
Université catholique de Louvain
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n’oublie pas le professeur Vincent Bayot qui a permis et encouragé ces collab-
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Introduction

Initially motivated by the realisation of a novel kind of particle detector, whose
principle of detection is based on the quantum coupling between the magnetic
moment of particles with the quantised magnetic field trapped inside small
superconducting loops, we study in detail some of the properties of conven-
tional superconductors at the nanoscopic scale, that is, for samples whose di-
mensions are comparable to the characteristic lengths associated to the super-
conducting phenomena.

The realisation of such a detector device requires a precise understanding
of the superconducting mechanisms at nanometric scales and, in particular,
their dynamic behaviour in a range of time scales characteristic of the re-
lativistic domain. From that perspective, given that the phenomenological
Ginzburg-Landau theory of superconductivity has often been proved to be
successful for describing conventional Type-I superconductors, it is therefore
considered as a natural starting point for the present study.

A natural framework for extending this theory to the relativistic domain is
the U(1) local gauge symmetry breaking of the Higgs model, which provides
a Lorentz-covariant extension of the well-known Ginzburg-Landau equations
of motion. Even in a stationary situation, this covariant extension leads to
the prediction of specific properties, naturally associated to the electric field,
which plays a role dual to that of the magnetic field in Maxwell’s equations.
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That in the presence of electric fields a relativistic formulation of supercon-
ductivity may be called for is also motivated by the following argument. In
physical units, the quantities E/c and B have the same dimensions, E and B
being of course the electric and magnetic fields. Hence one could expect that
in the non-relativistic limit c → ∞, all electric field effects would decouple. It
thus appears that a study of superconductivity involving electric fields must
rely from the outset on a relativistic formulation.

In particular, the covariant formulation of the Ginzburg-Landau model
suggests the penetration of an external electric field inside the sample, over a
finite penetration length whose numerical value is identical to the well-known
magnetic penetration length. The immediate consequence is a modification of
the phase diagram associated to the critical points of such systems, with the
apparition of a critical electric field whose features are similar to those of the
usual critical magnetic field, and which retains finite values over the whole
range of temperatures between T = 0 K and the critical temperature Tc.

On basis of this phase diagram, a specific criterion has been identified for a
given geometry of a mesoscopic sample in properly oriented external electric
and magnetic fields in a stationary configuration; as a matter of fact, numeri-
cal simulations for that particular configuration show a possible experimen-
tal discrimination between the usual and the covariant formulations of the
Ginzburg-Landau theory.

The manufacturing of sub-micrometric devices requires lithography tech-
niques: the experimental set-up was therefore realised in collaboration with
UCL’s Microelectronics “DICE” Laboratory, which has the appropriate infras-
tructure and extensive know-how in that field. Several successive prototypes
were developed and a final set-up consisting of an aluminum slab equipped
with the appropriate electric contacts, to be subjected to a normal electric field
as well as a tangential magnetic field, was finally selected for its correspon-
dence with the parameters considered for the aforementioned numerical sim-
ulations. Experimental measurements at very low temperatures were then
carried out using a 3He cryostat. The superconducting-normal phase tran-
sition was monitored in various conditions of electric and magnetic fields
applied onto the device. After a complete series of measurements, it was
established that no apparent dependence on the electric field arises for any
critical parameter, suggesting that an external electric field does not affect
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significantly the superconducting state, in total contradiction not only with the
simulations of the covariant theory, but also with the usual Ginzburg-Landau
framework.

The results of the experimental measurements suggest that the external
electric field is actually prevented from entering the sample not by the super-
conducting condensate, but by a rearrangement of other charge carriers into
the sample. This hypothesis calls naturally for a microscopic understanding of
the superconducting mechanisms through a detailed study of the BCS theory
in a relativistic covariant framework. This complete study was developed in
the functional integral formalism of Finite Temperature Field Theory: after the
identification of the relevant coupling between electrons, which reproduces
the usual BCS scalar coupling in the nonrelativistic limit, we gave a second-
order perturbative expansion of the effective action for the density of electron
pairs in the saddle-point approximation, allowing to identify the relativistic
generalisation of the magnetic penetration length and the superconducting
extension of the electrostatic Thomas-Fermi screening length. Numerical cal-
culations of these two characteristic lengths fully explain the experimental re-
sults and emphasize the specific aspects that are not taken into account in the
Ginzburg-Landau theory or its covariant extension.

This thesis is organised as follows. After an introductory chapter presen-
ting the standard features of Superconductivity, the second chapter is devoted
to the Lorentz-covariant generalisation of the Ginzburg-Landau theory, and
discusses some novel ring-like magnetic vortex solutions to the stationary
Ginzburg-Landau equations, whose stability properties remain an open is-
sue. The next chapter describes the technical realisation of the appropriate
experimental set-up as well as the measurement procedure at very low tem-
peratures, and concludes with the unexpected results. The three following
chapters constitute the second part of the present work, devoted to the rela-
tivistic extension of the BCS theory: a first chapter motivates the choice of the
appropriate ingredients and the methods specific to the functional approach
which was followed. The next chapter is more technical and presents the de-
tailed results for the lowest order, the first and second order perturbative ex-
pansions of the effective action. Finally, the last chapter contains the formal
derivation and numerical analyses of the relevant characteristic penetration
lengths.
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The present thesis has a strong theoretical orientation, although contain-
ing a fully original and complete experimental procedure, and it is therefore
aimed at the same time both to experimentalists and theoreticians alike. It
also combines concepts from Condensed Matter Physics and from Field The-
ory. Therefore, in order not to overcrowd the text with solid state basics and
mathematical interludes, these elements have been grouped at the end of the
work in a series of appendices. A first appendix has also been added to sum-
marize all conventions and notations used throughout this thesis. The main
text should however be fully understandable without turning to the appen-
dices for readers who are familiar with all the concepts used.



1
Introduction to Superconductivity

Progress of Science depends on new techniques, new discoveries and new ideas.
Probably in that order.

Sydney Brenner, biologist.

This chapter introduces in a rather conventional way the basics on super-
conductivity, with a slightly more detailed description of the phenomenologi-
cal Ginzburg-Landau and the microscopic BCS models, as the purpose of this
work is to provide a generalised formulation for these theories.

Superconductivity is a wide ranging and active field in which experimen-
tal as well as theoretical improvements are published every day in numerous
papers. A global summary of all the aspects and the current status of the
knowledge of superconductivity is therefore well beyond the scope of this
chapter, and we shall restrict to a pedagogical presentation of so-called Type-I
superconductors and their general properties.

1.1 Early discoveries

The phenomenon of Superconductivity was discovered in 1911 by H. Kamer-
lingh Onnes, whose “factory” for producing liquid helium had provided a
considerable advance in experimental low temperatures physics. In his quest
for the intrinsic resistance of metals, he surprisingly observed that the electri-
cal resistance of mercury drops abruptly to zero around 4 K [1].
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He called this unexpected feature superconductivity, as a special and un-
known way of carrying electric currents below that critical temperature. This
was the beginning of one of the most exciting adventures in physics through-
out the 20th century, having seen the award of numerous Nobel prizes1.

For the next decades, several other metals and compounds were shown to
exhibit superconductivity under very low temperatures, always below 30 K.
Soon after his discovery, H.K. Onnes noticed that superconductivity was in-
fluenced by an external magnetic field, bringing back a sample to its normal
resistive state at sufficiently high values. A superconductor was thus charac-
terised by a spectacular feature – the total loss of resistivity – and two critical
parameters – a temperature and a magnetic field.

Figure 1.1: Resistivity of mercury as a function of temperature [3].

In 1933, W. Meissner and R. Oschenfeld discovered that superconductors
also have the property of expelling a magnetic field, this perfect diamagnetism
being further named the Meissner effect [4]. As a matter of fact, the magnetic
field disappears as perfectly as the resistivity drops to zero below the critical
temperature, but this new feature can by no means be explained by the loss
of resistivity: both features are independent and provide the experimental
twofold definition of the superconducting state.

1H.K. Onnes himself received the prestigious prize in 1913 for “his investigations into the
properties of substances at low temperatures”, but with a particular insistence on the liquefaction
of helium and only a few words about superconducting Hg [2].
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Figure 1.2: The Meissner effect for a superconducting sample.

1.2 London theory

The superconducting transition was so surprising that many theorists, inclu-
ding famous names such as Einstein or later Feynman, immediately tried to
understand the phenomenon. At that time, amongst all audacious theories
making their first steps, the only well-established theoretical framework was
Maxwell’s unified view of electromagnetism: for fields in vacuum,

∇∇∇ ·E =
ρ

εo
,

∇∇∇×E+∂tB = 0 ,

∇∇∇ ·B = 0 ,

∇∇∇×B− 1
c2 ∂tE = µoJ ,

(1.1)

where E and B are respectively the electric and magnetic field, ρ is the density
of source charges and J is the current density2. H. and F. London searched for a
constitutive relation, different but somewhat related to Ohm’s law, which cou-
ples to Maxwell’s equations and reproduces the experimental facts of super-
conductivity. To this end, they considered the Drude model (see
Appendix B) for a perfect conductor, namely with an infinite mean free path [6].
They obtained a system of coupled relations for the current density J:

E = ∂t (ΛJ) ,

B =−∇∇∇× (ΛJ) ,

(1.2)

2The Maxwell equations are given in MKSA units of the International System, for which
µoεo = c−2. In a medium, they also take a slightly different form, that will not be described here;
see for example [5].
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with Λ = m
nsq2 , m and q being respectively the mass and the electric charge, and

ns the density of the mysterious (for that time) superconducting carriers3. The
first relation is nothing but the mathematical expression of the perfect conduc-
tivity, while the second leads to the Meissner effect. Both equations state that
the so-called supercurrent can exist only at the surface of the superconducting
sample in order to screen any external magnetic field, and dies off exponen-
tially inside this material so that the magnetic field vanishes essentially over a
penetration length λL such that

λ
2
L =

m
µonsq2 . (1.3)

t u
λL

o

x

B

B

u

Figure 1.3: The applied magnetic field Bo enters the superconducting sample and
decreases exponentially over the London penetration length λL.

It is important to note that when H. and F. London published their theore-
tical results, this exponential decay of the field had been observed experimen-
tally, and an empirical dependence of that characteristic length with tempera-
ture was given by C. Gorter and H. Casimir [8]:

λ(T )≈ λ(0)√
1−
( T

T c

)4
(1.4)

3There has been a historical confusion in the exact values of m and q, which were considered
as the mass and charge of the electron until the introduction of Cooper pairs. At the time the
Londons published their model, precise values of the parameters could not be assigned, and they
obtained orders of magnitudes that matched with Gorter and Casimir’s experiments [7].
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where Tc is the critical temperature for superconductivity. While the Londons
did not know exactly how to identify the density of “super-electrons”, they
naturally considered that all the conduction electrons should take part in the
mechanism at least at absolute zero, identifying the limiting value4

λL(0) =
√

m
µonq2 . (1.5)

The London equations involve a density of superconducting charged par-
ticles which is uniform and constant in the sample. Reproducing Gorter and
Casimir’s measurements along the different crystallographic axes of a tin sam-
ple, Pippard showed a manifest anisotropy of the penetration length and em-
phasised the need for a local theory [9]. However the next successful theory
still provided only a macroscopic picture of the phenomenon.

1.3 Phenomenological Ginzburg-Landau theory

In the late 1940s, L. Landau elaborated a thermodynamic classification of phase
transitions. First-order transitions involve a latent heat, that is, a fixed amount
of energy which is exchanged between the system and its environment dur-
ing the phase transition. Since this energy cannot be exchanged instanta-
neously, first-order transitions are characterised by a possible mixing of differ-
ent phases; one typical example is boiling water, for which liquid and vapour
phases can coexist. The free energies of the two phases are identical at the
transition point, since the energy which is gained or released only operates
the change in the structure of the material. However, the first derivatives of
the free energy are discontinuous.

In second order transitions, one phase evolves into the other so that both
phases never coexist. Their first derivatives are continuous, and second deriva-
tives are discontinuous. They generally admit one ordered phase and a dis-
ordered one: for example in the ferromagnetic transition, spins have a ran-
dom orientation in the paramagnetic phase and are aligned in a preferred di-
rection in the ferromagnetic phase. This observation led Landau to assume
that the order of the transition depends on the form of a thermodynamic free-
energy functional expressed in terms of an order parameter. At the critical point,
the free energy for a first-order transition hence exhibits two simultaneous

4This relation remains valid when one considers electrons pairs instead of individual electrons,
as it is easily seen when substituting ns = n/2, q = 2e and m = 2me.
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minima corresponding to the two phases, while the free energy of a second-
order transition has only one minimum associated to one given phase.

In 1950, L. Landau and V. Ginzburg applied this successful framework and
achieved a powerful phenomenological theory that could explain supercon-
ductivity as a second order phase transition [10].

The theory relies on a space dependent order parameter ψ which is supposed
to vanish in the normal state, but to take some finite value below the critical
temperature; it is usually normalized to the density of supercharge carriers ns

already introduced in the London theory5:

ψ(x) =
√

ns(x)eiθ(x).

It is further assumed that the thermodynamic free energy F of the system
is an analytic function of ns, so that its value Fs in the superconducting state
can be expanded in power series6 around its value in the normal state Fn, close
to the critical temperature,

Fs = Fn +αns +
β

2
n2

s + . . . . (1.6)

It follows that the Ginzburg-Landau (GL) theory is strictly valid only close to
the critical temperature7. A dynamical approach requires the introduction of
gradients of the order parameter, which are combined with the electromag-
netic field in such way that local U(1) gauge invariance is preserved. Finally,
the free energy of the normal state can involve different definitions, and may
always be shifted by a constant, so that in general one is interested in the con-
densation energy Fs−Fn:

Fs−Fn = α|ψ|2 +
β

2
|ψ|4 +

h̄2

2m

∣∣∣∣(∇∇∇− iq
h̄

A
)

ψ

∣∣∣∣2 +
(B−Bext)2

2µo
(1.7)

where A is the electromagnetic vector potential. It is now admitted that su-
perconductivity involves paired electrons, so that we may identify the electric
charge q = 2e =−2|e|< 0 in the term accompanying the gradient. For the same

5At the time when the Ginzburg-Landau theory was being developed, the nature of the super-
conducting carriers was yet to be determined.

6At this stage, no definite statement has to the radius of convergence of such a series expansion
can be made; this issue depends on the values of the successive coefficients α, β, . . .

7In our local research group, G. Stenuit developed a computer analysis of lead nanowires
directly built on the GL theory; in particular he showed that at least for such superconducting
states the theory remains valid even far from the critical temperature [11].
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reason, one generally considers m = 2 me as the mass of one pair of electrons8.
Assuming the superconducting state to be energetically more favourable than
the normal state below the critical temperature, this energy difference must
be kept negative. The quantities α and β are phenomenological parameters
whose signs are fixed by analysis of the power expansion: β must be positive,
otherwise the minimal energy would be obtained for arbitrary large values of
the order parameter, and the only way to get a nontrivial value of the order pa-
rameter which minimizes the energy is to assume that α is negative (Fig. 1.4).
In principle both parameters are temperature dependent: one can show that
α varies as 1− t, with t = T/T c , close to the critical temperature, and β as
(1− t2)−2 and is usually taken to be constant [13].

