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Introduction

Positronium is the bound state madef an electon with a positron, in a seaof virtual paticles (fhotons and
electon-positron pairs). The electomagnetic interaction is respnsible for the binding; hence psitronium shares
many properties with the hydrogen atom. An important difference, however, is the posshility of annihilation
of the electon when it meets he positron, giving gammarays. PRositronium is a $ort-lived gstem. Aother
specficity is the dsence of strong interaction effects: he proton in the hydrogen atom is not an elementary
paticle, but is a @mplicated aggegateof quarks, antiquarks and gluons. Positronium is puely electomagnetic;
QED is suficient, in principle,  predict all its popeties © a very high accuacgy. Both the weak and stong
interactions ae present, but through highly suppessed arrections, and do not enter at the present level of
expeimental or theoretical grecision.

There ae two motivations for studying the positronium system: because it is a stalard test br QED, and
because it is #irst appoacd to the more cmmplicated poblem of the quak structure of hadrons, and confinement
in QCD.

QED Standard Tests

The Staadard tests br QED, or alternatively the domains in which QED hasbeen very successfull applied, ae
of twotypes: elemstary particle processesrad low-energy bound state poperties. For elemaentary paticles,one
can distinguish:

1- High energy processes, likeTe™ — v, eTe™ — 71~ with [ any lepton (e, , 7). Sudh processes
typically test QED at seeral GeV, at facilities like LEP, SLC, ... which proceedby collidi ng positron
with electon beams. At suls an energy scale, QED mudbe supplemstedby strong and weak nteraction
effects. N disageemat hasbeen reported.

2- The electon and muon anomalous moments a. and a,,. By this is undestood the deviation of the
magetic noment ¢ from its valueof 2 as pedictedby the Dirac theory. The curent achievements, both
theoretically and expeimentally are impressve. On the theoretical side, he computaton of thousands of
multi-loop diagamshasbeen done. The ageemet between theory and expeiment is a geat successf
QED. However, beyond the present level of precisbn, the anomalous noments can no longer be used as
pure tests ér QED because sbng interaction effectswill dominate.

Our main concern will be bound stateype QED tests. Agaj we distihguish two types:

3- Spectosaopic properties of atom-like systems. Te various spaaigs between the energy levelsof hy-
drogen have been both theoretically and expeimentally very well studied. e nost fanous historically
is the Lanb shift: the spaaig 25,2 — 2P, of the hydrogen levels. The fine and hyperfine stucture of
the hydrogen, helium and muonium (the hydrogen atom with a muwon in placeof the proton) also provide
very accuate tests.

4- Positronium spectosoopy and lifetime.

For a more detailed pesentation of all those testswerefer to [16]. The distinction madebetween elementary
paticle and bound state tests isrpfound. One of the nmost natual framevorks of quantum field theory is
perturbation theory: the Fe/nman graphs with their asciatedrules. For example, ¢ descibe the process
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eTe” — uTp, one stats with a simple bwestorder approximation

The theoretical mmputaton is then ordered as a sges in the fine-stucture mnstant a = 1/137: ead coupling
between a photon and a charged paticle line brings in a facbr of e = /4w a, with e the electic charge. Because
the mnstant « is muc smalle than one, the whole computaton mehod is under control. The only difficulty
is the various dvergencesoccuring in some gaphs. Renormalizability of QED ensures hat a meaingful
answer can be obtained. Al®, infrared divergenceshave been shown to exponentiate. At the end of the dgy, the
ageemet between theory and expeiment is avery stringent testof QED in its peturbative regime, ad of the
as®ciated heoretical bals.

On the other hand, abound state isiitrinsically non-perturbative. It is the pemanent exchange of photons
between the mnstituents that binds hem bgeher

S, e

SO, S,
>

The ordering of processesriincreasig orders of a collapses. Peurbative quatumfield theory is rather devoid
in front of such problems. Mayy standard theoretical mehods explicity assumehe non-existence of bound
states.

Fortunately, there is away out. The idea is 6 change te basison which perturbation theory is built, i.e.
the lowestorder, and to conside alternative expasion paametes. For all spectosoopic obsevables, anatual
small paamete is the ratio of the binding energy over the massesf the constituents. For the hydrogen atom, it
is Eg/m.- ~13.6eV/511 keV =~ 3 x 105, In other words, he natural energy scaleof any process inside he
hydrogen atom is at he abmic level, a fav eV/. Equivalently, for sud loosely bound systems, e constituent
velocities ae small,u/c << 1, which is the expasion paramete used n practice. Sice the g/stem is esge
tially non-relativistic, to firstorder in the new expansion paramete, one recovers the non-relatiistic Sdrodinger
equaton with a Coulomb potential. That simple problem car be lved exact (i.e., non-perturbatively), and
will serve as anew basis br a peturbation theory. Graphically, the lowestorder is the s-called ladde appox-
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imation (technically, crossed laddes ae neglected, ad only Coulomb photon exchanges @e consideed in the
non-relatiistic limit)

+

p

Both radiative and relatwistic corrections to this first appoximation are then computed, h increasing order of
the small paametes (« and v/c s&). These ae the very successful tdiques useddr the speatosoopic testst

Positronium is al® a bound state, ad the same teeniqgueshave been used. he smallbinding energy and
v/c are the expasion parametes: the g/stem is teatednon-relatvistically to lowestorder, and radiative and
relatiistic corrections ae then computed peturbatively. All this would be fine, except dr one int. The
positronium annihilates nto photons. That process isitrinsically relativistic. The Sdrddinger equaton cannot
descibe the disappeince of positronium into photons. Futher, the abmic energy scaleof a few eV is no
longer natural, becausef processes like

€ oM, e €
v ¥
AVAVAVAV
.
SO, SO, S,
et s et

where the photons cary energiesof the order of the electon mass. Te photons cah seve as pobes, gving
information on the internal structure of the bound state. Wien they are hard, they essatially see a siwly moving
electon-positron pair, while when they are ft, they are sensitive o the non-perturbative binding of the par. In
this respect, psitronium is a wique ystem. ltrequires a full inderstanding of bound statesn the relativistic
gquantumfield theory framewvork. Most theoretical appoadchesrely on the sameytpeof approximations (manly a
factorization of the bound statewavefunction and the annihilation medanism). The sibject of the present thesis
is to test he theoretical mnsistancy of those nodels.

QCD and Confinement

Quaks ae sject to the stong interaction. There ae three ypesof strong charges, called alors. Quaitum
chromodynamics is he theory deseibing the interactions between quaks, atiquark and gluons. This theory
is similar to QED, excepthat glwns do cary a stong charge and therefore can interact anong themseles.
Tedhnically, QCD is a gaugeneory with the non-abelian SU (3) as gauge gup. The eidht gluons belong to the
adjoint representation, while the three ®lored quaks belong to the fundamental representation.

1 Forthe hydrogen atom physics, yet another small expansitangeter has proven to be usefui,, - /mp+ A 1/2000. This parameter

is important in the treatment of the proton recoil effects.
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Inprinciple, the cmnsequecesof the gluon charge lead d a small hcreaseof complexity: compaed b QED,
one only has b conside new diagrams like

g e,

Unfortunately, the mah characteistic of the stong interaction is, evidently, of being stong. In other words, te
coupling constant of QCD is mud greate than one atordinary energies, ad peaturbation theory breaks awn:
the two diagiams siown abowve cannot be ordered in deaeasihg magitude.

This picture of the stong interaction is supmrtedby two main facts:

1- There is another consequeceof the gluon charge. As he energy increases e stong charge deceases.
At sufficiently high energy, abowe a fav GeV, QCD is peturbative, and can be directly tested. Vaous
processes dtigh energy are cmnsistently descibedwithin the contextof QCD, and this is a geat success.
The measted mupling constant, when extrapolated b low-energy, is indeed geate than unity.

2- Quaks and gluons have never been obseved as fee paticles. Insteadone alays sees agggateof
guaks and gluons, the baryons (like protons, pions,...). This phenomenon is called onfinemenit. This is
understood as bllows. If the interaction is very strong, a olorful particle cannot exist freel, its stédle
statewill always be inside a olorless aggegate. Br a group like SU (3), the most trivial aggegates e
the quak-antiquark and the three-quak bound states. Tis nicely fits the obsaved speatum of particles.

It should be emphasized hat no rigorous proof that the stdle stateof QCD ae indeed he obsavedhadons
exists. Nobady has eer been able to compute he masf the pion or the proton in terms of the quak masses
and QCD wupling constant. Further, low-energy reactons (below 1GeV') among hadrons ae not quantitatively
descibed in terms of the underlying quak processes. fis is a seious limitation. By compaison, the nost
stringent testson QED do involve low-energy bound states. Br QCD, quantitative tests ee only possble athigh
energy. The nost promising testsof QCD at low energy seem ¢ be lattice calculatins, but they are still very far
from the precision achieved in QED.

The stug of bound statesm Quantum Field Theory is akead/ a very difficult non-perturbative problem.
Confinement adds b this complexity, and most mehods usedi QED ae justno longer applicéble. There isone
excepton: heavy quarkonia. Sud states ee madeof a heary quak c or b withits correspnding antiquark. Being
very heavy (of a few GeV), one can hope that afirst order non-relatiistic appoximation is reliable. Of course,
the quakonium wavefunctions ae not known, since non-relatistically, QCD cannot just be a Gulomb-like
interaction (sud a potential doesnot lead b confinement). By studying quakonium statespne gets mformation



on the QCD mtential. Quakonium is therefore a cucial intermediate stepatunderstand low-energy QCD.
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The physicsof quarkonium is very similar to that of positronium. The speatosmpy is analogous, while
guakonium decgs through the annihilation of its constituents, like positronium. The tedniqgues useddr
guakonium are inspired from the positronium ones. h paticular, the same fadrization hypothesis is used
in both problems b disentangle the peturbative and non-peturbative pats of the dynamics. e applicéility
of the positronium models b quarkonium will be analyzed i the present thesis.

Brief Outline of the Thesis

The goal is to addess be relevance and consistency of the positronium models. Wewill show that abasicre-
quirement of Quantum Field Theory is violated in the curent computatons of positronium decg rates. he
probability amplitudes ér positronium decg are not analytical. This israther technical, but far reading; a nod-
ification of the model is inavoidable. Infact, we will see hat the paturbation metod desiged for spectosoopic
studies canot be used ér decd processes. fie binding energy expansion is in contradiction with quantumfield
theory analyticity requrements. A natural solution is then to construct anew basis br an alternative peturba-
tion theory. This has b be done non-perturbatively in the binding energy. There is an additional motivation for
this. In quakonium physics, ypical binding energies ae mud greate. Being able to treat hem exacty will
unavoidably lead b interesting adszances.
The thesis isorganized in four chapte's, with the stuctue

Chapte 1 | Positronium | General Introduction and Standard Approaches
Chapte 2 Original Contributions
Chapte 3 | Quakonium | General Introduction and Standard Approaches
Chapte 4 Original Contributions

The original discussins in chapte 2 and 4 have been made as selfantained as pssble. Chapte 1 and 3 seve
to set he stage, ad introduce he standard mateial needed ér our presentation.

Chapte 1 begins with a brief historical overview of positronium physics. Then, the present statusof both
expeiment and theory is shortly reviewed. The final secton descibes he evolution of the theoretical nodels
desigied b descibe the annihilation of positronium. By models is meat a sciemeof computaton: the ddinition
of a lowestorder apgroximation, exacty calculdle, and of the peturbation theory. All those nodels ntroduce
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some kind of factorization of the bound state gnamics fom the decg process

Perturbative
Decay Process

Non-perturbative
Bound State Dynamics

I
I
I
e : e

! Y

Positronium I
I
I i
I
| eJr
I
I
I
I
I
I
I
1

For instance, he simplesbf all formulas is
1 9 g
I'(Ps—ny)= 5T |6 (0)] (41;7,510 (e et — frw))vmﬁo 1)

with ¢ the Sdrddinger wavefunction encoding the non-perturbative bound state gnamics, ad o (e e™ — nvy)
is the scatteng cross sectin representing the peaturbative decg process. Mre adianced tetiniqueswill be
descibed, and their factorization hypothesis empasized.

Chapte 2 begins with a claification of the physicsof the appoximation done in defining the lowestorder
amplitude h standard appoacdes. h doing 0, it will be se@immediatey that this basis is h contradiction with
analyticity. By factorizing the process as pictied dowe, the photons ae always emitted fom charged paticles.
If the photon is very soft, however, it should behave as emittedrbm a neutral boson (i.e. the positronium)
instead. It canot discern the charged @ntent of the bound state if itswavelength is mud larger than the typical
eTe~ sepaation. The binding of the electon and positron into a neutral boson becomesvery important for a
soft photon, or in other words, when the energy of the photon is of the order of the binding energy.

The goal is therefore to construct amplitudes @ that the photons are alvays awvare of the binding of the
charged paticles. We popose sub an alternative construction for the lowestorder amplitudewith no factoriza-
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tion. Graphically, it is

The decg amplitudes ee constructed as @sed bops. The bound state ginamics is ntroducedvia a form factor
which is related o the Sdrodinger wavefunction, hence mntains the effectsof Coulomb photon exchanges.
Tedhnically, by closing the loop (i.e. without facbrization), the resummatn of the Coulomb photon is no
longer independent of the decg process. As aiesult, hefinal state potons do “feel’ the binding, and behave as
if emitted fom a rueneutal bound state.

For this construction to be awell-defined lowestorder amplitude, ithas b be calculdle. To this end, we
found avery simple pocedue, in which our new lowestorder amplitudes ee obtained from standard QEDones.
We then show that indeed,our approach correctly destibes ®ft photons. Many other interesting, but more
tedhnical, propertiesof our appoach will also be discussed.

The chapte ends with a gystematic stug of various decg processes. fie implicaton for spectosaopic
studies is als sketded. Fnally, some mssble extesions ae reviewed.

Chapte 3 is avery short introduction to the physics of the ¢ (charmonium) and the b (bottomonium)
heary quak bound states. Itbegins with the speatosoopy of charmonium and battomonium as esthlished
expeimentally. Then, the desdption of deca/ processes is reseated. Most studiesely on the extansion of
the positronium decy formula (1) b the quakonium case. Te predictions for the decg ratesof 'S, and
38, quakonium states e g/stematicaly studied. @mpaison with expaimental branchings, abng with the
extraction of ag, closes he chapte.

The last dapte preseits the many problems and puzzlesof quarkonium physics. It is $iown that binding
energy effects ca explain most of them. A ddinite quantitative stugy hasnot been peformed tough, because
of the lackof information on the QCD mtential. However, the resultsobtained ae qualitatvely indepedent of
the detailed érm of it.

Three appadices supplem the textwith calculaton details, poofs and numerical studies. Te first ap-
pendix contains additonal information and detailed studieselevant for the chapte 2, while the seond app@dix
is related b chapte 3 and 4. The final appedix contains useful brmulas like special foctions, dimensional
regulaization formulas, fnase-spaceralysis,...

Finally, the thesis edswith a bibliography. The references ae ordered in sectbns (with no directrelation
to the sectdns of the text), ad in ead secton, in chronological order. This bibliography is intended b be nore
or less omplete br positronium (but some omissons ae wnavoidable). For quakonium, a @mpletereference
list would be toolong, and only the papes directly related 6 our studies & guoted.






Chapter 1
Overview of Positronium Physics

This chapte preseits the basic obseavables of positronium physics. This chapte sets he stage ér more
elaborated studies. ¢ this presentation, we have chosen a more or lesshistorical flow.

The first sectbn begins with the expsition of the theoretical status athie end of the forties, justbefore
the expeimental evidence. Then, the first confrontation of QED theory in positronium physics is peseted.
In the seond secton, the nost recent theoretical and expeimental results @& given and compaed for both
spectosmpic and lifetime obsavables.

In the final secton, the evolution of the theoretical desdption of positronium decy is reviewed. The
hypotheses dne ae desdbed. Their relevancewill be discussechithe next chapte.

1.1 History

Historically, it wasfirst postulated in 1934 by Mohorovicic [59] that an electon and its assciated atimatte
paticle could form a quasi-ste abm, one yea after the expeimental diswvery of the positron by Anderson.
That statewasfirst called psitronium by Ruark in 1945 [33], who was wnsuccessfuil trying to obseve it.

The propertiesof positronium, both spectosapic and lifetime, were studiedteoretically for about 20 yeas.
The first expeimental obsevation finally came h 1951, in agreemaet with the expectatns.

1.1.1  Theoretical Expectations (1934-1952)

The first appoach to the positronium bound state isnon-relativistic. The quaitum medtanical treatment of it is
exacty the same ashat of the hydrogen atom, except ér a change of reduced mass. df instance, he energy
levels

E.(eV)

n=3 n=2 n=1 I1=0 =1 =2

—3s —3P —3D
— 28 —2pP

HE -

Ry
& Ry
2

- T =

—1S




2 Chapte 1  Overview of Positronium Physics

and correspnding wavefunctions can be spedied by the same sebdf quantum numbers n, 1, m;, with [ =

0,...,n—1andm; = —1,...I. The energy levels exibit the well-known degeneracy inl and m;:
2
I
En,l,ml - _W
where i = m/2, m the electon mass. Tie gound state eergy is therefore Ep o0 = —ma?/4 = —Ry/2 ~

—6.8 eV (half that of the hydrogen).

To the ebowve guantum numbers, one has b add hat of the spn. Two particles of spin 1/2 can give a ttal
spin angula momentum of 0 or 1. The sph four-fold degaeracy of eat of the levels dawn on the figure is
split into a singlet spn O state (paapositronium, p-Ps) and a riplet spn 1 state orthopositronium, o-Ps)?

Singlet %(IT]U—HT))
Triplet  [1T), 7 (T + 1) 11D

The sph then combines with the orbital angula momentum to give the final total angula momentum. For
example, usig the speatoscopic notation n2°+1 L; with L. = S, P, D, F, .., the welve 2 P states arange as

Paapositronium  2'P; 3 states

Orthopositronium 237, 1 state
23p, 3 states
23p, 5 states

2P (12 statep—

Graphically,

E.(eV)
t Parapositronium Orthopositronium

2L 'D, 'P, 'S, n| 35, °P, °P; °P, °D; °D, °D,
N - - - |3 = - - - ___ - __
: — — 2] — — — —
-3
-4
-5
-6
-7 - 1 -

Fine and Hypefine Structure

At the lowestorder, there is ahigh degaeracy. This doesnot survive athigher orders. Prenne (1947) [61]
and Berestetski (1949) [62)vere the first to compute he fine and hyperfine stucture of the positronium energy
levels. Their resultswere late correctedby Ferell (1951) ([64], see ats[26]), who found

En = ——+ AF ¢ i 3 — ,(J 4

2 For the hydrogen atom, this clasation is not relevant because of the very small proton mégnementy,, = 3‘}\/’}—? << pg =

ch_ For positronium, the magnetic moment is the same (in madejtfor both constituents.

2me "
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where
T i =1+ 1
sy _ 1 1 OO “s i (1 — bor) % ﬁﬂ%‘)’_jl (1.1)

) =1

Hence,we can modify our spectal represantation

Parapositronium | Orthopositronium

with the transition frequencies (n GHz),

a 204.387 Hyperfine Splitting
b(=c,d, e f) | 1.234 x 10 | Lyman«

g 18.2

h 12.8

i 8.39 Lamb Shift

We have al® indicated he commonly usednames ér the most remakable transitions. Fhysically, one has te
following selectbn rule for the dominant radiative transitions:

AL = +1 AL=0
E1{ AJ==41,0 >> M1{ AJ =410
Amy = +1,0 Amy = +1,0

where E1 ae the electic dipole (or allowed) ransitions (plan lineson the pictue), by far the stongest tansi-
tions. The forbidden transitions ae the M1 magetic dipole transitions (daded lines).

The most interesting splitting is the 11.5, — 135, hyperfine splitting of positronium, because it istie nmost
accessile bath theoretically (1S statesm relatively simple b treat) and expeimentally (the higher excited states
are predicted b cascade deganto lower states quiteapidly). In(1.1), he 35, state] = 0, appeas sepaately
becauseof the ©-called anihilation grapgh. The hyperfine splitting is computed fom the expectatin valuesof
the spi-spin and annihilation potentials betveen 3.5; and 1S, states

e
e+
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(the other hyperfine operators contribute equaly to bah S states, ad are included n the exdiange gaph abowe).
The correspnding contributions to the splitting are [26]

Paa Ortho
Fine Stuct. (Spn-Spin) | —21/64 ma* | 1/192 ma?*
Annihilation 0 1/4 ma* (1.2)
Hyperfine Splitting ]—72ma4

Karplus and Klein (1952) [67], trough their now standard computaton, obtained the first radiative wrrec-
tion to the hyperfine splitting:

7 o 8 In2
4
— - =4 == ~ 381 GH
Al/hf mo (]2 <9—|— 5 )) 203.381 GHz

Many additional graphs contribute  that order, and we shall not detail heir techniqueshere.

Annihilation Rates

The positronium is a $ort-lived gstem. It decgs into photons. The number of which can be deducedrbm
selecton rules (Yang, 1950 [202] and Wolfensten and Ravenhall, 1952 [66], see als [9]).

A positronium state is a eigenstateof the paity P, charge mnjugation C and of the combination C 3. The
eigenvaluesof thoseoperators can be obtained in termsof thoseof L, S as

P = (_])H—l
C = (_])H-s
cpP = (_])s+1

These expessons ae ohbtained from the intrinsic paities of the constituents and the antisymmety requrement
on the exdiange of the mnstituents. Paapositronium (orthopositronium) is a CP eigestatewith eigewalue
—1(+1). Since a gstemof n photons has a barge @njugation eigawvalueof

C(ny) =(-1)"
we obtain the selecion rule
)= (="

We therefore write, up © J = 2 (the principal quatum number can take any value)

25+11; | JP¢ | Number of v | Dominant Annihilation mode
1Sy 0T | even Ps(1Sy) — vy

38, 1-— | odd Ps(3S)) — yyy

P 1+~ | odd Ps(1P) — yyy

35, 0+ | even Ps(3Py) — vy

3P 17+ | even Ps(3P)) — yyyy

3P, 27 | even Ps(3P) — vy

1Dy 2-F | even Ps(3Dy) — vy

3Dy 1-— | odd Ps(3Dy) — yyy

3Dy 2~ | odd Ps(3Dy) — vy

3 This property, due to the special nature of positronium asumt state made of an electron with a positron, has raiseé ausrest in

positronium as a test of the discrete symmetries.
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The only mode hat needs omment is Ps (3 Pl) — yyy7y. The two-photon mode is orbidden by the (Landau-
Pomeranchuk-)Yang theorem (1950) [202]: arecbor paticle (/ = 1) cannot deca into two photons, becauseof
gauge ivariance and speciakelativity. Most positronium state anihilation modeswill be suppessed ompaed
to their electic dipole transitions to lower states. @ly the ground states' S, and 35, are dominantly decaging
into photons, becausette magetic dipole transition 39, — 1S is highly suppessed.

In 1946, Pienne [61] and Wheele [60] sepaately developed a beoretical nodel to compute he decg rates
of positronium. Their model is

1

I'(Ps—ny) = 57T 1

16(0) | (40,00 (e~ €™ — 7))

Upel—0

withv,.; therelative velocity of thee™ e~ pair in their center-of-mass fame, ad ¢ (0) the positronium Sdrédinger
wavefunction, in configuration space, at ze sepaation. One car understand this model as aeplacemat of the
scatteing cross sectin initial flux facor by the probability of contact in the bound state. @viously, this model
applies b S-state anihilations only, since ¢ (0) is zeofor [ # 0.

Pirenne and Wheele were able to apply their formula © parapositronium (150), while, in 1949, Qe and
Powell [63] used he same rodel to compute he orthopositronium (381) decy rate. The resultswere

5

L (p-Ps—7y) = % ~ 8.0325 x 10° sec™ !
2(m? -9
I'(0-Ps— yyy) = a%n% ~2 72112 psec !
7

The orthopositronium lifetime is roughly 1000 times dnger than the paapositronium one. At first sight, one
would have expected aelative facbr of 1/a ~ 137. Phase-space ismnsible for an additional facor of 10.

1.1.2  Discovery and First Measurenents (1951)

The disovery came n 1951. Matin Deutsd found evidence of orthopositronium formation in gases [34]His
technique isbasedon (1) the very different lifetime between bath positronium species, 1ad (2) the paamag-
netic propertiesof the NO gas. This moleculehas anisolated eleaton, hence is a cataist for o-Ps+ NO — p-
Ps+NO by electon exchange. When positrons ae sbwed in a gaspoth orthopositronium and paapositronium
are produced. e lifetime of the paapositronium is too short for its decy photons to be obseved. Adjunc-
tion of a small anount NO gas herefore changes he obseved gammaay spectum. This is an evidence for
orthopositronium formation.

Hﬁw“
e 0-Ps
N, %

Y

A
|

et o-Ps H-\‘;r §2+

Y
e
J
)
B
-
@)
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By varying the gas pessues, he lifetime of orthopositronium at ze&o pressue can be extapolated. The
resultwas
I'®P (0-Ps) = (6.8 +0.7) pusec *
This ageeswith the resultof Ore-Fowell*.
The hyperfine splitting was measted in 1952, still by M. Deutsd and his colleagues [34].By using mag-
neticfields (Zeema effects) ad radio frequencies (f quenching tecdhniques), hey found

AVP = (203.2 4 0.3) GHz

In good ageemaet with the theoretical expectatin. Note that the precisbn is suficient to test e presence of
the annihilation potential contribution to the hyperfine splitting.

The first meastement of the paapositronium lifetime was peformed n 1967 by Hughes [36], with the
result

P (p-Ps) = (7.99 & 1.00) x 10° sec™*

in ageemat with the Prenne-Wheele result.

Later, many transitions were obsaved, in good ageemet with the theory. For example, n 1975 [40], he
Lamb shift was measted at

AVSP = (8.628 £0.006) GHz
Avih . = 8.625 GHz

where the first order radiative orrections acount for 231 MHz to Avt: .

The ageemet between expaiment and theory is excellet. Even if the accuacy is not formidable, in view
of the theoretical @mplexity, and of the may different typesof effects atead/ included, his was a geat success
for QED.

1.2 Current Situation (2002)

A peculiaity of positronium physics is he recurent occurence of ”puzzled: at different stages, disepaicies
occuredbetween theory and expeiment. Ultimately, those disappeaad trough corrections to the mmputatons,
or more caeful meastements. The recollection of the historical developments can be found in many places ad
we b not intend to presett it here [85], [87]. Instead,we directly state he nmost recant achievemants, but it
should be clea that mayy groupswere involved, especiayl on the theoretical side, ér the computaton and
recomputatbn of the mayy loop diagamsnecessgy for high order radiatve crrections.

1.2.1  Experimental Achievanents

The latest expémental results br the deca rateof the paapositronium are

7.99 (11) x 10%sec™? Yale (Gas), 1967 [38]
op, =< 7.994(11) x 109sec™ Ann Arbor (Gas), 1982 [42] (1.3)
7.9909 (17) x 109sec™? AnnArbor (Gas), 1994 [56]

4 By that time, the Ore-Powell prediction was not the only ometlte market. The0% accuracy of the Deutsch measurement was
sufficient to discriminate among the various theoretical corpons.
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The orthopositronium lifetime is exp@mentally simple to measuwe, being 1000 times lager than the paa-
positronium one. Resultsof various goups ae

7.0450 (60) psec™! London (Gas), 1978 [41]
7.0310(70) psec™! Mainz (Vacuum), 1987 [46]

rep, =< 7.0398(29) psec? Tokyo (5702 Powder), 1995 [57] (1.4)
7.0514(14) psec™! Ann Arbor (Gas), 1989 [49]

7.0482 (16) psec™! Ann Arbor (Vacuum), 1990 [50]

The most recent Ann Arbor and Tokyo results ae mutualy exclusie. This is known as he orthopositronium
lifetime puzzle®. Note al® that the medium usediaries. It is nstructive t represat the evolution of the
expeimental meastements over the last hree decadesRefaences b the original expeimental works can be
found in [101].

Yea | IR, Technique Year 'SP, Tedhrique
1951 | 6.87) gas 1978 | 7.05Q13) vacuum
1968 | 7.293) gas 1978 | 7.12212) vacuum
1973 | 7.26215) gas 1982 | 7.05%5) gas
1973 | 7.27515) gas 1987 | 7.03%7) vacuum
1976 | 7.1046) Sio, 1987 | 7.051413) | gas

1976 | 7.092) vacuum 1989 | 7.051414) gas

1978 | 7.0547) gas 1990 | 7.048216) vacuum
1978 | 7.0456) gas 1995 | 7.039829) SiG,

Graphically, the decease i the meastedrate isobvious (theoretical predictions ae discussedithe next sec-
tion)

I(0-Ps), psec

7.35}
73| |
] l . Second
7.05[ 7.0475 o-Ps
) 7.045 Lifetime
Ore-Powell First o-Ps Puzzle
7.2} Lifetime
Puzzle 04—t L
7.15}
} 1989 1990 1995
7.1} i l
O(a) Corr. 7.05f I i ] t ’
.
1968 1976 1978 1982 1987

Gas expaments ae peformed atvarious pressues, ad then the result is extapolated b vacuum, assumg
a linea depaendence. In principle, the close to zero pressue one can get, he more precise is he result. h
practice, a ompromisehas b be found becausehe eficiency of positronium formation quickly degeasesvith
the pressue. Typically, at1 atnmosphere, as may as 25-50%gf the incoming positrons bind into a positronium.

5 Infact, it should be called the second orthopositroniumtiifie puzzle. In the mid- and late seventies, a similar Sdnaccurred. It
was later resolved in favor of the smallest lifetime measenet.
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The Tokyo expaiment usesSiO powde. For grained mateials, the same satey as br gases ould in
principle be used namely the meastement at various densities, and then extrapolation to vacuum. However,
there is mncern that the extapolation to zero density may not be linear for powder, because psitronium is
formed nside he powder grains. Vaying the density only acmunts for the effectsof the abmic collisi ons once
the positronium has escapeché gain. Therefore, different data analysis tedniqueshave to be desiged. The
Tokyo metod doesnot rely on any sort of zero density extrapolation.

In conclusion, there seema be aguments for the Tokyo result,while the consistency of bath the gas ad
vacuum meagemeits of Ann Arbor is in their favor. The situaton is unclear and further measuements ae
necessyy.

Concerning hyperfine splittihg meastements, the nost recise datdack o the late sgenties- ealy eighties.
It was Pund, including the other measuwed ransitions,

Name Splitting Expaiment [GHZ] Reference
AvyP 135; — 115, 203.3875 (16) Brandeis, 1974 [39]
203.38910 (74) Yale, 1984 [43]
AVTE 235, — 138, 1233607.2189 (107) Stanford, 1989 [48]
1233607.2164 (32) Stanford&Bell, 1993 [52]
AVSP 2’5, — 2°Ry 18.5041 (100) (17) AnnArbor, 1987 [45]
18.49965 (120) (400) | Mainz, 1993 [53]
AVS® 238, —2°P, 13.0013 (39) (9) AnnArbor, 1987 [45]
13.01242 (67) (154) Mainz, 1993 [53]
AVS® 235, — 2Py 8.6196 (27) (9) AnnArbor, 1987 [45]
8.6284 (28) Brandeis, 1975 [40]
8.62438 (54) (140) Mainz, 1993 [53]
AVS® 239, —2'P, 11.181(13) 1993 [54]
11.180 (5) (4) 1994 [55]

Other expeimental results nclude te stug of the Zeema and Stak effects, test®f discrete ymmeties
C, P, T ad CP, CPT Ky settihg uppe& boundson 'Sy — vy or 381 — ~v,vyy7, by the analysis of angular
correlations in 2S; — yvyv,...) [44], [51], seach for new light particles (axbns, SUSY,...), seech for the mirror
universe, seech for positronium molecules, etc. fose studies lie@mewhat out of our main concerns, and will
not be discussetiere.

1.2.2  Theoretical Achievanents

The paapositronium and orthopositronium decy widths ae

5 2 3 3 2
h _a’m o 9. 1 o' 3a° 51 o 1 o' 3
Fp—Ps = 2 (]—AP;—’—QQ lna—}-Bpﬁ—%ln E—}-Cp?lna—}-&hﬁ—i—(’)(a)
= 7.989620(13) x 10%sec™!
2 (7r2 — 9) a a?_ 1 a?  3a’ 1 a® 1 a?
th _ 6 2 3
ro—Ps = amT<]—AO;—?lnE+Boﬁ—gln E+Co?lna+65fyﬁ+0(0[ ))
= 7.039965(10) psec '
with coefficients
A, =5— 7r2/4 A, = 10.286606 (10)
B, = 5.14(30) B, = 44.52 (26)

C, =—7.919(1) C, =5.517(1)
84, = 0.274(1) 85, = 0.19(1)
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The 64, and &5, are the antributions from the four photon and five photon final statesrespectiely. The paa-
positronium result ageeswith the expeiment, but the grecison is not sufficient to testO (az) radiatve wrrec-
tions. For orthopositronium, the theoretical value teds o favor the Tokyo group result,but agan, expeimental
precision is not sufiicient to test he O (042) radiative corrections (see pictte in the previous sectn).

The hyperfine splitting is computed b the sameorder, but with an analytic result

7 af8 In2
Avyy = mo/‘{———(——i——)
12 7 \9 2
a? 5 , 1367 5197 5, (221 , 1 53
t—3 (—ﬁw 1na+—648 ~ 36" —I—(mw +§> 1n2—§§(3)>
3

o 7T 9 9 17 217\ 4 3
+7r3 (—87r In a+<3 In2— 90>7r Ino +(’)(a)

~ ma*[0.5833 — 0.3933a — 0.2083a° Ina — 0.3928a — ...]
203.39169 (41) GHz

Q

This result exceedshe expeimental valuesof [43] and [39] by 2.6 and 3.5 expeimental standard deviations,
respectiely. The diseepancy is not too seious, but new measwuemaents would really be welcomed.

Concerning references, nost papes cited h the ”Positronium Theory” sectbn of the bibli ography concern
the computaton of a pat of the decg rateor hyperfine result. The latestresults ae presented in [124], [130]
and [131].

Other theoretical predictions have been obtained. In summay (see [132] ad references citedthere)

Name Quantity Theory

Avys 138, — 115, 203.39169 (41) GHz
Avpyeo 238, — 218, 25.42469 (6) GHz
AVLyman | 2281 — 135, 1233607.2222 (6) GHz
Av 235, — 23R, 18.49825 (9) GHz

Av 235, —23P, 13.01241 (9) GHz
AVLamp 235, —23P, 8.62570 (9) GHz

Av 238, —21p, 11.18537 (9) GHz

Tp-ps 1180 — 27,4y | 7.989620 (13) x 10%sec™!
Ty ps 139, — 37,5y | 7.039965 (10) psec !

Same Peculiarities

The positronium peturbative seieshave two peculiaities: arrections inIn « appea, and the overall conver-
gence israther slow. In this subsecton, we intend to explan qualitatively why, leaving more refined quantitative
argumants to the next sectbn.

The sbw convergence featue is raced o the contribution of so-calledbinding graphs

€ e

\/\/\/y\/\/ \/\/\\/Y\/\J
VAVAVAVAV,

Y Y
po VAVAVAVAV pos \/\/\Ay/\/

which acaount for roughly 80% of A,, [69] and roughly 90% of A, [75], respectiely. These diagamshave many
interestng featues, ad we will discuss dout them late. For now, one can undestand that sud diagams ae
important becausehe exdianged hoton is abinding photon, i.e. it is respnsible for the binding of the electon
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and positron. For sud photons, the naive munting in powers of « fails. More precisey, the dynamicsof the
abowe process is sutthat, for eTe™ nea the mass Isell, there is ahuge ehancement factor, compensating the
additional coupling constant.

Logaithmic corrections aise typically from *would-be” infrared sngulaities, i.e. shgularities occuring if
the electon and positron are on-shell. For example, he following diagams ntroduce bgarithmic corrections
[74]

ANV <

Y Y
AN

Y Y
= RRYAVAVAVAV )
€ Y € Y

In the first casepne can see hat logarithmic IR divergenceswill be introduced if be mnstituents ae on-shell
becausef the intermediate elecbn and photon propagabrs. At low momentum, however, sud divergences ae
cut-off by the binding energy £z = M — 2m = —ma?/4. Hence, ymbdlically, one can understand thatIn o
corrections can arise from integrations like

~me dk Epg
— =—In— —Ina
~—Ep k m

That logarithmic correction is a ®ft-scale effect, i.e. @sing from very soft momentum integration.

Similarly, the two-loop photon vacuum plarization insation in the seond graph introduces ax? In o cor-
rection [70]. To see it,one justhas b know that the fourth-order vacuum plarization has treshold singularities
behaving like

4m?

] —_— ?
where ¢? is the momentum transfer flowing through the diagam. In the case depictedn the figure, that mo-
mentum is¢® = M? = 4m? — m2a? hence

a?ln

Am? | 2=m? a?
a21n]——2 q—>M a?ln —
q 4

It is important to note that sud logarithmic corrections ae really specfic to baund stateobsevables for
all of them, logarithmic corrections like In a or In Zaw occur. They are intimately linked b the binding energy
(mass defect). fie curent approac to these orrections ishowever quite different in that it useshe languageof
anomalous dimensions and renormalizaton group flow [128].

1.3 Theoretical Description d Positronium Decay

Now we turn to the theoretical desdption of bound state deggs. It is not immediatey obvious how to extend
the quantum medanical formalismsor the Bethe-Salpeteone, thosewere suited ¢ the computaton of energy
levels or wavefunctions. To descibe a decy process, sme kind of model has b be cwnstructed. Usually, suc
model will i nvolve the bound statewavefunction in an essetial way, so that all the previously cited formalisms
will still be important.

