. For variousvaluesof the
ratio à Õ áâãäåã

(i.e. of the binding energy æç è å é êëì, the photon spectrum, normalized to the total
rate is

Suf
í
ciently close to zero, the behavior is always likeîïð, asrequiredby Lowñs theorem. Asò increases, the óï

behavior is getting more and more pronounced. In the limit ò ô õ, thenormalized spectrum isö÷ø ù÷øùúû üýþÿ ������ ����� 	 
��
� � ����� ����
which is, as expected, the spectrumobtained from the Euler-Heisenberg effective theory [201]���� � ��� !" #$%&'(&')* + ,- .(&' /012345
2.3.3 Coulomb Form factor and Ore-Powell Spectrum

To insert the Schrödinger wavefunction form factor, we de
6

ne modi
6
edhelicity amplitudes according to (2.11)789:;<<=>?@A BCDEFGHI J KLMNOPQRS TTUVWXYZ[\\ ]̂ _ `abcd
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The resulting decay amplitude, and decay rate are constructed as in the punctual case, and wereache fg-hi j kkkl m nop qrs tuvwxw yw t z{|}~
with� � � ������ ������ ����� � ����� ����� � ����� �����������

is given by (2.24)with ������������ in placeof �� ����. Integrating over ¡¢, we get the photon spectrum
for variousvaluesof £

(2.25)

As long as£ ¤¥ ¦, the spectrum behavior is in §©̈ close to zero, i.e. roughly in the range§© ª «¬­® ¯ ¦°.
The propertiesof this spectrum as

®
varies are completely similar to thatof ±-²³ ´ µ¶·¶¸, and one can show

that the limits µ ´ ¹ and º» ¼ ¹ are again incompatible. Contrary to that case,however, it is interesting to
see that becauseof the highly correlated three-photon phase-space, the behavior of the spectrum athigh energy
is strongly dependent of its behavior at low energy. Therefore, the small effectof the binding energy on the
emission of soft photons completely alters the shapeof the spectrum.

Looking at thewavefunction, it also appears that thebehavior of the spectrum can be understood as½ ¾¿ÀÁ Â ÃÄÅÆÇÈ É ÅÈÊÈ Ë Ì Í Ë Î Ï Ð ÑÒÓÔ Õ Ö×ØÙ ÚÛÜÝ Þß à á âãäå æ çèéêë ì Constant í Ore-Powellí Euler-Heisenberg

So that the whole rangeof possible wavefunctions, from the free constituents to the point-like bound state case
is spanned asê varies from î to ï. Correspondingly, one gets the spectrum evolution from the Ore-Powell to
the Euler-Heisenberg one (i.e., the point-like spectrum in the limit ð íï).

In the context of dispersion relations, the contributions originating in the oblique cuts (processes likeñ-òó í ôõôö÷ timesøùøö ú÷û ü ýý þýÿ in the imaginary part, �gure �ÿ below) are essential to maintain a
physical spectrum (i.e. in agreement with Low�s theorem). Again, thoseoblique cuts are neglected in standard
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approaches.Here, they are automatically accounted for since they are included in the point-like result.

Note also that the spectrum for a point-like bound state at threshold corresponds to the spectrum for � � ����
in the Coulomb form factor case. The bound state decay spectra for � 	 ���� are unattainable in the point-like
bound state case.

Concerning the total integratedrate,we recover the Ore-Powell result at threshold (oblique cuts are propor-
tional to 
 and � � �� 
 � �)
 ��-�� � 


� � ��� ��� ���������  ! "#$% &'()*+ MeV , -./ 012 345 678
As 9 increases, the total rate quickly decreases (remember 9 : ;<=>?= @ A)

By anumerical analysis,we foundBCDE F GHI JKL MNO NPQRST UV W STT UXVX YZZ[ U\V\ W SQ[T S]^ UV̂^ Y QQQ_
For orthopositronium, we can express` in termsof a, and we bnd the binding energy corrections to the total
rate c de-fg h iiij k lmno pqr stutv wxy xz{x|v } ~������� � ������� } ���� (2.26)

This series is to be compared to theone presented in the literature (chapter 1), which is��
-�� � ���� ��� � ���� ������� � � ¡ ¢£ ¤¥ ¦§¨ ¥©ª© « ¬­®¯° ±²³ ­́ µ¶· ¸¹º »¼ ½̧ ¾ ¿ÀÁ ¸ÂºÂ Ã

with coef
Ä
cients ÅÆ Ç ÈÉÊËÌÍÍÉÍ ÎÈÉÏÐÑ Ç ÒÒÊÓË ÎËÍÏ ÔÑ Ç ÓÊÓÈÕ ÎÈÏÖ×Ø Ù ÚÛÜÝ ÞÜß
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Again, thebinding energy effects appear asresponsible for thebulk of the radiative corrections atorder à. Note
that theorigin of the slownessof the convergenceof the corrections to áâ-ãä is clearly identi

å
ed as coming from

the perturbative expansion of binding energy effects (see (2.26)). In other words, the four-point fermionic loop
with a Coulomb form factor is not well-behaved for æ ç è, and that limit appears as an inappropriatebasis for
perturbation theory.

2.3.4 A Simple Ansatz

To describe the distortion of the spectrum as the binding energy varies, a simple ansatz can be used. Let us
modify the Ore-Powell amplitude modulus squared aséêëìíîïðíñïëòó ôôôõ ö÷øùøúûüýþÿ�� � �������� � �	
��
�������� � �
 �������
��� � �
 �������
��� � ����� � ���� � ��� !�"#

(2.28)
The reason for this form is the following. When only the vertical cut is taken into account, analytical problems
are generatedby the virtual fermion propagators, which can blow up when the energy of one of the photons
is vanishing. A prescription to avoid this explosion is to consider that the external electrons have a massof$%& '(

. Then, in the static limit,wehave ()# * $#
) +,# -./ -01 /2 3 4 567 89: 8;6 <=>?@ A BC DEF

and similarly for theother propagator. As long as
EF GH I, the propagators cannot generate poles. The Ore-Powell

result isobtainedwith J H KL, hence thevirtual electron propagator is, in that limitM NOP QRS QTO UVWXY Z [\ ]^_ `a_bc d efg hij hkf lmnopqrstu
To replace those propagators by well-behavedones,we multiply the Ore-Powell amplitudeby the factorvw x ysvw x ys v zq { rsrs | uzqt}q
leading to the prescription (2.28).

The obvious question: what is the point in considering this ansatz,built on the vertical cutsonly, sincewe
know that analyticity is restoredby the oblique cuts? In other words, the vertical cut propagators do explode in
the true fermion loop, but any non-analytical term is cancelledby similar divergences in the oblique cuts. The
answer is that the ansatz can be simply integrated, and the ~nal form for the differential rate can be useful for
experimental ~ts. Another reason is that the analytical propertiesof the ansatz, as a function of � and ��, are
very similar to the true fermion loop. Hence, the ansatz provides avaluable toy model,with which to study the
various pathological kinematical limits.
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The differential rateobtained from (2.28) for variousbinding energies is (the analytical expression is given
in the appendix A.2)

The limit � � �, reproduces the Ore-Powell spectrum exactly, by construction. On the other hand, the limit� �� doesnot exactly reproduce the Euler-Heisenberg spectrum. Instead,we get�������� ����������� ���� ��� ����� � ����   ¡¢�£�¤
to be compared to¥¦§¨© ª«¬­®ª¯° ± ²³´µ¶° ·¸¹¸¸ º»¼½¾¿ À Á½ÂÃ¼ ¾Ä¿Å Æ ÇÈÉ ÊËËÌÍË Î ÍÏÌÐÐÑÒ Ó ÔÐÌÍÔÑÕÒÖ (2.29)

More precisely, the ansatz corresponds to the spectrumobtained from an Euler-Heisenberg Lagrangian with the
scalar and pseudoscalar couplingsof equal strengths×ØÙÚÛÜÝÞÜßà á âãäåãäåæç è éêëì íîïðñò
We do not have an explanation for this peculiar fact.

Between the two limits, it is very important to note that the ansatz spectrum is moving away from the Ore-
Powell spectrum at a much slower ratewhen ó increases than the true Coulomb spectrum. Consequently, the
ansatz cannot be used as it stands for ôts. Further, the evolution of the total rate in termsof õ is smoother here,
leading to smaller binding energy corrections (of order õò insteadof õ, seebelow).

Incompatible Limits and NRQED Expansion

For any value of ó ö ÷, the spectrum behaves asøùú close to øú û ü. Explicitly, with the deônitioný û þõòÿ�ò
,����������	 
 � �
����� ���� � ���� �� � �� ! "#$% &'() * '( * +,-(. /( * +01 23415 6789: 3 ;79< = >?@AB = >CDA = E?>?AF GA = >HI J K L MNOPQR
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Obviously, this series ishighly singular for S T U, i.e.V T U. In the sameway as for the decay W-XY Z [\[]^,
it appears that the limits ^ _ ` and ab c d are incompatible.

It is instructive to expand the differential rate around e f d, as is done in NRQED, and to analyze the
various terms. The lowestorder is of course the Ore-Powell result (2.23),while higher orders are more and more
singular atgb f d hijklmnompqrst u v wxyz{|} ~ ����� � ������� ����� � � ������������� �¡¢£¤¥ ¦ §©̈ª«¬­® §¨¯°±²³ µ́¶·̧ ¹ ºº̧»¼ ½ ¾ ¿ÀÁÂÃÄÅÆÇÈÉÊËÌÊÍÎÏÐÑ Ò Ó ÔÕÖ×ØÙÚ ÓÔÛÜÝÞßÞ à áâã ä åææ ä çèéê ëì í î ïðñòóôõö÷øøø
The integration over ðò gives the resultùúûüýþÿý�� � � �����	
 ��� 
������������ � � ����� ! "#$% &% '()*+ ,-./.01.2345367 8 9 ::
In the terminology of NRQED, the Ore-Powell result;<=>345367 is the lowestorder, while the ;<?>345367 is the@rstA
relativistic correction

A
. Even if thebehavior of this @rst relativistic correction is highly unphysicalnear BC D E,

a IR@nite answer can neverthelessbe generated. This kind of correction is obtained, for example, in [99], [107].
A @nite result cannot beobtainedbeyond thatorder, and special techniqueshave to be designed to dealwith the
divergences. Obviously, all these dif@culties simply originate in thebadly chosen basis for perturbation theory.

To close this section, if the exact total rate is expanded aroundF D E, one@ndsGHIJHKL M N OPQRSTU VWXY Z [\ Z ]̂ _̀ a b cd efaga b hijk l mjnopq r ns tuv mwqxqy z{|}| ~ ����
Finite corrections at each order are obtained, the divergence encountered above is replacedby ��� ������,
which could be called, again in analogy with standard bound state terminology, a non-analytic term. Indeed, if
thebinding energy is expressed in termsof the�ne structure constant, we get correctionsof the type����� ��� ����� � �� � ��� ��� � ��� ��� ��
This illustrates some techniques used in NRQED, which amounts to extract such logarithmic corrections, with
thehope that theremaining corrections canbe computed perturbatively (notewell, however, thatwe donot claim
that all logarithmic corrections areof that type). All these complexities can be circumventedwith the useof our
method .
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2.3.5 A Scalar and Pseudoscalar Resonance Model

We continueour study of analyticity in three-photondecay by taking a modelwhere the initial vector particle�rst
decays into a (pseudo)scalar plus a photon, with then the (pseudo)scalar decaying to two photons. Graphically

The couplingsof the scalar and pseudoscalar to two photons are�  ¡�¢£¤ ¥ ¦ §¤£¦¢¨©ª «¬­®¯°±¯²°³
The couplings with a photon replacedby the orthopositronium are the same (with ´ª µ ¶·). The scalar or
pseudoscalar propagator is ¸ ¹º» ¼ ½º¾ ¿À¾Á Â ÃÄ
withÅÁ the pseudoscalar and the scalar mass (we take them as equalhere). Note that the constants ÆÇÈÆÉ have
dimension of 1/mass.

The Photon Spectrum and Phase-Space Singularity

Wewill study the photon spectrum as the massof thevirtual resonancevaries. The modulus squaredof the
amplitude (there are threenon-equivalent ordering of the photons) is the same for the scalar and pseudoscalar.
After integration, one gets the differential and total rates (the expressions are rather lengthy, and since the com-
putation is straightforward, will not be reproducedhere). Of special interest is the low energy behavior of the
photon spectrum ÊËÊÌ Í ÎÏ ÐÑÎÏ ÒÓÔ Õ Ö×ÖÎØÙ ÚÛÙ Ü ÝÞß àá â ã äåæç
with èé ê ëìíîëìïð. As expected, the spectrum is in ñò near zero. The two singularities atóí ê ô and õ are
interesting. Explicitly, the differential rate at those points isóí ê ô ö õ÷ ø÷øñ ê õùú ñ û üýþÿ � ����þ��� � � 	 �
 �
�� � �
� � ��� ����� ���� � �� �� � � � ��!��� ��!� "#$ � ��!% & '() * +,- ./0 1 2 30455
Thesebehaviors are in contradiction with Low6s theorem. This problem is due to our computation, which is
wrong when the scalar propagator singularity is inside the phase-space, i.e. for 78 between 9 and :. In fact,
the spectrum, and rate, can only be de

;
ned for <8 = 9> <8 = :, where there is an analytical problem, and for<8 ? :, where the spectrum iswell-behaved.
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Before turning to theresolutionof the analytical problem,note thatwhen @A BC, thenormalized spectrum
becomes @A BC D EF GFGH I JKHL M NOPQ R NST PU (2.30)

which is nearly the Euler-Heisenberg one. In fact, this is the spectrum obtained from V W XYZ[\Z[]^
or_ ` abcd efcdgh

. The small difference between (2.30) and (2.29) is due to the contribution coming from the
interferencebetween both termsof the Euler-Heisenberg Lagrangian.

Resummation and Finite Width Effects

To correctly describe the processwhen the scalar (or pseudoscalar) mass is smaller than the positronium
one, we will need to sum an in

i
nite classof diagrams. Again, we

i
nd that analyticity requires some kind of

resummation for somevaluesof the parametersof the theory. This is strictly similar to the Coulombresummation
(or binding energy resummation) we advocate to cure NRQED in three-body decays. Here, the resummation is
even simpler to understand: if the (pseudo)scalar can decay into two photons, it has a

i
nite width. Hence, its

propagator, after renormalization, should beof the formj klm n olh pqrs t uvwxw y uz
Graphically, the summation is

Repeating the same computation as abovewith this new propagator

the differential ratebehavesnear zero as{x{| } ~w ��~w y�� � � � ������ ���� ����� ���� � ��� ������� �� ��� 
with ¡¢ £ ¤¥¦¥§¤©̈ª. For all valuesof «¥, the spectrum isnow in agreement with Low¬s theorem. Further,
the differential rate can now be de

­
ned for all ®¯, and exhibit a standard Breit-Wigner shape, like for example
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for °± ² ³´µ and ¶± ² ³ ³́·:

The resonance appears at¸ ² ¹º°±, while a sharp increase appears for ¸ ² °±. For low energy, the spectrum
vanishes aş ». If ¼½ increases, theBreit-Wigner peakwill decrease and spread, and in the limit ¼½ ¾¿, the
spectrum is again (2.30).

In the physical caseof the positronium, the above treatment could apply to the computation of the para-
positronium contribution to theorthopositronium lifetime. Indeed, the massof the parapositronium is less than
thatof theorthopositronium. The parapositronium width has to be taken into account. Another application could
be the quantitative estimation of the scale anomaly contribution to the orthopositronium width. Indeed, this
anomaly should show up in the scalar channel. This analysishasnot yetbeen done,but is an interesting perspec-
tive because it isobvious that the standard factorized approach will miss such contributions. Wewill encounter
again the scale anomaly in thenext section.

Finally, let us emphasize that the present model is not designed to represent the physicsof the analytical
problemof standard positronium computation. That problemhas to do with the de

À
nition of the initial state, and

needs a loop modelwith a Coulomb wavefunction form factor (i.e., containing a Coulomb photon resummation).
The possible recombination of the electron and positron into a parapositronium, after having emitted a soft
photon is a different problem, which should be treated using the technique of the present section. In other
words, if the Pirenne-Wheeler formula is used to compute the amplitudeof the present resonance process, an
incorrect spectrum would be found for all valuesof ÁÂ and ÃÂ, since it is its treatment of the initial on-shell
electron-positron pair which is incorrect.

2.4 Application to Other Processes

In this
À
nal section, we present several extensionsof the method.

First,we present the application of the method involving the photon vacuum polarization. This includes the
one-photon virtual decay Ä-ÅÆ Ç ÈÉÊË and the weak decay Ì-ÍÎ Ï ÐÐ. Also, a connection to the scale
anomaly is brie

Ñ
y discussed.

Then, we accommodate the derivative formula (2.11) for radial excitations, by considering the pion decayÒÓ Ô Õ Ö-×Ø. This is also theÙrst exampleof a production process.
The next application is abit different, in that it concerns the spectroscopic observables. We compute the

hyperÙne splitting by taking double derivative of vacuum polarization graphs, and using the languageof mass
renormalization.

The section endswith qualitative descriptionsof other possible extensions,namely positronium, dimuonium
high-energy formations and radiative transitions among positronium states. Finally, the extension of the method
to higher ordersof perturbation theory is brie

Ñ
y discussed.
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2.4.1 Orthodi muonium and Photon Vacuum Polarization

Wenow consider the decay Ú-ÛÜÝ Þß Ý àáàâ
The point-like amplitude is easily obtained in termsof the (divergent) photon vacuum polarization functionãä åæ-çè é êëìíî ï ðñ òó ô õóö÷øù úûøû ùüýþ ÿ��� ��� �� ��	 
�� �� 
��
where �� ���� � � ���� ����  !"  #�$  %� &'( )*+ ,-. /*+ 012345 6789:;<=>?@ A B CD (2.31)

with
@ E FGHIG,I the muon mass andJ K LHM NOPQRST U VWXYZ[\]^\ in dimensional regularization.

The Coulomb form factor will be obtained from the derivative of the vacuum polarization, with respect to_\ ` ab: cdefg hijk l mnopqrstu vvwxyz {|}~ (2.32)� ����� ��� ����� ������ � ����� ������ ������ � ¡¢£ ¤¥¦ §¨§© ª« ¬ ­ ª®«® ¦ ¯¨­§© ª°«° ¬ ±±±²
This has the effectof removing the divergence, as it should. The decay rate is³ µ́-¶· ¸ ¹º»¼½ ¾ ¿À ÁÂ Ã ÄÅÂÆÁ ÇÈÉÊË ÌÌÍÎÏÐÑ ÒÓÔÕÖÖÔ× ØÙÚÛ ÜÝÞ ßàá âãäåæç èèèèé ê ëìëí îï ð ñ îòóò ô õõõööööò
To leading order in ÷, we recover the standard resultø ùú-ûü ý þÿþ�� � �����

when �	 

 �. As a
function of the binding energy ��
, the decay rate is arapidly decreasing function (the plot is normalized to
one at� � �)
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For electromagnetic bound states, the binding energy is related to the�ne structure constant, hence the correc-
tions can be cast into� ��-�� � ����� � ����  !" #$% & '()*+ ,-. /01 23 4 536 7 89: ; <6=6 7 >>>;? @ABC DEF GHI J KLMNO PQ R QSTUV W QSTXVY Z [[[\
Compared to the binding energy corrections to the parapositronium two-photon decay rate, the present correc-
tions are much bigger. This is due to the high sensitivity of the form factor function near ] ^ _ (see picture
above). Note`nally that thebinding energy corrections obtainedhere, atorder a, again account for a great deal
of the total corrections (computed using the standard factorized formalism),which arebcdefgh ij-kl m nonpq r stuv wxy z{| }~���� ������ � ���� �������
The last factor contains the radiative corrections to the intermediate photon propagator and to the �nal ����
vertex, and is of no interest for our discussion.

Scale Anomaly

The decay rate isrelated to the derivativeof the photon vacuum polarization function. In turn, this derivative
is related to the scale anomaly [207], [220]. This means that in principle, the decay ratereceives a contribution
coming from the scale anomaly. As wewill see, this contribution is subleading.

The anomalous Ward identity of interest to us is�� ������ ��� ���  ¡ ¢£¤¥ ¦§¨ ©ª¨« ¬ ­¨®¯°±
where ² ³́ ± µ¶±· ³́ ¸¹º » ¼¸º¹½¾ ¿ À ÁÂÁÃÄÅÆÇ ÈÉ ÊË ÌÍÎÎ ÏÐÑ ÒÓ ÏÔÕ Ö× ØÙÕÚÛÙÜ
and ÝÞÞ is the traceof the improved energy-momentum tensor. The additional term ßàáâãäà on the right-hand
side is the scale anomalyå it doesnot appear classically. Taking only that contribution into account, we get the
scale anomaly contribution to the Coulomb form factoræçèéêëéìí îïðñ ò óôõö÷øùúû üýþ ÿ� ����� � � �	
�� 
� ��� ���
At the level of the decay rate, let us keep the dominant contribution coming from� �������, and the anomaly
contribution as theonly correction���� !"-#$ % &'()* + ,- ./ 0 12/3. 45678 9999:;<=> ?@AB=CD=EF GHIJKKKKIL MNOP QRS TUV W XYZ[\ ]]]]^ _ àb cd eeeefg hijk lmn opq r stuvw xxxxy z {|}~ �� ����
Therefore, the scale anomaly accounts for ��� of the completebinding energy correction.
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Note that if, for somereason, the anomalous contributionwas to beomitted from binding energy corrections,
wewould write����� ��-�� � ����� � �� �� � ����� ��� � ¡¡¢£¤¥¦ §̈ ©ª «¬­®¯°±¯²³ ´µ¶· ¸̧¹º »¼½¾ ¿ÀÁ ÂÃÄ Å ÆÇÈÉÊ ËËËËÌ Í ÎÏ ÐÑ Ò ÓÓÓËËËËÔÕ Ö×ØÙ ÚÛÜ ÝÞß à áâãäå æææç è éêë ì íííîîî
And this is exactly the result of the standard computation! The reason for this is rather obscure, probably
accidental.

Nevertheless, an interesting question arises: is the scale anomaly a true physical contribution to the decay
rate? In the derivative approach, the scale anomaly automatically shows up,while it is not clear how it could
arise in the NRQED standard approach. We take the point of view that the scale anomaly is not included in the
standard approaches. Furthermore, higher orders will never introduce it, so it is a truly new contribution. The
reason for this point of view is the following. The anomaly never shows up in the imaginary part of amplitudes.
The standard approach in the static limit amounts to consider the imaginary part at threshold (i.e. the process
is factorized), hence the anomaly will be missed at lowest order. Similarly, higher orders are computedby
introducing corrections to the wavefunction or scattering amplitudes,but the factorization is still used, i.e.one
is again working at the level of the imaginary parts. Since, atno stage in the NRQED process, the loop with its
Coulomb form factor is explicitly integrated, the scale anomaly will be missed.

This doesnot answer the question, but just shows that our result is de
ï

nitely not attainable by NRQED
analyses. At present, even if we do not see any compelling reason not to include the scale anomaly, noneof the
two approaches is fully justi

ï
ed.

To conclude this section, note well that such scale anomaly contributions, if missedby current theoretical
computations, could introduce sizeable corrections in QCD. This is especially important since leptonic decays
like ðñò ó ôõôö

arevery well measured, and have a close connection to the so-called÷øù puzzle (see chapterú
and û for additional details).

Orthopositronium Decay to Neutrinos

To explain the discrepancy between the experimental measurement and the theoretical value of the or-
thopositronium lifetime, one could invoke an invisible contribution to the width. Such undetected decay par-
ticles could be neutrinos,or new, beyond the standard model particles. Herewe present the computation of the
decay width into an electron neutrino-antineutrino pair ü-ýþ ÿ ����, through a

�
boson in the� channel and a�

in the� channel

We will replace gaugeboson propagators by ��	
� and ��	
�. Then, both point like amplitudes can be
expressed as
� ��-�� � ����� � �� �� � ���� ��� !"#$ %&'(( )' *+ ,-. /0 ,1 2/345 67849
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For the : boson exchange, this form emergesbecause the axial part of the: coupling doesnot contribute.
One essentially recovers the photon vacuum polarization as form factor, up to coupling constants;<= >?@A B CDEF GHIJK LMNO PQRS TUV WX YZ[ \
with ]^ _̀ ab

given by (2.31),cdefg h ijklmjn and on p oq rst un . For the v exchange, the loop
integration has to be done explicitly, using dimensional regularization (this is compulsory, in order to dealwith
the quadratic divergences). After the loop integration, the Dirac structure wx yz {|}~ emerges and one can
factor out the form factor, again expressed in termsof the photon vacuum polarization��� ���� � ���� ��� ����� �

The Coulomb form factor is of course the same asbefore (see (2.32))����� ���� � �� ¡¢£¤¥¦ §§¨© ª«¬ ­®¯°± ² ³ ´µ¶· ¸¹º »¼ ½¾¿ ÀÁ¿ÂÁÃ Ä ÅÆÇÁÇ ÈÉÊËÈÌ ÁÍÎÏÐ
Replacing ÑÒÓÔ by ÑÕÖ×Ø in ÑÙÒ ÚÛÜÝ, summing both contributions, one get the lowest order positronium
decay amplitudeÞßà-áâ ã äåäåæ. From it, the decay rate is simply computedç ßà-áâ ã äåäåæ è éêëìíîïð ñòó ôõö÷ø ùúûü ýýþÿ��� �������� 	
��
�����
 ��� � ���� ���� � �!"#$# %& ' ()(* +, - . +/,/ ' 0).(* +1,1 - 22234
At threshold,5 6 78, we recover the result presented in the literature [108]. Obviously, this decay rate isvery
small,of theorder of 9 :;-<= > ?@?@AB CD-EF > GGGA H IJK LMNOPQ
This is much toosmall to beof any interest.

For other neutrino Ravors, only theS exchange graph contributes,with the sameresult except for a minus
sign:T UV-WX Y Z[\] ^[\] _ ` abcdefghijb kl mn opqr stuv wxvyz{|{ }~ � ���� �� �� ���� � ����� ���� � �����
This amounts to a suppression of a factor of about ��� relative to the electron neutrino case.

As a�nal remark, wenote that if the Fermi coupling hadnot been used, there is a delicate issue concerning
gauge invariance. Indeed, the general formalism states that to get theorthopositronium decay amplitude,one can�rst construct the equivalent processwith a photon in placeof theorthopositronium. For the� exchange graph,
this is not the case since theorthopositronium cannot couple directly to the� . Moreover, for the corresponding
photon graph, that coupling is important to preserve gauge invariance. Further studies should clarify the useof
the derivative method in weak interaction processes.



46 Chapter 2 A New Basis for QEDBound States

2.4.2 Pion Decay to Orthopositronium and Radial Excitations

The techniqueof taking the derivative of point-like amplitudes can be extended to other spherically symmetric
wavefunctions. The decay �� � � �-�� is a good example [82]

To get a sensible theoretical prediction, one must sum the decay ratesover the in
�
nite tower of radial excitations�-�� ���� in the �nal state (�- ¡ ���� means �th radial excitation of the �-wave ¢ £ ¤ positronium state).

From the standard Schrödinger wavefunction for hydrogen states (see appendix C.1), we can write a general
expression for the form factor for �� radial excitations as¥¦§¨©ª« ¬­®̄° ± ²³´µ¶·¸¹¹º »¼½¼ ¾¿ÀÁÂÃÂ ÄÅÆÇÈ ÉÉÊËÈÌÍ ÎÏÈ ÐÑÒÓÔ ÕÕÑÒÓÖ× ØÙÚÛÜÝ (2.34)

with Þßàáá â ã äåæçæèéêæ ëì í îïð ñòðóôõWhere we have denotedö÷ the massof the ø-ùú ûüýþ state. The hypergeometric functions are essentially the
well-known Laguerre polynomials ((2.34) is equally valid for parapositronium).

For the case athand,ÿ� is the photon vacuum polarization (2.31),where� refers now to the electron mass.
The pion decay rate into orthopositronium states can bewritten as�������	 
 � �
� � � �-�� ������ ��� � ���  !"# $$%&'()*+ ,-./011. 234 56789: ;< =>? @ ABCDECFGH IJ
TheKCDLECFGH M NOPQ corrections arise from the form factor for pion to twophotons. The massratioRSTUVSW XYZ[\

is also negligible compared to binding energy corrections, towhichwenow turn. Up to correctionsof order]_̂, we can write using `_ a bcdefghijklmn o pqr stu vwx yz{ |{}{ ~ ���� � ��� ��� ��� ������ � ����
(the�� are thenumerical coef

�
cients found by expanding������� ��� ¡). Summing over ¢, we£nd¤¥ ¦§¨©ª«¬­ ® ¯°± ² ³´µ ³¶ · ¸¹ºº»¼ ½ ¸¹º¾¿ À¸ÁÂÃ

where ÄÅÆÇ È ÉÊËÌÊÍ ÎÊÏÐÑÒ is obtained from the contribution of the Ó-ÔÕ Ö×ØÙ only. For comparison, [82]
found the radiative correction to be Ö× ÚÛÜÝÞßÙ. The experimentally quotedbranching fraction is [98]à áâã ä åæçèé êëì í îîï ðððððñòó ô õö÷ø ù úûüý þÿú��so the agreement is good.

What this little exercise shows is the power of our method as a mean to partially computehigher order
corrections. More importantly, it is by now apparent that other, more complicatedwavefunctions can easily
be accommodated for. Any wavefunction that can be expressed, even approximately, from derivativesof the
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Coulomb one can
�

t in our scheme. This may open the way to many applications in QCD, aswe will see in
chapter 4.

2.4.3 Hyper
�
ne Splitting and Mass Renormalization

We implement here the renormalization of the positronium state. The idea is to consider the bare positronium
mass� as equal to twice the electron mass�, and then to carry a (

�
nite) massrenormalization. The dia-

grams contributing, at lowestorder, to this mass shift will be obtained as the second derivativesof the vacuum
polarization loops:

Let us
�

rstobtain the massrenormalization equations, and then discuss the resultsnumerically.