Figure 1.4: The shape of the potential term in the GL free energy depends on
the sign of the parameter α: below the critical temperature, a minimum obtained
for a non-zero density of charge carriers can be observed only if α is negative (b-
graph).

Minimizing the free energy with respect to fluctuations of the order pa-
rameter and the vector potential respectively, leads to the celebrated Ginzburg-
Landau equations

αψ+
β

2
|ψ|2ψ− 1

2m

(
∇∇∇− iq

h̄
A
)2

ψ = 0 ,

J =
1
µo

∇∇∇×B =− iqh̄
2m

(ψ∗
∇∇∇ψ−ψ∇∇∇ψ

∗)− q2

m
|ψ|2A ,

(1.8)

8Actually, the identification of m as twice the electron mass assumes a model involving free
electrons; to be more accurate, we should consider an effective mass m∗ which takes into account
possible effects due to the crystal lattice. However, it has been proved experimentally that the
ratio e/m remains unchanged within 100 ppm, so that hypothesis of free electrons may be retained
for most typical (Type I) superconductors, allowing to consider m = 2me [12, 13].
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with the additional boundary condition(
∇∇∇− iq

h̄
A
)

ψ

∣∣∣∣
∂Ω

= 0 (1.9)

where the subscript ∂Ω refers to the component normal to the sample surface.
The first relation is recognized as the Schrödinger equation for the supercon-
ducting carriers; the second generalizes London’s constitutive relation inclu-
ding possible spatial variation of ψ. They allow for the identification of two
characteristic lengths: the penetration length λ is obtained by comparing the
second GL equation with the London equations (1.2) and a second parame-
ter, called the coherence length ξ, measures the extension in space where the
variation of ψ is significant. The two characteristic lengths are given by

λGL =

√
mβ

µoq2|α|
∝

1√
1− t4

,

ξGL =

√
h̄2

m|α|
∝

1√
1− t

.

(1.10)

They can further be combined into a dimensionless ratio which is known as
the Ginzburg-Landau parameter

κ =
λ

ξ

which is essentially constant close to Tc. One must take care of the tempera-
ture variations of the GL characteristic lengths, since it has been shown to be
strongly influenced by the purity of the sample; this is not the purpose of the
current analysis, but the interested reader is referred to Ref. [13] for a complete
description.

As a consequence of the GL formalism, one can evaluate numerically the
limiting values for the supercurrent and the external magnetic field, namely
the values at which the energy difference becomes positive. Qualitatively, cri-
tical temperature, current and magnetic field are correlated in the the phase
diagram depicted in Fig. 1.5.
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Tc Bc(0) λo ξo gN(0)
(K) gauss (nm) (nm) N/A

Pure materials
Al 1.175 100 50 1600 0.18
Sn 3.721 300 51 230 0.25
In 3.405 280 64 440 0.30
Pb 7.19 800 39 83 0.39
Nb 9.25 1270 44 40 0.30
Compounds
Nb3Ge 23 3
Ceramic cuprates
YBa2Cu3O7 93 10 000 130 1.5 0.66

Table 1.1: Experimental values of superconducting parameters for some typical
substances: Tc is the critical temperature, Bc is the critical magnetic field, λo and
ξo are the extrapolated penetration and coherence lengths at zero temperature,
gN(0) is the BCS coupling constant (see section 1.5)[14].

T

B

J

Tc

Bc

Jc

•

•

•

Superconductor

Normal

Figure 1.5: Phase diagram of a superconducting material: inside the quarter of
sphere delimited by the critical temperature, current and magnetic field, the sam-
ple is in the superconducting state; outside it recovers the normal phase.
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1.4 Abrikosov vortices

An additional consequence of the GL theory is the possibility of classifying
the superconductors into two classes with different behaviours when sub-
jected to an external magnetic field. Materials with a parameter κ < 1/

√
2 are

named type I superconductors, those with κ > 1/
√

2 belonging to the type II
family. The complete description of type II materials was given in 1957 by
A.A. Abrikosov, who predicted the possibility for the magnetic field to pene-
trate samples along flux lines in a periodic arrangement [15]. He was re-
warded with the 2003 Physics Nobel prize for that work. When raising the
external magnetic induction from zero, surface currents appear to keep the
material diamagnetic, up to a first critical value denoted Hc1. For higher val-
ues, the magnetic field starts entering the sample through vortices, named
from the fact that they are surrounded by circular super-currents which de-
velop in order to screen the magnetic field. Since the Meissner effect excludes
the presence of a magnetic field inside a superconductor, one must conclude
that vortex cores are in the normal state, with a vanishing value of the order
parameter: this is therefore called the “mixed state”, where the two phases co-
exist. Still increasing the magnetic field, the vortices progressively occupy
the whole sample until a second critical value Hc2 where the normal state
is completely recovered. Such a vortex lattice was first observed in 1967 by
U. Essmann and H. Träuble, who sputtered a ferromagnetic powder on a sam-
ple of NbSe2 in order to exhibit the lattice pattern [16].

Type II superconductors present a hysteretic behaviour as a function of the
external magnetic field: the nucleation of vortices is not identical in increasing
or decreasing magnetic fields and occurs somewhat later in the latter case.

In the GL formalism, a direct consequence of the U(1) local gauge sym-
metry of the wavefunction ψ which describes the order parameter is that the
magnetic field entering a type II superconductors is quantized: each vortex
carries one flux quantum with value

Φo =
2πh̄

q
= 2.0710−15 Wb (SI) = 2.0710−7 gauss/cm2. (1.11)

A regular pattern of vortices each carrying one flux quantum is only one
class of solutions to the Ginzburg-Landau equations however. Depending on
the size and the shape of the sample, both affecting the boundary conditions
to which the equations are submitted, an energically more favourable config-
uration is sometimes provided by a single giant vortex located in the centre
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Figure 1.6: Abrikosov lattice of magnetic vortices in a type II superconducting
sample [16].

of the sample, which can carry more than one flux quantum. To identify the
exact configuration, a flux line is generally called a fluxoid and the number of
flux quanta it carries the vorticity.

The gain in the values of the critical parameters as well as different proper-
ties associated to the structure and the dynamics of vortices opened the door
to obvious technological challenges; they also initiated a totally specific ap-
proach to the study of superconductivity, which is beyond the scope of this
work.

1.5 BCS theory

One had to wait until 1957 to see a microscopic model of superconductiv-
ity elaborated by J. Bardeen, L.N. Cooper and J.R. Schrieffer9 [17]. Even if it
has been proved to fail in explaining the mechanisms of superconductivity in
high-Tc and other exotic superconducting materials, it is still a widely applied
formalism to interpret experimental results and a reference basis for other spe-

9Bardeen, Cooper and Schrieffer earned the Physics Nobel prize for that work in 1972, making
Bardeen the first man ever to be awarded the prestigious prize twice in physics, since he had
already received the distinction for the discovery of the transistor effect, together with Schottky.
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cific theories. Since a substantial part of this work aims at providing a gener-
alised formulation of their theory, it is worth giving here a extended summary
of it (see Refs. [13, 14] for a complete description and mathematical details).

The BCS theory is based on the idea of an attractive interaction between
electrons due to phonons. It is well known that the Coulomb interaction be-
tween two identical electric charges is repulsive. However, in certain circum-
stances and when described in momentum space, effective attraction can bind
electrons due to their motion through the ionic lattice. The best intuitive way
of understanding this fact is given by the picture of a thick and soft mattress
on which heavy balls are thrown rolling: the trajectory of one ball leaves a
depression in which a second ball moving on the mattress would fall as if the
balls would attract each other. The microscopic picture of superconducting
metals is identical: electrons slightly deform the crystal lattice by attracting
ion cores, creating an area of greater positive charge density around itself; this
excess of positive charge attracts in turn another electron. At a quantum level,
those distortions and vibrations of the crystal lattice are called phonons. Pro-
vided the binding energy is lower than the thermal excitations of the lattice
which would break them up, the electrons remain paired; roughly, this ex-
plains why superconductivity requires very low temperatures. Cooper also
showed that the optimal pairing is obtained by electrons with opposite spins
and momenta.

The attractive interaction between electrons through lattice phonons has
been verified experimentally through the isotope effect. When the number of
nucleons is increased by addition of neutrons, then the atomic nuclei are obvi-
ously heavier, resulting in a greater inertia against the deformation due to the
passing of electrons: the consequence for superconductivity is a lower criti-
cal temperature. Qualitatively, the critical temperature varies with the mean
atomic mass M as Tc ∝ M−α with α close to 1/2. Actually, this dependence
had been observed some years before and Cooper’s work followed Fröhlich’s
suggestion that superconductivity might be related to an electronic interaction
mediated by the lattice ions [18].

Cooper first introduced the concept of electron pairs –further called Cooper
pairs– by showing that the Fermi sea of conducting electrons was unstable in
the presence of an attractive interaction; he demonstrated the possibility of
bound states solutions, with negative energy with respect to the Fermi state,
involving two electrons whose momenta belong to a thin shell above the Fermi
level. At a quantum level, since the formed pairs have a bosonic character,
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nothing prevents them from condensing in the same quantum state: hence the
attractive interaction leads to a condensation of paired electrons close to the
Fermi level until an equilibrium is reached. The usual picture of BCS super-
conductivity is a twofold electron scattering by phonons. In its simplest reali-
sation, which we shall also consider in the present study, it is assumed that the
process is dominated by exchanges which do not flip the electron spin, hence
the so-called s-wave pairing channel10.

In the second quantisation formalism, we can represent the ground state
of a normal metal at zero temperature by

∏
k≤kF

c†
−k↓c

†
k↑ |0〉 ,

that is, for normal metals with a spherical Fermi surface, all energy states
are completely filled up to the Fermi level and none are occupied above that
level. In presence of an attractive interaction however, the BCS ground state
becomes

|BCS〉= ∏
k

(uk + eiθvkc†
−k↓c

†
k↑) |0〉 (1.12)

where the parameter vk (resp. uk) can be interpreted as the probability that
a pair of electrons with momenta ±k and opposite spins is occupied (resp.
empty). At T = 0, vk is shown to have a behaviour as displayed on Fig. 1.7:
some electron states just outside the Fermi level are occupied, and some just
below are empty. Since the interaction between electrons is mediated by lattice
phonons, the width of the shell around the Fermi level in which the occupa-
tion is modified cannot exceed the characteristic energy cutoff for the phonons
at the Debye frequency, and is therefore of the order of 2ωD.

In order to identify the energy levels of the ground state and excited states,
one considers an interaction term of the form

∑
k,k′>kF

gkk′c
†
k′↑c

†
−k′↓c−k↓ck↑ (1.13)

where the matrix elements gkk′ characterise the scattering of an electron from
the momentum state k to k′ = k−q with the simultaneous scattering of another

10Different attractive interactions with a p-wave or d-wave character involving other types
of exchanges may be responsible for high-Tc superconductivity and experimental evidences in
favour of d-wave pairing have been found in layered cuprates. These and other so-called “exotic
mechanisms” will not be discussed here.
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Figure 1.7: Energy dependence of the probability v2
k that an electron pair

(k,+s;−k,−s) is occupied in the BCS ground state at zero temperature near the
Fermi level εF [14].

electron from −k to −k′ =−k+q; here q is the momentum of the phonon res-
ponsible of the interaction. In this expression, we have already omitted all
pairs that do not include electrons with opposite spins and momenta, which
are shown not to contribute to the BCS condensation. Practically, the inter-
action term is usually simplified by assuming a constant coupling parameter
over the whole range of phonon momenta:

gkk′ =

{
−V for q such that h̄q < h̄ωc

0 otherwise.
(1.14)

As already mentioned, the cutoff energy h̄ωc is taken to be the Debye energy
which characterises the range of the phonon energy spectrum. Inserting the
simplified expression of the interaction (1.14) into the interaction term and
replacing the momentum sum by an energy integration, one obtains energy
states of the form

Ek =
√

ε2
k +∆2

k (1.15)

with

∆k =

{
∆ for |εk|< h̄ωc

0 otherwise.
(1.16)

In the above expressions, εk denotes the single-electron energy relative to the
Fermi level; the quantity ∆k plays the role of an energy gap between the ground
state and the lowest excited states for the electrons. In a later reformula-
tion of BCS theory, Bogoliubov interpreted Ek as the energy of quasiparticles



1.5 BCS theory 19

γ
†
k = ukc†

k↑ + eiθvkc−k↓ which create electron-like excitations above the Fermi
level or correspondingly hole-like excitations below the Fermi surface [19].
The value of the gap ∆ at zero temperature T = 0 K is shown to be

∆(0)≈ 2h̄ωD e−1/gN(0) (1.17)

where ωD is the Debye frequency and N(0) is the density of energy states at
the Fermi level.

At finite temperature, excitations above the ground state must be taken
into account and a physical state will take the form

∏
occ. states

γ
†
k |BCS〉 (1.18)

which expresses the fact that the quasiparticles progressively fill the excited
states according to the Fermi-Dirac probability distribution

f (Ek) = (1+ eβEk)−1 , β = 1/kT. (1.19)

The BCS treatment of the electron pairing allows for the identification of the
gap equation at any temperature:

1
gN(0)

=
1
2

Z h̄ωD

−h̄ωD

dε
tanh βEk

2
Ek

. (1.20)

In particular, the critical temperature is defined as the temperature at which
the gap is completely closed; analysis of the previous integral yields

kTc ≈ 1.13 h̄ωD e−1/gN(0). (1.21)

Finally, the temperature dependence of the gap can be obtained by numerical
analysis of (1.20) and is shown in Fig. 1.8; close to the critical temperature, the
curve can be approximated by

∆(T )≈ 1.74 ∆(0)
(

1− T
Tc

)1/2

, at T ∼ Tc. (1.22)

Summarising the main results of the original BCS theory, it is possible to
create bound states of electron pairs around the Fermi surface due to their in-
teractions through lattice phonons. This attractive s-wave pairing gives rise to
a modified energy spectrum of the conduction electrons, with a gap between
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Figure 1.8: Temperature dependence of the energy gap according to the BCS the-
ory, compared to some experimental data for typical superconductors [14].

the ground state and the first excited states corresponding to the minimal exci-
tation energy of Bogoliubov’s quasiparticles, which correlate electrons with op-
posite momenta and spins close to the Fermi level. This energy gap has a defi-
nite temperature dependence, and the temperature at which it
vanishes –hence restituting the original energy spectrum of non-paired elec-
trons– gives the critical temperature for the superconducting transition. The
coherence and penetration lengths can also be recovered within this frame-
work and they match with those of the Ginzburg-Landau formalism.

1.6 High Tc superconductors

The next experimental revolution occurred in 1986 when A. Müller and
J. Bednorz discovered a superconducting compound with unexpectedly high
critical temperature around 30K, while the BCS theory predicted a limit for the
critical temperature around 25K [20]. Bednorz and Müller not only received
immediately the Physics Nobel prize, they also initiated a galloping quest for
superconducting materials with higher and higher critical temperature, offer-
ing a manifest interest for industrial applications. Nearly all these materials
are layered cuprates and belong to the Type II family, allowing various con-
figuration of vortex lattices.