A good model (or scheme) is a mdel allowing for a paturbative expaision. The lowestorder appoximation
should be well-defined, while corrections should be obtained in a systematicway. These wo points ae not so
eay to meet. hdeed, asve will see, issuesf double counting plague decacomputatons. Futher, there ae
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many difficulties assciatedwith gauge nvariance and infrared divergences. Fnally, the relevance of the lowest
order approximation is often problematic, aswill be expsed at lagth in the next chapte.

1.3.1 Pirenne-Wheeler Fomula

The simplesbf all decay formulahas atead/ been encountered it is the Prenne-Wheele formula ([60], [61])

[(Ps = m3) = = |$(0)? (10,0 (e~ €* — 7))

2 +1 (£.5)

Uper—0

with |¢ (0)|? the Strédinger wavefunction. This formularelates he decg rate b the scatteing of the con-
stituents atrest. The limit v,.,, — 0 enforces he correct selectin rule, i.e. p-Ps — (2n)~y and o-Ps —
(2n +1)~, because me™e~ pair atrest ca decgy into two (three) ghotons only if in a total spin 0 (1) state.
The results br the paapositronium and orthopositronium decy rateshave aread/ been discussed,swe will
be very brief and concentrateon p-Ps — ~y+.

The lowestorder result isobtained from (3 = E/m with E the center-of-mass eergy)

ona? [2(38 = (8 = 1) )10g [8+VF =] g2y
4m?2 54(’32_]) _53 2 _ 1

+

olee =) m =

Withv,..; = 261/6% — 1, wefind

g dma?  ma®

m2 2

I (p-Ps — yy) = [¢(0)]

Radiative Corrections

The computaton of the radiative corrections to p-Ps — vy was atieved by Harris and Brown [65], [69],
[99], using the ebowve formalism. The diagams ontributing, up b one-loop, 1o the scatteng cross sectin are

—_— —%\/\/\Q\/\, —

SE ¢ P P, |
— — *47\/\@/\/\/

B WF, WF, |
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with in addition the dossed pocesses. fiefirst one (') is the tree-level. Detailsof the calculatbns ae in the
appedix A.1.3, and we quote

2
I (p-Ps —v7) = |$(0)] o [1 - = (5 - 7T—) + m} (1.6)
™ 4 Urel
The massn and coupling constant o are renormalizedby the SE and P; » diagam,respectiely.

Note that ome IR divergences poportional to v,..; have been cancelledby the limit v,..;, — 0[99]. This
cancellation is a selectin rule cancellation: the IR divergences no!) (eTe~ — ) (firstorder) cancel aganst
the IR bremsstahlung divergencesof o(® (ete~ — yyv). Since tis last decg cannot contribute for an initial
15, state, he correspnding IR divergencesof o) (eTe~ — ) disappeawhen the initial ete~ pair is in a
LG, state.

The shgularity for zero relative velocity is als an IR divergence, @ming from the diagam B, the binding
graph. The reatmat of this divergence is special.r fact, it has b be doppedbecause it is abady included h
the wavefunction. Indeed, he wavefunction acmunts for all the Coulomb photon exchangesbetween the e e~
The 1/v,..; comes fom the Goulomb part of the photon in B.

In a smewhat different reasning, foll owing Harris and Brown [69] (see ale Schwinger [7], vol.lll, pp99
and Merzbacher [3], pp249),one can remender from non-relatiistic quaitum medanics that the long range
Coulomb interaction between the e™ e~ modifieswavefunctions as

270 Upey

@ O)F = ¢ OF +——ares = [ OF (] ﬂfm)

rel

where  is the initial e™ e~ wavefunction entering the scattering proces@ot to be confusedwith the bound state
wavefunction). This correction factor is called he Ssmmaefeld facor. As aresult, he Prenne formula $ould
be written

I (Ps—ny) =

2J+] |¢(0)| (410"’5[0-007“ (67 €+ - TL’)’))’UTCZHO

where, b order a,

Coul (— + o
o~ (e e —wrw)(]—{—U

rel

The final form for the correction is now simply

L (p-Ps—77) = —5— [1 - % <5 - T)] (1.7)

1.3.2 Convolution Formula

To avoid the kind of pathological velocity singularity encountered @owve, a nore sphisticated nedel has b be
built. To express be amplitude ér the bound state decang into a given final state, m termsof the amplitude dr
its e~ e™ constituents to scatte into that final state, fe first step is ¢ relate he positronium statevecor to the
constituent statevecirs. This is done through a convolution integral (see ér example [17], [24]):

|Ps (J)) \/_/(dkgw( (1.8)

\/ﬁﬁ (le” k&) @le (-%.€))), e .y

The statevecbor of the bound state iste sumof the combined statevecbrs of the constituents weighted by the
momentum space Swodinger wavefunction for the bound state. r the positronium ground state,

_ 8y
009 =00) o L
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with ¢ (0) the configuration spacewavefunction at zeo sepaation and 42 = m? — M?/4 (m the electom mass
and M the positronium mass). hie \/2FEy and v/2M are justnormalizaton factors for free states

Ip) = \/2E,a] [0)

and ¢, ¢’ stand for polarization stateswhich combine to give a ttal spin J to the bound state.

This formula edibits two important featues :first, the constituents are alays on-shell We ae just aver-
aging over residualvelocity, with weights given by their respectre probability to occur inside he positronium,
i.e. by ¥ (k). On-shellnessof the e~ is alo obvious from their statenormalizaton. Seond, non-perturbative
effects are introduced non-relativisticalijrough the function ¥ (k).

From the expesson of the statevecior of the bound state pne ddines he amplitude ér its decy as

VoI \/ﬁ M(e (k&) e (-k, &) — nfy)&g,%] (1.9)

Now the amplituderside be convolution integral is a scatténg amplitude. It ca be treated usig quantumfield
perturbation theory. Finally, the width is calculated as

M (Ps(J) — ny) = x/_/(dkgw(

1 1

2
3751901 | 8 M (Ps(J) —ny)] (1.10)

I'(Ps(J)—ny) =

with 1/n! the symmety factor for the final stateof » identical photons.
In the static limit, i.e. when k = 0, the convolution formula is equialent to the Prenne formula (1.5).
Indeed, if he velocity-dependent part of the scatteng amplitude isneglectedwe can apgroximate

M(Ps(J) — nv)

Q

( (fl){gw( >> P a(e 0.8).e% (0.6) = m)eer

5(0) (%M (e (0., (0.6) — nv>§w)

Q

When integatedover phase-spacehe facor in brackets is poportional to [v,¢0 (e~ €™ — ny)]

Uper—0"

Radiative Corrections

If the static limit isnot taken, one can expect hat the smeang introducedby the convolution will kill t he
velocity divergence encounteredbefore. This is indeed he case, |&d it is interesting to see h some detailhow it
happes (see [84], [87]). All bllows from the recusive property of the Sdrddinger wavefunction

4Tam 1
v (p) = e /( 2lb(q)

which is the Bethe-Salpeteequaton with a Coulomb ladde photon as kenel. Graphically,

@/\i Coulomb

(1.11)
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Now, lodking back at he binding graph, one can see hat when introduced n the convolution integal, its
Coulomb piecewill reproduce he lowestorder result

A0 AL

Mathematicaly, the Coulomb part of the diagam B, when the mnstituents have momentumk, has a piece like

K|

2
B ~ =L arctan i + ... (1.12)

K|

This is of order « sincey = ma/2. Now, when convoluted with the wavefunction, the integal is

/d3k ¥ (k) [% arctan% +..|=1+0(v)

This explans how the lowestorder is recovered. Therefore, by consideing only one-loop graphs,onefinds (1.7).
There is al® a staightforward relation with the Sommerfeld facor. If the tem (1.12) is expaded aound

v =0, one gets
27y ¢ k| 7wy 7«
— arctan ~— &~ — & ——
K| vk 20

This is a ontribution to the amplitude. Wen squaed, te result (1.6) is éund. Obviously, this singularity
originates n the improper ordering of the limitsy — 0, v,.¢; — 0.

1.3.3  Bethe-Salpeter Loop

Using Bethe-Salpete(BS) analyses,one stats with a four-dimensional integal [87]

d*k
M(Ps—ny)= [ )

Tr {0 (k) Toeare (6 (P/24+ k) ™ (P/2 — k) — 1)} (1.13)

with T's..¢: the off-shell scatteing amplitude ad P the positronium momentum. For example, m the caseof
p-Ps — vy, itis

% %
iey” +ievy” ieyH
R S 'Y}

The BS amplitude (1.13has a bop-like stucture. This becomes appeent after identification of the BS vertex
[19]

* * .
Pscart = €1,63, {zefy“

7 P P 7
\I/(k):}é—+%}0_mr35 (54—/675—.%7]3) %——%P—m
Hence
d*k % _ %
M(PS — ’TL’)/) = /WT’I" {FBS (-) %_ % P_ mrscatt (6 e+ — ’rL’y) m} (114)
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In this representation, the BS vertex is an effective form facior for the bound state. Gaphically, for the caseof
p-Ps— vy

Barbieri-Remiddi Reduction

As is well-known, the BS equaidn cannot be lved exacy, and one has b rely on some appoximations
for the vertex (or wavefunction). The nost popular one for positronium is that of Barbieri-Remiddi [73],which
can be viewed as a dur-dimensional generalization of the usual Shrédinger wavefunction. In general, the
wavefunction is appoximated as¥ (k) ~ 6 (k,) % (k) in (1.13), ® that the decg amplitude is gien by a
three-dimesional integal representation (see br example [87], [113]).

Specfically, the Barbieri-Remiddiwavefunction (BRW) is

Wo,em (p) = 21D (Wo, p) (Ep — Wo) [As (P) lsmA— (P) (—70)]

2K,
Wow
Ep—l—m wp+ 0¢ (p)

where 0, sm denotes he gound state, spi s, m. The ddinitions ae

E, = p?+m?, Wo=M/2

1
D(Wo,p) = :
pg— (Ep — Wo — 28)2

Al(p) = %&[Epﬂm—v-pm]

For the wavefunction spin part

0 1 0 o-e,

where e, is the polarization vecbor of the orthopositronium state. Faally, the Sdrddinger wavefunction at the
heat of the BRW is as usual
8y
o )
To recover the three-dimesional convolution integal, it sufices b note that the energy-depedent part of
the BRW is a delta-function representation

Y (p) =

(B, — W,
lim D (Wo,p) (B, — Wo) = lim i (Fp = Wo)

=ub
wp— Wo wp"Wl)pg — (Ep — WO — i€)2 (pO)

whichanmounts to neglectig the binding energy in that pat of thewavefunction. Inthat limit, up to normalizaton
factors, the decg rate is

d*k 1

M (Ps — ny) ~ (27r)4¢ (k) Y5

Ir {(1+7) P (m— K') Iscare (¢~ (k) €™ (k) — nv) (m+K) }
(1.15)

k
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with & = (Ey, k), k' = (Ex,—k) and P = ~® for parapositronium, P = ¢ for orthopositronium with polariza-
tion vecor e*. The (1 + ) P factor is the sph part of the wavefunction. Note well that compared b (1.13),
the scatteing amplitudel’,..,;; is now evaluated ér an on-shell electon and positron.

The Starting Point

In general, there is geat latitudem the treatmet of the grojectors. Usually, those ae simpliied ©[121]

M (Ps — n) \/_/ o Sw( {]%PI‘SC@” (67 (k),e" (=k) — nfy)} (1.16)

The difference between both formulasbeing treated as p#urbations. Sud a simplfication of the projectors
is very delicate,becauseof gauge nvariance issues ((1.15) is gaugevariant thanks to the m— £’ and m+ k
projectors on both sidesof I's..¢¢). However, the formula (1.16) ishe stating point of most modern applicatons.
This is probably because (1.16) cebe obtained simpy from (1.9)by working out the constraint £, &' — J.

Note well that this formula is suficient to oktain the leadihg order approximation for the deca rate.Hence,
it appeas as a god paturbation basis. Futher, it is rather simple shcev (k) is the Strddinger wavefunction.
In other words, summig only the effectof the Coulomb instantaneous interaction into the wavefunction is
sufficient. A similar situaton occus for energy levels, shce the Balme formula is arather good appoximation.
Wavefunction energy depaxdences,or depature from the simple @ulomb Scrddinger form, or corrections to
the sph and projector parts ae treated asrélatiistic) peturbations. They are typically of the order of m/M,
i.e. . To therelativistic corrections, one must addadiative corrections o the scatteéng amplitudel’,.,;. For
instance, order o corrections ae simpl computed usgig (1.16) asve have sea in the previous sectns. At the
end of the day, a consistent perturbation basis isbuilt.

This closes be review of basic formulas usedd compute decg rates n the standard appoadh. We have
readied avery general form (1.13). 9 general, in fact, that appoximation methods ae compulry. Practically,
simple expressons ae used, ad a onsistat perturbation theory is built. Further, the non-relativistic QED
(NRQED) effectve theory gives a gstematicsa this peturbation theory (see br example [16], [93], [105],
[109], [110], [112], [123]). Thisis the tod used h all recent advances n positronium physics, ad more generally
in QED bound state lheory.




Chapter 2
A New Basisfor QED Bound States

The present chapte is the core of the thesis. It onsistsof three man parts: (1) he contradiction of standard
appoaches with analyticity, (2) the reslution of the problem and (3) applicatbn to various pocesses. fe
resultsof this chapte were resaated in our papes [29], [30], [31] axd [32].

In the first pat, problemswith the standard appoach peturbation theory are exmsed. It is siown that the
standard basis tiosen is inappopriate, because it isn contradiction with a fundameatal theorem of Quantum
Field Theory (QFT), namel Low’s theorem. The predictions of the standard basis br the energy specta of
the photons produced n the annihilation of positronium are wrong. This first result isvery straightforward in
the context of dispasion relations. To be more precise we will clarify the appoximation done in reducig the
Bethe-Salpeteloop into the three-dimasional convolution formula used as a pieirbation basis. h this way, the
effects expaded peturbatively will be characteized.

In the seond pat, an alternative sdhemeof computatbn is presented. It anounts basically to a dhange of
lowestorder amplitude. @mpaed b the paturbative expasion in the standard appoad, this new lowestorder
amplitude is anon-perturbative resummatn of an infinite classof corrections. This resummatn will be shown
to be essatial in order to dealwith soft photons. Indeed,in the standard non-relativistic QED (NRQED)
approach, there is an inonsistency in the treatmentof final state photons when their energies areof the
order of the binding energy, becaise the NRQED momentum scaling rules areviolated.

To be ale to useour new basis n practical applicatins, a simple omputaton method will be proposed.
We will show that our non-perturbative bound state decaamplitudes ee simpl related b basic QED pocesses,
easily dealtwith using QFT peturbative tedniques. At he end of the dgy, a consistat, well-defined lowest
order basis br QED bound state decacomputatbns isobtained.

The final sectons contain the applicatbn of the mehod to various processes. fie analytical properties of
the amplitudese analyzed and ageewith Low’s theorem. Futher, the behavior of the seies expasionis better
than in NRQED appoaches. Fhnally, extensions to ather bound state poblems (psitronium formation, radiatve
transitions, hyperfine splitting,...) ae briefly discussed.

2.1  Critical Analysis of Standard Approach Decay Formula

The puposeof this secton is to analyze te reducton of the four-dimensional Bethe-Salpeteloop (1.13)

M (Ps — ny) = / d:; Tr{W (k) Dscare (¢~ (P/2+ k)™ (P/2— k) = n7)} (2.1)

(2
to the three-dimesional convolution formula (1.16)

1440
V2
where ¥ (k) is the Barbieri-Remiddiwavefunction and v (k) the Sdirédinger one. Let ugrecall hat thereducton

usualy proceedsby appoximating the energy part of W (k) asW (k) ~ 6 (ko) ¥ (k) and neglectng some k
dependences h the projectors. Then, the standard appoad is to treat he difference between both formulas

M (Ps —ny) =V2M / (;il){g ¥ (K) ;gk Tr { Plocon (7 (k). €™ (=k) — nfy)} (2.2)
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ashigher orde peturbations. In other words, (2.2) is he basisof standard peturbation theory for decy rate
computatons.

Our goal is o use dispesion relation techniques b seewhether the above choice for the lowestorder is
appopriate. Als, concerning the many effects expaded peturbatively, we want to addess he behavior of the
saies expasion. The information gahered in the present secton will motivate he form of the new basiswe
propose n the next sectbn.

2.1.1  Problematic Properties of the Convolution Formula

We would like to answer the following questdns, which we divide into three classes.

Factorization

The basic factorizatioof the bound state gnamics fom the annihilation process. Aswe have sea, the
four-dimensional loop (2.1) is essatially a loop modelwith a form factor for the bound state (see (1.14)Under
that form, both the bound state ad decg dynamics &e intimately linked. On the other hand, the convolution
formula exibits a higher degee of factorization of both processes, sce te integration is only caried over
three dimesions.

Another way to lodk at this reducton is to remak that in the loop (2.1), he constituents ae off-shell, while
in the convolution formula, he mnstituents ae on-shell. It is crucial to analyze how the off-shellnessof the
constituents can be reintroduced péurbatively stating from (2.2). This is especialt important in view of the
present theoretical mnsideration, atorder O (a2). Indeed, he non-perturbative phenomena respnsible for the
off-shellnessof the electon and positron inside he positronium are of O (a2) (since positronium mass nmus
twice the electon mass iof that order).

Violation of energy conservation Positronium being abound state, M < 2m (M the positronium mass
and m the electon mass). h (2.2), the total energy of the on-shell electon-positron pair entering the scatteing
process i2vk? + m?, clealy greate than A7, and getting worse ask increasesr the integration. The same
obsevation can be made bout all the convolution-type formulas. A interpretaton for this fact would be
welcomed.

Projectors and Gauge Invariance

The enforcement of gauge invariancenay be problematic. This is nore tednical. In general, one has b
project the electon-positron parr into a spn state ompatble with the total spin of the bound state. Tis bound
state spi state is usuayl treatednon-relatiistically, introducing some mtential threats 6 the gaugerivariance
of the decg amplitude. Mre precisel, Ward identities are satisied if there ae projectors on bath sidesof the
scatteing amplitudes, likedr example as

Tr{P (m—F)Lscare (e~ (K) €™ (k) = ny) (m+K)}
Inthe static limitk = &’ = (m,0,0,0), this collapses
Tr {2m2 (] +’YO> Prscatt (67 (m7 0) 7€+ (m7 0) - TL'Y)}

and one recognize the projector of (2.2). As aresult, it appess that (2.2) is gaugenvariant only in the static
limit. If one is interested in the lowestorder staticresult, (2.2) is jusfine. If one wants t go beyond it, cae is
neededm the reatmat of the projectors.
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Another source of gauge ivariance poblems aises fom the form of the Bethe-Salpeteloop itself (2.1).
This is in fact more problematic. © understand it, it suffices © remenber that to enforce he Wad identities,
one needs cacellation among the various amplitudes antributing to a given process (ér example, lere is six
diagams ontributing to o-Ps — ). Becausef the momentum depedencesof the form facor (i.e. of the
wavefunction), this cancellation is spoiled, and the Ward identities are violated.

Analyticity

The last, ad more important point, is the analytical behavior in the soft photon limithe consequacesof
gauge ivariance ae well-known: one getsvery tough constraints on the stucture of amplitudes n the form of
Ward-Takanashi Identities. For instance, any amplitude ivolving an external photon, M = ¢, M*, mustverify
the Wad Identity &, M* = 0, with &, the photon momentum and ,, its polarization vecbor. In addition to gauge
invariance, shce ayy probability amplitude is a analytical function, M* (&, ...) admits a Latent expansion in
ead of its variables. Itwas F.E. low who, in the fifties [204], first realized bat the Wad identity resticts the
form of the first two termsof the Lauwrent expansion in the extenal photon energy.

Low’s theorem is a nodel-indepandent result,valid to all orders: for a cmomplete amplitude e wft-photon
limit only depends on the quantum numbers of the extenal paticles, and not on the detailsof the intermediate
subprocesses. Athe level of obsavables, he low-energy end of the photon spectum isobtainedby combining
the amplitudebehavior with that of the phase-space. e most characteistic specta ae

— Charged particles and photons in external staféise well-known bremsstahlung emissbns lead b an

amplitude n 1/k for & — 0 (k is the energy of one of the emitted potons). At the deca rateor cross
sectbn level, the IR divergent amplitude geerates baracteistic IR divergent specta.

— Only neutral self-conjugate bosons, including photons in external st@esamplitude isn & for & —

0 (k is agan the energy of one of the photon). This statemat is mud stronger than what is ©metimes
thought of for a non-bremsstahlung process.On general ground, it shaes that feeling cofidentwith an

IR safe computation is theoretically incorretR safey at the aoss sectin or decy rate level is ddinitely

not sufficient. When one constructs a nodel desigied © descibe some pocesses aong neutral bosons
and photons, one must esure that the amplitudevanishesin the ft-photon limit.

It will be shown in the foll owing that the staadard appoach amplitudes & in contradiction with Low’s the-
orem, at eal order. The origin of the problem can alread/ be explaned from the occurrence of on-shell charged
paticles in the intermediate stage.nteed, nodels deived from Bethe-Salpete analyses,or from QED non-
relatiistic effective theory (NRQED), alvays connect he processof annihilation of bound charged paticles ©
that of scatteing of real, agmptotic charged paticles. The difficulty with suc apgroaches is hereby appa-
ent: ayymptotic and bound charged paticles have drastically different radiation properties: te former exhibit
bremsstahlung-typeradiations, while the late do not radiate zeo energy photons (for very low-energy photons,
a positronium state is just aeutral, self-onjugateboson, hence it doesnot radiate i that limit). Inthe literature,
it is assumedHat the intermediate barged paticle bremsstahlung radiatons ae dispsedoff simply by project-
ing onto the required positronium spin state. Tis is indeed he casedr the shgular part of the bremsstahlung
radiaton, but not for the mnstant part. In other words, Bremsstahlung radiatons typically lead b a Lauent
expansion for the amplitude as

M (k) = O (1K) +0O (1) + O (k)

Low’s theorem stateshat both the temsof O (1/k) and O (1) must disappeag204]. While the cacellation of
O (1/k) terms is aubmatic from selectdn rules, hat of O (1) terms is mud more delicate. Athe end of the
day, the amplitudes faild vanish in the ©ft-photon limit.
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2.1.2  Dispersion Analysis of the BS Loop

Most of the previous questins can be answered simpy in the context of dispesion relations. To begin with, let
us take adur-dimensional loop model with a general form facor.

A Generalized Loop Model

Basically, we assume alp structure for the decg amplitudes, similato the Bethe-Salpeteloop. Positro-
nium decys into avirtual electon-positron pair which subsequetly annihilates nto realor virtual photons (an
odd number for ortho-states, aeven number for para-states). fie wupling of the positronium to its constituents
is descibedby a form facor Fg, times a Diac matix structure consistent with the bound state quatum num-
bers. Remak that a onstant form facior would anount to conside positronium as a pint-like bound state. As
we will see, Fg is in factrelated b the bound statewavefunction.

For parapositronium decyg into two photons, our model isrepreseted

The correspnding amplitude is

dq .. i v i -
M (p-Ps — v7) Z/WFBT"‘ {’75mrgcmm}émezu (2.3)

with P the positronium four-momentum and Fg = Fg (qQ,P- q) the form facor. The tensor I'*? .. is the

scatt

scatteing amplitude ér off-shell e*e~, with incoming momenta 3 2 — ¢ and £ P + ¢, into two photons :

Fgcyatt = rgcyatt (e+ (%P - Q) e (%P+Q> - ’7(11)7@2))

= iey* iey” +iey” e (2.4)

1 2 .
A—%P+li—m d+5P—th—m

Remarks :

1) The nmodel is exteded b orthopositronium decgs through the replacemat of 5 by ¢.

2 ) The electon and positron in the loop are never on-shell, becauseM < 2m.

3) Fg contains all the information about the bound state. Let usgstulate adrm for this coupling as (n
the positronium center-of-mass fame)

Fp = ChoF (¢0.a%) (d® +7°) (2.5)

with C a constant, and v2 = m? — M?/4 related o the binding energy £ = M — 2m. In QED, Eg
and v arerelated o the fine stuctue mnstant asEp ~ —ma?/4 and 2 =~ m2a?/4.
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The Loop Model Reproduces Standard Decagnglitudes
We can stateour result n three steps (detailg@found in the appadix A.1.1). First,we ddine
Im7 (P?) = ImM (p-Ps (P?) — 1) (2.6)

with the absorptive pat given by the two vertical cuts

Then, using an unsubtracted dispesion relation (see [6], [219]with s = P?2:

1 [ ds
2\ __ 2y
(T (M?) = ReT (M?) since M < 2m), and changing variables, one recovers a facorized form (i.e. a
convolution type amplitude):

3 F 2
Mp-Ps =) = 5 éwl;a = Q(E?;k L1 o 0 B o (4 10} (2.8)

with " given by I'y7,, (e~ (k) ,e™ (k') — ) €15, and k = (Fy, k), k' = (Ex, —k), i.e. the samd’y . as

scatt

in (2.2). Finally, if one further identifies

C = VM/m
w(k) = ¢0‘F(07k2>

by neglecting the k dependence in the projectors (m— §') and (m+ k), (2.8)reducesa (2.2).
As a orollary, the energy-dependence of the form facbor is denonstrated b be irrelevant. Indeed, ke
dispesion relation fixesg, = 0. From now on, we will simplify the notation and identify # (0,k?) = F (k?).

Discussion

First, facbrization appeas simply as a maifestaton of the optical theorem: te appeeance of on-shell in-
termediate states is expectetthe imaghary pat. The dispesive integal ’shifts” themoff-shell: the amplitude
at the physical pint s = M? is puely real, i.e.only off-shell et e~ circulate nside he loop. Also, the appaent
non-consevation of energy is explaned, shce he dispesive integal is done abng the logp model imagnary
pat cut, where the initial energy is indeed suicient to get on-shell constituents. In other words, the standard
approach convolution amplitudes e mnstructed like h ”old-fashioned peturbation theory”. In the context of
guantumfield theory, their natural framework is dispesion theory.

Semnd, the spn projections ae treated ovariantly, sincewe took the BS vertexI' g s with its spin structure
replacedby 5 or £ (Fs (q0,9q) is a scalg), areplacemat dictatedby the bound state poperties under parity
and charge mnjugation. This allows us b identify the correct @variant spin projectors for the ete™ pai,
and to preseve manifest gaugenvariance. This is more adequate sce it is the nmoving electon-positron par
annihilating into photons that mustbe constrained b the required sph state.

Using dispesion relations to reduce he BS loop has he great adantageover approximate mehodsof being
exact Stating with a four-dimensional BS form facbor or vertex function I'gs ~ Fg (g0, q), the dispersion



22 Chapte 2 A New Basis br QED Bound States

relations alone enforcgy = 0, i.e. the energy-dependence is setad zero, and no approximation for the energy
pat of the wavefunction are needed. Tis allows us b work in a formally relativistic environment; standard
Quantum Field Theory techniques ae thereby applicale.

Finally, when there is avirtual photon, or for threeor more photon deca chanrels, e standard appoach
formula appees hopelessy wrong, since it neglects all he oblique cuts

Indeed, it is imprtant to realize hat only the vertical cutsneed b be mnsidered © reproduce (2.2). Sice

Cutkoskirule implies hat all the cuts musbe taken into ac@unt in order to produce aalytical decy amplitudes,
there is no way, usng the standard formalism, b get analytical results. h other words, a peturbation theory

stating with (2.2) as be lowestorder basiswill predict incorrect ghoton specta.

2.2 Lowest Order Decay Amplitudes

We have just sea that positronium amplitudes ge built as loop amplitudes: lte positronium couples © a vir-
tual eTe™ loop, to which a given number of photons ae attatied. This loop structure is essstial, because
obligue cutshave to be included. The coupling of positronium to its constituents is essetially deteminedby the
positronium quantum numbers and wavefunction. Since he Sdirédinger wavefunction contains the effectsof the
exdange of infinitely many Coulomb photons anong the constituents (in the ladde approximation) [73], these
effects ae included als in the form facbor. This choice of |owestorder basis slves all he problems metioned
in the previous sectn.

A very simple metod can be usedd effectively compute sub logp amplitudesany lovest order loop am-
plitudewith a Coulomb form factor is the derivatiweth respect to the positronium mass of the corresponding
point-like amplitude By point-like amplitude is meft the loop amplitudeobtained by replacng the compli-
cated @ulomb form facor for the bound stateby a constant form facior. Symbdically, for parapositronium
(orthopositronium) decg to an even (odd) number of realor virtual photons, the amplitude is
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where ¢ represents the Sdrodinger wavefunction form facor, i.e.

and da$ed photon lines stad for Coulomb photons.
The loop amplitudewill constituteour new lowestorder basis br perturbation theory. Its propetieswill be
discussed lateon. Extension to higher orders will be briefly commented at he end of the chapte.

2.2.1 A Simple Formula

Let us expess matematicaly the previous qualitatve assgion, using the languageof dispesion relations. The
point-like loop amplitude (sbsaipt p) can be computed fom its imaghary part

Im7, (PQ) =ImM, (Ps (PQ) — n'y)

using an unsubtracted dispesion relation with s = P?2:
T, (M?) = ReT, (M?) = %/OO LQ Im7,, (s) (2.9)
amz S — M
(7, (M?) = ReT, (M?) since M < 2m). The Sdwodinger form facior which acmunts for the non-trivial
coupling of the bound state ¢ its constituent is of the form
8y
T (@)
where one canreagnize ¢ (q?) = ¢,7 (q?) as he fundamental (n = 1) S-wave Sdrodinger momentum space

wavefunction. When expressedn termsof the dispesion relation variable, this form facbr is only a function of
the initial energy s (see appadix A.1.1):

Fp(0,q) = Co,F (a®) (a® ++°) with F(q?) (2.10)

327y
°s— M?

The core of the deivative appoach emeages fom the obseavation that inseting £z in (2.9) is eqwalent to
taking the derivative with respectd 172

FB (S) = C¢

Toow (M?) = l/+°o % g (s)ImT,
Coul T S s — M2 B P
1 [t ds
= (32aC — ——TIm7,
( ®,7) = /4m2 (s—M2)2 P
hence
5]
TCoul (M2> = (327’(0@50’)’) m,]; (MQ) (211)

which s the desiedresult. The casef other parapositronium decg channels,or orthopositronium decy modes
is similarly treated (simpf replacey® by ¢ with e* the orthopositronium polarization vector).

Remak that the form factor is insated drectly into the dispesion integral, and not in Feynman amplitudes
(like in (2.1) or (2.3)). These wo approaches ae equvalent only in the punctual case (@nside the momentum
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flow through the form facior in eat case). Wrking at he level of dispersion relations is mud more in the sprit
of the Bethe-Salpeteequaton. Indeed, he wavefunction is exracted fom the four-point Grear’s function, i.e.
in configurations with an off-shell bound state (Aove threshold), and on-shell constituents:

2= 2 2= 2
pi=m pi=m

The pictue sows that both the Bethe-Salpete vertex and the dispesion integal (2.9) make usef the form
factor Fig with the same Kiematical onfiguration (diagramswith bremsstahlung radiation off the electon
lines ae treated simildy). Further, we have sea thatbecausef the momentum depadence of the form facor,
neither (2.1) nor (2.3) is gaugenvariant. Now, since the imagnary pat of the point-like amplitude is gauge
invariant, the decg amplitudes ee constructed n a manifestly gauge fvariant way.

The properties of our approach will be discussed abé end of the present secton. Before, we will give wo
illustrative examples.

2.2.2  First Example: Parapositronium to Two Photons

The point-like amplitude ér the decg p-Ps — ~+ is obtained by replacihg the positronium and its Coulomb
form facor by an elemantary, point paticle with a pseudscala 5 coupling to the electon current (with unit
coupling constant)

L.p
p-Ps
P

plus he adossed pocess. e point bound state amplitude is full relatiistic, and standard loop integration
techniques ca be used. Explicit, the point-like amplitude is (he sibsaipt p is areminder for point-like):

o [ d )
My (-Ps =) = ic? ST 2, ()2 (1)

(2
1 1 1
g h—m o —m = —m
1 1

1
d+th—m —m = —m

ey

+75

Carying the trace,we readily obtain

T, (M?
M, (p-Ps — ) = —8me*e""*7 1y ,la ¢, (1) 4 (I2) p](w2 )
where the dimeansionles$ loop integral form facbor is
2 —1 4m2 . 2 —1/2
- -m = -1 .
7, (P?) (47r)2F [ 2 } with F' [a] = 2arctan® (a — 1) (2.12)

6 This criterion comes in because the dispersion relatior® {€ built on the whole amplitude, and not just the loop fdautor.
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(the form facbor function F'[a] for a < 1 can be ddined from the eowve by analytic continuation). From the
amplitude, be decg width is

m? s wMa? 1492\ [ 4 M2
I, (p-P = 16702 — |T, (M?)|" = 1+— ] ( = arctan® — 2.13
» (D-Ps — v7) mat | 2 ( )| %56 ( +M2> (7r2 arctan 27> (2.13)

where v2 = m? — M?/4 is related b the binding energy £z = M — 2m.

Coulomb Form Factor

To get he physical psitronium decy amplitude ad rate, simpy replace i (2.13) te loop form factbor
T, (M?) by its deivative

O T, (Mm2) (2.14)

ICoul (M2> = (327T0¢0’7) W

where ¢, is the S-wave fundamental state Skrédinger wavefunction at zeo sepaation, and C = VM /m is
obtained by matding the static limit(i.e. v — 0) with the well-known lowestorder resultl’,. ps = ma®/2 (See
Appendix A.1.2). This gives

Co, |2 M
2y _ o | £
Tcout (M ) =—1 [W arctan 27}

The facor in squae brackets is equabt1 in the limit v — 0. Using |<;5O|2 = a3m?/8n, the decy rate into two

photons is
2

5 492\ |2 M
T (p-Ps —vy) = am (] + i> ‘—arctan2—’y (2.15)

2 M2 ) \m
The decy rate is a dereasng function of the binding energy:

2AtanM
[ 2y r

1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2

Y/M 7/M
0.25 05 0.75 1 125 1.5 1.75 2 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Enhanced Convergence

The result (2.15) ontains ome effectof the Coulomb interactions armong the constituents, at allorders in
a. Indeed, usig v? = m? — M?/4 ~ m2a?/4, the form facior can be expaded as (seehe discussin in the
appendix A.1.2)

a®m 42 4 v 16 +3 7P 2
rops =) = 53 (1+35) (-5 aras 0 (38))
a5m o
- 1-2240 2)
2 ( 7r+ (a)
5
~ 2 (1-0.637a+ 0 (a?))
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In other words, he binding energy effects ncluded n our lowestorder computaton already acount for a geat
dealof the relativistic and radiative corrections as peseéted in the literature (see bapte 1), namey,

5

a~m
Fp_ps = T (] — (Srp_ps) (216)
where
_ o' 9. 1 a? 3 4,1 o 1 a?
5Fp—Ps = Ap; + 2a” In E +Bpﬁ - E In E + Cp? lna + (54,7§ (217)
with  Ap = 25326 C, = —7.919(1)

B, =5.14(30) 64, = 0.274(1)

Numerically, we can write

a®mam? (2 M\?
Lpps = S Wz <; arctan 2—7> (] — 5I‘1'U_PS)

with the same sges (2.17) but with the reduced oefficients

Al % 0.5326
B! % 0.607
Ol ~ —3.919

This last form isvery interesting becauséinding energy corrections (i.e.y dependent) are sihgledout, while
the resulting purely perturbative (radiative and relativistic) corrections ae mud reduced. Tis meas that one
could, at leastn principle, expess be decg rate as adwestorder result,non-perturbative in the binding energy,
times arapidly converging peaturbation seriesof radiatve arrections. This is exacty what we have adieved.

Note finally that the corrections obtained here c not originate fom oblique cuts, gice there ae no such
cuts pr the wo real photon decy. Rather, they originate in the may relativistic effectswe ae summig by
considaing a four-dimensional loop model, and from the infinite sumof Coulomb photon contained inside
the form facor. In the appedix A.1.2, te relation between the éove mrrection and the speadig of the
wavefunction (and to the Sommafeld facibor), are exmsed.

2.2.3  Second Exanple: Paradimuonium and Low’s Theoranm

The paadimwnium decy p-Dm — ~ete is the simplest QEDbound state degaprocesswhere Low’s
theorem implicatbns can be illustrated. The paadimwnium is the 1.5y, .~ electomagnetic bound state
[95], [111]. In appendix A.1.4, the decy Ks — ete « is presated. This elemetary paticle decy process
shares may interesting similaritieswith the resent QED bound state case, especiategading the enforcemant
of analyticity.

Following the same steps asrfp-Ps — ~y, we first anside the point-like amplitude
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(plus the aossed diagam)with the result

1—ae
B 160 m? 2
Ip(p-Dm—eTeq) = T / dz., |_’Z,'p(M2,x7)| p (2, ae) (2.18)
0
a 3
with T, le) = 1— °_12(1 —z,) +a.] ——
plarra) Rl bl
- 1 4Am? A4m? 1
1z, [P? = — —(F|IZE || ——
el = o (5] - s )

where m is the mwn mass,M the dimwnium massz., the reduced poton energy 2E, /M, a. = 4m2/M?,
m, the electon mass, ad with the function F' defined in (2.12). hthe limit z, — 0, the speatum dI',/ dx.,
goes b zeo ani as pedictedby Low’s theorem (the amplitudebehaves asz.,, and an additional facor z.,
comes fom phase-space).