Mass Renormalization

For a pseudoscalar parapositronium state, the resummation of the Dyson series is trivial. The parapositron-
ium propagator is then � ��	
 � �
	 ���� ������ ����
Of interest to us is the mass shift, de

�
ned from the pole of � ���� �!"#$%$ &'() * +,-.- /0123 4 56789:9 ;5< = >89:9 ?@ABCDEFEGHIJ (2.35)

For theorthopositronium, the transverse part of thebare propagator isKLMN OPQR S TU VWXY T Z[\]\^ _`a bcad e fg
The self-energy of thevector positronium will beof the formhij klmn o pqrstu vwtwuxyz{|}z ~���
Proceeding with theresummation of the Dyson series,we end upwith��� ���� � �� ���� � ������ ��� �� ������� �� ¡¡ ¢£ ¤
Again, the propagator pole is at¥¦ § ¨¦©, hence¨¦©ª¤«¬­¤ ®¯°± ² ³µ́¶·¸¹º· »¼½¾¿ ÀÁÂÃÄÅÆÇÄ ÈÁÄ É ÁÂÃÄÅÆÇÄÊ ËÄÅÆÇÄ ÌÍÎÏÐÑÒÓÔÑÕ (2.36)
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The twoequations (2.35) and (2.36) are self-consistent equations.By identifyingÖ× Ø ÙÚandÖÛÜÝÞßÞà×ßáâ×ã ØÖÝÞßÞà×ßáâ×ã, they areof the formäåæåçèéêëêì í îïðñð òóô õ öïðñð ÷øùúûüûýþÿ � ����� ������� ��	�
�	� � �	�
�	 
 �� � ������� ������ ��������� � � !"# $% !"# & '
Our approach will be to generate corrections to

%()!)*+,-.+/0 by plugging the non-relativistic result 10 2345678 into 9:;<;=><?@>A.
Second Derivatives and Hyper

B
ne Splitting

The double derivativesof thevacuum polarization loops areC:;<;=><?@>A DEFG H IJ KLJMNOPQRS TU V WWXYZY [\]\^_^`a_bcad efgh
where a factor of ijk corrects for the factor

k
appearing in the derivative of ij lm nopqp, while the other

accounts for the double counting of Coulomb photon exchanges.
The computations are straightforward. For parapositronium, the point-like quadratic divergence disappears

and wernd stuvuw x ytuvu z {| } ~tuvu ����������� �� ��� ���� ������� � �� ������ ���� ¡¢ £ ¤¥¦§¦ ¨ ©ª«¬­¬ ® ¯°±²±³´µ´¶ ·¸¹º» · ¼¸¹½¾¿À Á ¸¹ÂÃÄ · ¾¾ÅÆÇÈÉÊËÌ Í ÎÎÎ
Where we have usedÏÐÑ ÒÓ Ô ÕÖ×ÖØÙÚ, ÛÜ Ý ÕÜ Þ ßÜàáâáãä and åàáâá æ çè éèêëìí

in the right hand
side. Proceeding similarly with theorthopositronium renormalization, we consider the second derivative of the
photon vacuum polarization function:îïðñòïóôõö ÷ øùúûüù ý þÿ � øùúûüùþ �ùúûüù ��������	 (2.37)
 � �
� ���� ������� � �� �������  !" #$%&#' ()*+,- . /0 1234 5676 89:; 5<7<<5676 89 =>?>@ABC@D EFGHI J KLFGMNKO E KFGPQR J NQSNFGTONUV W XXX
At theorder YZ, there is also the annihilation diagram

whose contribution is [\]]^_`abcda efgh i jk lmnopq rsps qt uvwxyz {|}~~}. Using����� �� �� as given by
(2.32), the dominant contribution in the limit � � � is��������� ���� � ��� � ��� � ��� ¡�¢£¤¤¥¦§¨ © ª«¬­®«¯ °±²²«¬­®« ³ªµ́¶·¸µ¹ º »¼½¾ ¿ ÀÀÀ



2.4 Application to Other Processes 49

Hence the lowest loop contributions to thehyper
Á

ne splitting are, to order ÂÃ:ÄÅÆÇ È ÉÊËÌÍÆËÎÏÐÑ ÒÓÔÕÖ×ÔØÙÚÚÛÏÜÑ Ý Þßàáâáã ä åæç èéêëì í îîîï ð ñòó ôõö÷øùø ú öööû
This is to be compared to the result (see chapter 1)üýþÿ � ��� � ��� � 	
 ��
 � �� �� ������ �� ����� �� �  !"#$#�% � �!&'()*+,- . /0011)),- . 102 34 5 6 78859 :8;2<=>?> @ABCDE FGE HI JKBL FG M N OPQRS TUV WX YZ[\ ]̂ _`ab cde fghijkk lghkmkkn lghogjknp qr n lghkmojnp l hhhs
It is not surprising that our method doesnot reproduce exactly the above result,becausewe have neglected

many diagrams (like electron self-energy insertions for example), and becausewe used the lowestorder non-
relativistic binding energy tu v wxyz{| and wavefunction }~� �� � ������� as abasis. Taken individually,
the correctionsof � ���� to the para- andorthopositronium masses areoff by more than ���. On theother hand,
the differencebetween both corrections, giving thehyper

�
ne splitting, is surprisingly good. Again, it seems that

all the effects contained in the lowestorder loop (with all the ladder Coulomb photon exchanges in the form
factor) suf

�
ce to account for most of the radiative corrections. In conclusion, further studiesof the application

of our method to hyper
�

ne splitting appear asnecessary.

2.4.4 Possible Extensions

We have seen that the parapositronium and orthopositronium are easily dealtwith using the derivative formula
(2.11). It should not be dif

�
cult to extend the formalism to transitions among positronium states

Usually, such transitions are computed using the quantum mechanical formalism for magnetic dipole transitions.
Here, we just have to compute a Feynman diagram, in a formally relativistic framework. In any case, the
transition �-�� ��-�� � � is very small compared to the decay �-�� � ���.

Another simple extension is the description of positronium (or dimuonium) production processes, like for
example
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The last graph is to be understood as a sub-process (see the �� � ��� production mechanism discussed in
the previous section). Those processes are interesting because they constitute a theoretical laboratory for the
quarkonium production case.

Still in connection with the corresponding QCD case, the description of higher excited states should be
made possible using our formalism. Naively, we can expect that their decay amplitudewill be computed from
point-like amplitudewith awell-chosen Dirac structure� � ¡ �¢£ � ¡ �¤¥¦¥ § ¨¤©ª«¦¬ § ­«¦¥ § ©¤©ª«¦® § ¨¤©¯ ° ¨¯©¤ ° ±² ³´ µ¶·¸¹ º »¼»½»¾ ¿ÀÀÀ
These identi

Á
cations suf

Á
ce to enforce the correct selection rules (like for exampleÂÃÂÄÅ ÃÂ ÆÇ ÈÈ). To be able

to extend the derivative formalism,we also need to know the wavefunctions. Those are given in appendix C.1,
but not in a very convenient form. In particular, it is not clear at present how to dealwith the angular part of
thosewavefunction (theÉ-statewas especially simple, since spherically symmetric).

The Ênal extension we want to mention is the hydrogen atom and the muonium. In other words, the case
of unequal constituent masses. The wavefunctions are the same as that of the positronium (except for the re-
duced mass). Anyway, for unequal masses, the bound state doesnot usually annihilate. The only exception isËÌÍÎÏÐ Ñ ÒÓÒÔ. Description of this process using the present formalismwill be undertaken in thenear future.

2.4.5 Higher Orders

At Õrst sight, the extension to higher orders is straightforward. It sufÕces to take derivativeof two-loop point-like
QED amplitudes. This will regenerate the tree-level result, introduce all the corrections of order Ö, along with
corrections of higher orders. Logarithmic corrections will also be automatically generated from the threshold
singularities of the two-loop (or higher) graphs. For example, the following graphs are sufÕcient to get the
complete decay rate up to order Ö

The tree level result isregeneratedbecauseof the Coulomb part of thebinding graph (photon exchangebetween
the×ØÙÚ). This is due to the iterativenatureof theBethe-Salpeter equation (see (1.11)). Note that the Coulomb
part of thebinding graph also generatesorder Û corrections, as exposed in [87].

Unfortunately, things are less simplebecause precisely of the binding graph. To seewhat happens, let us
apply our derivative formulaon the two-loop photon vacuum polarization graph (see appendix A.2), evaluated
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at the positronium mass. WeÜnd the Coulomb form factorÝÞßààáâàãä åæçè é êëìíî ïð ñ òóô ñ õöó÷ øùú ó ûü ýþÿ��
The�rst term, 2, is the signal that something has gonewrong. Wewould have expected a� instead. The problem
is simple to understand. When one simply takes a derivative, the form factor is introduced inside the cut,hence
we generate

This is not correct� it is a double counting. Those diagrams are responsible for regenerating twice the lowest
order. Instead,we should consider only oneof them,or proceed�rstby inserting the Coulomb form factor inside
the imaginary part. Note that, if naively dividedby two, the two-loop correctionsbecome�����	
��� 
��� � ����� �� � ��� � ����  !" � # $ %&'()* + ,--./ * 01234 5 6789 :; < =>? @ AB C DE FG H IJK H LMJN OPQ J R S TUVWX YZ [ \ ]̂_
which agrees to order ] with the standard result. Future work should clarify the useof the method at higher
orders.

In any case, it should beobvious that the extension to higher order is possible in principle. The present dif-`
culty is only technical. Of course,we are still a long way from an exactorder ]a

computation, necessary to
competewith other computation schemes. This wasnot our objective. Instead,we think that we have success-
full y constructed awell-de

b
ned perturbation theory for QEDbound state computations.
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2.5 Conclusion

In summary, wehave analyzed the QEDbound state decay formalism, using dispersion relations. The two prin-
cipal resultswere

1- The approximation done in standard approach to reduce the four-dimensional Bethe-Salpeter loop is
essentially aneglectof all but thevertical cutof the loop.

2- The four-dimensional loop amplitude,with the Coulomb form factor inserted at the level of the disper-
sive integral, and with a covariant description of thebound state spin, is obtained as the derivativeof the
corresponding point-like bound state QED amplitude.

Since all the cuts are needed to preserve analyticity, and since a simple computational scheme is available,
we therefore conclude that QEDbound state computations mustbe developed from a new perturbative basis.
Lowestorder amplitudes constructed in this way have many properties

1- They are simple to compute, in a formally relativistic framework.

2- They are automatically gauge invariant.

3- They sum an in
c

nite classof correction already at the lowestorder.

4- They factorize thebinding energy effects from theradiative corrections in the perturbative series, lead-
ing to enhanced convergence.

5- They predict correct photon spectra, i.e. spectra in agreement with Lowds theorem. This is impossible
using a perturbative NRQED approach.

While the main motivation for constructing anew basiswas the con
e
ict between NRQED and analyticity

in three-body decays, the method can be applied (or will be extended) to a variety of other processes (higher
excited states,hyper

c
ne splitting, radiative transitions,...).

Also, our method apply to lowestorder amplitudes,while present theoretical considerations in positronium
physics are at two loops and beyond. As said,our goal was to implement analyticity inbound state computations,
so it is natural to start with the lowestorder. Anyway, to be competitive,our method should have to be applied
at two loopsnow. As we have seen in the previous section, there isno obstruction to this extension, at least in
principle.

The simplicity of the method may be accidental, but could also be the signal of some more fundamental
physics involving Coulomb bound states. For example, the fact that the derivative of the photon vacuum po-
larization contains all the necessary information about the positronium binding is very interesting. Further, the
appearanceof the scale anomaly as abinding energy effectneeds further study.





Chapter 3
Overview of Quarkonium Theory

This chapter presents theobservablesof quarkonium physics, aswell as the theoretical descriptionof quarko-
nium decays. It begins with abrief summary of the spectroscopy of heavy quark-antiquark bound states, and of
the annihilation modesof the quarkonium ground states. Then, the standard theoretical framework for the de-
scription of quarkonium annihilation is developed from the positronium annihilation one. Finally, the theoretical
predictions are compared to the experimental data, and the strong coupling extraction is performed. All the ma-
terial of this chapter is standard, and just serves to set the stage for thenext chapter, wherebinding energy effects
will be introduced as a cure for the standard approach analytical defects.

This chapter is not intended to present thehistory of quarkonium physics. Only thenotionsof interest to us
are introduced. Also, the modern framework of quarkonium theory, i.e. non-relativistic QCD (NRQCD), will
not be discussed. This omission hasno consequence, the simple computation scheme presented in this chapter
is a good illustration of more advanced techniques. In particular, thebasic factorization hypothesis is central to
all models. Further, the formulaswe will derive are still used in many practical applications. For reviews on
NRQCD,werefer to [93], [171], [176], [178], [179], [188], [189], [190], [192] and references cited there.

3.1 Quarkonium Physics Observables

3.1.1 Heavy Quarkonium Spectroscopy

In the quark model, a meson is madeof a quark with an antiquark. Since the quarks are spin fgh
fermions, their

association into a meson can takeonly speci
i
c quantum numbers. The following table summarizes the naming

scheme for un
j
avored mesons [223]

klm nopqop
...

rpospo... rooqoo... tpprpp
...uvpwxy z{x |}|~�y z{x ����y � {x |}|~�y �{x ����y����� � ����� � � � ����� � ��� � ����� ���� ���� ��� ��� ��� �� �� ����� ���� �  �  ¡ ¢£
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Linksbetween quantumnumbers are ¤ ¥ ¦§¨©ª«¬­ ® ¯°±²³´µ¶ · ¸¹º»¼½¾½¿
with À only relevant for neutral mesons. The ÁÁ ÂÃÃÄ mesons are collectively called charmonium (bottomonium
or, lessoften, beautyonium).

Each ÅÆÇÈÉÊ state appearswith all its radial excitations, as an in
Ë

nite tower of states. The particlesÌ names
receive an extension ÍÎÏÐ with Î the analog of the principal quantumnumber. For charmonium, the experimen-
tally observed states are [223]ÑÒÓÔÕÖ Õ × ØÙÚ Û Ü Ý Û Ü Þ Û Ü ßàáà âââÔ×ã ä ä äåæ çèéêëì íîïðïñ òèéîëì íóôïõñö÷ø ù ùúú ûüýþù÷ÿ ������ ýþ��� �	
�
� 
 ������ �
 ��������� � � ��� ������ ��� !"#$% & '(( )*%+&$ , -./&01#$2 &(( )*2+&$ , -.3&'1#$4 566 7849:; < =>??@ABC4 5 D EFGHIJ K KFF L MNOODP L MQKRDPHIS EFF LS MNTUVWXYX UZZ

The identi
[
cation of higher \]] states aŝ _` radial excitations or ab` states isnot well-established. The

occurrence of b-states around cdee MeV is supported by the indications for the abf stategfhibj, kll, atmnmo
MeV, so thatp qmrrst is probably the uvw. Another possibilit y is that the xuvw and yuzw states are mixed

into the mass eigenstatesp qmonot and p qmrrst. For the tower of uzw radial excitations, aremarkable feature is
the equal spacing between {-levels (comparewith theBalmer series, in |}{~). Also apparent on the�gure, the�ne and hyper�ne splitting are sizeable compared to the spacing between principal levels. Anyway, all energy
spacings are small compared to thebound state mass.
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For bottomonium, fewer stateshave already been observed [223]������ � � ��� � � � � � � � � ���� ������ � � ������ � ��� ����� ��� �¡ ¢£¤¥¦ §̈ ©©¤ª¡ ¢£ª¥¦ §¨©ª««¡ ¬¢£­¥¦ §̈ ©«®©¡ ¬ ¯¯¯°±° ¨ © ¨²³´µ¶ · ¸¹¹ º»¼ ½¾¿À ÁÂÃÄÅÆ Ç»¼ ½È¿À Á¾ÅÈÉÈÆÊ¿Ë ÌÍÍ ÎÏËÐÌÑÒ ÓÔÕÔÖ× ÎÏËÐÖÑÒ ÓÌØÖÙÙ×ÚÑÛ ÖÍÍ ÎÏÛÐÌÑÒ ÓÔÔÌÜÝ Þßàáâãä åæçâèéÝ

Somehigher
æêê stateshave also beenobserved atëìíîì and ëëìïìMeV. As for charmonium, the identi

ð
cation

of those states asñòó or ôõó is not straightforward.
For bothcharmonium andbottomonium, the stateswith quantumnumber ö÷÷ are the mostwell-established.

This is simple to understand from the experimental setting used to detect such resonances, i.e.øùø÷ colliders.
A resonancewith the quantumnumber of the photon is easily found in the ú-channel

The discovery of theû and ü family was madewhile studying such channels. The establishment of ý states
is relatively easy becauseof theþö transition from ôòó states. On the other hand, the singlet states are rather
dif

ÿ
cult to observe,because the�� transition ��� � ��� 	
 is very weak.

Potential Models

For QED bound states, anon-relativistic approach basedon the Schrödinger equation with the Coulomb
potential gave rather good results for the spectrum. For quarkonium, we do not know the potential. One could
think of the analog of the QED Coulomb potential ��
�, which is for QCD� ��� � ��� ��� � ��� ���
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with�� � � ! " #$ %&'. This effective potential arises from the graph

Unfortunately, such a potential doesnot support con
(

nement since there is a continuumof states (and, aswe
have said, theBalmer series doesnot

(
t well theobserved spectrum).

Toaccount for the con
(

nement, various phenomenological potentialshavebeenproposed,whose parameters
are
(
tted to reproduce the observed spectrum7 (see [150], [154], [162], [170], [199]). The most popular one is

the Cornell potential)*+,-.// 012 3 456 7 86 Fit Parameters:

9:;<= > ?@AB CDEF<G > HIJK LMNO P QIHRS P QIJK LMN T (3.1)

At short distance, the interaction is described by a Coulomb potential, while the linear rise is felt at larger
distances, and is responsible for con

U
nement (note that if the Coulomb part is matched to the QCD Coulomb

interaction, one
U
ndsVW X YZ[, but the scale isnot clear). The parameter \ is called the string tension. More

advanced formshave also been proposed, in which the Coulomb part is taken as]^_`a bcd ec, with
`a bcd the

running coupling.
Other formshave been proposed,with no connection to the perturbative QCD potential. Among them, let

us quotefghijk lmi nop q r s t nouovwx Fit Parameters:

yzz{zz|}~ � ��� ����}� � ����� ���� � ������ ���� � ����� ���� � ����������� ¡ ¢£¤ ¥ ¦ § ¨ ©ª« ¢£¬£­® Fit Parameters:
°̄± ²³ ´ µ¶· ¸¹º»²¼ ´ ½¶¾¿À ¸¹ºÁ ´ ÂÃÄÅÅÆÇ ÈÉÊË Ì ÃÄÍÆÆ ÈÉÊ

where ÎÏ Ð ÑÒÓÔ ÕÖ is introduced for dimensional reasons.
The above potentials are quite successful in describing the spin-independent part of the spectrum. To de-

scribe the ×ne and hyper×ne structure, QCD inspired potentials have been constructed (accounting for tensor
forces, spin-orbit couplings,...). In general, the technique amounts to thenon-relativistic reduction of amplitudes
to effective potentials. Various complicated theoretical issues are involved in those studies, and therefore lieout
of our main concerns (see for example [11], [18], [159], [187], [195], [196]).

3.1.2 Heavy Quarkonium Decay

Similarly to positronium, quarkonium decays either through the annihilation of its constituents or through tran-
sitions to lower states. In this section, the coarse pattern of experimental branching ratios is presented.Unfortu-
nately, this is only possible for charmonium, because there isnot enough experimental information concerning
bottomonium. The coarse pattern should however be quite similar for both (theonly new feature is the opening
of theØÙØ Ú channel in bottomonium decay).Û

In some cases, the observed decay rates, especially the leptonic modes, also serve as input for theÜts.
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In the following, only Ý-stateswill be analyzed

Mass (MeV) Width (MeV)Þß àáâáãä å æãä æçãà å çãèéêë çìíîïðñ ò ìïìó ìïìðñ ò ìïììôõ ö÷øù úîðôïíî ò ìïìí ìï÷ññ ò ìïìúû
The very smallwidth of the üýõ or

õ ö÷øù
is due to the Zweig rule, aswill be discussedbelow. Note that theþÿ width is not well-established, sincerecent reported measurementsrange from ���� ���� ���� MeV [141] to���� � ��� � ��� MeV [138].

The	
 Decay

The decay modesof interest to us are [223]� �
� � ��� � ���� � ���� ������ �� ! "#$%& ' (
The) is a pseudoscalar, like the parapositronium, and therefore can decay only into an even number of photons,
or into at least two gluons. Thebranchings can then be understood simply in termsof the processes

The emitted gluons, being colored, hadronize to form the *nal statehadrons. The relative strength of both
processes is in agreement with the rough theoretical expectation+ ,-. / 0012 345 / 661 7 89:9; < = >?@AB
with CD E FGH.

TheI Decay

For JKL, the main branchings are [223]M NJKL O PQ P R
Leptonic STUV WXYZ [ \]^\_`_a bcdd e fcgf
Hadronic hijklmn opqr stut v wuxqy z {u|} ~��� ��}� � �}�

Transitions ��� ��� � ���
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Note that thevirtual photon transition to light hadrons (L.H.), aswell as the transition to �� are included into the
total hadronic width.

As for the orthopositronium, the ��� can decay into an odd number of photons. The simplest decay mode
is therefore theonevirtual photon mode (both the photon and the ��� have quantumnumbers ���)

The leptonic modes, aswell asroughly ��� of thehadronic mode areof that type.
Since gluons are coloredobjects, the corresponding one-gluon process is forbidden (the ��� is colorless).

This is the origin of the smallwidth of the ���, and is called the Zweig rule. Indeed, if the one-gluon mode
were allowed, itwould have awidth of more than a thousand times (� ������) theone-photon one. Instead, the
dominant strong decay mode proceeds through three gluons

Wehave also indicated thenot yetobserved three photon mode, to emphasize the similarity to theorthopositro-
nium decay. A rough estimate shows that the three-gluon decay branching is of the sameorder of magnitude as
theone-photon one � � ¡¢ £ ¤¤¤¥¦ � ¡¢ £ §¨ £ ©ª«¬­ ® ¯̄° ±²³́µ ¶ · ¹̧
where we have included a factor ·º·» to account for the three-body phase-space suppression factor, like for
orthopositronium decay.

Finally, the radiative transition can be depicted

It is the analog of the magnetic transition ¼-½¾ ¿ À-½¾ Á Â, and is therefore quite small.
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Finally, for theradial excitation Ã ÄÅÆÇ
[223]È ÄÃ ÄÅÆÇ É ÊÇ Ê Ë

Leptonic ÌÍÌÎ ÏÐÑÒ Ó ÏÐÏÔÕÖ×Ø ÙÚÛ Ü ÝÞß
Hadronic àáâãäåæ çèéê ëìÞíÜ ÝÞîéï ð ñòóô õö÷ø ùôú û üýþ

Transitions ÿ�� üý�� � üýü���� 	 
��
 �� � ����� ��� � ������� � ! " #$%&'() *+, - .+/
Again, the virtual photon mode and all the transitions are included into the hadronic mode. The transition01 2 31

cannot proceedby emission of one photon (Furry4s theorem). Instead, the bulk of it i nvolves a
two-pion emission 5 6789 : ;<5 ==. Those transitions proceed through two-gluon emission

Note also that the allowed transitions to >-states are roughly 30 times stronger than the forbidden one to ?@A.
3.1.3 Other Quarkonium Physics Observables

Exclusive Rates into Hadrons

Many exclusive decay modesof the BACDEF
and

F GHIJ
into hadronshavebeen measured [223]. We do not

intend to give an account of them,because they areof no direct interest to us in the present work. Indeed, it isnot
possible to relate exclusive decay modes to the decay modes into gluons described above, since a quantitative
description of the hadronization process doesnot exist at present. Note however that using the Kavor

IL GHJ
orIL GMJ

group, one can extract interesting information, such as for example the relative strength (aswell as the
relative phase)of the one-photon electromagnetic and three-gluon strong decay modes contributing to a given
multiplet of decay channels (likeDEF N OPQRST U VWPXYSWQZ[ZT for example), see [169], [184]. Again, there
is no clear quantitativeway to relate such information to the perturbative pictureof theheavy quark annihilation
channels, and wewill not detail these analyses.

Quarkonium Production

In proton-proton colliders, or heavy ion colliders, one can search for the formation of charmonium states.
There are many different mechanisms that can lead to the formationof a charm-anticharm pair (Drell-Yan, Gluon
fusion,...). The interestof charmonium production hasbeen revivedby data from HERA and the TEVATRON
on charmonium production in high energy

PV andVV collisions. Also, observation of \]^
suppression by NA38
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in nucleus-nucleus collisions raises the possibilit y to explore the phase structure of QCD. In particular, the
suppression of _`a

production in bc d bc collision is sometimes interpreted as a signal of decon
e
nement. In

a different context, the charmonium decay channelsof the f mesons have many interesting properties for the
study of gb violation (f h _`aij

permits the extraction of the unitary triangle anglek in an especially clean
way (no FSI) [18]).

It is in describing quarkonium formation that NRQCD has found one of its greatest successes. Indeed,
the simple color singlet model (CSM) is in strong disagreement with experimental data (the predictions of the
CSM underestimate the production rates). Let usrecall that the CSM model simply assumes that the process
of quarkonium formation factorizes as the creation of a free colorlessll pair (thus in a color singlet state)
followed by its binding into a quarkonium state. NRQCD, on the other hand, led to the so-called color octet
mechanism. The production mechanismreceives a signimcant contribution from processeswhere the ll pair is
created in an octet state (typically, by a single gluon). In other words,one introduces dynamical gluons into the
quarkonium wavefunction. A further successof NRQCD is that,by invoking color octet contribution, one is able
to getrid of IR singularities in n -wave charmonium production, for which the CSM israther non-predictive.

For further information on the quarkonium production models,werefer to the abundant recent literature (see
for example [167], [171], [198] and references cited there).

3.2 Quarkonium Annihilation Rates

In this section, we collect all the annihilation ratesof heavy quarkonia ll into photons and gluons calculated
in the appendix B.2, and include the radiative corrections asobtained in the literature. The framework is that
of perturbative QCD. There are many references. Some early works are [144], [145], [146]. For more mod-
ern approaches, see for example [11], [147], [149], [151], [153], [164], [167], [191]. Others are listed in the
bibliography, or can be found in thebibliography of the cited papers.

The central hypothesis used to compute annihilation rates is essentially the static limit, i.e. the bound state
mass is taken toequal twice the constituent mass. Thebasic formula is then theold Pirenne-Wheeler positronium
one o pnq r stu v wxy z w {| }~u{� ������� ����� � ����������
adapted to the quarkonium case. One therefore assumes that the quarkonium wavefunction, in momentum space,
satis

�
es � ��� ����� �  ¡¢

up to a constant. We have discussed at length the limitation of that formula in the QED case. For instance,
oblique cuts are completely missed, and predicted spectrawill be in contradiction with analyticity.

Theraison d£êtreof this section is its status in current quarkonium physics (see for example the introductory
review in [223]). Our goal is to exhibit various problemsoccurring in the comparison to experimental data.

3.2.1 Decay Rate Formula and Selection Rules

The ¤rst thing to do is to translate the basic formula for decay rates to the caseof quarkonium. Indeed, color
factors will appear. The differencewith the pure QED case is thenon-abelian natureof QCD, which introduces
multi-gluon vertices. Also, the basic selection rules are no longer valid. A pseudoscalar quarkonium can decay
into three gluons, even without any multi-gluon vertex. The fact that such a decay is not identically zero for
gluons is due to color degreesof f reedom: there are eight different QCD gaugebosons. Indeed, the three-
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photon decay is impossible due to the compulsory symmetrization of the six possible permutations of photon
insertions in the quark current. For gluons,one can antisymmetrize such insertions, provided the color degrees
of f reedom are also antisymmetrized. With theseremarks in mind, we can proceed and write down the general
decay amplitude for a quarkonium.

For a quark-antiquark bound state, the statevector is expressed as¥¥¦§¨©ª«¬ ­ ®̄° ±²³´³µ¶ ··̧ ¹¸¹º
with » thenumber of colors. The amplitude is then calculated as¼ ½¾¿ÀÁÂÃ Ä ÅÆ Ç ÈÉÊ ËÌ ÍÎÏÐ ÑÒ ÓÔÕ Ò ÓÔÕ Ö ×ØÙ
with ÚÛÜÝ Þ ßà á âãäå æç è éêëì í îï ð ñòóô îõ
and the static limit ï ö ÷ñøùøùøùú. The trace is carried over both the Dirac space and the color degreesof
freedom. The massñò is the massof the constituents, i.e. theheavy quark mass. Aswehave said, the present
formalism assumes that the binding energy is negligible, i.e. û ö ôñò. For electromagnetic bound states
this was a good approximation (the differencebeing of order üý), but for quarkonia, the experimental spectrum
shows thatbinding energy can be a sizeable fraction of the massþ. The philosophy wewill f ollow is, whenever
possible, to expressour results in termsof þ rather than ÿ�, especially for the phase-spaceboundaries.

In conclusion, the master formulas for quarkonium annihilation rates are� ��� ���� � �	� 
 ��
 � � �� ��� ��� �� � ��� �������� �� ! "#$% &'' ( )*+,--./ 012 3445 6 785 9 :;< = : :>? @AB CDE CB F GHIJKLM NNOP QRST UVV W XYZ[\\]
with ^ _`a the phase-space integration.

Remarks

1) Remember to include a charge factor for each quark coupling to the photon.
2) Note that in each case, the bnal polarization of a gluon or photon can be replacedwith more

complicated expressions. For example, the decay amplitude into cdd is obtainedwith the substitutionefghi jklm n opqrstu vwx yz{ |}~ �� ������ �� �����
and so on. Of course, the trace in the expression of � ��� ���� ���

doesnot apply to those factors.
They are summedover when squaring the amplitude.Remember that if it is a three-gluon vertex which
replaces an external gluon polarization, the corresponding processeswith ghost states mustbe included.
Such statesneednot be consideredwhen external gluons are attached to the� quark current since ghosts
do not couple to matter �elds.

3) Decay rates into photons will always be expressible in terms of the corresponding positronium
decay ratesby a very simple substitution � � ���� and a factor � . For decays into gluons, some
amplitudeswill collapse to the corresponding photon ones,but with more complicated color factors:��  ¡¢£ ¤¥¥¦ §¨©ª « ¬

Color Factor­ ®¯° ±²³´ µ¶¶ · ¸¹º»
Anyway, there is a lot of possible gluonic channelswhich do not exist for photons, since selection rules
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are different and since QCD isnot abelian. As aresult, speci
¼

c decay amplitudes are very different in
general.

Inclusive Rate and Duality

The basic decay rate into gluons has somehow to be translated into observables. Gluons never appear as
asymptotic states,but hadrons are observed instead. One usually relieson duality concepts to relate the gluonic
decay rate to the inclusive hadronic rate. Such a procedure isonly an approximation. One way to view such a
changeof basis is as follows. One can view the hadronization as a

¼
nal state interaction, so our presentation is

inspired from Watson½s theorem. Let us analyze the decay ¾¿ into hadrons. The gluonic and hadronic basis are
related asÀÁÁÁÂ ÃÃÃÃÃÃÄÄ

...

ÅÆÆÆÇ È ÉÊËÌÍÎÏÐ ÑÒÒÒÓ ÔÕÖ×ØÙÚÛØÙÚÜ
...

ÝÞÞÞß à áâââã ää å æçèé êê ë ìíîï êê ë ìíîð ñ ñ ñêêê ë ìíîé êêê ë ìíîï êêê ë ìíîð ñ ñ ñêòò ë ìíîé êòò ë ìíîï êòò ë ìíîð ñ ñ ñ
...

...
...

...

óôôôõ ö÷÷÷ø ùúûüùúûýùúûþ
...

ÿôôôõ
(3.2)

which leads to ö÷÷÷ø �� � ���� � ����� � ���
...

����� 	 
��
���� ����� �� � ������ � � !"�� � � !#
...

$%%%& (3.3)

It is important to remark that in these formulas, the gluonic states are viewed as asymptotic. As soon asone
is considering asymptotic gluons,one can introducereal gluonic states in intermediate states (this is due to the
optical theorem). Therefore, we will make the additional assumption that an exclusive decay into hadrons is
factorized into a gluonic decay followedby ahadronization transition from gluons into hadrons. This means that
one isneglecting non-absorptive effects in a speci

'
c exclusive decay channel.

The changeof basis in (3.2) is made through ()*+,-./, the transition 0-matrix f rom gluons to hadrons. Such
a matrix is taken as unitary, in 1rst approximation. In the context of 1nal state interactions, this hypothesiswas
calledelasticity, while in the present context,wewill speakof duality. This denomination is justi1ed since from
(3.3),we directly obtain234 5 6627 8 9:; < === >? @ ABC D EFFAG H I I I J KLM N OPQR ST U VWX Y Z[\] ]̂ _ ^̀ a b cdef gh i j j j
Note that to leading order in kl, only themrst term no p qq contributes.
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3.2.2 Pseudoscalar Quarkonium Decay

For pseudoscalar quarkonium decay, rates are [155]

Lowest Order Decay Widths Radiative Correctionsrst u vv wxyz{|}~ ��� ���� ��� ���� � ��� � � ���������� � �� ��� ���  ¡¢£ ¡¤¥¤ ¦§̈ ©ª«¬£ ­ ®¯°¯± ²³´µ¶·¸ ¹º» ¹¼½¼ ¾ ¿ÀÁÂ not knownÃÄÅ Æ ÇÈÈ ÉÊË ÌÍÎ ÏÐÑ ÏÒÓÒ Ô ÕÖ×Ø is a correction to ÙÚÛ Ü ÝÝ
where Þß is theheavy quark charge, in units of Þ, à is the quarkonium mass andá âãä å æçèéê ëìíìî ïíìíìî ðñò ó ô õö ÷øùóúùðûüýûüþÿ�����������	
with �� the heavy quark mass (
 ��
 here) and �� is given below. Note that theserates are often given in
termsof the radialwavefunction, which is related to thewavefunction by the spherical harmonic normalization��� �� � ��� ����

Radiative Corrections to��� � �� and Velocity Singularity

For all the decay modes, the quotedradiative correctionsomit singular terms in �� !"# with  !"# therelative
velocity of the quarks in the bound states. Such singularities cancel in ratio of decay modes. To be abit more
explicit, let us consider the two-photon width. Including the radiative corrections, the rate is$ %&'( ) **+ , -. /01 23 456 78 9 :;< ==
In fact, this result isobtained from the Harris and Brown QED computation of the correction to the scattering>?>@ A BB with incoming CDCE at rest (see chapter 1)F GHIHJ K LLM N OP QRSRT U VVW XXYZ [\]^_` a b cd ef g hij kk
This exhibits the well-known Coulomb singularity in lmnopq of the binding graph. The Sommerfeld factor
prescription is to absorb such a divergence into the wavefunction. In QED, this is simple to understand since
the Schrödinger wavefunction is the in

r
nite sumof ladder Coulomb exchange graphs. In QCD,we assume that

the same mechanism is atwork, and absorb such singularities into the wavefunction [151]. Then, the QCD
correction is obtainedwith the substitution s t uvsw, since for each gluon loop insertion there is a factorxyz{ |{}y|{y~ � �� �~} � ���~}
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For example, the quark self-energy is in term of the electron self-energy������ ���� � ���� ������ ������������ �¡¢£¤¥ ¦§̈ © ª «¬ ­®­ �� �¡¢£¤¥ ¦§̈ ©
The same can be said for all theother diagrams (except̄ , which is discussedbelow):

and the crossedones.By theway, remember that it is the°rst diagram that generates the ±²³´µ¶ singularity.