The discovery of high temperature superconducting (HTSc) materials
showed the limits of the BCS theory, which is apparently valid for describ-
ing the Type I superconductors, while Type II materials seem to obey different
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mechanisms. An even more puzzling discovery was made recently, when a
Japanese team announced magnesium diboride becomes superconducting un-
der 39K [21]: the biggest surprise was not the critical temperature itself –the
record being far above 100 K– but the fact that MgB2 behaves as a Type I su-
perconductor, suggesting that the BCS theory could still contain many hidden
subtleties.

Figure 1.9: Timeline of the discovery of superconducting materials with increas-
ing critical temperatures [3].
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1.7 Mesoscopic superconductivity

With growing interest for physics at reduced dimensions, recent works have
revealed a variety of interesting phenomena affecting the original subdivision
between type I and type II superconductors at κ = 1/

√
2. When one consid-

ers mesoscopic superconducting structures (whose dimensions are comparable
to the characteristic lengths), their behaviour in an external magnetic field is
strongly affected by the boundary conditions and may exhibit new thermo-
dynamic features, namely a manifest dependence of the order of the phase
transition on the size of the superconducting sample [22, 23]. One example of
such behaviour is presented in Fig. 1.10.

For the last decade, this subject has attracted a particularly great inter-
est and resulted in very fruitful projects mixing numerical simulation special-
ists and talented experimentalists. In particular, experiments carried out in
this University on lead nanowires were successfully reproduced by numerical
simulations based on the Ginzburg-Landau equations [24, 25, 26]. Other orig-
inal solutions arising from the analysis of the Ginzburg-Landau equations in
nanoscopic structures are discussed in the next chapter.
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Figure 1.10: Magnetisation curves for small Al disks of various radii as a function
of the external magnetic induction H; direction of magnetic sweep is indicated by
the arrows. For small radius (a) the magnetisation operates a smooth continuous
transition between superconducting and normal states, a characteristic behaviour
of a second order phase transition as in type I superconductors. For a sample
with higher radius in (b), the transition unexpectedly exhibits first order features,
with one discontinuous complete loss of the magnetisation and an hysteretic res-
ponse which is typical of type II superconductors. When the sample radius is
increased further in (c) and (d), one recovers a progressive decay of the magneti-
sation typical of a second order transition, but presenting discrete jumps within
the superconducting state [22].





2
New solutions to the

Ginzburg-Landau equations

Initially motivated by the quest for a new kind of particle detector based on
the quantum properties of nanoscopic loops, a novel exploration of the usual
Ginzburg-Landau (GL) equations was developed and led to the identification
of new solutions extending the well-known Abrikosov configuration.

Pioneering studies of mesoscopic superconductors with cylindrical shapes
were first carried out by W. Little and R. Parks in the early 1960s: they mea-
sured oscillations in the critical temperature Tc(B) of a small-sized Sn loop
in an axial magnetic field [27]. Those Little-Parks oscillations were predicted a
few years later in mesoscopic disks [28], but the experimental verification was
only made possible after the development of nanofabrication technologies, in
particular e-beam lithography, together with highly sensitive measurement
devices such as sub-micrometric Hall probes. This has revived the interest for
mesoscopic superconducting loops and disks on theoretical and experimental
levels. After Geim et al. measured the magnetization of superconducting disks
and reported various kinds of phase transitions depending on the disk radii
[22], a number of numerical studies were conducted by solving GL equations
either self-consistently or by linear approximation close to the phase transi-
tion. F.M. Peeters et al. obtained simulations in agreement with Geim’s re-
sults [29, 23]. Analyzing the phase diagram of the free energy as a function
of the external magnetic field, they identified possible transitions between an
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array of Abrikosov vortices and a centred giant vortex with more than one
flux quantum [30]. A completely different approach was used by J.J. Pala-
cios, who expanded the order parameter in an appropriate basis and directly
minimized the free energy; his results were in agreement with experiments
as well [31, 32]. E.H. Brandt developed specific numerical simulations capa-
ble of identifying the vortex structure of type II superconductors in various
magnetic field and geometric configurations, see [33] and references therein
for a detailed description. In the meantime, V.V. Moshchalkov et al. started
numerical and experimental investigations towards the understanding of the
mechanisms through which vortices enter or leave mesoscopic rings, see [34]
and its extensive list of references for an overview.

After showing that the GL formalism constructed from the thermodynamic
free energy is equivalent to the equations of motion resulting from the least
action principle in classical field theory, we will highlight a new range of so-
lutions to the GL equations with a static axial magnetic field, characterized by
the order parameter vanishing along concentric circles [35, 36].

In a second stage, a covariant extension of the GL equations will be pre-
sented and the resulting modifications of the phase diagram in presence of an
external electric field will be discussed. Actually, this question of electric field
penetration has been addressed in the early days of superconductivity, and
then later discarded on account of the argument of perfect conductivity. The
Londons suspected the presence of an electric field inside superconductors in
a steady state as a consequence of a non-uniform distribution of the supercon-
ducting current, but they finally modified their theory after their experiments
failed to observe such effects [37]. In the thirties, Bopp [38] discussed the
presence of a nonvanishing electrochemical potential inside superconductors
following early approaches by the Londons; in particular, he obtained an ex-
pression for the electrostatic potential which follows the Bernoulli potential
eΦ ∼ mv2/2, where v is the velocity of the superfluid. Later, van Vijfeijken
and Staas [39] extended the formulation of the electrostatic potential using
the two-fluid model, and first introduced the notion of quasiparticle screening.
Assuming that the electric screening at the surface of a superconductor is the
same as in normal metals, Jakeman and Pike [40] showed that an electrostatic
potential of the Bernoulli type may be recovered in the limit of strong screen-
ing, that is for a vanishing Thomas-Fermi screening length. The question of
the electric field has also been raised within the framework of the BCS the-
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ory, in particular by Rickayzen [41], who introduced some corrections to the
Bernoulli potential. Recently, Lipavský et al. [42] gave a complete historical
review of the study of the electrostatic potential in superconductors, and de-
veloped a modern formulation by evaluating the electrostatic and the thermo-
dynamic potentials within the framework of the Ginzburg-Landau theory.

From an experimental point of view, the first experiments trying to observe
an electric field inside a superconductor using direct contacts failed [43, 44];
it was later understood that these experiments measured the electrochemi-
cal potential instead of the electrostatic potential. Bok and Klein [45] repro-
duced similar experiments using an indirect capacitive coupling –known as
the Kelvin method– and reported fluctuations of the surface electrostatic po-
tential over a thickness of about 400 Å. Similar experiments have later been
performed by Brown and Morris [46] and recently by Chiang and Shev-
chenko [47]. However, it is important to emphasize the very specific nature
of the observed electrostatic potential: these experiments were performed in a
magnetic field normal to the sample surface, hence inducing a surface charge
to be identified as a Hall effect. Consequently, this analysis is not purely elec-
trostatic in the sense that it is in fact related to magnetic phenomena.

Another way of investigating the electrostatic potential inside a supercon-
ductor is related to the electric charge and screening inside and around mag-
netic vortices. Forces acting on vortices due to the electrostatic potential of the
Bernoulli type were identified by van Vijfeijken and Staas [39]. More recently,
it was shown that vortices in high-Tc materials can accumulate electric charge
due to the difference in the electrochemical potential between superconduct-
ing and normal phases [48]. Experimental evidences for such charged vortices
were reported after very sensitive NMR measurements performed by Kuma-
gai et al. [49]. An extensive review of related works for bulk superconductors
as well as an extension to mesoscopic samples was given recently by Yampol-
skii et al. [50], who studied the distribution of electric charge in mesoscopic
disks and cylinders within the Ginzburg-Landau theory. Again in this situa-
tion however, the analysis does not consider the superconductor in a purely
electrostatic situation, since it is related to non-uniform supercurrents around
magnetic vortices.

The change in the critical temperature was studied for the case of super-
conducting thin films subjected to an electric field: an enhancement of the
critical temperature of about 10−4 K was observed experimentally in 70 Å-
thick indium and tin superconducting films [51]. The origin of this shift lies
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in a modification of the free electron gas density due to the direct voltage
contact on the superconducting film, justifying the name of charge modulation
model given to it. These electric effects were later predicted and then observed
in high-Tc materials with increased change of the critical temperature, see
Refs. [52, 53, 54] and references therein. Indeed, cuprate materials may be
considered as stacks of alternating layers of insulating and metallic materials
whose thickness is typically of the order of magnitude of the Thomas-Fermi
screening lengths; they also have an intrinsic charge concentration which is
lower than normal metals, making them more sensitive to the modification
of charge density. Such systems were studied within the framework of the
Ginzburg-Landau or the BCS theories, considering the Thomas-Fermi approx-
imation for the screening of the electric field at the film surface. In all cases, the
electric effects may not be attributed to some specific superconducting phe-
nomena: they are due to the change of the free electron density as a direct
consequence of the electric contacts on the sample, whose theoretical manifes-
tation is through a realignment of the respective Fermi levels.

As a conclusion to the present review, to the best of our knowledge, all
attempts to take electric fields into account in superconducting phenomena
have always been considered in the limit of a Thomas-Fermi screening, that
is, by decoupling the treatment of the electric field in superconductors and
simply assuming it to be vanishing.

One purpose of the covariant extension of the Ginzburg-Landau theory is
to provide a self-consistent approach describing the coupling of an electron
gas to the electromagnetic field. In particular, it will be shown that the ex-
tended GL model considered for the case of a superconducting slab with spe-
cific configurations of the external electromagnetic fields exhibits some unre-
vealed features that could allow for an experimental discrimination between
the two models.

2.1 Ginzburg-Landau-Higgs mechanism

A covariant extension of the GL equations is provided by the U(1) Higgs
model of particle physics [55]: indeed, their solutions with an integer winding
number L for the phase dependency of the scalar field have proven to be asso-
ciated either to an Abrikosov lattice of L vortices or to a giant vortex carrying
L magnetic flux quanta.
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In this section we first show that the variational principle applied to the
action of the Higgs model is equivalent, for stationary configurations, to the
GL equations obtained by minimizing the thermodynamic energy. Then in a
second step we study the case of mesoscopic superconducting samples, and
in particular we identify particular solutions for which the order parameter
–or equivalently the modulus of complex field– vanishes on closed surfaces
within the bulk volume of the sample. Because of this particular topology, we
refer to these solutions as annular vortices of order n and vorticity L, n referring
to the number of cylindrical domains on which the order parameter vanishes
and L to the usual fluxoid quantum number. These solutions define extrema of
the free energy, but in our study we could not discriminate between maxima,
minima or saddle points, thus leaving open the question of the stability of
these solutions and the possibility of observing them in microscopic devices.

The Higgs model of particle physics, whose construction itself was moti-
vated by GL theory in the late 1950s, provides a natural covariant extension of
the GL equations1; the corresponding lagrangian density for a gauge covari-
ant coupling of a complex scalar field ψ(x) to the electromagnetic potential Aµ

is given by [56]

L =
1
2

ε0 c
(

h̄
qλ

)2{(
∂

µ− i
q
h̄

Aµ
)

ψ
∗
(

∂µ + i
q
h̄

Aµ

)
ψ − 1

2ξ2 (ψ∗ψ−1)2
}
− 1

4
ε0 cFµνFµν.

(2.1)

In this expression, the order parameter ψ is already normalised to the density
of electron pairs in a bulk sample ψ(x) = Ψ(x)/Ψo(x). Gauge invariance sug-
gests the expression of the covariant derivative (∂µ + i q

h̄ Aµ) in the kinetic term
and the “double-well” form of the potential has been taken in order to repro-
duce the GL quartic potential (1.7). From the above expression one already
notices that the penetration length λ(T ) weighs the relative contribution of the
electromagnetic field energy and the condensate energy, while the coherence
length ξ(T ) weighs the contributions to the condensate energy of the spatial
inhomogeneities –through the covariant gradient– and the deviations from
the bulk value |ψ|2 = 1 –through the potential term. Assuming that an observ-
able solution defines a local extremum in the energy spectrum, a variational
method applied on the action S =

R
d4xL provides the following equations of

motion for the scalar field ψ and the vector field Aµ respectively:

1The reader is referred to Appendix C for an introduction to relativistic formalisms and co-
variant theory.
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1
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em = cρem =
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qλ

)2(
ψ
∗
∇∇∇ψ−ψ∇∇∇ψ
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q
h̄

Aψ
∗
ψ

)
(2.2)

where the current density Jµ
em has been defined in such way that it agrees with

the covariant form of the inhomogeneous Maxwell equations ∂νFµν = µoJµ
em,

which take the explicit form

∇∇∇ ·E =
ρem

εo
, ∇∇∇×B− 1

c2 ∂tE = µoJ . (2.3)

The first equation of the set (2.2) generalises the GL equation (1.8) for the
order parameter by considering a non-vanishing electrostatic potential Φ in-
side the superconductor. Considering spatial and time derivatives of the two
other relations leads to generalised London equations:

E = ∇∇∇

(
λ2

|ψ|2
J0

em

)
+

∂

∂t

(
λ2

|ψ|2
µoJem

)
, B =−∇∇∇×

(
λ2

|ψ|2
µoJem

)
. (2.4)

The relevant boundary conditions are(
∂

µ + i
q
h̄

Aµ
)

ψ

∣∣∣
∂Ω

= 0. (2.5)

To proceed further, let us introduce the following change of normalisation.
The order parameter is defined according to ψ = f (x)eiθ(x) so that f 2 measures
the relative Cooper pair density 0 < f 2 < 1. Space and time coordinates are
measured in units of the penetration length:

u =
x
λ

, τ =
ct
λ

.

Similarly, magnetic and electric fields2 are given in units of the magnetic field
Φo/2πλ2 associated to one flux quantum Φo:

b =
B

Φo/2πλ2 , e =
E/c

Φo/2πλ2 .

2The electric field is considered together with the velocity of light, so that the ratio E/c has
indeed the same dimension as a magnetic field. In particular, E/c and B transform into one
another under Lorentz boosts.
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Finally, charge and current densities are re-parameterised through

j0 =
q
h̄

λ3

f 2
1
c

ρem

εo
, j =

q
h̄

λ3

f 2 µoJem.

Note that the newly defined variables are temperature dependent since λ is.
The generalised GL equation then reduces to

(∂∂∂2
u f −∂

2
τ f ) = f (j2− j2

0)−κ
2 f (1− f 2) (2.6)

where the GL parameter κ = λ/ξ has been introduced; ∂u stands for the gra-
dient with respect to the rescaled position. On the other hand, the inhomo-
geneous Maxwell equations (2.3) together with the generalised London equa-
tions (2.4) provide similar differential equations for the 4-supercurrent ( j0, j):

(∂∂∂2
u j0−∂2

τ j0) = f 2 j0−∂τ(∂τ j0 +∂uj) ,

(∂∂∂2
uj−∂2

τj) = f 2j+∂∂∂u(∂τ j0 +∂∂∂uj).
(2.7)

The corresponding electric and magnetic fields are respectively given by

e = ∂∂∂u j0 +∂τj ,

b = ∂∂∂u× j.
(2.8)

To conclude the general discussion, let us give the expression for the free en-
ergy of the system:

E =
(

λ3

2µo

Φo

2πλ2

)−1

E =
Z

(∞)
d3u

{
[e− eext ]2 +[b−bext ]2

}
+ (2.9)

+
Z

Ω

d3u
{

(∂τ f )2 +(∇∇∇u f )2 + f 2( j2
0
+ j2)+

κ2

2
(1− f 2)2− κ2

2

}
,

where the normalisation has been chosen so that the energy be positive in the
normal state and negative in the superconducting state, allowing an immedi-
ate identification of the phase transition at E = 0.