Taking the deivative of Z,, to get the corresnding Coulomb form facbr, we find

0
Toow (M?,z,) = (320Co,7) ml—p (M?,2,)
Cop, 1 (2 M 4
= —’L%E (; arctan P % arctan y7> (2.19)
4m? /2
where = 1
v = ()

The decy rate is hen obtainedby replacng Z,, by Z¢,.; in (2.18)

1—ac

. abm 4m? ®p (xy, ac)
r (p—Dm — € € ’)’) = FW dxv T
v

2 M 4
—arctan — — Yy arctan y
T

2v M

0

Binding Energy Expansion and Analyticity

It is very instructive to analyze in some details lis result. @nside the static limity — 0 for the form

factor:

Co,
T (2.20)

In that limit, the standard lowestorder result for the decy rate isrecovered

f%iAI’r%)ICoul (M27$’y> =—1

6 1—a
=0 a’m ¢ plry,ae)
= — dx,y—77 °

67 Jo z2

r (p-Dm — e+e"y)
However, the differential ratedl’/dx., has awrong behavior when z., — 0. The speatum is linea (in ) in the
limit v+ — 0, in contradiction with Low’s theorem. Therefore, it appees that, mntrary to the two real photon
case, he limit v — 0'is far from snoath. It is inconsistant to conside both the oft-photon limit and the on-shell
limit simultaneously. Explicitly, the incompatbility of the wo limits is obvious if z., — 0 is taken first

C M M? M
lim Zeoow (Mz,xv) = — 00 (M + (14— ] arctan — (2.21)
zy—0 M \ 2v 42 2y
C M? 1 4
%o — +t - — 1 +...
M \ 8?2 2 3Mn

= —i
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Mathematicaly, what these onsideations ow is that the limit v — 0 doesnot exist atz, = 0. It should be
clea thatone of the man virtuesof our appgoad is its non-perturbative treatment of -, leading to correct photon
specta.

The contradiction between analyticity and the static limit, i.e. he basis @ound which the NRQED peturba-
tion theory is built, can be tracedback b two different sources.

First, he seond term of Zgow (MQ,:EW) (2.19) mmes fom the oblique cuts nh the imaghary pat (i.e.
processes like-Dm — pt =y timesu™p (7) — ete (7))

First tam :

Seond term :

Those ae te processeseglected m standard appoades, becausetey are formally of order + relatve
vertical cuts pocesses (see (2.19))hi§ is an inconsistent approximation since it is he sumof the two terms of
Tcou (M?, ) that enforces Low’s theorem. This can be see by plotting

2y t
o Uy arctany,
j(x%’y/M):]— M
arctanz—
Y
for M = 1 and variousvaluesof ~
JX.Y)
,),_0
1 e = =
Srm 0L e e e
0.8 [ o T F
P =1 =z
| ' o y=2 ///
06 |~ >
; —// Y20
04 |/ =
02 | 7
. X,
0.2 0.4 0.6 0.8 1

Therefore, two terms that would be treated as different orders in the NRQED perturbati on series are
needed sinultaneously to enforce Low’s theorem.

The seond source of the NRQED groblems is appeent on the picture and in (2.21). The form facbor is not
analytical on the whole phase-spacahen v = 0. As the pictue shows, even if v/M << 1 for QED bound
states, the limit v+ — 0 is not to be taken because it is sigula. A breakawn occus when the energy of the
photon, z.,, is of the order of v/M. Futhermore, as a matteof principle, sice he non-perturbative result is
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not analytic, it cannot be expaded as a gé&s in v, and the NRQED peturbation series isnot to be expecteda
converge. Needlestsay, this is a seious dawback.
Total and Differential Rates

The binding energy effectson the speatum and differential rate anount to overall suppesson. As function
of the binding energy, we have, for a. = .07

dr r
dx
4
14 3.5
12 3
10 2.5
8 2
6 1.5
4 1
2 0.5
X y/M
1 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Thevarious cuves nthefirst gaph correspnd toy = 0, .01, .1, 1, 0o (top to batom). The disbrtions generated
by the form facor on the low-energy end of the speatum ae not appaent, becauseof the speatum function
p(z.,a.), whichis highly peakechea z = 1 — a.. In paticular, the shgular transition from az? to a linea z.,
behavior nea z, = 0 wheny — 0 doesnot appea Note that, as is lhe case dr the two-photon decay mode, it
is the facbr 4m?/M? which is respnsible for the non-vanishing of the rate asy — oo.

More importantly, it can be shown by anumerical integration that the contribution of the oblique cuts b the
total rate isof relative order v and higher (their interference with vertical cut isof order -y, while alone, they
stand at he order 2). In other words, while their presaice is essatial to get a orrect speaum, they can be
omitted if one is interested n the total rate b lowest accragy. The shgular behavior of the speatum is smeeed
out by the phase-spacentegration.

2.2.4 Conclusion

A new lowestorder basis is poposed, abng with a simple omputaton scheme. This new basis is maifestly
gauge fivariant, and formally relativistic. Wewant now to spend some time b analyze he enhanced onvergence
propety, and then the analytical propeties.

To understand why the binding energy correction we ohbtained can be interpreted as pa of the relatiistic
and radiative corrections computed n the literature, it sufices b notice that the first order radiatve arrections
do contain a GCoulomb photon exchange. Futher, some relativistic corrections ae simply generated n our
approach becausehe propagaobrs of the loop are treated exacyl (no approximation for the spnors), and because
the spn part of the wavefunction is taken as @variant. What is interesting is that our approac offers a simple
computatbn scheme acounting for many non-trivial corrections. The remahing peturbation seies onverges
much more rapidly. The special featte of bound state peurbation series, i.e. heir slow convergence, is cledy
identified as ainding energy effect, and we ae now able to factorize it from the stat. Further, it is especialy
clean in sepaating the effectsof the binding energy from the purely radiative corrections. This is of interest,
especialy regading QCDbound states, sice here, the binding energy is not simply related ¢ as.

The nost interesting pat of our result isof course its aalytical properties. That iswhere it isreally supeior
to the NRQED appoach. Therea®n is simple b understand: when a 2ft photon is emitted, he scalhg rulesof
NRQED ae violated. The emitted poton energy is of the sameorde as he binding energy. One can therefore
expect hat aresummatin of NRQED amplitudesvill be necessgy. Let us sedow this arises.
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In the context of NRQED, one would consider the oblique cuts as igsing from higher order corrections,

\ e- e-
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In the seond graph, we have illustrated a pssble higher order reconstruction of the oblique cut. However,
ead of these gaphs is sepeately badly behaved analytically, because at all stagewme is selectig an initial
state madef freeeTe. In other words, for a given vertical cut, he corresmnding oblique cuts ae alvays
introduced ahigher orders. Qoviously, it is only by summig the whole seies hat the emitted jpoton will t ruly
feel the binding of the charged paticles. Ou metod of i ntegrating the loop with its Coulomb form facior sums
a minimal classof contributions © that the amplitude isvell-behaved aalytically. In other words, te infinite
Coulomb photon summatbn contained in the form facor (or wavefunction) is not factorized from the decg
process. Tis is aradical difference between NRQED and our approacd.

The fact hat an infinite summain is necessgy is especialf obvious from the behavior of the non-perturba-
tive resultwe found. The energy spectum of the photon in p-Dm — e*e™~ cannot be expessed peurbatively
as a sees n v. Its low-energy point requires a exact teatmet of -.

In conclusion, NRQED is wnable to descibe the end-points of energy specta, becausef a violation of the
momentum scalihg rules at hose fhase-spacegints. Ou method is a @nsistet resummatin scheme, ad,
being suficiently non-peturbative in the binding energy, the photon spectum bemmeswell-behaved over the
whole phase-space. Wéérefore obtain an analytical basis br perturbation theory. The peaturbative treatment of
higher orders will be discussed lateFor total rates,our method offers a psshility to factorize binding energy
corrections from purely radiatve mrrections.

2.3 Orthopositronium Decay

We now apply our method to the orthopositronium decy to three gotons. This is avery interestng decy
process.

In the first sibsectbn, we shortly recall what is the lowestorder basis dosen in stendard computatons,
namely the Ore-Powell amplitude [63], ad emphasize its aalytical defects.

In the seond swbsectbn, the lowestorder resultwe will obtain by integrating the loop with the Goulomb
form facor inseted will be sea to be well-defined analytically. Further, our resultwill again show that a
perturbation around v = 0 is ill-defined. Al, we will again find that the bulk of the radiatve corrections is
acounted for alread atour lowestorder.

In the appedix A.2, one can find a detailed malysis of the three-fhoton phase-spacencluding tods to
integrateover that threebody phase-spaceumeically. Also, the deivation of the Eule-Heisenberg Lagrangian,
aswell as he explicit expessons for the wo-point photon function to one and two loops axd for the four-point
photon function to one loop are given.

2.3.1  Ore-Powell Spectrun

From the requrement of gauge ivariance, and becausef the quatum numbers of the initial and final paticles
involved (eutal self-onjugatebosons), Low’s theorem predicts hat the decay amplitude must vanish linearly
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when the energy of one of the photons is going to zero
M{(0-Ps —777) “~° O (w)

with w the energy of one of the photons. The squaed nodulusof the amplitude herefore behaves asd (w?) for
small thoton energy. Aside from that, the three-photon phase-space ahe (i.e.with a constant decay amplitude)
gives a diffeential rate as

dl' (0-Ps — v7v)

~ 2.22
T x (2.22)

Phase— Space
with z = 2w/M the reduced poton energy, M the orthopositronium mass. @mbining the amplitudewith the
phase-spacene finds hat the low-energy end of the photon spectum must behave as

dr’ (0-Ps — yy7) 220 3
dz

The standard appoacd at lowestorder stateshiat the orthopositronium dec rate is b be cmmputedwith the
formula

r (O-PS — ’yfyfy) = l |gb (0)|2 (4Ur510 (676"' — fyfyq/))’u 0
3 rel

with v,..; therelative velocity of thee™e~ in their center-of-mass fame, ad ¢ (0) the positronium Sdrddinger
wavefunction at zeo sepaation (m is the electon mass).

It
e
-~

1
0-Ps 3Pl

As the pictue dhows (aossed pocesses i@ not drawn), this formula stateshat in first appoximation, the
positronium decy rate ca be computed fom the static limitof the scatteing cross sectinete™ — v (initial
paticles atrest). Equialently, it is found from the squaed nodulus amplitudedr an e™e~ pair atrest nto yy-.
Summedbver photon polarizations, tis is easiy shown to be [63]

] 2 (l—m)® (-2’ | (1-m)°
+ . 1 2 3
Z, |M <(e © >”rel=0_vy’w)‘ - xix? + x3x3 + x2x3
polarizations

This modulus squeed behaves as a anstant when one of the z; is vanishing (as ca be se@ by using energy-
momentum nseavation z; + z5 + z3 = 2, see appadix A.2 for detailson the tree-ghoton phase-space
kinematics)while it should vanish asz? from Low’s theorem. In turn, the well-known differential rate nherits
an incorrect analytical behavior

dl (0-Ps — yyy)  2a%m

dzq - 9 2 (@)




32 Chapte 2 A New Basis br QED Bound States

where the speatum function is

2

1
Q(zy) = /1 dxo |M ((e“‘e*)WEl:O — fyfyfy) o a
—xz r3=<42—IT1— T

ﬂ2—%)+20—xﬂx1+4rl—xﬁ_(y_%f

21 (2—11)° i 2-2)°

]mm—xg (2.23)

5
- §x1+(9(:c§) nea z; =0

The (hormalized) diffeential rate ca be plotted

1dr
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In the Ore-Fowell model, the photon energy spectum vanishesonly linealy nea zero, insteadof the required
Q(z1) = O (7). In other words, his decy spectum doesviolate he basicrequrement of analyticity.
For completeness recall hat it is tis differential rate hat gives he total width

2(m? -9 !
I (0-Ps — yyy) = %aﬁm since/ dz,Q(z)) =72 -9
0

2.3.2  Point-like Amplitude

The point-like amplitude is be staadard light-by-light box diagiam

plusfive other ordering of the photon insertions. The amplitude ca be found in many places [113], [205], see
appadix A.2. The tensor GA1*2*s descibing the transition from an off-shell photon to threeon-shell photons
of helicity states\; Ag\3 is sud that

243

Z (Gé\él /\2/\3G*/\1 /\2/\3,0¢> —

A1A2A3

[R(123) + R (213) + R (312)]
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where R (123) = R(z1,22,3,a) (z; is the reduced mergy of the photon i and a = 4m?/M?). The R (ijk)
are given in termsof i ndividual dimensionlesshelicity amplitudes as

T @) 2 @) 2
R(123) = 5|E,++(123)| +‘E+++(123)‘ (2.24)
! @) |2 1 | @ (1) ‘2
E 213 E 123) + E 132
+$2$3 0 —a1) | Tl 213)) + 2 Ll (123) + B (132)

(=2 (1=2) | 1 ) (19 i

L))
E 132
.iU%(]—l'l) ‘]—.ﬁg +++ ( )

1z +H+

—+

The helicity amplitudesEi”j .. are complicated functions of z; and a given in appedix A.2. The decd rateof
a point-like vector positronium to three ghotons is hen

1 o

with the threebody phase spacevritten in termsof reduced poton energies asf d®s = M? [ dzqdzo/2773
(see [113], [23], appwlix C.3).

Of special nterest is he behavior of the low-energy end of the differential rate. For various valuesof the
ratio a = 4m?/M? (i.e. of the binding energy £ = M — 2m), the photon spectum, normalized b the total
rate is

1 dI

[, dx,
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Sufficiently close b zero, the behavior is aways like 23, asrequiredby Low’s theorem. Asa increases e z3
behavior is getting more and more pronounced. hthe limit ¢ — oo, the normalized spectim is

1 dl'y osoo D 3 (343 973 ,

— P — _92 i
T, dz, 171 ( 3 T $1>

which s, as expectedhé speatum obtained from the Eule-Heisenberg effective theory [201]

o? w2 1 =
Le-n =55 [(FWF” )"+ g (Fu £ )2]

2.3.3  Coulomb Form factor and Ore-Powell Spectrum

To inset the Sdrddinger wavefunction form facor, we ddine modified helicity amplitudes aaarding to (2.11)

(ijk, M?) = (3270 ) ——= B (ijk, M?)

(n)
E
M2

++4+4,Coul
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The resulting decy amplitude, ad decy rate ae mnstructed asn the punctual case, red we read

2
2 4m R

with R = /dl’ldﬂ:‘g (RCoul (] 23) + Reoul (2]3) + Reoouw (3] 2))

Reoow IS given by (2.24)with B¢ L4+ cou 1N placeof Ei ‘... Integrating over =3, we get he photon spectum
for variousvaluesof a

1dr (Ore-Powell)
r X a—1 )
! } a=1+10"
2 L a=1.01
1.75 £ a=1.05
i :\'-:__ a:l_l
1.5 - a=1.5
a—00
1.25 (Euler-Ileisenberg)
1
0.75
0.5
0.25
“’ 2 Xl
0.2 0.4 0.6 0.8 1 (2.25)

As long asa # 1, the speatum behavior is in z$ close b zero, i.e. roughly in therangez; € [0,a — 1].
The propertiesof this spectum asa varies ae completely similar to thatof p-Dm — vye™e™, and one can show
that the limitsy — 0 and z; — 0 are agan incompatble. Contrary to that casehowever, it is interesting to
see hat becausef the highly correlated hree-photon phase-spacehe behavior of the speatum athigh energy
is strongly dependent of its behavior at low energy. Therefore, the small effectof the binding energy on the
emisson of soft photons acmpletel alters the hapeof the speatum.

Looking at he wavefunction, it also appeas that the behavior of the speatum ca be understood as

Flgd) = —2 =07 (g?) ~ 8% (a) — Ore-Rowell
(g +2)? vy —o00: F(q?) ~8r/y> ~ Constat ~— Euler-Heisenberg

So that the whole range of possble wavefunctions, from the free onstituents 1o the point-like bound state case
is spanned asy varies fom 0 to oo. Correspndingly, one gets he speatum evolution from the Ore-Rowell to
the Eule-Heisenberg one (i.e., he point-like spectum in the limit a — o0).

In the context of dispeasion relations, the contributions originating in the oblique cuts (pocesses like-
Ps — eTe vy timesete (y) — yv(v) inthe imaghary pat, figure b) below) are essatial to maintain a
physical speaum (i.e. h ageemet with Low’s theorem). Agan, thoseoblique cuts ae neglected m standard
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appoaces.Here, they are aubmatically acounted for since they are included i the point-like result.

|
a b
) ie’ ﬁ’“ ) V\S\S\ﬁ’*ﬁ/

q+%P

+5 vertical cuts

+11 oblique cuts

Note al® that the speatum for a point-like bound state athireshold correspnds b the speatum for a ~ 1.05
in the Coulomb form facor case. e bound state decaspecta for a < 1.05 are unattanable in the point-like

bound state case.
Concerning the total integratedrate,we recover the Ore-Rowell result at breshold (oblique cuts ae propor-

tionaltoyanda =1 < v=0)

2 (17.16 2
I'(0-Ps — yyy) = a6mg (%) =4.75x 1071 MeV = OéBm% (7r2 -9)

As a increases He total rate quicky deaeasesrementer a = 4v%/M? +1)

R
272
n2-9
0.8
0.6
0.4
0.2
il
005 01 o015 o2 M?
By anumeical analysis,we found
R 2 2t 7 7 +
5z = (" =9) <1 — 1541257 +122-75 — 889— +1.9210* — — .

For orthopositronium, we can expressy in terms of «, and we find the binding energy corrections 1o the total
rate

9
This seies is b be mompaed  the one presated in the literature (chapte 1), which is

2 2 _ 9 2 3
T (0-Ps — yy7) = a2 =9) (1 — 1212 48025 —502%5 + ) (2.26)
v i T s

2 7-(-2_9 2 1 2 3 3 1 3 1 2
FO_PSZQGm—( ) ]_Aog_a_ln__FBoa__i1n2_+00a_1n_+557a_
9 T 3 « w2 2w a T 2

with coefficients
A, = 10.286606 (10) C, =5.517(1)
B, = 44.52(26) 65, = 0.19(1)
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Again, the binding energy effects appeaaasrespnsible for the bulk of the radiative mrrections atorder «.. Note
that the origin of the sbwnessof the convergenceof the arrections o I',,.p; is clealy identified as oming from
the peaturbative expasion of binding energy effects (see (2.26)).nlother words, he four-point fermionic loop
with a Coulomb form facbr is not well-behaved for v = 0, and that limit appeas as a inappopriate basis br
perturbation theory.

2.3.4 A Simple Ansatz

To descibe the disbrtion of the speatum as he binding energy varies, a simple asatz ca be used. Let us
modify the Ore-Rowell amplitude nodulus squeed as

2 (]—x)2 (]—1:)2 (]—;17)2 3 Z; 2
+ — o 1 2 3 1
> M), =1 —( o or ke sl | | | Grerwcyive

polarizations =1
(2.28)

The rea®n for this form is the following. When only the vertical cut is taka into account, analytical problems
are gaeratedby the virtual fermion propagabrs, which can blow up when the energy of one of the photons
is vanishing. A presciption to avoid this expbsion is to conside that the extenal electons have a masf
M /2 < m. Then, in the static limit,we have (P? = M?)

L,p
e,i . (1
1p > 7 - :Z(EP_]/I+m)
NV pP-fi-m  —Prh—
]‘\7
—%P+l2 P
e
e+

L,v

and similarly for the other propagabr. As long asy? # 0, the propagabrs caanot generate mles. The Ore-Fowell
result isobtainedwith A = 2m, hence te virtual electon propagabr is, in that limit

i(4 P+ ) somgm i (4 P+ m)
—P'll—’yQ —M2$1/2

To replace hose popagabrs by well-behaved ones,we multiply the Ore-Powell amplitudeby the facor

—-P- Zl o I
—P-ly—92 34292/ M2

leading to the preseiption (2.28).

The obvious questin: what is the point in considaing this ansatz,built on the vertical cutsonly, sincewe
know that analyticity is resbred by the oblique cuts? i other words, he vertical cut propagabrs d explode in
the true femion loagp, but any non-analytical term is cancelledby similar divergences n the oblique cuts. The
answer is that the ansatz ca be simpy integated, ad the final form for the differential rate ca be useful or
expeimental fits. Another rea®n is that the analytical properties of the ansatz, as a fuction of v and z;, are
very similar to the true famion loop. Hence, he ansatz povides avaluable toy model, with which to study the
various pahological kinematical limits.
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The differential rateobtained from (2.28) br variousbinding energies is (he analytical exgresson is given
in the appadix A.2)

1dr (Ore-Powell)
= = a—1
I' dx, | a=1.01
/) a=1.05
2 a=1.1
1.75
. a=1.5
1.5 ¢ S a=b
a—oQ
1.25 (Euler-Heisenberg)
1
0.75
0.5
0.25
X

0.2 0.4 0.6 0.8 1

The limit v — 0, reproduces he Ore-Fowell spectum exacty, by construction. On the other hand, the limit
~ — oo doesnot exactly reproduce he Eulg-Heisenberg speatum. Insteadwe get

1 dransatz Yoo 3 (100 )

T dw, =" a1 — 60z, + 2822

to be compaed ©

1 dlg g 5 (343
= x
Up g dzy 1771

973
— — 207z + %xf) ~ z7 (33.63 — 60.88z; + 28.62x7) (2.29)

More precisey, the ansatz orrespnds © the speatum obtained from an Euler-Heisenberg Lagrangian with the
scala and pseudscala couplings of equal stengths

ASEfH,ansatz ~ (F,U,IIFIJ’U)2 + (FMVFN"U'V)z

We db not have an explanation for this peculia fact.

Between the two limits, it is very important to note that the ansatz spectim is noving avay from the Ore-
Powell spectum at a muhb slower ratewhen « increaseshan the true Gulomb spectum. Gnsequetly, the
ansatz canot be used as it stals for fits. Futher, the evolution of the total rate n termsof +y is snmoother here,
leading to smalle binding energy corrections (of order v2 insteadof v, seebelow).

Incompatible Limits and NRQED Expansion

For any valueof a > 1, the speatum behaves asz? close b z; = 0. Explicitly, with the deinition
A=2v2/M?,

dransatz ( 2 6 ) 3 5 4 9142 + 94 +10
- = —am T\ —— a2 "\ V=
da 9 3AZ(A+1) BA3 (A+1)

21A* + 4243 + 15342 + 140A + 75
+x§( e ol TR ) v o af)

x
1544 (A +1)° !
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Obviously, this seies ishighly singuler for A = 0, i.e.y = 0. Inthe samavay as br the decg p-Dm — eTe 7,
it appeas that the limitsy — 0 and z; — 0 are incompatble.

It is instructive to expand the differential rate aound v = 0, as is @ne in NRQED, and to analyze te
various tams. The lowestorder is of course he Ore-Rowell result (2.23)while higher orders ae more and more
singular atz; =0

ar® 2

ansatz — —osz QO (1’1)

dlEl 97

2 5
drg}n)satz 2 6 272 10 22 2
Tl = Ga m 2 —?—?xl—l—(’)(xl)
a® 2 4 22\* /5 43 128 )
ete...

The integration over z; gives heresult

0 2
W = (gzem) (- 9)

2 3 22
e = () (-3 (0+09) 2
r® = 00?7

ansatz

In the teminology of NRQED, the Cre-Powell resultl“g?mtz is the lowestorder, while the rglgm is the first
“relativistic correction”. Even if the behavior of this firstrelatvistic correction is highly unphysicalnea z; = 0,
a IR finite answer can neverthelessbe generated. This kind of correction is obtained, for example,n [99], [107].
A finite result cainot be obtainedbeyond that order, and special tebniqueshave o be desigied b dealwith the
divergences. Quviously, all these dificulties simpy originate in the badly chosen basis br peturbation theory.

To close tis secton, if the exactétal rate is expaded aound A = 0, one finds

2 . , 3., 2% (5T 27, 292\ 4yt
ransatz:(ga m) |:(7T —9)—1(7?' +4>m+ I—Fﬁﬂ' —]510gm — 4+ ...

Finite corrections at eah order are ohtained, he divergence encountered dowe is replacedby log2+y2/M?,
which could be called, agai in analogy with standard bound state teminology, a non-analytic term. Indeed, if
the binding energy is expressedn termsof the fine stucture cnstant, we get orrections of the type

4yt 2+2 e 3
Wlogmwa ﬁlna—alog2
This illustrates sme tetinques usedn NRQED, which armounts to extract su logarithmic corrections, with
the hope that the remaning corrections can be computed peturbatively (notewell, however, thatwe do not claim
that all logarithmic corrections are of that type). All these omplexities ca be circumventedwith the useof our
method .
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2.3.5 A Scalar and Pseudoscalar Resonance Model

We montinueour study of analyticity in three-ghoton decad by taking a nodelwhere the initial vecbor particle first
decas into a (pseud)scala plus a foton, with then the (pseud)scala decging to two photons. Graphically

The couplingsof the scalaand pseudscala to two photons ae

0" PR g (¢"p-q—p ")
P=ptq a,v

0" P,

Qv

92 ("7 p,s)

The oouplings with a photon replacedby the orthopositronium are the same \With g — ¢;). The scala or
pseudscala propagabr is

1
Alp)=———5—
() P2 — MJ% + ie
with Mg the pseudscala and the scala mass e take hem as equdhere). Note that the constants ¢, , g2 have
dimension of 1/mass.

The Photon Spectrm and Phase-Space Singularity

We will study the photon spectum as be masf the virtual reonancevaries. The modulus squeedof the
amplitude (bhere ae threenon-equialent ordering of the photons) is he samedr the scala and pseudscala.
After integration, one gets lhe differential and total rates (he expessons ae rather lengthy, and since the com-
putaton is straightforward, will not be reproducedhere). Of specialriterest is he low energy behavior of the
photon spectum

£ CLR(7CLR—6)+2x3
dr 1202 (ap — 1)

withagp = M2/M2,. As expected e speatum is in z3 near zero. The o singularities atag = 0 and 1 are
interesting. Explicitly, the differential rate at bose mints is

+ 0O (z*)

ap=0 : lg—ﬁx §$2+@x3
B=Y Ta 77 7772 ,
1dr 1 S 8(1—x) 1 )

Thesebehaviors ae in contradiction with Low’s theorem. This problem is due & our computaton, which is
wrong when the scala propagabr singulaity is inside he phase-space, i.e.of az between 0 and 1. In fact,
the speatum, and rate, ca only be ddined for agr = 0, ag = 1, where there is an analytical problem, and for
ar > 1, where the speatum iswell-behaved.
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Before turning to the resolution of the analytical problem, note thatwhen a g — oo, the normalized spectim
bemmes

1dI’ 63
ap — 00 : —— = 3523 — 652* + —2° (2.30)
I'dz 2

which is nealy the Eule-Heisenberg one. In fact, tis is the speatum ohtained from £ =~ (F,“,Ff“’)2 or

£~ (FW}NWW)? The small diffeence between (2.30) and (2.29) is dued the contribution coming from the
interference between both termsof the Eule-Heisenberg Lagrangian.

Resummation and Finite Width Effects

To correctly descibe the processwhen the scala (or pseudscala) mass is smallethan the positronium
one, we will need b sum a infinite classof diagrams. Agan, we find that analyticity requires ®me kind of
resummatin for somevaluesof the paametesof the theory. This is stictly similar to the Coulomb resummatn
(or binding energy resummatn) we ad/ocate b cure NRQED in threebody decgs. Here, the resummatn is
even simple to understand: if the (pseud)scala can decd into two photons, it has afinite width. Hence, its
propagabr, after renormalization, should be of the form

1
p2—M1%+’iMRI‘R—’i€

A(p) =

Graphically, the summatin is

Q- — = s

Repeatng the same emputatbn as dove with this new propagabr

the differential ratebehavesnea zero as

E ~ GR(7QR—6)+2+7G?:& $3+O(x4>
91203, + G [(ar - 1)* + G3

with G = MRFR/MI%S. For all valuesof a g, the speatum isnow in agreemet with Low’s theorem. Futher,
the differential rate ca now be ddined for all e, and exhibit a standard Breit-Wigner shape, like br example



2.4 Applicatonto Other Processes 41

forap = 0.6 and G = 0.02:

dr

dx

0.2 0.4 0.6 0.8 1

The renance appees atz = 1 — ag, while a sharp increase appea for z = ay. For low energy, the speatum
vanishes asr?. If G increases,te Breit-Wigner peakwill decrease ad sgead, ad in the limit G — oo, the
spectum is aga (2.30).

In the physical caseof the positronium, the bove treatmet could apply to the computaton of the paa-
positronium contribution to the orthopositronium lifetime. Indeed, he masof the paapositronium is less han
thatof the orthopositronium. The paapositronium width has b be taken into acaunt. Another applicaton could
be the quantitative estimatn of the scale aomaly contribution to the orthopositronium width. Indeed, his
anomaly should show up inthe scalachannel. This analysishasnot yetbeen done, but is an interesting pespec-
tive because it ibvious that the standard facorized appoach will miss sud contributions. Wewill encounter
agan the scale aomaly in the next secton.

Finally, let us empasize hat the preseat model is not designed © represeant the physicsof the analytical
problem of stendard positronium computaton. That problem has b do with the déinition of the initial state, ad
needs adop modelwith a Coulomb wavefunction form factor (i.e., mntaining a Gulomb photon resummatn).
The possble remmbination of the electon and positron into a paapositronium, afte having emitted a eft
photon is a different problem, which should be treated usig the tedinique of the preseat secton. In other
words, if the Prenne-Wheele formula is usedd compute he amplitudeof the present reonance process, a
incorrect speaum would be found for all valuesof ar and Gg, since it is its teatmet of the initial on-shell
electon-positron pair which is incorrect.

2.4 Application to Other Processes

In this final secton, we present several extensions of the mehod.

First,we pgresent the applicatbn of the mehod involving the photon vacuum plarization. This includes be
one-photon virtual decg o-Dm — eTe~ and the weak decg o-Ps — vw. Also, a mnnection to the scale
anomaly is briefly discussed.

Then, we acommodate he deivative formula (2.11) br radial excitatbns, by consideing the pion decy
70 — ~0-Ps. This is al® the first exampleof a production process.

The next applicatbn is abit different, in that it concerns the speatosoopic obsavables. We ompute he
hyperfine splitting by taking double derivative of vacuum plarization graphs, and using the languageof mass
renormalization.

The sectbn endswith qualitatve descdptions of other possble extensions, namel positronium, dimwnium
high-energy formations and radiative transitions anong positronium states. Fially, the extension of the mehod
to higher orders of perturbation theory is briefly discussed.
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2.4.1 Orthodi muonium and Photon Vacuum Polarization

We now consider the decq o-Dm — * — ete™

The point-like amplitude is easjl obtained in termsof the (divergent) photon vacuum plarization function

My (0-Dm — eTe ) =, (P) (P?g" — PFPY) 11, (P?) % {T(p)y,v ()}

where
1
o e |D 5 4 2 4 9\ dretan ==
HP(P)——mlg-F +3—C+ <]—Z>(]+E>T (231)

with ¢ = P?/m?, mthe mwnmass ad D = 2/¢ — g, + log4mu?/m? in dimensional regulaization.
The Coulomb form facior will be obtained from the deivative of the vacuum plarization, with respect®
pP? =M%

Heow (M?) = (320C9,7) aMg 11, (M?) (2.32)
eCo, [ <6m + M 4m* M)}

arctan —
- M* 2y

32 4 g 72 128 43 }

% 128 v~
M T3 M M2 37w M3

This has te effectof removing the divergence, as it bould. The decg rate is

2 2
T (o-Dm — e+e*) = %%v] — Qe |HCoul (M2)|2
_ a’m 32 v 2 2
= T<]+2)V]—ae]—3—ﬁ+8m—‘

To leading order in v, we recover the standard resultT’ (o-Dm — eTe™ ) =~ o®m/6 when a, << 1. As a
function of the binding energy v/ M, the decy rate is arapidy deaeasng function (the plot is normalized b
one aty = 0)

0.8
0.6
0.4
0.2

/M
025 0.5 0.75 1 1.25 1.5 1.75 2
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For electomagnetic bound states, e binding energy is related b the fine stuctue constant, hence te crrec-
tions can be castmto

5 . 16 64\ o?
T(O-Dm—>e+e*) = a6m<]+%) ]—ae(l—?g%-(wz—}-?)%—}-...)
7T s
5
o S (14 5) V= (1 - 1.70a+1.720% + .

Compaed D the binding energy corrections to the paapositronium two-photon decy rate, he presat correc-
tions ae mud bigge. This is due b the high sensitivity of the form facior function nea v = 0 (see pictue
abowe). Notefinally that the binding energy corrections obtainedhere, atorder «, agan acount for a geat deal
of the total corrections (cmmputed usig the standard facorized formalism),which are

5

I‘LO+NLO (O-Dm — €+67> = O[Gm (] —+ %) V1= Qe (] — 42 +) <] _*_02)
w T

The last faotr contains the radiative crrections to the intermediate jmoton propagabr and to the final e™e™
vertex, and is of no interest for our discussbn.

Scale Ananaly

The decy rate isrelated 6 the deivative of the photon vacuum plarization function. Inturn, this derivative
is related b the scale aomaly [207], [220]. This means that in principle, the decg ratereceves a ontribution
coming from the scale aomaly. As we will see, his contribution is stbleading.

The anomalous Wad identity of interest b us is

e2

1272

0 1
gty () = 5 A (3.

where
A (p*,m?) (p'p” — ¢""p%) = / dzdye’ (0 [T {05 (x) J, (y) J, (0)}]0)

and #¢ is the traceof the improved energy-momentum tensor. The additonal term e2 /1272 on the right-hand
side is he scale romaly; it doesnot appea classicaly. Taking only that contribution into acount, we get he
scale aomaly contribution to the Coulomb form factor

nom 1 € 60@0 8 Y
L5 (M2)=(327TC¢0’7)W{_12W2} M (_§M>

At the level of the decy rate, let us keephe dominant contribution coming from A (p2, m2), and the anomaly
contribution as tie only correction

2

M? +2m? eCo,

1 =
Qe M

[Anom (O-Dm — e+e*) = + Héﬁ;ﬁ” (MQ)

2
L o [ R

T 3r M

Therefore, the scale aomaly acounts for 25% of the cmpletebinding energy correction.
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Note that if, for somerea®n, the anomalous @ntribution was b be omitted from binding energy corrections,
we would write

2 2
raen (opm — o) = SME2Me ATt (u?) g ()
_ a®m Qe 8 v 2
- o (1+5)m1_;ﬁ+...‘
5
_ O‘m<1+%)m1_4ﬁ+...|
6 2 ™

And this is exacty the resultof the staadard computaton! The rea®n for this is rather obscue, probably
accidental.

Nevertheless, a interesting questbn arises: is be scale aomaly a true ghysical mntribution to the decg
rate? h the deivative appoach, the scale aomaly aubmatically shows up,while it is not clea how it could
arise in the NRQED standard appoach. We take he point of view that the scale aomaly is not included n the
standard appoadhes. Futhermore, higher orders will never introduce it, ® it is a truly new contribution. The
reasn for this point of view is the following. The anomaly never shows up in the imagnary pat of amplitudes.
The standard appoach in the static limit anounts to conside the imagnary pat at threshold (i.e. the process
is facbrized), hence he anomaly will be missed atdwestorder. Similarly, higher orders ae mmputedby
introducing corrections o the wavefunction or scatteing amplitudesput the facbrization is still used, i.e.one
is agan working at he level of the imaghary parts. Sihce, atno stage in the NRQED process, e loop with its
Coulomb form facbor is explicitly integrated, he scale aomaly will be missed.

This doesnot answer the quesidn, but just sows that our result is dénitely not attanable by NRQED
analyses. At pesent, even if we do not see ay compelling rea®n not to include he scale aomaly, none of the
two appoades is full justified.

To conclude his secton, note well that sud scale aomaly contributions, if missedby current theoretical
computatons, could introduce sizeble corrections in QCD. This is especiall important since lepbnic decys
like J/+ — ete™ arevery well measwed, ad have a cbse onnectionto the ©-calledp — 7 puzzle (seeltapte
3 and 4 for additional details).

Orthopositronium Decay to Neutrinos

To explan the discepancy between the expeimental meastemeit and the theoretical value of the or-
thopositronium lifetime, one wuld invoke an invisible contribution to the width. Sud undetected degapar-
ticles @uld be neutinos, or new, beyond the standard model paticles. Here we present the computaton of the
decy width into an electon neutino-antineutino par o-Ps — v.7., through a Z boson in the s chanrel and a
W inthet channel

We will replace gaugéoson propagabrs by 1/M% and 1/M32,. Then, both point like amplitudes ca be
expressed as

M, (0-Ps — v.T.) = €, (P) (lz, (P?) + ywy (P2)) M2 {@(p) 7y, (1 —v5)v (0)}
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For the Z baoson exchange, his form emegesbecausehe axial pat of the Z coupling doesnot contribute.
One essatially recovers the photon vacuum plarization as form facbor, up t coupling constants

Iz, (p2> _ % (—1 +4251n2 HW) (Hp (6p2)>

with IT, (P?) given by (2.31),Gr/V2 = ¢%/8M3, and My = M cosfy . For the W exchange, he loop
integration has b be done explicitly, using dimensional regulaization (this is compulry, in orde to dealwith
the quadatic divergences). Afte the loop integration, the Dirac stucture v* (1 —«y<) emeages ad one can
factor out the form facbr, agan expressedn terms of the photon vacuum plarization

The Goulomb form factor is of course he same abefore (see (2.32))

2 2 2 4
cou (MQ) = (321C¢,v) g (Hp (M >> — o, [§ (,yﬁm +M*  4Am arctan %)}

OM?2 e M |7 3M3 M4

Replacig II, /e by Ilcow in Ilzp, Hw,, Summig both contributions, one get he lowestorder positronium
decy amplitudeM (o-Ps — v.7,). From it, the decg rate is simpy computed

_ G% . 9 2 2\ |2
T(o-Ps —v. V) = TYeY: (1+4sin® Ow)” |Teow (M?)|

G2.03m5 M2\ 2 32 2 128 43
= B (rasiton)’ (1) [1- o s -

2

2472 4m?2

Atthreshold, M = 2m, we remver the result pesented in the literature [108]. Goviously, this decy rate isvery
small,of the order of

I'(0-Ps — veUe)
' (0-Ps = 777)

This is mud too small © be of any interest.
For other neutino flavors, only the Z exchange gaph contributes,with the sameaesult exceptdr a minus

sign:

~6.1x10718

5 2

G2 3
U (0-Ps = vy Wy 7) = —Eo 0 (1 — dsin® Oy )’ <

2472 4m2

M2>2[] 329y 4% 128 43
This anounts to a suppesson of a facior of about 250 relative to the electon neutino case.