Radiative Corrections to·¸¹ º »» and Renormalization Scheme

It is interesting to discuss the radiative corrections to the strong decay. Sincewework at the inclusive level,
these corrections include many different ¼nal states [151]½ ¾¿ÀÁ Â light hadronsÃ Ä Å ÆÇÈÉ Ê ËËÌ Í Î ÏÐÑÒ Ó ÔÔÔÕ Ö×Ø Ù ÚÛÜÝ Þ ßààáâ ã äåæç è ééê ëìíîïðñò ó
The coef

ô
cient õï

is given by (in theö÷ scheme)õï øùú û üý þÿ ù�� � ��� � ��	
�� 
 �� ��� � �� ��� �� �� ���  !"#$% &'()*+,-
where ./ 0 11 2 34567 . This coef

8
cient dependson the renormalization scale9. To be able to compare the

expressions used in various papers, it isnecessary to discuss the scale and scheme dependenceof the coef
8

cient:; <9=. This is the goal of thenext few paragraphs.
Such a logarithmic scale dependence in the coef

8
cient

:; <9= comes from the scale dependence of the
strong coupling constant, hence there isno scale dependence for the electromagnetic decay radiative correction
coef

8
cients. This can be simply understood from the diagram> above. In QED, it is simply taken into account

by a renormalization of the
8
ne structure constant ?@ABC D EFGHI. If all i nternal photons are replacedby

gluons, the internal UV divergences and scheme dependences take care of themselves. On the other hand, if
the external photons are also replacedby gluons, the picture changes since external gluon vacuum polarization
graphs generate scheme dependences. In fact, the situation is a bit more complicatedbecauseof three-gluon
vertices like

but the main idearemains correct: most internal corrections combine intoaJnite correction, while theremaining
inJnite corrections linkedwith the external lines are absorbed into EK by a renormalization at a scaleL, giving
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to both the correctionMN OPQ and the strong couplingRS OPQ a scale (and scheme) dependence. The momentum
dependenceof RS OPQ is described in the appendix B.1, along with the relevant equations for the running.

Writing this scale dependence explicitly, the corrected decay rate isT UVWX Y light hadronsZ [ \]\ ^ _̀ a _bcb dbe fgh ijklm fgh ne fgho p
This scale dependence isremovedby redeqning both rs and tu at the common physical scaleof the process,
herev w xy z {|}~ � light hadrons� � ��� � ��� ���� ��� ���� ����������� ����� �
Retaining terms up to order ���, equating the above two results (and generalizing to an arbitrary power of �� for
future use� here,� � �) leads to�� �  ¡¢ £¤¥ ¦§¨©ª«¬­®¯ «¬­° ±² ³µ́ ¶·¸¹ º»¼½¾¿À¾ÁÂÃ ¿À¾ÁÄ ÅÆ ÂÇÃ ¿ÈÁ ÉÊËÌÍÎ ÏÐÑ ÒÓÔÕ Ö× ØÙÚÛ ÜÝ Þßàáâãäâåæç ãèåé êßëìí îïð ñòóô õö ÷øùú ûüýþ ÿ�� ��� ��� ��	�
	� �� 
�� �� ���� �� �� ���� � �  !"# $%&'(
wherewehave used theone-loop running equation. Equating the)rst and last lines, the scale dependenceof *+
is *+,-+. / *+,0. 1 2345 67 89:
In other words, the scale dependenceof the correction is entirely determinedby the scale dependenceof ;< =8>,
as expected. The resulting picture is?: =8> @ ABCDEFGH IJ KLM NO PQRSTUV W
whereX is scale independent. The numbersYZ and Y[ are \avor numbers, and as the notation suggests,YZ is
not necessarily equal to Y[. Indeed, their origins are different. The origin of YZ is in thenumber of \avors used
to run ]^, while Y[ dependson the speci

_
c radiative corrections to the process under consideration. From these

remarks,one can see that to give`a, there is anumber of conventions to
_
x: scheme,\avor numbersYZ and Y[

and scale.Unfortunately, there isno universal agreement. Let usreview some conventions used in the literature.

1) The Grunberg scale: The morenatural choice isb c defghijk l mnop qrstuvw
since each gluon carries an energy roughly equal to xy. In this scheme, the coef

z
cient {| depends

on }~ . Its value for charmonium is obtained with }~ � � as{� � ���� while for bottomonium, with}~ � �, {� � ����. This is the schemewewill choose in the present work8.
2) The Barbieri scale: Another scale is usedby Barbieri et al. [151] who take� � ��� to get������� � ���� �������

Note that in their original paper, the�� schemewas employed. Furthermore, they used four �avours in�
The Grunberg scale is usually de

�
ned so that the strong correction to some speci

�
c ratio of decay modes vanishes[157]. In doing

so,  is found to be very close to the natural scale¡¢.
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therunning of £¤ while only ¥ for the¦§ dependent part of ¨©. They obtained¨ª«¬­®¯¬®© ° ±²³´µ ¶·̧ ¹º »¼ ½ ¾¿À Á ÂÃ ÄÅÆÇ È ÉÊË Ì ÍÊÎÏÐÑ Ò ÓÔÕÖ× ØÙÚ Û ÜÝ Þß àáâãäå æçèéê
which translated into theëì scheme (simply drop theí and îï ðñ)òóôõö÷øõ÷ù ú ûüýþÿ �� ��� � ��� 	 
��
�� � ����� ��� � �� �� �� !"# $%&'(
For comparison, if )* + , everywhere, the correction is-. + /0123 45 678 9 :;< = >;?@AB CDEFGH IJK L MN OP QRSTUV WWXYZ

3) The Brodsky-Lepage-Mackenzie Scale: The BLM scheme [211]rede
[
nes\] at a scale such

that all^_ dependence in \] are moved into the strong coupling. This leads to\`ab] c defghi
with j k efilmhhno p qrstsuuv. Note,however, that it may be a problem to run the coupling down
to such a low scale (for w p x, y z {qqv|}

).

There is a certain relevance in discussing suchschemes. It is indeednecessary to have anunambiguousvalue
of the ~rst order coef~cient to estimate the convergence of the perturbation series . In view of the above, the
coef~cient varies as��� � �� ����� ����������

respectively. With an�� of around
���

, theBarbieri prescription
leads to ������� ��� � �, which is not very convenient for a series expansion parameter. The BLM scheme is
sometimes advocated as anunambiguous schemewithwhich tocheck the perturbationseries [211]. Its drawback
is that it isnot applicable when three-gluon vertex loop diagrams are present.

Photon Spectrum in ��  ¡ ¢£¤£¥
This is the ¦rst occurrence of analytical problems in quarkonium physics. Since we are using the simple

modelof Pirenne and Wheeler, the photon spectrum is in contradiction with Low§s theorem. This is equally true
for the gluon energy spectrum in ¨©ª « ¬­­, but let us take the electromagnetic mode for illustration, so that
con

®
nement doesnot enter the discussion.

In the present theory, thenormalized differential rate is¯° ±²³ ±́ ´µ ¶ ··µ ¸¹ º»¼ º½½¾ ¿ ÀÁÂÁÃÄÅÆ Ç ÈÉÊ Ë ÌÆÍÎÏÐ ÑÒÏÓÔÕÏ
where the phase-space spectrum isÖ ×ØÙÚÛ Ü ÝÞ ß ÚÞ ßØ àÚ á â ×Þ ßØÛã äåæç èäéê
with ä the reduced photon energy ä ë ìíîïð.

Close to ñ ò ó, the spectrum is linear in ñ, while Lowôs theoremrequires a cubic spectrum. Exactly the
same phenomenon was encountered in the discussion of õ-ö÷ ø ùúûúü, to which we refer for additional in-
formation.
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3.2.3 Vector Quarkonium Decays

For vector quarkonia, the results are [155], [18]

Lowest Order Decay Widths Radiative Correctionsýþÿ � �� � ���� ��� 	
��
�� ��� ���� � ���� ���� �� !"# $ %& $ '' ()* +,-./01203 456 4787 9 :;<= >?@@ ABCDEF G HHH IJ KLM N OPQ RSTUVWX YZ[ Y\]\ ^_`abcdefgh i jjj klm nop q rstu vwx yz{ y|}| ~x� �����w�� � ��� ��� ��� � ��� ������� ��� ���� ��� �����
with � � ¡ ¢ £¤¥  ¦§ ¦̈ © ª«¬ ­®¯°¯ ± ² for ® ³³®´

The strong radiative correction coef
µ
cients ¶·¸¸´ and ¶¸¸¸´ are scale dependent, as for the pseudoscalar

quarkonium two-gluon decays. The decays into three gluons and two-gluons plus a photon are corrected as¶¸¸¸´ ¹ º»¼½ ¾¿ ÀÁÂ ÃÄÅÆÇ Ã ÈÅÈÇÉÊËÌÍÍÎ Ï ÐÑ ÒÓ ÔÕÖ ×ØÙÚÛ ×ÜÙÛÛÝÞ
which give, at the Grunberg scaleßà áâãä åæææç èéææçê ë ì í îï ë ð ñðòó ñôòóê ë õ ö ÷ø ù ú ûúüý ûþüú
As for the two-gluon mode of the ÿ��, those corrections do contain different processes. For example,�����
accounts for ��ÿ � ��	
�	����, [156].

Let us also note that the correction to the three-photon decay as quotedwithout justi
�

cations in [155], [18]
is suspicious. Instead,we would expect it to be simply 

� times the QEDorthopositronium � ��� correction,
i.e. �
� ������ ��� � ��������
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Differential Rates

For the threevector particle decay modes, the present formalism is essentially the Ore-Powell one (see [149],
[156]). Therefore, the differential rates are��  !"# $ %%%&'() * +,- ./01234 567 58 9 :;<=>? @ABC D EEEFGHC I JKLMJ NOP QRS QTUT V WXYZ[\ ]̂ _` a bbcdef` g hijk lmnoomp qrs qtut v wxyz
with again v wxyz { | w| }xyzxy ~ | w� }xyzxyw| }xyzt ~ � ��� ������� � �� ������� ������ �� �� ����� ���� � � �� ¡¢ near �¡ £ ¤
This spectrum is in contradiction with Low¥s theorem,hence cannot be correct. For further information, werefer
to the discussion on theorthopositronium decay.

The interestof the contradiction with Low¥s theorem is greatly enhanced in quarkonium physics. Contrary
to the orthopositronium case,both the spectrum for ¦§¨ © ª « ¬­®¯°±² or ³ ´ µ ¶ ·¸¹º»¼² have been
observed, and disagreewith the Ore-Powell prediction. Wewill analyze that fact in thenext chapter.

3.3 Analysis of Inclusive Charmonium Decay

In this section we use the theoretical decay ratesreviewed in the previous section to extract information from the
experimental data for the charmonium, and, when applicable, for thebottomonium. The kind of information that
can be retrieved are the strong coupling ½¾, ratios of wavefunctions, and predictions for yet unobserved modes.
The approach followed is inspired from [155], [167].

3.3.1 Pseudoscalar Charmonium Decay

The ratio of the two-gluon rate to the two-photon rate is, including radiative corrections taken at the scale¿ À ÁÂ À ÃÄÅ, Æ ÇÈÉÊ ÇËËÌ Í
Light hadrons

ÌÎ ÏÐÑÒ ÏÓÓÔ Õ ÖÖ× Ø ÙÚ ÛÜÝÞÜ ßàá âãäåæç è
Using theéê experimental values,we can obtain the strong coupling and theéê wavefunction as:åæ ëìêí î ïðñï ò ïðïóôõö ô÷ î óø ôùö ô÷ î úïðññ ò ïðûûü ýþÿ �
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The error quoted is purely experimental. The neglected termsof order ��� � ��� give an ideaof the theoretical
errors.

If one uses the scaleof Barbieri et al. (but in �	), the correction to the ratio is
 ��	
 ���� �
Light hadrons

�� ���� ���� � ��� � �� �� !"#$%�� &'( ')*)+,-. /
which is a huge correction (in 01, the coef

2
cient is 3345). Solving for 67839:; gives67 839:; < =43>>.

When run down to?@, we getAB C?@D E FGHI. At the scaleof the charm, the scale ambiguity generates ahuge
ambiguity of order AJK L MNO, which is the theoretical error quoted above.

Finally, a more recent experimental determination is [138]P QRS T UUV W QXNY Z ONOV [ \]^_` abc d hadronse f gh i h jkl
giving the samevalueof mn mn opqr s tuvwxyz {| } ~� {�z {| � ������ ��� �
3.3.2 Vector Charmonium Decay

Vector Charmonium Radiative Decay into Hadrons

The rate for vector quarkonium decay into electron-positron can be used to estimate the rate for hadronic
decay via a photon. Including radiative corrections,�� � ���� ���� � � � ���� ���� ���  ¡ ¢£¢¤¥ ¦ § ©̈ª« ¬ ­ª® ¬ ­ª̄° ±²³ ´µ¶ ·¸ ¹º»
A more precise determination of this ratio uses the experimental electron-positron annihilation cross section¼ ½¾¿ÀÁÁÂÃÄÅÃÆÆ Ç È ÉÊËÌÍ Î ÏÐÑÒÓ Ô ÕÖ×ØÙÚÛÜÝ Þßàßá â ãäåæç è éêéëì íííííîïðñïòò ó ô õö÷ø ùúúû ü ý ü þÿ������� ��	
 ���
 � �����
For the caseof ���

, � ������� � � ! " # $ and% &'() * + * ,-./0123 4 5 ! 6% 789: ; <=<>? @ ABC D EF G
as quoted in [223].
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Vector Charmonium Hadronic Width

Theratios we analyze are, for HI J K and the scaleL J MNO PQRS T UUUVO PQRS T WXWYZ [ \] _̂` a bcdef ghi jklmnopqo rs t suvwx yz{|} ~ (3.4)� ���� � ����� ���� � ���� � ��� ���������� �� � ����� ��� ¡ ¢ (3.5)

where the radiative corrections to £££ include¤£¥££¦¦, and those to §££ include§£££ and §£¦¦.
Tocomparewithexperimental data,wewouldneed the measuredvaluesof ¨ �©ª« ¬ ­­­®

and¯ °©ª« ¬ ±­­®
.

Since these are unavailable, wewill proceed differently. First,wewrite the total
©ª«

width as¯²³² ´ ¯ °©ª« ¬ ­­­®µ¯ °©ª« ¬ ±­­®µ ¶·¸¹º» ¼ ½¾¿À Á ÂÃÂÄÅÆ ÇÈÉÊËÌËÍ Î ÏÐÑÒ Ó Ô Ó ÕÕÖ×Ø ÙÐÑÒ Ó ÚÛÜÝ
from which we extract the combinationÞ ßàáâ ã äääÝ å Þ ßàáâ ã ÜääÝÞæçæ è éêë

(3.6)

Solving equation (3.4), (3.5) and (3.6),weìndíîï ð ñòóô õ ööö÷ ø ùúûð ñòóô õ üöö÷ ø ùýþûÿ� ���� � ���	 (3.7)

i.e. a quite small
� value. Note that the��� branching is roughly a tenth of the��� branching.

One can also work at the Brodsky-Lepage-Mackenzie (BLM) scale
 � ������ � ��
. Remember that

this scale is de
�

ned such that ����� is independent of �� (for �� � ��, the BLM scalewas� � � !"#
). The

ratios become $ %&'( ) ***+$ %&'( ) ,-./0 1234 56 789 : ;<=>? @AB CDEFGHI@H JK L KMNO PQ RSTUV W (3.8)X RYZ[ \ ]^^_` abcd \ ^^^_ efgh ijk lmnoop qrst uv w xyxz{| }~��� � (3.9)

since the same scalerenders����� independent of �� . The interestof theBLM scheme is its supposed unambigu-
ous checkof the perturbation expansion. The coef

�
cient ���

in the above formula shows that perturbative QCD
may be completely wrong when applied to quarkonium decays. Finally, remark that since those coef

�
cients are

now independent of �� , the above formulas are equally valid for bottomonium.
We have chosen not to work in this schemebecause the running down to � � ������

using perturbative
QCD is questionable. As a manifestation of this breakdown, the systemof (3.8), (3.9) and (3.6) doesnot admit
real solutions. The reason why below a certain scale the systembecomes impossible is quite clear: ����� ����
become less than � . For ¡¢ £ ¤¥¦, the ratio (3.8)of branching fractions isnegative!

Finally, let us also quote the Grunberg scale, i.e. the scale such that the correction to the ratio (3.4)vanishes§¨ © ¦ ª « © ¤¥¬­®¯°± ² ³ ´ µ ² ¶·­¸®¯
What isremarkable with this scale is that it is so close to thenatural scale®¯.

Thebranching fraction ¹ º»¼½ ¾ ¿ÀÀÁ
can be comparedwith experiment:ÂÃÄÅ ÆÇÈÉ ¾ ¿ÆÊ Ë ÌÍÎÏ Ð ÑÏ Ò ÓÔÍÕ Ö ×ÍØÏ Ù

(3.10)
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where Ú stands for ÛÜÝÞßàáâ. On the theoretical side, from the prediction (3.7),we can obtain an estimateofãÞä å æçÚ è éêëì í î
by integrating the Ore-Powell spectrumbetween ï ð ñêë and ï ð òó ôõö÷ ø ùôï ú ñêëìûûì ð ó ôõö÷ ø ùûûì ü ý þÿ �� ��������� �	 
������� � 
 ���� � ���� ������

This giveswith (3.7), i.e.� ���� � ����  ��!"
:�#$ %&'( ) *%+ , -./0110 2 3456

in agreement with experiment (3.10). The reason for this rather good estimate can be found in the cancellation
of corrections (relativistic, binding energy,...) in theratio 7889888, sinceboth involve the same kinematics. The
main problem is that the observed photon spectrum is much softer than the QCD predicted photon spectrum,
even if the integratedrate is in good agreement. This will be discussed in thenext chapter.

The same typeof analyzes can be carried out for : ;<=> decay channels. The main difference is the huge
branching fraction? ;: ;<=> @ A9: BC> 2 ;D5E 3>6. The total width thus givesFGHG I J KL KMNO P QQQO RJ KL KMNO P SQQO R TUVWXYXZ [ \] ^_`a b cdcef g hijklmlno pq prst u v u wwxy z{|}~� � �� ���� � �� ���� ��� � �������� � �� ���� � ��  �¡¢� £ ¤� £ ¥ �� ���� � ¦§¨ ©ª«
i.e. ¬ ­̈ ­®¯« ° ±±±« © ¬ ­̈ ­®¯« ° ²±±«¬³´³ µ ¶·¸¹
which leads to º»¼ ½ ¾¿ ¾ÀÁÂ Ã ÄÄÄÅ Æ ÇÈÉÊË ÌÍ ÌÉÎÅ Ã ÏÄÄÅ Æ ÐÈÇÑÊÒÓ ÔÕÖ× Ø ÙÚÛÜ
which is consistent with theÝÞß resultsà it gives again a smallvalue for áâ ãäåæ compared to thevalue extracted
from çå decays.

Three-Photon Decay

Finally, we can predict thewidth èé êëëì í îîî
relative to theïïï one asð ñòóô ñõõö ÷ øøøùú ûüýþ ÿ��� � ���� � ��� ��	
���� � 
��
�� ��	��

which implies � ���� � ����� ���� � ���� � �� !
so that experimental sensitivity is nearing the theoretical prediction. Note that we have dropped the radiative
correction " #$%& ' ((() * +, -./ .012345 6
The huge coef

7
cient renders the perturbation series problematic. For instance, for 84 9 :;<= the ratebecomes

negative.
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3.3.3 Ratios of Wavefunctions

Comparison of Vector and Scalar Wavefunctions

We can use the ratio> ?@AB ?CCD E FFGH IJKL MNNO P QRQST U VWXY ZZ[\ ]^_\`aab cbdefgh ijklmno poqr stu vw xyz {|} ~
wherewehave includedradiative corrections. Non-relativistically, thewavefunctions are the same. Furthermore,
the mass difference isnegligible at this level, hence� ���� ���� � ���� ���� ���� � ����� � ���� ��� �� � ¡ ¢£¤ ¥
For charmonium, we getwith ¦£ § ¨©ª «¬­®¯ °±² ³ ´´µ¯ °¶·¸ ³ ¹º¹»¼ ½ ¾¿ ÀÁÂ ÃÄ ÅÆÇ ÈÉÊ ËÌ ÍÎÏ Ð ÑÎÍ
while the experimental values giveÒ ÓÔÕ Ö ××Ø ÙÚÛÜÝ Þßàá â ãäåæç èéêëì í îïðñ ò óðôõ öóñ÷øùúûüý þ ÿ��ÿ� ��ÿ�� � ��	
 � �	�
�� � �� ����� � �����������
The central value is too low by about a factor  . This could be due to relativistic corrections (especially in the
differenceof thewavefunctions, due for example to spin-spin forces), to binding energy effects,... Notehowever
that errors are quitebig: the theoretical prediction is still in the experimental range, so that it is dif

!
cult to draw

any conclusions about the equality of "#$ and %#" wavefunctions.

Radial Excitation Wavefunction

With the experimental measurements of &'( ) *+*,
and - ./01 2 3456

, we can estimate the ratio of
wavefunctions of both states as789 :; :<=>>?@?AB :CD;>?@ E F@GHIJKLIMNG O PQ PRST U VWVXYZ [\]^ _ `a`bc d efghgfijklm nopq r sptu vwsxyz{|}~ � ����� ����� ���� � ������ � �� � ��� � ���

(3.11)
As expected, thewavefunction at zero separation decreases as� increases. The three-gluon branchings extracted
before also give the ratio of wavefunctions��� �� ������ ��� �¡¢£¤¥¦ § ¨¦©ª«¬­®«̄°© ± ²³ ²´µ¶ · ¸¸¸¹ º»¼½¾¿ÀÁ ÂÃÄÅ Æ ÇÇÇÈ ÉÊËÌÍ Î ÏÐÑÒÑÐÓÔÕÖ× ØÓÙÚÛÜÝÞÚÙßàÝ á ÞÜÛÛÝÞâÛÝ ã ÚÙä
Obviously, the errors are still much too large to get a clear coherence test among determinations.
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3.3.4 Conclusion: Fit to the Charmonium Data

To close this analysis, it is interesting to proceed in the oppositeway, i.e. to infer values for the various decay
modes from speci

å
c valuesof æç èéêëéê ìíîï ð ñòó ôõö ôõ÷ øùú ûüýþ ÿõó÷� ÿõó�÷ ÿõóøö ÿõóÿÿ

obtained by running down the world averageof ùú û��þ � �����, with the three-loop beta function (see
appendix B.1). To estimate thewavefunctions,we use the electromagnetic decay rates	 
��
 ��� � ��� � ���� � ���� ���� ! "#$ % &&' ( )*+,-./0 12 34 5 6789:; <= >?@A BCDE F GHGIJ K LMNOP Q RNSTJ UVWXYZ [\]^ _ `a`bc d efghijkl mn op q rst uvw x
wherewehave denoted yz{|} ~ ���� ������������
This gives �� ���� ����� ����� ����� ������� ����   ¡¢£ ¤ £¢¥ ¦¢§ ¤ £¢¥ ¦¢¨§ ¤ £¢£ ¦¢©§ ¤ £¢£ª« ¬­®¯ ° ±²³´ µ ¶³· ±¶³¸ µ ¶³¸ ·³¸¹ º »¼½» ¾¼»¿ º »¼ÀÁ
Taking thosevalues,we get ÂÃ Ä ¿¼Á ÂÃ Ä ¿¼¹ ÂÃ Ä ¿¼½ ÂÃ Ä ÅÆÃ Ç ÈÈ ÉÊËÌ ÉÊËÌ ÉÊËÌ ÉÊËÌ

keVÍÎ Ï ÐÑÒÑÓ ÔÕÖ× ÔÕÖ× ÔÕÖØ ÔÕÖØ keVÙÚ Û Ü ÝÞ ßà áâ áÞ MeVãäå Û æçèé êëìíî êëìíî êëìíî êëìíî
keVïðñ ò óóó ôõö ÷õö ÷õø ùõô
eVúûü ò ý þõ÷ÿ þõ�÷ þõÿ÷ þõøô

MeVúûü ò ó �ý �� �� �ÿ �ø
keV �Input

where� stands for the totality of hadron states.
A recent measurement [138] of the�� width was twice theolder one, at� ��� 	 
��
 � �� � ��� � ��� ���

which is in quite good agreement with the theory. On the ��� side, the theoretical predictions do not �t the
experimental values. Thewidth for ��� is greater than the total measuredwidth of � !, "#$# % &' ( ) keV, by) * +, times !

This same factwas apparent before, in the extractedvalueof the strong coupling-. / 01 2 ,34567 8 9: ; <=>
The?@ value is consistent with theworld average,but not the A67 one.

As aBrst trivial explanation, it could be that the C quark mass may be too low for QCD perturbation theory.
If, however, we insist in taking seriously this Brstorder DEFG analysis,weneed a powerful suppression effect.
Usually, people invoke relativistic corrections like [167]H I HJ KLM NOPQP R
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with S the relative TUT velocity and V W X. In charmonium, theserelativistic corrections can be sizeable becauseSYZTY [ X\]^
In thenext chapter, theobserved suppression of vector quarkonium decays will be explainedby binding energy
effects.

3.3.5 Vector Bottomonium Decay

For the __ bottomonium states, experimental data are quitereduced,̀ ab stateshave not been observedyet and
branching fractions for vector states (the upsilon family) are rather scarce. Wewill t husonly present a limited
analysis, with emphasison the strong coupling extraction at the c quark mass. Indeed, it is interesting to see
whether the extractedvaluesof de fghi are in better agreement than de fgji with theworld averagevalue.

Leptonic Width

The leptonic widths for bottomonium areklm n opq rsrtu v wxyzx { |}~���� �� � ����� � ����� �������� �� � �����   ¡¢£¤¥ ¦§¨©ª«¬
From these,we can estimate thewidth ­ ®¯ ° ± ° ²³´µ¶·¸« using­ ®¯ ° ± ° ²³´µ¶·¸«­ ®¯ ° ¹º»¼½ ¾ ¿ ÀÁÂÃÄÄÅÆÇÈÆÉÉ Ê ËÌÍ
Then Î ÏÐ Ñ Ò Ñ ÓÔÕÖ×ØÙÚ Û ÜÝÞ ßà áâã äåäæç è éêëìí îëïðñ

Vector Bottomonium Hadronic Width

We proceed as for the charmonium. Theratios we analyze are (in the Grunberg scale)ò éó ô õõõö÷ øó ô ùúùûü ý þÿ ��� ������ 	
��
�	
 ��� ������� � (3.12)� �� � ��� ! "# � ��� $ %&' ()*++, -. /012345 6 (3.13)

To further comparewith experimental data,we extract the combination 7 89 : ;;;< = 7 89 : >;;<
from the

total rate as7?@? A B CD E FFFG H B CD E IFFG H JKLMNONP Q RS T UVUWX Y Z[\]^_^`^a b cd e f e ggh i j kd e lmfhn j kd e oooh i j kd e fooh i kp i qh j rs t uvwxyz { |} z ~~~� � { |} z �~~�{��� � � � |� � ��� �� � ����� � �����
(3.14)
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wherewehaveneglected� � ���. Solving the equations (3.12), (3.13) and (3.14),we�nd��  ¡ ¢£ ¤ ¥¥¥¦ § ¨©ª« ¢£ ¤ ¬¥¥¦ § ©­®ª¯° ±²³´ µ ¶·¸¹¹
Extrapolated to theº» mass, this gives a strong coupling of¼° ±²³´ µ ¶·¸¹¹ ½ ¾¿ ÀÁÂÃ Ä ÅÆÇÅÈ
i.e. a quite smallvalue. Note that usually, people use theBLM scheme, i.e.É Ä ÅÆÇÊËÁÌ. This doesnot change
the conclusion: one obtains at the BLM scale a strong coupling of ÍÎ ÏÐÑÒÓÔÕÌÖ × ÐÑØÓ

, i.e. when run up toÙÚ, ÍÎ ÏÙÚÖ × ÐÑÒÛ
.

This closesour basic review of quarkonium annihilation modes as described in the standard factorized
approaches. In thenext chapter, thebinding energy effectswill be introduced, as a cure for the analytical defects
of factorized models.





Chapter 4
Binding Energy Effects on Quarkonium

Annihilation Rates

In the standard schemes, quarkonium annihilation amplitudes are constructed assuming a factorization of the
bound state dynamics from the perturbative decay process. As discussed in the previous chapter, thebasic model
is simply the extension to quarkonium of the Pirenne-Wheeler modelÜ ÝÞß à áâã ä åæç è å éê Ýëãéì íîïðñòó ôõöõ÷ ø ùúûûüýþÿ��
As we have extensively discussed in the caseof positronium, a modi

�
cation of the quarkonium annihilation

description is unavoidable, since the predictionsof any approach basedon factorization are in contradiction with
analyticity. Onehas to introducebinding energy effects. Compared to positronium however, the introduction of
such effects isnot just a matter of principle� it can change the whole picture of quarkonium physics since the
typical quarkonium binding energies arehuge�����	
� � 
� ��������� � 
� � ���������� !" # $% &'()*+,-)*+ . /012 (4.1)1345647 8 9: ;<=>?=> @ 9ABC (4.2)

For theserough estimates, the constituent massof the heavy quark is taken as the massof the corresponding
lowestheavy Davored meson. We are forced to proceed in this way since twice the running massof the heavy
quark is less than thebound state mass (theorigin of this fact is con

E
nement). Another approach would be to use

the quark masses found in spectroscopic studies (see (3.1)). This leads to very similar estimates for thebinding
energies.

Wewill review in this chapter the implicationsof binding energy effects for anumber of problems in quarko-
nium physics: the FG extraction, the HI puzzle, the photon spectrum in inclusive radiative decays, and the ra-
diative transitions between quarkonium states. The discussion will remain at a qualitative level in most cases.
The purpose isonly to show that binding energy effects indeed lead to signi

E
cant modi

E
cations, and that those

modi
E
cations go in the right direction, i.e. that binding energy effects can be invoked to explain the various

quarkonium puzzles. We are unable at present to do a quantitative analysisbecause anumber of complicated is-
sueshave to beresolved

E
rst, like for example the precise form of the quarkonium wavefunctions.
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4.1 Binding Energy Effects on Quarkonium Physics

The section begins with a discussion of the quarkonium wavefunction. Then, the various problems cited above
are systematically reviewed.

4.1.1 QCD Quarkonium Wavefunctions

To apply our method to the quarkonium, weneed itswavefunction. No matter its form, it will alwaysbe possible
to express it as a combination of functions for which the derivative method applies. For example, the setof
functionsbuilt on the Coulomb wavefunction (see appendix C.1)JK LMNO P QRS TUVS TU W XYZV [R\]^_`abc d ecfg
can serve as abasis in which the quarkonium wavefunction can be expanded. All these functions are accommo-
dated in the derivative method through theoperatorhg ijk l mnopq rstu vwt x yz{||}~��������� ��� � ���� �� � ������������������ ��� � ¡¢£¤¥¦ §¨© ª«¬­®¯°±«²«¬³´µ ¶· ¸ ¹º»¼ ½ ¾¾¿ÀÁÂÃÄ

It remains to Ånd an expression for the quarkonium wavefunction. This is not an easy task. The form of the
QCD potential is not well-established (there are many alternatives). Further, in QCD, the parameter Æ cannot be
deÅned straightforwardly. For all thesereasons, in the present section, we will simply take for quarkonium the
form factor of positronium, with thebinding energy deÅnedby the ÇÇ threshold. This will illust ratewhat can
be expected from binding energy effectson total and differential rates.

Further, becauseof conÅnement, the conÅguration space quarkonium wavefunctions should be less spread
than the Coulomb one. In turn, the momentum spacewavefunctions are more spreadout around È É Ê for
quarkonium than for positronium. But we know that the binding energy corrections are always proportional to
the spreading, in momentum space,of the wavefunction. Therefore, the binding energy corrections computed
with a Coulomb form factor will be lower estimates, the true correctionsbeing more important.