2.2 Annular vortices in cylindrical topologies

We consider infinitely long mesoscopic samples with cylindrical symmetry,
that is, a solid cylinder of radius ub = rb/λ or an annulus with internal radius
ua = ra/λ and external radius ub = rb/λ (ua,ub ∼ 1). We further restrict to a
static case with only a magnetic field along the axis of the sample; then the
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electric field and the charge density j0 vanish and the original GL equations
are recovered. The order parameter is advantageously redefined as ψ(u,φ) =
f (u)e−iLφeiθo where θo is an arbitrary phase and L is the usual fluxoid quantum
number3. It is also useful to introduce an additional function g(u) = u · j(u), so
that the set of equations (2.6) and (2.7) reduce to the two differential equations
[57, 35]:

1
u

d
du

[
u

d
du

f (u)
]

=
1
u2 f (u)g2(u)−κ

2 f (u)[1− f 2(u)] ,

u
d
du

[
1
u

d
du

g(u)
]

= f 2(u)g(u) ,

(2.10)

associated to the following boundary conditions either obtained from (2.5) or
from symmetry considerations:

disk case: g(u)|u=0 =−L ; ∂u f (u)|u=0 = 0 if L = 0
or f (u)|u=0 = 0 if L 6= 0

1
u ∂ug(u)

∣∣
u=ub

= bext ; ∂u f (u)|u=ub
= 0

annulus case: ua
2 ∂ug(u)

∣∣
u=ua

= g(ua)+L ; ∂u f (u)|u=ua
= 0

1
u ∂ug(u)

∣∣
u=ub

= bext ; ∂u f (u)|u=ub
= 0 .

(2.11)
In order to determine a solution uniquely, this pair of coupled second order
differential equations requires a set of four boundary conditions which must
be specified at the same point. Since we only have two conditions at each of
the two boundaries, we must add two free conditions at one of the bounda-
ries and then calculate the solution throughout the sample; the free boundary
conditions will then be adjusted so as to meet the other two conditions at the
opposite boundary. This procedure –known as the relaxation method of sol-
ving differential equations– has been implemented and resulted in solutions
displayed in Fig. 2.1 for a disk case; those for the annulus are similar.

3The quantity u now describes the radial coordinate r/λ.
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Fig. 2.1 displays all possible solutions which can be found with L = 0,1 for a
disk with radius r/λ = 11 in an external magnetic field bext = 0.05, correspond-
ing to a measurable value of about 66 gauss for a material4 with λ = 50 nm. The
first graph displays solutions denoted respectively n = 0,1,2,3 associated to a
novel quantum number n of cylindrical domains on which the order parame-
ter vanishes, which we call “annular vortices”. For the case L = 1, a solution
with n = 3 cannot be found since the central vortex has pushed outwards the
third vortex. As it may be seen on the graphs in the second column, a sta-
bilisation of the magnetic field screening is observed where the annular vor-
tices are located, confirmed by the fact that the supercurrents there also vanish
(third column), enabling further penetration of the external field and thereby
a partial anti-screening of the Meissner effect. The number of annular vortices
which can be accommodated into the sample depends of course on the radius
of the sample, but also on the GL parameter: a higher value of κ corresponds
to a condensate with a lower rigidity (low value of the coherence length ξ) for
which the Copper pair density may fluctuate over smaller distances, allowing
therefore solutions with more closely packed annular vortices.

Unknown to us at that time, the existence of these oscillating solutions had
already been demonstrated from a mathematical point of view [58], but they
had never been constructed explicitly before. These solutions extend those in
terms of the Bessel functions that may be found for the linearised equations,
and more generally, they are close cousins to the familiar solitonic solutions
for a Higgs-like potential in the context of particle physics [59]. After the pub-
lication of these results, such annular vortices have also been obtained from
the usual GL theory using different numerical methods [60, 61].

Since these configurations solve the GL equations, they define local ex-
trema of the free energy, but their stability has definitely not been established,
leaving open the question of observing such solutions in mesoscopic devices.
However, their free energy can be shown to increase with increasing n, sug-
gesting a finite thermodynamic lifetime, but even if unstable these new solu-
tions could contribute to the dynamics of the switching mechanism between
different states.

4This situation models approximatively a niobium sample, for which λ(0) = 44 nm and
ξo = 40 nm [14].
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2.3 Validation of the covariant model

In the previous section, it has been shown that the Higgs mechanism could,
under certain hypotheses, reproduce the Ginzburg-Landau equations for a
phenomenological description of superconductivity. Among these hypothe-
ses, a vanishing electric field has been assumed inside the superconducting
sample in order to reproduce the property of infinite conductivity. As a moti-
vation for the present covariant generalisation of the GL theory, we claim how-
ever that a vanishing electric field inside the superconducting sample raises a
series of formal concerns. First, it is hardly believable that the electric field
would discontinuously drop to zero when crossing the surface of the super-
conductor; even if we consider a screening over Thomas-Fermi typical length
scales for normal metals, it would be interesting to know how this length scale
is affected by the presence of a superconducting condensate.

More generally, another concern is the fact that the coupling of the GL and
London equations with electromagnetism is not spacetime covariant. A self-
consistent approach describing the coupling of an electron gas to the electro-
magnetic field should ensure that the relativistic covariance properties of the
latter sector be also extended to the electronic sector. This description would
advantageously extend this hybrid construct in which a non-relativistic elec-
tronic description is coupled to the relativistic covariant electromagnetic field.
In that framework, under a Lorentz transform, the supercurrent density J
should behave as the space component of a 4-vector, whose time component
would be the supercharge density which appears in the London parameter Λ

(1.3), while the electric and magnetic fields transform as the components of
the field tensor Fµν.

To illustrate the possible consequence of a covariant approach, consider an
infinite superconducting slab in a static homogeneous magnetic field parallel
to its surface. In such a situation, the magnetic field penetrates the slab with a
well-known characteristic length λ. If a Lorentz boost is performed in a direc-
tion both parallel to the surface of the slab and perpendicular to the magnetic
field, according to the covariance of Maxwell equations, an electric field per-
pendicular to the surface of the slab appears in the boosted frame even within
the superconducting sample where the magnetic field in the rest frame is nonvanish-
ing. Obviously, one may argue that the superconducting sample defines itself
a preferred rest-frame, but even if distinguished from other possible frames
for describing physical properties of a superconductor, it remains true that



36 New solutions to the Ginzburg-Landau equations

the coupling of GL and London equations with Maxwell equations should be
consistent with the covariant description of electromagnetism. Furthermore,
it provides a natural way of considering time varying properties as well as
moving superconductors.

The infinite slab mentioned above provides a suitable geometry for dis-
criminating experimentally between usual and covariant GL equations. In
particular, we consider the case of an infinite slab in a static configuration,
subjected to a homogeneous magnetic field parallel to its surface as well as a
homogeneous electric field perpendicular to its surface. Obviously, this con-
figuration for the electric and magnetic fields is not the only possible, but it
has been shown to emphasise the very specific features of the phase diagram
that will be described in the following. The slab is taken to be of thickness
2a (the origin of the coordinates is located at the centre of the slab), with the
external electric field eext along the x axis and the magnetic field bext along the
y axis. The screening supercurrent j shall thus develop only along the z axis
(the previous rescaling of these quantities still applies). Symmetries of this
situation imply that all functions only depend on the normalised coordinate
u = x/λ along the x axis.

x

y

z

E

B

Figure 2.2: Infinite superconducting slab in crossed stationary electric and mag-
netic fields.
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It proves possible to express both supercurrent jz(u) and supercharge j0(u)
densities in terms of a single function j(u)

j0(u) =−eext j(u) , jz(u) =−bext j(u) (2.12)

so that electric and magnetic fields (2.8) inside the superconducting sample
are given by

e(u) = eext
d
du

j(u) , b(u) = bext
d
du

j(u). (2.13)

The set of differential equations to be solved then reduces to

d2

du2 j(u) = f 2(u) j(u) ,

d2

du2 f (u) = f (u) j2(u)
(
b2

ext − e2
ext
)
−κ

2 f (u)
(
1− f 2(u)

)
,

(2.14)

subjected to the boundary conditions (2.5) adapted to this specific setup:

d2

du2 j(u)
∣∣∣∣
u=±ua

= 1 ,
d2

du2 f (u)
∣∣∣∣
u=±ua

= 0. (2.15)

In view of these equations, it appears that solutions for f (u) and j(u) are neces-
sarily functions of the combination (b2

ext − e2
ext), indicating the nonvanishing

contribution of the external electric field as a distinctive feature from the non-
covariant model. This fact suggests to extend the phase diagram which char-
acterises the superconducting transition in the (b,e) plane. Up to the contri-
bution of the infinite surface of the slab as an overall factor, the free energy is
given by

E = 2ua

{
(b2

ext + e2
ext)
(

1− 1
ua

j(ua)
)

(2.16)

− 1
ua

Z ua

0
du
[(

b2
ext − e2

ext
)

j2(u) f 2(u)+
1
4

κ
2 f 4(u)

]}
from which the critical curves of vanishing energy in the (b,e) plane, corre-
sponding to the phase transition, are deduced [56, 62]:

b2 + e2 =
1

ua− j(ua)

Z ua

0
du
[(

b2− e2) j2(u) f 2(u)+
1
4

κ
2 f 4(u)

]
. (2.17)

The corresponding expression in the non-covariant approach is obtained by
fixing j0 = e = 0 in the equations of motion and the free energy to be inte-
grated. This leads to solutions for f (u) and j(u) in terms of b2

ext only, and
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the critical curves of the phase diagram are modified to

b2 +
ua

ua− j(ua)
e2 =

1
ua− j(ua)

Z ua

0
du
[

b2 j2(u) f 2(u)+
1
4

κ
2 f 4(u)

]
. (2.18)

In a macroscopic limit a� λ,ξ, in which case we essentially have j(u) = 0 and
f (u) = 1 throughout the material, the two critical curves (2.17) and (2.18) are
identically given by

b2 + e2 =
κ2

2
.

Normalised in units of the critical magnetic field in absence of electric field
bo = κ/

√
2, this criticality condition expressed in units of the critical magnetic

field Bo is given by (
B
Bo

)2

+
(

E/c
Bo

)2

= 1, a� λ,ξ. (2.19)

It is therefore impossible to distinguish the two approaches with a macro-
scopic device. However, considering a mesoscopic situation a� λ,ξ, it is then
possible to expand the functions j(u) and f (u) in powers of u. In this case it
would be necessary to expand b(u) and e(u) as well, since they appear in the
r.h.s of the expressions. Hence it is more relevant to consider a weak field ap-
proximation and develop j(u) and f (u) in powers of (b2

ext − e2
ext) whatever the

value of ua; since the critical fields are on the order of κ/
√

2, this approxima-
tion remains valid for small values of κ, namely for type I superconductors.

A first order expansion of the functions in the squared fields leads to the
following criticality condition in the (B,E) plane(

B
Bo

)2

+C
(

E/c
Bo

)2

= 1 (2.20)

with
C = 1+ζ

1−ζ
: covariant model,

C = ua
ua−tanhua

1
1−ζ

: non covariant model,
(2.21)

ζ =
1

16(κ2−2)2
ua

(ua− tanhua)2

[
8κ
√

2
tanh2 ua

tanh(κ
√

2ua)
− (3κ

4−10κ
2 +16) tanhua+

+(3κ
2−4)(κ2−2)

ua

cosh4 ua
(5κ

4−22κ
2 +16) tanh3 ua

]
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for any value of the slab thickness ua = a/λ(0). Taking the nanoscopic limit
a� λ,ξ, one may simplify

ua

ua− tanhua
∼ 3

u2
a
[1+O(u2

a)] , ζ∼ 1
2
[1+O(u2

a)]

leading to distinct expressions of the criticality condition:(
B
Bo

)2

+3
(

E/c
Bo

)2

= 1 : covariant model, a� λ,ξ

(2.22)(
B
Bo

)2

+6
λ2

a2
1

1−
(

T
Tc

)4

(
E/c
Bo

)2

= 1 : non covariant model, a� λ,ξ.

Numerical studies of a realistic situation close to the above mentioned cases
allow for an explicit observation of those results. Here we present the analysis
corresponding to an Al slab of thickness ua = 5; tabulated values of the super-
conducting parameters give Tc = 1.18 K, κ = 0.02, λ(0) = 50 nm, and a critical
magnetic field Bc(0) of about 100 gauss, so that the required electric fields
values lie around 3 MV/m, namely 3 V/µm, which is a reasonable range for
nanoscopic devices.

Fig. 2.3 presents the phase diagram for the covariant (on the top) and non-
covariant (on the bottom) models for a series of temperatures between 0 K and
Tc. In particular, we observe that the critical electric field Eo in the absence of
a magnetic field remains bounded below for any temperature in the covariant
case, while it goes to zero when the temperature increases in the non-covariant
case. Clearly, this major difference between the two approaches shows that
it should be possible to discriminate between them by measuring the critical
phase diagram of a corresponding device with properly oriented external elec-
tric and magnetic fields. The next chapter reports on the realisation of such a
device.
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Figure 2.3: Phase diagram for the covariant (top) and non-covariant (bottom)
models for an infinite slab of thickness ua = a/λ(0) = 5 with κ = 0.02. On each
graph, the curves shown from top to bottom are associated with increasing tem-
perature values T/Tc = 0, 0.8766, 0.9659, 0.9935, 0.9996. For further characterisa-
tion of the above curves, see the original publication [56].



3
Experimental validation of the

covariant model

In physics, you don’t have to go around making trouble for yourself.
Nature does it for you.

Franck Wilczek, 2004 Nobel Laureate in Physics.

According to the relations (2.17) and (2.18), a discrimination between the
usual and covariant Ginzburg-Landau equations should be possible based on
the measurement of the temperature dependence of the phase diagram for a
mesoscopic superconducting slab within a static magnetic field parallel to its
surface and a static electric field perpendicular to it, assuming possible small
variations from the calculated values due to the finite size of the experimental
device. In particular, it should be possible to observe how the external electric
field can break the superconducting state for sufficiently high critical value.
This chapter presents the realisation of such a device and the results of the
experimental measurements.
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3.1 Sample fabrication

The Microelectronics Laboratory at Louvain-la-Neuve1 provides extensive
technology as well as the required know-how for the fabrication of integrated
circuits on sub-micrometric devices in highly controlled clean rooms. With
the help of the technical staff of the laboratory, several geometries were tested
to approximate as well as possible the situation of an infinite slab in static
electric and magnetic fields. In practice, the device should only contain the
superconducting slab and the means for producing a perpendicular electric
field, since a magnetic field can be produced by a superconducting solenoid
enclosing the experimental chamber at the bottom of the cryostat that was
used for the low-temperature measurements. The final design was a multi-
layer structure consisting of a 50-nm-thick Aluminum superconducting slab
trapped between two metallic plates operating as a capacitor to produce the
perpendicular electric field; two dielectric layers made of silicon nitride en-
sured the isolation between the capacitor and the slab. Four electrodes were
connected to the central slab for the determination of its normal or supercon-
ducting state through a resistivity measurement: the advantage of this kind of
probing is that one can then get rid of the contact resistances. A drawing of
the device and its electrical connections is given in Fig. 3.1, together with the
sizes of the slab and electric connections.