As afinal remak, we note that if the Femi coupling hadnot been used, lhere is a delicate issueoncerning
gauge ivariance. Indeed, he general formalism stateshat to get he orthopositronium decg amplitude one can
first construct the equialent processwith a photon in placeof the orthopositronium. For the W exchange gaph,
this is not the case sice e orthopositronium cannot couple drectly to the 1. Moreover, for the arrespnding
photon gragh, that coupling is important to preseve gaugerivariance. Futher studies bould claify the useof
the deivative mehod in weak interaction processes.
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2.42  Pion Decay to Orthopositronium and Radial Excitations

The tednique of taking the deivative of point-like amplitudes ca be exteded b other spherically symmetic
wavefunctions. The decy 7 — « o-Ps is a gpod example [82]

To get a sasible theoretical prediction, one must sumhe decg ratesover the infinite tower of radial excitatbns
o-Ps(nS) in the final state ¢-Ps (nS) means nth radial excitatbn of the S-wave J = 1 positronium state).
From the standard Scrddinger wavefunction for hydrogen states (see appedix C.1), we can write a geweral
expresson for the form facor for n.5 radial excitatbns as

0 0
ICoul,'n (Ms> = (3271'0@5,”00) |:1F1 (] - '1172,]6’7,% 8M2>:| |:’7,n (Ms> _8M21—p (Ms) (234)
with
m3a3
|¢noo| = {73 Tn =V m? — M’I2L/4

Where we have denoted M,, the masf the o-Ps (n.S) state. e hypergeometic functions are essatially the
well-known Laguere polynomials ((2.34) is equafi valid for parapositronium).

For the case ahand, Z, is the photon vacuum plarization (2.31),where m refers now to the electon mass.
The pion dec rate nto orthopositronium states cabe written as

0 _ 2\ 3 2
Roputnsy = T ot () (1 - 25 1+ 0 (222

(70 — ) 2 m2

The M2/m2 , ~ 10~ corrections aise from the form facbor for pion to two photons. The massatio M7 /m?2 ~
10~*is al® negligible compaed © binding energy corrections, t which we now turn. Up to corrections of order
y2, we can write using v,, =~ ma/2n

at 1 o at 1 1
ROPS(TLS) == ?ﬁ (1 - 2Anﬁn + > = 7$ (] — %Ana -+ >

(the A,, are the numerical coefficients found by expanding 1o, (M7)). Summig over n, we find
044
> Ropa(ns) = 56 (8) (1 = 1.660) = 1.684 % 10°°

where ot /2 =~ (1 418 x 10*9) is obtained from the oontribution of the o-Ps (155) only. For compaison, [82]
found the radiatve orrection to be (1 — 0.92«). The expeimentally quoted branching fraction is [98]

r (7r0 — 'yPs)

— " /| =(1.9+0.3)x107°
(7% —vv) ( )

exp

so the ageemaeit is good.

What this little execise $iows is he power of our mehod as a meato patially compute higher order
corrections. More importantly, it is by now appaent that other, more complicatedwavefunctions ca easily
be acommodated br. Any wavefunction that can be expessed, een appoximately, from deivatives of the
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Coulomb one can fit in our scheme. This may open the way to many applicatbns in QCD, aswe will see in
chapte 4.

2.4.3  Hyperfine Splitting and Mass Renomalization

We implemet here the renormalization of the positronium state. Te idea is 6 conside the bare positronium
massM as equald twice the electon massm, and then to cary a (finite) massrenormalizaton. The dia-
grams ontributing, at lowestorder, to this mass kift will be obtained as he seond deivativesof the vacuum
polarization loops:

o-Ps

Let usfirst obtain the masgenormalizaton equatons, axd then discusshe resultsnumeically.

Mass Renomalization

For a pseudscala parapositronium state, ihe resummatn of the Dyson series is tivial. The paapositron-
ium propagabr is then

2
G (q2) = 2 — M2 —1Lyara (47)

o

Of interest b us is he masskift, defined from the pole of G (¢*)

HPU«”’U« (Mlg%,pa/ro)

2 2 __ 2 —
MRﬁuara — M; =1lpara (MR) — MR para — Mo = oM,

o

(2.35)
For the orthopositronium, the transverse pat of the bare propagadr is

- 5)

Go" (q2) - q? — M@ +ie

The self-mergy of the vecbor positronium will be of the form
1 (¢%) = (¢*9"" — ¢"¢") Woruno (¢%)

Proceedig with the resummatin of the Dyson series,we end upwith

—q (gm/ — ﬂigi)
G (q%) = = Y
q (] - Ha'r‘tha (q )) - Mo

Again, the propagaor pole is atq? = M3, hence

MR,ortho

Ml%,ortho - Mo2 = MJ%HOT‘thO (Ml%i) — Mg ortho — Mo = 2

Ho’r‘tho (MJQQ7OTthO> (236)
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The woequatons (2.35) ad (2.36) ae self-onsistett equatons. By identifying M, = 2m and Mg para(oriho)y =
Mpara(orinoy, they are of the form

1I ara M2
E}}JBU,TU, = Mpa'r‘a — U = P 4(m para) = f;UUa’f‘U« (E%a'r‘a)
E%rtho = Martha —2m= MO;thO Hortho (M(?rtho) = fortho (E%rtho)

Our appoach will be to generate @rrections Eﬁ”“("”h") by plugging the non-relativistic result £ =
—ma2/4 into fpa'ra(artha).

Second Derivatives and Hypgne Splitting

The double deivativesof the vacuum plarization loops ae

1 1/ 0\
Hpara(o’rtho) (M2> = 5 (327‘-0@507)2 5 (W) Hp;pa'r‘a(ortho) (M2>

where a facbr of 1/2 corrects br the facor 2 appeaing in the deivative of 1/ (s - M2)2, while the other
acounts for the double counting of Coulomb photon exchanges.

The mmputatons ae staightforward. For parapositronium, the point-like quadatic divergence disappes
and wefind

BT = A —gm = e jﬂﬂfﬁara)
_ _M l(ﬁ ]>arctan%_%_]
Mm M?2 2v/M % +1 MMy
_ _ma2 _ 9maot n ma® B 115ma’ g
4 128 67 8192

Where we have used ¢, |* = m3a3/8r, 42 = m2 — M2, /4 and Mpeq = 2m — ma? /4 inthe right hand
side. Poceedng similarly with the orthopositronium renormalization, we cnside the seond derivative of the
photon vacuum plarization function:

ortho _— Mortho

B = Moptho —2m = Woreno (MZ.11) (2.37)
1o, |” 4 g (202 g arctan% 2ot iie02
M2 | \77 e VM =

M=Mortho
ma? 2Tmat  2ma® 1301mab

1 T8 T 3r T Rioe
At the order o#, there is al® the annihilation diagam

whose ontribution is TT7™#” (M?) = —i (P*g* — P*P") (Lloou (PQ))Q. Using Ilcow (P?) as gien by

ortho

(2.32), he dominant contribution in the limit v — 0 is

4 4
A a tho, A Mortho 4 mo
Ho’r‘nt'go (P2> = I +to = E;;’T(Q)O = 0; OHOT’%ZO (M(?rtho> = 4 + ...
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Hence the lowest bop contributions to the hyperfine splitting are, © order a*:
ortho ortho,Ann ara 17
ABny = (Bgle + BGay ™) — B = ma [5 + .| =mat[05313 + ..

This is to be compaed  the result (see ltapte 1)

7 a8 In2
ABy = mot]— -2 (2422
hy = ma {12 7r(9+2>
a? 5 , 1367 5197 221 1 53
(- 2rhmo+—r 224 (224~ m2 - 22¢(3
+7r2( 21" TSR T 356 +(1447T +2> n2— 3¢ ))

3
7 17 217
—I—% <—§7r2 In® o + <? In2— %> w3 1na> +0 (a3)}
~ ma* [0.5833 — 0.3933c — 0.2083a% In a — 0.39280 — ...]

It is not surprising that our method doesnot reproduce exactt the above result,becauseave have neglected
many diagams (like eleabn self-energy insetions for example), ad becauseve used te lowestorder non-
relativistic binding energy Ep = —ma?/4 and wavefunction |¢, |° = m3a3/8x as abasis. Taka individually,
the corrections of O (a4) to the paa- and orthopositronium massesra off by more than 50%. Onthe other hand,
the difference between baoth corrections, giving the hyperfine splitting, is suprisingly good. Agan, it seemsthiat
all the effects ontained in the lowestorder loop (with all the ladde Coulomb photon exchanges h the form
factor) suffice b acmunt for most of the radiative crrections. In conclusion, further studiesof the applicatbn
of our metod to hyperfine splitting appeaasnecessgy.

2.4.4 Possible Extensions

We have sea that the paapositronium and orthopositronium are easy dealtwith using the deivative formula
(2.11). It $rould not be difficult to extend the formalism b transitions anong positronium states

Usually, sud transitions ae computed usig the quaotum medanical formalism for magnetic dipole transitions.
Here, we justhave b compute a Fgnman diagam, in a formally relativistic framevork. In any case, le
transition o-Ps — p-Ps + vy is very small ompaed b the decd o-Ps — .

Another simple extasion is the desdption of positronium (or dimuonium) production processes, likedr
example
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The last gaph is to be uinderstood as a sb-process (seehe 70 — Ps production medanism discussedni
the previous sectin). Those pocesses i@ interesting becausehey constitute a heoretical laboratory for the
guakonium production case.

Still in connection with the mrrespnding QCD case, e desdption of higher excited stateshould be
made ssble usihg our formalism. Navely, we can expect hat their deca amplitudewill be computed fom
point-like amplitudewith awell-chosen Dirac stucture

'S0 - Vs
39, Yo
1Pl S qus
5Py ¢ 1
P YuTs

2 Qu v
3P2 : (]u’)’y + qV’Y'u + g q <_g/,¢y + ;2 >

These idetifications sufice D enforce e correct selectin rules (like or example! P; ;3 P-4 ~+). To be able
to extend the deivative formalism,we al® need b know the wavefunctions. Those ae given in appendix C.1,
but not in a very convenient form. In particular, it is not clea at preset how to dealwith the angular part of
thosewavefunction (the S-statewas especiafl simple, shce sperically symmetic).

The final extension we want to mention is the hydrogen atom and the mwnium. In other words, te case
of unequal onstituent masses. fie wavefunctions ae the same ashat of the positronium (except ér the re-
duced mass). Ayway, for unequal masseshe bound state desnot usually annihilate. The only excepton is
(vte”) — 7,v.. Desciption of this process usig the present formalismwill be undertaken in the nea future.

2.45  Higher Orders

At first sidht, the extension to higher orders is staightforward. It sufices b take deivative of two-loop point-like
QED amplitudes. fiis will regeerate te tree-level result, ntroduce all he corrections of order «, along with
corrections of higher orders. Logarithmic corrections will also be aubmatically generated fom the threhold
singulaities of the two-loop (or higher) graphs. For example, e following graphs ae suficient to get he
complete decgrate up b order o

=7 A4 v Y

+ + +

u i i

The tree level result isreganeratedbecausef the Coulomb part of the binding graph (photon exchange between
thee™e™). This is due b the iterative nature of the Bethe-Salpeteequaton (see (1.11)). Nte that the Coulomb
pat of the binding graph als generatesorder o corrections, as expsed n [87].

Unfortunately, things ae less simplédecause pecisey of the binding graph. To seewhat happes, let us
apply our derivative formulaon the two-loop photon vacuum plarization graph (see appedix A.2), evaluated
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at the positronium mass. Weind the Coulomb form factor

2Loo 2 eCo, da 2 5 2

HCoulp<M ) = 7 |:2— ? —gOé 10gOé+O(Oé )

Thefirsttam, 2, is he sighal that ometing has gone wrong. Wewould have expected & instead. e problem
is simple b understand. When one simp takes a devative, the form facor is introduced nside te cut,hence
we generate

L !
’Y.u ze ’YV ’Y“ ° ’YV
L !

l+

This is not correct it is a double counting. Those diagams a&e respnsible for regenerating twice the lowest
order. Insteadwe should consider only one of them,or proceedfirstby inseting the Coulomb form facor inside
the imaghary part. Note that, if naively dividedby two, the two-loop corrections beaome

g (M%) =

eCo, 2 1 4 9
7 ]—7—50& IOgOé—FO(Oé ):|

5 e 4 2
— T (o-Dm — e+e*) _am (] + a_) Vi—ae|1— e logaa+ O (042) (] —I—Cg)

6 2 s 3 by
which agees b6 order o with the standard result. Futue work should clarify the useof the mehod at higher
orders.

Inany case, it Bould be obvious hat the extasion to higher order is possble in principle. The present dif-
ficulty is only technical. Of course,we ae still a long way from an exactorder o? computatbn, necessg to
competewith other computaton schemes. Tis wasnot our objective. Insteadwe think that we have success-
fully constructed awell-defined peturbation theory for QED bound state omputatons.
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2.5 Conclusion

In summay, we have analyzed he QEDbound state decaformalism, using dispesion relations. The two prin-
cipal resultswere

1- The appoximation done in standard appoacd to reduce e four-dimensional Bethe-Salpeteloop is
essatially aneglectof all but the vertical cutof the loop.

2- The four-dimensional loop amplitude with the Goulomb form facor inseted at te level of the dispe-
sive integal, and with a mvariant desciption of the bound state spi, is obtained as lhe deivative of the
correspnding point-like bound state QED amplitude.

Since all he cuts #e needed ¢ preseve analyticity, and since a simple omputatonal scheme is aailable,
we therefore conclude hat QEDbound state omputatons mustbe developed fom anew peturbative basis.
Lowestorder amplitudes onstructed n this way have many properties

1- They are simple b compute, h a formally relativistic framewvork.
2- They are aubmatically gauge fivariant.
3- They sum a infinite classof correction alread at the lowestorder.

4- They factorize the binding energy effects fom the radiative corrections in the peturbative seies, lead-
ing to enhanced @nvergence.

5- They predict crrect photon specta, i.e. spect in ageemet with Low’s theorem. This is impossble
using a peturbative NRQED appoadh.

While the mah motivation for constructing anew basiswas te cnflict betveen NRQED and analyticity
in threebody decds, the mehod can be applied ér will be exteded) b a variety of other processesHhigher
excited statedyyperfine splitting, radiatve transitions,...).

Also, our metod appy to lowestorder amplitudeswhile present theoretical mnsiderations in positronium
physics ae at tvo logps and beyond. As said our goal was b implement analyticity in bound state omputatons,
so it is natural to stat with the lowestorder. Anyway, to be mmpetitive, our metod should have 1o be applied
at o loops now. As we have se@ in the previous sectn, there isno obstruction to this extension, at leastm
principle.

The simplicity of the mehod may be accidetal, but could al® be the sigral of some nore fundamental
physics nvolving Coulomb baund states. Br example, lhe fact hat the deivative of the photon vacuum -
larization contains all the necessey information abaut the positronium binding is very interestng. Futher, the
appeaance of the scale aomaly as abinding energy effectneeds futher study.






Chapter 3
Overview of Quarkonium Theory

This chapte presents the obsevablesof quarkonium physics, awvell as te theoretical destdption of quarko-
nium decgs. It begins with a brief summay of the speatoscopy of heary quak-antiquark bound states, iad of
the annihilation modesof the quakonium ground states. Ten, the standard theoretical ramevork for the de-
saiption of quarkonium annihilation is developed fom the positronium annihilation one. Finally, the theoretical
predictions ae compaed D the expeimental data, ad the stong coupling extaction is peformed. All the ma-
terial of this chapte is standard, and just seves b set he stagedr the next chapte, where binding energy effects
will be introduced as a ae for the standard appoach analytical defects.

This chapte is not intended b present the history of quarkonium physics. Qily the notions of interest b us
are introduced. Al®, the nodern framevork of quarkonium theory, i.e. non-relativistic QCD (NRQCD), will
not be discussed. fAis omissbn hasno consequece, he simple omputaton scheme pesated in this chapte
is a goad illustration of more adranced tebiniques. h particular, the basic factrization hypothesis is cetral to
all models. Futher, the formulaswe will derive ae still used m many practical applicatins. For reviews on
NRQCD, we refer to [93], [171], [176], [178], [179], [188], [189], [190], [192]ral references cited lere.

3.1 Quarkonium Physics Observables

3.1.1  Heavy Quarkonium Spectroscopy

In the quak model, a mesn is madeof a quak with an antiquark. Since the quaks ae spn 1/2 fermions, their
as®ciation into a mesn can takeonly specfic quantum numbers. The following teble summaizes he naming
scheme br unflavored mesns [223]

[ s 17— 1 [0 s
JPC 27+ 3T 27~ 1+
25+, Y Leven); YLodd); 3(Leven); 3(Lodd);
ud, vt — dd, du T b P a
a(u@ + dd) + b(s3) 7 h,h' W, ¢ fof
cc Me he J/% w Xe
bb un hp T Xb
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Links between quantum numbers ae

P = (_] L+1
C = (_] L+S
G = (_])L+S+1

with C only relevant for neural me®ns. The c¢ (bZ) meons ae mllectively called darmonium (battomonium
or, lessoften, beauyonium).

Ead 29+1 [ ; state appaawith all its radial excitatbns, as a infinite tower of states. Te paticles names
receve an extension (n.L) with n the analog of the principal quaatum number. For charmonium, the expeimen-
tally obseved statesra [223]

AL, LS| Jgre n=1 | n=2 | n=34,..
IS [0 0 0 7] (192979 7.(25)[3594]
39, 1 17— | J/4(15)[3099]  (2S)[3686] ¢ [4040] , % [4415]
Ipp |1 0 17 | h(1P)[3526]
3P 1T 0t | x,o(1P)[3417]
5P 1% | x4 (1P) [3510]
3Py 277 | x.o(1P) [3556]
Dy |2 0 277
3Dy 11 ¥ [3770] ¥ [4160]
3Dy 2 ¥, [3836]
3D3 37~

4400 - =4415
=4160
= 4040
3900 A
= 3836
TS0 . bb
=-3686
= 3594
3556
=3526 3510
3400 1 = 3417
= 3099
= 2979
2900
nc W(S) W(D) \Vg hn XCU Xcl Xcz

The identification of higher 1~ states asS; radial excitatbns or 2D, states isnot well-estalished. The
occurence of D-states eound 3800 MeV is supprted by the indications for the 3Dy statew,(1D), 2~ —, at
3836 MeV, so that [3770] is probably the 2D, . Another posshility is that the 13 D, and 239, states ge mixed
into the mass eigestatesy [3686] and v [3770]. For the tower of 25, radial excitatons, aremakable featue is
the equal spaog between n-levels (mmpae with the Balme saies, n 1/72). Also appaent on the figure, the
fine and hypefine splitting are sizedle compaed © the spaaig between principal levels. Anyway, all energy
spachgs ae small ompaed  the bound state mass.
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For bottomonium, fewer stateshave atead/ been observed [223]

S, L] s Jgre n=1 | n=2 | n=34,..
150 0 0 0~
39, 1 17— | T(15)[9460] T(25)[10023]  T(3S)[10355],T(45) [10580], ...
1p 1 0 1*
3R 1 0T | xpo(1P) [9860]  xpo(2P) [10232]
! 175 X (1P) [9892] X,y (2P) [10255]
3Py 27+ | Xep(1P) [9913] Xy (2P) [10269]
10800 |
10600 ] = 10580 BB

10400 A
= 10355

- = 10255 = 10269
10200 | 10232

10000 A = 10023

- =9913
- 9860 9892

9800 A
9600 1
= 9460

U’ v hy Xbo X1 L2

9400

Somehigher 1~ statediave al® been obseved at10860 and 11020 MeV. As for charmonium, the identification
of those states a&S; or 3D is not straightforward.

For bath charmonium and bottomonium, the statesvith quantumnumber 1~ are the nmostwell-estalished.
This is simple 6 understand from the expe&imental settng used ¢ detect suk reonances, i.e.ete™ colliders.
A resonancewith the quantum number of the photon is easil found in the s-channel

The disovery of the ¢y and T family was madewhile studying sud channels. The estblishment of x states
is relatively eay becauseof the £1 transition from 35, states. @ the other hand, the singlet states @ rather
difficult to observe, becauselte A1 transition 2S; — 1.9, + v is very weak.

Potential Models

For QED bound states, aon-relatiistic appoach basedon the Strrédinger equaton with the Goulomb
potential gave rather good results br the speatum. For quakonium, we do not know the potential. One wuld
think of the analog of the QED Qulomb potential —«/7, which is for QCD

ag 4045
Vi =-Crr =
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with Cr = (N? — 1) /2N. This effective potential arises fom the graph

Unfortunately, sud a potential doesnot supprt confinement since there is a ontinuum of states (ad, aswe
have said, be Balme seaies desnot fit well the obseved speaum).

To acount for the cnfinement, various phenomenol ogical potentials have been proposed whose paametes
are fitted 1 regroduce he obsaved speaum’ (see [150], [154], [162], [170], [199]). fe most popular one is
the Cornell potential

“ me. = 1.84 GeV, mp = 5.18 GeV
Veornen (1) = —— +or Fit Paametes: a=0.52 (3.1)
T 0 =0.18 GeV?2

At short distance, te interaction is descibed by a GCoulomb potential, while the linea rise is felt at lager
distances, ad is respnsible for confinemeant (note that if the Coulomb part is matdhed © the QCD Gulomb
interaction, one finds s = 0.4, but the scale isot clea). The paamete o is called he sting tension. More
advanced ormshave al® been proposed, h which the Coulomb part is taken as—Crag (1) /7, with ag (7) the
running coupling.

Other forms have been proposed,with no connection to the peturbative QCD mtential. Among them, let
us quote

m. = 1.8 GeV,my = 5.174 GeV
C = -8.064 GeV

b= 6.898 GeV

v=0.1

me = 1.5 GeV,mp = 4.906 GeV
C + b log(r/ro) Fit Perametes: { C = —0.6635 GeV
b=0.733 GeV

Vpower Law (T) = C+b (T/TO)V Fit Paametes:

VLagarithm (T)

whererg = 1 GeV 1 isintroduced br dimensional reasns.

The abowe potentials ae quite successfuhideseibing the spn-indepedent part of the speatum. To de-
saibe the fine and hypefine stucture, QCD hspired mtentials have been constructed (acounting for tensor
forces, spi-orbit couplings,...). h general, the tedinique anounts to the non-relatiistic reducton of amplitudes
to effective potentials. Vaious mmplicated heoretical issuesi@ involved in those studies,ra therefore lie out
of our main concens (see ér example [11], [18], [159], [187], [195], [196]).

3.1.2  Heavy Quarkonium Decay

Similarly to positronium, quakonium decgs either through the annihilation of its constituents or through tran-
sitions to lower states. h this secton, the marse patten of expeaimental branching ratios is preseaited. Unfortu-
nately, this is only possble for charmonium, becausettere isnot enough expaimental information concerning
bottomonium. The coarse patten should however be quite simila for bath (the only new featue is the opening
of the 77~ channel in bottomonium decg).

7 In some cases, the observed decay rates, especially thaieptodes, also serve as input for fits.



In the following, only S-stateswill be analyzed

3.1  Quakonium Physics hsevables

Mass (MeV) Width (MeV)
N, 2979.8 +1.8 13.24+3.5
J/ 3096.87 £ 0.04 | 0.087 £ 0.005
2 (25) | 3685.96 +0.09 | 0.277 £ 0.031

The very smallwidth of the J/v or v (25) is due b the Zweig rule, aswill be discussetbelow. Note that the
7, width is not well-estédlished, shcerecent reported meastementsrange from 11.0 +£ 8.0+ 4.1 MeV [141] to
27.0+5.84+ 1.4 MeV [138].

Then, Decay

The decg modesof interest b us ae [223]

B(n, —»v7)=(30+£12)x10°*
B(n, — had.) =~ 1

Ther, is a pseudscala, like the paapositronium, and therefore can deca only into an even number of photons,
or into at leastwo gluons. The branchings can then be uinderstood simply in termsof the processes

The emitted glans, being colored, hadronize to form the final statehadrons. The relative stength of both
processes igiageemet with the rough theoretical expectatin

2
B, —v7) &6 x 104
B(n.—gg9) of

with ag ~ 0.3.

The Decay

For J /%, the man branchings ae [223]

B(J/v — X) X %o
Leptonic ete 5.934+0.10 :
e 5.88+0.10 Light
Hadronic hadrons (+v)  87.7+0.5 Hadrons
v* = L.H.(+7) 17.0+2.0
Transitions | 7, 1.34+04
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Note that the virtual photon transition to light hadrons (L.H.), aswell as he transition to 7, are included nto the
total hadronic width.

As for the orthopositronium, the J/+ can deca into an odd number of photons. The simplest degamode
is therefore the one virtual photon mode (pboth the photon and the J /% have quantum numbers 1)

e,u,(uds)

3 e, (0,d,s)

The lepbnic modes, asvell asroughly 20% of the hadronic mode ae of that type.

Since glwns ae mlored objects, he mrrespnding one-gluon process is érbidden (the J/« is colorless).
This is the origin of the smallwidth of the J/«, and is called he Zweig rule. Indeed, if he one-gluon mode
were allowed, itwould have awidth of more than a thousand times ¢ a%/a?) the one-photon one. Instead, e
dominant strong decy mode proceeds tirough three glons

We have al® indicated be not yet obseved tree hoton mode, b emphasize he similaity to the orthopositro-

nium decyd. A rough estimate kows that the three-glwn decg branching is of the sameorder of magnitude as
the one-photon one

B(J/v—g99) 10§
B(J/Yv —v* —ete) 10a?

where we have included a faair 1/10 to acount for the threebody phase-space supgsson factor, like for
orthopositronium decy.

Finally, the radiative transition can be depicted

It is the analog of the magnetic transition o- Ps — p-Ps + «, and is therefore quite small.
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Finally, for the radial excitatbn ¥ (25) [223]

B (v (25) — X) X %
Leptonic ete 0.79+0.05
up 1.24+04
Hadonic hadrons(+y)  98.1+0.3
7" — had. (+7) 2.94+0.4
Transitions Y1, 0.28 +0.06
J/¥ + had. 61+4
YX 00 9.3£0.9
YXe1 8.7£0.8
YX 2 7.9+£0.8

Again, the virtual photon mode and all the transitions ae included nto the hadronic mode. The transition
25 — 15 cannot proceedby emisson of one photon (Furry’s theorem). Instead, e bulk of it involves a
two-pion emisson ¢ (25) — J/v 7. Those tansitions proceed hrough two-gluon emisson

Note al® that the allowed ransitions to P-states ge roughly 30 times stonger than the forbidden one to ~y7...

3.1.3  Other Quarkonium Physics Observables

Exclusive Rates into Hadrons

Many exclusie decg modesof then,, J/v and ¥ (25) into hadons have been measued [223]. We @ not
intend to give an acount of them,becausehey are of no direct interest b us inthe present work. Indeed, it isnot
possble to relate exclusie decg modes b the decg modes nto gluons descibed &owe, shce a quatitative
desciption of the hadronization process desnot exist at pesant. Note however that usig the flavor SU (2) or
SU (3) group, one can extract interesting information, sud as for example he relative stength (aswell as he
relative phase)of the one-photon electomagnetic and three-glwn strong decg modes ontributing to a given
multiplet of decegy chanrels (like J/¥ — vector + pseudoscalar for example), see [169], [184]. Agaithere
is no clea quantitative way to relate sub information to the peturbative picture of the heary quak annihilation
chanrels, and we will not detail these aalyses.

Quarkonium Production

In proton-proton colliders, or heary ion colliders, one can seach for the formation of charmonium states.
There ae many different medanisms hat can lead b the formation of a charm-anticharm patr (Drell-Yan, Gluon
fusion,...). The interestof charmonium production hasbeen revived by data fom HERA and the TEVATRON
on charmonium production in high energy ep and pp collisions. Also, obsevation of J/+ supgesson by NA38
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in nucleusnucleus ollisions raises e posshility to explore the phase stucture of QCD. In particular, the
suppesson of J/v production in Pb — Pb callision is sometimes nterpreted as a sital of deconfinement. In
a different context, the charmonium decg channels of the B mesns have may interesting properties for the
study of C'P violation (B — J/¥ K g permits the extaction of the unitary triangle angle 5 in an especial clean
way (no FSI) [18]).

It is in descibing quakonium formation that NRQCD has found one of its greatest successesndeed,
the simple olor singlet model (CSM) is n strong disageemat with expegimental data (he predictions of the
CSM undeestimate e production rates). Let ugecall that the CSM nodel simpl assumeshat the process
of quarkonium formation factorizes as lte aeaton of a free @lorlessQQ par (thus in a wlor singlet state)
followed by its binding into a quakonium state. NRQCD, on the other hand, led b the 9-called ©lor octet
medianism. The production medianismreceies a sigificant contribution from processesvhere the QQ pair is
created n an octet state tpically, by a shgle gluon). In other words, one introduces gnamical glwons into the
guakonium wavefunction. A further successf NRQCD is that, by invoking color octet mntribution, one is ale
to getrid of IR singularities in P-wave charmonium production, for which the CSM israther non-predictive.

For further information on the quakonium production models,we refer to the ebundant recant literature (see
for example [167], [171], [198]rad references cited here).

3.2 Quarkonium Annihilation Rates

In this secton, we llect all the annihilation ratesof heavy quakonia QQ into photons and gluons calculated
in the appedix B.2, and include he radiatve corrections asobtained in the literature. The framevork is that
of perturbative QCD. There ae may references. ®me ealy works ae [144], [145], [146]. Br more mod-
ern appoades, seedr example [11], [147], [149], [151], [153], [164], [167], [191]. ks ae listed h the
bibliography, or can be found in the bibli ography of the cited papes.

The central hypothesis usedd compute anihilation rates is essially the static limit, i.e. be bound state
mass is taketo equal tvice the constituent mass. febasic ormula is ten the old Pirenne-Wheele positronium
one

1
577 14 OF (100 (¢ 7))
adapteda the quakonium case. @e therefore assumedat the quakonium wavefunction, in momentum space,
satidies

I'(Ps—mny)=

Uper—0

v (k) M6 (k)
up o a onstant. We have discussed at tgth the limitation of that formula in the QED case. & instance,
obligue cuts ae completel missed, ad predicted specawill be in contradiction with analyticity.
The raison d’étre of this secton is its statusm current quarkonium physics (seedr example he introducbory
review in [223]). Ou goal is to exhibit various problemsoccuring in the compaison to expeimental data.

3.21  Decay Rate Fomula and Selection Rules

The first thing to do is to translate he basic formula for deca rates b the caseof quarkonium. Indeed, olor
factors will appea. The differencewith the pure QED case isie non-abelian nature of QCD, which introduces
multi-gluon vertices. Al®, the basic selectin rules ae no longer valid. A pseudscala quakonium can decy
into three glwns, eszen without any multi-gluon vertex. The fact hat sut a dec# is not identically zero for
gluons is due ¢ color degeesof freedm: there ae eidt different QCD gaugebaosons. Indeed, he three-
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photon decy is impossble due b the compulsory symmetization of the six pssble pamutations of photon
insertions in the quak current. For gluons, one can antisymmetize sud insetions, provided the color degees
of freedm are al® antisymmetized. With theseremaks in mind, we can proceed ad write down the general
decy amplitude br a quakonium.

For a quak-antiquark bound state, lte statevector is expessed as

|2S+15J> ~ Z |Q Q>

colo’r‘s

with IV the number of colors. The amplitude ishen calculated as

1 —
M8, — X)) = T [P1(Q (k) Q (k) — X)]

with

m, m
}éi—/? Q’Y5§ Py = /64\_/5 Q¢
and the static limitk = (m,0,0,0). The trace is cearied over both the Dirac space rad the oolor degeesof
freedbm. The massn, is the masf the constituents, i.e. he heavy quack mass. Aswve have said, e present
formalism assumesat the binding energy is negligible, i.e. A = 2mg. For electomagnetic bound states
this was a @od appoximation (the difference being of order o), but for quakonia, the expeimental spectum
shows thatbinding energy can be a sizeble fraction of the massVZ. The phil osophy we will f oll ow is, whenever
possble, to expressour results n termsof A£ rather than mg, especialf for the phase-spacboundaries.

In conclusion, the maste formulas br quakonium annihilation rates ae

I (’S (QQ) — ng) = 2J1+]NM2 I60? /C@ S |7 [P (QQ — ng)] |
pol,Col
_ 1
r(’s(QQ) —my) = 2J+m1M2 || /d(I) > jrr] PJF(QQﬁm)”

pol

with [ d®,, the phase-spacentegration.

Remarks

1) Rementer to include a barge facbr for ead quak coupling to the photon.
2) Note that in ead case, lhe final polarization of a gluon or photon can be replacedwith more
complicated expessons. For example, te decg amplitude nto gqq is obtainedwith the sibstitution

* —Yua — o
() = ZF0u {7 0) 7" () ()]

and o on. Of course, he trace h the expesson of M (1S (QQ) — X ) doesnot apply to those facbrs.
They are summedver when squaing the amplitude.Rementoer that if it is a three-glwon vertex which
replaces a extenal gluon polarization, the crrespnding processesvith ghost states mudte included.
Sud stateseednot be consideedwhen external gluons ae attatied  the Q quark current since dhosts
do not couple b matte fields.

3) Decy rates nto photons will always be expessble in terms of the correspnding positronium
decy ratesby a very simple sistitution o« — e2a and a facor N. For decgs into gluons, sme
amplitudeswill collapse b the crrespnding photon ones,but with more complicated olor factors:

Tr [P, (QQ — ng)] — (Color Facbr) x Tr [P;T (QQ — ny)]

Anyway, there is a bt of possble gluonic channelswhich do not exist for photons, shce selectn rules
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are different and since QCD isnot abelian. As aresult, spedic decy amplitudes ee very different in
general.

Inclusive Rate and Duality

The basic decw rate nto gluons has ®mehow to be translated nto obseavables. Glwns never appea as
ag/mptotic statesput hadrons are observed instead. @e usualy relieson duality concepts b relate he gluonic
decq rate b the inclusive hadronic rate. Sub a procedue isonly an approximation. One way to view sud a
change of basis is asdllows. One can view the hadronization as afinal state interaction, so our presetation is
inspired from Waton’s theorem. Let us aalyze te decg 7, into hadrons. The gluonic and hadronic basis @e
related as

qg had, gg — hady  gg — hads  gg — hadz - hady
999 hads 999 — hady  gg9g9 — hady  ggg9 — hads - -- hadz
9qq | = Spuatity | hads | = | gq7— hadi gqg — hady gqq — hads -~ hads
(3.2)
which leads 6
Ne = 99 ne — had,
Ne — 999 ne — hads
n.—ggq | = Spuatity | 7, — hady (33)

It is important to remak that in these érmulas, he glwonic states ee viewed as agmpfotic. As soon asone
is consideing aymptotic gluons, one can introducereal glwnic statesm intermediate stateslis is due b the
optical theorem). Therefore, we will make the additonal assumptin that an exclusve decg into hadons is
factorized into a gluonic decy foll owedby ahadonization transition from gluons into hadons. This means that
one isneglecting non-absorptive effects in a spedic exclusve decg chanrel.

The dhangeof basis n (3.2) is madehirough Spuaiity, the tansition S-matix from gluons o hadons. Sut
a matix is taken as witary, in first appoximation. In the mntext of final state mteractions, tis hypothesiswas
calledelasticity, while in the present context, we will speakof duality. This denomination is justified shce from
(3.3),we directly obtain

. — g9> + 0. — g99° + 0. — 943> + - - = [n, — hadi|* + |n, — hada|* + |n, — hads|* + - --

Note that to leading order in a5, only thefirst taem 7, — gg contributes.
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3.2.2  Pseudoscalar Quakonium Decay

For pseudscala quakonium decy, rates ae [155]

Lowest Qde Deca Widths Radiative Corrections
2 2
20 «
19 48 24% s (I 2 o 3428
o= Q2 T \3 3 -

32 |gol” as

1 oe 2150 _2
So — gg 3 TG Y = Bqg
2

1Sy — YTl 166‘éa3%F (my) not known

64 4 |dp|? . :
1Sy — gqq ?ag e F(my) is a orrectionto 1.5y — gg

where e, is the heavy quak charge, in units of e, A is the quakonium mass ad

/ 2

4 2 2 14+ 4/1—m2/m
F(m)=< ]—m—2 %—4 +2In i
3 1— /1 =m?/m?

me \"Q
with m¢ the heary quack mass £ A/2 here) and B, is given below. Note that theserates &e often given in
terms of the radialwavefunction, which is related o the wavefunction by the spherical harmonic normalizaton

| Ro|?