Another approach would be to take each of the charmonium potentials and compute the wavefunctions by
solving the Schrödinger equation. Then, these solutions would be expressed in thebasisof the Coulomb wave-
functions. Such studies are in project, and havenot been completedyet. The present section is aÅrst step in that
direction.
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4.1.2 Strong Coupling Extraction

The valueof ËÌ as extracted from quarkonium physics doesnot Ít well with the valuesobtained from other
QCDobservable measurements [223]

0.1 0.12 0.14

Average

Hadronic Jets

Polarized DIS

Deep Inelastic Scattering (DIS)

τ  decays

Z width

Fragmentation

Lattice

ep event shapes

e + e -  event shapes

Small x structure functions

Heavy Quarks

e + e -  rates

(M )

Wehave seen in the previous chapter that thevalueof ËÌ extracted from charmonium andbottomonium inclusive
decay rates are ËÌ ÎÏÐÑ ËÌ ÎÒÓÑÔÕ Ö×ØÙ Ö×ÙÙÚÛÜÝ Þßàá ÞßÞáâã Þßàä ÞßàÞÚ
where we have run the values up to åæ using three-loop running, and çè é ê between ëì and ëí, çè é î
between ëí and åæ (see appendix B.1). The valueof ïð extracted from ñì ò óóôõö ò ÷÷ is in the world
averagerange,but falls short of it when extracted from øôù ò ÷÷÷ú÷÷óôøôù ò ûüûý or þ ÿ ��������þ ÿ����

.
From the computation done in the positronium case,we know that binding energy effectswill suppress the

decay rates. As aresult,onewill need a greater �	 to
t to theobservedrates. This is the general mechanismwe
invoke to explain the discrepancy between the quarkonium �� determinations and the world average. In other
words, the smallnessof the extracted�� in standard approaches is, in our view, the signal that the factorization
hypothesis is inappropriate, and that a loop modelhas to be considered.

Electromagnetic Decays

Webegin our study with the electromagnetic processes (see chapter 3)
 ��� � ��� � �������� ��� � ! "# $%&'()* +, -./0 1 23245 6 789 :;<=><? @AB @CDC E FGHI JK L KMN OPQ RS TUVW X YYYZ [ \] _̂` a bcd efghijk lmn lopo qr s rtuvwxy z
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and the corresponding { decays.
In the caseof positronium, we saw that the bulk of the|rst order radiative corrections is accounted for by

binding energy effects. The same mechanismwill be invoked for quarkonium, so that the strong correctionswill
be replacedby a function of thebinding energy. Of course, itwill not be possible to directly test this hypothesis
since the quarkonium binding energy relation to the strong coupling isnot known.

Let us start with the pseudoscalar charmonium electromagnetic decay} ~�� � ��� � �������� ��� ���� ��� �������
with ��� ��� � � ¡ �� ¢¢¢¢£¤ ¥¦§¨©ª «¬­ ®®®®̄By taking thevalueof °±² given in (4.1) and (4.2),we get the suppression factor. It is interesting to match this
suppression to the perturbative correction ³ ´ µ¶·¸¹º», to extract avalueof ¼¹

:½¾¾ ¼¹ ¿ »ÀÁÂ ÃÄ Å½¾¾Æ ¼¹ ÃÇÈÉÊË ÌÍÎÏ ÐÑ ÒÓËÉ Ô ÌÍÏÕ ÌÍÕÖÊ× ÌÍØÎ ÐÑ ÒÓ×É Ô ÌÍÙÚ ÌÍÕÏ
Note again that, at present, the matching with the perturbative QCDresulthasno grounding. Moreover, the
corresponding scale isnot clear (it could be that this is

ÐÑ
at some low scale,between Û and ÓË). Finally,ÐÜÝÞßÜ

corrections are probably quite sizeable. In view of all theserough approximations involved (especially
in the de

à
nition of thebinding energy values (4.1) and (4.2)), the consistency of thevalues is surprisingly goodá

thebinding energy suppressions areof theorder of the perturbative QCD corrections.
Let us proceed similarly with the leptonic decay of thevector quarkoniumâ ãäåæ ç èéêëì í îïð ñòóôõö÷ øùú øûüû ý þÿ������� ����	�


with ��
�� ��� � � ��� ��� �� � ���  � �!� ��" #$%&#' ()*+,-
Then, for ./0 and1, we get 23456 78 9 :;<= >< ?@ABCDE FG HIJKLMN OPQR FG HSTK U OPV OPQWX OPWY FG HSZK U OPY OPQV
Again, the matching gives surprisingly good results.

The[nal decay \ ]^_` a bbbc d ef ghi j klm nopqrst uvw uxyx z{{{ |}~����
is more complicated to handle sincewe do not have an analytical expression for ���� . Numerically, we found������� ����� ����
In this case, the matching gives�� ���� � �� ���� � ����, since it is around thatvalue that perturbative QCD
corrections force the total rate to vanish. Obviously, this later fact isnow well interpreted as a strong suppression
due to binding energy effects.
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It is important to remark that, in all the previous cases, the factorization of the binding energy effectsout
of the perturbation serieswill enhance their convergence. The same phenomenon wasobserved in positronium
physics. Here, it becomesvital to proceed along our approach, to avoid inconsistencies (such as corrections
greater than unity).

Strong Decays

Introducing binding energy corrections for strong decays is more complicatedbecauseof the issueof double
counting. In the electromagnetic modes, the�nal state particles do not experience the strong interaction, hence
the whole �  correction comes from initial stateradiative corrections. This is the same situation as in the
positronium case.Here, the situation is much more complicatedbecause,�rst, there are strong corrections to
the�nal state also, and second, becausewe are considering inclusive rates, so that decays to many gluons, quark
pairs,... also contribute.

Insteadof searching for a de�nite prescription to dealwith all those decays, let us simply consider the two-
gluon modeof the ¡¢, and the three gluon modeof the £¤¥, to illustratewhat can happen. The binding energy
corrections to the two-photon and two-gluon modesof the ¡¢ are the same.Hence, the ratio of the two modes
is not corrected, and this explains why a valueof �  consistent with the World average can be extracted from
them. For the three-gluon mode,wewrite¦ §£¤¥ ¨ ©©©ª« ¬­®¯ ¨ °±°²³ ´ µ¶ ·̧ ¹ º »¼½¾¿ ÀÁÂ ÃÄÅÆÇÈÅÀÈ ÉÊÊÊ ËÌÍÎÏÎ ÐÑÒÓÒÔ ÕÖ×ØÙØ Ú
We have found previously thatÛÜ ÝÞßà á âãäå. Now, the binding energy correction factor corrects this value
as ÛÜ ÝÞßà á âãäå æçèèèéêëìëí îïðñòñ óôõõõ ö÷õøùø ú û üýþÿ
When run to��, we get�� ���� � üý��, in rough agreement with theworld average.

We expect that the same mechanism will work for the other decay processes, i.e. that the necessary com-
pensation of thebinding energy suppression by the strong coupling will lead to an overall enhancement of ��.

4.1.3 Rho-pi Puzzle

Therho-pi puzzle is the apparent violation of the
�þ	

rule in exclusivehadronic decay channelsof the 
�� and� 
���
, especially ����� 
��� � �� ([165], [175], [177], [181], [183], [186], [193], [194], [200]) . The ���

rule follows simply from the identity� 
� 
��� � ����� 
��� � ���� � ��� � �!"##$�� �%& # '()( �%& #'()( � �!"## *+, -. -/011*2 34256789:;< =>?@ABC ?DCEFGH IJK LM LNOPPIJK LQRMP S LM LNOP T UVUWXY Z[\] ^ _`_abc def gh gijkklmf gnohk gpq r stu v wsx r stu
and then from the additional assumption that the exclusive decay branchings follow the samerule (i.e., that the
hadronization hasno effect).
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Many exclusive hadronic decay modesof the y z{|} and ~�y that have been measured. Their ratios
are[137], [139]

The ��� rule is more or lessvalid, except for a few channels like ~�y�y z{|} � ������, which fall short
of the ��� ruleby as much as a factor of ��. No convincing explanation of this facthasbeen proposedyet (the
most popular explanation is the presenceof a glueball [160], [163], [173]).

Here,whatwe justwant topoint out, is that the ��� rulewill not survivebinding energy effects. For gluonic
modes, a prefactor appears� �� ���� � ����� ���� � ���� � ���� �� ������ ¡¢£ ¤¥¦§¨©ªªª «¥¦§¨©¬­¬® ¯° ¯±²³³ ¯´± µ ´³¶

(4.3)

But the electromagnetic part is unaffectedby such effects:· ¯° ¯±²³ ¸ ¹ ¸ º»¼½¾¿ÀÁÂ ÃÄÅÆ Ç È Ç ÉÊ¼½¾¿ÀÁ Ë Â ÃÆ ÃÌÍÁ Ç ÎÏÐÑÒÓ ÔÕÖ× Ø ÙÚÙÛÜ Ý Þßàáßâ ßáãÜä
This could explain why theåæ decay exhibits theviolation of the

ßàä
rule,while not the purely electromagneticçæ decay (which is isospin violating).

Unfortunately, with our parametrization of the binding energy in termsof theè meson mass, the prefactor
in (4.3) enhances theé ÞãêÜ three gluon mode compared to the ëìé, because theííí mode is enhanced close to
the threshold for èè creation. In our view, this is the signal that the constituent mass chosen is inappropriate to
correctly describe the dynamics. For instance, if one takes the Lagrangian î quark massof

ßáã ï ßáð ñòó , it is
clear that the ëìé is very close to the threshold, while now it is theé ÞãêÜ ô ííí which is strongly suppressed.
The treatment of bound states above the constituent mass is clearly complicatedbecause such a phenomenon is
a manifestation of con

õ
nement. Further studies are necessary, but in any case, it should be clear that binding

energy effects introduce an important violation of thenaive ö÷ø rule.

Scale Anomaly

We have seen that the binding energy corrections to the decay ù-úû ü ýþÿ� receive a contribution from
the QED scale anomaly, a contribution which is apparently missedby standard factorized computations. The
same probably happens for the leptonic decay

��� � ÿ�ÿþ. This would be far reaching: the leptonic modehas
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always been considered as clean, and is used to extract the ��� wavefunction. This, in turn, will affect both the�	

rule, the extraction of �� and so on.

A complete study of all those effectshasyet to be done, and is left for futurework.

4.1.4 Photon Spectrum in Quarkonium Inclusive Radiative Decays

The next aspectof quarkonium physics to be discussed in some details is the photon spectrum in ��� 
��������� and� � ���������, which is described in termsof the underlying processes� !"� � �##. It
is indeed in spectra that the modi

$
cations due to thebinding energy may be directly observed. Aswehave seen

when discussing the orthopositronium decay, the photon spectrum found using the Pirenne-Wheeler formula
is in contradiction with Low%s theorem. By introducing binding energy effects, the spectra should move from
the wrong Ore-Powell prediction towards the Euler-Heisenberg one, i.e. softer at both the low energy and high
energy end points. This behavior is what isobserved for the &'( ) * +,-./012 [134], [135]

and for the3 4 5 6 789:012 [136], [140]

In both cases, the increase at low energy is due to bremsstrahlung processes ([168], [180], [185], [197])
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and the Ore-Powell prediction hasbeen corrected for the ef
;

ciency. For example, in the< case, the ef
;

ciency
varies as [140]

The suppression of the spectrum at itshigh end point is greater for the =>? than for the<, as expected since
the binding energy is greater for =>?. To explain such a strong suppression purely in termsof binding energy
effects isnot possible though@ even the Euler-Heisenberg spectrum is unable to

;
t theobserved spectrum.

Field As Model

The fact that even the Euler-Heisenberg point-like result seems to be insuf
;

ciently suppressed israther
surprising, but understandable from the point of view of FieldBs model [161]. This model introduces some
distortion of the photon energy spectrumbecauseof gluon dynamics. It can beviewed as a tentative introduction
of hadronization effects. Because gluons can radiate additional gluons, the CpromptC gluons emitted from the
quark line acquire an invariant mass

This means that thehigh end point of the photon spectrum mustbe modi
;

ed, since in presenceof such massive
gluons, the maximum energy the photon can take away is reduced. The resultof FieldBs Monte Carlo simulation
is

where the plain line is the Ore-Powell spectrum, and the dotted line is the FieldBs model spectrum.
Obviously, FieldBs model is in contradiction with analyticity (it is built on the Ore-Powell lowest order

result). It should therefore be quite clear that it has to be modi
;

ed somehow. In fact, it would be interesting
to repeat FieldBs computation, but taking the binding energy corrected spectrum as a lowestorder basis. This
analysis should lead to correct spectra (i.e. consistent with LowBs theorem), and in agreement with experiments.
It is left for future studies.
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4.1.5 Transitions among Quarkonium States

There are many possible transitions among quarkonium states, like for exampleDEFG H IJK LMN O PMQG RSTU V WXY Z[S\ ] Z[Z^_ RSTU V `ab cdefg hij kb lmno p qrst uvw x yz{| }~�� � ���� ��� � ���� ���� � ���� ��� � �����  ¡ ¢£¤¥ ¦§̈ ¨ © ¦§ª«¬­® ¯ °±²³ ´µ¶· ¸ ¹¶º»¼½ ¾ ¿ÀÁÂ ÃÄÅÆ Ç ÃÅÃ
Most of these transitions involve theÈ states, for which a treatment is still lacking in our model. The hadronic
transition

Â ÉÊËÌ Í ÎÏÐÑÒÓÔÕ
is generally dealtwithusing some low energy techniques like chiral perturbation

theory, and will not be consideredhere. There remains theÖ× (suppressed) transition
ÎÏÐ Í ØÙÚ

. This decay,
as aÛrst approach, can be described assuming a point-like structure for the ÜÝÞ and the ßÚ. In other words,
we assume thatbinding energy is so important that the structureof the bound states isno longer relevant. Such
processes are calculated using a loop model, with the coupling ÜÝÞàà and ßÚàà given by áâãäåæ and áçèéê,
respectively. Then, it is easy to ëndì íîï ð ññò ó ôõö÷øùúûüý þÿ���� �� ���� �	
��
��������� ���� � ���� �  !"#$%&'( ) *+,-.,/01 23 456 789:78;<= > ?@ABC DEFGHIJGKLM NOFGHIJGPQRSTUV
with WXX YZ[ \ ]^_`a^bc def g dhijk lmnop q rstuvswx yz{ | y |}~���~�x yz� | y
The second term appearing for ���� comes from the contribution of oblique cuts (for ��� , there isonly vertical
cuts).

Wenow take the ��� and �� couplings identical (this isvalid to leading order, in thenon-relativistic approx-
imation). Using the measuredvalue for thebranching ��� � ���

, we�nd� � ��� � ���� � � ���  ¡���¢��¢¢ ¡���¢ £¤ ¥ ¦§¨ ©ª«¬¤ ¥ ­§® ©ª«
Plugging thesevalues into the two-photon width,¯°± ²³¤ ´ µµ¶ · ¸ ¹º»¼ ½ ¼»¾¶ ¿ÀÁÂÃ ÄÅÆÇÈÉÊË ÌÉÍÎ ÏÊÌÐÑ ÒÓÔ ÕÖ × ØÙÚ ÛÜÝÞß × àÙá ÛÜÝ
to be comparedwith the experimental valueâ ãäß å ææç è éê ë ìç íîïðñ òóô

Inconclusion, the point-like approximation, with inaddition the assumptionof equal couplings, is consistent
with the (not yet very precise) experimental data.
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4.2 Conclusion

We have seen in this chapter that binding energy effects can play an important role in quarkonium physics.
While their introduction was motivatedby analyticity, and in particular photon spectra, they lead to important
corrections in all aspectsof quarkonium physics. They can explain, at least in part, theõö puzzle, the smallness
of ÷ø as extracted from vector quarkonia and the softnessof the photon spectra in inclusivevector quarkonium
radiative decays.

To close this chapter, we justwant to point towardsother applications, which are currently active research
subjects in the literature.

Oneobvious extension is the description of ù-wave quarkonium states, theúûüý, and in particular, the two-
photon decay modesof theúûþ and úûÿ which have been studied experimentally [142], [143]. Such a study, of
course,will rely to some extent on the corresponding results for QEDù-wave positronium states. Therefore,we
arenot yet in a position to say much.

Once the above extension is established, it can be interesting to push the formalism further down in energy,
close to or less than �GeV, in order to describe particles such as the �, or scalars �þ ��, tensors �ÿ, and so on.
For instance, in the caseof the �, it is established that a description in termsof a�� loop is adequate ([216],
[221]), with a point-like coupling of the� to the��. The matching with the corresponding �quark loop, with a
non-constant form factor, can lead to interesting informationabout QCD. Concerning scalar states, the prediction
of their two-photon decay rates is important for instance in the identi

�
cation of the quark model multiplets (see

for example [166], [172]).
Another aspect thatwouldneed to be studied is quarkonium production (see for instance [167], [171], [198]).

Examplesof production mechanisms are the Drell-Yan process, gluon fusion, photon to vector quarkonia transi-
tions,... In

�
rst approximation, it is always assumed that some kindof factorization holds, in order to separate the

perturbative creationof a heavy quark pair from their non-perturbativehadronization intoa quarkonium state. As
mentionedbefore, in the NRQCD context, the quark pair is not necessarily in a color singlet state. This would
have to be incorporated in the present loop model context. Anyway, it should be clear thatbinding energy effects
are also important in production mechanisms.
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Conclusions and Perspectives

In this thesis,we have presented a method to dealwith bound state annihilation through Lorentz invariant
form factors. Typically, a decay amplitude isbuilt as a loop amplitude,with a form factor inserted to account for
thenon-trivial structureof thebound state:

This is to be compared to the standard factorized method, symbolically:

For QED bound states,we have shown how to relate that form factor to the bound state Schrödinger wavefunc-
tion, so that total decay rates agreewith theones computed using a factorized approach (at least at lowestorder).
From that analysis, it emerges that one can simply take the derivative of point-like QED amplitudes to account
for thebound state structure � 		
 �

�









�
������������

Concerning differential rates,our form factor method is de
�

nitly superior to factorized approaches like NRQED,
since it does not contradict Low�s theorem. This property of our method follows from its non-perturbative
treatment of the binding energy, and from the four-dimensional loop structure of the amplitude (taking into
account oblique cuts). For areview of the propertiesof the method, we refer to section 2.5.

For QCD bound states, the stage is set for more elaborate studies. Effective form factors can be retrieved
from quarkonium phenomenological potentials. For simplicity, in the present work, we have used a phenom-
enological form factor obtained from the Coulomb wavefunction, with an ad-hoc parametrization of thebinding
energy (to be short, the � and � constituent masseshavebeen taken as the massesof the lightest� and�mesons,
respectively). The analysiswas therefore qualitative,but already at that level, interesting conclusionshavebeen
obtained.
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The following table reviews the main processes studied in the thesis. Also indicated are the main properties
or consequencesof the form factor approach obtained in each case:

QED QCD
Electromagnetic Strong

� Increased Convergence ��� BEEon the extraction of ��
� Low�s Theorem

� � Low�s Theorem
Increased Convergence  BEE!" Softening of the photon spectrum# BEE $%&Extraction of '()* puzzle

(no 14%rule)+ , Increased Convergence
Scale Anomaly

BEE =Binding Enegy Effect
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The method presentedhere may be extended to a greatvariety of processes. The following table summarizes
someof them:

QED QCD

Higher excited state
Decays (P,D,...-wave) -. decays,...

Transitions
between states

/001002345 6 789:8 6 ;<=9= >?@A 6 ;<=BBCCC
Production rates DEFGHI productionJ K GHILMNNN

(for example)

Fine and Hyper
O

ne
Splittings

Quarkonium Spectrum
(mixing ?)

(+ other diagrams)

Unequal constituent
masses PQ mesons,...
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Some questionswhich remain open in para- and orthopositronium physics,or concerning the application of
the method to quarkonium physics are

Positronium

1. How to dealwith higher order corrections,
compulsory to competewith other techniques ?

, . . .

2. What is the exact meaning of Rrenorma-
lizationR in thehyper

S
ne splitting computation ?

(i.e., is thebare Ps massreally TUV ?)

3. Is the Scale Anomaly a missed
contribution to W-XY Z [[[,
thereby explaining the\-]^ lifetime puzzle ?

4. Why is the derivative technique so simple ?
(i.e., is there a fundamental property of
Coulomb bound statesbehind this ?) _ ``]a

bccccccd effffffg
Quarkonium

5. What are the quarkonium wavefunctions ?
(or alternatively, which of the proposed
charmonium potential is giving thebesth
t to the decay rates ?) ij k lmn

6. Is it necessary to extend (and if yes,how)
the form factor approach to account
for all the color octet model contributions ?

7. Can the method be extended to light
mesons such as theo lpqrqn,
and what can be learned about duality ? s tuuu

Positronium and Quarkonium
8. Why is there a kind of duality between
binding energy corrections and vrstorder
radiative corrections for lowest lying w states
(whatwe calledxincreased convergencex) ?
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The third question is probably the most interesting one. Indeed, the scale anomaly could provide a solution
to theorthopositronium lifetime puzzlewithin the framework of QED. This is to be contrasted to recent attempts
invoking the mirror world [129], extra dimensions [133] or new light particles [115]. Itwould also be anice
evidenceof a non-trivial quantumyeld effect at the level of atomic physics.

Concerning quarkonium physics, the present method may provide the most promising discriminating test
among phenomenoligical potentials, because decay rates get sensitive to the whole wavefunction, and not only
its value at zero separation. This is however not as simple as it seems,becauseone should be sure to keep the
sizeable strong radiative corrections under control (i.e., to avoid double counting). Also, NRQCD analyseshave
shown that a color octet contribution has to be introduced to yt the data. From our point of view, it is not clear
whether this is an artefactof the NRQCD method, or a true physical contribution that needs to be introduced in
the present form factor approach. In conclusion, the main limitation of the form factor approach in quarkonium
physics is simply the lackof a reliable computation technique from yrst principle. Using a mixtureof QCD and
effective potential arguments israther suspicious, and in any cases difycult to control.

Finally, the last question needs comments. Wehave repeatidly argued in the text that the increased con-
vergenceof the perturbation series,when binding energy corrections are factoredout, comes from the fact that
binding energy corrections already account for a great dealof radiative and relativistic corrections. This is cer-
tainly true,but is not the whole story. For instance,binding energy corrections and radiative corrections do not
scale similarly with the principal quantum number z (asz increases, the binding energy corrections decrease
while the radiative corrections stay the same). In other words, it appears that it is only for the lowest lying {-
states thatbinding energy corrections and radiative corrections are roughly the same. More suprisingly, wehave
presented some indications that the samerough equality holds for the lowest lying {-states|}~ ��� and |�~�.
This could be the signal of some kind of sumrule thatneeds to be discovered.

In conclusion, the form factor approach to bound system introduced in this thesisoffers interesting perspec-
tives for anumber of theoretical problems. While bound states are the most commonstatesof matter encountered
in Nature, they are also very difycult to dealwith theoretically. Any new information should therefore be seen
as a greatopportunity to reach abetter understanding.





95

Appendix A
Resourcesfor QED Bound states

A.1 Parapositronium

A.1.1 Details of the Dispersion Study

Let us prove the assertion that

Dispersion relations constructed on the vertical cut imaginary parts

of the loop model reproduce standard convolution-type amplitudes.

We will particularize the discussion to the parapositronium decay into ��, for which there are vertical cut
contributionsonly. Let us emphasize that thewhole discussion of this section is readily extended to any para-or
orthopositronium vertical cut contributions to the decay amplitude.

We�rst compute the imaginary part of (2.3) for an arbitrary initial squared mass��. Considering the two
possible vertical cuts,weobtain ��� by replacing the two propagatorson each sideof ��� by delta functions��� ���� � ����� ��-�� �  ¡¢ £¤¥¦§¤̈©ª « ¬­®¯ °¯±²³ ´µ¶ · ¹̧ º »¼ ½¾ ¿ÀÁÂ Ã ÄÅÆ Ç ÈÉ ÊË ÌÍÎÏÐÑÒ ÓÔÕ Ö×Ø Ù ×ÚÛ ÜÝÞßàá âãä å ãæç åèéêëìíîïìðñ
After a straightforward integration over òó and ôõô, with ö ÷ øùúûüýþ, wereachÿ�� ���� � ���	 
�� �
��� � �� � ����� � ����� � !" #$% &'( ) '*+ ,-./01 234 5 367 589:;<=>?<@A
In the courseof the derivation, the delta functions forcedBC D E and FGF D HIJKL MNJ

. In other words, the
electron momenta are OPI Q R S TUVWX YZ[\ with ]_̂` a bcd e fgh i jklm n op

(A.1)
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This kinematics is to be understood in the trace evaluation. The angular dependence arises from the relative
orientations of q and the photon momentum rs. Note also that the relation (A.1) cannot be satis

t
ed for the

physicalvalueuv w xy z {|y. This is obvious since the loop cannot have an imaginary part for the physical
bound states, its constituentsbeing alwaysoff-shell. From the kinematics (A.1)one can prove that the factorson
both sidesof }~� are true projectors,which serve to enforce gauge invariance in the expression��� � �� �� ������ ��� � �� �� ���
Indeed, those two projectors play exactly the samerole as external spinorswhen establishing Ward identities.

The real part will now be calculated using an unsubtracted dispersion relation��� ���� � �  ¡ ¢£¤¥¦ §¨¨ ©ª« ¬­® °̄ ± ²³´ (A.2)

where it is understood that µ³ should be replacedby ¶ everywhere, i.e. scalar products that will appear when
evaluating the trace should be expressedwith the kinematics de

·
ned for an initial energy ¶. Since¸³ ¹ º»¼,

the principal part can be omitted and ½ ¾¿ÀÁ Â ÃÄ Å ÆÇÈÉ
. Now let uswrite the form factor in the general

form ÊË Ì ÍÎÏÐ ÑÒÓÔ ÕÒÓ Ö ×ØÙ Ú ÛÜÝÞ ßàáâ ãäåæ ç èé êëìí îï (A.3)

with ðì ñ òó ôõóö÷ and øù thebound statewavefunction at zero separation. Then (A.2) can bewritten asú ûüýþ ÿ ��� � ����� 	
 � 	�
�� � ���� ���� ������� !"#�$%& '() *+, - +./ 012345 678 9 7:; 9<=>?@ABC@DE
Let us transform the F integral back into a GHG integral, keeping in mind the constraints obtained when

extracting the imaginary part. Using HI J KLMNOP
, QK R S TUVW VUV, the decay amplitude dispersion integral isX YZ[\ ] _̂ `a b cdefghij k lmnopqr stuvw xyz {|} ~ |� ���� ������ ��� � �� ���� ������������

where, as the notation suggests, it is understood that any ��
appearing in the amplitude mustbe replacedby  ¡¢¡£¤ ¥¦. Inparticular, §¨¦ ©ª« canbereplacedby ¬­®

with
­® ¯ °±²±³ ´µ¶

. This amounts to consider

the scattering amplitudewith incoming on-shell electron-positron having momenta ·¶̧ ¹ º»¼ ½ ¾¿À Á ÂÀ (sinceÃÄ Á Å). Note the fact thatÆÇ ÈÉÊË, namely that apparently the energy is not conserved. This isnot surprising
since the present formula is a dispersion integral, done along the cutwhereÌÍ ÎÏÐ Ñ ÒÓÔ. Finally, in view of
the kinematics,we introduceÕ Ö ×ÔØ ÙÏÐ Ú Û and ÕÜ Ý Þßà áâã äå (henceæç è éçê è éë and ì í îìï ð ñ)
to write the amplitude simply asò óôõö ÷ øù ú ûüýþÿ��� ÿ�� ���� 	
��
 �� ��� �� ��� � �� ��� �� �� !"# $%& ' (#)*+,-.+/0 (A.4)

where123 45657689:
is the amplitude for on-shell ;< =>: ;? =>@:

scattering into AB. Gauge invariance is present
due to the two projectors, well de

C
ned since DE F DGH I JH

. This endsour demonstration, and K LMNO PQ RS-TU V WWX.
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A.1.2 Sommerfeld Factor and Form Factors

To reach a better understanding of the parapositronium two-photon decay rate,we now repeat the derivation
using the languageof dispersion relations. This isnecessary becausewewill want to try different formsof form
factor YZ, and thereby get information on the physical content of thebinding energy corrections.

The loop integral[\ ]̂ _`
has an imaginary part obtainedby cutting the propagatorsabcd ef gh i jk l mnopkqrn s t kquv wxy z {| }~� � ��� ���� ��� � �� ��� ������ � ��� � ���� � ��

Using an unsubtracted dispersion relation and inserting the Coulomb form factor, we reach the two equivalent
forms for the loop form factor ¡¢£¤ ¥¦§¨ © ª«¬­ ®¯­°± ² ³´µ¶· ¸¹º »¹¼½ ¾ ¿ÀÁ ÂÃ ÄÅÆ Ç ÈÆ É ÊËÌÍÎ Ï ÐÑ Ï ÒÓÔÕ Ö× (A.5a)Ø ÙÚÛÜ Ý Þßàáâãäß å æçèé êëìíìî ï ðî ï ñòóôõö ÷ø (A.5b)

wherewehave setùú û üýþÿ ���� ��� � ��� (see 2.10). The�rst expression is obtainedby integration of the
second oneover the angular variable 	
, and by de

�
ning � 
 � ��� ����.

Decay Rate in the Static Limit

Let us�rst analyze the static limit, i.e.�� � � for the form factor. To compute the decay rate in that limit,
we do not need to specify ��. We justneed to know that the function� ��� is normalized to unity and behaves
as a delta function of the momentum in the limit of vanishing binding energy! "#$%&'(#) *+,- . /0 1234567 89:; < =>?@A BCAD =E@ (A.6)

By setting F GHIJ K LMNOP QRPS LTO in (A.5b), we mustrecover exactly the lowestorder decay rateU LV-WX Y ZZ[ \ ]̂_`a (A.7)

In some sense, the static limit serves as aboundary condition for thebehavior of b . We getcdefghijkjlm nopq r stuv w xyz{|}~y {|}~y ��y� {z~ ������ ��� � ������ � � ���� � ���
Importantly, this result is independent of thebinding energy : the loop doesnot introduce any corrections in the
static limit. The decay rate in that limit is therefore:� ��-�� �   ¡ ¢ £¤¥¦§ ¨§© ªª«¬­®¯°±²³²´µ ¶·¸¹ºº̧ » ¼½¾¿À ÁÂÃÄ ÅÃÆ
with ÇÈÉ ÇÃ Ê ËÌÍÌÎÏÐ. It remains to match Ñ such that purely kinematical corrections vanish (Ò factors in
the above formula arise from products likeÓÔÕ Ö Ô×Ø Ê Ò×ÎÙ

and from the ÚÛÙÜ decay width factor, while Ý
comes from electron propagators in the loop and from the wavefunction Þß). With the de

à
nition á â ãäåæ,
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the decay rate is exactly çèéêë as it should. In other words, thevalue for ì obtainedby matching (2.8) and (2.2)
is such thatno correction arises from factorsíîë in the static limit.

To conclude, let usrepeat thatwehavenot speci
ï

ed the form factor. This means that any form factor which
has a three-dimensional delta function limit f or ðè ñ ò

gives the correct lowestorder decay rateóôõö÷
. In the

following, we shall present three forms, allbuilt on the Schrödinger momentumwavefunction.

Schrödinger Form Factors and Binding Energy Corrections

Using either the formula (A.5a)or the derivative approach (2.11),wewill now go through different calcula-
tionsof ø ùú-ûü ý þþÿ, obtained for speci

�
c choicesof �� (or equivalently, � ����). Namely:�	 
��
 � ������ � ���� (A.8a)��� ���� � �� !"#$% & '%() (A.8b)*+++ ,-./ 0 12343 567859 343: ; <= >?@A (A.8c)

where BC D EC FGCHI J ECKCHI. As discussed previously, LM is just the Schrödinger momentum wave-
function for the bound state. The NMM form factor hasno clear signi

O
cation and only serves the purposeof

illustration. Finally, we will show thatNMMM can be viewed as a Coulomb binding corrected Schrödinger form
factor, in the spirit of the Sommerfeld factor. Of course,we know that the form factor to be used mustbe re-
lated to theBethe-Salpeter wavefunction, and that it is the

O
rst form factor NM that emerges from the reduction

of theBarbieri-Remiddiwavefunction through dispersion relations (2.8). Anyway, from the analysisof NMMM, we
will clearly identify the physical content of the binding energy corrections due to NM, and thereby avoid double
counting.