The complete process elaborated for the manufacturing of this multilayer
device is displayed in Figs. 3.2 and 3.3 : experimental techniques are described
in the next paragraphs [63, 57].

1Part of the FSA/ELEC/DICE entity at UCL; see detailed information at
http://www.dice.ucl.ac.be.
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Figure 3.1: (Top) General layout of the experimental device: the superconducting
aluminum device with four-points probing is shown in dark blue, insulating sili-
con nitride layers in green separate it from the aluminum plates of the capacitor,
in light blue. (Bottom) Sizes of the various elements manufactured by lithography.
Relative scales between the elements are not respected on the drawings.
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Nr Substance 
(thickness) Process

1
SiO2               

(250 nm)
PECVD 

3 Si3N4               

(250 nm)
PECVD

4 Spinning

5 Baking

8 RIE through 
dielectric

Al slab & 4-points contacts

Preliminary isolation

9

Dielectric layer

6

7 Chemical cleaning

10

12

11 Evaporation      

Chemical removing 
of remaining PMMA

Chemical cleaning

Al             
(50 nm)        

Lower plate of the capacitor 

e-beam litho.      
in PMMA

e-beam litho.

Al             
(50 nm)        Evaporation2

PMMA         
(650 nm)

Figure 3.2: Technical process for the manufacturing of the device. Step 1: A SiO2

layer is deposited for isolating the Si substrate. Step 2: The Al lower plate of the
capacitor is evaporated. Steps 3 to 8: The isolating layer of Si3N4 is deposited
and two openings are performed by e-beam lithography for connecting the lower
plate of the capacitor. Steps 9 to 12: The main structure is patterned by e-beam
lithography and Al is evaporated; the excess layer of metal on top of the resist is
chemically removed.
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13 Si3N4               

(250 nm)
PECVD

18 RIE through 
dielectric

19

20

16

17 Chemical cleaning

14

Chemical cleaning

e-beam litho.      
in PMMA

e-beam litho.      
in PMMA

Al             
(50 nm)        

21 Evaporation       

22 Chemical removing 
of remaining PMMA

15

Dielectric layer

Upper plate of the capacitor 

Baking

Spinning

PMMA         
(650 nm)

Figure 3.3: Technical process for the manufacturing of the device (continued).
Steps 13 to 18: The second dielectric layer of Si3N4 is deposited and the required
apertures for the electrical contacts are released. Steps 19-22: the upper plate of
the capacitor is realised by e-beam lithography and evaporation of Al.
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The slab and the two capacitor plates were deposited by evaporation of
Al using a standard e-gun evaporation technique. The thickness of the evapo-
rated layer was controlled with a precision of several Angstroms by the change
in the resonant frequency of an oscillating quartzite crystal.

Si3N4 layers were obtained by Plasma Enhanced Chemical Vapour Deposi-
tion: appropriate gases are ionised by a RF electric field and then recombined
in a reacting chamber under controlled pressure and temperature conditions.
PECVD provides a very reliable way of producing layers with a smooth sur-
face and a precise control of the thickness. Tab. 3.1 displays adjusted parame-
ter values2 for the deposition of Si3N4 at a measured speed of 96 Å/min.

pressure temp. RF power NH3 flow SiH4 flow N2 flow LCP TCP APC
(mTorr) (◦C) (W) (sccm) (sccm) (sccm)

675 300 20 300 600 900 87 104 33.4

Table 3.1: Parameters to be tuned on the ET Twin 310/340 furnace for PECVD
deposition of Si3N4.

We used e-beam lithography for patterning specific geometries, namely for
the opening of electrical leads and shaping of the superconducting structure.
This has become a standard technique for manufacturing sub-micrometric de-
vices. At first, an electro-sensitive resist (Poly-methyl-metacrylate –PMMA–
diluted at 6% in chlorobenzene) is deposited on the wafer, which is kept spin-
ning at 5000 rpm for 1 minute. After 5 minutes baking on a hot plate (160◦C)
for evaporating the chlorobenzene, we end up with a thickness of about 650 Å.
In a second step, the PMMA resist is exposed to the beam of an electron mi-
croscope (Philips XL30 SFEG), the displacement of which is controlled by a
specific software (Raith’s ELPHY program). The electron beam damages poly-
meric chains, which become then more sensitive to the dissolution in an ap-
propriate chemical developer. The PMMA irradiation depends on the dose
of electric charge deposited by the electron beam, which is a function of the
beam current, the surface exposed to the beam and the time spent on that
surface. All those parameters are determined by adjusting the features of
both the SFEG microscope and the ELPHY program: Tab. 3.2 displays the
more efficient values of the exposure parameters after empiric adjustment

2In the following tables, the abbreviations LCP, TCP and APC stand respectively for Load Ca-
pacitor Position, Tune Capacitor Position and Automatic Pressure Control; the role of these controls is
described in Ref. [57].
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for optimal lithography of the presented geometries (see Fig. 3.1 for the di-
mensions of the elements to be exposed during lithography). Finally, disso-
lution of the exposed parts of the resist was performed in successive baths of
methyl-isobutyl-ketone (MIBK)/isopropanol mixing in 1:3 proportion for
90 seconds, then pure isopropanol for 30 seconds and flowing de-ionised wa-
ter for about 10 minutes.

magnification field size diaphragm spotsize
SFEG parameters (µm)

50 1750 5 5

pixel dist. stepsize dwell time current
ELPHY parameters (nm) (µs) (µA)

2 53.4 2.89 2.56

Table 3.2: Parameters for the e-beam lithography steps of our process.

Dry etching through Si3N4 was performed by Reactive Ion Etching (RIE):
the etching is performed by a gas at low pressure ionised under RF electric
field. This technique is less selective than other wet etching methods, but RIE
is not very efficient on PMMA, therefore ensuring the protection of the regions
not to be etched: the parameters displayed in Tab. 3.3 were used for etch-
ing the 250-nm-thick Si3N4 layers with a measured speed of 100 nm/minute,
while the etching speed of PMMA was only 60 nm/minute [57]. On the other
hand, RIE is rather anisotropic in the sense that the preferred etching direction
is perpendicular to the surface, ensuring rather steep walls around etched re-
gions; this is not a crucial concern however, since RIE was used only for the
opening of electrical leads, for which the resolution is not very important.

pressure RF power SF6 flow LCP TCP
(mTorr) (◦C) (W)

30 20 80 59 49

Table 3.3: Parameters for RIE etching of the Si3N4 layers.

Twenty devices were actually patterned on the same wafer. We measured
the thickness of the central slab by profilometry and obtained values between
519 and 806 Å. Measurements of the electric resistance between two adjacent
contact leads revealed values in the range 15-30 Ω. The differences between
the samples may be explained by the granularity of the aluminum layer, to-
gether with a slight lack of reproducibility which was reported for the pro-
filometer.
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Once completed, the sample was mounted on a standard (dual inline mul-
tiple pin) DIP-header and the electrical leads were soldered by hand to the
pins with gold wires and silver paint. The resulting device is shown in Fig. 3.4.

Figure 3.4: (Left) Microscope image of the completed device; in the last process,
a fifth connection had been added on the slab for technical reasons, but it has not
been used during the measurements. (Right) View of the device mounted on the
DIP-header.

3.2 Experimental setup

For cooling the sample below the critical temperature at which Al becomes su-
perconducting, namely around 1.17 K for a bulk device when no external field
is applied [14], we used the 3He Refrigerator of the PCPM Laboratory3. The
refrigerator was used with a superconducting solenoid enclosing the measure-
ment chamber, able to provide a central magnetic field oriented along the main
axis of the cryostat up to 15 T. A rotating platform equipped with a DIP-socket
was mounted at the end of the stick, allowing an appropriate orientation of the
sample with respect to the magnetic field with a precision of about 0.1◦ [64].
Together with the sample holder, the DIP-socket was equipped with a carbon
glass resistance thermometer calibrated against a RuO2 thermistor to monitor
the temperature as close as possible to the sample. Due to the small difference
in the positions of the thermal probe and the sample in the 3He bath, a small

3This device was adapted for transport experiments by Prof. V. Bayot et al. at
UCL/FSA/MAPR/PCPM.
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error on the temperature of the sample can occur: in comparison with other
studies using the same equipment, this error is estimated to be around 40 mK,
namely a raw 10 % uncertainty [65].

The complete experimental setup for low temperature measurements is
depicted in Fig. 3.5: the right-hand part of the drawing displays the low tem-
perature controls and the left-hand part shows the data measurement and ac-
quisition system.
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Figure 3.5: Simplified design of the measurement setup in 3He cryostat.
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The 3He cryostat allows for low-temperature experiments down to 300 mK.
After intermediate cooling in liquid nitrogen and liquid 4He successively, the
cooling to very low temperatures using 3He is made in a two-steps cycle. In a
first stage, 3He is condensed along the walls of the so-called ”1 K pot”, which
is a small chamber containing 4He cooled to 1.2-2 K. When the experimental
chamber at the bottom of the refrigerator contains enough liquid 3He, then
the pressure above the bath is lowered down to 10−3 mbar, corresponding to
a temperature of about 0.3 K in the chamber. This pumping is achieved by
a “sorb pump”, which adsorbs gaseous 3He on its surface when cooled be-
low 4.2 K, and releases it when heated around 30 K. The experimental cycle
is interrupted when all liquid 3He has been evaporated and adsorbed on the
sorb pump: it is then released and condensed again on the 1K pot. A precise
control of the adsorption of 3He allows for a fine tuning of the temperature of
the bath between the base temperature and 1.8 K. Above 1.8 K, temperature is
regulated by a heating resistor.

Resistivity measurements are performed by a four-probes method using a
standard lock-in technique: the sample is biased by a (15.5 Hz) low-frequency
current between two contacts, and the two others contacts allow for a mea-
surement of the resulting AC voltage across the sample. The advantage of
this technique is that we then get rid of the contact resistances: therefore, we
expect a vanishing voltage when the sample enters its superconducting phase
where it looses its resistivity. We limit excessive heating effects in the 3He bath
by biasing the sample with a current as low as possible, typically on the or-
der of several µA. The lock-in is equipped with appropriate bandpass filter to
reduce the noise on the signals. Measuring devices are connected to an acqui-
sition and control computer where the resistance of the slab, the temperature
and the magnetic field are recorded at 1 record/s.

DC voltages are applied on the two capacitor plates to adjust the electric
field perpendicular to the slab. Any leak current from the plates (eventually
observed if the disruptive voltage of the dielectric is reached, resulting in an
irreversible damage of the sample) are monitored by measuring the voltage
across a 10 MΩ resistance. To give an idea of the corresponding electric field,
consider a plane capacitor filled with a 500-nm-thick dielectric layer (the thick-
ness of the central Al slab is then negligible); since the relative dielectric con-
stant of Si3N4 lies around 7.5 [66], a voltage difference of 1 V results in an elec-
tric field of approximatively 15 MV/m. In order to keep the applied electric
field below the breakdown field of Si3N4 during the phase diagram measure-
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ments, we progressively incremented the tensions on the capacitor plates on a
test sample at 380 mK in absence of magnetic field: we reported leak currents
through the capacitor plates when they were submitted to -38 V / +38 V.

Finally, the magnetic field is adjusted by injecting a current in the super-
conducting solenoid cooled at 4.2 K; the value of the field is deduced from
a measure of this current using a Hall probe. In order to ensure sufficiently
stable values of the magnetic field, we performed low speed sweeping at
50 gauss/min.

3.3 Resistance measurements

With the help of the setup described in the previous section, we performed a
series of resistance measurements on two different samples. To identify the
phase diagram of the superconducting slab, we cooled the sample below the
critical temperature in the absence of any electric and magnetic field. Then for
successive fixed values of the voltage between the plates of the capacitor, we
swept the magnetic field up until we observed the critical magnetic field at
which the sample becomes resistive.

3.3.1 First sample

For the experiments on the first sample (which was actually labelled as ] 3),
we used 100 mV bias voltage on a 10 kΩ resistance (in series with the sample,
with negligible resistance), resulting in a current of about 10 µA. In a resistive
regime close to the critical temperature, this current resulted in a voltage of
about 35 µV across the sample, from which we deduced its resistance, of the
order of 3.5 Ω. In the absence of any external field, we measured a critical
temperature of 1.438 K (Fig. 3.6).

Each series of measurements was carried out at fixed temperature. The
magnetic field was then ramped upwards across its critical value along the
surface of the sample, for a series of constant voltages symmetrically applied
on the two plates of the capacitor by increasing steps of 5 volts. Fig. 3.7 (top
graphic) displays the measured resistance as a function of the electric field
(implicitly given by the voltage on the capacitor plates) and the magnetic field.
The inset graph shows the temperature averaged over the complete sweep for
each value of the capacitor voltage: the first point is significantly higher than
the others because the base temperature was not reached at that time; if this
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Figure 3.6: Electrical resistance of sample ] 3 as a function of the temperature,
in absence of external electric and magnetic fields; the phase transition between
normal and superconducting state is observed at ∼1.4 K.

point is excluded, the mean temperature for the complete range of measure-
ments is 0.387 K with a standard deviation of 0.015 K. As it may be seen from
the graph, there is no apparent dependence of the critical magnetic field on the
electric field: its mean value is 80.6 gauss, with variations between 77.2 gauss
and 81.7 gauss.

The same analysis was performed at a higher temperature, see Fig. 3.7
(middle graphic). The mean value of the temperature is 0.692 K with a stan-
dard deviation of 0.02 K (inset graph). The critical magnetic field is lower due
to the change in temperature, but still it is not affected by the change in the ap-
plied electric field: all the critical values lie between 24.7 gauss and 25.0 gauss
with an averaged value of 24.7 gauss.

Figure 3.7: (Next page) Electrical resistance of sample ] 3 as a function of the
magnetic field and the capacitor voltage, analysed for 3 different values of the
3He bath temperature from top to bottom: T∼ 0.4 K, T∼ 0.7 K, T∼ 1.1 K. The inset
graphs show the averaged temperature over the whole magnetic sweep for each
value of the capacitor voltage.
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A third series of data was taken even closer to the critical temperature
(Fig. 3.7, bottom graph). The measured temperature is 1.072 ± 0.007 K. Again,
there is not any significant modification of the critical magnetic field when the
capacitor voltage is increased: it remains around 14.1 gauss with all measured
values between 13.6 gauss and 14.4 gauss.

3.3.2 Second sample

Another sample (labelled as ] 4) was studied with the same methodology to
confirm the results obtained with the previous device. We used identical lock-
in parameters, namely a 100 mV bias voltage on a 10 kΩ resistance, corre-
sponding to a bias current of 10 µA. In Fig. 3.8, we observe that the supercon-
ducting transition occurs at 1.539 K in the absence of external fields. The slab
resistance at the critical temperature is 11.6 Ω. This difference with the resis-
tance of sample ]3 may be explained by a small variation of the slab thickness4

and by the addition of a fifth contact lead for characterisation purposes.
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Figure 3.8: Electrical resistance of sample ] 4 as a function of the temperature, in
absence of external electric and magnetic fields; the phase transition between the
normal and superconducting states is observed at ∼1.5 K.