47

|(150|2 =

Radiative Corrections td.S, — 7y and Velocity Singularity

For all the decg modes, he qutedradiative mrrections omit singular terms in 1/v,.; with v,.; therelative
velocity of the quaks in the bound states. Sutsingulaities cancel in ratio of decgy modes. D be abit more
explicit, let us onside the wo-photon width. Including the radiatve crrections, therate is

1a w2
1“(150 —>fyfy> =T <] — 575 <5— Z))

In fact, tis result isobtained from the Harris and Brown QED computatbn of the arrection to the scatteing
ete” — vy withincoming e™e™ atrest (see leapte 1)

o(ete = 77) =00 (eTe” =) ((1 +:al> - % (5_ %2»

This exhibits the well-known Coulomb singulaity in 1/v,..; of the binding graph. The SSmmerfeld factor
presgiption is to absorb suc a divergence into the wavefunction. In QED, tis is simple b understand since
the Sdrddinger wavefunction is the infinite sumof ladde Coulomb exchange gaphs. In QCD, we assumehat
the same mdwnism is atwork, and asorb sud singulaities into the wavefunction [151]. Then, the QCD
correction is obtainedwith the sibstitution & — a5, since for eat gluon loop insation there is a facor

a 4a 4
thltli = Cpbij = §5ij
l,a
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For example, he quak self-energy is in term of the electon self-energy

40&5

2
Equark @) = Z_Q Zt?ltlai Eelect'r‘on (]5) - g?zelectron (ﬂ)
l,a

The same cabe said 6r all the other diagams (excepd, which is discussetbelow):

a) b) c) d)

and the aossedones.By the way, rementoer that it is the first diagam tat generates he 1 /v,.; singularity.

Radiative Corrections td.S, — gg and Renomalization Schene

It is interesting to discusstie radiative corrections to the stong decg. Sincewe work at the inclusive level,
these orrections include may different final states [151]

I (19 — light hadrons) = T (*Sp — gg) + T (*So — g99) + >_ T (*So — 947)
q

T (150 — gg) (1 +BQ%)

The coefficient By, is given by (in the M S scheme)

o731, 1
B - g A L2 1 9
< (1) ﬁoan+6 1" thz—In

= Byln L= +6.127 - 0.427n,
Q

where 8, = 11 — 2/3n;. This coefficient depends on the renormalization scaley. To be &le to compae te
expressons used various papes, it isnecessgy to discussite scale ad scheme depedence of the wefficient
Bg (). This is the goal of the next few paragraphs.

Sudh a logarithmic scale depadence in the mefficient B, (1) comes fom the scale dep@lence of the
strong coupling constant, hence there isno scale depadence for the electomagnetic decg radiatve correction
coefficients. This can be simpy understood from the diagamd abowe. In QED, it is simply taken into account
by a renormalizaton of the fine stuctue nstant apere — pnys. If @ll internal photons ae replacedby
gluons, the internal UV divergences ad sthieme depedences take aa of themseles. nh the other hand, if
the extenal photons ae al® replacedoy gluons, the picture changes sice extenal gluon vacuum plarization
graphs gaerate sbeme depedences. h fact, the situaton is abit more complicatedbecauseof three-glon

vertices like

— LR

but the mah idearemans correct: nost internal corrections cmmbine into afinite correction, while the remaning
infinite corrections linkedwith the extenal lines ae asorbed into s by a renormalization at a scale., giving
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to bah the arrection B, (1) and the stong coupling a5 (1) a scale (ad scheme) depedence. The momentum
depedenceof ag (1) is descibed in the appedix B.1, abng with the relevant equatons for the running.
Writing this scale depradence explicitl, the corrected decarate is

1 light hadr _2 |§ZSO|2 2 OéS(M)
I' (*So — light hadrons) = vl a% (p) 1+BQ(u)—7T

This scale depadence isrermoved by reddining both B and ag at the cmmon physical scaleof the process,
here 1 = mqg

I (*So — light hadrons) = 5 |?3|2 a%(mg) {1 + Bg(mg

Retaiing tems up b order %, equatig the above two results (ad generalizing to an arbitrary power of a5 for
future use here,p = 2) leads o

ST = ag(u){1+BQ(u)aSTW)}Za’é(mQ){]ﬂLBQ(mQ)@}

= a2 (1= pas (0 52 m |52 ) {1+ Balme) S (1 - a0 g2 | 2 )}

m, &
= a2l (1+ (Batma) —p5 1 [ 22] ) 2 1 0 (03 () )
where we have used tie one-loop running equaton. Equating thefirst and last lines, he scale dep@lenceof B,
is
_ Pl H
Bo(mg) = Bo(u) + =~ In—

In other words, he scale dep@lenceof the correction is entirely deteminedby the scale dep@lence of ag (1),
as expected. fle resulting picture is

B =2 1t x ()

where X is scale ndependent. The numbers n; and ng are flavor numbers, and as he notation suggestsy, is
not necessaly equal b ne. Indeed, heir origins ae different. The origin of 4 is in the number of flavors used
to run ag, while ny depadson the spedic radiative arrections to the process mder consideration. From these
remaks, one can see hat o give B, there is anumber of conventions to fix: scheme flavor numbersn; and no
and scale .Unfortunately, there isno universal ageemet. Let usreview some @nventions usedi the literature.

1) The Grunberg scale The nore natural choice isy = mg
By "9 =6.13 — 0.43n;

since eab gluon caries an energy roughly equal b mg. In this sheme, he wefficient B, depends
onny. Itsvalue for charmonium is obtained with ny = 3 asB. = 4.85 while for bottomonium, with
ny =4, By = 4.42. This is the shhemewe will choose n the present work®.

2) The Barbieri scale Another scale is usetly Barbieri et al.[151] who take . = 2m, to get

B2 =13.8 — 0.89n;

Note that in their original pape, the M S stchemewas empbyed. Futhermore, they used bur flavours in

8 The Grunberg scale is usuallyfiteed so that the strong correction to some specatio of decay modes vanish[e]s57]. In doing
so,u is found to be very close to the natural scalg.
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the running of a.g while only 3 for the n; dependent part of Bg. They obtained

Barbieri __ a(4) 1 1 H 71 31 (3) K= ZmQ
BQ = P9 <§1H47T—5’)’+1nm—@)+€ 2 +ﬁ —1In2 18.76

which translated nto the 37,5 scheme (simpy drop the v and In 47)

. 1 =2m
Bgo,rbzem 6(4)1 K + % +)6(3) ( n2) K 2: 2 10.62
mgQ

For compaison, if ny = 3 everywhere, the orrection is

(3) H 71 31, (3) 4 p=2mg
1 —_—— - —1In2 = "11.13
=y In— . + = " oq" + B 5~ In

3) The Brodsky-Lepage-Mackenzie ScateThe BLM scheme [211]reddines B, at a scale sut
that alln; dependence in B are moved into the stong coupling. This leads ®

BEMM = —0.965

with ¢ = 0.52466m¢g = 0.26233M. Note, however, that it may be a poblem t run the aupling down
to sud a low scale (br Q = ¢, i = 7T00MeV).

There is a cetain relevance in discussig sud schemes. It ismdeednecessgy to have an unambiguousvalue
of the first order coefficient to estimate e convergence of the peturbation seaies . h view of the abowe, the
coefficient varies agny; = 3) 4.83, 11.1, —0.97 respectrely. With an as of around 0.3, the Barbieri presaiption
leads © Bg=2mQ 2s > 1, which is not very convenient for a seies expasion paramete. The BLM scheme is
sometimes adocated asaunanmbiguous stiemewith which to check the peturbation series [211]. Its dawback
is that it is not applicéble when three-glwon vertex loop diagams ae freset.

Photon Spectrm in 1Sy — I~

This is the first occurrence of analytical prodems in quakonium physics. Shce we ae ushg the simple
model of Pirenne and Wheele, the photon spectum is in contradiction with Low’s theorem. This is equaly true
for the glwn energy spectum in 1S, — gqg, but let us takehe electomagnetic mode for illustration, so that
confinement doesnot enter the discussin.

Inthe present theory, the normalized diffeential rate is

1 dl (1S (QQ) — +I717) _«a p (z,m; /mQ)
I (15 (Q@) — 'y'y) dx 3 x?

where the phase-space spean is

[a+2(1 — )] 2

a/ —
11—z (1—2x)*

plz,a)=/1—

with z the reduced poton energy « = 2E, /M.

Close b x = 0, the speatum is linea in z, while Low’s theoremrequres a cbic spectum. Exacty the
same jhenomenon was eécountered in the discusgin of p-Dm — ~yeTe™, to which we refer for additional in-
formation.
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3.2.3  Vector Quarkonium Decays

For vecoor quakonia, the results ae [155], [18]

Lowest Ode Decay Widths Radiative Corrections
38 — =171 167 (e%oﬂ) %G (my) _g%
5~y —ar | r(ede?) DG m Bas
381 — 1y M;_g) (€0 @Llj —12.6=2
81 — 999 160 <;2 ~9) o |§3|22 %nggg
381 — 99 12 (7;2 —9) e aa? @f =By

with

m?2 Am?
G(m):(]+2m2 ]—W%]form<<mQ
Q

The stong radiative correction coefficients 879 and BZ’? are scale depmlent, as or the pseudscala
guakonium two-gluon decgs. The decgs into three glwons and two-gluons plus a poton are corrected as

3 H
999 _ 2 - _ —
Bg® = 260 In g 0.26 — 1.16n;
I
B9 = In — —4.37—-0.77
o Bo an ny

which give, at he Grunberg scale( = mg)

| BCQQQQ Bz)gg
Q=c=n;=3| —37 —67
Q=b=n;=4|-49 -74

As for the wo-gluon mode of the 1.9y, those @rrections do contain different processes. & example,Bgfg
acounts for S, — 3¢, 4¢, g94q, [156].
Let us al® note that the aorrection to the three-photon decd as qutedwithout justifications in [155], [18]

is suspicbus. Insteadwe would expect it b be simpl 4/3 times e QED orthopositronium O () correction,
i.e.

4 ag ag
—=(10.3) — = —13.7—
3( ) s 77r
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Differential Rates

For the threevecbr paticle decg modes, he resant formalism is essdtially the Ore-Fowell one (see [149],
[156]). Therefore, te differential rates ae

dl’ (*S1 — v77) 64 eQ
) 7 |ol* 2 (21)
dr (°S1 — g9g) _ 160 3|¢ 0 )
dxy - 81
dr (351 — ggv) 128 5 gl
day = g caadsym(n)
with agan
- 1— 1— 1—
Qz1) = 2(2 $1)+2( $1)2$1+4 ( 2x1) ( ) In(1—zy)
Z1 (2— 1) x5 (2—z)°

5
§$1 + O (:c?) neaxxz; =0

This speatum is in contradiction with Low’s theorem, hence canot be correct. For further information, we refer
to the discusgin on the orthopositronium decy.

The interestof the contradiction with Low’s theorem is geatl enhanced n quakonium physics. @ntrary
to the orthopositronium case both the speatum for J/% — + + hadrons or T — « + hadrons have been
obseaved, and disageewith the Ore-Rowell prediction. Wewill analyze hat fact n the next chapte.

3.3 Analysis d Inclusive Charmonium Decay

In this secton we use e theoretical decg ratesreviewed in the previous secin to extract information from the
expeimental data br the charmonium, and, when applicale, for the bottomonium. The kind of information that
can beretrieved ae the stong coupling as, ratios of wavefunctions, and predictions for yet unobseved nodes.
The appoach followed is nspired from [155], [167].

3.3.1  Pseudoscalar Chamonium Decay

The ratio of the two-gluon rate b the two-photon rate is, hcluding radiatve crrections taken at the scale
wRmg R M/2,

I' (1S (QQ) — Light hadrons) 902 as
r (150 (Qa) —>fyfy) - 8a? {] +8.2 }

Using the r;, expeimental valueswe can obtain the stong coupling and the 7, wavefunction as:

as(m,) = 0.30+0.04
|Ro|> = 4m|¢o|® = (0.33£0.11) GeV?
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The aror quoted is puely expeimental. The neglected temsof order o ~ 0.1 give an ideaof the theoretical
errors.
If one useslte scaleof Barbieri et al. (but in 47.S), the arrection to the ratio is

I' (1S (QQ) — Light hadons) 9 a2 (2mg) as
T (15 (QQ) — 77) =3 @ {]+14'467}

which is ahuge @rrection (in A S, the mefficient is 22.3). Solving for ag(2m.) givesas(2m.) = 0.266.
When run down to m.., we getas (m.) = 0.34. At the scaleof the charm, the scale arbiguity generates éhuge
ambiguity of order o% ~ 0.1, which is the theoretical eror quoted dove.

Finally, a more recent expeimental detemination is [138]

B(n, = vv) (28+1.1)x10°*
I'(n, — hadons) = 27+7 MeV

giving the samevalueof ag

ag(m) ~ 0.31
|Ro|> = 4m|¢p)* ~ (0.65) GeV>

3.3.2  Vector Charmonium Decay

Vector Chamonium Radiative Decay into Hadrons

The rate for vecor quakonium decd into electon-positron can be used ¢ estimate te rate for hadronic
deca via a photon. Including radiative corrections,

>, (35 (QQ) = v —aqa) as
qI‘(3S1 (Q@) — e+e*) =3 (ei +ei +6§> {] + 7} 2l

A more precise detemination of this ratio uses lhe expeimental electon-positron annihilation cross sectin

o (e+e’ — v(q¢?) — hadrons) T (351 (Q@) — = hadv"ons)

T8 (G0) — e )

2 _
R(q >|q2:Mé§ - o(ete — (@) —ete )
=Mz

For the caseof J/v, R (Mg/w) =25+0.3and
B(J/¢ —~ — hadrons) =25 x B(J/p —eTe ) = (15£2)%

as quted in [223].
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Vector Chamonium Hadronic Width

The ratios we analyze ae, for n; = 3 and the scaleu = m,

LU gge) 109 ad(m) f, | cas(md

(J/Y —ete) 817 jggoﬂ {]+]~GT} (3.4)
L(J/o—g9) _ 36_echa [ as(n)

U(J/y—g99) 5 as(me) {] 29— } (3.5)

where the radiative corrections © ggg include4g, gg4q, and those b vgg includeyggg and vgqq.
To compaewith expaimental datawe would need he meastedvaluesof I' (J /¢ — ggg) andI’ (J/¥ — vgg).
Since hese & wavailable, we will proceed diffeently. First, we write the total J/« width as

Lyt =T (J/0 = ggg)+1 (J/0 = v99)+ > T (J/ =171 )+ > T(J/o =7 — @+ (J/¢ —n.7)
l=e,p q=u,d,s
from which we extact he combination

I'(J/Y — g99) + 1 (J/¥ — vg9)
rtot

Solving equatdn (3.4), (3.5) ad (3.6),we find
{ B (J/¢ — ggg) = 63%

~ 70% (3.6)

B(J/¥ — vg9) = 6.5% 3.7)
ag (me) =0.19

i.e. a quite smalks value. Note that the ygg branching is roughly a tenth of the ggg branching.
One can also work at the Brodsky-Lepage-Mackezie BLM) scalep = 0.157M = £M. Remenber that

this scale is dtned sut that BJ99 is indepedent of n; (for n, — gg, the BLM scalewasy = 0.2611). The
ratios beamme

L (J/% — g99) BLum 10(7*—9) ad(£M) as(§M)

U (J/b —ete ) 81m Zgoﬂ {] -0 } (3:8)
I (J/¥ — v99) BLM 36 _€da as(§M)

U (J/¢—g99) 5 as(EM) {] B } (39)

since the same scalenders B99 independent of n ;. The interestof the BLM scheme is its suppsed unarbigu-
ous deckof the peturbation expansion. The wefficient —14 inthe bove formula $ows that peturbative QCD
may be completely wrong when applied b quakonium decgs. Finally, remak that since those mefficients ae
now independent of ny, the éove formulas a&e equaly valid for bottomonium.

We have chosen not to work in this schemebecausehe running down to ¢ = 0.157M using perturbative
QCD is questinable. As a maifestaton of this breakdwn, the s/stemof (3.8), (3.9) ad (3.6) cesnot admit
real @lutions. The rea®n why below a cetain scale he s/stembemmes impssble is quite clea B99ag /7
become lesshan —1. For ag ~ 0.3, theratio (3.8) of branching fractions isnegatve!

Finally, let us al® quote the Grunberg scale, i.e.hie scale suethat the correction to the ratio (3.4) vanishes

ny=3: wu=0.89m,
ny=4: p=0.97m,

What isremakable with this scale ishat it is D close b the natural scalem,..
The branching fraction B (J/% — «ygg) can be mmpaedwith expaiment:

BE® (J/1 — (x> 0.6) + X) = (4.1 £ 0.8) % (3.10)
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where x stands for 2, /M ;,,,. On the theoretical side, fom the prediction (3.7), we can obtain an estimateof
J/% — ~(x > 0.6) + X by integrating the Ore-Powell spectumbetween z = 0.6 and x = 1

ﬁ) 6 $1 dxl

= B(J/Y — 0.637
f )z (J/¥ — vg9) x

B(J/¥ — y(x > 0.6)g99) = B(J/¥ — v99)

This giveswith (3.7), i.e.B (J/¥ — vgg) = 6.5% :
B (J/¢ — y(z > 0.6)gg) = 4.1%

in ageemat with expeiment (3.10). The rea®n for this rather good estimate adabe found in the cancellation
of corrections (relatiistic, binding energy,...) intheratio vgg/ggg, sincebath involve the same kiematics. Tie
main problem is that the obseved photon spectum is mud softer than the QCD pedicted foton spectum,
even if the integatedrate is h good ageemat. This will be discussechithe next chapte.

The sameype of analyzes ca be caried out for ¢ (25) decy chanrels. The man difference is tie huge
branching fraction B (¢ (25) — J/v + X) = (61 & 4) %. The total width thus gives

Ty = T(@(29) —g99) +T (@ (29) = y99)+ Y T (@25 =171 )+ > T(@(25) —v—q)

l=e,u,T q=u,d,s

+ Y T@ES) =) +7)+ Y T@(2S) = xey (1P)+7) +T (¥ (25) = J/v + X)

n=1,2 J=0,1,2

I (¢ (29) — ggg) +T' (¢ (25) — v99)

=~ 7.3%
1—‘tot

which leads b

B (% (25) — vg9) = 0.78%
ag (m,) =0.18

which s consistent with the J/« results it gives agai a smallvalue for as (m.) compaed b thevalue extacted
from 7, decas.

{ B(¥(25) — g99) = 7.2%

Three-Photon Decay
Finally, we can predict he width 35 (QQ) — ~~ relative o the ggg one as

I' (351 (QQ) — gg9) 5 a} 135a3

I (35 (QQ) = vyy) H4e8e® ~ 128a3

which implies
L(J/Y —y7y)
L' (J/¥ — g99)
so that expeimental sensitivity is neaing the theoretical prediction. Note that we have dopped he radiatve
correction

~107°

I (J/¥ — 4y7) = Lo (1 — 12.60‘—:)

The huge oefficient renders the peturbation seies poblematic. For instance, for g > 0.25 the ratebemmes
negatve.
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3.3.3 Ratios of Wavefunctions

Comparison of Vector and Scalar Wavefunctions

We can use he ratio

I(*S(QQ) —v) _ 3,2 |90 (150)|2M325 { w2 —4a5}
3 0 N TP 72 1 T —
I35 (QQ) —ete) |0 (351)|> M2 3 7

wherewe have includedradiative corrections. Non-relatiistically, the wavefunctions are the same. Frhermore,
the mass diffeence isnegligible at his level, hence

(% (QQ) =77) .o m—das
I' (3% (QQ) — ete) ™ 3eq {] T3 n }

For charmonium, we getwith ag = 0.3 +0.1

T(n, — ) 4 2 —4as
— =4+ —= 5 1.6£0.1
L{J/Y —ete”) 3 L

while the expeimental values gve

B(n.—yy).Iy,  (30+£1.2)x107* » 13.24+3.5
B(J/Y—ete )Ly (5.93+£0.10) x 1072 7 (87 £5) x 103

~ +0.8
~0.8798

The ceantral value is bo low by about a facor 2. This could be due b relatvistic corrections (especiall in the
difference of the wavefunctions, due br example o spin-spin forces), b hinding energy effects,... Nte however
that erors ae quitebig: the theoretical prediction is still in the expeimental range, ® that it is difficult to draw
any conclusions aaut the equaliy of 1Sy and 25, wavefunctions.

Radial Excitation Wavefunction

With the expeimental meastements of J/2 — eTe™ and ¥ (25) — eTe ™, we can estimate he ratio of
wavefunctions of bath states as

=06+0.2

60 (0 (29))°  Mies) T (9 (25) —ete )  (3686)° (8.5+0.7) x 103 (277 +31)
6o (J/0))° M3, T(J/Y—ete) 3097 ) (6.02+£0.19) x 10-2 (87 £5)

(3.11)

As expected e wavefunction at zeo sepaation degeases as increases. fie three-glwon branchings extacted

before al® give the ratio of wavefunctions

|60 (0 @S)F _ Mizs) B (¥ (25) — 999) Lyees) (3686)2 (00712) (@11
60 (J/O)F M3, B(J/v—g99) Ly 3007 ) (0.60) (87)

Obviously, the arors ae still mud toolarge © get a cleacoherence test arang deteminations.
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3.3.4  Conclusion:; Fit to the Charmonium Data

To close tis analysis, it is nteresting to proceed h the oppositeway, i.e. © infer values br the various decg
modes fom spediic valuesof as (m.)

me[GeV] | 1.3 1.5 1.7 2
as(m:) [ 0378 0347 0325 0.300

obtained by running down the world averageof ags (Mz) ~ 0.118, with the three-bop beta function (see
appendix B.1). To estimate he wavefunctions, we use lhe electomagetic decy rates

1o (5, — 77) = (7.6 = 1.2) keV’

{ Irth(n, —vy) = 487T042€é2 & (] - 3.4%})
Lo (J/3 — ete”) = (5.26 + 0.37) keV’

{ Ith (J/yp —ete ) = ]67rt%oz2§3 (1—Las=)

where we have denoted
60 (15)]
52J+1 = T
This gives
as(m.) | 0378 0.347 0.325 0.300
& [MeV] | 81+1.2 7.6+1.2 7.36 =1.1 7.06 +1.1
&5 [MeVv] 1 12.34+09 10.8+0.8 9.85+0.70 9.01 +£0.63

Taking thosevalueswe get

Me=13|Me=15 | M. =17 | mo.=2

N, — VY 7.6* 7.6* 7.6* 7.6* keV

n, — yeT e 0.13 0.13 0.12 0.12 keV

7, — X 61 47 39 31 MeV

J/p — 1 5.26* 5.26* 5.26* 5.26™ keV

J/ — yyy 7.8 6.8 6.2 5.7 eV

J/v— X 0.63 0.46 0.36 0.27 MeV
J/—v+X 14 14 13 12 keV | *Input

where X stands for the totality of hadron states.
A recent measwement [138] of the 7, width was tvice the older one, at

I'(n, — had) =27 +58+ 1.4 MeV

which is in quite good ageemat with the theory. On the J/« side, e theoretical predictions do not fit the
expaimental values. he width for ggg is greate than the total meastedwidth of J/v, T';,; = 87 + 5 keV, by
5—10times!

This same factvas appeent before, in the extactedvalueof the stong coupling

n, — ag=03
J/v — ag=0.2

The 7, value is onsistant with the world average but not the ./« one.

As afirst trivial explanation, it could be that the ¢ quarck mass mg be toolow for QCD peturbation theory.
If, however, we insist in taking seiously this firstorde pQC D analysis,we need a pwerful suppresson effect.
Usually, people invoke relativistic corrections like [167]

02
&
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with v the relative cc velocity and C < 0. In charmonium, theserelativistic corrections can be sizeale because
v?/c? ~0.24

In the next chapte, the obsaved suppesson of vecor quakonium decgs will be explahedby binding energy
effects.

3.3.5  \ector Bottomonium Decay

For the bb battomonium states, expémental data @& quitereduced! S, stateshave not been obsevedyet and
branching fractions for vecior states (e upsibn family) are rather scace. Wewill t hus only present a limited
analysis, with emphasison the stong coupling extraction at the b quak mass. hdeed, it is nteresting to see
whether the extactedvaluesof as () are in bette agreemet than as (m..) with the world averagevalue.

Leptonic Width

The lepbnic widths for bottomonium are
(T —ete )= (252+017)%
I'(T—ptp) = (248 +£0.01) %
(Y —777) =(2.674+0.15)%

From these we can estimate tte width I' (Y — v — hadrons) using

TL'(T — v — hadrons)
(Y —ete)

~ R(¢%) |q2=1\453 ~ 3.5

Then
B(T — v — hadrons) =35 x B (T —e"e” ) = (8.6£0.4) %

Vector Bottanonium Hadronic Width

We proceed asdr the charmonium. The ratios we analyze ae (in the Grunberg scale)

T (T — ggg) 10 (7T2 — 9) Oé?é« ag
= 1 43— .
(T —ete) 81 eja? { 043 } (3.12)
I'(T — vg9) 36 eéa Qs
9 229y 9528 .
(YT — ggg) 5 ag { 25 e } (3.13)

To further compae with expeimental datawe extact he combination I' (T — ggg) + I' (T — ~gg) from the
total rate as

T = (Y —ggg)+T(T—=ryg9)+ > T(XT =070 )+ > T(T—y—q@)+T(T—n)
l=e,u,7 q=u,d,s,c
= I'(T—g99)+I' (T —y99) + B+ R) I (T - ete)
I'(T — gg9) +T (Y — vg9)

— T ~1—(B4+R)B(YT —ete ) ~83.8% (3.14)
tot
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where we have neglected” — 7,7v. Solving the equatdns (3.12), (3.13) ad (3.14),we find

B(T — ggg) = 82%
B(T — vgg9) = 2.3%
g (mb) =0.177

Extrapolated b the Z° mass, his gives a stong coupling of
ag (mb) =0.177 — ags (Mz) =0.104

i.e. a quite smaNalue. Note that usualy, people use he BLM scheme, i.e . = 0.157 M~ . This doesnot change
the conclusion: one obtains at he BLM scale a stong coupling of as (0.157M~y) = 0.25, i.e. when run up
myp, O g (mb) = 0.18.

This closesour basic review of quarkonium annihilation modes as desibed in the standard facbrized
appoaces. h the next chapte, the binding energy effectswill be introduced, as a ¢e for the analytical defects
of factorized nodels.






Chapter 4
Binding Energy Effects on Quarkonium
Annihilation Rates

In the standard schemes, quikonium annihilation amplitudes ee constructed assumg a factrization of the
bound state gnamics fom the peaturbative decg process. As discussed the previous tapte, the basic nodel
is simply the extension to quakonium of the Prenne-Wheele model

1
2J+1

I(Ps — ny) = |6 ) (4o, (e ™ = n7)),,

As we have extansively discussedn the caseof positronium, a nodification of the quakonium annihilation
desciption is unavoidable, since the predictions of any appoach basedon factorization are in contradiction with
analyticity. One has b introducebinding energy effects. @mpaed b positronium however, the introduction of
sud effects isnot just a matte of principle; it can change te whole picture of quarkonium physics sihce he
typical quakonium binding energies a&e huge

2

Am % 2
£ = 1+—=2=14+0(«
i, 3, (@)
Am? 4'73 W
e = 1+ Y 145 (4.2)
/% I
Am3, A&
= 1+ ~1.95 (4.2)
MZ M3

For theserough estimates,he constituent massof the heavy quak is taken as he massof the crrespnding
lowestheavy flavored mesn. We ae forced b proceed n this way since wice the running massof the heavy
guak is less han the bound state masslge origin of this fact is @nfinement). Another approac would be to use
the quak massesdund in spectoswpic studies (see (3.1)).His leads ¢ very similar estimatesdr the binding
energies.

Wewill review in this chapte the implicatons of binding energy effects br anumber of problems in quako-
nium physics: he ags extraction, the pr puzzle, he photon spectum in inclusive radiatve decgs, ad the ra-
diative transitions between quakonium states. Te discussin will reman at a qualitatie level in most cases.
The pupose isonly to show that binding energy effects hdeed leadd significant modifications, and that those
modifications go in the right direction, i.e. that binding energy effects ca be invoked b explan the various
guakonium puzzles. Wer unable at resent to do a quantitative analysisbecause aumber of complicated is-
sueshave to bereslvedfirst, like for example he recise brm of the quakonium wavefunctions.
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4.1 Binding Energy Effects on Quarkonium Physics

The sectdn begins with a discusgin of the quakonium wavefunction. Then, the various problems cited Aowe
are g/stematicaly reviewed.

4.1.1  QCD Quarkonium Wavefunctions

To apply our method to the quakonium, we need itswavefunction. No matte its form, it will always be possble
to exgress it as a@mbination of functions for which the deivative mehod applies. Br example, he setof
functions built on the Coulomb wavefunction (see appedix C.1)

oy _ _V/l'(n) 8my* 3
Za (P7) = I'(n—3/2) (p? ++%)"

can save as aasis h which the quakonium wavefunction can be expaded. All these functions ae acommo-
dated n the deivative mehod through the operator

Fu(s) = CooFn (P?) (P*+7°)|o_yprims)
I'(n) 9 _ 1
= O\ g2n+1,3/2 2n-3
¢0F(n—3/2) T ot
22n+1w3/272n—3 b n—1
= T3 <8M2>

It remans  find an expresson for the quakonium wavefunction. This is not an eay task. The form of the
QCD potential is not well-estdlished (here ae may alternatives). Futher, in QCD, the paamete v cannot be
defined staightforwardly. For all theserea®ns, in the gresent secton, we will simply take for quakonium the
form factor of positronium, with the binding energy defined by the DD threshold. This will illust ratewhat can
be expectedrbm binding energy effectson total and differential rates.

Further, becauseof confinement, the configuration space gudonium wavefunctions sould be less spead
than the Coulomb ane. In turn, the momentum spacewavefunctions ae nmore speadout aound p = 0 for
guakonium than for positronium. But we know that the binding energy corrections ae alvays proportional to
the spreadig, in momentum spacepf the wavefunction. Therefore, the binding energy corrections computed
with a Goulomb form facbor will be lower estimates,he true @rrections being more important.

Another appoach would be to take eah of the charmonium potentials and compute he wavefunctions by
solving the Sdrodinger equaton. Then, these slutions would be expessedn the basisof the Coulomb wave-
functions. Sud studies & in project, and have not been completedyet. The present secton is afirst step i that
direction.
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4.1.2  Strong Coupling Extraction

The valueof ag as extacted fom quakonium physics tesnot fit well with the valuesobtained from other
QCD obsavable meastemants [223]

" laverage

Hadronic Jets

e’e  rates

e’ e’ event shapes
Rragmentation
—_————
Z width
+
$mall x structure functions
ep event shapes
Polarized DIS

Dedp Inelastic Scattering (DIS)
—_——

T decays
Lattice
H k
eavy Quarks
| | | | | I | | | | | | |
0.1 0.12 0.14

We have se@ainthe previous tapte that the valueof ag extracted fom charmonium and battomonium inclusive
decy rates ae

as(mg) | as(Mgz)
. 0.31 0.117
J/Zb 0.19 0.096
T 0.18 0.107

where we have run the values up ® Mz using three-bop running, and ny = 4 between m. and my, ny = 5
between m;, and M (see appedix B.1). The valueof as extracted fom n, — ~v/n. — gg is in the world
averagerange, but falls short of it when extracted fom J/+ — ggg, ggv/J/¥ — eTe™ or T — ggg, ggv/T —
ete .

From the computatbn done in the positronium casewe know that binding energy effectswill suppress be
decy rates. As aesult,onewill need a geate a5 tofit to the obsavedrates. Tis is the general mehanismwe
invoke to explain the discepancy between the quakonium as deteminations and the world average. h other
words, he smalhessof the extactedas in standard appoades is, n our view, the signal that the facbrization
hypothesis is happropriate, and that a bop model has b be considered.

Electromagnetic Decays

We begin our study with the electomagnetic processes (seéhapte 3)

2
I'(n,—vy) = 487T0z2623|§3|2 (1—3.4%)
_ ol 16 as

64 (72— 9 2
T(J/Y —yyy) = —(WB ) (e§,0) % (] - ]2.6%)
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and the correspnding T decys.

In the caseof positronium, we sav that the bulk of the first order radiatve corrections is acounted for by
binding energy effects. The same mewnismwill be invoked for quackonium, 0 that the stong corrections will
be replacedy a function of the binding energy. Of course, itwill not be possble to directly test his hypothesis
since he quakonium binding energy relation to the stong coupling is not known.

Let us stat with the pseudscala charmonium electomagnetic deca

2 1 |90l 472
I‘(nc — ’Y’Y) =487« €Q IV Bfw W
with
2

2
By, (z) = (1+2) - arctan —

Nz
By taking the valueof /M givenin (4.1) and (4.2),we get he suppesson factor. It is interesting to matd this
suppesson to the peturbative mrrection 1 — 3.4as /7, to extract avalueof as:

T
Byy | as =37 (1= By,) | as(Mz)
7. | 0.64 as (me) = 041 0.12
n, | 0.76 ag (my) = 0.35 0.14

Note agan that, at peset, the matding with the peturbative QCD resulthas no grounding. Moreover, the
correspnding scale isnot clea (it could be that this is as at ome low scale,between v and m,). Finally,
a% /7? corrections ae probably quite sizehle. In view of all theserough approximations involved (especiayl
in the ddinition of the binding energy values (4.1) ad (4.2)), he cnsistency of the values is stprisingly good,;
the binding energy suppessons ae of the order of the peaturbative QCD @rrections.

Let us poceed similay with the lepbnic deca of the vecor quakonium

2 4 2
(o = 171) =167 (e K86 ) B (3

with
Birpe (2) = |2 2 aretan— )|
- (z) = [37r (\/E (54 3z) — 3(1 + z)” arctan ﬁ)}
Then, for J/¢ and T, we get

3
By~ Qs = T2 (1=By-) | as(Mz)
J70 | 017 as (my) = 05 0.12
T 0.24 as (my) = 0.4 0.15

Again, the matding gives suprisingly good results.
The final decy

, 64 (72 -9 ool 42
LI/ —yvy) = % (QGQO‘3> |]\3|2 By <W>

is more complicated b handle shncewe db not have an analytical expresson for B..,. Numeically, we found

B’Y’Y’Y
Jb | 001
T 0.03

In this case, lte matding givesags (m.) =~ ag (my) = 0.25, since it is aound that value hat peturbative QCD
corrections force the total rate b vanish. Obviously, this later fact isnow well interpreted as a sbng suppesson
due b binding energy effects.
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It is important to remak that, in all the previous cases,he facbrization of the binding energy effectsout
of the paturbation seieswill enhance heir convergence. The same penomenon wasobseved in positronium
physics. Here, it beamesvital to proceed abng our approad, to avoid inconsistancies (sub as @rrections
greate than unity).

Strong Decays

Introducing binding energy corrections for strong decgs is nore complicatedbecausef the issueof double
counting. In the electomagnetic modes, he final state peicles  not expeaience the stong interaction, hence
the whole ag correction comes fom initial stateradiatve mrrections. This is the same situadth as in the
positronium case.Here, the situaton is mud more wmplicatedbecausefirst, there ae stong corrections to
the final state als, and seond, becausave ae mnsidaing inclusive rates, s that decgs to many gluons, quak
pairs,... al® contribute.

Insteadof seaching for a ddinite presciption to dealwith all those decws, let us simplt conside the two-
gluon mode of the 7., and the three glion mode of the .7/, to illustratewhat can happen. The binding energy
corrections t the wo-photon and two-gluon modesof the 7, are the same.Hence, te ratio of the o modes
is not corrected, ad this explans why a valueof as consistent with the World average ca be extacted fom
them. For the three-glwon mode,we write

D (J/v —ggg) _ 10(x* =9) af (mg) By <%)

L(J/v —ete) 81w ega? Boto- <4ﬁ;)

We have found previously that as (mmg) = 0.19. Now, the binding energy correction factor corrects his value
as

When runto My, we getas (Mz) ~ 0.12, in rough ageemat with the world average.
We expectliat the same mduwanism will work for the other deca processes, i.e.hat the necessey com-
pensation of the binding energy suppesson by the stong coupling will lead to an overall enhancement of as.

4.1.3  Rho-pi Puzze

The rho-pi puzzle is he appaent violation of the 14% rule in exclusie hadronic decg chanrelsof the J/v and
¥ (29), especiay J/v,v (25) — pr ([165], [175], [177], [181], [183], [186], [193], [194], [200]) . fie 14%
rule follows simply from the identity

B@(2S) —gg9) _ 02(®(29) Tu(J/9) l60 @ @) /M, 5(25)
B (J/Y — gg9) @ (J/9) Tiot (¥(29)) g (J/0)|* /M2,
ol (¥ (25)) B(¥(25) —ete)
s (J/) B(J/v —ete)
as(w(QS))

= "= (14+1)%=(12£1)%

and then from the additbnal assumptin that the exclusie decg branchings follow the sameule (i.e., hat the
hadronization hasno effect).
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Many exclusive hadonic decy modesof the ¥ (25) and J/% that have been measwed. Their ratios
are[137], [139]
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The 14% rule is nore or lessvalid, except ér a few chanrels like J/v¥, ¥ (25) — pm, K K*, which fall short
of the 14% rule by as mut as a faatr of 60. No convincing explaation of this facthasbeen proposedyet (the
most popular explanation is the presence of a glueball [160], [163], [173]).

Here,whatwe justwant to point out, is tat the 14% rulewill not survive binding energy effects. Fer gluonic
modes, a pefacbr appeas

BW(25) = 999) _ By 0 (29)) Beve (/W) 15 4 4y (4.3)

B(J/[Y —999)  Byyy (J/9¥) Bete- (¥ (29))

But the electomagnetic pat is unaffectedby sud effects:

B (¥ (25) — v — hadrons) B (¥ (25) —eTe”)
B(J/Y — v — hadrons)  B(J/¥ —ete)

=(141+£1.2)%

This could explan why the p7 deca exhibits the violation of the 14% rule, while not the puely electomagnetic
wm decd (which is isospin violating).