All t hese form factors satisfy the delta limit property (A.6), but are differently peakednear PQP R S. Graphi-
cally, TUV WXYZ, as function of XY with [ \ ]^ (_` plain, _`` dashed and_``` small dashed lines) is
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As aresult,we expect that all of themwill reproduce the lowestorder decay rate (A.7),but will i ntroduce somea dependent corrections proportional to their spreading around bcd e f. Such corrections can then be expressed
in termsof thegne-structure constant, yielding a corrected lowestorder rateofh ij-kl m nno p qrstu vqw xy z{||

The physicsof each form factor is discussedbelow. If we naively add the present corrections }y to the
radiative corrections up to order ~� ��~��-�� � ���� ��� �� � ��� � �� � ��� �� �� � �� ����
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the theoreticalvalue is modi
 

ed as

Lowest-order Corrections Decay Rate,with
Form factor ¡¢ Radiative Corrections plus¡¢£¤¥¤¦§ ¨¦©¦¤ ª «¬­®¯° ±²³´ µ¶·¸¹º» ¼½¾¿ÀÁÂ Á¾ÃÄÅÁ ÆÇ½È ÉÊËÌÍÎÏÏ ÐÑÒÓÔÕÖ ×ØÙÚÙÛ ÜÝÞß àáâãäåæææ çèéêëìí êéîïïê ðèñò óôõö÷
Experiments øùúûûüû ý þÿþþ��� ��þ� ����	

where the experimental measurement (1.3) is also included for comparison.

Discussion

If the 
� �
�� is naively added to the order � radiative corrections,one ends upwith excessive corrections,
quite far from the experimental value. Our goal is toshow thatone shouldnot add them,because itwould amount
to a double counting. Obviously, �rstorder radiative corrections do contain a Coulomb photon exchange contri-
bution. In the languageof NRQED,one should consider the exact integration result (2.15) as aresummation of
somehigher order effects.

As stated in the text, the standard approach regarding �� ���� is simply to discard it, hoping that it will
be generatedby radiative corrections. This is inappropriate,but let usnevertheless continuewith the idea, and
exposeoneof the technique used to getrid of the exact form factor integration corrections.

The basic idea is to absorb the Coulomb correction into the wavefunction. To this end, consider the third
form factor. Weview it as arepresentation of the modi

�
cation of the intermediate���� state due to Coulomb

photon exchange. When dispersion relations are used,one considers intermediate states as asymptotic states,
and integrateover the corresponding phase-space. This is the application of the optical theorem for absorptive
parts. Let us assume that, due to the modi

�
cation of the asymptotic Hilbert spaceby the long-range Coulomb

interactions, a correction factor mustbe introduced in���- ! " ##$ % & '() * +),- ./ 012 .3 4567 589: ; <<= (A.9)

and that this factor is > ?@A B C<DED FGHIFJ DEDK (A.10)

In some sense,one could think of L MEN as the Sommerfeld factor of Harris and Brown [69]. Due to long range
Coulomb interactions, thewavefunction at contactOP is QrenormalizedQ byRSP RT U VWX VT YZ[\]^ _`abcdef g hij hb klm nop q (A.11)

by using p rr o, i.e. sts uu v, with w the center-of-massvelocity. Correspondingly, x ytz for smallbinding
energy is x ytz { |vsts { |}~w
The factor of

~
arisesbecausex ytz is de�ned at the amplitude level, while the Sommerfeld factor is at the decay

rate level.
The same arctangent factor arises in the work of [84], [87] on � ��� radiative corrections, by a detailed

analysisof thebinding graph and its Coulombic part (which is, after all, an initial state Coulombic interaction).
In conclusion, if one is interested in the lowest approximation (i.e. the �����) the static limit is just�

ne. If one wants the lowest approximation to � ��� accuracy, one must consider it as arising from the� ���
binding graph, as demonstratedby Adkins [87]. In other words,by taking only� ��� diagrams for the scattering
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amplitude���� � ��, one�nds

� ��-�� � ��� � ����  ¡¢£ ¤¥ ¦§ £ ¥©̈ ªª «¬ ­®¯°
The±²³ in the above expression is the lowest approximation to´ µ¶·accuracy, arising from the´ µ¶·amplitude.
To reproduce it using our effective form factor method, the Coulomb corrected Schrödinger form factor ¸¹¹¹ is
to be used, as in [87].

What we gained using our method is abetter understanding of its relation to the Sommerfeld factor, i.e.
asymptotic Coulomb interactions. º¹¹¹ being more peaked thanº¹, the suppression of the intermediate phase-
space is interpreted as a manifestation of the iterative structureof Bethe-Salpeter construction of thewavefunc-
tion. Therefore, the method of [87] is nothing but the rephrasing of thatof Harris and Brown [69]. However, the
method of [87] or the present integration of º¹¹¹ is surely more appropriate,becauseone doesnot rely on static
limits, hence avoids thewell-known static divergence »¼½¾¿À of radiative corrections to ÁÂÃÄ Å ÆÆ.

A.1.3 Radiative Corrections to Parapositronium Decay

In this section, the computation of theradiative correction to the two-photon decay rate is presented. Wewill use
the standard technique throughout, i.e. compute the corrections in the static limit, and then use a Sommerfeld
factor to extract the Çnal IR divergence. This is abit different from the Harris and Brown computation [69],
since their work was simply to reduce the one-loop computation of È ÉÊËÊÌ Í ÎÎÏ of Brown and Feynman
[65]. Here,wewill do the complete computation.

The tree-level width is

Ð ÑÒ-ÓÔ Í ÎÎÏ Õ Ö×ØÙÚÙ ÛÜÝ ÛÙ Þ ßàáâÚ
with

ÜÝ the con
ã
guration space Schrödinger wavefunction of the positronium at zero separation. We intend

to compute the radiative correction to order ä. To get a
ã
nite result, the associatedbremsstrahlung processes

parapositronium å æææ also have to be calculated. Fortunately, thanks to selection rules (charge conjugation),
this decay is not allowed. Therefore, even if it could appear as quite exotic, this decay channel is maybe the
simplestrealistic exampleof radiative correction calculation.

For the purposeof comparison, we present the computation using multiplicative renormalization and BPHZ
renormalization. Details can be found at the end of this section.
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i. Multiplicati ve Renormalizati on

The diagrams are

with in addition the crossed processes. Theçrst one (è ) is the tree-level. For the others, the calculations are at
the end of this section, and we quote

SE éêë ìíî íê ï ð ñòó ê ïO ôõö÷
Vø+Vù úûü ýûþ ÿ üùû ����� � �O ��	

WF�+WF� 
�� ��� �� � � ��� � �O ������
B �� !"# $ � %&' ( ) *+,( )O -(./01
P2+P3 456 789:; <O =>?@

where A B CDEFGD is an IR cutoff (G the electron mass,GE the photon mass used as an IR regulator). Let us
make some comments about the calculation. First, the self-energy insertion correction is computed from the full
propagator HIJKL M NOPQRSTU VWXYZ X[ Z\ ZVW ]^ _̀ a bcde f ghijjkl
But this is more than is needed atorder m, so we truncate the full propagatornop qrs qt upv w xop qrs q yz { |z }~ ���� ��� }� { ��� }� �~ ��� } |z� ��� }� { ���
The�rst term generates the already computed lowestorder correction, and can be discarded. The result quoted
in the table is then obtainedwith �� � �� ��� � ���� ��� � �� �� ��� (A.12)
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The�� and � corrections are abit special. They arise from the LSZ formula. Indeed, the decay amplitude is
related to the�-matrix element through �� factors, introducing the corrections� ¡¢£¤ ¥¦-§¨ © ªª« ¬ ­®­¯ °±²³´ µ¶-·¸ ¹ ºº» ¼½¾¿À Á¶-·¸ ¹ ºº»ÂÃ ÄÅÆÇ È ÉÉÊË Ì ÍÎ Ï ÐÊÑ Ì ÍÎÎÒÓÔÕ ÏÒÓÖÕ Ï ×××
where

ÒÓÖÕ containsØÙÚÛÜÝ corrections (strictly speaking, the Þgures are wrong because external lines are
amputatedß instead, they should be understood asreminder of the LSZ external line factors). Therefore, the
decay rate is, to order àá âã-äå æ ççè é êëìíîïð éêëìíð ñ ò óóôë õ ö÷ ø ùúû õ ö÷÷üýþÿ�øü�������� ���������� �� 	
��
The
rst term is the lowestorder (tree-level), while the rest constitutes the� ��� corrections.

The�� corrections are then computed from�� � �� ��� ��� �  !" #$% $& $ ' ()* +, (A.13)

while - corrections are ./ 0 1 2 3 456 2 0 789:
Theonly effectof this last correction is to change thebare charges at the vertex of the annihilation ;<;= > ??
to the renormalizedone @ A BCDEF. Speci

G
cally,HIFJ KL-MN O PPQ R STU SV WXYVUZV R STU SV WXYVZV [\] ^ _̀abc

Hence defgh ij-kl m nno p qrs qt uvwtxt yz{ | }~�� { | ��� � ��� � ��� �� ������
Therefore, as soon as the charge is taken asrenormalized,we can forget about the�� corrections. Combining
all theother corrections,we get������� ��-�� � ��  ¡ ¢£¤ ¥¦ §¨©¦ª¦ «¬­® °̄ ¬ ®±² ³ ´µ¶· ¸O ¹· º»¼½¾
with the renormalized coupling constant ¿À.

1Á Note that the combination Â ÃÄ ÃÅÆ is IR Çnite, because the intermediate electron is off-shell.
On the other hand, the external lines introduce IR divergence trough ÈÉ and Ê. In fact, the result
we found is the resultof Harris and Brown, except that the velocity divergence is replacedby an IR
divergence in ËÌÍÎ. So this bad divergence isreally a Coulombic divergence, due to the soft photon
exchange between the initial state particles. Taking into account the Coulombic long range interaction
among the initial stateÏÐÑÒ by introducing a Sommerfeld factor, the diverging term is seen to cancel
exactly, leaving ÓÔÕÖ×ØØ ÙÚ-ÛÜ Ý ÞÞß à áâã äå æçèåéå êëìí îï ë íðñ òó

2ô Theõö factors are seen to renormalize the electric charge at the vertex of the scattering ÷ø÷ù úûû. One could wonder how the ü of ýþÿ ý� � ������� get renormalized. In fact, the standard view
concerning this is Hydrogen-like. Recall that in hydrogen atom energy level computations, one is intro-
ducing vacuum polarization as avery small correction� the Lamb shift. Usually, it is argued that all such
corrections are	 
��
.
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ii. BPHZ Renormalizati on

Now, the diagrams are

with again the corresponding crossed channels. First, note that there isno external line correction in the coun-
terterm method, because the�eldshavebeen rescaled. Thevariousresults are

V�+V� ��� ��� � ��� �� ��� �  O !"#$
SE %�& '()* + , ( - + - ./0 ,1
B 2,& 345 6 7 89: ; < =>?; <O @;ABCD
CTE FGHIJ
CTK+CTL M NOP Q RS

Note that the TUV Q RS WX part of the mass counterterm doesnot contribute (because an odd number of Di rac
matrix insertions into the fermion current vanishes). Also, the vertex counterterms are trivial to write down.
Then, since

UY Z UV
, the CT amplitudes are (using (A.12) and (A.13))

CT
Y [\]̂_ ` ab cd efgh i jklm n o pqr stu v w v q xyz {|

CT}+CT~ � ��} � �� � ��� ���� �� �� ��� ��
When combinedwith their respective amplitudes,we get

V�+V�+CT�+CT� ��� ���� �� � � ��� � �� ��� � 
SE+CT¡ ¢£¤ ¥£ ¦ § ¨©ª £ ¦ £ ¨©ª «¬
B ¢£¤ ­®¯ ° ± ²³´ µ ¶ ·¹̧µ ¶O ºµ»¼½¾

All UV divergenceshave disappeared. The combination gives the¿nal expression for the corrected decay rateÀÁÂÃÄÅÅ ÆÇ-ÈÉ Ê ËËÌ Í ÎÏÐ ÎÑ ÒÓÔÑÕÖ ×ØÙÚ ÛÜ Ý Þßà Ý áÞâã äO åãæçèéê
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Noelectric chargerenormalizationwasnecessary, since the lowestorder is immediately computedwith therenor-
malized charge as coupling. Note that the Ward identity ëì í ëî usedhere was also present in multiplicative
renormalization, in the form ï í ðëñïò.

Both the mass and the vertex counterterms are IR divergent. In turn, all the UV ónite corrections appear
IR divergent: the external lines divergences spill along the whole fermion line. This is quite undesirable on
physical grounds, since it is really the radiations from the initial ôõôö state that create IR divergences. This
was especially clear in the method of multiplicative renormalization. On the other hand, the present method is
rather straightforward from a computational stand. The general philosophy regarding the BPHZ method is that
of a very powerful book-keeping, ideally suited to the systematicsof perturbative expansion. Indeed, the ÷ø
insertions in multiplicative renormalization required an expansion of the full propagator. Beyond one-loop, this
kind of procedure quickly becomes toocumbersome.

The two methods are therefore complementary: multiplicative renormalization has a straightforward phys-
ical interpretation, especially concerning the origin of both IR and UV divergences,while theBPHZ renormal-
ization is in most practical computations (beyond one-loop) theonly manageable computation method.

Details for the Computation of Radiative Corrections

The parapositronium decay rate is computed from the formulaù úû-üý þ ÿÿ� � �� ��� ��� �� 	 
��
��� ������ � ��� ��� ����� !" #$%$& ' (()* +, -./ +0 123455556
where7 is the positronium mass,8 the electron mass,9:; the two-photon phase-space (with the associated<=>

factor in front) and ?@A ?B C DEFEGHI the con
J
guration-space Schrödinger wavefunction at zero separation.

The amplitudeKLM NOPQR S TTU
is the scattering amplitude in the static limit, i.e. with both electron and

positron having momentaV W XYZ[Z[Z[U. Finally, at the present level of precision, \ W ]Y.
The scattering amplitude is modi

^
edby radiative corrections. We intend to compute the

^
rst order correc-

tions to the positronium decay rate from theone-loop or order _ corrections to the scattering amplitude`ab c defgab hdeigab h jjj
From this, thekrst order correction to the width is obtained as the interferencebetween krst order and leading
order scattering amplitudeslmno pq-rs t uuv w xy xz{ |}~ |{ � ��� �� � ��� ��� ��������������� � ��� � ¡ ¢£¤¥¦§¨©ª«¬ ­ ® ¯°±°
Therefore, we will calculate the contribution to ²³´µ of each correction in turn. We will proceed according to
multiplicative renormalization (see the¶gures above).

iii. Tree-Level Decay Rate

To tree level, the scattering amplitude²·¸ is extracted from the scattering amplitude¹º¹» ¼ ½½ in the static
limit ¾¿ À ÁÂÃ ÄÅÆ ÇÈÉÊËÌÍÎÏÐÑÒÓ ÔÕÖ×Ø Ù ÚÛÜ ÝÞß àáâãä ãå æçèé êèé æçèåë ìç íîï ðñ òóòôõö÷ ø ùú ûüýþÿ�þ�ÿ
Note that this amplitude is manifestly gauge invariant. Squaring and summing over polarization,���� ����� 	 
�� 
�� �������� ����� � ����  ! "#$ %& "#'$ ((() * +,-.)/)
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Thewidth is then simply0 12-34 5 667 8 9: 9;< = >?@ABCDEFE GHI GJ K LMNJOJ GHI GJ K NPOQ
iv. One-Loop Correcti ons : Self Energy Insertion

There are two termsRSTU V WXYZ[\]^ _àb `c bd efg h ij klgh li hmno p qrsttuvwoxyz { | }|~��� �� ���� �� ���� ���� �� ���� � �������
with �� � � � ��. The self energy function is to one-loop����� ¡ ¢ £¤¥��¦§¡� ¨ ©ª «¬­® ¬¯°­± ¬ª° ²³ ´ µ¶ ·¸¹º»¼ ½³¾¿À ÁÂÃ Ä ÅÆÇÈÉÊÉ ËÌÍÉ ÎÏÐÑÒÓ ÔÕ ÖÕÏ× ÖÕÓ ØÙÚÙ Û ÜÝ Þßà áÙÚÙâãäåæ (A.14)

with ç is an IR cutoff, è is the dimensional regularization dimension parameter. The renormalization constantéê ë ìí îïð is calculated from (A.14) (an IR cutoff is not necessary,
éê

is IR ñnite)òó ôõö ÷ øóôùúöó ûüýþÿ�ÿ ���� ����	
 � �
 ��
�� � �� �������� � �� ! "#$ % & % ' "(&
Now, computing the traceswe get)* +",- %�&./0123 4 5 6 7898 :; <=> ?@ABCDECFD> G HIJ KLMNOPQ RSTU VWXYZ[\]^_` a bc_ defgh\]ijkilj
using me a fen op q rs t uvn op wrsv t wuv

and rv t x. Therefore, the correction to the decay width is
obtained as yz{|} ~�-�� � ��� � ���� ���� �� ��� � ��� ��������� ¡¢ £¤-¥¦ § ¨¨© ª «¬­® ¯°±²³ ´
Since the self-energy function µ ¶·¸¹º is not evaluatedon-shell, it is IR convergent and we can set»¹ ¼ ½. It
remains to work on the divergent integral. Wehave, expanding around ¾ ¼ ¿ÀÁ Â¿Ã Ä ¾ÅÆ ÇÈÉÊË Ì ÍÎ ÏÐÑ ÒÐÓÔÕÖÕ ×ØÙÕ ÚÛÜÝÞß à áâ Ûâ ÛÞ ãäååæçèé ê ëì íî ï ðñ ò ñ óôõ ñö÷ø ùúû
Therefore, theresults areüýþÿ� ��-�� � ��� � 	
�� 
��� ���� � � �� �� �� ��� ��������� !"-#$ % &&' ( )*+, -./0 123 4567
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Combining both self energy corrections,we get the8nal result9:;<=> ?@-AB C DDE F GHIJ KLMN OPQ PM R S TUV MWX
Note that this result is freeof any IR divergences. Thereremains aUV divergence in theresult. This is expected.
This divergence can viewed as the YZ[ factors that will combine with the vertex corrections, ensuring the\
nitenessof the combination.

v. One-Loop Correcti ons : Vertex Correcti ons

There are four diagrams : the two photon permutations with a correction to the
\

rst vertex, and the two corre-
sponding to the second vertex. Let us consider the

\
rst two corrections:]^_` a b cdefgh ijk lmno mp oqrs tnun o pv w xs ympo mn oqrz tn up onv{

with |} ~ � � ��. Thevertex function �� ���� ��� is a quite complicated function of the momenta. A general
decomposition for it is �� �� ���� � ��� ������ �� �������
with� ���� �� a divergent quantity and� �� ���� the�nite remainder, while� stand for a complicated tensor and
Dirac structure. Let uswrite� �� ���� �  ¡¢ £ ¤¥¤¦¤§¨ ©¥ ª ¦ ª § « ¬­ ©® « ¤­¯° ± ²° ³ ´µ°¶²·¸¶¹º»¼» ½ ¾¿ÀÁÂÃÄÅÆÇ ÈÉ ÊÉËÌ Í Î ÏÐÑ Ò ÓÔÓÕÓÖ× ØÔ ÙÕ Ù Ö Ú ÛÜ ÛÝÞ
One featureof this decomposition is thatß andà are the same for both diagrams, sinceáÞ âãäã å æç è áÞ âãäæ åãç è éê ëì âì å íî ïð ñð ï íî ò ñí ï óî ò óôõ
with

ô ö ÷øùúø. Thenûü ýþÿ� �ú� ������ 	
 � �
� � ��� � � ��� ��� ������� !"#$"%#
Theresulting contribution is&'()* + ,--./ 0 112 3 4567 7 89:; <=> ?@> A BC ADEFGH I JKLM NOP QRS T RUV
It remains to work on the Feynman parameter integrals. These can bewritten asRS W XOPYUZ[ \]^[ _ `abcd e fg hi e fjkl mn op q rst ou ou q vs qw ow q vs x ov qys x yzs{|}~}� �� �� ��� �� �� � ���� �� ��� �� �� � �� �� �� � �� � �� � �� � ��� �� ����  ¡ �   � ¢£¤ ¥¦ §̈ ©ª£ « ¬ ­ ®¯ °± ­ ®²³´ µ¶ ·¸ ¹¶¸ º »¼¼ ½¼ ¾ ¿À ¾Á ½Á ¾ ¿À º ½¿ ¾ ÂÀ º ÂÃÄ ¾»º ÅÆ Ç È ÉÊË Ì
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Note that again, there isno IR divergence in those integrals. Finally, thevertex correction isÍÎÏÐÑ ÒÓ-ÔÕ Ö ××Ø Ù ÚÛÜÝ Þßàá âàã ä áåæ ç è éêë æìí
wherewehave multipliedby two to account for the (identical) corrections to the second vertex.

vi. One-Loop Correcti ons : Wavefunction Renormalizati on

As explained in the main text, we only need to compute the electron wavefunction renormalization constantîï. In the on-shell renormalization scheme that we are using, it is given by
îï ð ñ ò óôõ ö÷ø. This is can be

evaluated from (A.14)ùôõ ö÷ø ú ûüý þ ÿ� �������� �	
� �� 
 �� �� 
����������� � �� 
�� ����� � �� �� � !" " # $% � ! &'( )*+ , -. /01 23 045 67 0 30 89:4;< = >?@A BCDECE F GH BCD I J KL MNOP QRS TUV UW UX YZ[ \]
To get the correction to the decay rate,we consider the four diagramswith external electron linerenormalization.
There is a factor ^_` a bc d̀ef̀ ghi

on external lines, i.e.jklmnm
directo pqrsts

Crossedu v wxy xvz{| }~��� � � � ���� ��� � ���
The leading order � reproduces the leading order amplitude for ���� � ��. The�nal correction inducedby the
wavefunction renormalization is������ ��-�� � ��  ¡ ¢£¤¥ ¢¥¦ §¨© ¨ª ¨ ¥ «¬­ ®¯

vii. One-Loop Correcti ons : Binding Correcti on

Wenow turn to the most dif
°

cult part of the calculation: thebinding graph. The amplitude is±²³́ µ ¶ ·¸¹º»¼½¸ ¾º¿ÀÁÂÃÄ ÀÅÆ¿ ÅÇÈ ÉÊËÌÍ ÎÏÐÑ ÏÒ ÓÔ ÕÖ×ØÙÚÛÜ ÝÞßàáâã äåã
with æç è é ê éë andìíî ï ðñòóôõö ò÷øù ÷úû ÷ü ûý þûòóôÿö ù þûòóôÿö ò÷øû ÷úù ÷ü ûý þûòóôõö
where the two terms stand for the direct and crossed diagrams. The decay amplitude is constructed asbefore. We
can simplify the calculation by noting that the crossed diagram denominator is equal to the directone if

ø � ��.
This motivates us to change the sign of � in the crossed diagram. The trace then gives�� ���� 	 
��
���� � � ������ � ������ � !" #$ %&'()*+,-*./01 2 304567/187./01938 : 05647/870/ 2 3. : 05647/870/90;<=>?@A?B@ C <=>?@A?D@ EFGH I JHK LM
with the denominatorN O PQR STUV SWX YZ[ \] ^ _`a bcad efg hijk lmkn opq rsqt
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From here, the procedure is standard: introduction of Feynman parameters, loop momentum shift, and loop
momentum integration in u-dimension. We getvw xyz{ |}~ ������ � � ��������������� � �������� �� �� �� �� � � ��  ¡¢£¤£¥¦ §̈ © ª «¬ ª ­® ª «¯ ­° ±² ± ³´ µ¶ ·² ± ³´¸µ¶ ± ³´¹ º »¼ º½¾¼ ¿ ÀÁÂÃ Ä ÅÆ Ç ÈÉÊ Ç ËÌÍ Ç ÉÆ Ç ÎÌÆ ÏÐÑ ÒÓÔÓÕ
After the (quite dif

Ö
cult) integration,×Ø ÙÚÛÜ ÝÞßàáâãäå æ ç èéêëê ìãäíîïíðî ñòó ô õö÷ ø ô óùúø ô

O ûøüý
Finally, the contribution to thewidth is obtained asþÿ�� ��-�� � ��� 	 
��
 
� ��� � ��� � � ���� �O ����
With this�nal correction, we can now combine all theresults. This is done in the main text.

A.1.4 Dispersion Relations and Kaon Decay

The amplitude for ���  !"#"$ is computed at lowestorder in a pion loop model. The pion is treated as
a point-like charged particle, which allows simple scalar QED treatment. Special attention is paid to the low
energy behavior of the amplitude.

Decay Amplitude and Loop Integration

The amplitude for kaon decay into %&'&$ is given by( )*+, - ./0/12 3 456789 :;<= > ?@?AB CDE FGH IJ FKH LMN FKOPQRS T UVWXYZ[\]^_ àbac d eef
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with g h i jik h l mn. Theopqr s tt amplitude arises from theone-photon and two-photon (the so-called
seagull graph) coupling

as uvw xyzy{ | }}~ � ��� ���� ��� ���� ���� ��� ������� � ��� ���� ��� �  ¡¢ �£¢¤ ¥¦§ ¨©ª«
with © the pion mass. The amplitude¬ ­®°̄ ± ²³²´µ, taken as a constant, hasbeen factored out. The
integration is done using dimensional regularization to preserve gauge invariance and get a¶nite result. We
obtain· ¸¹º»¼½¾¿ÀÁÂ ÃÄÅÄÆ Ç ÈÈÉ Ê ËÌÍÎÏÐÑ Ò ÓÔ ÕÖ Ò Ó×ØÙ ÚÛ ÜÝÞßà áâãä åæ ç èé ê èãæäë ì í îï ðñíòó ôõö÷øù
The denominator function isú û üø ýþ ÿ� �� ÿ ���� � ��� �� ÿ ��� with the de

	
nitions � 
 ��
��� �� ���
��� and � the kaon mass. In the kaon rest-frame,� � �� �� ��� 
��� with� thereduced photon energy�����

. When integrating over Feynman parameters, the last term vanishes. Therefore, the gauge invarianceof
the amplitudebecomes manifest�  !�" # $%&%'( ) *+,-./0123 4567898:; <=> ? @ABCD EFG HIJ KL HMJ NOP HMQRS TUV WX Y Z[ \ ZUXVZ] (A.15)

where the Feynman parameter integral is^ _`abc d e fg hi e fjkl mn opqr so tu svwpq x ovq tq s rw x yz
The prescription yz gives the sign of the imaginary part.

Feynman Parameter Integration via Dispersion Relations

To calculate{ tu|vw, we shall use dispersion relations (see for example [6], [219]). A direct integration is
possible, but we shall gain insight into the dynamicsof the processby using dispersion techniques.
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viii. Absorpti ve Part Extracti on

A }rst integration over the Feynman parameters gives~ ����� � � �� �� �� � �� � � � ��� ��� � ��� ����� �� � ��� � � �� � �� � ¡¢ ��� �  ¡¢ �£���£ � ��� ¤ (A.16)

where ¥¦§ ¨©ª « ¥¦ ¨¬­ ®© ¨̄ ° ±²³ °´µ². The imaginary part of ¶ ·¸¹º² comes from the valuesof
³

for
which the argument of a logarithm is negative. There the logarithm imaginary part is °´». Integrating on the
relevant

³
values,we¼nd½¾¿ ÀÁÂÃÄ Å Æ ÇÈÉ ÊËÌ ÍËÌ Î ÏÐ Ñ ÒÓÔÕÖÔ ×Ø ÙÚ ÛÜÝÞ ß ÙÚ Û àÝÛá âãä åæç è æç é êë ì íîïðñï òó ôõ ö ÷øù ú ô÷ ö ûø (A.17)

or, recalling the deünition of ý and þ (see [208])ÿ�� �ý�þ� � ���	
��
��� �� ���� �� � ������ � �� �  !"#" $% & '()*+* , -..* /0 1 23454 6789 :;< =>?@A
B CDEFGHIJIKL MN OPQR SQ T UVWXWYZ[\]^ _ `^ _ abcdcefghi jk l mnopqp r sttp uv w xyz{z|}~�� ���� ��� � ���� ��� (A.18)

Obviously, the �rst line in (A.18) corresponds to the vertical cuts (which contribute only if the decaying
particle�s mass�� is larger than �����

) while the second line corresponds to theoblique cuts (which contribute
only if thevirtual photon energy �� is larger than �����

)
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Further, one can see that in the soft photon limit � � � (or � � �), ��  ¡�¢�£ behaves as a constant.
Indeed, applying L

¤
Hospital

¤
srule twice,we get¥¦§ ¨©ª«¬ª ­ ®ª ¯° ±²³«¬ª ´ µ¶·¸ ¹º»¼½¼ ¾¿¾ ÀÁÂÃÄÅÃ (A.19)

while individually the contribution of each cut is divergent as ÆÄÇÈ À ÉÊÃ Ë ÆÄÌÃ
. Wewill comeback to this

point later.

ix. Dispersive Part Integral

In order to write down the unsubtracted dispersion integral, let us expressÍÎÏ ÐÑÒÓÔ as a function of the avail-
able energy through Ñ ÐÕÔ Ö Õ×ØÙÚ and Ó ÐÕÔ Ö Õ ÐÛ ÜÝÞ ßàáâ

. Thenãäå æç æèéê ëì íîéêê ï ðñ ò óîî ôõö ÷øù úû úõü ýþ úõüü (A.20)

with õö ÿ ���, such thatwe can omit the principal part. For such a kinematics� �� ���� 	
 ����� � �
 � �� ���� 	 
 �����
In the next subsection we shall analytically continue

�
to the physicalvalue�� � ��. The resultof (A.20) is

easily obtained in termsof the integrals� �� ���� �� �� ��������������  !"#$%&'( ) *+, , - ./ 0++, 123412 5 6 16327 8 9:;<=>? @ 9AB
valid for AB C D (see [6]). We can write E FGHIJ with K L G L Dand K L I L DasE FGHIJ M N OP QR NST U OQR N STV WXY Z[ Z\] ^ [ Z_]] ` _ Za Z\] ^ a Z_]]b (A.21)

in termsof c def g hijklmn op and q rps t uvwxx yz{|}~ ��.

x. Analytic Continuation

The results for � � � and � � �, are obtainedby analytic continuation of (A.21). The analytic continuation of� ��� and � ��� are� ��� � yz{|}~� ���� � � ��� ��� ��� � �� � ����� ¡ ¢£¤ ¥ ¦§¨©© ª«¬­®¯ °© ± ²³ ´ µ³ ¶·¸ ¹º» ¼ º» ½ ¾¿ ½ ¾ÀÁÂÃ
The equalitieshold for Ä Å ÆÇÈÉÄ Ê Ë. The right hand sides deÌne the analytical continuation for Í Î Ï.
Hence theresult is conveniently expressed as (A.21)withÐ ÑÍÒ Ó Ô ÕÖ×ØÙÚÛ ÜÝÞß à á Þ á âã äåæ äçè éçè ê ëì í îï ðñìï ò ó ô (A.22)õ ö÷ø ù úûüýþÿ�� ������ ��	
 � � 	 � 
����� ��� ��� � �� � �� � ��� � ! " #
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Hadwe chosen to analytically continue $ and % in the lower half complex plane, their imaginary parts would
havehad theopposite sign. One can verify from (A.22) that the upper half complex plane analytic continuation
reproduces&'( )*+,- as given in (A.17). This result corresponds to [212] where a sign mistakehas to be
corrected, and to [218], [216].

Decay Width, Differential Width and Low.s Theorem

The differential decay width is given by /0 1234 5 67689: ; <=> ?@ABC DEDF GHI. After a straight-
forward integration over the electron-positron phase-space,we get the differential rate in termsof the reduced
photon energy J:GK LMNO P QRQSTU VWXY Z[\] ^ _`_ab c defge hhhi j klm n opqrs tuuuvwxyz{|}~ ��� ��� �� ��� � � �� ���� ���� ����
with �� � ������� and �� � ������ � ���. The boundson the  integration are  ¡¢£ � ¤ and  ¡¥¦ ��§¨©. A numerical integration of the differential rate gives the prediction for the rateª«¬ ­ ®¯®°± relative to²³́ µ ¶·¶¸ ¹º»º¼ ½ ¾ ¿ÀÁÂ Ã ÄÅÄÆÇÈÉ ÊËÌÍ Î ÏÐÏÑÒ Ó ÔÕÖ× ØÙ×ÑÚ (A.23)

where the real and imaginary part of Û Ü ÝÞß à áâãäå æ contribute for çèéê ëìíîï
and ðñòð óôõö÷, respectively.