Fig. 3.9 displays series of measurements operated with the previous
method at two different temperatures. The upper graph was obtained at
0.385 K for symmetrical values of the voltage on the capacitor plates incre-
mented by 2 V up to 10 V on each. All curves exhibit a critical magnetic field

4The exact thickness of both samples used for those measurements are unfortunately un-
known: thickness characterisation was indeed performed on a limited number of samples to
avoid possible damage by the tip of the profilometer.
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between 61.3 gauss and 61.7 gauss. The data of the lower graph were taken at
1.470 K: again the critical magnetic field does not seem to be affected by the
electric field and remains valued at around 5.6 gauss.

Figure 3.9: Electrical resistance of sample ] 4 as a function of the magnetic field
and the capacitor voltage, analysed for two different values of the 3He bath tem-
perature: Ttop ∼ 0.4 K and Tbottom ∼ 1.4 K. The inset graphs show the average
temperature at each value of the capacitor voltage.
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The analysis of all data presented in Figs. 3.7 and 3.9 suggests that an exter-
nal electric field does not affect significantly the superconducting state. This
conclusion seems in total contradiction with the expected behaviour based
not only on the covariant theory, but also with the usual GL framework (see
Fig. 1.5). Presumably, the explanation for this result is the fact that some
non-paired normal electrons could play a crucial role against the electric field,
whereas such contributions are not included in either model. Specifically, an
electrostatic potential could combine with the thermodynamic potential in the
superconductor, resulting in an effective potential acting on the condensate
of Cooper pairs. The main consequence would be the formation of surface
charge screening the external electric field, preventing it from penetrating the
superconducting condensate. This interpretation will be discussed in the next
chapter.



4
Relativistic BCS theory

I. Formulation

As a possible explanation for the observed phase diagram of the nanoscopic
Al slab presented in the previous chapter, we assume that the external elec-
tric field could not penetrate the sample due to some screening by charge
carriers. Since the phenomenological approach provided by the Ginzburg-
Landau-Higgs action is in apparent contradiction with the experimental re-
sults, this screening mechanism is investigated by extending the microscopic
BCS formulation of superconductivity in a relativistic formalism, enabling the
covariant coupling of such systems to electric fields. This extension will be
provided by a functional method, following an approach similar to that by
which Gor’kov derived the non-relativistic Ginzburg-Landau theory from the
non relativistic BCS theory [67].

4.1 Finite temperature field theory

A modern approach towards the microscopic understanding of superconduc-
tivity can be found using equilibrium field theory at finite temperature, or Ther-
mal Field Theory (TFT) for short. This framework is the combination of two
formalisms which have proved to be very successful on their own. TFT first
includes Quantum Field Theory, which has been extensively developed for
the description of fundamental particles and interactions and provides a wide
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understanding of physical processes, including quantum fluctuations at vari-
ous levels, classified and then calculated with the help of Feynman diagrams.
The second element of TFT is Statistical Mechanics, particularly suitable for
describing many-body problems, which involves the idea of statistical fluctu-
ations as a consequence of the modification of Bose-Einstein or Fermi-Dirac
distributions at non-zero temperature. TFT is therefore used in many-body
problems where the underlying dynamics is described by quantum fields. Its
first non-relativistic version was invented in the late 1950s for the purposes
of nuclear matter; then a relativistic theory was developed for studying high
temperature transitions occurring in the early universe; recent applications of
TFT include the study of quark-gluon plasmas and general QCD processes at
high density and/or high temperatures, as well as ultra-relativistic ion colli-
sions. Since the domain of applications for TFT is wide, the literature devoted
to it is extremely abundant; general considerations and structure of the for-
malism can be found in the books by Kapusta [68] and Le Bellac [69]. Explicit
calculations in TFT can be either performed in the operator formalism or in
the path integral formalism. We refer to Appendix D and to Ref. [69] for a
detailed description of the two methods.

Before starting the description of TFT, we fix the choice of units by assu-
ming h̄ = c = 1 (all notations and conventions are listed in the first Appendix).
Let us introduce the partition function of a physical system of bosonic con-
figuration space degrees of freedom q, described by a hamiltonian Ĥ in the
operator formalism1

Z(β) = Tr e−βH = ∑
n

e−βEn , β =
1

kT
(4.1)

where the trace has been evaluated using a complete set of eigenvectors of the
hamiltonian operator H. Since position eigenstates {|q〉} define a complete set
of states, it may be used to evaluate the trace and the partition function may
alternatively be written

Z(β) =
Z

dq〈q|e−βH |q〉 (4.2)

from which it is clear that the partition function may be regarded as a prop-
agator from 0 to β in imaginary time, subjected to the boundary condition

1Operators are generally denoted with a hat symbol to avoid confusion with observable val-
ues; since the forthcoming calculations do not contain misleading expressions, the hat notation
shall be omitted from now on.
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q(β) = q(0). Assuming the hamiltonian admits the general form
H = p2/2m +V (q) where p is the momentum operator conjugate to the po-
sition operator [q, p] = i, the partition function also admits the following path
integral representation, where the integration over conjugate momenta has
already been performed:

Z(β) =
Z

Dq(τ) e−SE (β) , with SE(β) =
Z

β

0
dτ LE [q(τ)] ,

LE [q(τ)] =
m
2

(
dq
dτ

)2

+V (q) . (4.3)

The remaining integral is to be performed over paths subjected to the afore-
mentioned periodic boundary condition. The path integral formulation of the
partition function is formally extended to the case of a Quantum Field Theory,
for which the value of the field at every position of space defines an infinite
set of degrees of freedom. The expression SE is usually referred to as the eu-
clidean action. In the case of QFT over Minkowski spacetime, the analytic
continuation from real to imaginary time implies a change in the spacetime
geometry, from Minkowski to an Euclidean space with the change of signa-
ture t2−x2 → −(τ2 +x2).

For the case of a complex fermionic field ψ(x,τ), the quantum prescription
is the equal time anticommutation relation between the field and its hermitian
conjugate {ψr(x,τo),ψ†

s (y,τo)} = δrsδ
(3)(x− y) where r and s are spin indices.

The path integral formulation of the partition function then becomes

Z(β) =
Z

DψDψ
† e−SE (β)

SE(β) =
Z

β

0
dτ

Z
d3x LE [ψ(x,τ),ψ†(x,τ)] (4.4)

LE = [ψ†(x,τ)∂τψ(x,τ)+H (ψ†,ψ)]

with anti-periodical boundary condition ψ(x,β) = −ψ(x,0) as demonstrated in
Appendix D, since the field and its conjugate obey anti-commutation rela-
tions.

Assuming we can effectively construct and evaluate an expression of the
partition function either through (4.1) or (4.4), the effective action Seff is then
defined as

Seff(β) =−1
β

lnZ(β) , Z(β) = e−βSeff . (4.5)

The functional Seff has the dimension of an energy and actually corresponds
to the Helmholtz free energy in a thermodynamics formalism: it provides an
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effective theory in the sense that an infinitesimal variation of external fields
gives the usual equations of motion for these fields [70]. In theoretical su-
perconductivity, this method was achieved for the first time by Gor’kov, who
obtained the Ginzburg-Landau free energy from the microscopic BCS hamil-
tonian [67]. In the same way, we shall develop a phenomenological relativistic
theory of superconductivity by showing that this effective action Seff may be
expanded into a form to be compared with the usual Ginzburg-Landau func-
tional. To this end, the first step consists in identifying the relevant euclidean
action which enters the partition function.

4.2 Effective coupling for a relativistic BCS theory

The present work is not the first attempt towards the formulation of a rela-
tivistic generalisation of the BCS theory: indeed, several authors already con-
sidered Dirac fermions within the BCS approach. In either cases, the starting
point is the free relativistic Dirac hamiltonian augmented by an interaction
term that models the attractive coupling between electrons. The major differ-
ences between the published papers lie with the motivations for the choice
of the appropriate expression of the interaction. As is the case in the non-
relativistic BCS theory, it is generally assumed that the exchange phonon car-
ries no momentum, hence reducing the electron coupling to a local interaction
between four fermions. To our knowledge, the first systematic treatment of all
possible quadrilinear fermionic couplings was given by Capelle et al. [71, 72],
who listed all bilinear order parameters consistent with the requirement of
Lorentz covariance, and operated a classification of them according to their
behaviour under the Lorentz transformation2. In particular, they restricted
the possible choice for a relativistic BCS generalisation to the (ψ̄ψ)2 scalar
coupling only by requiring a spin singlet structure with symmetry under par-
ity. In a later paper [73], they completed the relativistic generalization of the
Bogoliubov-de Gennes formulation of the BCS theory with their choice of or-
der parameter, and examined the prospects for experimental detection of rel-
ativistic effects in superconductors through measurements of spin properties
and specific kinds of fluctuations. In a more recent treatment, Ohsaku [74, 75]
formulated a generalised BCS mechanism in relativistic quantum field theory,
following the Gor’kov-Nambu functional method. In a systematic numerical

2The reader is referred to Appendix C for a detailed description of the Dirac equation and the
properties of Dirac spinors under Lorentz transformations and other discrete symmetries.
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treatment of all possible bilinear structures for the order parameter, that au-
thor discussed the form of the gap equation and the quasiparticle spectrum
for all couplings. Similar treatments were used to develop a non-relativistic
time-dependent Ginzburg-Landau theory [76]. In particle physics, functional
methods based on the BCS theory have also become a standard in particle
physics for the study of quark pairing, whose interaction has a strong sim-
ilarity with BCS electron pairing up to an additional color index which jus-
tifies the now popular denomination of color superconductivity. The analogy
between BCS superconductivity and quark matter has been given in a very
pedagogical way by R. Casalbuoni in Ref. [77].

In the present analysis, the appropriate choice for the order parameter
structure is performed by requiring that the BCS theory be reproduced in
the non-relativistic limit. We start by writing the more general form of a
Lorentz covariant lagrangian describing the pairing between two Grassmann
odd Dirac spinor fields ψ(x):

Lint = g1(ψ̄ψ)2 +g2(ψ̄γ5ψ)2 +g3(ψ̄γ
µ
ψ)2 +g4(ψ̄γ

µ
γ5ψ)2 +g5(ψ̄σ

µν
ψ)2 (4.6)

with ψ̄ = ψ†γ0, considering respectively scalar, pseudo-scalar, vector, axial-
vector and tensor structures under Lorentz transformations for the bilinear
couplings. The interaction lagrangian (4.6) already assumes a local
four-fermion interaction. This local coupling of four identical electron fields
implies that the terms considered in (4.6) do not constitute a set of linearly
independent couplings. This can be seen by operating a Fierz transformation
[78, 79], which establishes a relation between products of bilinears when two
of the constitutive spinors are exchanged. Denoting

s1 = ψ̄4ψ2 ψ̄3ψ1 s2 = ψ̄4ψ1 ψ̄3ψ2

v1 = ψ̄4γµψ2 ψ̄3γµψ1 v2 = ψ̄4γµψ1 ψ̄3γµψ2

t1 = 1
2 ψ̄4σµνψ2 ψ̄3σµνψ1 t2 = 1

2 ψ̄4σµνψ1 ψ̄3σµνψ2

a1 = ψ̄4γ5γµψ2 ψ̄3γµγ5ψ1 a2 = ψ̄4γ5γµψ1 ψ̄3γµγ5ψ2

p1 = ψ̄4γ5ψ2 ψ̄3γ5ψ1 p2 = ψ̄4γ5ψ1 ψ̄3γ5ψ2

(4.7)

the Fierz identities take the explicit form
s1

v1

t1
a1

p1

=−1
4


1 1 1 1 1
4 −2 0 2 −4
6 0 −2 0 6
4 2 0 −2 −4
1 −1 1 −1 1




s2

v2

t2
a2

p2

 . (4.8)
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One shows that the transformation matrix admits the degenerate set of eigen-
values λi = {−1,−1,1,1,1}, so that the following identities are proved:

(v1−a1) = (v2−a2)

2(s1− p1)− (v1 +a1) = 2(s2− p2)− (v2 +a2)

(s1 + p1)− t1 = (s2 + p2)− t2 (4.9)

2(s1− p1)+(v1 +a1) = (−1)[2(s2− p2)+(v2 +a2)]

3(s1 + p1)+ t1 = (−1)[3(s1 + p1)+ t1] .

In particular when considering four identical Dirac fermion fields
ψ1 = ψ2 = ψ3 = ψ4 = ψ, then the quadrilinear expressions (4.7) with subscripts
1 and 2 are identical and the linear combinations associated to negative eigen-
values must vanish, leaving only three linearly independent combinations

v−a = (ψ̄γ
µ
ψ)(ψ̄γµψ)+(ψ̄γ

µ
γ5ψ)(ψ̄γµγ5ψ)

2(s− p)− (v+a) = 2 [(ψ̄ψ)(ψ̄ψ)− (ψ̄γ5ψ)(ψ̄γ5ψ)] (4.10)

− [(ψ̄γ
µ
ψ)(ψ̄γµψ)− (ψ̄γ

µ
γ5ψ)(ψ̄γµγ5ψ)]

(s+ p)− t = [(ψ̄ψ)(ψ̄ψ)+(ψ̄γ5ψ)(ψ̄γ5ψ)]− 1
2
(ψ̄σ

µν
ψ)(ψ̄σµνψ) .

It should be clear that these particular choices for the structure of the bilin-
ears actually describe couplings of one fermion to one anti-fermion; hence
the interaction of two fermions is most appropriately obtained by charge-
conjugating one of the bilinears in the above linear combinations. One has:

ψ̄ψ = ψ̄cψc , ψ̄γµψ=−ψ̄cγµψc , ψ̄σµνψ =−ψ̄cσµνψc ,

ψ̄γ5ψ = ψ̄cγ5ψc , ψ̄γµγ5ψ = ψ̄cγµγ5ψc ,
(4.11)

with ψc = ηcCψ̄T , |ηc|= 1 (see Appendix C). Considering again the Fierz iden-
tities with ψ1 = ψ3 = ψc and ψ2 = ψ4 = ψ, all possible linearly independent
combinations may then be constructed from

1
2 α1

[
(ψ̄γµψ)2 +(ψ̄γµγ5ψ)2

]
+ 1

2 α2

[
2[(ψ̄ψ)2− (ψ̄γ5ψ)2]− [(ψ̄γµψ)2− (ψ̄γµγ5ψ)2]

]
+ 1

2 α3

[
[(ψ̄ψ)2 +(ψ̄γ5ψ)2]− 1

2 (ψ̄σµνψ)2
]

= β1(ψ̄cψ)†(ψ̄cψ)+β2(ψ̄cγ5ψ)†(ψ̄cγ5ψ)+β3(ψ̄cγµγ5ψ)†(ψ̄cγµγ5ψ)

(4.12)

with β1 = (α1−α3), β2 = (α1 +α3) and β3 = α2.
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The identification of the appropriate coupling follows from the properties
of these bilinears under discrete symmetry transformations.

Under parity transformation, the spinors transform according to

ψ
′(x, t) = ηpγ

0
ψ(−x, t) , ψ

′
c(x, t) =−η̄pγ

0
ψc(−x, t) , |ηp|= 1; (4.13)

hence the bilinears admit the following properties:

ψ̄′
cψ′ = −η2

pψ̄cψ

ψ̄′
cγ5ψ′ = +η2

pψ̄cγ5ψ

ψ̄′
cγ0γ5ψ′ = +η2

pψ̄cγ0γ5ψ

ψ̄′
cγγγγ5ψ′ = −η2

pψ̄cγγγγ5ψ .