Unfortunately, with our parametization of the binding energy in terms of the D me®n mass, he prefacbr
in (4.3) enhances he v (25) three gluon mode mmpaed b the J /%, becausette ggg mode is enhanced cbse b
the threshold for DD creation. In our view, this is the signal that the constituent mass bosen is inappropriate
correctly descibe the dynamics. r instance, if one takeste Lagangian ¢ quak massof 1.2 — 1.5 GeV, itis
clea that the J/« is very close b the threshold, while now it is the v (25) — ggg which is stongly suppessed.
The treatmet of bound states bove the constituent mass is cledy complicatedbecause suta phenomenon is
a maifestaton of confinement. Further studies & necessgy, but in any case, it bould be clea that binding
energy effects ntroduce @ important violation of the naive 14% rule.

Scale Anamaly

We have sea that the binding energy corrections to the decg o-Dm — e~ e™ receve a ontribution from
the QED scale momaly, a cntribution which is appaently missedby standard faciorized mmputatons. The
same pobably happes for the lepbnic decy J/vy — eTe~. This would be far reading: the lepbnic modehas
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always been considered as clen, and is used ¢ extract he J/v wavefunction. This, in turn, will affect both the

14% rule, the extaction of ag and 0 on.
A complete stugt of all those effecthasyet o be done, and is left for future work.

4.1.4  Photon Spectrun in Quarkonium Inclusive Radiative Decays

The next aspectof quarkonium physics b be discussedni some details is lte photon spectum in J/¢ —
v+ hadrons and T — v+ hadrons, which is descibed in termsof the underlying processes /v, T — ~gg. It
is indeed h specta that the modifications due b the binding energy may be directly obsaved. Aswe have sea
when discussig the orthopositronium decg, the photon spectum found using the Prenne-Wheele formula
is in contradiction with Low’s theorem. By introducing binding energy effects, he speata should move from
the wrong Ore-Powell prediction towards the Eule-Heisanberg one, i.e. ®fter at bath the low energy and high
energy end points. This behavior is what isobseved for the /¢ — v + hadrons [134], [135]
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and for the T — « + hadrons [136], [140]
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and the Ore-Rowell prediction hasbeen corrected or the eficiency. For example, inthe T case, lte eficiency
varies as [140]
1.00

0.75

0.50

0.25

P SR SR RARRI!
6] 0.25 0.50 0.75 1.00

X

The suppesson of the speatum at itshigh end point is greate for the J/« than for the T, as expected ste
the binding energy is greate for J/%. To explan sud a stong suppesson purely in terms of binding energy
effects isnot possble though; even the Eule-Heisanberg spectum is wnable to fit the observed speaum.

Field’s Model

The fact hat even the Eule-Heisenberg point-like result seemsot be insufficiently suppessed igather
surprising, but understandable from the point of view of Field’s model [161]. This model introduces sme
distortion of the photon energy spectum becausef gluon dynamics. It ca be viewed as a tetative introduction
of hadronization effects. Because glons can radiate additnal gluons, the ”prompt’ gluons emitted fom the
qguak line acquie an invariant mass

This means that the high end point of the photon spectum mustbe modified, shce in preseice of such massie
gluons, the maximum aergy the photon can take avay is reduced. Te resultof Field’s Monte Calo simulaton
is

2.0
1.5

1.0

0.5 [

e Y X
0 0.25 0.50 0.75 1.00

where the plan line is he Ore-Fowell spectum, and the dotted line is the Fields nmodel speatum.

Obviously, Field’s model is in contradiction with analyticity (it is built on the Ore-Powell lowest order
result). It $iould therefore be quite cleathat it has b be modified ©mehow. In fact, it would be interesting
to repeat Fielts computaton, but taking the binding energy corrected spectim as a dwestorder basis. Tis
analysis dould lead b correct speata (i.e. onsistant with Low’s theorem), and in agreemat with expaiments.
It is left for future studies.
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4.1.5 Transitions among Quarkonium States

There ae mayy possble transitions among quakonium states, likedr example

Yo

J/v — ., 1.34+04
P (25) — n, 0.28 £0.06
¥ (28) — J/Y + had. | 61 £4

U (259) =YX 9.3+0.9
U (25) — YXa 8.7+£0.8
U (25) — VX0 7.9+038
Xo0 — VI 0.66 +0.18
Xop — V0 27.3+1.6
Xeg — VJ/¥ 13.5+ 1.1

Most of these tansitions involve the x states, ér which a treatmaet is still lacking in our model. The hadronic
transition vy (25) — J/v¥+had. is generally dealtwith using some low energy techniques like diral paturbation
theory, and will not be consideed here. There remans the M1 (suppessed)ransition J /v — ~yn,. This decy,
as afirst appoach, can be desdbed assunmg a mint-like structure for the J/v and the .. In other words,
we assumehat binding energy is S0 important that the stucture of the bound states iso longer relevant. Sudch
processes i@ calculated usyg a loop model, with the cupling J/cc and 7,.cc given by v* F,,, and v5F;,_,
respectiely. Then, itis eay to find

I( ) Neho? (me\* A (4m§/ Mgc)
—_ = —_— _—m
e =77 160 \ By M,,
Do) = el (7% >2 M3\ Ay (4m2/ M3 am/ )
- 96t \ Fo Fuyy M3, My

with

1
A, (B) = 2arctan®
4 (B) arctan iz
1 1
A B,C) = 2arctan? ——— — 2 arctan®
1oy (B, C) VB -1 VO =1

The seond term appeang for A, ., comes fom the contribution of oblique cuts (br A, there isonly vertical
cuts).

Wenow take te J/% and 7, couplings identical (this is valid to leading order, in the non-relativistic appgox-
imation). Using the meastedvalue for the branching J/% — 1., we find

o _ [ 029+£003  m,=15GeV
FZF%_FW_{ 0.334£0.03  m.=2.0GeV

Plugging thesevalues nto the two-photon width,

T (0, s ) = (3.04£0.6) x 1073 MeV ~ m, =15 GeV
Ie =TV = (41£0.7) x 1073 MeV  m, = 2.0 GeV

to be compaedwith the expeimental value
I'(n, —vy)=@A+2)x1073 MeV

In conclusion, the pint-like apgoximation, with in addition the assumptin of equal @uplings, is ©nsistat
with the (not yetvery precise) expemental data.
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4.2 Conclusion

We have sea in this chapte that binding energy effects ca play an important role in quarkonium physics.
While their introduction was notivatedby analyticity, and in paticular photon specta, they lead b important
corrections in all aspect®f quarkonium physics. They can explai, at least i pat, the pr puzzle, he smalhess
of ag as extacted fom vecor quakonia and the ftnessof the photon specta in inclusive vecor quarkonium
radiatve decgs.

To close his chapte, we justwant to point towards other applicatons, which are curently active reseach
subjects n the literature.

One obvious extasion is the desciption of £-wave quakonium states, e x.. ,, and in paticular, the two-
photon deca modesof the x ., and x ., which have been studied expementally [142], [143]. Sut a stud, of
course,will rely to some exteit on the crrespnding results br QED P-wave positronium states. Terefore, we
arenot yet in a position to say mud.

Once te &owve extasion is estdlished, it can be interesting to push the formalism futher down in energy,
close b or less han 1 GeV, in order to descibe paticles sub as te ¢, or scalas fy, o, tensors f;, and 0 on.
For instance, in the caseof the ¢, it is estdlished hat a desiption in termsof a KK loop is adequate ([216],
[221]), with a point-like coupling of the ¢ to the K. The matding with the correspnding s quak logp, with a
non-constant form facbr, can lead b interesting information about QCD. Gncerning scala states, lte prediction
of their two-photon decy rates is imprtant for instance in the identification of the quak model multiplets (see
for example [166], [172]).

Another aspecthatwould need b be studied is qu&onium production (see br instance [167], [171], [198]).
Examplesof production medanisms ae the Drell-Yan process, glon fusion, photon to vecor quakonia transi-
tions,... hfirst appoximation, it is aways assumechait ©me kind of factorization holds, in order to sepaate he
perturbative aeaton of a heavy quak pair from their non-perturbative hadronization into a quakonium state. As
mentioned before, in the NRQCD mntext, the quak pair is not necessaly in a wlor singlet state. Tis would
have to be incorporated h the present loop model context. Anyway, it should be clea that binding energy effects
are al®o important in production medanisms.
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Conclusions and Perspecties

In this thesis,we have preseited a metod to dealwith bound state anihilation through Lorentz invariant
form facbors. Typically, a decg amplitude isouilt as a bop amplitudewith a form facbor inseated © acount for
the non-trivial structure of the bound state:

Positronium

For QED bound statesye have shown how to relate hat form facbor to the bound state Shrédinger wavefunc-
tion, so that otal decd rates ageewith the ones @mputed usig a facbrized appoadc (at least atdwestorder).
From that analysis, it emeges hat one can simply take te deivative of point-like QED amplitudesd acount
for the bound state suctue

Concerning differential rates,our form facor mehod is definitly supeior to factorized appoadces like NRQED,
since it does not contradict Low’s theorem. This property of our metod follows from its non-perturbative
treatmet of the binding energy, and from the four-dimensional loop structure of the amplitude (takig into
acount oblique cuts). fer areview of the propertiesof the mehod, we refer to secton 2.5.

For QCD bound states, hie stage is setof more eldorate studies. Effeate form facors can be retrieved
from quakonium phenomenological potentials. For simplicity, in the present work, we have used a penom-
enological form facior obtained from the Coulomb wavefunction, with an ad-hoc paametization of the binding
energy (to be short, the ¢ and b constituent massedave been taken as he massesf the lightestD and B me®ns,
respectiely). The analysiswas terefore qualitatve, but akeads at that level, interesting conclusions have been
obtained.
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The foll owing table reviews the man processes studied the thesis. Al® indicated a the man propeties
or consequecesof the form facor approad obtained in ead case:

QED QCD
Electromagetic Strong

(o}
Y C
i

Nc Ne

o]

o]

- Y «
C

— No BEE on the extaction of ag
U'/q

X
0.2 04 06 08 1

{ Low’s Theorem

Increased Grvergence — BEE — Softening of the photon spectum

c N
J/v U/q Extraction of ag
y — BEE { pm puzzle
l/a (no 14%rule)

al

n
Increased Gnvergence
Scale Aomaly

BEE =Binding Enegy Effect
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The mehod presatedhere may be extended b a greatvariety of processes. fie foll owing teble summaizes
some of them:

QCD
Higher excited state decars
Decys (P,D,...wave) Xe JS,...
/b — ey
Transitions X, — J/vy
between states

¥ (28) — J/vgg

Production rates

J/+ production
B — J/YKg

Fine and Hypefine Quakonium Spectum
Splittings (mixing ?)
Unequal onstituent B, mesrs....

masses
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Some questins which reman open in para- and orthopositronium physics,or concerning the applicaton of
the mehod to quakonium physics ae

Positronium

1. How to dealwith higher order corrections,
compulry to competewith other techniques ?

2. What is the exact meaing of “renorma- Ps Ps
lization” in the hyperfine splitting computaton ?
(i.e., is be bare Ps masseally 2m,. ?)

3. Is the Scale Aiomaly a missed
contribution to o-Ps — vy,
thereby explaning the o-Ps lifetime puzzle ?

4. Why is the deivative tedinique o simple ?
(i.e., is bere a fundamental property of
Coulomb baund statesehind this ?)

Quakonium
5. What ae the quakonium wavefunctions ? V(r)
(or alternatively, which of the proposed
charmonium potential is giving the best
fit to the decg rates ?)

6. Is itnecessey to extend (and if yes,how)
the form facor approach to acount
for all the wlor octet nodel contributions ?

7. Can the mehod be extanded b light
me®ns sut as he ¢ (1020),
and what can be leaned @out duality ?

Positronium and Quakonium
8. Why is there a kind of duality between
binding energy corrections and first order
radiatve mrrections for lowest ying S states
(whatwe called’increased onvergence’) ?
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The third questdn is probably the most interesting one. Indeed, he scale aomaly could provide a ®lution
to the orthopositronium lifetime puzzlewithin the framevork of QED. This is o be mntrasted ¢ recent attempts
invoking the mirror world [129], exta dimensions [133] or new light paticles [115]. Itwould al be anice
evidence of a non-trivial quantum field effect at e level of atomic physics.

Concerning quakonium physics, te geset mehod may provide the nmost promising disagiminating test
among phenomenoaligical potentials, because degerates get sasitive to the whole wavefunction, and not only
its value at zeo sepaation. This is however not as simple as it seembecausene should be sue  keep he
sizedle stong radiative orrections under control (i.e., to avoid double counting). Also, NRQCD analyseshave
shown that a @lor octet ntribution has b be introduced o fit the data. IFom our point of view, it is not clea
whether this is an artefactof the NRQCD mehod, or a true ghysical cntribution that needs ¢ be introduced n
the present form facor approadh. In conclusion, the man limitation of the form facior apgroadch in quakonium
physics is simpy the lackof a reliable computaton technique from first principle. Using a mixture of QCD and
effective potential arguments israther suspicous, ad in any cases dficult to control.

Finally, the last questin needs omments. Wehave repeatidy argued h the text hat the increased on-
vergence of the peturbation seies, when binding energy corrections ae facbred out, comes fom the fact hat
binding energy corrections afead/ acwount for a great deabf radiative and relativistic corrections. This is ce-
tainly true, but is not the whole sbory. For instance, binding energy corrections and radiative corrections do not
scale similaly with the grincipal quatum number n (asn increases, e binding energy corrections decease
while the radiative rrections sty the same). n other words, it appess that it is only for the lowest ying s-
stateshat binding energy corrections and radiatve corrections ae roughly the same. Mre supisingly, we have
preseited me indications that the samerough equality holds for the lowest ying s-states;,,, J/v and n,, T.
This could be the signal of some kind of sumrule that needs ¢ be dis@vered.

In conclusion, the form facor approadh to bound system ntroduced n this thesisoffers interesting paspec-
tives for anumber of theoretical problems. While bound states ee the most common statesof matter encountered
in Natue, they are al® very difficult to dealwith theoretically. Any new information should therefore be sea
as a geatopportunity to read a bette understanding.
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Appendix A
Resourcedor QED Bound states

A.1 Parapositronium

A.1.1  Details of the Dispersion Study

Let us pove the asseion that

Dispersion relations constructed on the vertical cut imaginary parts
of the loop model reproduce standard convolution-type amplitudes.

We will particularize the discussin to the paapositronium decyg into 2+, for which there ae vertical cut
contributions only. Let us empasize hat the whole discussin of this secton is readily extended b any para- or
orthopositronium vertical cut @ntributions 1o the decg amplitude.

We first compute he imaghary part of (2.3) for an arbitrary initial squaed massP?. Considaing the two
possble vertical cuts,we obtain Tm 7” by replachg the two propagaobrs on ead sideof I'“¥ by delta functions

ImT(PQ) = ImM“”(p-Ps—>2'y)€IMe§1,
dtq P\? P\?
_ /WFB(s((q_E) —m2)5(<q+5> _mz)
><T7"{'y5 (g’—’g—l—m)l“lw (q+’§+m>}eh€§u

After a staightforward integration over ¢° and |q|, with P = (v P2 0) , wereadh

] 4m2 dQ P v fp * *
Im7 (P?) :W\H—EH(PQ—ALmQ)/ZL—:FB Tr{'y5 (g’—5+m> r# <g’+5+m>}€m€2y

In the courseof the deivation, the delta functions forcedq® = 0 and |q| = \/P2/4 —m?2. In other words, he
electon momenta ae

1 [Pz /1 2 p2 s
§P:I:q—( T,:I:q) with (§P:I:q> —T—|q| =m (A1)
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This kinematics is ¢ be understood in the trace @aluaton. The angular depedence aises fom the relative
orientations of q and the photon momentum 1;. Note al® that the relation (A.1) cannot be satisied for the
physicalvalue P? = M? < 4m?. This isobvious sihce he logp cannot have an imaginary part for the physical
bound states, itsanstituents being always off-shell. From the kinematics (A.1)pne can prove that the facbrson
both sidesof I'** are true projectors, which seve o enforce gaugerivariance in the expesson

(d—%fj-i—m) pa (q+%P+m>

Indeed, hose wo projectors play exacty the sameole as extenal spinors when estdlishing Ward identities.
The real pat will now be calculated usg an unsubtracted dispesion relation

Too (s

ReT (M?) = PA

M

where it is understood that P2 should be replacedby s everywhere, i.e. scalaproducts hat will appea when
evaluating the trace $ould be expessedwith the kinematics déned for an initial energy s. Since M? < 4m?,
the principal pat can be omitted and 7 (M?) = Re 7 (M?). Now let uswrite the form facor in the general
form

Fg=Co,F (qz) (q2 +72) =Co¢,F (s/1— m2> (s — M2) /4 (A.3)

with 2 = m? — M?/4 and ¢, the bound statewavefunction at zeo sepaation. Then (A.2) can be written as

6472

xT'r {75 (q- g —I—m> e (g’—}- 'g —I—m) } €15,

Let us tansform the s integal back into a |q| integral, keeping in mind the mnstraints obtained when
extracting the imaghary pat. Using q2 = s/4—m?2, ds = 8 |q| d|q, the decg amplitude dispesion integal is

0 o [ oo E o) E o)

where, as he notation suggests, it is nderstood that any P? appeaing in the amplitude musbe replacedoy
4|q|*+4m?. Inpaticular, \/PZ (q) canbereplacedby 2, with £, = 1/|q|* 4 m2. This anounts © conside

the scatteing amplitudewith incoming on-shell electon-positron having momenta (3 P (q) + q)2 = m? (since
¢° = 0). Note the fact hat 5y > M/2, namel that appaently the energy is not conseved. This is not surprising
since the preset formula is a dispesion integral, done abng the cutwhere P2 (q) > 4m?. Finally, in view of
the kinematicswe introducek = 1P(q)+gandk’' = 1 P(q) — q (hence B, = Ey = Eq andk = -k’ = q)
to write the amplitude simpl as

T (M?) = C9, ds/ —3F (s/4— m)—V]_mZ/S
4m?

3
T (M?) = % / (2:)3—1;&( [0, F (K*)] T {vs (= ¥ +m) I¥ (k, k' 1) (K +m)} e €5, (A4)

where " (k, k', 1, ) is the amplitude ér on-shell e~ (k) e™ (k') scatteing into 2. Gauge fivariance is pesent
due b the wo projectors, well defined shce k* = k"2 = m?. This ends our denonstration, and 7 (M?) =
M (p-Ps — vv).
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A.1.2 Sammerfeld Factor and Form Factors

To read a better understanding of the paapositronium two-photon deca rate, we now repeat e deivation
using the languageof dispesion relations. This is necessey becausave will want to try different formsof form
factor Fg, and thereby get information on the physical @ntent of the binding energy corrections.

The loop integal Z, (PQ) has an imaginary part obtainedby cutting the propagabrs

o1 [ dlg 2T ((q— %P)Q—mQ) 9mif ((q—l—%P)Q —m2)
Im7Z, (P ) = - <P 5
2 (2m) (g— 1P +1,)" —m?

Using an unsubtracted dispesion relation and inseting the Goulomb form facbor, we read the two equivalent
forms for the loop form factor

4m?2
2 2 2 vV °
Toou (M?) = SR /4m2 dsF (s/4—m*) In L — (A.5a)

o) / B 1
- —_To f(q)
3
2 (2m) 1/|q|2+m2—|—|q|cosﬁq

wherewe have setFs = C¢,F (q°) (q® + 7°) (see 2.10). efirst expesson is obtainedby integration of the
seond one over the angular variable 64, and by defining s = 4 (q* + m?).

(A.5h)

Decay Rate in the Static Ionit

Let usfirst analyze he static limit, i.e.y? — 0 for the form facor. To compute he decg rate n that limit,
we b not need b specify Fiz. We justneed b know that the function F (q2) is normalized b unity and behaves
as a delta foction of the momentum in the limit of vanishing binding energy

d3q
(2m)°

Fla@) =1, () = 00’60 @ wo
By setting F (q2) = (2m)* 6® (q) in (A.5b), we mustrecover exacty the lowestorder decy rate

1
T(p-Ps — vy) = §a5m (A7)

In some s@se, he static limit seves as doundary condition for the behavior of F. We get

C @ 1 C, | 1
Tovusie (M%) = 552 [ 25 (o (@) oo = G2 | 1
(2m) |q|2 +m? + |q| cos 8§ m

Importantly, this result is ndependent of the binding energy : the loop doesnot introduce ay corrections in the
static limit. The decg rate in that limit is therefore:

m? 2 _ 1 m?
L (p-Ps = yy) = 1670° 37 |Toou,saric (M*)]” = 50°m (ﬁ02>

with |ng0|2 = o®m?3/8x. It remans to matc C such that puely kinematical orrections vanish (M factors in
the abowve formula aise from products like(l; - I2) = M?/2 and from the 1/2M decq width factor, while m
comes fom electon propagaors in the loop and from the wavefunction ¢,). With the definition C = M /m,
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the decy rate is exact a5m as it fould. In other words, hevalue or C obtainedby matcing (2.8) ad (2.2)
is sud thatno correction arises fom facibrs A/m in the static limit.

To conclude, let ugepeat hatwe have not specfied te form facior. This means that any form facior which
has a bree-dimasional delta function limit f or 42 — 0 gives he correct lowestorder decy ratea®m /2. Inthe
following, we dhall present three brms, allbuilt on the Sdrédinger momentum wavefunction.

Schrédinger Fom Factors and Binding Energy Corrections

Using either the formula (A.5a)or the deivative appoadc (2.11),we will now go through different calcula-
tions of I' (p-Ps — ~), obtained for specfic choicesof F5 (or equivalently, 7 (q?)). Namey:

87y

Fr (q2) = m (A.8a)
32my3

Fr(a®) = m (A.8b)

Fr(a®) = %arc‘can % x Fr (q) (A.8c)

where v2 = m? — M?/4 =~ m?a?/4. As discussedngviously, F7 is just he Scrédinger momentum wave-
function for the bound state. e F;; form facor hasno clea signification and only seves he pupose of
illustration. Finally, we will show that F;;; can be viewed as a Gulomb binding corrected Shrédinger form
factor, in the sprit of the Sommefeld facor. Of course,we know that the form facbor to be used musbe re-
lated b the Bethe-Salpetewavefunction, and that it is the first form facor F; that emeges fom the reducton
of the Barbieri-Remiddiwavefunction through dispesion relations (2.8). Anyway, from the analysisof Fr;, we
will clearly identify the physical mntent of the binding energy corrections due b #;, and thereby avoid double
counting.

All t hese brm facbrs satisf the delta limit popetty (A.6), but are differently peakechea |q| = 0. Graphi-
cally, > F (q?), as function of q? with y = .5 (#; plain, #;; dased ad F;;; small dased lines) is

0 ~

As aresult,we expecthat all of themwill reproduce he lowestorder deca rate (A.7),but will i ntroduce me
~ dependent corrections proportional to their spreading around |q| = 0. Sudh corrections can then be expessed
in terms of the fine-stucture constant, yielding a @rrected bwestorder rateof

I (p-Ps — 77) = 5a°m (1 +br (7))

The physics of each form facbr is discussedelow. If we naively add he preset corrections 6 to the
radiative corrections up b order o In

abm =\ a 1
Typps=—(1—(5—— ] —+2a%In—+6p (F
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the theoreticalvalue is nodified as

Lowestorder | Corrections | Decgy Rate,with

Form facor br Radiative Corrections plusér
Static Limit | 0 7.9895 x 10%sec™ !

Fr —0.637c 7.9527 x 109 sec™ !

Fr1 —0.2502 7.9894 x 10%sec™!

Frir —1.73a2 7.9887 x 109 sec 1
Expeiments (7.9909 +0.0017) x 10%sec *

where the expeimental meastement (1.3) is al® included br compaison.

Discussion

If the 6p (F7) is naively added ¢ the order o radiative @rrections, one ends upwith excessie crrections,
quite fa from the expeimental value. Ou goal is o show thatone should not add hem,because itvould anount
to a double counting. Obviously, first order radiative corrections do contain a Coulomb photon exchange @ntri-
bution. In the languageof NRQED, one should conside the exact ntegration result (2.15) as aeesummatn of
some higher order effects.

As stated m the text, he stadard appoad regading 6r (F;) is simply to discad it, hoping that it will
be generatedby radiative mrrections. This is inappopriate, but let usnevertheless ontinue with the idea, ad
exposeone of the tednique usedd getrid of the exact érm facor integation corrections.

The basic idea isd absorb the Goulomb correction into the wavefunction. To this end, conside the tird
form facr. Weview it as arepresantation of the nodification of the intermediatec™ e~ state dued Coulomb
photon exchange. When dispesion relations ae used,one mnsides intermediate states asyamptotic states,
and integate over the correspnding phase-space. fis is the applicatbn of the optical theorem for absorptive
pats. Let us assuméat, due 6 the nmodification of the aymptotic Hilbert spaceby the long-range Goulomb
interactions, a @rrection factor mustbe introduced n

M (p-Ps — yy) ~ /d3q P (q2) x S(q) x M (e; efq — yfy) (A.9)
and that this facbr is
S(q) = 2y arctan lal (A.10)
|al gl

In some s&se,one could think of S (q) as he Sommaefeld facior of Harris and Brown [69]. Due b long range
Coulomb interactions, the wavefunction at contact¢,, is “renormalized’ by

2 o 2mafv N 9 Ta
[9ol” = 190" T——zmarw & 190 (1 +— ) (A.11)
by ushgv >> «a, i.e.|q| >> =, with v the catter-of-massvelocity. Corresmndingly, S (q) for smallbinding
energy is
Ty T
S S —L g —
(a) a S

The facbr of 2 arisesbecauses (q) is defined at he amplitude leel, while the Sommerfeld facbor is at he decg
rate level.
The same ectengent factor arises n the work of [84], [87] on O («) radiative rrections, by a detailed
analysisof the binding graph and its Coulombic part (which is, afte all, aninitial state @ulombic interaction).
In conclusion, if one is interested m the lowest appoximation (i.e. the ma®/2) the static limit is just
fine. If one wants te lowest appoximation to O («) accuagy, one must onside it as aising from the O («)
binding graph, as dernstratedby Adkins [87]. In other words, by taking only O («) diagrams br the scatteng
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amplitudeete~ — v, onefinds

I (p-Ps — vy) = %mof’ (1 - % (5— ?)) +0(a?)

The”1” inthe ébowve expessonis the lowest appoximationto O («) accuagy, arising from the O (a) amplitude.
To reproduce it usng our effective form facior metod, the Coulomb corrected Shrodinger form facior Frpy is
to be used, asi[87].

What we ganed ushg our method is abette understanding of its relation to the Sommerfeld facor, i.e.
agymptotic Coulomb interactions. F;;; being more peakedhan F;, the suppesson of the intermediate pase-
space isrnterpreted as a nrafestation of the iterative stucture of Bethe-Salpeteconstruction of the wavefunc-
tion. Therefore, the mehod of [87] is nothing but the rephrasing of that of Harris and Brown [69]. However, the
method of [87] or the preseant integration of F;; is surely more appopriate,becausene doesnot rely on static
limits, hence avoids the well-known static divergence 1 /v,.; of radiative corrections to e~ et — .

A.1.3 Radiative Corrections to Parapositronium Decay

Inthis secton, the computaton of the radiative correction to the two-photon decy rate is peseted. Wewill use
the standard tednique hroughout, i.e. @mpute he crrections in the static limit, aad then use a mmefeld
factor to extract he final IR divergence. This is abit different from the Harris and Brown computatbn [69],
since their work was simpy to reduce fe one-loop computaton of o (ete~ — 7+y) of Brown and Feynman
[65]. Here,we will d o the complete @mputaton.

The tree-level width is

A 1
|0 |2 = §oz5m

P (p-Ps —17) = 3

with ¢, the mnfiguration space Skrddinger wavefunction of the positronium at zeo sepaation. We intend
to compute he radiatve correction to order «. To get afinite result, he assciatedbremsstahlung processes
paapositronium — v~y also have to be calculated. értunately, thanks to selecton rules (harge mnjugation),
this decy is not allowed. Therefore, esen if it could appeaas quite ertic, this decg channel is maybe the
simplestrealistic examplef radiative correction calculaton.

For the puposeof compaison, we preseit the computaton using multiplicative renormalization and BPHZ
renormalization. Details ca be found at the end of this secton.
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i. Multiplicati ve Rerormalizati on

The diagams ae

— 4%’\[\/\0/\/\/ —
SE % P, P, |
—— —— Hi'\/\/@\/\/\/

oy,
=
&
=
]

with in addition the aossed pocesses. fiefirstone (') is the tree-level. For the others, the calculatbns ae at
the end of this secton, and we guote

SE % [~D —2+8log2+O(z)]
Vy+Vy % 20+ %2 — 8log2 + O(e)}
WF; +WF, % [—D —4—2logr+ O(v,¢)]

B % _—4+210g1/+%+0(1/75)}
P+Py % _—%D +O(€)}

whererv = mg /m?is an IR cutoff (m the electon mass;m., the photon mass used adR regulatr). Let us
make ®me ommants éout the calculaton. First, the self-aergy insetion correction is computed fom the full

propagabr
02 v Z2
)Y T s = F)

But this is nore than is needed abrder «, S0 we truncate he full propagaor

¥ + Crossed

wo_
Isp =

1 1

1 1 1
m+m(2(p)—5m)m+...

The first tam generates he akead/ computed bwestorder correction, and can be discaded. The result quted
in the teble is then obtainedwith

S = D (m) = % (3D + 1) + O (¢) (A.12)
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The W F and P corrections ae abit special. They arise from the LSZ formula. Indeed, he decg amplitude is
related b the S-matix element through Z; factors, introducing the arrections

Mosy (p-Ps = 7) = ZaZs (M) (p-Ps — v7) + M) (p-Ps — 7))
= Moy +((Z2 = 1)+ (Z3 — 1)) M) + Mz) + ...
where M4 contains B, S,V corrections (stictly speakig, the figures ae wrong because exteal lines ae

amputatedinstead, hey should be understood asreminder of the LSZ extenal line facors). Therefore, the
decy rate is, b order o

D(p-Ps—77) ~ Moy ~ Mgy +2((Ze = 1) + (%5 — 1)) My,
+ME1)M(0) + MEO)M(D + O (OéZ>
The first tem is te lowestorder (tree-level), while the rest onstitutes bhe O («) corrections.
The W F corrections ae then computed fom
(8%

Zo—1=%] =
2 5 (m) i

[-D —4—2logV] (A.13)
while P corrections ae
(8%
Z3—1=11(0) = ——D
3 ( ) 3T

The only effectof this last orrection is to change the bare charges at e vertex of the annihilationete™ — v
to the renormalizedone e = v/ Z3eq. Specfically,

4o A7 o
0 N 2 0 2
DO (p-Ps — yy) = |ol* —5F = || —- (1 +2—3WD)
Hence
2 2
@, _ 9 AT <] « _]): o AT
Iy (p Ps _"Y'Y) |¢0| 2 +237TD+2(Z3 ) ’¢0| m2

Therefore, as son as he charge is take asrenormalized,we can forget dout the Z3 corrections. Gombining
all the other corrections, we get

1 2 A o w2 27
ngz) (p-Ps — 77) = |oo| Z [—; (5 RN +0(v,¢)

with the renormalized oupling constant 2.

1- Note that the combination V' + P + SE is IR finite, becausehe intermediate elecon is off-shell.
On the other hand, the extenal lines introduce R divergence tough W F and B. In fact, te result
we found is the resultof Harris and Brown, except hat the velocity divergence isreplacedby an IR
divergence in 1/+/v. So this bad divergence isreally a Coulombic divergence, due ¢ the oft photon
exdange between the initial state paticles. Taking into account the Coulombic long range interaction
among the initial statee*e™ by introducing a Smmaerfeld facor, the diverging term is see to cancel

exacty, leaving
(1) o dma? « w2
Loi (p-Ps — v7) = |9l m2 | 5‘?

2- The Z3 factors ae sea to renormalize he electic charge at he vertex of the scatténg et e~ —
vv. One could wonder how the o of |¢|* = a®m3 /87 getrenormalized. h fact, the stadard view
concerning this is Hydrogen-like. Recall that in hydrogen atom energy level computatbns, one is intro-
ducing vacuum plarization as avery small @rrection; the Lanb shift. Usually, it is argued hat all sud
corrections ae O (a?).
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ii. BPHZ Renormalization

Now, the diagams ae

—
vy

.
K
}

1 v V2 § v
R R

CT, CT, | CT, 1

with agan the crrespnding crossed banrels. Fist, note that there isno external line correction in the aun-
terterm method, becausette fieldshave been rescaled. Te variousresults ae

vieva | 2 o0+ 810g24+0(e)
1TV o 5 0g
SE ;[—4D+2—8+81og2]
s
« 47
B o [—4+210g1/+717+0(1/75)]
5/
cT, 2om
m
CTo+CTs | 4 (Zl — ])

Note that the (Zz — 1) p pat of the mass ounterterm doesnot contribute (pecause @ odd number of Dirac
matrix insetions into the fermion current vanishes). Al®, the vertex munterterms ae frivial to write down.
Then, since Z; = Z,, the CT amplitudesr@ (ushg (A.12) ad (A.13))

T
—2D — 8 — 4log V|

26! 1)
CT, _m:<2(]_22)+2—m>:i[4D+8+210g1/]
m m 2
Q
+ —1)=—
CTe+CTs | 4(Z2 ) 27r[

When combinedwith their respectie amplitudeswe get

a [?
V1+V32+CTe+CTs o [— —8—8log2—4log 1/]

T | 2
SE+CT, 23 2+ 8log2 + 2log V]
s
« 47
B 24421 L 1O0e
27r[ +2logy+ 5+ 0, )}

All UV divergenceshave disappeaed. The combination gives hefinal expresson for the corrected decarate

A o 2 2w
Fglzz) (p-Ps — 77) = |¢o|” . [—; (5 RN +O(1/7€)>}
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No electic chargerenormalizaton wasnecessgy, since he lowestorder is immediatey computedwith therenor-
malized targe as oupling. Note that the Wad identity Z; = Z; usedhere was al® preseait in multiplicative
renormalization, in the form e = \/Zseg.

Both the mass ad the vertex counterterms ae IR divergent. In turn, all the UV finite corrections appea
IR divergent: the extenal lines divergences spill abng the whole fermion line. This is quite undesrable on
physical gounds, shce it is really the radiations from the initial e~e~ state hat aeate R divergences. This
was especiayl clea in the mehod of multiplicative renormalizaton. On the other hand, the preseat method is
rather straightforward from a omputatbnal stand. The general phil osophy regading the BPHZ metod is that
of a very powerful bodk-keepig, ideally suited b the systematicof perturbative expasion. Indeed, he SE
inseations in multiplicative renormalizaton required an expansion of the full propagabr. Beyond one-loop, this
kind of procedue quickly becomes bo cunbersome.

The two methods ae therefore complemetary: multiplicative renormalization has a staightforward phys-
ical interpretation, especialf concerning the origin of bath IR and UV divergences,while the BPHZ renormal-
ization is in most practical @mputatons (beyond one-logp) the only managedle computaton metod.

Details for the Canputation of Radiative Corrections

The paapositronium decy rate is @mputed fom the formula

11 ?
L-Ps =) =5 lool” [ a4

pol

€, (k) ey (kl)

o [% W+ m)ys (e7e” — )

where M is the positronium massyn the electon mass d® 4 the two-photon phase-spacew(ith the assciated
1/2 factor in front) and | ¢, |2 = o®m3 /87 the configuration-space Skrodinger wavefunction at zeo sepaation.
The amplitudel'* (eTe~ — 77) is the scatteing amplitude m the static limit, i.e. with both electon and
positron having momentap = (m, 0,0, 0). Finally, at the present level of precison, M = 2m.

The scatteng amplitude is mdified by radiative corrections. We ntend to compute he first order correc-
tions to the positronium decd rate fom the one-loop or order « corrections to the scatteng amplitude

_ 0 1
I =T +10 + ..

From this, the first order correction to the width is obtained as he interference between first order and leading
orde scatteing amplitudes

11

1 * 1
Y (p-pP - 2/d<1> Tr | — TOw | 7y | — o + e
(p-Ps —v7) SSVE | dol Alr \/5(74‘7”)’75 r \/5@7/4‘7”)’75 ww | T hec

Therefore, we will calculate he contribution to I'") of ead correction in turn. We will proceed acording to
multiplicative renormalization (see he figures dowe).
ii. Tree-Level Decay Rate

To tree level, the scatteing amplitudel'*” is exracted fom the scatteing amplitudee™e~ — ~+ in the static
limit

. 1 By — Y eyt 21/2¢?
1 (O)MU} — o2 TRy ’Y — nvpo
Tr{ﬁ(ﬂ_}_m)’)%r e Tr{ﬁ(ﬂ+m)75 Q(kp) (kl)g pﬂko'

Note that this amplitude is maifestly gauge fvariant. Squaing and summig over polarization,

2
= 2561202

S |1 [ @ m) st (e = )] e (B (B)

pol
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The width is then simply

1 1 9 Ama? 92 o®m
I (p-Ps — ) = 5m/d¢A256ﬂ2(12 [@ol” = ——~ 190" = =
iv. One-Loop Corrections : Self Energy Insertion
There ae two terms
1 1
v . - 2 v
g = (—ie®)y mZ(p—k) p,_}é—_m’y“—l—Crossed

rey = ~* 4+ Crossed

1 1
— (—ie?) ¥ Om
( ) p—K—m p—F—m
with 2p = k + &’. The self eergy function is to one-loop

—je?