Let us turn to the soft photon behavior of the differential width. Wehave toanalyze the loop integral functionø ù úûü ý þÿ��� �. This function tends to a constant for very low �:� � ��	 
 � ��
� � ���� ���� � ���� ��� � ���  �!" # (A.24)

(note that for $" % &, the imaginary part of (A.24) is the same as in (A.19)). Let us emphasize the strong cancel-
lation between the two cuts in the soft photon limit. I ndividually, each cut diverges as'(, but their combination
is convergent. Since the remainder of the amplitude tends to zero like ) (due to the *+,- ./ 0 12 3 14567 factor),
Low 8s theorem is veri

9
ed: the amplitude behaves as: close to: ; <. Theresulting spectrum is thus in := (:>

from the squared amplitude and a: from phase space). In other words,hadwe forgotten one cut, the resulting
spectrum behavior would have been divergent as?@: insteadof vanishing like :=. In fact, this := spectrum is
exactly the same as in theAB C DEDFG differential decay rate.

xi. Comparison with the Two-Photon Decay Mode

From the amplitude (A.15),wereadily obtain the amplitude forHIJ K LL by removing the electron current, the
photon propagator and by taking the limit M K N:O PQRS T UUV W XYZ[\ ] ^_à b cdcefgh ijk lmn opq lmrn stkq lm u vwx y vwz{|} ~ ������ ���
with � � ��� ��� � ����� �� � ��� � � ��� � i.e.  ¡¢£¤¥£ ¦§¨ © ª«¬­® ¯ °±²³ ´µ ¶·¸¹º»¼½¾¿¾ÀÁÂÃÄÅÆÇÈÇ É Ê ËÌ Í ËÎÏ Ð ÑÒÓÒ Ô ÕÓÒ Ö×Ò ØÙÚÛÙÜÝÞßàßáâãäåæçèéè êëë (A.25)
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which corresponds to theresult given in [6], [218], [214]. The relative decay rate is :ì íîïð ñ òòóô õö÷ø ù úûúüý þ ÿ��� ��������	 



� � 
�� �������� � ���� �����
while the experimental value for this ratio is � !" # $! % & $'()

[223].
We can now compare the two electromagnetic modes :*++ , - ./01 2 3435678 9:;< = >>? @ ABACD

in accordancewith [208]. This ratio EFF is similar to [223]G HIJ K LMLNOPQ RST U VVW X YZY[\
The small difference is due to the phase-space factor. The similarity between a constant coupling model like for]T U ^_^`a and the present loop model can be understood from the behavior of the photon energy spectrum.
Indeed, the pure phase-space spectrum isvery strongly peaked athigh b, and therefore the decay rate is quite

insensitive to the detailsof thec d efg h ijklm n function. Speci
o

cally, if we replacep q rst u vwxyz { by its value for| } ~ (A.25) we�nd theratio ����� � ����� �����
, very close to (A.23).

The discussionof the more general caseof non-constant form factor, i.e. if the amplitude� ���� � �����
is not taken as a constant, can be found in [29], [30] and references cited there.

A.2 Orthopositronium

A.2.1 Phase-space Structure

The goal of this section is to set up the kinematicsof three-photon decays, along with numerical methods for
parametrizing the associated three-body phase-space. Suppose thatwe are considering a process� � ���, � a
vector particle, with coupling constant ���� . When there areno angular dependences in the amplitude, theonly
relevant variable are the energy of two of the photons (see C.3) ¡� ¢ £¤¥¦§ ¨§ £© ª «¬ ª «­ ª «®¯ °®«¬±²³¯® ²´¬ °®«­±²³¯® ²´­ °®«®±²³¯® ²´® µ °´¬°´­¶ ±²³¯®
The amplitude is cast into a function of only ·­ µ ¸­

, ´¬
and ´­. This is achievedby ¹rst removing one of

the photon momenta using the energy conservation º» ¼ ½ ¾¿À ¾¿Á. Then, thereremainsonly scalar products
such asÂ Ã ¿Ä Å ÆÇÈ since theÉ particle is atrestÊ Å ËÆÌÍÌÍÌÍÎ, andÏÐ Ñ ÒÓ Ô ÕÖÕÓ × ØÙÚÛ ÛÙÜ ÛÝÞß àáâ
Momentum conservation can serve to ãx this angleäåæ àáâ ç èâ é êëìí éêëìî ï êìíìîê ðñò ó óñô ó
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Hence õö ÷ õø ù ú ûüö ýüøþ ÿúø��
Finally, if we de�ne thereduced photon momenta as�� � ����	, we get
�� 
 �� �������� ������ � �� � �� !"#$# % $& ' ()*+ ,-. / -0 1 23 4 2567 89 : ;;<=>?@? AAB
The decay rate is then obtainedby integration over

@C DE FGHI EJ and
GH DKI EJ. The Lnal variable we will use

is the reduced massof the particles running in the loop M N OPQRSQ. In terms of all thesevariables, the
differential decay probabilit y is TU VWXYWQ YWZ YM[ \ ]^_` abac. Then, the decay rate is expressed asdefe gh i jjjk l mno mpqrstuv w xyz {|}~ ��������z���� {���z���� � �� ��� � ����� ��� �� ������ �� ��� ���� ¡
Notehow we factored the coupling constant from the amplitude.

Of utmost interest to uswill be the differential rate (i.e. the photon energy spectrum)�¢ �£ ¤ ¥¥¥¦§¨© ª «¬­®¯°±²³ µ́ ¶¶·¸¹ º»¼ ½¾ ¿ÀÁÂÀ¼ ÂÃ ÄÀÁ ÄÀ¼ÂÅÆÇ
and thenormalized differential rateÈÉÊËÌË ÍÎÏÍÐÑ.

Numerical Approximation for the Phase-Space Integrations

The amplitudeswe have to manipulate are very complicated, and, in general, numerical methods are the
only alternative. Further, to save a substantial amount of computer time, it is a good idea to fully exploit the
symmetry of phase-space. The method we present here isborrowed from Adkins [87], and will be used in all our
computations (except for the simple Ore-Powell approximation, because it can be straightforwardly integrated
analytically).

Energy-momentum conservation implies that the photon reduced energies lieswithin the plane ÐÑ Ò ÐÓ ÒÐÔ Õ Ö, and sinceÐ× Ø ÙÚÛ ÜÝ, phase-space isrestricted to a triangular area

0

1
x1

1

x2

1

x3

0

1
x1
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The differential probabilit y Þß àáâãáäãáå ãæç is fully symmetric under permutations of áâãáä ãáå. This means
thatonly a sixth of phase-spaceneeds to be computed

where the center-point corresponds to àèéêãèéêãèéêç. We choose the darker sixth of the triangle in whicháä ë ìí ë ìî.
Now, to get an estimate for the phase-space probabilit y distribution, we have to evaluateïð ñìîòìó òìí òôõ

atvarious points inside the dark triangle. To this end, we can introduce auxiliary variables as a coordinate system
for the dark triangle: ö÷øùú û üý þÿ����� û � � �üÿWhen

��ü runsbetween � and
�
, the�	��� ��
 span the dark area. Then, we divide the triangle into � �
 cells,

or bins (herewith � � � and 
 � �):

For � � �� ���� �, � � �� ���� 
, the point at the center of each bin has coordinate:����� �� � � ��  �!�"# � $ �%  �!%
We can then construct a matrix out of the differential probabilit y (for a given valueof &)'( )*+, -. /012 3 4 5 6789: ; < 5 89= >: 567? ;@A
It is the computation of that matrix that takes so much computer time. Of course, the valuesof B and C to be
used to get areliable answer depend on the assumed smoothnessof the differential probabilit y. As wewill see,
in most cases, a coarse grained mesh B DC of EF to GFF points is suf

H
cient to get a total rate at the percent level

of precision, becauseof the high redundancy of phase-space (i.e.IJ points in the dark triangle means K LIJ
points for the whole phase-space). Note

H
nally that the chosen parametrization hasone technical advantage in
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that evaluations of the differential probabilit y on phase-spaceboundariesnever occur. This is welcome since a
numerical evaluation there ishighly unstable (if not divergent), especially numerical integrations.

Once the matrix is found, we use some Mathematicatools to build interpolation functions. Namely, we
construct an interpolation likeMNOP QRSTU V WXYZ[\]^_Y`]X abcd befg hi jklm n o p klqrs n o p qrt us pklm nvwwxyz{
Then, an interpolation to the whole phase-space isbuilt by expressing back |}~ in terms of reduced photon
energies, as ��x�� ������ ������ � ������������� � �� � �� � ���� ����   ¡¢ £ ¤¥ ¦ §¤ £¡¢¨©¡�   ¡¢ £ ¤ª«¬ ­ «® ­ «¯ ° ±²³´ µ¶·¸ ¹ º» ¼ ½¾ ¿ À½ ¼º»ÁÂº¸ ¹ º» ¼ ½ÃÄÄÄ
Note that at this step,werely on Mathematica to extrapolate the interpolation beyond itsrange, sinceboundaries
are now included (ifone suspect that the differential probabilit y is not smooth, sizeable lossof precision could
occur. Increasing thenumber of bins is then compulsory). From this interpolationof phase-space, the differential
rate, spectrum and total rate can beobtained simply by numerical integrations.

A.2.2 Euler-Heisenberg Lagrangian

The Euler-Heisenberg Lagrangian [201] is the one-loop QED effective action. It can be computed using the
Schwinger Proper time technique [10], [18], [28], [203]. For a constant Åeld strength, the result is expressed in
closed form to all orders asÆÇÈÉÊËË Ì Í ÎÏÐÑ Ò ÓÔ ÕÖÖ × ØÙÚÛÜ ÝÞßà áâ ãäåæçè éßãàá åæç éßäà áçêëè éßãàá çêë éßäàá ì íîïð
with ñòó solutionsof ñô õ öô ÷ øù úûù and üý þ ÿ ��. This expression wasobtained in 1951by Schwinger
[203].

To get thevarious couplings,we expand the term in squarebrackets as a series in � . Each order corresponds
to anew term in the effective Lagrangian������� 	 
���� � 
���
 �
���� �
���� �
���� �
����� � ���
with ����� � � ����� � � !"" # $%&'()*+,- . / 012 345 6 758 9 :; <== >?@ABCDEFG H IJKLMNO PQO R STKQK R TOUVWXYZ [ \ ]^_`abcdef ghij k lmnop q lmpon qrmstuvwxy z {|}~��������� ���� � ������ � ����� � ������ � ���������� � � ¡¢£¤¥¦§©̈ª«¬­® ¯¨°±­² ³ ´´µ¶·¸ ¹ ººµ»·¼ ³ ººµ¼·» ¹ ´´µ¸·¶ ¹ ½¾µ¿²À
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Transcribed into ÁÂÃÁÂÃ Ä Å ÆÇÈ ÉÊÈË
and ÌÍÎ ÏÌÍÎ Ð Ñ ÒÓ ÔÕÖ

:×ØÙÚÛ Ü Ý Þßàá â ã äå æççè éêëìíîïðñò ó ô õö÷øùúûùúû ü ýþ ÿ�� ��������	
 � �
���� ���������� � �� ��� !�� "#$%&'() * + ,-./0123 45 6789:89;< = >?@ A:89:89; BCDE FCDEGHIJKLMN O PQRSTUVWXQ YUZ [\]^_]^`a b cc d_]^_]^`e fghi jghikl m no pqrs tursvwxyz{|{} ~ � ������������ ���� ��������� � ��� ��������� ���� ������   ¡¢£ ¤¥¦§¥¦§¨ ©ª«¬ ­ª«¬®¯°
The±rst term is just an in±nite energy shift, and can be set to zero ² ³ ´. To compute the UV divergent µ¶·¸¹
term, aregularization procedure mustbe introduced.Using a simpleUV cutoffµ¶·¸º» ¼ ½ ¾¿ÀÁÂ ÃÄÄ ÅÆÇÈÉ Ê ËÌÍ ÎÏÐÏ ÑÒ
And one can recognize the photon wavefunction renormalization constant, up to irrelevant Ónite terms.

Feynman Rules for the Four-photon Vertex

Insteadof directly give the Feynman rules associatedwith the Euler-Heisenberg Lagrangian, we consider
the pieces ÔÕÖ× Ø ÙÚÛÜÝÞ ßàáâãáâäåæçèé ê ëèìíîï ðñòóô óõôõöôöò÷øùúû ü ýþÿ��� ���� ��	
�� 
 ������ ��� ��������� � � ����� � � !�!��"
where #$%& ' ()*%&+,$+,
and the identity in the third line is easily established from contractionsof Levi-Civita symbols.

For each term, the Feynman rules are (with the momentum -ow . / 0 1 2 1 3, i.e. . in-going, 04243
out-going) 56789:;< =>? @?ABCD E FGHIJKLMN OPQRSTUVWX YZ[ \[]^_` a bcdefghi jklmn olpqrstuvw xyz {z|}~� � ���������� ������� �� � ��������� ��� �¡¢ £¤
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where¥¦ § ¨¨©ª«¬ ­ ®¯°±²³ ´µ¶·¸ ­ ®¶¸·µ³ ¹ ´µ¯±¸ ­ ®¯¸±µ³ ´²¶·° ­ ®¶°·²³ ¹ ´·¯±¶ ­ ®¯¶±·³ ´²¸µ° ­®¸°µ²³³º» ¼ ½¾¿ÀÁÂÃÄ Å ½Ä¿ÀÁ¾ÃÂ Å ½Â¿¾ÁÀÃÄ Å ½¾¿ÄÁÀÃÂ Å ½Â¿ÄÁ¾ÃÀ Å ½Ä¿¾ÁÂÃÀÆÇ ¼ È¾Ä ÉÊ½¿ËÁÂÃÀ Ì ÍÎÏÐÑÒÓÔ Ì ÍÎÑÐÏÔÓÒ Õ ÍÏÑÐÓÒÎÔ Ì ÍÓÏÐÑÒÎÔ Ì ÍÓÑÐÏÔÎÒÖ×Ø Ù ÚÛÜ ÝÞßàáâãäå æ çèéêëìíî æ çèíêéìëî ï çéíêèìëî æ çëéêèìíî æ çíëêéìèîðñò ó ôõö ÷øùúûüýþÿ � �������� � �������� 	 �������� � �������� � ��������
�� 
 ��� ��������� � ����� !" � ����!"� # ��!��"� � �!���"� � �!���"� $%& ' ()* +,-./0123 4 56789:;< 4 5798;:6< = 56987<;: 4 56;89:7< 4 59;87:6<>?@ A BCD EFGHIJKLM N OPQRSTUV N OUQRPTSV W OPURSTQV N OUSRPTQV N OPSRQTUVXYZ [ \]^\_` abcdebfge h bdgebcfei h \]`\_^ abcge bdfe h bcde bfgei h \]_\`^ abdfebcge h bdge bcfei
The Euler-Heisenberg Feynman rules can then bereconstructed sincejklm n opqrst uvwx yz{|z{|}~ � � ����� ����������� �������� ������� �� � ����� ¡¢£¤¥ ¦ §�� ¡¢£¨¥

In the text,we prefer to use the Lagrangian under the form©ª«¬ ­ ®¯°±²³ µ́¶·¸¹·¸º» ¼ ½¾ ¿¹·¸ ÀÁÂÃÄÅÆÇ ÈÉÊËÌÍÎÏ ÐÑÒÓÒ ÔÕÖ× Ø ÙÉÊËÌÚÛÜ Ý ÞßàáâãäÚåÜ
to exhibit explicitly the scalar and pseudoscalar currents. The Feynman rulesremain of course identical.

A.2.3 The Photon Two-point Function

The photon vacuum polarization readsæáâ çèéê ë ìíé î ïðñòóôõö ÷ø ùúû üýþ ÿ�� ü��� üýþ� ý� ÿ�� ü��
Using dimensional regularization techniques,which preserve gauge invariance,we�nd�	
 ��
� � ��� ��
��� ������ � �� � �� �  ! "�# � $% &'()*%&+,%-. / 012 34 56 347 829:;<=
Expanding in termsof > ? @ AB, withCDE FGHI J KLMNOP Q RORPST UVWXT UVWX Y Z [\]^ Z _[] `ab cd d ed f gh ijk lmn op qr ops tnun v wx yz{| } ~z �� � ��� ������� �
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Note that we may also integrate over � the non-expanded expression, with the result expressed in terms of
hypergeometric functions � ���� � � ��� ��� � �� ���� �¡¢��£¤�¥¦ § ¨© ª «¬ ­¬­ ®¬ ­ ¯°±²° ³

A completely integrated expression for the´nite part can beobtained simply asµ¶ ·̧ ¹º » ¼½¾ ¿ÀÁ ÂÃ Ã ÄÅ ÆÃÇ ÈÉÊ ÄÅ ÆÃ ÄÅ ÆÃÇ ËÇ (A.26)

with Ë Ì ÍÎÏÐÎ. A direct integration gives (see for example [9])ÑÒ ÓÔÕÖ × ØÙÚ ÛÜÝ Þ ßàá Þ âà ãäå æçè ãäé êçèë ìíîï
The function ë ìíî is ë ìíî ð ñòòòòòòòóòòòòòòòô

õö÷øù ú û üýþÿü� û���� � � � � � � 	� �
��	�� ��
���� ������� � � ��������� ���� � � ��!"#$% &$'("# % )*+ , - .
where each term isobtain by analytic continuation. In fact, the/rst two lines are identical, due to the properties
of arctangent functions. The last equality is valid in the upper complex plane01.23 4 5 67896: 5;<=> ? @ ABCDE FGHIJKLM NOPQ R S TRSUVWRX TRSUVW X YZ[
Thereal part of \] _̂`a, for all b`, is thereforecd efgh i jkl mno p qrs j qrtuvw x y zy{ |vw} ~����� ���� � �� ��� � �� ��� ��� ��� �������

Two-loop Vacuum Polarization

The photon two-loop vacuum polarization function is ([7], [217]):��  ¡¢ £ ¤ ¥¦§¨©¦ ª«¬­ ® ¯°­± ² ³ ´« ² ±µ ´­ ® ¯±µ­± ¶ ·¸¹ º » ·¼ ½ ¸¹ ·¼ ½ ¼¾¸¹¿¸ ¶À ·¸¹½» ·¼º »¸¹¿¸ ÁÂÃ ÄÅ ÆÂ ÇÅÈ ÉÉÅ Ê Ë ÌÍÎÍ Ê
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with Ï ÐÑÒ Ó ÔÕ Ö×ÕÕØ Ù ÚÛ ÐÑÒ Ó Ü ÝÑ ÐÞß à áâãä åæçß à èâãä åçßé æ ê ëèâãì åæçß àâãì åçßé íîïðñ òñ íî óôõïö õ íî óô ðïö÷ íîø ùù ú ûüý þÿ� ý þ�þ ý þÿ� � þ
A.2.4 The Photon Four-point Function

We are interested in the four-point function only for a speci
�

c kinematics, i.e. that of the decay of a massive
photon into threereal photons. We can pictorially represent our process as

Where the�� is an arbitrary coupling constant.
The corresponding amplitude is given in termsof thevector to three-photon current [113], [205]����	�
� � 
������ � ���������� �� !" #$%&' ( )*+, -./01 23 456789:9; <=>?@ ABCDE F GHIJ KLMNOPQRSTUVWTX YZ[ Y\]^ _[`abcdce fghij k

where l m fgnopq rs notq rs nouq
. The v correspond to helicity amplitudes (indexedby wpwtwu), whose

arguments xy z are short-hand for
o{|}~ |}�, and also � � ������. This expression mustbe summedover all

polarization states������. Becauseof numerous identities among thehelicity amplitudes, the modulus squared
of the amplitude can be expressed in termsof only four of them. Conventionally, we choose������� ������ ������ � ���� ���� ¡¡ ¢£¤¥¦ § ¨©ª«¬­­ ®̄ °§¯ª§¯±²³´ µ ¶·¸¹º»¼½½ ¾¿ÀÁÂ
The dimensionlessÃÄÅÆ are given in the next subsection. In term of these, the modulus squared of the current
is ÇÈÉÊËÊÌ ÍÎÊÉÊËÊÌÏ ÎÐÑÒÑÓÑÔÕÖ× Ø ÙÚÛÜÝ Þß àáÚâã äß àÚáâã äß àâáÚãå

(A.27)

withß àáÚâã Ø áâ æææçèéêëìì íîïðñòòòó ô òòòõöó÷øøø íîïðñòòòó ô îùóú òòòõöú÷øøø íîïðñ ôõöú÷øøø íîðïñòòòóô ùúùóùû üý þÿ�� ���������� 	
��
���� � 	� � ��� �� � ������ �� � ��� ���� �� ��� � !"### $%&'( ) %% )*+ � !"### $%'&(,,,,-
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The ./s for other arguments are obtained by permutation of the 01. Note that there is no restriction in the
contraction (A.27) since current conservation (Ward identity) implies2345657 89545657: 9;<=<><?@ A B CD EFGH I JKJLMN O P QRSRTRU VWXWYWZV[WXWYWZ\
where the last factor is a scalar function, and where ] ^ _` a _b a _c. Therefore, the longitudinal part of the
vector boson polarization sumnever contributes.

The amplitude is then simplyd ef g hhhi j klm kno p qrs tu vwxyzy{ |}yxyzy{~ }����������
The three-body phase space is ��� � �� �������� �����
and therefore � �� � ���� � � ����  �¡¢ £ ¤¥¦¤¥§ ¨©ª«¬«­ ®̄ «ª«¬«­° ¯±²³²´²µ¶·¸¹ º» ¼½¾¿ÀÁÂÃÄ Å Æ ÇÈÉÇÈÊ ËÌ ÍÎÏÐÑ Ò Ì ÍÏÎÐÑ Ò Ì ÍÐÎÏÑÓ

Helicity Amplitudes

The amplitude and squared amplitude can be expressed using helicity amplitudes. Let usnoteÔ Õ Ö ×ØÙÚÛ Õ Ö × ØÜÚÝ Õ Ö ×ØÞ
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Then, wehave the four independent amplitudesßàáâãäåæçç è éêëìíîïðð ñòóôòõôòö÷ø:ùúóûüüü ý þÿ� � � � � ���� �� � �	 � ���� � �	
 � �
� � 
� �� ����� �� ������� ���� �  �! "�# $% &'()* +% &,()*- . /01 2 03 4 5 6789:; <=> ?@ =ABC D EFGCH I JKLIF D KLIG D MKGNL IFBH D KC D KG O P QRSTUV WX YZ [\]^ [ _`\^a b cde[ ` [ fd\ge [ `]a [ d̂ [ d̀ [ d\ h i jklmno pq rk stuv s wxtvy s z{st s zv |} ~������ �� ��� �� ������ �� ��������� ���� � � �� ����� �� ��������� ����� ��� �� ���� � �����   ¡¢ £ ¤¡¥ £ ¦¡§ ¨ ©ª «¬­®¯°­®¯ ±­®²³´µ¶·¸¸ ¹ º»¼ ½ »¾ ¿ ÀÁ Â¼Ã»Ä ÅÁ ÂÆÃ»Ä ÅÁ Â¾Ã»Ä ½Á ÂÇÈÉÊË Ì É ÍÇ ÌÎËÏÐ ÑÒ ÓÔÕÖ×ØÕÖ× ÙÕÖÚÛÖ ÜÙ ÝÞßØÔ àÒ ÓØÕÖ×ÞÕÖ× ÙÕÖÚ
for theárst type, andâãäåæææ ç èéêë ì íêîìêï ðñ òóôõö ÷ñ òøôõöù ú ûüýþ ÿ �ý�ÿý� �� �ý��� ÿ� �����	 
 ��
 � �� � �� �� ������ ������� �  !" � #$# � %#& !" �'$ � (%# )* +,-./ 0 1234567 2 8 9: 26;6 2 <64 9: 25; 2 =<6 > ? @ABCDE FGHAIJ K L MN OPQP K R MN O PQST O RNO S O RNOT K URP V W XYZ[\] ^[_`a ] [ bY c defg h ijfdk lm nopqrspqr tpqu v wxyz{ | x }~ �{�zy | x��� � �� ��������� ����� ������ � � �� ���� � � �� � ���  � ¡�� � �¢�  £ ¤¥ ¦§¨©ª«¨©ª ¬¨©­®¯°±²³³ ´ µ¶ µ ·¹̧ º »̧ º ¼̧ ½ ¾¿ À¹Á Â̧ º ¿ À»Á¸Â º ¿ À¼Á¸Â ÃÄ ÅÆÇÈÉÊË ÌÈÍ Ë ÈÎÏÐÑ ÒÓ ÔÏÕÖ×ÐÕÖ× ØÕÖÙ Ú ÛÜÝ Þ Üßàá â ãä åæçèéêçèé ëçèì í îèæ í èïðñ ò óô õðö÷øñö÷ø ùö÷ú
for the second type. The form factors appearing in the amplitudes areû õüý þ ÿ� � �� �� �� �	 
 �� 
 
 �	 
���� � �������� � � � ��� ��� � �� !"#$ %&& ' ( ) *(+ ,( * (& -./ 012 3 12 4 56 789:;< =>? @ A BC DE FG HI J KL JM NI JOPQRS TUV W X Y Z [ \ ]^_`abcd eff g h i jkl mno p no q rs tuvwxy
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The constant z (with a limit z { | understood) appearing in the argument of the logarithm is necessary to
unambiguously select the correct sheet, i.e. to give a sign to the imaginary part. The result for } ~ � is
then obtained by analytical continuation, with the convention ��z transcribing as a lower half complex plane
continuation (a��z would lead to an upper half plane continuation). Notewell that both form factor have to be
de

�
nedwith thesameconventions. The last form factor is more complicated:�� ��������� ���� � � ��������� � � ��������� �� ���������

where ��� � � ¡ ¢£¤¥ ¦ § ¨©¦ª«¬­ ® ¯ °± ²³ ´µ ¶· ¸ ¹º ¸» ¼½ ¾¿ÀÁÂÃÀÄÅ ÆÇÈ
As for É and Ê , an explicit form for Ë can be given above and below threshold. For ÌÍÎ Ï Ð,Ë ÑÒÓ ÔÕÖ×Ø Ù ÚÛÜ ÝÞß àáâ ã äåäå æ Þß àÜ ã ÚÜ ç èé çêëì í îïîï ð ñòó ð ôõö÷øù úûü ý þÿ���� � ���� 	
 ��
 � ����
where the angle � is � � ������ ��� �� � � �� �� 
Denoting ! " #$ % &' , the analytic continuation to ()* + , is- .(* /0123 4 567 8999999:999999;<= >?@ A BCBC D <= >E A FE G HI G JKLM N OP QR ST U VW X VYXZ[ \]^ _̀ a b` a cd a be fg^ _̀ a b` h ijklmn op q rp q st quvn op w xy z {| z}~� �� � �� � �� ���� �� � �� � ��

���������������
A.2.5 The Ansatz

Herewe collect the expressions for the differential rate and total rate using the ansatz (2.28).
The differential rate can be expressed as�� �� � ������� �  ¡¢£¤¥ ¦§¨©ª© « ¬ ¦­®¯ °±²³²´

with µ ¶·¸¹º» ¼ °¶º ½¾¿ÀÁ ÂÃÄÅ Æ ÇÄÈ ÉÊË ÌÍÎÏ ÐÑÒÓÔ Õ Ö×
whereØÒ Ù Ú ÛÜ Ý Þßà Ý ÞáàâãÞÝà Ý äÞÝ åæçèéêëæ ë ìèíéêë æ ë ì îêï ë ðñæ ë ìòóôõö÷ ø ùú øùû ùúüýþ øú ø ÿ û � �ÿû ú� �� � �� � ��	
��
 ��� � ����� � � � �� � �� � ��� � �����
 ��� � � � � ���� ��� !� ��� "� �#$ %!� % ! & � ! ���� & '( ) *+ ) ,+-./01 2 34 2 356
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The total rate is given by 7 89 : ;;;< = >?@ABC DECFGF H I DJKFGFH (A.29)

withI LMN O PQR S TTS TQMQU LQ S VMNW X YZ[ \Z X ]^_`abW c def g c def hg f ehih f jgklf mno p qrsq t us t v wx t usyz{ | }~y� � } z} | �~yz�| {~y� � ��� � ������ ��� ��� �� ��� �� � ������ � ���� � � �� �  ¡ � ¢¡£¤¥¦ � �¡§¨ © ª«¬­® °̄ ±²³ ´µ ¶·¸¹ º »¼½ ¾»¿ ½ ÀÁ¹ º ¼½ »¼½ ¾»¿ ÂÃ ÄÅÆ Ç ÈÉÊÈË ÌÍÎ Ï ÐÑÒÐÑ ÓÒËÔ
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Appendix B
Resourcesfor QCD Bound States

B.1 Running of the Strong Coupling Constant

In this section, we will shortly review the basic formulas for the running of the strong coupling constant ÕÖ.
It is basedon [11], [209], [210], [213], [222], [223]. The basic formula is the renormalization group evolution
equation ×ØÕÖ Ù×ÚØ× Û Ü ÙÕÖ Ù×ÚÚ

(B.1)

In perturbation theory, the

Ü
function can be calculated from loop corrections asÜ ÙÕÖ Ù×ÚÚ Û ÝÜÞßàáâã äåæ ç èéêëìíîï ðñò ó ôõö÷øùúûü ýþÿ � ���

with �� � ��� ���	
� � 
�� ��� ���� � ���� � �����  ! " #$%$& '(!
The next term )* is also known, but too complicated to be given here. Note that only )+ and ), are scheme
independent.

B.1.1 One-Loop Running

To compare the valuesof -. obtained in various processes,one has to use the renormalization group equation
to /run/ 01 2345 up to67, which is the conventional comparison point. Theworld average for 89 :;<=

is>? :;<= @ ABCCDCE ABAAF
To lowestorder, the coupling constant running isGH>? :G=HG @ IJKLMNOP QRS T UP QRS V WXYZ [\ ]̂ _`a_bcde (B.2)

wherefgbcd is an integration constant. For speci
h

c runnings,we may cast this formula in several useful forms.
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1i Taking the difference at two scales,we getjklm nop q rstu vwx y z{|} ~� ����� � � �� ��� � �� ����� �� ��� ���� �� ����� � (B.3)

Since�� � �, the coupling constant decreases as the energy increases, a phenomenon called asymptotic
freedom.

2� To lowestorder in  ¡ , one sometimes uses ¡ ¢£¤ ¥  ¡ ¢¦¤ §¨©ª« ¬­® ¯°±² ³´ µ¶· ¸ ¹º »¼½¾ ¿ÀÁÂÃ (B.4)

3Ä Forgetting about Å, we can transcribe the running as an equation in termsof ÆÇÈÉ:ÊË ÌÍÎ Ï ÐÑÒÓ ÔÕ Ö×ØÙÚØÛÜÝÞ with ßÛÜÝ à á âãä åæ çèéêëì íîïð (B.5)

Henceonceñòóô is known, so is õö ÷øù at any scaleø.

The quantity úû is a function of üý . This dependence comes about through vacuum polarization diagrams
with üý quark þavors in the loop. Quarks much heavier than the typical energy in the process must decouple,
and at a given energy scaleÿ, only üý with �ý lighter than ÿ must considered. The running is therefore a
function of thenumber of quark þavors used. For example, taking �� ���� � �	

�,

1 2 5 10 20 50 100 200
0.1

0.15
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0.25
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0.35

with �
 � �
(plain)���� from top to bottom. This running is an illustration of asymptotic freedom since�� ���� � � as�� ��. This is true as long as��  !" (i.e. #$ % &):

1 5 10 50 100

0.05

0.1

0.15

0.2

0.25

for '( ) *+,+ -. and *&.
Running Down to Beauty, Charm Scales from the Weak Scale (I)

As an example,we will take the running of /0 down to the charmed quark mass,which we take at12 )-3*456 . This example is interesting sinceonehas to de
7

nehow to treat the 8 quark threshold, 9: ; < between=>
and?@ A BCDEFG , and HI J B betweenKL andKM. Of course, the threshold is not a step function, and
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the detailed evolution close to it is mass-dependent. Anyway, as aNrst approximation, such dependences are
ignored.

1O The exactrunning using either (B.3) or integrating numerically the differential RG equation (B.2), gives
a strong coupling atPQ ofRS TUVW X YZ[[\ ]^_`a bc defg h ijkllm nopqr st uvwx y z{|}~} (B.6)

(note that we are taking too many signi
�

cative numbers for the purposeof comparison). Ignoring the threshold
gives thevalues �� ���� � ����� ����� �� ���� � ���������  ¡¢ £¤¥¦ § ¨©ª«¬­®¯°± ²³ ´µ¶· ¸ ¹º»¹¼

2½ The approximate formula (B.4) gives¾¿ ÀÁÂÃ Ä ÅÆÇÇÈ ÉÊËÌÍ ÎÏ ÐÑÒÓ Ô ÕÖ×ØÕ ÙÚÛÜÝ Þß àáâã ä åæçèé
which is quite far from the exactone-loop running (B.6). The reason why this approximation is so poor is
because êë ìíîïíð ñ òóô
The formula (B.4) neglects termsof orderõö÷ øùúû üýþ ÿ������ � � ���	
(in casewe would use (B.4) to go upwards
� �
�� � 
 ����, this becomes

� ����
, really bad indeed). For

the last step 
�� ���� ��� �� !� " # $ %&%'
Inconclusion, the approximaterunning formula should be usedonly to runbetween closely related scales,which
arenot too low (i.e. ( )*+, ).