(4.14)

In either case, the transformation of the bilinears have an explicit dependence
on the arbitrary choice of the transformation phase parameter ηp; therefore,
the parity is not uniquely defined for these bilinears and may not constitute an
argument towards the identification of the appropriate relativistic coupling, in
contradiction with Capelle et al. [72].

Under time reversal, the Dirac spinor transforms according to

ψ
′(x, t) = ηT iγ1

γ
3
ψ(x,−t) =−ηT iCγ5ψ(x,−t) (4.15)

in the Dirac representation; on the other hand,

ψ̄c = ηcCψ̄
T (4.16)

so that one proves

ψ̄cψ = iη̄cψT γ5(iγ1γ3ψ) = iη̄cη
−1
T ψT γ5ψ′

ψ̄cγ5ψ = iη̄cη
−1
T ψT ψ′

ψ̄cγµγ5ψ = −iη̄cη
−1
T ψT γµT

ψ′ .

(4.17)

One should recall that the original non-relativistic BCS theory couples time-
reversed states, as it has been shown by Anderson [80]; consequently, only the
bilinear expression ψ̄cγ5ψ couples an electron with its time-reversed state in
the s-wave and is therefore considered as a valid candidate for the relativistic
extension of the BCS theory.

This suggestion is further supported by the analysis of the spin structure
of the above bilinears. From the mode expansion of the Dirac spinor

ψ(x) = ∑
s

Z d3k
(2π)3 2ω(k)

[
b(k,s)u(k,s)e−ikx +d†(k,s)v(k,s)eikx

]
(4.18)
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one may calculate the expansion of the charge conjugate spinor. The spin
structure of the bilinear couplings then follows from the analysis of the quan-
tities

uT (k,s1) C Γ u(−k,s2) , Γ = 1,γ5,γ
µ
γ5 .

Denoting all possible values by a 2×2 matrix such that one considers respec-
tively the spin configurations (

↑↑ ↑↓
↓↑ ↓↓

)
,

then one has the following structures for the bilinears:

Γ = 1 2

(
k1 + ik2 −k3

−k3 −k1 + ik2

)
(4.19)

Γ = γ5 −2ω(k)

(
0 1
−1 0

)
(4.20)

Γ = γ
µ
γ5 µ = 0 : 2m

(
0 1
−1 0

)
(4.21)

µ = 1 :

(
−k3 ik2

ik2 −k3

)

µ = 2 :

(
−ik3 −ik1

−ik1 ik3

)

µ = 3 :

(
k1 + ik2 0

0 k1− ik2

)
hence establishing again that ψ̄cγ5ψ is the required coupling, since this is the
only spin-singlet structure which couples states with opposite spins.

In conclusion, both arguments based on time reversal properties and the
spin structure of the bilinear couplings support the choice of ψ̄cγ5ψ as the rel-
ativistic generalisation of the BCS order parameter for s-wave pairing of elec-
trons with opposite spins. As it will be shown in the following chapters, this
particular order parameter leads to the identification of one energy gap which
is a direct generalisation of the BCS gap; it would be interesting to investi-
gate the two other bilinear structures ψ̄cψ and ψ̄cγµγ5ψ in order to provide a
description of materials with multiple gaps and other couplings (such as d-
wave superconductivity, experimentally observed in some high-Tc oxides for
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instance). This is however beyond the scope of this work, and we shall only
concentrate on the interaction lagrangian

Lint =−g
2
(ψ̄cγ5ψ)†(ψ̄cγ5ψ) (4.22)

where the normalisation of the coupling constant has been made for future
convenience.

4.3 The effective action

In principle, we are now able to construct the complete expression of the Eu-
clidean action. First, the dynamics of the free fermion field is naturally pro-
vided by the Dirac Lagrangian

LD = iψ̄(x)(∂/−m)ψ(x) =
i
2

[ψ̄(x)γµ
∂µψ(x)−∂µψ̄(x)γµ

ψ(x)]−mψ̄(x)ψ(x). (4.23)

The coupling of the Dirac field to the electromagnetic sector is performed
through minimal substitution which ensures local U(1) gauge invariance
∂µ → ∂µ + ieAµ , where Aµ = (Φ,A) is the electromagnetic vector potential
and e = −|e| < 0 is the electron charge. The complete lagrangian should also
be augmented by the free electromagnetic lagrangian leading to the homoge-
neous Maxwell equations

Lem =−1
4

FµνFµν , Fµν = ∂µAν−∂νAµ ; (4.24)

however, the electromagnetic field is considered as an external field in the path
integral over the fermions (4.4). Hence, the complete analysis of the effective
action may be performed without considering the purely electromagnetic sec-
tor. The energy of the electromagnetic field shall eventually be added after
the effective action is computed, in order to identify the appropriate screening
lengths.

Finally, the interaction lagrangian between fermions has been proved to be
of the form (4.22). All contributions are collected into the complete lagrangian
density

L =
i
2

[ψ̄γ
µ
∂µψ−∂µψ̄γ

µ
ψ]−mψ̄ψ− eAµψ̄γ

µ
ψ− g

2
(ψ̄cγ5ψ)†(ψ̄cγ5ψ) (4.25)

so that we identify the hamiltonian density

H =− i
2

[ψ̄γγγ ·∇∇∇ψ−∇∇∇ψ̄ · γγγψ]+mψ̄ψ+ eAµψ̄γ
µ
ψ+

g
2
(ψ̄cγ5ψ)†(ψ̄cγ5ψ) . (4.26)
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From the U(1) phase symmetry of this hamiltonian, we infer the conserva-
tion of the number of fermions; in the thermodynamics language, this means
working in the grand-canonical ensemble, in which the hamiltonian is shifted
by a term µoN where µo is the chemical potential and N the number of conserved
charges. In numerical analyses, we shall consider that the chemical potential
is equal to the Fermi energy, which is strictly true at zero temperature only.
However, one proves that the temperature dependence of the chemical poten-
tial is given by [81]

µo(T ) = EF

[
1− 1

3

(
πkBT
2EF

)2
]

, (4.27)

which leads only a shift from the Fermi level of about 0.01 percent at room
temperature.

Figure 4.1: Temperature dependence of the chemical potential for a free electron
gas (adapted form [82]).

The hamiltonian becomes

H → H−µoN = H−µoψ(x)†
ψ(x)

and the Euclidean action then reads

SE =
Z

β

0
dτ

Z
(∞)

d3x
[
ψ

†
∂τψ+H −µoψ

†
ψ

]
. (4.28)
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The quadrilinear interaction can be eliminated by inserting inside the ac-
tion an additional term

1
2g

(∆−gηcψ̄cγ5ψ)† (∆−gηcψ̄cγ5ψ) (4.29)

introducing the auxiliary field ∆(x,τ) = gηcψ̄cγ5ψ, where ηc is an arbitrary
phase from the charge conjugation of one of the bilinears. In principle, this
operation known as a Hubbard-Stratonovich transformation [83] would mul-
tiply the path integral measure for the effective action by

Z
D∆D∆

† e−
1
2g

R β

0 dτ
R

d3x(∆−gηcψ̄cγ5ψ)†(∆−gηcψ̄cγ5ψ) .

The above expression is recognised as a gaussian integral and acts only as a
renormalisation of the partition function, with no consequence on the equa-
tions of motion resulting from the variational analysis of the euclidean action.
By considering this gaussian integral, it should be clear that the auxiliary field
∆(x) actually describes the Cooper pair local density, the reason why it will be
called from now on the order parameter. The advantage of this manipulation
is that the auxiliary term cancels the quartic term of the interaction. The com-
plete Euclidean lagrangian density now contains at most fermionic quadratic
terms, and is finally given by

LE =
1
2

[
ψ

†
∂τψ−∂τψ

†
ψ

]
− i

2
[ψ̄γγγ ·∇∇∇ψ−∇∇∇ψ̄ · γγγψ]+mψ̄ψ+ eAµψ̄γ

µ
ψ−µoψ

†
ψ

+
1

2g
|∆|2− 1

2

[
∆

†(ψ̄cγ5ψ)+∆(ψ̄cγ5ψ)†
]

(4.30)

where the arbitrary phase ηc has been absorbed into the complex field ∆. Con-
sidering the Euclidean action constructed from this lagrangian density and
the Nambu-Gor’kov basis extended to the present covariant formalism

Ψ =

(
ψ

ψc

)
,

the partition function admits the matrix form

Z(β) =
Z

D[Ψ,Ψ,∆,∆†] e−
R β

0 dτ
R

d3x
[

1
2g |∆|

2+ΨS Ψ

]
(4.31)

with

S =


1
2 (γ0∂τ− iγγγ ·∇∇∇+m−µo γ0 + eAνγν) 1

2 ∆γ5

− 1
2 ∆†γ5

1
2 (γ0∂τ− iγγγ ·∇∇∇+m+µo γ0− eAνγν)

 . (4.32)
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Considering the fermionic nature of the field ψ, the Grassmann algebra is used
for the evaluation of the path integral and yields

Z(β,µo) =
Z

D[∆,∆†] (detS)1/2 · e−
R β

0 dτ
R

∞ d3x 1
2g |∆|

2
. (4.33)

We further consider the saddle-point approximation by which we avoid the
explicit evaluation of the path integration over ∆ and ∆†: we shall restrict only
to those values ∆o which minimise the effective action and small fluctuations
around this minimum. Incidentally, this is equivalent to Gor’kov’s approach
to the derivation of the Ginzburg-Landau effective action from the BCS theory.
Denoting

Z(β,µ) = e−βSeff , (4.34)

the effective action may be evaluated perturbatively as

βSeff =−1
2

ln detS +
Z

β

0
dτ

Z
∞

d3x
1

2g
|∆|2 (4.35)

=−1
2

ln detSo−
1
2

Tr [S−1
o ∆S ]+

1
4

Tr [S−1
o ∆SS−1

o ∆S ]+
Z

β

0
dτ

Z
d3x

1
2g
|∆|2

where the operator S has been separated into two parts So +∆S . Accordingly,
it is supposed that the order parameter may be separated as ∆(x) = ∆o +∆(x),
assuming that it takes a constant homogeneous value ∆o in the whole volume
of the superconductor (London limit), up to small local fluctuations ∆(x). The
unperturbed matrix operator So is constructed by assuming a static situation
with homogeneous density ∆o = constant in the absence of any external elec-
tromagnetic field Aµ = 0; then the remaining part of the operator ∆S contains
the local fluctuations of the order parameter as well as the possible nonvan-
ishing values of the electromagnetic potential Aµ.

By definition, the inverse operator S−1
o (x1,x2) acts as the Green’s function

for the differential operator So. One shows that it corresponds to the prop-
agator of the complex field ψ between (x1,τ1) and (x2,τ2) in imaginary time,
which may also be expressed as the thermal average of the time-ordered prod-
uct of the field at the two corresponding points of spacetime in the Heisenberg
picture3. Assuming the exactly solvable part So is constructed from the hamil-
tonian Ho, we may thus write:

3The correspondence between the Green’s function S−1
o , the propagator and the thermal aver-

aged correlation functions 〈 〉β is demonstrated in Appendix D for a system with one degree of
freedom and may be generalised to the case of a field theory.
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S−1
o (x1,x2) =

1
Zo(β)

〈
T ψ(x1,τ1) ψ(x2,τ2)

〉
β

=
Tr
[
ψ(x1,τ1)ψ(x2,τ2)e−βHo

]
Tr e−βHo

, τ1 > τ2 . (4.36)

Let us now recall the usual Ginzburg-Landau free energy for an order pa-
rameter ψ, extended to its covariant expression in a static limit (Chapter 2) by
considering both the gradients of the electrostatic and vector potentials Φ and
A respectively,

FGL(T,ψ) = f |(∇∇∇−2ieA)ψ|2 +VGL(|ψ|)+
ε

2
|∇∇∇Φ|2 +

1
2µ
|∇∇∇×A|2 . (4.37)

It should be clear that, in the absence of external fields or gradients, the only
remaining part is the Ginzburg-Landau potential. Consequently, the effective
action for the unperturbed operator So identifies the effective potential Veff(∆)
for the particular case ∆ = ∆o. Once obtained for a homogeneous condensate
of Cooper pairs, the expression of the effective potential must remain valid
even for a space-dependent order parameter, since all orders of the series ex-
pansion of the potential for small fluctuations around the rigid condensate are
expected to appear in the successive orders of perturbations of the effective ac-
tion (4.35). On the other hand it appears that the chemical potential µo and the
electrostatic potential Φ enter the differential operator (4.32) in the same man-
ner, allowing the definition of the electrochemical potential µec = µo− eΦ. Then
we expect that the expression of the effective potential in absence of external
fields would be extended by considering the fluctuations of the electrochemi-
cal potential, induced by corresponding space-homogeneous variations of the
electrostatic potential around the chemical potential.

The other terms of interest are the gradients of the fields. Once the gradi-
ent of the order parameter is known, gauge invariance suggest the minimal
substitution of the covariant derivative to identify the first term in (4.37). On
the other hand, possible contributions to the electric and magnetic screening
mechanisms should come by with gradients of the electrostatic potential Φ

and the vector potential A respectively: this is the reason why the electric
and magnetic permittivities in vacuum have a priori been replaced by some
non-indexed effective values in (4.37). Since the electromagnetic potentials
are contained in ∆S and since squared gradients are needed, it should be
sufficient to consider the expansion of the effective action to second order in
the perturbation operator.
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4.4 Gauge invariance and Wilson’s prescription

We provide a description of relativistic fermions coupled to the electromag-
netic field, the lagrangian is therefore invariant under the local U(1) gauge
transformation

ψ(x)→ eiqα(x)
ψ(x) , Aµ(x)→ Aµ(x)−∂µα(x) , (4.38)

where q stands for the U(1) charge of the fermion ψ. This gauge invariance
actually requires the minimal substitution of the ordinary gradient by the co-
variant derivative in the original lagrangian density. However, the separation
of the effective action (4.35) in a homogeneous part So and ∆S containing small
fluctuations of the condensate and electromagnetic potentials does not guar-
antee the gauge invariance of the successive terms of the perturbative expan-
sion, since the two components So and ∆S are not gauge covariant separately
for gauge fields Aµ(x) with an arbitrary space dependence: the prescription of
gauge invariance can only be ensured after resummation to all orders of the
perturbation series, while we shall restrict our expansion to the second order
only. In consequence, since the gauge transformation (4.38) treats the elec-
tromagnetic field in a very specific way, we should be careful when trying to
collect terms that contain definite powers of this field, and we would expect
to miss some of those terms unless we carry out the explicit expansion to all
orders, a task which is obviously impossible. Hopefully, that concern may be
fixed by restoring the gauge invariance for the components chosen for So and
∆S . The method consists in integrating the vector potential A along a Wilson
line in space whose extremities coincide with the origin and the end of the per-
turbation term [70]. In a stationary situation, the electrostatic potential Φ has
the same form whatever gauge is chosen, and may therefore be considered
without Wilson’s construction.