—i¥o(k) ) dz [—(2—e)(1 — ) ¥+ (4 —e)m] A (k*)
27 /2 2 2\ —¢/2
A() = <4:;°; ) r(e/2) (x 21— 2) g+ (1~ ) %) (A.14)

with i is an IR cubff, w is the dimensional regulaization dimension paamete. The renormalizatbn constant
8m = X2 (m) is calculatedfom (A.14) (a IR cubff is not necesssy, 6., is IR finite)
e? A w? =/2 am
by =— I(/2) [ dz 2z +(2—¢e)zt | =—(BD+4)+0(c
vm) =i () TEr) [ e ot e 0o = TGP+ 0 400

Now, computing the raceswe get

v a2 vpo
Tr@+m)ysIs] = 4@ (e — 4) ("7 p,ky) /dxA (—m2)
2
Tr{@+m)vsl,] = 4ém%eﬂ”ﬂ%ng
using p? = m?,(p- k) = m?, (p — k)2 = —m? and k? = 0. Therefore, the wrrection to the decg width is
ohtained as
5
(1) _ amfa )
Iy’ (p-Ps —yy) = 5 [% (e —4)/dxA(—m )}
5
1 a’m [ 26,
L (p-Ps — ) = — (W)

Since te self-mergy function A (—mZ) is not evaluatedon-shell, it is IR convergent and we can setu? = 0. It
remans o work on the divergent integral. Wehave, expading around d = 4

(e — 1) /d;z:A (—m?) = (e — 1) (4;‘;2> P e /da: (@(2—2)) /%=1 [D +5 2o 2] +O(e)

Therefore, theresults ae

a5m

1y (p-Ps — ) [% (—4D+2—4(2—210g2))}

ot

o’m T o
I‘gi (p-Ps —yy) = 5 {% 3D+ 4)}
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Combining bath self energy corrections, we get he final result

a5m «
I‘gg(p-Psa'yfy):— — (=D —2+8log?2)
2 L2r
Note that this result is feeof any IR divergences. There remais aUV divergence in theresult. This is expected.
This divergence can viewed as e /7, factors that will combine with the vertex corrections, ensuring the

finitenessof the combination.

v. One-Loop Corrections : Vertex Correcti ons

There are four diagams : he two photon permutations with a correction to the first vertex, and the two corre-
sponding to the seond vertex. Let us onside the first two corrections:
Iy = (—ie?)

I'“(p,p—k)+* I (p,k—p)

1
K—p—m
with 2p = k + k', The vertex function I'* (p, p — k) is a quite omplicated function of the momenta. A general
demmposition for it is

v 1
T E—m

' (p,p') =" A(p,p") + B(p,p') N
with A (p,p’) a divergent quantity and B (p, p’) thefinite remander, while IV stand for a complicated t@sor and
Dirac stucture. Let uswrite

2-d?T(2—d/2) [ 1 \>%?
2 (4m)¥2 (A_r>

1
—%/dxdydzé(:c+y+z— ])A—F

Ap.p) = %/dxdydzé(x+y+z—])

B(p,p)

One feature of this demmposition is that A and B are the same dr both diagams, sice
Ar(pp—k) =Ar (pk—p)=m*fy(y—1) —z (- 1)+ (1 — 2) + 2]

withv = p?/m2. Then
v A vpo
Tr(§+m)yslho] =16 | — +2(y* — 2y — 2%) B| "7kl

The resulting contribution is
a‘5m

2

It remans o work on the Feynman paamete integals. These ca be written as

a‘5m (8%

2 4Axw

I (p-Ps — yy) = 2 24+ 4m? (y? — 2y — 2?) B] = [Ty + 1]

Tw?\ 2 1 1-z , .
L= <4m2 ) r(e/2)/0 dx/o dy 2—d)’(y—1)—z(@—1)+(1—2)+2)
- 2D_4_4/01dx/01zdybg[y(y_])_x(x_])+(]—Z)+z1/]+(’)(€)

,7.[.2
= 2D+2—?+O(€)

1 1-z 2 2
— 2
I, = 4/ dx/ dy Ty
0 0 yy—1) —z@—-1)+(1-2)+2v
= —247%—8log2
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Note that agan, there isno IR divergence in those ntegrals. Fhally, the vertex correction is

5 2
1 a’m [« T
FE/) (p-Ps — vy) = 5 (% [2D +5 - 8log 2})

where we have multipliedby two to acount for the (identical) corrections t the seond vertex.

vi. One-Loop Corrections : Wavefunction Renormalizati on

As explaned in the mah text, we only need b compute he electon wavefunction renormalizaton constant
Z3. In the on-shell renormalizaton scheme hat we ae usig, it is given by Zs — 1 = 3 (m). This is can be
evaluated fom (A.14)

(8% 7rw2 €/ £ — —x £ X —.]72
% (m) dxl(4 ) (=2)(1=2x)I(/2) , 4z(l )]

Ar m2 (22 + (1 —z) ,/)6/2 224+ (1—x)v
= %/dx[—2(]—:L’)(D—]—long)—}-%}+(’)(e)
= %[—D—4—210g1/]

To get the correction to the decg rate,we conside the four diagiamswith external electon li ne renormalizaton.
There is a facor /Z; — 1+ £35 (m) on extenal lines, i.e.

(\/Z_g) + <\/Z_2)irossed: 2 (1 + %E’g (m)>2 =2+ 2% (m) + ..

The leading order 2 reproduces e leading order amplitude br eTe~ — ~+. Thefinal correction inducedby the
wavefunction renormalization is

2

direct

5

1 a’m o
FgV)F(P'PS—”Y’Y): 2 %[

—D —4—2logv]

vii. One-Loop Corrections : Binding Correcti on

We now turn to the most difficult pat of the calculaton: the binding graph. The amplitude is

v d4q e { v [ : _igaﬁ

= (2m)"* {(_267 V= =, (_Mﬁ>} ¢? — 112
with 2p = k + &' and

v o__ 7 + o i ; oAV

AF _(_Zev)q—kﬁ—}é_m( ’Le’y“)—l—( Zevy)q—ﬂ—'—}é—m( Ze’)/)

where the two terms stad for the direct and crossed diagams. The decg amplitude is enstructed adefore. We
can simplify the calculatbn by noting that the cossed diagam dexominator is equal b the directone if ¢ — —gq.
This motivates usa change he sign of ¢ in the aossed diagam. The trace hen gives

2qM€ypUTppkaqT - 2qy€'upm—ppk(r%'
iy +2p - qe"Ppyqe — 2k - PPy,
(27(') +q2€,uupo'ppqg + E,uupappkg (2m2 + q2>

d*q 1

Tl m) 5] = 16t [

with the denominator

D=((g=p*=m) ((a+p—0)°=m?) ((g+p) = m?) (¢* = )
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From here, the procedue is stadard: introduction of Feynman parametes, loop momentum <hift, and loop
momentum integration in d-dimension. We get

2
Tr |l +m)vI] = %s“”/’”kpla/dxdydzdw%(]—:L'—y—z—w)x
202+ )+ @+ (@—y—2) (@+y—2) 3y—1
{(x—z)Q—(y—2)y+wy}2 (x—2)*—(y—2)y+uwv

After the (quite dificult) integration,

v 80&2 2w
Tr [ +m)vsl's] = € kyle | =2+ logr + ==+ 0 (V)

N
Finally, the contribution to the width is obtained as

5
2
'Y (p-Ps — yv) = —a2m% 24 logy + — +0(v)

N
With this final correction, we can now combine all the results. This is done in the man text.

A.1.4  Dispersion Relations and Kaon Decay

The amplitude r K% — ~veTe~ is computed at dwestorder in a pion loop model. The pion is treated as
a point-like charged paticle, which allows simple scalaQED treatmait. Special attetion is paid b the low
energy behavior of the amplitude.

Decay Anplitude and Loop Integration

The amplitude ér kaon decy into ve™e™ is given by

M(KS = ere) = ~2i M(KS — 77 ) e, (1) L2 %U(p }/( M (T =)
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witht = p+p' = P—k. ThenTn~ — v amplitude @ises fom the one-photon and two-photon (the so-called
seagull gaph) coupling

as

(2¢— k)" 2 +1)" — g" (¢* —m?)

M (rTa = yy) =
( ) (@+0°=m2) (4= 1) = m?) (¢ = m?)
with m the pion mass. Te amplitudem (Kg — 7r+7r*), taken as a onstant, hasbeen factored out. The

integration is done ushg dimensional regulaization to preseve gaugerivariance and get afinite result. We
obtain

ddq
(2m)

N —i 1 =z T4g 1—2
M (x —’77):—(47T)2 /0 d /0 dy [Ty [g“”(k-t)—t“k”H—y( X y)g’“’t2

The denominator functionis A = m? (1 — 4 (a — b) zy + 4by (y — 1)) with the ddinitionsa = M2/4m? b =
t2/4m? and M the kaon mass. hthe kaon rest-fameb = M2 (1 — w) /4m? with w thereduced poton energy
2k /M. When integrating over Feynman paametes, the last tem vanishes. Therefore, the gaugerivariance of
the amplitudebeaomes maifest

M(KS —qeve) = %M (K3rn) =5 F (a,b) 4 () {1.p) 7,0 ()

g (k- ) — kY
{2

(A.15)
where the Fey/nman paamete integal is

1 lfy 4
F(a,b):/ dy/ dz Y :
0 0 1—4(a—d)zy+4by(y —1) +ic

The preseiption ie gives he sign of the imaghary part.

Feynman Parameter Integration via Dispersion Relations

To calculateF (a,b), we dall use dispesion relations (see ér example [6], [219]). A diect integration is
possble, but we dhall gain insight into the dynamicsof the processby using dispésion techniques.
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viii. Absorpti ve Part Extraction

A first integration over the Feynman parametes gives

ot [y—1 mK@®) -InK(a)  b(y—1) (K () — InK (a))
F(a,b)_/dyla_b+ Tt - ] (A.16)

whereln K (z) = In(1 + 4z (y — 1)y —ie). The imaghary pat of £ (a,b) comes fom the valuesof y for

which the agument of a logarithm is negatve. There the logarithm imaginary part is —iw. Integrating on the
relevant y valueswe find

7 (I [Va+va—1] —by/=1)

Im F (a,b) = f(a—1)

2(a —b)*
w(ln{ﬁ—l—db—]}—bﬂ%)
- 6(b—1 A.17
Y (b=1) (A7)
or, recalling the ddinition of a and b (see [208])
Tm F (a.b) — 47rm41 1+ ]_41\4&22 2rm2 1 —w L _am? L gas2 g2
m F'(a,b) = M4w2n]_ | am? TTME o2 — Gz 0 (M7 —am?)
M?2
4 4 1+ ]—% 2 2]_, 4 2
Tm In M?2(1-w) _amm w 1 — Am?2 o( a2 — m (A.18)
M2 1— 1 - _am? M2 w2 M2(1-w) 1—w '
M2 (1—w)

Obviously, the first line in (A.18) correspnds © the vertical cuts (vhich contribute only if the decging
paticle’s mass\/? is larger than (2m)2) while the seond line correspnds 1 the oblique cuts (hich contribute

only if the virtual photon energy ¢? is larger than (2m)2)
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Further, one can see hat in the oft photon limit w — 0 (or & — a), Im £ (a, b) behaves as a anstant.
Indeed, appling L’Hospitafsrule twice, we get

M? M?(1— woo 2m* 1
Im F MO —w) wzo 2m (A.19)
Am? Am?2 M* /T —4m2/M?

while individually the contribution of each cut is divergent as1/(a — b)? ~ 1/w?. Wewill come back b this
point later.

ix. Dispersie Part Integral

In order to write down the unsubtracted dispesion integral, let us expessim £ (a, b) as a function of the avail-
able energy through a (s) = s/4m? and b (s) = s (1 — w) /4m?. Then

ds

Re F (a(s,) b (s,)) = 5/ Tm F (a(s),b(s)) (A.20)

with s, < 4m?, sud thatwe can omit the principal pat. For sud a kinematics

F(a(s,),b(s5)) =ReF(a(s,),b(s0))

In the next stbsectbn we shall analytically continue F to the physicalvalues, = M?2. Theresultof (A.20) is
easily obtained in termsof the integals

1
dy / /
——1n [ —2arcsm ]—y—2 24/Yy, — 1 arcsin
/(; Yo — Y yo Yo — Y

valid for y, > 1 (see [6]). We cawrite F'(a,b) with0 < a<land0< b < 1as

1 1

+
2 (a — b) (a, —b
intermsof f (z) = arcsin® \/z and g (z) = /=% arcsin /2.

F(a,b)=—

3 (30 @ =70+ -00)) (n21)

X. Analytic Continuation

Theresults br a > 1 and b > 1, are obtained by analytic continuation of (A.21). The analytic continuation of
f(a)and g (a) are

f(@) = aresin? (V) = — (m (VE+vZ=T) - %m>2

1=
g(z) = a arcsin /z =
x

The equalitieshold for z € C,Tmz > 0. The right hand sides déne the analytical continuation for z > 1.
Hence heresult is onveniently expressed as (A.24yith

L (m (VE+Va=T) - %mr)

arcsin® (1/z) O<z<1
/@) { (W (VEVET) — din)® > (A22)
(@) = \/ =% arcsin (/7)) O<z<1
T e (E e VETT) — fin) @
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Hadwe dhosen to analytically continue f and ¢ in the lower half complex plae, their imaginary parts would
have had te opposite sigh. One can verify from (A.22) tat the uppe half complex plane analytic continuation
repoducesim F'(a,b) as gven in (A.17). This result orrespnds b [212] where a sigh mistakehas b be
corrected, ad to [218], [216].

Decay Width, Differential Width and Lovis Theoren

The differential decy width is given by dI' (K§ — eTe ) = 537 Yopin |M|? dds. After a staight-
forward integration over the electon-positron phase-spaceye get he differential rate n terms of the reduced
photon energy w:

dl' (K§ —ete ) Jdw |F R ‘ 201 —w)] —
I'(K§—nto) 37r3 VT —a, lac + 2 ( w)?

with a, = 4m?/M? and a, = 4m?/M? = 1/a. The boundson the w integration are wyin = 0 aNd Wiax =
1 — a.. A numeical integration of the differential rate gies he prediction for therate K% — e* e« relative to
K%Y —atn

I(KY—ete )

~ 470 x 1078 A.23
TR —aa) 0 (A-23)

R7T+7T7 =

where the real and imaghary pat of £'( -, <= ) contribute for 1.26 x 1078 and 3.43 x 108, respectiely.
Let us tunto the ft photon behavior of the differential width. We have o analyze he loop integral function

F (al T ) This function tends © a constant for very low w:
I 1T 1T—w)\ wso aﬂ+ a2 1 (A.24)
—_— —_ —— —_— — .
ar’ G 4 4(%—])9 Gr

(note that for a,, < 1, the imagnary part of (A.24) is the same aqi(A.19)). Let us empasize he stong cancel-
lation between the two cuts i the oft photon limit. I ndividually, ead cut diverges asv?, but their combination
is convergent. Since he remander of the amplitude tads © zero like w (due b the [g*” (k - t) — t*k¥] factor),
Low'’s theorem is vefied: the amplitude behaves asclose tow = 0. The resulting speatum is tus in w? (w?
from the squaed amplitude ad aw from phase space).nlother words, hadwe forgotten one cut, te resulting
spectum behavior would have been divergent as1/w insteadof vanishing like w3. In fact, this w® spectum is
exactly the same agithe 7° — e*e~ 1y differential decy rate.

xi.  Comparison with the Two-Photon Decay Mode

From the amplitude (A.15)we readily obtain the amplitude ér K9 — ~v by renoving the electon current, the
photon propagabr and by taking the limit w — 1:

—2a M (Kg — 7r+7r’)

M (ng - 77) T i m2

7 7 7 M2
4 0)E5 ) o (k- )~ Kk ($i.0)
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2

~294x 1078

which correspnds b the result given in [6], [218], [214]. The relative decy rate is :
D(K$—vy)  o? 1

1
=—————|F(—,0
(K —7mtn)  w2a2y1—a, (aw’ >
while the expeimental value fr this ratio is (3.5 4= 1.3) x 10~ ¢ [223].
We can now compae the wo electomagetic nodes :

I'(K%—ete )
L'(Kg— )
in acordancewith [208]. This ratio R, is similar to [223]

~ 0.016

Ryy =

I (n®—eTe )
I'(7% —7)
The small diffeence is due ¢ the phase-space faat. The similaity between a constant coupling model like for

70 — eTe” v and the presat loop model can be understood from the behavior of the photon energy spectum.
Indeed, be pue phase-space speamm isvery strongly peaked ahigh w, and therefore the decg rate is quite

insensitive 1o the detailsof the £ (ai, 1;—‘“) function. Specfically, if we replacer’ (ai, 1;—‘“) by its value for
w =1 (A.25)wefind theratio R+, ~ 4.671 x 1078, very close b (A.23).

The discusgin of the more general caseof non-constant form factor, i.e. if the amplitudem (K 3 7r+7r’)
is not taken as a onstant, can be found in [29], [30] and references cited hiere.

~0.012

A.2  Orthopositronium

A2.1 Phase-space Structure

The goal of this secton is to set up be kinematicsof three-ghoton decas, abng with numeical mehods for
paametizing the assciated treebody phase-space. Suppe hatwe ae consideing a pocessV — ~vvy, V a
vecbr paticle, with coupling constant 3 gy-. When there ae no angular depadences n the amplitude, e only
relevant variable are the energy of two of the photons (see C.3)

d*kq dksy d®ks  dwidws

dPs = (2m)* 64 (P — by — ko — k B
3= (2m) 8 1= ha k) (2m)° 2wy (2m)° 2wz (21)° 2wy 4(2m)°

The amplitude is castto a function of only P? = M?, w; and w,. This is adieved by first removing one of
the photon momenta usng the energy consevation k3 = P — k; — kg. Then, there remans only scala products
sudhasP - k; = Mw;, since heV paticle is atrestP = (M, 0,0,0), and

k1 - kg = wiwg — |p1] |P2| cos O12
Momentum consevation can save o fix this angle

M? — 2Mwy — 2Mws + 2wiws
2|p1 |p2

cos i =



114  Appedix A Resources br QED Bound states

Hence
Ky - ko = M (wy +wg) — M?/2

Finally, if we define thereduced poton momenta asz; = 2w, /M, we get

dbs = 2—d5‘71d"723
16 (27)
1 2
P'ki = §M Z;
1 1 y
hioky = oM (zi+m;—1) = 5M* (1 - [V )

The deca rate is hen ohtained by integration over x5 [1 — z;,1] and z, [0, 1]. The final variable we will use
is the reduced massf the paticles running in the loop a = 4m?/M?2. In terms of all thesevariables, he
differential deca probability is dP’ (x1, 2, 23,a) = >, |M|?. Then, the decy rate is expessed as

1

1 6 2 1
Liot (V—=vyy) = S 3E IV dq’BgdP(l”hxzwaﬂ)

= La3 2 M ldx ' dxg dP 2— 1z —
= v 1 L2 (45173327 T 1’27@)
72 0 171‘1

Note how we facbred he mupling constant from the amplitude.
Of utmost interest b uswill be the differential rate (i.e. he photon energy spectum)

dr (V. —yyy) _ 1 !
Tl = 50439‘2/]\4 \/1‘1?1 dzo dP(ZEl,ZEQ,2—£II1—$2,a)

and the normalized diffeential ratel', } dI'/dz; .

Numerical Approximation for the Phase-Space Integrations

The amplitudesve have to manipulate ae very complicated, ad, in general, numeical metods ae te
only alternative. Futher, to save a sstantial amount of compute time, it is a @od idea b fully exploit the
symmety of phase-space. e mehod we present here isbarrowed from Adkins [87], and will be usedm all our
computatons (except ér the simple @e-Powell appgoximation, because it cabe staightforwardly integrated
analytically).

Energy-momentum cnseavation implies that the photon reduced eergies lieswithin the plane z; + z2 +
x3 = 2, and sincez; € [0, 1], phase-space isticted D a riangular area
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The differential probebility dP (z1, 2, 3, a) is fully symmetic under pemutations of z;, x2,z3. This meas
thatonly a sixth of phase-spaceeeds ¢ be computed

P
w

where the center-point correspnds © (2/3,2/3,2/3). We dhoose he daker sixth of the tiangle in which
To 2 T3 = T1.

Now, to get an estimate 6r the phase-spacerpbability distribution, we have to evaluatedP (z1, z2, z3, a)
atvarious mints inside he dak triangle. Tothis end, we can introduce auxilialy variables as a cordinate ystem
for the dak triangle:

v
xlzg(?)—}—u)
uv
==

When u,v runsbetween 0 and 1, the z,, 2o, z3 spar the dak area. Then, we diide the triangle into 7 x J cells,
or bins (herewith 7 = 5 and J = 8):

ui=ig g

We can then construct a mattix out of the differential probability (for a given valueof a)

Uj UiVy Uj
dP(G (B+w),1—=5d 12 (3—u1)7a)
It is the computaton of that matix that takes 8 much compute time. Of @urse, he valuesof 7 and J to be
used b get areliable answer depand on the assumed santhnessof the differential probability. As we will see,
in most cases, agarse gained mef 7 x J of 40 to 100 points is suficient to get a ttal rate at he pecent level
of precision, becauseof the high reduindancy of phase-space (i.e10 points in the dak triangle meas 6 x 40
points for the whole phase-space). ®te finally that the chosen parametization hasone tednical adrantage n
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that evaluations of the differential probability on phase-spacéoundaries never occu. This is welcome sihce a
numeical evaluation there ishighly unstable (if not divergent), especialf numerical integations.

Once the matix is found, we use eme Mathematicatods to build interpolation functions. Namey, we
construct an interpolation like

Fine [u,v] = Interpolation [(dP <%J B+uw),1— %71 — %J 3—w) 7a)). }
i\j

Then, an interpolation to the whole phase-space ibuilt by expressig back «,v in terms of reduced poton
energies, as

3(1 —
1 <23 < T Fine 2x1+$2—17ﬂ
21+ 29— 1

: ca) = 3(1—
APin (@1, 2,733 0) Ty S T € X3 Fing |22 +$3—]7—( z2)
2x1 +x3— 1

Note that at his stepwe rely on Mathematica o extrapolate the interpolation beyond itsrange, shceboundaries
are now included (ifone suspecthat the differential probability is not snooth, sizedle lossof precison could
occu. Increasig the number of bins is then compulsory). From this interpolation of phase-spacehe differential
rate, spectim and total rate can be obtained simpy by numeical integrations.

A.2.2  Euler-Heisenberg Lagrangian

The Eulg-Heisenberg Lagangian [201] is the one-loop QED effectve acton. It can be computed usig the
Schwinger Proper time tedinique [10], [18], [28], [203]. or a constant field stength, the result is expessedn
closed brm to all orders as

£ _ LY ) cosh (eaT) cos (ebr)

- 2
— > —mET —1 C
eff 812 Jo T3 [( ) sinh (ea7) sin (eb7) +

with a, b solutions of a2 — 52 = E2 — B? and ab = E - B. This exgesson wasobtained in 1951by Schwinger
[203].

To get the various muplings,we expad the tem in squae brackets as a ses in 7. Ead order correspnds
to anew term in the effectve Lagangian

£

W=+ 8 + £+ £+ L0+ L5 +

with

1  d
C(()l) — ——C/ _TefmZT
0

(1 _ _i 2 _ 32 Oo_fmT
Ly’ = 5 (a b)/o —€

2
o _ Aa” 4 2.2 34
Ly = oo (at+507a® +0%)

167a’®
£ =~ (2% + 0%t — Tota? — 20°)
m
2562t (
945m12
20487305

 1485m16 (

3a® + 100%a® — Tb*a* 4 100°a° + 30°)

o = 1000 4 335%a° — 22b%a® + 220%a* — 336%a% — 100'°)
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Transaibed into £, £+ = 2 (E? — B?) and F,, /" = 4(E - B):

1 <
C(l) __—C _7—6777’7,27'
8w2  J, T3
<
Cgl) — —inuFW/ _Teme'r
127 o T
O = (e T (5, )
LT gomA \V M v
(0 = _ T (e B ey (6,
& = g (1) + 5 (B ) (B )
£ = *al v 4 pvy2 ) 1 )
O = s (A8 (Fu ) + 88 (F, ) (FWF ) + 9<FWF )
1 4m3a® N5 N3 A v S\
£ g (160 (B 17%)° 4332 (1, 1) (FWF” ) 127 (B, F* )(FWF“ )

The first tam is just an infinite energy shift, and can be set ® zero C' = 0. To compute he UV divergent ch
term, aregulaization procedue mustbe introduced.Using a simpleUV cutoff

o0 dr —m2r A2
E(le):/ —e =log— — v
1/A2 T m

And one ca recognize the photon wavefunction renormalizaton constant, up to irrelevant finite terms.

Feynman Rules for the Four-photon Vertex

Insteadof directly give the Fe/nman rules assciatedwith the Eule-Heisenberg Lagrangian, we mnside
the pieces

2

(8]
L) = gopa (Faf™)”

Oé2
2(2) = W (FMUFVpro-FUM)

o? Tuv\2 — o? uvy\2 vp an
So = o (Bl = oot 2 (B ) + 4 (F P F, F )}

where

and the idantity in the third line is easy estadlished from contractions of Levi-Civita symbals.
For eat term, the Feynman rules ae (with the nomentum flow d = a + b + ¢, i.e. d in-going, a,b, ¢

out-going)

16ia?
uvpo . _
T(l) (a, b7 C; d) = W 0
fia? &
uvpo . _ :
' (a,b,¢;d) = pr 2 Vi

l“g)p” (a,b,¢;d) = —21“%‘1”)’” (a,b,¢;d) + 41“2‘2")’” (a,b,c;d)
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where

Vo = ((d*a® — g"?ad) (c"b” — ¢g"Pbc) + (cfa’ — g*Pac) (A" — ¢g"7bd) + (bHa” — g*"ab) (dFc — gF° cd))
Vi = dte’vPa” +dVc’vtaf + dPctb’a” + dHeV b’ af + dP bt a’ 4 dV et bPa’

Vo = g"[(de)bfa® — (ad)c®bP — (ac)dfb® + (de)b®a? — (bd)c” aP — (be)dfal]

Vo = gM[(db)c”a® — (ad)c”b® — (ab)d” ¢ + (db)a” ¢ — (ed)a”b” — (be)d” a’]

Vi = g" [(be)aPd” — (ab)c’d’ — (ac)d” b’ + (be)a”dP — (bd)c’af — (cd)bPa]

Vs = g¢""[(ad)c”b* — (ab)c”d* — (ac)d b’ + (ad)c*b® — (db)cta? — (de)b*a’]

Ve = ¢ [(ac)dfb* — (ab)ctdP — (be)d"a” + (ac)b?dH — (ad)ctbP — (cd)bH o)

Ve = ¢ [(ab)c”d* — (ac)d”b* — (be)a”d* + (ab)d”c — (bd)a” c* — (ad)c”b]

Vo = g#g" [(ab)(cd) + (bd)(ac)] + 479" [(ad) (b6) + (ab) (cd)] + 95" [(bc) (ad) + (vd) (ac)]

The Eulg-Heiseberg Feynman rules ca then be recmnstructed since

a?

5 v 2 v g
oA [—5 (B F")* + T (Fu F"P Fpo H)}

Lr H

vpo 5 vpo vpo
— 577 (a,b,cd) = —irg‘lf + 700

In the text,we prefer to use he Lagangian under the form

2

vy\2 7 Ty
.SE,H m |:(FM1,F” ) +Z(F,U«VFM )2:|
vpo vpo 7 vpo
— TR (0,0, ;) = TP 4 LT

to exhibit explicitly the scalaand pseudscala currents. The Fe/nman rulesreman of course identical.

A.2.3  The Photon Two-point Function

The photon vacuum plarization reads

4 . .
i (kQ) = je2 dp Tr |y* ! ~Y !
(2m)4 p—m+ic’ P+ —m+ie

Using dimensional regulaization techniques,which preseve gaugerivariance,we find

H“"(’“Q)=27a(k29“”—k”k”)/dxx(x_1) r@2-9) ( 1 )k2)2%

(47rw2)d/272 m?—z(l -z

Expanding intermsof & = 4 — d, with II*” (k%) = (k2g"” — k+k¥) 11 (k?)

1
2 2z(1—x)k?
I(x*) = —%D—?a/dx:c(x—])log(m x’r(nQ 2) )+O(e)
2
D = ——’y+log[4m;}
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Note that we mg also integrate over x the non-expanded expesson, with the result expessedn terms of
hypergeometic functions

a I@2-9 d_ 5 k2

(k%) = —— F2-3.2,5.7—
() 37T(47ru)2/’rrﬂ)d/2 £ "D Am?

)

A completel integated expesson for the finite pat can be obtained simpy as

Ig (k%) = %/dx;v(] —2)log(1—z(1—2)¢) (A.26)
0

with ¢ = k%/m?. A direct integration gives (seedr example [9])

=2 g3 (-2) (-2

The function 7 (¢) is

1 1
Warctanﬁ 0<§<4
j(C) — —\/TT/C arctanh\/TT/C { < 0
1 1—/1—4/¢C
NV S Vv $>4

where eat term is obtain by analytic continuation. In fact, the first two lines ae idetical, due b the properties
of arctangent functions. The last equalit is valid in the upp& complex plane

+ 1 1—/1-1
fee (1 /¢ +i7r>

1 1
V77 R/ vy BN eyl W BN v s

Thereal pat of Il (k2), for all k2, is therefore

HR(/@Q):_— +3—C—§ 4/¢ —1(1+42/¢) arccot 4/{—]—%0({—4)(]—{—%) 1—4/4

Two-loop Vacuum Polarization

The photon two-loop vacuum plarization functionis ([7], [217]):

Ha(Q) = _]g; [?+§_g_4(1—{3))C(3+2¢)G(O+2(1—g)3(£_mg)GQ(O
2(1+20) Q)
ST [1+2g(1_ )dJ ; }
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with
O
1(¢) = 6[C(3)+4Liz(—y) + 2Li3 (y)] — 8 [2Lia (—y) + Li2 (y)] Iny
—22In(14+y) +In(1 —y)]In’y
T—1/¢—1

LY ey

A.2.4  The Photon Four-point Function

We ae interested i the four-point function only for a spedic kinematics, i.e. Hat of the deca of a massie
photon into threereal photons. We ca pictorially represent our process as

+ 5 permutations

Where the g, is an arbitrary coupling constant.
The correspnding amplitude is gien in terms of the vecor to three-goton current [113], [205]

. 1 z ! .
s it { ED i (123) (Fp = 2h10) = 0, (132) (Rg 0 — 2110 }
(6% v 2
W2A | Hicpup b kEREED, | (123)

where A = (1 — z1) (1 — z2) (1 — z3). The € correspnd to helicity amplitudes (dexedby A; A2As), whose
arguments ik are short-hand for z;, z;, 7, and alo a = 4m?/M?. This expgesson mustbe summedver all
polarization states\; A2 \3. Becausef humeous idatities armong the helicity amplitudes, e modulus squeed
of the amplitude ca be expessedn termsof only four of them. Gonventionally, we choose

1 1 2 2
E(ij-—&- (.171,.172,.]73; ) QMQgi—G)-—t— (]23)7 Eg:—%——&- (x17x27$3;a) = i—&)-—&- (]23)

The dimensionless E(*) are given in the next sibsectbn. In term of these, bhe modulus squeed of the curent
is

D (GG Aoy = _280% [R(123) + R (213) + R (312)] (A.27)
A1A2As
with
2 2
R(123) = |E(2)+ (123) | + |2 (123)| +— |E(1)+(123) +EY, (132)
T - 502) (I1—=z3)| 1

1 2 1 1 1
5 e+ (- L) o

zox3 (1 — 1) | 22 (1 —zy) ‘] -

2
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The R’s for other arguments ae obtained by permutaton of the z;. Note that there is no restiction in the
contraction (A.27) since curent consavation (Ward identity) implies

1 P, P
Z A1 AoAs A Az ! ol Z A1 A2As v#A Az A
(Gal 2 3G/31 2 3) 3<ga8 5 >( Gl 2 SG 122 3)

Al AQ Ag A1 AQ AS

where the last faobr is a scalafunction, and where P = k; + ko + k3. Therefore, the longitudinal pat of the
vecbr boson polarization sumnever contributes.
The amplitude ishien simply

(Vv APa— (;A1A2A3(;*A1A2A&
(V =) 2M3,/ 3 A; )
1A2A3

The threebody phase space is

dridx

dPs = 21_23
16 (27)

and therefore
= A1d2Aa A1 A2 s,
F(VH,YIY’Y) - 297T39M/d$1d$2 Z G 142 SG 1A2A3 )
A1A2 A3
16°g5

S5 M/dxldxg [R(123) + R (213) + R(312)]

Helicity Amplitudes

The amplitude ad squaed amplitude cabe expessed usig helicity amplitudes. Let usote

r=1—-z1,8s=1—29,t=1—23
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Then, we have the four indepexdent amplitudes(ESfl = ngl (w1, 2, xg)) :

B, = 2y [ Tt - i)Q - ]2_““8] (Bls/a] - B[1/a]
N % +]2__tt] (Blt/a) = BI1/a) + |2~ 2] Tlr/a]
+ —_@jL%_ 13_as+1it+(12_ai)2 +;+%]Twa]
+ _M_%+]3—1—02_%)2—§—§—§ T[s/al
N eI
+a_(1 —:it(f — 1) o [r/a,s/a,1/a] — %IO [r/a,t/a,1/a]
+ [—M + % - % + ?;—a - 2?&] To[s/a,t/a,1/a]
B, = [ 2 (@lr/a) +ls/a) +lefel - T fal) - Lk a5/,
+“(]ST_ D 1o 1s/a,t/a,1/d]
for the first type, and
2. = |- el - v+ [F- 25| G- suj - [E+ 2+ 3 T
N _%ﬁ(]fﬂ +a<18t—7~) S it+%}T[1/a]
+ %+¥ +j—1 Iolr/a,s/a,1/a] + [% % +Z—;j lolr/a,t/a,1/d]
+ _% + 2(]T_T) + a(]st_r) +57~_Q+Z_1 Io[s/a,t/a,1/a]
B, = 2 S+ 8 2 @/l 4 T(sfal + Tt/ =T (1fa]
n % + Z—ﬂ Io[r/a, s/a,1/a) + E + 2—1 Io[r/a,t/a,1/a] + [g + i—ﬂ Io [s/a.t/a,1/a]

for the seond type. The form facbors appegng in the amplitudes i@

1 2< 114 /% 1arcsiny/z
= — — lLarcsin
Bl = 1+ dz In[1 —ie—2(1-2%)] = =
2 Jo

z>]:—1+1/1—%<ln[ﬁ+m—ig)

ld ln[l—ie—z(]—;ﬁ)] B z<]:—arcsin2\/5 ,
/0 L 1 — x2 B z>]:<ln[\/2—|—\/z—] _Zg)
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The mnstant ¢ (with a limit ¢ — 0 understood) appeang in the agument of the logarithm is necessey to
unambiguously select be mrrect ieet, i.e. 6 give a sig to the imaghary pat. The result or z > 1 is
then obtained by analytical continuation, with the mnvention —ie transaibing as a dwer half complex plane
continuation (a+ic would lead b an uppe half plane continuation). Note well that both form factbor have t© be
defined with the sameconventions. The last brm facbor is more complicated:

lo[r/a,s/a,1/a] = F[r/a, ]+ Fs/a,7,,] = F[1/a,7.]

where
1 —ie—z(] —372)]
’ygs —z?

at 1 In [
Yrs +o Flad /0 T

As for B and 7', an explicit form for £ can be given above and below threshold. For uw/a < 1,

1 t 1 t 1 - 2
F[i%s}:_ I [T X iy | = | 4 4ReLis (1= = ) cos8 e —2(3—0)
a 2y 78 v—1 ut +71s8 0% 2
where the angle 6 is
urs+at
0 = arccos 4/ —
ars4ut

Denoting b = /1 — £, the analytic continuaton tou/a > 1is

¢ 17 2x2 —b
In [“ +T1 In [’H }—i—i—iwln ['y—}
78 v—1 3 +

U 1 1 y+1 1. 5[v+1
T R e
s Ty T2 x| T2t |5 =

. |y+0b o [v—=1 o |y=0 [y =1
+Ls + Lz + L + L
2[7+1} 2[7+b] 2[7+1 2|5=0

A25 The Ansatz

Here we mllect the expressons for the differential rate and total rate using the ansatz (2.28).
The differential rate ca be expessed as

dC(B—yyy) _ 2 6 (4m2) F( 2’72>

day 9 M2 RNVEl
with
2 ]+A—$1
F(z;,A)=————( -P,+2Plog | ———2
o - (e 452
where
b 2(4+13A+104%) (1 4+5A)z, 222  2(10+4 3444 27A%)
T 1+ A 1+ A 1+ A 21— 24 — 2
N 242 4(14 A) (2+ 84 +9A4%)
z— A—1 (z1 — 24 —2)°
13436442442 6(14+A)(1+24)(1+34) 2(1+A)*(2+8A4+942
P = 5acAy 3E36AFAAT 601 +A)(+24)(1+34) 2(0+4) ( )

xy—2A -2 (z1 — 24 — 2)* (z1 — 24— 2)°
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The total rate is gven by

+

2 & Am? 2v2
with
2 11+124 4 9 6 6 12
G(A) = |-+ 7 + T — - +
() (9 27 (2 + 34)* 27(2+3A)4> T+A 1424 (2434)°
N 10— 274 8(4+3A) 3(344A) ) [A]
_ og | —2—
2434 (24347 (1+24) 1+4

16 (1+ A) ( 1+3A+3A2) +4(3+8A+6A2)
X
(2+34)* (2+34)°

: A . A 1+ A A 1+A
(Lia|-75] - 1o |75 | + i || — 210w | 7 x| 15 |
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Appendix B
Resourcedor QCD Bound States

B.1 Running of the Strong Coupling Constant

In this secton, we will shortly review the basic ormulas br the running of the stong coupling constant as.
It is basedon [11], [209], [210], [213], [222], [223]. Te basic formula is e renormalizaton group evolution
equaton

das (p)
— B.1
W= = Blas (W) (8.1)
In perturbation theory, the 5 function can be calculatedrom loop corrections as
Bo o B 3 B2 4
Blas (W) = —5 a5 (1) = a5 (W) — g5 (1) — -
with
2
ﬁO = 11— g'ﬂf
19
ﬁl = 51— ?nf
5033 325
By = 2857— Tnf + an

The next tam 35 is alo known, but too complicated o be given here. Note that only 3, and 3, are stieme
independent.