3- For the last scheme,we take thevalueof ./01 according to2/01 34567 8 9: ;<= >? @ABCDE FGHIJ KLMNO PQPRRSTU
Then, thevalueof VW XYZ[ is B.5\W XYZ[ ] ^_`a bc defghijklmn opqrs tuvwwx
As before. To continue down to yz, wehave to change{|}~ as{�|}~ ����� � �� ��� �� ������ ����� ����� ��� �¡¢£
and ¤¥ ¦§¨© ª «¬­®¯®, exactly the sameresult asbefore.
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B.1.2 Running Beyond One-Loop

The general RG equation (B.1) is integrated as° ±²² ³ ° ±´µ ¶´·
If we expand

µ ¶´·
up to

µ¸
, wehave¹º »¼½ ¾¿À¿ Á Â ÃÄÅÆÇ ÈÉÊËÌÍÎ ÏÐ Ñ ÒÓÔÕÖ ×Ø Ù ÚÛÜÝÞß àá â ãäåæçèé êëì íîï ðñòó ô îõ ö÷ø óîï ô îïîù úûüùýþÿ�üù� � � ûü�ý ú �ü�üýüù � üù�ü�ÿ��ùü�� �ù�	
	��
� ��

To go from the �rst to the second line, we have integrated, then Taylor expanded the result around � � �
and �nally moved constant terms into �. This expression mustnow be inverted to get �� ��� as a function
of ��������. This is not an easy task in general, and we proceed iteratively. Let us introduce the convenient
notations �  !"#$ %&'& ( )*+,-
The.rstorder is simply )/0 1 /234 567 89 : ;< =>? @ ABCDE
asbefore. Thenextorder is found fromFDGE H IGJK L FM NOPKFD Q RSTUVRSW X Y Z[\]^_`a bcdefghijklmn op q rstu v wxyz{y|} ~ y{y} ��� �x�y} � � ���� � ������� ������������� � ��� ��� �� �� ¡ ¢£¤¥¦
The constant § is chosen as § ¨ ©ª«ª¬ ­®¯ °±ª¬
so as to eliminate the constants in the logarithm. Then, solving for ²³´ and expanding the result aroundµ ¶ ·:¸¹´ ¶ º»¼½¼¾¿ µ¾ ÀÁÂµ
i.e. ¹´ ÃÄÅ Æ ÇÈÉÊ ËÌ ÍÎÏÎÐÑÒ ÓÔÕÖ ×ØÙ ÚÛ ÚÛ ÜÝÞÝßàáâãä åæ çèéèêëì íîïð ñòóôõ ö÷ø÷ùúûü (B.7)

Note that the integration constant ý is now interpreted asýþÿ� (i.e.,ýþÿ� is de
�

nedby this expression).
Obviously, this method can be pursued to higher order. The result to three loops usually quoted is�� ��� � �	
� �
 � �� � ��� �� �� ���� �� � � ������� ��� � �� !  ! " # $%&' ( )*)'+)', - ./00 1 2 34567 89

(B.8)

Let us emphasize that contrary to the one-loop result, this expression for the running is not exact, since
we have made an expansion in :;<= >

. Anyway, in general, ?@AB is estimated to be a few hundredsofCDE
, so that the expansion parameter is getting better as the scale increases. Around FGDE

, we can estimateHIJK L M NOPQRS TUV W XY W Z, so that the above formula should be quite precise (at least in the perturbative
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regime,remember the initial [ expansion of the integratedRG equation, and that thevalueof \ is calculated in
perturbation theory).

Using theworld averagevalueof [] ^_`a
, we can get thevalueof bcdefghi using jkl- and m-loop running:

1 loop 2 loops 3 loopsnopqrst luvwxyz{| }~����z�� �~����z����|���� ��������� ��������� ������������� ¡¢ ££¤¥¥¦¥§ ¨¨©¤ª«¦ª¬ ¨­£¤ª�¦ª®
Therather imprecise determination comes from the logarithmic dependenceof ¯° on ±²³´. Note thatwehave

given ±µ¶·²³´¸±µ¹·²³´ just for the purposeof illustration, sinceone usually considers º» ¼ ½ close to ¾¿.

Running Down to Beauty, Charm Scales from the Weak Scale (II)

Now that the two and three loop running formulashavebeen presented,we can use them to get thevalueof
the strong coupling at the ÀÁ and ÀÂ mass scales.

As aÃrst exercise, it is instructive to compare the exactrunning (i.e. integrating numerically the differential
equation) to the approximate formula (B.7) and (B.8)ÄÅÆ Ç ÈÉ

2-Loop 3-Loop
(B.7) (B.1) (B.8) (B.1)ÊË ÄÌÍÉ ÎÏÐÐÑÒ ÓÔÕÕÖÖ ÓÔÕÕÖ× ÓÔÕÕÑØ

The convergence is manifest (with one loop, weobtainedÙÚ ÛÜÝÞ ß àáâããä
).

Integrating årstwith æç è é to êë, and then with ìç è í to êî, we get

1-Loop 2-Loop 3-Loopïð ñêîò óôõö÷ óôõøó óôõùø
To compare the result with one, two and three loops, we draw the plot of ïð úûüý (note þÿ � �

was kept
throughout the plot range)

2 5 10 20 50 100 200

0.1

0.2

0.3

0.4

The plain line is the �-loop result. One can see that in the low energy range, the �-loop (bottom line) is down
by more than ���. Since the series is alternating, we can expect the exact curve to lie between the �-loop and�-loop results (in fact, the�-loop resultwould be indistinguishable from the �-loop one).
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Finally, to illustrate the effectof the quark threshold, let us plot the running with �	 
xed at� and with �	
changing to � at
�
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One can see that the two curves are identical down to 
�, and then, the exact curve (plain) with �	 � � is
accelerating upwards.

B.2 Standard Annihilation Rate Computations

This appendix contains the computation of quarkonium decay rates in the static limit, i.e. assuming � � �
.

B.2.1 Pseudoscalar Quarkonium Decays

Pseudoscalar Quarkonium Electromagnetic Decays

The transcription of positronium results is straightforward. The two-photon decay is given by� ��� ���� � ��� � �� ���  !"# $%& $' ()*+,) -. /00 1 22345 6 789:5 ;<=>?@ ABC ADED (B.9)

If we ignore thebinding energy and express
E

asFGH (as isrequired in the present approach), we arrive atI JKL MNNO P QQO R STU VWXYZ[Z\ ]̂ _ ]̀
Therate into abcbd (or any pair of light leptons) is equally straightforward to obtainef ghi gjjk l mnonpqrs t uvw xy z{|}~� ��� ���� � ������� (B.10)

where � � ������� �������� and the phase space spectrum is� ����� � ��� ����  � ¡ ¢ £� ��¤¥ �¦§¨ ©ª«¬
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The total width (­ ranges from ® to ¯° ±):² ³´µ ¶··¸ ¹ º»¼»½¾ ¿ ÀÁÂ ÃÄ ÅÆÇÈÉÊ ËÌÍ ËÎÏÎ Ð ÑÒÓ (B.11)

with Ð ÑÒÓ Ô ÕÖ×ØÙÚ ÛÚ ÙÜÝ Þ ß àá âãÞ äåæçåæäåæçè
Theratio of the two electromagnetic modes iséê ëìí îïïð ñ òóôóõö ÷øùú ûüý þÿÿ� � ��� � ��� � �	
��	


Except for the	
, this is standard. Integrated,we get� ��� ���� � ������� ��� ��� ! "" # $%&' ()*
Pseudoscalar Quarkonium Decays into Two Gluons

Let us calculate the amplitude+ ,-. /001 2 331 4 567 89 :;<=>? @AA B CCDE
The scattering amplitudeF GHH I JJK

has three contributions: theL andM channel (intermediatevirtual quark)
and theN channel (virtual gluon, with three-gluon vertex).OPQR STT U VVW X YVZ [\]^_` a_` bcd_^e fg h ijk lmno p qr stuvw x yz{|}y ~z � ��� ���� ��� ��� ���� ��� ������ ��� � ��� � ����  ¡¢ £¤¥¦§¨§©ª«¬ ­®¯° ±²³ ´ µ¶·¸ ¹º»¸ ¼½¾ ¿ ÀÁÂ ¿ ÃÄÂ ÅÀ ¿ ÆÇÁÈÉ ÊËÂ ÅÆÇÁ ÊÌÈ ÅÆ¾Á
where À Í Æ¾ ¿ ÆÇ Í Î ¿ ÎÏ and ÐÑ Ò ÐÏÑ Ò ÓÑ. However, the Ô-channel amplitudevanishes in the trace,
becauseonly one (traceless) Gell-Mann matrix ÕÖ×ØÙÚ is inserted in the quark current. The color trace for the
other contributing amplitude givesÛÜ ÝÖÞÖßà á âã äåæåç è á é êãë ìíî ï ðñìíî (B.12)

Then the two-gluon amplitude can bewritten as (external projectors havebeen used)ò óôô õ öö÷ ø ùúû üýþÿ ��� ����� ��� 	
���� 
� � ��� � ��� ���� ��� �� �
Now that the color structure is factored out, we recover the QED amplitude,which is gauge invariant when! " !#

. Contrary to the scattering case, the three gluon vertex isnot needed to ensure gauge invariance. Then,
using known results $$% &'( )**+ , --+../ 0 12 3456 7 89:/ 1 56 7 89:/ ;<=><= ? @AB CDEFGFH
Note that in the gluon polarization sum,we simply useIJK, since transverse states do not couple to the quark
current.
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The decay width isL MNO MPPQ R SST U VW VXYZ[ \ ]^_ `̀a bcd effg h iijkkl mno ml p qrsltuvwx yz{ y| (B.13)

Pseudoscalar Quarkonium Decay into Gluon-Quark-Antiquark

This is the analog of the decay into a photon and an electron-positron pair. The color structure of the
amplitude is seen to factorize, and}}~ ��� ���� � ������� � �������� ��� ������ ��� ��� ���� � ���� ¡¢¢£
The¤nal formula is then ¥¦ §¨© §ªª« ¬ ­®®¯°± ² ³µ́ ¶·̧ ¹º» ¹¼½¼ ¾ ¿ÀÁÂÃÀÄ
where Â Å ÆÇÄÈÉÊÄ with ÇÈ theËnal quark mass. Typically, the spectrum function Ì ÍÎÏÐÑ is (for Ð Ò ÓÔÓÕ)
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The total width Ù ÚÛÜ ÝÞÞß à áââß ã äåæ çèé êëì êíîí ï ðñò (B.14)

For example,with
îóô õ ö÷øù MeV, the function ú ûüý isþÿ û��� ý ú ������	
��
 � � ������ � �� ������ � ��� ����

Pseudoscalar Quarkonium Decay into Three Gluons

There are two topologically distinct contributions to this decay. One isobtainedwith the three gluon coming
from the quark line, and the other from the two-gluon decay amplitude,with one of the gluon going into two
gluon by way of the three-gluon vertex. All these amplitude are of order ���. As discussed in the text, the
inclusive rate � !""# $ light hadrons is relatedvia duality to the rate into all possible gluonic states. To
leading order, it is the two-gluon rate. To order %&', one has to consider the rate into (((, ()) and strong
radiative corrections to therate into ((. Such a computation is not very complicated,but rather lengthy, and will
not be pursued further.
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B.2.2 Vector Quarkonium Decays

Vector Quarkonium Electromagnetic Decays

As for the para-state,we justhave to include a color factor * (=3) and substitute+ , -./+. This gives for
three photon decays: 0 123 1445 6 7778 9 :;< =>?@ABC DEC FGH IJK LM (B.15)

with the differential width NO PQR PSST U VVVTWX Y Z[\ ]_̂`abc def dg h ijkl (B.16)

and the usual three-photon positronium decay spectrum (note that contrary to m ijnol, h ijkl is not the pure
phase space,which is pjk here)h ijkl q p ip rstust v w xy rstustxw rstuz v { xy rstu | }~�� � �� ������ ������ ��� �� ���� (B.17)

Plotted, this is
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and � �� ���� ���� � ��   ¡.For lepton pair production, we¢nd£ ¤¥¦ §̈ ¨© ª «¬«­® ¯ °±²³́ µ³ ¶·¸ ¶³¹³ º» ¼ ½¾¿ÀÁÂÃ ÄÅÆ ÇÈÉÊËÌ
whereÍÎ originates from the amplitude and

Ë
from phase space. Sincewe are assuming

Ë Ï ÐÍÎ:Ñ ÒÓÔ ÒÕÕÖ × ØÙØÚÛ Ü ÝÞßàáâà ãäå ãàæàá çè é êëìíîïð ñòó ôõö÷øù
and when÷ö úú÷ù û üýþ üÿÿ� � ����� � ��	
��
 
�� 

�
� (B.18)

Vector Quarkonium Decay into Three Gluons

Now we turn to the amplitude� ��� ���� � ���� � ��� ��� !"#$%&'()*+, -.. / 00012 345 6789 :;< 67=9 :>? 67@9 (B.19)
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with ABCDEFG H IB JKLMN OP NQRS TUVW UXY WZ[\ ]̂ _^`^ab c d\ efghi jk ilmn opqr pst ruvw xyzy{y|}~�w ����� �� ���� ���� ��� ���� �������� � �� �����  ¡ �¢£¤ ¥¦§¨ ¦©ª ¨«¬­ ®̄ °¯±¯²³´µ¶ ·¸¹º» ¼½ »¾¿À ÁÂÃÄ ÂÅÆ ÄÇÈÉ ÊËÌËÍËÎÏ Ð ÑÉ ÒÓÔÕÖ ×Ø ÖÙÚÛ ÜÝÞß Ýàá ßâãä åæçæèæéê
where ë ì íî ï íð ï íñ ì ò ï òó and ôõ ö ôóõ ö ÷õ. There is no three gluon vertex since we must
have three gluon vertex insertions into the quark current to get anon-vanishing trace in (B.19) (also, a diagramøø ù ú ù úú ù úúú, of the sameorder, does not contribute becauseof the tracelessnessof Gell-Mann
matrices). Since all gluons emerge from the quark current, no ghost amplitudeneed to be considered and gluon
polarization sums can be taken asúûü.

This amplitude is againexpressible in termsof the three photondecay amplitude. There is twononequivalent
permutations of color matrices to be traced :ýþ ÿ������� and ýþ ÿ�������. For this, we use the identities (B.12)
and ������ � �	
��
� �


�� � ���
� � �
��
�
We can then work out the traces as �� �������� � � �!"��� # $����%& �������� � � �#!"��� # $����
Let us consider the'rst pair of amplitudes:()*+,-./0 1 23 456 789:; 8< ;=>? @ABC ADE CFGH IJKJLJMN O PH QRSTU VW UXYZ [\]^ \_` ^abc defegehij
The Dirac tracewill be the same for both terms,hencewe arrive atkclmnohgf p qr stutvtw x twtvtuy zr {|} ~���� �� ���� ���� ��� ������ �������� �� ��� �� ¡¢ �£ ¢¤¥¦ §¨©ª «̈¬ ª­®¯°

The same manipulations apply for the two other pairings, and we are left with the three-photon amplitude
multiplied by the color factor ±²³´µ¶. This can be understood since the ·nal gluons should be symmetrized,
henceonly the symmetric tensor ¸¹º», and not ¼¹º», contributes. We thus arrive at½½¾ ¿ÀÁ ¿ÂÂÃ Ä ÅÅÅÃÆÆÇ È ÉÊËÌÍÊËÌÎÏÐ ÏÑÒÓÔÕ Ö×Ø ÙÚÛÜÝÞÝÝÞÝß à áâ ãÞÝÜÝÞÝÛÞÝß à áâ ãÞßÜÝÞÝÛÞÝÝ ä
which equals, up to a color factor, the modulus squaredof the three-photon decay amplitude.Usingåæçèåæçè é êëì
and integrating over phase space,we arrive atí îïð îññò ó ôôôò õ ö÷ ö÷ø ùúû ùüýü þ ÿ�� ��� ��� ���� 	 


���� 
 ��� ��� ����� ��� ��� �� � (B.20)
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with the differential rate given by!" #$% #&&' ( )))*+, - ./01. 234 567 5898 : ;<=> (B.21)

Vector Quarkonium Decay into Two Gluons and a Photon

This time the amplitude is? @AB @CCD E FFGD H IJIKLMN OP QRSTUVWXYZ[ \]] ^ _``ab cde fghi jkl fgmi jn fgoi
with pelndk q re stuvw tx wyz{ |}~� }�� ���� ������ � �� ����� �� ���� ���� ��� ���� � ¡ ¢£¤¥� ¦§¨©ª «¬ ª­®¯ °±²³ ±´µ ³¶·¸ ¹º»º¼½ ¾ ¿¸ ÀÁÂÃÄ ÅÆ ÄÇÈÉ ÊËÌÍ ËÎÏ ÍÐÑÒ ÓÔÕÔÖ×ØÙÚ ÛÜÝÞß àá ßâãä åæçè æéê èëìí îïðïñò ó ôí õö÷øù úû ùüýþ ÿ��� ��� ���� �	
	��
where 
 � �� � �� � �� � ���� and �� � ��� � ��. The color trace is justyielding a delta function (B.12) and
there isno subtlety associatedwith symmetrization. We thusrecover again the three-photon amplitude,with the
result ��� ��� ��� ! ""# $$% & '()'()*+ ,*-./01/020 345 6789:;::;:< = >? @;:9:;:8;:< = >? @;<9:;:8;:: A
and thenB CDE CFFG H IIJK L MN MOP QRS TUVU W XYZ [[\ ]Z^ _̀ `a b ccdaeef g hij klf mnon pqrssqt uvw uqxq
with again the photon spectrumyz {|} {~~� � ������ � ���� ������� ��� ���� � ���

Other Vector Quarkonium Decay Channels

Following the same line of reasoning as in the pseudoscalar case, any other decay channel into gluons and
quarks will be considered asradiative corrections to the inclusive decay rate to hadrons. Other exclusive and
semi-inclusive decay channels thereforenecessarily involve photons and lepton pairs. For example:� ��� ���� � �  ¡ ¢ £ ¤¥¦ §̈ ¨© ª «¬­®­¯° ± ²

(due to color)³ µ́¶ ·̧ ¸¹ º »»¼½¼¾¿ À
see [152]Á ÂÃÄ ÅÆÆÇ È ÉÉÊËÌÍÎ Ï
should beobtainable from the above

Other electromagnetic modes are strongly suppressed (recall that the 2001 upper limit on thebranching ratio forÐÑ ÒÓÓÔ Õ ÖÖÖ
is ×Ø× ÙÚÛÜÝ).
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Appendix C
Useful formulae

C.1 Wavefunction for Hydrogen-like Atoms

The completewave function for thehydrogen atom can bewrittenÞßàá âãäåæ ç èéêë ìíîïîðñ ò óô õö÷
The corresponding energy spectrum is degenerate for ø and ù, withúû ü ýþÿ� ü � ��� ���� 	 
���
� �� � �������
This is thewell-know Balmer series. The time-independent part is���� ����� ! " #�$� ��! % �� ��� !
Theradialwavefunction is expressible in termsof Laguerre polynomials#�$� ��! " &'()*+,-. / 01 2 3 2 45601 7 35689:;<= > ?@ ABCD EFGHFIJKLFLJ M NOPQRS
while theT UV are standard spherical harmonics. The completewave functions can also bewritten in termsof the
hypergeometric functions representation of the Laguerre polynomialsWXVU YZ[\[]^ _ `VabcVadeVafghi jk l mnojpk l pno jm q rstuvw q r q xstvr y wst z {| }~��� �� ���� �� ��� �� �� � ���� � �� ������
Explicitly, the�rstwavefunctions are

Shell � � � ��� ¡ ¢£¤¥ ¦§¨©¨¢ª«¨¬ ­ ® ¯ ¯ ®° ±²³´µ ¶·¹̧º»¼ ½ ¾ ¿ ¿ ¾À ÁÂÃÄÅÆ ÇÈ ÉÊË ÌÍ Î ÏÐÑÒÓ Ô ÕÖ× ØÙÚÛÜÝÞ ßà áâã ä åæç èé êé ëìíî ï îðñòóô õö ÷øùúûüý þÿ� ���� � � � � �� 	
��
�� �� ��� �� � ���� � �������  ! " #$% &'()*+,- ./ 012 34 5 6789 : ;<= >? @? ABCD E FFGHIJK LM NOPQRS TU V WXYZ [ \]^ _` a bcd efeghijk lm nop qr stuvwx y z {|} ~{ ���� � ������� �� �������� ��� � ��� �� �� ����   ¡�¢£¤¥ ¦§©̈ª«¬­®¯¬ °±²¬ ³
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with ´µ ¶ ·¸¹µº»¼½» ¶ ¾¼¿
Thewave function at theorigin can also be calculated. Only for À states are thevaluesnon vanishingÁÂÃÄÄ ÅÆÇÈÉÊË Ì ÍÍÎÏÐ ÑÒÓÔ ÕÕ ÑÖ×ØÓÙÙÚ Û ÜÝÞ ßàáâ ãäåæç è éêëìíîì è ïìðìêîì
sinceñòóôõ ö÷ø ù ú

and ûüýþ ÿ�� � ���� � ��	
�� 
���� ��� � �� ������
C.1.1 Momentum Space Wavefunctions

The general expression of the momentum spacewavefunction was found by Podolsky and Pauling [58]��� !"#$#%& ' ()*+,-./0 123456 7 89 46 :;<=> ?@ A;<= BCD ?EFGH<IJKLMNOPQNOPRSTU VWXY ZY [ V [ \]WZY ^ V]W _`a_b c dbe`fbg`fhijkjl mno pqoro s qotu
It is found by taking the Fourier transform of the con

v
guration spacewavefunctions (the integration is not

straightforward though). Thewxy are Legendre polynomials, thezy{ are Gegenbauer functions, and| } ~��� } ���
The�rst few are

Shell � � � ����� ���� �� �������� � � � � �� � ������ ��¡�¢£¤ ¥ ¦ § § ¦¨ © ª«¬­ ®̄ °±²°³µ́¶·¸¶¹º» ¼ ½¾¿ À ÁÂÃÄÅÆÇÅÈÄÅÉÊ¾ ËÌÍÎÏ ÐÏ ÑÒÓÔ ÕÖ Ô×ØÙÚÛÜÝÞÜßÛÜàá âãäåæ çèéêëìí î ï ð ð ïñ ò óôõö÷øùúûüýþúÿü����������	
� � 
�� � ����������������� !�"# $ %&'() *) +,-. /0 1231456786956:;<=>?=@A BCDEF GHIJK L MNO P QRSTUVWXYZ[VZ\] ^_ `a bcd ef g hie jh aklm no pqrpstuvwxytxz{|}~�}�� ������ ��� ��� �� ���� � ���������������� ¡¢ £¤ ¥¦§¨©ª§ «¬­® ¯
with° ± ²³´µ¶·¸ ¹º»¼½.
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C.2 Loop Integrals, Gamma Functions and Related

C.2.1 Dirac Matrix Algebra¾¿¾¿ À Á¾¿¾Â¾¿ À ÃÄ Å ÁÆ¾Â¾¿¾Â¾Ç¾¿ À ÈÉÂÇ Ê ÃÁ ÅÈÆ¾Â¾Ç¾¿¾Â¾Ç¾Ë¾¿ À ÅÄ¾Ë¾Ç¾Â Ê ÃÈ ÅÁÆ¾Â¾Ç¾Ë
C.2.2 Feynman Parameters

To combine denominators :ÌÍÎÏÏÏÐÑ Ò Ó ÔÕ Ö×ÔØØØÖ×ÙÚ ÛÜÝÞ ß àá âã ä àåæçèéêé ë ìììë íîêîïî
Note that derivatives like for example ðêñò ó ô õö ÷ øù úöûøöüý øùúöûþûÿ
are easily obtained from the general equation. Wewill only quote, since it is used in the text, the formula����� � � �� 	
�� ���� �
� � 
� �� ���� �� ��������� � � !�"#"$%&
C.2.3 Complex logarithms

The convention for the logarithm cut is along thenegative real axis'Therules for the logarithm of a product are
then () *+,- . () *+- / () *,- / 0 *+1,-0 *+1,- . 234 56 789:;< 6 789:=< 6 79:;=< 86 79:;< 6 79:=< 6 789:;=<>
Important consequences are ?@ 7;=< A ?@ 7;< B ?@ 7=< If 9:; 9: = C D?@ EFGH I JK LFM N OP QRS

If TUV TU R W X
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Also, with YZ[ real : \] ^Y[ _ `ab c \] ^Y _`ab d \] ^[ _ `aeYb
C.2.4 D-Dimensional Integrals

All t he formulasweneed aref ghijklmh njio pqrs t upvrs wxyz{|}~ � x� ������ ��� � ��������� �������� ����� ���� �  �¡��¢£ ¤¥¦§¨©ª« ¬­®¯ ° ±² ³´µ¶ ³ ·¸¹ º»¸ ¼ ·½¾¿ÀÁÂÃÀÄÅ ÆÇÈÉÊËÌÇ ÈÍÈÎÉÈÏ ÐÑÒÓ Ô ÕÐÖÒÓ×Ø ÙÚÛÜÝÞßà áâãäå æ ç èé ê ëìí ê îïð ñòï ó îôõö÷øùú÷ûü ýþÿ����þ �ÿ������ 	
�� 
 �	��� �������� �� �� � ��� � � ��  !"#  #$% &�$ ' ()*+,-./,/0 12345672 38393:3;43< =>?@ A B=C?@ DBEF?GHI JKLMKNO P QRSQTU P QRUQTSV W X YZ [\]^ [^_` ab_ c defghijkhk
Coherence among integrals can be checked using the fact that for symmetric integration :lmln o pqlrstuvtvuvwvx y z{|{ } ~� ����� |������ � ������ � �������
To correct for the changeof dimension in the measure,one usually introduces an arbitrary mass scale as� �������� � � ������������

Of special interest are expansions near
� �  

. Using :¡¢ �£ ¤¥¦§¨ ©ª«¨ ¬ ­ ®¯ § ©ª« ¬ ¯ ®°§± ²³´± µ ¶ ···
and : ¸ ¹º» ¼ ½º ¾¿ À ÁÂ Ã¿Ä Å ÆÄÇ È ÅÉÊËÄÌ
one gets,with Í Î Ï Ð Ñ :ÒÓÔ ÕÖ ÐÑ×ÖØÕÙÚØÛÜÝ Þ ßàáÝâãäå æ çèéêëå ìíîïðñòóô õ ö÷øùú û üýþÿ��� ü����� �	
 ��
 ��� �� ������ ��� �� �� !" #$% &' ()*+,- ./0123 456728 9:1 ;< = >?@ ABCDED ; >?@ FED =GHIJK
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Note that in this last formula,wehave introduced another arbitrary scaleLM. This is a common procedure. The
usual divergent quantity is de

N
ned as O P QR ST U VWX YZ[\]\ (C.1)

where it is customary to take] as the electron mass in QED. Therefore,[^_ `a b cdae`fgehij k lmnjopqr s tuvwxr yz { |}~ ��� ������ (C.2)

C.2.5 Digamma, Polylogarithms and Riemann Functions

The digamma function is de
�

ned as the logarithmic derivativeof the gamma function� ��� � �� ���� ���
Generalizing, the�-th digamma function is ���� ��� � ����� ������
Specialvalues are � � � � ¡¢£¤¥¦ §¨© ª «¬­
Note that the Euler constant can also bewritten as the limit of the series¢ ª ®¯°±²³ ´ ±µ¶·¸ ¹º » ¼½¾¿À
TheRiemannzeta function is de

Á
ned from the seriesÂ ÃÄÅ Æ ÇÈÉÊËÌÍÎ

This function may be related to digamma function asÏ ÐÑ Ò ÓÔ Õ ÐÖ×ØÙÚÛÜÝ Þßàá âãä
The de

å
nition of the polylogarithms is æçè éêë ì íîïðñ òóôõ

Of special interest in Feynman parameter integration is the Spence function or dilogarithmsö÷ø ùòú, to which
wenow turn.
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Spence Functions

These functions are de
û

ned through the above series,or through the integralüýþ ÿ�� � �� ��� � 	 
� �
 �� ���� �� � �� �� �� �� � �� � !� " # $%&'($)*+ ,-. / 01,
A usefulrepresentation is obtainedwith the changeof variable 2 3 0 /-45678 9:; < = >?@ABCDEF GHI J KLMN O PQRSTPUVW XYZ[W\]^]_` a^ b cdefg he iejklm n opq rrrrrstuvwxyuz{
with the coef

|
cient }~ being theBernouilly numbers,}� � � }�� � � ����� � ��� ��� � � ��������� � �� ��� � ���� � � ��� ��� � ���������� � � ��� ��� � ���������� � � ��� ......

The numbers not appearing in the table are also absent in the series expansion. Some basic properties are :
(Euler, 1768) ��� ��� � ��� �� � �� � ��  � ¡¢ ��� ¡¢ �� � ����� ��� � ��� ��£�� � ���  � �¤ ¥¦§ ¨©ª«¬­§ ¨ª« ® ¬­§ ¨©ª« ¯ °¤¬­§ ±²³´
with ²µ¶²µ ·¸¹º¹» not on the logarithm cuts. Also¼½» ¾ ¿· ÀÁ ÂÃ ÀÂÄ Å ÆÇÈ É ÊË ÌÍÎ ÏÐÑÒ Ó ÔÕ Ö×Ø ÖÙÚÛ ÜÝÞ ßàáâ ÜãÞ ß äåæ Üç ßÝÞ äåæ Üç ßãÞàáâ ÜãÞ ßàáâ ÜÝÞ è àáâ éêëì íîïð ñò óôõ ö÷ø öùúû üýþ ÿ ��� ��� � ��� � 	
 ��
 	
 �� ��� ������ �� �� �����  ! �"��# $ %&' ()* + ),+ )*- ./01 2345 6 756 789 : ;<= >?@ A BCD BEF GHIJ KL MNO PQR S OT UVWX YZ[
duerespectively to Spence (1809), Schaeffer (1846) and Kummer (1840). The second identity becomes, for
complex arguments :\]X YZ[ ^\]X Y_[ ` \]X abcd efgh ij klm no p nqrs tuv w xyz x{| x }~�� �� ��� ��� �� ��� � �� �� ����� �� �� ��� ��� ��� �� ��� ��� � �� ��� � ��  � �¡� � ¢ £¤ ¥¦ §¨©ª§£¤ «¬­ ® ¯­® ¯¬° ±²³ ´ µ ¶·µ ¸¹ ¶·º» ¼ ½¾ ¿À ÁÂÀ Ã Ä ÅÆ ÇÈ ÁÂÉÊ
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The discontinuity of the dilogarithm function is the same as the discontinuity of ËÌ ÍÎ Ï ÐÑÒ
for

Ñ Ó ÔÕÖ Î×
, hence

for
Ð Ó ØÙÚ Û Ü

the argument of ÝÞ ßÜ à Úáâ
becomesnegative. The discontinuity property is expressed along

the cut as Ýãäåæç èéêë ìí î êïð ñéêë ìí ñ êïðò ó ôõê ö÷ ìíð
for í ø ù and ú û ü. Put differently, we may writeýþÿ�� ��� � �� �	 ���
as can be seen from the de



ning integral. Finally, somevaluesof the function are��� ��
� � �������� ��� � ���� ��� � ����� !"# $ %&' ( )* +,- ./0

and graphically, the real and imaginary parts are

-4 -2 2 4 6 8 10

-6

-4

-2

2

Note that the real part becomes1 2 at around 3/45 6 78.