B.1.1  One-Loop Running

To compae the valuesof a s obtained in various pocessespne has b use he renormalizaton group equatn
to run” as (¢*) up Mz, whichis the conventional compaison point. Theworld average br as (M) is

as (Mz) = 0.1181 £ 0.002

To lowestorder, the coupling constant running is

Oas (1) _ _Boye (1) - g () = kil (B.2)
op 2m Bo In {MQ/ A%CD}

where A%C p is anintegration constant. For speciic runnings,we may cast his formula in several useful brms.
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1- Taking the difference at o scaleswe get
_ _ m? a
agt(m) :ozsl(u)—{—%ln [F} —ag(m)= S)é'u) — (B.3)
1+ as(p) 4—7(; In [F}

Since 5, > 0, the coupling constant deaeases adie energy increases, alenomenon called agmptotic
freedbm.

2— To lowestorder in acg, ONe dmMetimes uses

B m
as (m) = as () (1 - s (0 3210 [ 2] +0 (03 ) ) B.4)
3- Forgetting about ¢, we can transaibe the running as & equatbn in termsof Agep:
ag (m) = An with AQCD = [ exp (_2—7() (B5)
BoIn [mZ/A%CD} Boas (1)

Henceonce Agep is known, sois as (1) at any scalem.

The quantity 3, is a function of ;. This dep@dence @mes @&out through vacuum plarization diagrams
with ny quak flavors in the loop. Quaks mud heavier than the typical energy in the process must deiple,
and at a gien energy scaleE, only ny with m; lighter than E must onsideed. The running is therefore a
function of the number of quark flavors used. Br example, talig as (Mz) = 0.118,

with ny = 3 (plain),4, 5 from top to batom. This running is an illustration of asymptotic freedbm since
as (¢%) — 0 asq® — co. Thisis true asbng asn; < 16 (i.e. 3, > 0):

0.25
0.2
0.15

0.1

005

forny = 3,8,16 and 30.

Running Down to Beauty, Chan Scales fran the Weak Scale (1)

As an examplewe will take the running of g down to the charmed quak masswhich we take atn, =
1.3GeV. This example isfiteresting since one has b define how to treat tie b quak threshold, n; = 5 between
Mz and my, = 4.2GeV, and ny = 4 between m;, and m.. Of course, tie threshold is not a step function, and
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the detailed golution close b it is mass-depadent. Anyway, as afirst appoximation, sud depedences ae
ignored.

1- The exactrunning using either (B.3) or integrating numeically the differential RG equatbn (B.2), gives
a stong coupling atm,. of

as (M) = 0.118 ™5° ag (my) ~ 02119 "5 ag (m,) ~ 0.3161 (B.6)

(note that we ae taking too many significative numbers for the puposeof compaison). Ignoring the threshold

gives hevalues
3

ag (m.) = 0.419
4

ag (m.) =~ 0.352
® as (mg) ~0.304

n

Oés(Mz):O.]]S "

n

Gl b

2- The appoximate brmula (B.4) gives

as (Mz) = 0.118 "5 ag (my) =~ 0.170 5" ag (m.) ~0.215

which is quite fa from the exactone-loop running (B.6). The rea®n why this appoximation is 0 poor is

because
2

M
In—% ~6.2
my
The formula B.4) neglects temsof order

M2
a3 (Mz) In® [m—ﬂ ~ 0.06
(in casewe would use B.4) to go upwards as (mp) — o (Mz), this becomes~ 0.35, really bad indeed). fer
the last step

2
3 2 | My
1 ~ 0.05
o (|72
In conclusion, the appoximaterunning formula sould be usednly to run between closely related scalesyhich
arenot toolow (i.e. > 1 GeV).
3- For the last shbeme we take bevalueof Agcp acording to

2T ne=5
A M2)=Mzexp| —————— ] £70.088GeV
qop (Mz) 7 p< 5005(M2)>
Then, the valueof as (ms) isB.5
4 et
as (my) = dl £2°0.2119

GoIn {mg/Agch}

As before. To continue cbwn to m., we have o change Agcp as

2T ne=4
Al m2) = mypex (-—) £70.120GeV
QCD( b) b €Xp ,30045 (mb)

and a5 (m.) = 0.3161, exacty the sameesult ashefore.
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B.1.2  Running Beyond One-Loop

The general RG equatbn (B.1) is integated as

/du da
e
If we expand 3 (o) up o 33, we have
2 as(p) dov
510gﬁ - / Bon2 _ B3 _ B2 a_ _Ba 5
— g0 = — g — g
_ 1 [2_7T i By loga 50)62 - Sﬁla 867 — 2808185 + 5555 o2 +C
)60 & 60 1 67[-60 647(-260 a=as(,u)

To go from the first o the seond line, we have integated, hen Taylor expanded te result aound o = 0
and finally moved @nstant terms into C. This exgesson mustnow be inverted b getags () as a function
of log ?/A2. This is not an eay task n general, and we roceed iteatively. Let us ntroduce he convenient

notations
1 1

2

L
log 45 log x

The firstorder is simply
1 2w A

— -2 _a
2L as(p) By s (W) = 60
asbefore. The nextorder is found from

- [ e
«@ 0o 28 N )
Bo 2087 B 4L7r> (68 — 21353, + 4L2ﬁ?> 2
C+22_ lo - ' Sas (1) + O (m )
( 2L~ 3 B, 78 8L s (W) s (W)
The constant C is chosen as
O ,61 47r
180 ® 5o
so as b eliminate he constants in the logarithm. Then, solving for s and expanding the result aound 7. = 0:
8
sas = 201 2105
5o
ie.
98, Inln —2— 2
4 1 Az
as () = ———— |1 = ———22 | 4O [ 3L ] (B.7)
,60 lIl KQQ% ,80 ln KQL AQCD

Note that the integration constent A is now interpreted as\gcp (i.e., Agep is deinedby this expesson).
Obviously, this mehod can be pusued b higher order. The result b three baps usualy quoted is

2 2
as () = Am (1 _ 2B Inlny n 44512 <<ln Iny — %) i Boby §>> Lo *y] (B8)

Bolnx Bilny  Bgln®x 83 4

Let us empasize bhat contrary to the one-loop result, his exgresson for the running is not exact, snce
we have made a expasion in In~ " x. Anyway, in general, Agcp is estimatedd be a fev hundreds of
MeV, 0 that the expaision paramete is gettng bette as he scalemcreases. found 1 GeV', we can estimate
In"'x = 0.3,3, (n; = 3) = 9, so that the &bove formula sould be quite pecise (at leashithe peturbative
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regime,rementoer the initial o expansion of the integatedRG equatbn, and that the valueof 3 is calculatedn
perturbation theory).
Using the world averagevalueof as (Mz), we ca get the valueof Agbgg using 1, 2- and 3-loop running:

| 1loop 2loops 3 bops
AL, | 24673 738771 6387EL
AShp | 153710 436795 38774

5 27 25
ASLp | 8871h 226720 [2087%

The rather imprecise detenination comes fom the logarithmic dep&denceof s on Agep. Note thatwe have
given AS’)CD Ag)CD just for the puposeof illustration, since one usualy considesn; =5 close b M.

Running Down to Beauty, Chan Scales fran the Weak Scale (I1)

Now that the two and three bop running formulashave been preseited,we can use hem D get the valueof

the stong coupling at the m; and m. mass scales.
As afirst execise, it is nstructive to compae the exactrunning (i.e. integrating numerically the differential

equaton) to the appoximate formula B.7) and (B.8)

(ny =5) 2-Loop 3-Loop
(B.7) (®.1) | (B8 | (B.1)
as (mp) | 02248 0.2233 | 0.2236 | 0.2241

The mnvergence is manifest (with one loop, we obtained as () ~ 0.2119).
Integrating firstwith n; = 5 to m,, and then withn; = 4 to m., we get

| 1-Loop 2-Loop  3-Loop
as(me) | 0316 0380  0.378

To compae the resultwith one, wo and three baps, we draw the plot of as (¢*) (note n; = 5 was kept
throughout the plot range)

The plan line is the 3-loop result. ne can see bat in the low energy range, he 1-logp (bottom line) is cown
by more than 20%. Since the seies is alteénating, we can expect he exact cove  lie between the 2-loop and
3-loop results (h fact, the 4-loop resultwould be indistinguishable from the 3-loop one).
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Finally, to illustrate tie effectof the quak threshold, let us pbt the running with = fixed at5 and with

changing to 4 atm,
0. 45

0.4}
0350
0.3
0.25
0.2
0.15

2 5 10 20 50

One can see hat the two curves ae identical down to m;,, and then, the exact cove (plan) with ny = 4 is
acceleating upwards.

B.2 Standard Annihilation Rate Computations

This appe@dix contains the cmputaton of quarkonium decd rates n the static limit, i.e. assumg M = 2m.

B.2.1  Pseudoscalar Quakonium Decays

Pseudoscalar Quarkonion Electromagnetic Decays

The transaiption of positronium results is shightforward. The two-photon deca is given by

2
r('$(QQ) =) = %%/C@A [#ol* D M (q7 — y7)I* = 1670° (Negy) lj\% (B.9)

spins
If we ignore the binding energy and exgessi, as2mg, (as isrequred in the present apgoach), we arive at

4 .2
GQOé

r(*s(QQ) —vy) =12x b0l

2
g

Therate nto yeTe~ (or any pair of light leptons) is equaly straightforward to oktain

ar ('S (QQ) —yete ) 16
dx T3

2
(Nek) % Py (;”2; ) (B.10)

where a = 4m2/M? = mZ/m¢, and the thase space speam is

23

P =1 = o2 -
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The total width (z ranges fom0to 1 — a):

a® (Neg) MF(CL) (B.11)
) .

P (S (QQ) —rete ) =5 -

3
with

F(a) :%1\/1 —a(a—41)+2In (ET%)

The ratio of the two electomagnetic modes is
dl' (1S (QQ) — ~veTe™) /da _a p(z,a)
r (LS'(Q@) — 'y'y) - 3r a2
Except br the 22, this is staadard. Integrated we get

I(s(QQ) —yee)  a
r(ts(QQ)—~y) 3w

Pseudoscalar Quarkonion Decays into Two Gluons

Let us calculateite amplitude

M (*S(QQ) — gg) = \/]—NTT [Pr=ol (QQ — g9)]

The scatteing amplitudel’ (Q@ — gg) has tree ontributions: thet and « channel (intermediatevirtual quak)
and the s chanrel (virtual gluon, with three-glwon vertex).

— o [ 2KEYY =AY A i YR = 2REYY ; ;
Tiin = ig? it titd L (1) € (1
(@@ —g0) = gt { B e SRR o) 2 ) )
2
w2y g o 17 v «@ vo (o4 vy 1 j
I (QQ —gg) = ?{7 (f799) 3, 19" (I — 1) — g (la + )" + g™ (g + 1) )<}, () €], (Ia)

whereq = lp +1; = k+ k' and k? = k' = m?. However, the s-channel amplitudevanishes n the trace,
becauseonly one (traceless) Gell-Man marix (tk) , Is inseted in the quak current. The clor trace br the
other contributing amplitude gies

b
F4t — - 147 _ 1] KW
Tr{t't'} =Tr{t't'} =C(r)6 =50 (B.12)
Then the wo-gluon amplitude ca be written as (extenal projectors have been used)

Cin2 [ 7 ) .
1(Q@ — gg) = 098 | LI 4 )<l )

Now that the mlor structure is facbred out, we remver the QED amplitudewhich is gauge fvariant when
k = k’. Contrary to the scatteng case, lte three glwon vertex isnot needed d ensure gaugerivariance. Then,
using known results

M (5 (0D) = 99)]* = 2L 2(k-1)? 6969 = 2167l
N (k-1,)? N s

Note that in the gluon polarization sum,we simply useg*”, since ransverse states @not couple b the quak

current.
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The decg widthis

1 — 1 1 1 . 2 2 87('0[% 2
r('8(QQ) = 99) = 5 [ e M (S @ = g0) ol =g ol (@19

Pseudoscalar Quarkoniom Decay into Gluon-Quark-Antiquark

This is the analog of the decag into a photon and an electon-positron pair. The wlor structure of the
amplitude is seeto factorize, and

— 2 ol 896y
(M ('S (QQ) — gqa)|” = ag% SN

(M (S (QQ) = vete)[*

The final formula is hen _
dl' (*S(QQ) — gqq) _ %aa |60/” p(z,0)

dx 9 5 M2 g2
wherea = 4m§/M2 with m, the final quak mass. Vpically, the speatum function p (x, a) is (for a = 0.01)

o (X Q
100+

8 5 8 8

0.5 0.6 0.7 0.8 0.9 1

The total width

2
P (15/(QQ) — ga) = a0l pe(a) (B.14)

For examplewith A, = 2976 MeV, the function F'(a) is

mq (MeV)  F (4m2/M?)

My ~ 5 20.2
mg ~ 12 16.7
My ~ 180 5.93

Pseudoscalar Quarkonio Decay into Three Gluons

There ae two topologically distinct contributions to this decg. One isobtainedwith the three glwn coming
from the quak line, ad the other from the two-gluon deca amplitude,with one of the gluon going into two
gluon by way of the three-glon vertex. All these amplitudere of order o%. As discussedni the text, he
inclusive rate!S (Q@) — light hadrons is relatedvia duality to the rate nto all possble gluonic states. @
leading order, it is the two-gluon rate. © order o, one has b conside the rate into ggg, ggg and stong
radiative mrrections to therate nto gg. Sud a computaton is not very complicated but rather lengthy, and will
not be pusued futher.
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B.2.2  Vector Quarkonium Decays

Vector Quarkoniun Electromagnetic Decays

As for the paa-statewe justhave o include a olor factor V (=3) and sistitutea: — eZQoz. This gives or
three photon decys:
3 o) 61ega’ 2
L (*S(QQ) =) =5 (7" —9) 9] (B.15)

with the differential width _ .
dl (*S(QQ) —1y7) _ 64 ega
C( dﬂ) ) _ = ;‘«’42 ENE (B.16)

and the usual bree-photon positronium deca spectum (note that contrary to p (z,a), £2(x1) is not the pue
phase spaceyhich is 2z, here)

2(2—.131) 2(] —.iUl).iUl 1 (] —.’,Ul)
Q(z1) = + +4(1 —z ———%|log(l — 2z B.17
(1) - @) ( 1) 2 2 o) g( 1) (B.17)
Plotted, his is
dr/axl
2
15
1
05
02 04 06 08 14

and fol dr,1Q(z1) = 7% - 9.
For lepton par production, we find
3 Ya) + - 2 2 |¢0|2 m? 4m?
F(S(QQ)—»ee):SweQaW 24+ — 1—

mg M?
where m, originates fom the amplitude ad M from phase space. Btewe ae assummg M = 2mg,:
. 2 2 2
r (35 (QQ) — e+67) = 2%6%042 |¢02| 2+ i; 1— mze
Mg Mg mg

and when m, << mgq

2
T (35 (QQ) —»e7e ) = 47reéoz2|:iL2| (B.18)
Q

Vector Quarkoniumn Decay into Three Gluons

Now we turn to the amplitude

M(S(QQ) — ggg) = ﬁgﬁﬂ [Pr=sI"y2 (QQ — gg9)] €% (1) €5, (I2) <5 (Is) (B.19)
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with

1 1
HYP I v
abe T h—k—m —k-m

P (tetvla)

1 1
P (tytots) + P v
77 (talste) Yo

v (totcta)

V(t bt v
—" (talcty) +

1 1 1 1
7y 7y —

7Y (tctats)

1 v 1 o o 1 v 1
) ) (tetate) + ey
wheeq = Iy +lp + 13 = k+ k' and k¥ = k2 = m?. There is no three glon vertex since we must
have three glwon vertex insetions into the quak current to get anon-vanishing trace h (B.19) (al®, a diagam
qq — g — gg — ggg, of the sameorder, doesnot contribute becauseof the rracelessessof Gell-Mann
matices). Shce all glons emege from the quak current, no ghost amplitudeneed b be mnsideed ad gluon
polarization sums ca be taken asg"”.

This amplitude is agaiexpressble intermsof the three ghoton deca amplitude. Tere is tvo non equivalent
pemutatbns of color matices b be traced : 7 (¢,tpt.) and T (tpt,t.). For this, we use e identities (B.12)
and

. 1
[tatb] = Zfo,bctc {tatb} = g‘sab + dabctc
We can then work out the traces as
1.
Tr (to,tbtc) == Z (Zfabc - dabC)

1,
Tr(totate) = 7 (=ifae — dave)

Let us onside thefirst par of amplitudes:

1 1 1 1
IR R P v P (totste) +7° v “ (tetvla
I,abc 7“|:’7 %_}é_m’)/ }é_lé_m’)/( b )+7 %)’_%_m’y }é_%_m’)/( b ):|

The Dirac racewill be the samedr bath terms, hencewe arive at

1 1
THYE = Trltatete + tetote) T |VH v P
Trabe 7 ot tetute] T[’Y h—f—m %—Va—mv}

LI o e v P
9 abc v %—}é—m’y }é—}é—m’y

The same maipulations appy for the wo ather pairings, and we ae left with the three-goton amplitude
multiplied by the wlor factor d,;./4. This can be understood since he final gluons should be symmetized,
henceonly the symmetic tensor dgs., and not f,,., contributes. We tus arive at

doped®© 64g° [(1 —2)% (1 —22)% (1 — z3)*
. g(( ), (=2 (1 —)

M (S (QQ) — g99)|* =

2 2,2 2.2 2,.2
16N m 573 riTs 725

which equals, upd a wlor factor, the modulus squeed of the three-photon decy amplitude.Using

dbdabczg
abc 3

and integrating over phase spaceye arive at

_ 160 (72 — 9 2
/c@g IM(2S (QQ) —>ggg)|2 = (; >a%|?§|2 (B.20)

2
1 (%S (QQ) - g9) = § 37 20
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with the differential rate gven by

dr (*S (QQ) — 999) _ 160 s |o[*
dx 81 % M2

Vector Quarkoniun Decay into Two Gluons and a Photon

This time the amplitude is

2
M (S (QQ) — g97) = 2L Tr [Pr_sT (QQ — 199)] €2 (1) 5 (la) e, (Is)

VN

with

Lyt = + 47 —" (tta)

1 Lo 1 L1
7”]/1_}6_7”7 %_%’_mv”(tatb) T

+v¥ P (tls) + 7" (tats)

1 M 1 o 1 L 1
b—k—m k=h-m Th—F-m Fh-m
whereq = Iy + 1l +13 = k+ k' and k% = k2 = m?. The wlor trace is jusyielding a delta fuction (B.12) and
there isno subtlety as®ciatedwith symmetization. We thusremver agan the three-photon amplitude with the

result
- 2 8,40%0 640 ede® [(1—z)®  (1—m)° (1 —u3)°
|M( S(QQ) —>ggv)| T 4N m2 :L’%x% + xfx% + x%x%
and then
_ 11 2 _ 128 (72 — 9 2
005 (0Q) = 9n) = 33 8L [ a0 05 (@) — g = 2D 0z 0l

with agan the photon spectum

3 0O) — 2
dr ( S(Qdci) 997) _ %eé e %Q @

Other Vector Quarkonium Decay Channels

Following the same lie of rea®ning as n the pseudscala case, ay other decg chanrel into gluons and
quaks will be considered asradiative corrections to the inclusive decg rate b hadons. Oher exclusie and
semi-nclusive decg channels herefore necessaly involve photons and lepon pairs. For example:

r(*’s(QQ) —gvy) = I'(*S(QQ) — ¢gy1™1") =0 (due b color)
r (35 (Q@) — ggl+lf) . see[152]
I'(*S(QQ) — vyi™17) : should be obtainable from the ebove

Other electomagnetic modes &e stongly suppessediecall hat the 2001 uppelimit on the branching ratio for
39 (QQ) — yyyiS 5.5 x 1079).
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Appendix C
Usdul formulae

Cc.1 Wavefunction for Hydrogen-like Atoms

The completewave function for the hydrogen atom can be written

wnlm (I‘7 ) - ¢nlm (T 07 (,0) ﬁi nt

The correspnding energy spectum is degeerate for [ and m, with

po_B_ 1 (N pe?
T p2 n2 212 \ 4dmeg 2n2

This is the well-know Balme seies. The time-ndependent part is

¢nlm (Tv 07 90) = R’hl (T) )/lm (07 (,0)

The radialwavefunction is expressble in termsof Lagueatre polynomials

24t (n—1=1 | - e 2r
B (1) = ln“‘Q (n+I)1a23 e o o <’!"L_ao>

while the Y;™ are standard spherical harmonics. The mmpletewave functions can also be written in termsof the
hypergeometric functions representation of the Laguere polynomials

2+t (I +n)! (n—1-1)! 2r
Y™ (0 naopt By (1 — 1;20 4+ 2; —
1=2aI572 (24 2) (n — D) (z+ o Y 0ee orts 1( n e ’a0n>

¢nlm (T7 07 ()0) =

Explicitly, the firstwavefunctions ae

Shell

L m | n(l), nlm (r,0,9)
Kn=1[0]| 0 1s erad T
Ln=2 10 0 2s \/837?67%( _ﬁ>

1 0 2po 4\/%6 2arcosf

1| +1 ] 2pey Sme ZaTibr gin 6
Mn=3|0] 0| 3s e ¥ (1- £+ 25)

110 [ 3po = % (1— &) rcost

1| £1 3pi1 31327\/27567L+“‘5 (1 - —) rsin

2| 0 | 3do 81me 3ar? (3cos? 0 — 1)

2 | +1 3d., me 3a 71852 cos @ sin 6

2 | £2 | 3die 162\/7? —3at2idp24in2 9
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with
Ameoh? 1
a,o = 2 = —
e Qo

The wave function at the origin can also be calculated. @ly for s states ee the valuesnon vanishing

2 1 _u3a3

= a3
Tag

2 1 1
R (r) = lﬁﬂn_ag L, ,(0)= 2\/,”3—&%

C.1.1  Momentum Space Wavefunctions

2 2 1
000 0.0 = a0 O Y8 0, ) = = | (O)f = —g = 228

since Ll | (0) =nand

The general expresson of the momentum spacevavefunction was found by Podolsky and Pauling [58]

e=im® —m)!
moe0 = (O e

21+3.,1+3 _7_ 1\ l 2 _ A2
y 253y I n(n—1—1) P ol p? =y
/27-{-,y (TL + l)1 (p2 + 72)[4‘2 n—I{—1 P2 + 72

It is found by taking the Fourier transform of the configuration spacewavefunctions (the integration is not
straightforward though). The P/ are Legendre polynomials, he C!, are Gegebaue functions, ad

1 po
’y = ——— = —
nag n
Thefirst few are
Shell [ [m ["(),. Toim (p,0, P)

— 3
Kn=1]10| 0 1s (p2+32)22
Ln=2|0] 0 s N2 )

’ 32(p22+72)
04Ty
1 0 2po (p2+722)3plcos C]
1 +1 | 2py ;cN%W)—S e=i®psin ©
Mnan=3|0| 0| 3s N33
bl \/_ 2p22+’722)4
32v6my {p°—7
1 0 3po NQ—E]? cos©
32\/3—,7552?1}22?2! ;
1| &1 3py FN =y e ®psin ©
2| 0 | 3do NEZ20 2 (30520 +1)
gr 2 2 )
2| +1 ] 3d., q:N32\/§:§ e 12 5in 20
3. 2" 2 )
2| £2 | 3des N% e=2i®52 4in2 ©

with N = (27r)3/2 T3,
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C.2 Loop Integrals, Gamma Functions and Related

C.2.1 Dirac Matrix Algebra

v, = d
Yy, = (2-dpn”
Yy, = 4¢P 4 (d—4)v"yF
VY, = =297y + (4= d) v P

C.2.2 Feynman Parameters

To combine denominators :

1 ! (n—1)
= dxq...dx,0 i — 1
A A, /0 V1 On (Z i ) @147 + . + TpAn]"

Note that deivatives like for example

1 / go 2(—2)
AB? (xA+ (1 —z)B)®
are easiy obtained from the general equatbn. Wewill only quote, sice it is usedn the text, tie formula

1 I'(m+mn) [* 211 —z)™ !
i),

AnB™ ~ T(m)T (n T@A+(1—z) B

C.2.3 Complex logarithms

139

The convention for the logarithm cut is abng the negatize real axis The rules for the logarithm of a product ae

then
In(ab) = In(a)+1n(b)+7n(a,d)
n(a,d) = 2mi{0(—Tma)d(—Tmb)6 (Imad) — O (Ima) 6 (Imd) 0 (— Imad)}
Important consequeces ae
In(ab) = In(a)+1n(d) If TmaTmb <0

ln<%) = (@) —In(®) If Imalmd>0
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Also, with A, B real :
In(AB —ig) = In (A —ic) + In (B — ic/A)

C.24 D-Dimensional Integrals

All t he formulaswe need ae

[Gmmar = e (5)
d 2 1l n— _ n—d/2—1
%(ﬂ—lw - (<4]72)d/2 [g] - rig - @)
d pyv BRI B g n— _ n—d/2-1
GFESST e 2] T (3)
d 2)2 1" ”— _ n—d/2-2
[resr = G ()
AU e (D) [ 4 g4 + " | D(n—dj2—2) (1\" P
(2m)¢ (12 = A)" (47)*? [ 4 } I'(n) <A>

Coherence anong integrals can be checked usgig the fact hat for symmetic integration :

1
MY —[Zgt
1

P —
d(d + 2)

(l2>2 (g,uugpa +gppgy0' _|_g,uagup)

To correct for the change of dimension in the measte, one usualy introduces a arbitrary mass scale as

d4q . w47 dddq
(2m)* (2m)"

Of special nterest aie expasions nea d = 4. Using :
a® = le” log"a=1+zloga + l;E210g2a—}—
n! 2
and :

1 x w2
F(x):;—’y—l—i (72—#?) + O(2?)

one getswithe =4 — d:

L ZW_);%Q) (%> 2-d/2

~—
no

e (3)”
1

= ) <§ —fy) <] + g 10g47r) (] - g logA) (] + % 10gw2) + O(e)

2 ATrw? A
= 2(2—7+10g = —logﬁ—l—(’)(e))
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Note that in this last ormula,we have introduced @other arbitrary scalem?. This is a @mmon procedue. The
usual dvergent quantity is defined as

A7w?

2
D=-—-vy+log— (C.1)
g m
where it is cusbmary to takem as te electon mass in QED. Therefore,
r(2—d/2)(1>2””2 1 ( A )
ws————2 [ — =——(D-log— +0O(e C.2
(47T)d/2 A (47)? &2 (©) (C.2)

Cc.2.5 Digamma, Polylogarithms and Rianann Functions

The digamma faction is dedfined as he logarithmic derivative of the gamma faction

_1"(9)
Generalizing, the n-th digamma function is
™ (2)
() () = 22 \°)
¥ (Z) T dzm
Specialvalues ae
(1) = —v
2
ey -

Note that the Eule constant can also be written as he limit of the seies
1
v = nlgrolo (Z; e logn>
1=

The Riemann zeta function is ddined from the seies

Cky=Y n*

This function may be related 6 digamma function as

)'rL+1

Cnr1y=0 ey

The ddinition of the polylogarithms is
e k
. 2
k=1

Of special nterest n Feynman paamete integration is the Space function or dilogarithms Lis (), to which
we now turn.
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Spence Functions

These functions ae deined trough the bove seies,or through the integal

In(1—1)

0 1 — In(1—2)
In(1— 2t
Lis()=sp(e)= [ B0 ar=— [ R0 [t

A usefulrepresentation is obtainedwith the change of variablet =1 —e*

— In(1—2)
Liz(2) = / Y du
0

e —1
—In(1—2) ©© n 0 n+1
= [ Xmie=Ysgiy
0 =0 v a0 " u=—In(1-2)

with the wefficient B,, being the Bernouilly numbers,

5
By =1 Bio=—¢
B__l B _6691
1—12 12—72730
By =5 By =3
1 3617
By =—35 Big =—%55
B _ 1 B 4385
6—_412 18 — 798
Bg=—55 ...

The numbers not appeaing in the teble are al® absant in the seies expasion. Some basic popeties ae :
(Euler, 1768)

Lig (2) + Liz (1 —2) = % —In(2)In(1 - 2)
Liy(2) 4+ Liz (1/2) = —%2 - %1112 (=2)
Lig (2) + Liz (=2) = %Lig (2%)

with z, —z,1/2, 22 not on the logarithm cuts. Al®

Liz (1 fx%) = Liz (] iy> + Lig (%) — Lig (z) — Liz (y) — log (1 — z)log (1 —y)
Lig(y) — Liz (v) = Liz (L) +Lig <%> — Liy @1 :;) - %2—0—1n(x) In C :;)
(y((: :x; ) = Lis <—x: :i) + Liy (-2—/%) + Liy (%%) + Liy (%) +%1Og2 )

duerespectiely to Spence (1809), Skaeffer (1846) aad Kumme (1840). The seond identity becomes, br
complex aguments :

Lig (y) — Lig (z) = Lig %)+L’2( )_LiQ(E]_I>_%2

zl—y
+1In(z)[In(1—z) — In(1 —y)]
1 y>—|—1n(1—y)}

+1n<] :;) [m <‘T:Zy/> —In(z)—In <x;
(=) 1 () - (55 # e )
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The disontinuity of the dilogarithm function is the same adte disontinuity of In (1 — 2¢) for ¢ € [0, 1], hence
for z € R,z > 1 the agumant of In (1 — 2t) beammesnegatie. The disontinuity property is expressed ang
the cut as

laiﬁ’)l [Lig (2 + i) — Lig (2 — ic)] = 2miln (2)
for z € R and z > 1. Put differently, we mgy write
Im Lig (2) =i ln (2)
as ca be sea from the ddining integal. Finally, somevaluesof the function are

_=
12

Liz(=1)
Liz (0) =
Lia(1) =%
Lis (2) = I — imlog (2)

0

M)

!

and graphically, the real and imaghnary pats ae

e

Note that the real pat beaomes< 0 at around 12.5 — +oco.

C.2.6  Hypergeametric Functions

The hypergeometric function F'(a, b, ¢,£) = 2F1 (a,b, ¢, £) is ddined as

2 Fy (a, b, C,f) = %/0 de zb 1 (] _:L,)C*bfl (] _xg),a

This function is a olution to the differential equaton
§0-9y" +lc—(a+d+1)¢y" —aby=0

and it has he seies expasion

L8, aa+D)d(b+1)E o (0) (0), E°
(0068 =T e T e 7+"'_; @

with (z), =z (x +1) ... (x + k — 1). From this seies, it appeathat

2F1 (a7 b7 C, 5) = 2F1 (b7 @, 075)
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Some evaluaton properties ae

I'(e)T'(c—a—10)

Fi b,c,1) =
21 (a,0¢,1) T(c—a)l (c—0)
0 ab
_2F1(a7b7c7£) = _2F1(a+]7b+]7c+]7£)
o€ c
Shifti ng relations ae often useful:
coFi(a,b,c,2) — (c—0) oF1 (a,b,c+1,2) —baFi (a,b+1,c+1,2) = O
caFi(a,b,c,x) — (c—a) oFy (a,b,c+1,2) —agFi(a+1,b,c+1,2) = 0

and especiall
cafFi(a,b,c,x) — (c—a) oF 1 (a,b+T1,c+1,2) —a(l —z) o Fi(a+1,b+1,c+1,2)=0

Finally, one has ®metimes b conside definite integrals involving hypergeometic function. Those ca be done
with
I'(c) ! A1 c—A—1
F; b = ——— d 1— F; b, A
2 1(@, 7C7x) F()\)F(C—)\)/O L T ( x) 2 1(&, E) ,xZ)
All Hypergeometic functions with definite values br a, b, ¢ may be expessedn termsof simple functions
of £. Some tivial cases e

oFy (a,0,c,6) = 1ifa=00rb=0
2F1 (a7 b707£) = o

1
2F1(a’7]7]7£) = 2F1(]7a7]7£)zw

With b or a less han zero, Hypergeometic functions are often simple wlynomials in £
1
2F1(a,-2,1,§) =1 —2a8 + a(l +a)&?

since obviously, the seies expasion will terminate at he order £ sudthatd + & = 0or a + & = 0. Up to now,
all the functions are puely real. S me nmore cmplicated casesyhich may develop imagnary pats, ae

1 n V€ arcsin /€

2F1(]7]7]/27€) =

=& (1-9¥
2F1(1,1,2,8) = —%log[] —¢]
2F1 (]727375) = _5_22 (€+10g [] _g])

To have logarithms, it isnecessgy thata, b < c¢. Derivatives ca also be obtained. For example

0 0
_2F1(a7]7]7£):%2F1(17a7]7£):_

da a IOg [] - g]

-
(1-9)
Finally, somehypergeometic functionswith half-intege argument give elliptic functions. In general, orthogonal
polynomials can alo be expessedn termsof 5 £7.
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Cc.3 Cross Section, Phase Space

The two-body to n-body cross sectin is expgressed as

| MA+ B — fi, fo,.. 2
do (A4 B fi, fi,..) = 2zemine 2L fofo )P

1y (pa - p)? —mymi

with

n

d3p-
d®p (P4 + PBiP1s-spn) = 1) 6 (pA + 1B — P1 — .. — D —
(Pa +PB;P1,-sPn) = (27)" 8" (pa +pB — 11 Pn) (1;[1 2’2 E¢>

(this secton is basedon [23], [223])

C.3.1 Two-Body Phase Space

The invariant two-body phase spacentegal is

a3 43
Ay (Pip1,pa) = (2m)" 6 (P —p1—p2) (27T)3P21E1 (27r)3p22E2
d3
(27(') 2E12E2
in the center-of-mass fame,where P = 0, with P — p; = p2 hencep, = —p;. The remaning delta ca be

converted b a constraint over the energy F2 as
2| = |p1| — B3 = Ef —mi +mj

hence

E2 — m2dFE,dQ
d®y (P;p1,p2) = (27T)50 <P0 — B — Ef—m%—km%) \/17”113 1dQ
4(2m)” o

Sincep? = EZ—m?, |p1|d|p1| = E1dE1and d®p; = |p1|2 d |p1]dQ:. Now let us ntegateover ;. The delta
functiongivesty = (F§ +m? —m3) /2P, and sincewe are ushg therelation § (f(x)) = & (z — o) / |/ (x0)],
the @rrection to the measte is

3} / o
_ \/Ef—m%dﬂl

APy (P;p1,p2) =
( ) 1(27)% (B + Ey)

Hence

which can be written in termsof invariants as

2
iy [z md? i
3272 52 s

d®; (P;p1,p2) =

with s = P2 = (p, —I—p2)2. As a special casef interest, ifm; = msg,

dQ) 4m?2
d®s (P;p1,p2) = ﬁ\/] -
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C.3.2 Three-Body Phase Space

The invariant two-body phase spacentegal is
d’py d’py d°p3
(2m)% 2E, (27)% 2E, (2n)° 2E3
d’py d’py 1
(27)% 2, (27)® 2B, 2E3

d(I)Q (P7 p17p27p3) = (27(-)4 54 (P —p1— P2 — p3)

= (27T)5(P0—E1—E2—E3)

with F5 constrained asF2 — m3 = p3 and p; = P — p; — p2. Then, inthe canter-of-mass fame,

p3s = — (p1 + P2) — B2 =m2 + |p1 + p2|® = m2 + p? + p2 — 2|p1| [P cos 0

Now the integral can be written

1 pid |p1| dup3d |p2| dQ
d®3 = —— 6 (Py— Fy — By — E
°7 @2n) (Fo— By — By — Bs) 2En2E2E;

In the caseof an unpolarized coss sectin, the amplitude squad is nvariant under global rotations in the c.m.
frame. ® only one out of the four angular variables isnon-trivial, which we choose b be the angle between p,
and ps. Also, since|p;|d|pi| = E;dE;and d®p; = |pi|2 d|p;| d€%, we arive at

|p1| dE4 |p2| dE2dcos 0
8Fs

2
w

and integrating over cos 6 with the delta function :

m2 +mi —m3+ P — 2P, — 2Py + 26, F»
—2[p1] |p2|

cosf =

The correction to the measte is

9 9 p1|[P2|
Py —E —E—\/2 24 p2_2 0) =_—92 g _Ipillpe
acosﬁ( 0 ! 2 ™3+ Pt P [P1] [z cos dcosh FEs
Hence
df dE:
dP; = ———2 (C.3)
4 (2m)

The bounds for the two last integrals can be found by constraining, for a given valueof F; say, the valueof Fs
sud that the cos 6 exists.

C.3.3 Recursive Calculation of Phase-Space

In some casewe will compute he phase spacentegalsrecusively, using

dq2
AP, = d®; (¢;p1,..-,0j) APn_jr1 (PA + PB; ¢, Pj+1s--Pn) %

withg = p1 + ... +pj.
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