C.2.6 Hypergeometric Functions

Thehypergeometric function 9 .:;<;=;>0 ? @AB CDEFEGEHI is deJned as@AB CDEFEGEHI K L CGIL CFI L CF M NO P QR ST TUVQ WX YZ[\]^]_ `a bcdefg
This function is a solution to the differential equationh ij khlmnn o pq r st o u o vw xy zn rtuz { |
and it has the series expansion}~� ��������� � �� ��� � � � �� � �� � �� � ��� �� � �� �}� � ��� � ����� ���� �������� ����
with ���� � � �� � �� ��� �� � � �  ¡

. From this series, it appear that¢£¤ ¥¦§¨§©§ª¡ « ¢£¤ ¥¨§¦§ ©§ª¡
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Some evaluation properties are¬­® ¯°±²±³± ´µ ¶ · ¯³µ· ¯³ ¸ ° ¸ ²µ· ¯³ ¸ °µ· ¯³ ¸ ²µ¹¹º ¬­® ¯°±²±³±ºµ ¶ °²³ ¬­® ¯° » ¼½¾ » ¼½¿ » ¼½ÀÁ
Shifti ng relations areoften useful:¿ ÂÃÄ ÅÆ½¾½¿½ÇÁ È ÉÊ È ËÌ ÍÎÏ ÉÐÑËÑÊ Ò ÓÑÔÌ È Ë ÍÎÏ ÉÐÑË Ò ÓÑÊ Ò ÓÑÔÌ Õ ÖÊ ÍÎÏ ÉÐÑËÑ ÊÑÔÌ È ÉÊ È ÐÌ ÍÎÏ ÉÐÑËÑÊ Ò ÓÑÔÌ È Ð ÍÎÏ ÉÐ Ò ÓÑËÑ Ê Ò ÓÑÔÌ Õ Ö
and especiallyÊ ÍÎÏ ÉÐÑËÑ ÊÑÔÌ È ÉÊ ÈÐÌ ÍÎÏ ÉÐÑË Ò ÓÑÊ Ò ÓÑÔÌ ÈÐ ÉÓ ÈÔÌ ÍÎÏ ÉÐ Ò ÓÑË Ò ÓÑÊ Ò ÓÑÔÌ Õ Ö
Finally, onehas sometimes to consider de×nite integrals involving hypergeometric function. Those can be done
with ØÙÚ ÛÜÝÞÝßÝàá â ã Ûßáã Ûäáã Ûß å æç è éê ëì ìíîé ïð ñòóôõöõ÷ øù÷ úûüýüþüÿ��

All Hypergeometric functions with de
�

nite values for ûüýü� may be expressed in termsof simple functions
of �. Some trivial cases are ��� �	
 �
�

� � � if 	 � � or � � ���� �	
�
�

� � ���� ��� �� ���� � ��� ����� ���� � ��� � ���
With � or  less than zero, Hypergeometric functions areoften simple polynomials in !"#$ % &'() *)+, - *' (.+ / *(. 0*/ ., +1
sinceobviously, the series expansion will terminate at theorder 2 such that 3 / 2 - 4

or . / 2 - 4
. Up to now,

all the functions are purely real. Some more complicated cases,which may develop imaginary parts, are156 789 89 8:;9<= > 88?< @ A< BCDEFG HIJKLIMNOPPQR STU TUVUWX Y Z[\ ]^_ `[ Z \abcd e[fgfhf\i j k lmn om p qrs tu k mvi
To have logarithms, it isnecessary that wxy z {. Derivatives can also beobtained. For example||} ~�� �}x �x �x�� � ||} ~�� ��x}x �x�� � � ��� � ��� ��� �� ���
Finally, somehypergeometric functionswith half-integer argument give elliptic functions. Ingeneral, orthogonal
polynomials can also be expressed in termsof ���.
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C.3 Cross Section, Phase Space

The two-body to �-body cross section is expressed as�� �� �� � ������    ¡ ¢ £¤¥¦§¤ ¨© ª«¬­ ® ¯°±¯²± ³³³́ µ²¶· ¹̧º »¼½¾¿ ÀÁ¿ÂÁ¿Ã ÄÅ
with ÆÅÇ ÈÉÊ ËÉÌÍÉÎÏ ÐÐÐÏÉÇÑ Ò ÈÓÔÑÕ Ö× ØÙÚ ÛÙÜ ÝÞß Ý ààà ÝÞáâ ã äåæçè éêëìíîïðñ îòóô
(this section is basedon [23], [223])

C.3.1 Two-Body Phase Space

The invariant two-body phase space integral isõö÷ øù úûüýû÷þ ÿ ø���� �� �� ��	 ��
� ��
������ ��� ��
������ ���� ���� �� ��� ��� ����  !"#$%&'( %)#%)*
in the center-of-mass frame,where + , -, with + ./0 1 /2 hence/2 1 ./0. The remaining delta can be
converted to a constraint over the energy 34 as564 5 7 89:8; <== > <=? @A=? BA==
hence CD= EF GH?IH=J > EKLM NO PQO RST RUSVT RWVT XYZZ[ \]Ẑ _`abcdbcebf ghijk da
Sincelmn o pmnqrst, uvtuw uvtu x yz{yzand {|}z x ~��~� � ~�� ~���. Now let us integrateover ��. The delta
functiongives�� � ���� ���� ����� ���� and sincewe are using therelation � �� ���� � � �� ���� � �� �� ¡¢£,
the correction to the measure is ¤¤¥¦ §̈ © ª¥¦ ª «¬­® ¯°­® ±²³³´ µ ¶·¸¹º
Hence »¼º ½· ¾¿ÀÁ¿ºÂ Ã ÄÅÆÇ ÈÉÆÇÊËÌÍ ÎÏÐÑÒ ÎÓÒ ÔÓÌÑ
which can bewritten in termsof invariants asÕÖÒ Î× ØÙÌÚÙÒÑ Û ÕËÌÜÏÐÒ ÝÞß àáâã äåææçæèæ ä é êåæë ìåææçè
with è í îæ ï êðë ìðæçæ. As a special caseof interest, ifåë ïåæ,ñòó ôõ ö÷øù÷óú û üýøþÿ�ó �� � ����
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C.3.2 Three-Body Phase Space

The invariant two-body phase space integral is�	
 �� 
����
 ���� � ����� �� �� ��� ��� ���� ��� !"#$% "& '%�(!"#$% "&( '%�%!"#$% "&%) !"#$ * !+, -./ -.0 -.12 31456789: 7;5 <:4=6789: 7;= >7;:
with

;: constrained as
;=: ?@AB C DEF and DF G H IDJ IDE. Then, in the center-of-mass frame,DF G I KDJ L DEM N OPQ R SPQ T UVW XVY ZY [ \]̂ _`]a _ `]] b c defd deg dhij k

Now the integral can bewrittenlmn o pqrstu v qwx yz{ yz| yz}~ ���� ��� �������� ��� �������������
In the caseof an unpolarized cross section, the amplitude squared is invariant under global rotations in the c.m.
frame. So only one out of the four angular variables isnon-trivial, which we choose to be the anglebetween ��
and ��. Also, since ��� �� ��� � � �����and ���� �  ��  ¡ ¢ £¤¥ ¦§¨¥, we arrive at§©ª « ¬­¬®¯ª ° ±²³ ´µ¶ ´µ· ´ ¸¹·º » ¼½¾ »¼½½ ¿À Á¼¾ Á Á¼½ ÁÂÃÄ ÅÆ ÇÈÉ ÊËÌÉ ÊÍÎ ÊËÌÎËÏÐÑ ÒÓÔÕ
and integrating over ÏÐÑ Ò with the delta function :ÏÐÑ Ò Ö ×ØÙ Ú×ØØ Û×ØÕ Ú ÜØÝ Û ÞÜÝÔÙ Û ÞÜÝÔØ Ú ÞÔÙÔØÛÞ ßàáß ßàâ ß
The correction to the measure isãã äåæ ç èéê ëìí ëìî ë ïðîñ òóôõ òóôô ö÷ øóõø øóô øùúû üý þ ÿ �� ��� ü�� � ��	 � ��
 ���
Hence 
�� � 
��
��� ����� (C.3)

The bounds for the two last integrals can be found by constraining, for a given valueof
��

say, thevalueof
��

such that the��� � exists.

C.3.3 Recursive Calculation of Phase-Space

In some case,wewill compute the phase space integralsrecursively, using
�� � ���  !"#$% &&&%#� ' ���()*+ ,-. /-01 23-4563 7773-89 :2;<=>?
with @ A BC D EEE DBF .



147

Bibliography

Standard Books on Quantum Field Theory

[1] P. A. M. Dirac,GThe Principlesof Quantum MechanicsG, Oxford.
[2] N. Bogolioubovand D. Chirkov, GIntroduction à la Théorie Quantique des ChampsG, 1960, Dunod.
[3] E. Merzbacher, GQuantum MechanicsG, 1961, Wiley.
[4] J. D. Jackson, GClassical ElectrodynamicsG, 1962, Wiley.
[5] J. Bjorken, S. Drell, GRelativistic Quantum MechanicsG, GRelativistic Quantum FieldsG, 1964, McGraw-

Hill.
[6] K. Nishijima, GFields and Particles : Field Theory and Dispersion RelationsG, 1969,Benjamin N.Y.
[7] J. Schwinger, GParticles, Sources, and FieldsG Volume I, II and III, 1973, PerseusBooks.
[8] C. Cohen-Tannoudji, B. Diu, F. Laloë,GMécanique QuantiqueG, Volume I and II, 1973,Hermann.
[9] J. Jauch and F.Röhrlich, GThe Theory of Photons and ElectronsG, 1980, Springer.

[10] C. Itzykson, J.-B. Zuber, GQuantum Field TheoryG, 1980, McGraw-Hill.
[11] F.J. Yndurain, GThe Theory of Quark and Gluon InteractionsG, 1983, Springer.
[12] T.-P. Cheng and L.-F. Li, GGauge Theory of Elementary Particle PhysicsG,1984, Oxford.
[13] R. Rivers,GPath Integral Methods in Quantum Field TheoryG, 1987, Cambridge.
[14] G. Jones, D. Singerman, GComplex Functions: an Algebraic and Geometric ViewpointG, 1987, Cam-

bridge.
[15] W. Greiner, A. Schäfer, GQuantum ChromodynamicsG, 1989, Springer.
[16] T. Kinoshita (Editor), GQuantum ElectrodynamicsG, 1990, World Scienti

H
c.

[17] O. Nachtmann, GElementary Particle Physics : Concepts and PhenomenaG, 1990, Springer-Verlag.
[18] J. Donoghue, E. Golowich, B. Holstein, GDynamicsof the Standard ModelG, 1992, Cambridge.
[19] F. Gross,GRelativistic Quantum Mechanics and Field TheoryG, 1993, Wiley.
[20] M. Kaku,GQuantum Field TheoryG, 1993, Oxford University Press.
[21] W. Greiner, J.Reinhardt, GField QuantizationG, 1993, Springer.
[22] W. Greiner, J.Reinhardt, GQuantum ElectrodynamicsG, 1994, Springer.
[23] A. Di Giacomo, G. Paffuti, P.Rossi,GSelected Problems in Theoretical PhysicsG, 1994, World Scienti

H
c.

[24] M. Peskin and D. Schoeder, GAn Introduction to Quantum Field TheoryG, 1995, Addison-Wesley.
[25] S. Weinberg, GThe Quantum Theory of Fields (I, II and III)G, 1996, Cambridge.
[26] F.J. Yndurain, GRelativistic Quantum Mechanics and Introduction to Field TheoryG, 1996, Springer.
[27] J. Zinn-Justin, GQuantum Field Theory and Critical PhenomenaG, 1996, Clarendon Press - Oxford.
[28] A. Dobado, A. Gomez-Nicola, A. Maroto, J. Pelaez,GEffective Lagrangian for the Standard ModelG,

1997, Springer.

Thesis

[29] G. Lopez Castro, J. Pestieau and C. Smith, hep-ph/0004209, G. Lopez Castro, J. Pestieau, C. Smith and
S. Trine,hep-ph/0006016and hep-ph/0006018.

[30] J. Pestieau, C. Smith and S. Trine,hep-ph/0105034,Int. J. Mod. Phys.A17, 1355 (2002).
[31] J. Pestieau and C. Smith, hep-ph/0111264,Phys. Lett.B524, 395 (2002).
[32] J. Pestieau and C. Smith, hep-ph/0111380,submitted to Eur. Phys. J.C.



148 Bibliography

Positronium Experiments

[33] A.E. Ruark, Phys.Rev. 68, 278 (1945).
[34] M. Deutsch, Phys. Rev. 82, 455 (1951)IM. Deutsch, Phys. Rev. 84, 866 (1951)I M. Deutsch, E. Dulit,

Phys.Rev. 84, 601 (1952)I M. Deutsch, S.Brown, Phys.Rev. 85, 1047 (1952).
[35] V. W. Hughes, S. Marder, C. S. Wu, Phys.Rev. 106, 934 (1957).
[36] E. Theriot, R. Beers, V.Hughes, Phys.Rev. Lett.18, 767 (1967).
[37] V. W. Hughes,JPhysicsof One- and Two-electrons AtomsJ, North-Holland (1969), pp 407-429.
[38] E. Theriot, R. Beers, V.Hughes, K. Ziock, Phys.Rev. A2, 707 (1970).
[39] A.P. Mills, G.H. Bearman, Phys.Rev. Lett.34, 246 (1974).
[40] A. P. Mills, Jr., S.Berko, and K. F. Canter, Phys.Rev. Lett.34, 1541 (1975).
[41] T.C. Grif

K
th, G.R. Heyland, K.S. Lines, T.R. Twomey, J. Phys.B11, L743 (1978).

[42] D. Gidley, A. Rich, E. Sweetman, D. West, Phys.Rev. Lett.49, 525 (1982).
[43] M.W. Ritter, P.O. Egan, V.W. Hughes, K.A. Woodle, Phys.Rev. A30, 1331 (1984).
[44] R.S. Conti, S. Hatamian, A. Rich, Phys.Rev. A33, 3495 (1986).
[45] S.Hatamian, R. S. Conti, and A. Rich, Phys.Rev. Lett.58, 1833 (1987).
[46] P.Hasbach, G.Hilkert, E. Klempt, G. Werth, NuovoCim. A97, 419 (1987).
[47] C. Westbrook, D. Gidley, R. Conti, A. Rich, Phys.Rev. Lett.58, 1328 (1987).
[48] K. Danzmann, M. S. Fee, and S. Chu, Phys.Rev. A39, 6072 (1989).
[49] C. Westbrook, D. Gidley, R. Conti, A. Rich, Phys.Rev. A40, 5489 (1989).
[50] J. Nico, D. Gidley, A. Rich, P. Zitzewitz, Phys.Rev. Lett.65, 1344 (1990).
[51] D. Gidley, J. Nico, M. Skalsey, Phys.Rev. Lett.66, 1302 (1991).
[52] M. S. Fee, A. P. Mills, Jr., S. Chu, E. D. Shaw, K. Danzmann, R. J. Chicherster, and D. M. Zuckerman,

Phys.Rev. Lett.70, 1397 (1993)I M. S. Fee, S. Chu, A. P. Mills, Jr., R. J. Chicherster, D. M. Zuckerman,
and E. D. Shaw, Phys.Rev. A48, 192 (1993).

[53] E. W.Hagena,R. Ley, D. Weil, G. Werth, W. Arnold, and H. Schneider, Phys.Rev. Lett.71, 2887 (1993).
[54] R. S. Conti, S.Hatamian, L. Lapidus, A.Rich, and M. Skalsey, Phys. Lett.A177, 43 (1993).
[55] R. Ley, D. Hagena, D. Weil, G. Werth, W. Arnold, and H. Schneider, Hyper

K
ne Interact.89, 327 (1994).

[56] A. Al-Ramadhan, D. Gidley, Phys.Rev. Lett.72, 1632 (1994).
[57] S. Asai, S. Orito, N. Shinohara, Phys. Lett. B357, 475 (1995)I O. Jinnouchi, S. Asai, T. Kobayashi,

hep-ex/0011011.

Positronium Theory

[58] B. Podolsky, L. Pauling, Phys.Rev. 34, 109 (1929).
[59] S. Mohorovicic, Astron. Nachr., 94 (1934).
[60] J. A. Wheeler, Ann. N. Y. Acad. Sci.48, 219 (1946).
[61] J. Pirenne, Arch. Sci. Phys. Nat.28, 233 (1946)I 29, 121, 207 & 265 (1947).
[62] V.B. Berestetski, L.D. Landau, Zhur. Exsptl. i Teort. Fiz. 19, 673 (1949)I V.B. Berestetski, Zhur. Exsptl.

i Teort. Fiz. 19, 1130 (1949).
[63] A. Ore and J. L. Powell, Phys.Rev. 75, 1696 (1949).
[64] R. Ferrel, Phys.Rev. 84, 858 (1951).
[65] L. M. Brown, R. P. Feynman, Phys.Rev. 85, 231 (1952).
[66] L. Wolfenstein, D. G.Ravenhall, Phys.Rev. 88, 279 (1952).
[67] R. Karplus, A. Klein, Phys.Rev. 87, 848 (1952).
[68] T. Fulton, P. Martin, Phys.Rev. 95, 811 (1954).
[69] I. Harris and L. Brown, Phys.Rev. 105, 1656 (1957).



Bibliography 149

[70] R. Barbieri, P. Christilli n, E.Remiddi, Phys.Rev. A8, 2266 (1973).
[71] M. Stroscio, Phys.Rept.C22, 215 (1975).
[72] A. Barut, J. Kraus, Phys. Lett.A58, 361 (1976).
[73] R. Barbieri, E. Remiddi, Phys. Lett.B65, 258 (1976).
[74] G. P. Lepage, Phys.Rev. A16, 863 (1977).
[75] W. E. Caswell, G. P. Lepage, J. Sapirstein, Phys.Rev. Lett.38, 488 (1977).
[76] W. E. Caswell and G.P. Lepage, Phys.Rev. A18, 810 (1978).
[77] W. E. Caswell and G.P. Lepage, Phys.Rev. Lett.41, 1092 (1978).
[78] G. Bodwin and D. Yennie, Phys.Rept.43, 267 (1978).
[79] R. Barbieri and E.Remiddi, Nucl. Phys.B141, 413 (1978).
[80] W. E. Caswell and G. P. Lepage, Phys.Rev. A20, 36 (1979).
[81] D. Yennie, CLNS-79/436, 1979 (1979 Cargèse Summer School).
[82] M.I. Vysotsky, Yad.Fiz.29, 845 (1979).
[83] W. Buchmüller, E.Remiddi, NuovoCim. A60, 109 (1980)L Nucl. Phys.B162, 250 (1980).
[84] Y. Tomozawa, Ann. Phys.128, 463 (1980).
[85] A. Rich, Rev. Mod. Phys.53, 126 (1981).
[86] M. Stroscio, Phys.Rev. Lett.48, 571 (1982).
[87] G. Adkins, Ann. Phys.146, 78 (1983).
[88] G. Adkins, F.Brown, Phys.Rev. A28, 1164 (1983).
[89] G. Lepage, P. Mackenzie, K. Streng, P. Zerwas, Phys.Rev. A28, 3090 (1983).
[90] J.R. Sapirstein, E.A. Terray, D.R. Yennie, Phys.Rev. D29, 2290 (1984).
[91] G. Adkins, Phys.Rev. A31, 1250 (1985).
[92] G.T.Bodwin, D.R. Yennie, M.A. Gregorio, Rev. Mod. Phys.57, 723 (1985).
[93] W. E. Caswell and G.P. Lepage, Phys. Lett.B167, 437 (1986).
[94] H. Olsen, Phys.Rev. D33, 2033 (1986).
[95] J. Malenfant, Phys.Rev. D36, 863 (1987).
[96] G. Adkins, M. Bui, D. Zhu, Phys.Rev. A37, 4071 (1988).
[97] I.B. Khirplovich, A.S. Yelkhovsky, Phys. Lett.B246, 520 (1990).
[98] L.G. Afanasev et al, Phys. Lett.B236, 116 (1990).
[99] E.A. Kuraev, T.V. Kukhto, Z.K. Silagadze, Sov. J. Nucl. Phys.51, 1036 (1990).

[100] P. Labelle,MRST Meeting 92(CLNS-92-1161).
[101] V. Dvoeglazov, R. Faustov, Y. Tyukhtyaev, Mod. Phys. Lett.A8, 3263 (1993).
[102] A. Pivovarov, Phys.Rev. D47, 5183 (1993).
[103] V. Dvoeglazov, R. Faustov, Y. Tyukhtyaev, Mod. Phys. Lett.A8, 3263 (1993).
[104] P. Labelle, G. Lepage,U. Magnea, Phys.Rev. Lett.72, 2006 (1994).
[105] P. Labelle,hep-ph/9407233.
[106] I.B. Khriplovich, A.I. Milstein, J. Exp. Theor. Phys. 79, 379 (1994)L I.B. Khirplovich, A.I. Milstein,

hep-ph/9607374.
[107] R.N. Faustov, A.P. Martynenko, V.A. Saleev, Phys.Rev. A51, 4520 (1995).
[108] J. Govaerts and M. Van Caillie, Phys. Lett.B381, 451 (1996).
[109] T. Kinoshita, M. Nio, Phys.Rev. D53, 4909 (1996)LPhys.Rev. D55, 767 (1997).
[110] P. Labelle, S.M. Zebarjad, C.P.Burgess, Phys.Rev. 56, 8053 (1997).
[111] U. Jentschura, G. Soff, V. I vanov and S. Karshenboim, Phys. Rev. A56, 4483 (1997)L U. Jentschura,

G. Soff, V. I vanov, S. Karshenboim, hep-ph/9706401L I.F. Ginzburg, U. Jentschura, S. Karshenboim, F.
Krauss, V.G. Serbo, G. Soff, Phys.Rev. C58, 3565 (1998).

[112] T. Kinoshita, Int. Work. on Hadronic Atoms and Positronium in the Standard Model, Dubna, Russia,
26-31 May 1998.



150 Bibliography

[113] V. Antonelli, V. Ivanchenko, E. Kuraev, V. Laliena, Eur. Phys. J.C5, 535 (1998), V. Antonelli, Int. Work.
on Hadronic Atoms and Positronium in the S.M., Dubna, 26-31 May 1998.

[114] A. Vairo, Found. Phys 28, 829 (1998).
[115] A. Czarnecki, Acta Phys. Polon. B30, 3837 (1999).
[116] A. Czarnecki and G. Kardhenboim, 14th Int. Work. on HEP and QFT, Moscow 1999,hep-ph/9911410.
[117] A. Czarnecki, K. Melnikov, A. Yelkhovsky, Phys.Rev. A59, 4316 (1999)MPhys.Rev. Lett.82, 311 (1999).
[118] G. Adkins, K. Melnikov and A. Yelkhovsky, hep-ph/9905553.
[119] K. Melnikov, A. Yelkhovsky, Phys. Lett.B458, 143 (1999).
[120] A. Pineda, J. Soto, Phys.Rev. D59, 016005 (1999).
[121] A. Czarneski, K. Melnikov, A. Yelkhovsky, Phys. Rev. Lett. 83, 1135 (1999)M hep-ph/9910488M Phys.

Rev. A61, 052502 (2000).
[122] R. Faustov, A. Martynenko, hep-ph/0002281.
[123] R. Hill, MRST Meeting, Rochester, May 2000.
[124] G. Adkins,R. Fell, J. Sapirstein, Phys.Rev. Lett.84, 5086 (2000).
[125] A.H. Hoang, P. Labelle, S.M. Zebarjad, Phys.Rev. A62, 012109 (2000).
[126] A. Burichenko, hep-ph/0004063.
[127] R. Hill, G. P. Lepage, Phys.Rev. D62, 111301 (2000).
[128] A. Manohar, I. Stewart, Phys.Rev. Lett.85, 2248 (2000).
[129] By R. Foot, S. Gninenko, Phys. Lett.B480, 171 (2000).
[130] B. Kniehl, A. Penin, Phys.Rev. Lett.85, 1210 (2000)M ibid. 5094 (2000).
[131] K. Melnikov, A. Yelkhovsky, Phys.Rev. D62, 116003 (2000)M Phys.Rev. Lett.86, 1498 (2001).
[132] S. Karshenboim, hep-ph/0201241.
[133] By S.N. Gninenko, N.V. Krasnikov, A. Rubbia, hep-ph/0205056.

Quarkonium Experiment

[134] G. Abramset al, Phys.Rev. Lett.44, 114 (1980).
[135] D.Sharreet al, Phys.Rev. D23, 43 (1981).
[136] CrystalBall Collaboration (DESY), Phys. Lett.B267, 286 (1991).
[137] F. Harris, American Physical Society (APS) Meeting of the Division of Particles and Fields (DPF 99),

Los Angeles, CA, 5-9 Jan. 1999.
[138] CLEO Collaboration (G. Brandenburg et al), Phys.Rev. Lett.85, 3095 (2000).
[139] Xu Guofa (for theBES Collaboration), 31st International Symposium on Multiparticle Dynamics (ISMD

2001), Datong, China, 1-7 Sep. 2001
[140] CLEO Collaboration (B. Nematiet al.), Phys.Rev. D55, 5273 (1997).
[141] BES Collaboration, (J.Z.Bai et al.), Phys.Rev. D62, 072001 (2000).
[142] M. Stancari (for the E835 Collaboration), Nucl. Phys. (Proc. Suppl.)B82, 306 (2000).
[143] CLEO Collaboration (B. Eisenstein et al), Phys.Rev. Lett.87, 061801 (2001).

Quarkonium Theory

[144] T. Applequist,H. Politzer, Phys.Rev. Lett.34, 43 (1975).
[145] A. DeRujula, S.L. Glashow, Phys.Rev. Lett.34, 46 (1975).
[146] P. Freund, Y. Nambu, Phys.Rev. Lett.34, 1645 (1975).
[147] V. Novikov, L.B. Okun, M. Shifman, A. Vainshtein, M. Voloshin, V. Zakharov, Phys.Rept.C41, 1 (1978).
[148] K. Koller and T. Walsh, Nucl. Phys.B140, 449 (1978).



Bibliography 151

[149] S.Brodsky, D. Coyne, T. DeGrand and R. Horgan, Phys. Lett.B73, 203 (1978).
[150] C. Quigg, FERMILA B-Conf-78/82-THY (1978)N C. Quigg, FERMILA B-Conf-79/74-THY (1979).
[151] R. Barbieri, E. dOEmilio, G. Curci, E.Remiddi, Nucl. Phys.B154, 535 (1979).
[152] J.P. Leveille and D.M. Scott, Phys. Lett.B95, 96 (1980).
[153] I.I.Y. Bigi, Nucl. Phys.B164, 239 (1980).
[154] W. Buchmüller, S.-H. Tye, Phys.Rev. D24, 132 (1981).
[155] W. Kwong, P. Mackenzie,R. Rosenfeld and J.Rosner, Phys.Rev. D37, 3210 (1981).
[156] P. Mackenzie, G. Lepage, Phys.Rev. Lett.47, 1244 (1981).
[157] G. Grunberg, Phys.Lett.B114, 271 (1982).
[158] J. Körner and J. Kühn, M. Krammer, H. Schneider, Nucl. Phys.B229, 115 (1983).
[159] P. Moxhay, J.Rosner, Phys.Rev. D28, 1132 (1983).
[160] W. S.Hou and A. Soni, Phys.Rev. Lett.50, 569 (1983).
[161] R.D. Field, Phys. Lett.B133, 248 (1983).
[162] W. Kwong, J.Rosner, C. Quigg, Ann. Rev. Nucl. Part. Sci37, 325 (1987).
[163] S.Brodsky, P. Lepage and S.F. Tuan, Phys.Rev. Lett.59, 621 (1987).
[164] A. Bizzeti (CrystalBall Collaboration), Proc. XXIV I nt. Conf. on HEP (1989).
[165] S. Pinsky, Phys. Lett.B236, 479 (1990).
[166] E. SimaOan Ackleh, thesis(University of Tennessee), 1992.
[167] G. Schuler, (thesis)CERN-TH.7170/94.
[168] S. Catani and F.Hautmann, Nucl. Phys. Proc. Suppl.39BC, 359 (1995).
[169] G. Lopez Castro, J.L. Lucio, J. Pestieau, AIP Conf. Proc. 342, 441 (1995).
[170] E. Eichten, C. Quigg, Phys.Rev. D52, 1726 (1995).
[171] G.Bodwin, E.Braaten, G. Lepage, Phys.Rev. D51, 1125 (1995).
[172] T. Barnes, F.E. Close, P.R. Page, E.S.Swanson, Phys.Rev. D55, 4157 (1997).
[173] W.S.Hou, Phys.Rev. D55, 6952 (1997).
[174] K. Chao, H. Huang, J. Liu, J. Tang, Phys.Rev. D56, 368 (1997).
[175] S. Olsen, J. Mod. Phys.A256, 4069 (1997).
[176] E.Braaten, Third Int. Work. on Particle Physics Phenomenology, Taipei, November 1997.
[177] S.Brodsky and M. Karliner, Phys.Rev. Lett.78, 4682 (1997).
[178] A. Manohar, Phys.Rev. D56, 230 (1997).
[179] P. Ko, PPPP Workshop, Seoul, Korea, October 1997.
[180] F. Hautmann, proceedings ofPInternational Conference on the Structure and the Interactions of the

Photon (Photon 97)PNetherlands, 10-15 May 1997(hep-ph/9708496).
[181] Y.-Q. Chen and E.Braaten, Phys.Rev. Lett.80, 5060 (1998).
[182] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, M. Mangano, Nucl. Phys.B514, 245 (1998).
[183] M. Suzuki, Phys.Rev D57, 5717 (1998).
[184] M. Suzuki, Phys.Rev. D57, 5717 (1998)N Phys.Rev. D60, 051501 (1999).
[185] M. Krämer, proceedings ofP4th International Symposium on Radiative Corrections (RADCOR 98)P,

Barcelona, 8-12 Sep 1998(hep-ph/9901448).
[186] J.-M. Gérard, J. Weyers, Phys. Lett.B462, 324 (1999).
[187] A.M. Badalian, V.L. Morgunov, Phys.Rev. D60, 116008 (1999).
[188] B. Grinstein, Int. J. Mod. Phys.A15, 461 (2000)
[189] N. Brambilla, XXIII Int. Work. on the Fundamental Problems of High Energy Physics, Protvino (Russia),

June 2000.
[190] I. Stewart, 7th Conf. on the Intersections of PArticle and Nuclear Physics, Quebec City, Canada, May

2000.
[191] Y.G. Gu and S.F. Tuan, Nucl. Phys.A675, 404c (2000).



152 Bibliography

[192] M.E. Like, A.V. Manohar, I.Z. Rothstein, Phys.Rev. D61, 074025 (2000).
[193] S. F. Tuan, Commun. Theor. Phys.33, 285 (2000).
[194] Y. F. Gu and X. H. Li, Phys.Rev. D63, 114019 (2001).
[195] F.J. Yndurain, Nucl. Phys. Proc. Suppl.93, 196 (2001).
[196] A. Penin, Nucl. Phys. Proc. Suppl.96, 418 (2001).
[197] S. Wolf, Phys.Rev. D63, 074020 (2001).
[198] A. Leibovich, Nucl. Phys. Proc. Suppl.93, 182 (2001).
[199] W.Q. Chao, C.S. Ju,hep-ph/0111325.
[200] Y.F. Gu, X.H. Li, Phys.Rev. D63, 114019 (2001).

General Field Theory

[201] H. Euler, W. Heisenberg, Z. Phys.98, 714 (1936).
[202] C. Yang, Phys.Rev. 77, 242 (1950).
[203] J. Schwinger, Phys.Rev. 82, 664 (1951).
[204] F. E. Low, Phys.Rev. 110, 974 (1958).
[205] B. De Tollis, NuovoCim. 32, 757 (1964),ibid. 35, 1182 (1965)QV. Constantini, B. De Tollis, G. Pistoni,

NuovoCim. 2A, 733 (1971)Q M. Laursen, M. Samuel, G. Tupper, A. Sen, Phys.Rev. D27, 196 (1983).
[206] H. Chew, Phys.Rev. 123, 377 (1961)Q J. Pestieau, Phys.Rev. 160, 1555 (1967).
[207] S. Coleman, R. Jackiw, Annals Phys.67, 552 (1971)QM. Chanowitz, J. Ellis, Phys.Rev. D7, 2490 (1973)Q

S. Adler, J. Colli ns, A. Duncan, Phys.Rev. D15, 1712 (1977).
[208] L.M. Sehgal, Phys.Rev. D7, 3303 (1973).
[209] W. Caswell, Phys.Rev. Lett.33, 244 (1974).
[210] E. Egorian, O. Tarasov, Theor. Math. Phys.41, 863 (1979).
[211] S.Brodsky, G. Lepage, P. Mackenzie, Phys.Rev. D28, 228 (1983).
[212] L. Bergström, G.Hulth, Nucl. Phys.B259, 137 (1985).
[213] D.W. Duke,R.G.Roberts, Phys.Rept.120, 275 (1985).
[214] L. L. Chau,H. Y. Cheng, Phys. Lett.B195, 275 (1987).
[215] G. Ecker, A. Pich, E. deRafael, Nucl. Phys.B303, 665 (1988).
[216] J. L. Lucio M., J. Pestieau, Phys.Rev. D42, 3253 (1990).
[217] D.J.Broadhurst, J. Fleischer, O.V. Tarasov, Z. Phys.C60, 287 (1993).
[218] J.Bijnens, G. Ecker and J. Gasser, Nucl. Phys.B396, 81 (1993)Q G. DRAmbrosio, G. Ecker, G. Isidori,

H. Neufeld, 2ST DAPHNE PhysicsHandbook:253-313 (hep-ph/9411439).
[219] B. Kniehl, Acta Phys. Polon. B27, 3631 (1996).
[220] J.Horejsi, M. Schnabl, Z. Phys.C76, 561 (1997).
[221] J.A. Oller, Phys. Lett.B426, 7 (1998).
[222] S.Bethke, J. Phys.G26, R27 (2000).
[223] D.E. Groom et al, Eur. Phys. J.C15, 1 (2000).