Let the operator matrix ∆S be defined between two points in space x and y
according to

∆S(x) = δ
(4)(x− y)∆S(x,y). (4.39)

Since the gauge transformation (4.38) has been defined locally, there is no
guarantee that the transformations match at two neighbouring points; there-
fore a factor χ(x,y) is introduced to compensate for that possible change in the
phase transformation between those points and hence verifies the following
transformation:

eiqχ′(y,x) = eiqα(y)eiqχ(y,x)e−iqα(x) . (4.40)
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Essentially, the purpose of this compensating function is to cancel the gradi-
ent of the arbitrary gauge function α(x) affecting the gauge transformation of
the vector potential: A′ = A + ∇∇∇α. Assuming we work in an equilibrium sit-
uation with no time dependence, it may be proved that the integration of the
vector potential along a path between some initial position xo and x fulfils this
condition. Let us consider

χ(x) =−
Z x

xo

dy ·A(y) =
Z 1

0
du (x−xo) ·A(xo +u(x−xo)) . (4.41)

Without loss of generality, one may consider xo = 0. In preparation for the
evaluation of ∇∇∇χ, we observe

χ(x+ εεε) =−
I

0→x+εεε→x→0
dy ·A(y)−

Z x

0
dy ·A(y)−

Z x+εεε

x
dy ·A(y).

Using Stokes’s theorem, the circulation of the vector potential along the closed
loop is transformed into a flux integral through the surface defined by the
corresponding contour: with appropriate sign for the oriented surface, one
may write

S =
1
2

εεε×x ;
Z

S
dS =

1
2

εεε×x
Z 1

0
du

Z 1

0
dv . (4.42)

Hence,

χ(x+ εεε)−χ(x) = −1
2

Z 1

0
du

Z 1

0
dv εεε×x ·∇∇∇×A(ux+ vεεε)−

Z 1

0
dv εεε ·A(x+ vεεε)

= −εεε ·
{Z 1

0
dv A(x+ vεεε)+

Z 1

0
du

Z 1

0
dv x× (∇∇∇×A(ux+ vεεε))

}
' −εεε ·

{
A(x)+

Z 1

0
du x× (∇∇∇×A(ux))

}
(4.43)

to first order in ε. We end up with

∇∇∇χ(x) =−A(x)− 1
2

x×
Z 1

0
du B(ux) . (4.44)

Back to the original field theory, we substitute in the matrix S the quantities
defined as

χ(x) = −
Z 1

0
du (x−xo) ·A(xo +u(x−xo))

Ap(x) = A(x)+∇∇∇χ(x) =−1
2
(x−xo)×

Z 1

0
du B(xo +u(x−xo))

ψp(x,τ) = eieχ(x)
ψ(x,τ) (4.45)

ψc p(x,τ) = e−ieχ(x)
ψc(x,τ)

∆p(x) = e2ieχ(x)
∆(x) .
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The subscript “p” stands for physical and refers to the fact that the newly de-
fined fields are now gauge invariant, namely physical, up to a global phase
transformation related to the specific point xo which may be chosen arbitrarily.
In particular, we show that they transform under a local gauge transformation
according to

ψ′
p(x) = eieα(xo)ψp(x)

∆′p(x) = e2ieα(xo)∆p(x)
A′

p(x) = Ap(x) ,

(4.46)

hence showing that the matrices So and ∆S in (4.35) now contain invariant
quantities and thus possess gauge covariant properties.
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4.5 Summary

To summarise the main results of this chapter, we aim at calculating an ef-
fective theory of the relativistic BCS s-wave coupling of two electrons in an
electromagnetic field. This coupling is expressed through a quadrilinear in-
teraction which can be immediately converted into a quadratic expression by
means of an auxiliary field ∆(x,τ) = gψ̄cγ5ψ describing electron pairs. The par-
tition function may be given a path integral formulation

Z(β) =
Z

D[Ψ,Ψ,∆,∆†] e−
R β

0 dτ
R

d3xLE (Ψ,Ψ,∆,∆†) , Ψ =

(
ψ

ψc

)
, (4.47)

where the fermions are integrated over paths subjected to antiperiodic bound-
ary conditions in imaginary time Ψ(x,0) = −Ψ(x,β) and likewise for Ψ. The
integrations over the auxiliary field ∆ and its conjugate are not performed, but
instead one considers the saddle-point approximation by which one is only
interested in the value ∆o which minimises the action, and small fluctuations
around this minimum. This allows for the calculation of the effective action

Seff =
1
β

Z
β

0
dτ

Z
∞

d3x
1
2g
|∆|2− 1

2β
ln detS (4.48)

with

S =
1
2

γ0∂τ− iγγγ ·∇∇∇+m− eA · γγγ−µecγo ∆γ5

−∆†γ5 γ0∂τ− iγγγ ·∇∇∇+m+ eA · γγγ+µec γ0

 , (4.49)

where the chemical potential µ and the electrostatic potential Φ = eA0 have
been combined in the electrochemical potential µec(x) = µ(x)−eA0(x). In order
to perform a perturbative analysis which ensures gauge covariant properties
for the effective action, we define

χ(x) = −
Z 1

0
du (x−xo) ·A(xo +u(x−xo))

Ap(x) = A(x)+∇∇∇χ(x) =−1
2
(x−xo)×

Z 1

0
du B(xo +u(x−xo))

ψp(x,τ) = eieχ(x)
ψ(x,τ) (4.50)

ψc p(x,τ) = e−ieχ(x)
ψc(x,τ)

∆p(x) = e2ieχ(x)
∆(x)

and further separate
µec(x) = µo +µ(x)
∆p(x) = ∆o +∆(x)

(4.51)
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where the “o” subscripts refers to a situation with homogeneous order para-
meter in the absence of any external field. In particular, the fluctuations of the
electrochemical potential are clearly associated to the electrostatic potential:
µ = −eA0. In terms of the above defined quantities, one performs the gauge
invariant split S = So +∆S with

So = 1
2

 γ0∂τ− iγγγ ·∇∇∇+m−µoγo ∆oγ5

−∆†
oγ5 γ0∂τ− iγγγ ·∇∇∇+m+µo γ0



∆S(x) = 1
2

 −µ(x)γ0− eAp(x) · γγγ ∆(x)γ5

−∆
†(x)γ5 µ(x)γ0 + eAp(x) · γγγ

 .

(4.52)

With this parametrisation, the effective action is to be expanded up to second
order according to

βSeff =
Z

β

0
dτ

Z
∞

d3x
1

2g
|∆|2− 1

2
ln detSo−

1
2

Tr [S−1
o ∆S ]+

1
4

Tr [S−1
o ∆SS−1

o ∆S ]+ . . .

(4.53)
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Relativistic BCS theory

II. The effective action to second order

In our description of nature, the purpose is not to disclose the real essence
of the phenomena, but only to track down, so far as it is possible,
relations between the manifold aspects of our experience.

Niels Bohr (1885 - 1962).

Recalling the results of the previous chapter, a phenomenological relativis-
tic model for s-wave superconductivity follows from the identification of the
effective action

Seff =
1
β

Z
β

0
dτ

Z
∞

d3x
1
2g
|∆|2− 1

2β
ln detS (5.1)

where the determinant of the differential operator is evaluated by separating
an exactly solvable part and some perturbations S = So +∆S ; the identification
of the fields gradients requires to expand the effective action up to second
order of the perturbations contained in ∆S .
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5.1 Homogeneous situation

5.1.1 Lowest order effective action

Let us start with the contribution to lowest order in the expansion of the effec-
tive action

βS(0)
eff =

Z
β

0
dτ

Z
∞

d3x
1

2g
|∆|2− 1

2
ln detSo (5.2)

with

So =

 γ0∂τ− iγγγ ·∇∇∇+m−µoγo ∆oγ5

−∆†
oγ5 γ0∂τ− iγγγ ·∇∇∇+m+µo γ0

 (5.3)

where µo is the chemical potential and ∆o is the density of Cooper pairs, as-
sumed to be homogeneous over the whole volume of the sample (London
limit). We further assume that no external electromagnetic field is applied,
a contribution to be included subsequently in the higher order expansion.
We work in a static situation, hence no time dependence will be considered
throughout this chapter. A factor 1/2 multiplying So in (4.52) has been omit-
ted in (5.3) without loss of generality, since it simply adds a constant term to
the effective action. The zeroth order fermionic contribution to the effective
action may be computed directly from the corresponding fermionic partition
function

Z(0)
Ψ

= (detSo)
1/2 =

Z
D[ψ,ψ†] e−

R β

0 dτ
R

∞ d3x ΨSo Ψ

= Tr e−βHo (5.4)

since it will appear that the corresponding hamiltonian can easily be diago-
nalised. The homogeneous hamiltonian density in the operator (5.3) is

Ho = ψ(−iγγγ ·∇∇∇+m)ψ−µoψ
†
ψ− 1

2
∆

†
oψcγ5ψ+

1
2

∆oψγ5ψc , (5.5)

where the appropriate spinors have been inserted according to the original
identification of the corresponding lagrangian density. The Dirac field is ex-
panded as

ψ(x) =
Z d3k

(2π)3 2ω(k) ∑
s=±1

[b(k,s)u(k,s)eik·x +d†(k,s)v(k,s)e−ik·x], (5.6)
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in terms of the Fock operators b†(k,s) (respectively b(k,s)) which create (resp.
annihilate) electrons with momentum k and spin s, and likewise for the opera-
tors d† and d for positrons; these operators obey the usual anticommutation re-
lations {b(k,s),b†(k′,s′)}= {d(k,s),d†(k′,s′)}= (2π)3 2ω(k)δ(3)(k−k′)δss′ with
all other anticommutators equal to zero. The spinors u(k,s) and v(k,s) are the
corresponding plane wave solutions of the free Dirac equation with positive
and negative energy respectively1.

The hamiltonian density (5.5) then reads

Ho =
Z d3k

(2π)3 2ω(k) ∑
s
×{

[ω(k)−µo] b†(k,s)b(k,s)+ [ω(k)+µo] d†(k,s)d(k,s) (5.7)

+
1
2

s∆
†
o b(k,s)b(−k,−s)+

1
2

s∆
†
o d†(k,s)d†(−k,−s)

−1
2

s∆o b†(k,s)b†(−k,−s)− 1
2

s∆o d(k,s)d(−k,−s)

}
.

Following Bogoliubov’s analysis of the original BCS hamiltonian, it is pos-
sible to define an appropriate transformation of the operators by which the
hamiltonian has a manifest diagonal form. Let us introduce

B(k,s) = cosθB(k) b(k,s)−seiφo sinθB(k) b†(−k,−s)

D(k,s) = cosθD(k) d(k,s)+se−iφo sinθD(k) d†(−k,−s)
(5.8)

verifying the same anticommutation relations as the electron and positron op-
erators. Without loss of generality, the relative phase eiφo may be taken as the
complex part of the order parameter, namely ∆o = |∆o|eiφo . The value of the
mixing angles θB(k) and θD(k) are obtained by requiring the terms of the type
B(k,s)B(−k,−s) and B†(k,s)B†(−k,−s) (and analogous terms in the positron
sector) to cancel. This condition yields

cos2θB(k) =
ω(k)−µo

EB(k)
, sin2θB(k) =

|∆o|
EB(k)

, tan2θB =
|∆o|

ω(k)−µo

cos2θD(k) =
ω(k)+µo

ED(k)
, sin2θD(k) =

|∆o|
ED(k)

, tan2θD =
|∆o|

ω(k)+µo
.

(5.9)

1The most useful properties of Dirac spinors with this choice of normalisation are summarised
in Appendix C.
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In terms of these operators, the hamiltonian takes the following diagonal
form:

Ho =
Z d3k

(2π)3 2ω(k) ∑
s

{
EB(k)B†(k,s)B(k,s)+ED(k)D†(k,s)D(k,s)

}
+Eo

with EB(k)=
√

(ω−µo)2 + |∆o|2

ED(k)=
√

(ω+µo)2 + |∆o|2

Eo =(2π)3δ(3)(0)
Z d3k

(2π)3 [2ω(k)−EB(k)−ED(k)] .
(5.10)

It appears that ∆o, denoting the homogeneous density of Cooper pairs, also
measures the gap in the energy spectrum of the fermions. This is a conse-
quence of our choice of dimensions with h̄ = c = 1, from which densities and
energies enter the equations with the same units; their exact numerical value
is to be identified through multiplication by appropriate dimensional factors if
necessary. Nevertheless, the pair density and the energy gap shall be denoted
by the same variable ∆ throughout the analysis.

Turning back to the expression of the partition function, the diagonal ex-
pression of the hamiltonian allows for an immediate evaluation of the trace

Tr e−βHo = e−βEo Tr exp
(
−β

Z d3k
(2π)3 2ω

∑
s
[EBB†B+EDD†D]

)
= e−βEo ∏

k

[
1+ e−βEB(k)

]2 [
1+ e−βED(k)

]2
, (5.11)

This provides the total contribution of the fermionic fields to the partition
function (5.4), still to be combined with the auxiliary field contribution. The
integration over space has not been considered until now, but is straightfor-
ward since the whole expression is space-independent: it simply contributes
an overall total volume factor and we end with the following effective action
to lowest order:

S(0)
eff (∆o,β) =

V
2g
|∆o|2 +V

Z d3k
(2π)3 [2ω(k)−EB(k)−ED(k)]

− 2V
β

Z d3k
(2π)3 ln

[
1+ e−βEB(k)

]
− 2V

β

Z d3k
(2π)3 ln

[
1+ e−βED(k)

]
EB(k) =

√
(ω(k)−µo)2 + |∆o|2

ED(k) =
√

(ω(k)+µo)2 + |∆o|2

(5.12)
where V denotes the whole volume of space.
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5.1.2 Effective potential and the gap equation

As already pointed out in the previous chapter, the effective action (5.12) for
a homogeneous order parameter in the absence of external electromagnetic
fields corresponds to the Ginzburg-Landau free energy in the absence of the
gradients, that is precisely the effective potential Veff(∆o,µo) for the order pa-
rameter evaluated at its minimum. Differentiating (5.12) with respect to the
conjugate order parameter ∆†

o leads to the gap equation, whose solution pro-
vides the effective density of the rigid condensate of Copper pairs:

g
Z d3k

(2π)3

{
1

EB(k)
tanh

βEB(k)
2

+
1

ED(k)
tanh

βED(k)
2

}
= 1 . (5.13)

This reproduces the original BCS gap equation (1.20) with an additional term
for the positron sector as a consequence of the relativistic framework. In order
to perform a numerical analysis of these relations, the momentum integration
is converted into an energy integration. One must recall that the chemical
potential is identified as the Fermi energy. As in the usual BCS theory, the
domain of the integration is limited by considering that the energy range for
the order parameter is bounded by the Debye frequency above and below the
Fermi level, see (1.14). Hence we substitute

Z
(∞)

d3k
(2π)3 −→

Z
∞

m

dω

2π2 ω

√
ω2−m2 , ω

2 = k2 +m2

−→ N(0)
2

Z
ξD

−ξD

dξ , ξ = ω−ωF (5.14)

where we factorised the number of available energy states at the Fermi level
N(0) = kF ωF/π2, since the range over which the integration is running is by far
much smaller than the Fermi energy, namely ξD = 0.037 eV and
ωF = 511.012 keV for the case of aluminum (see Appendix B). These orders
of magnitude also give some information about the relative importance of the
different terms in (5.12) and (5.13): in particular, it turns out that the positron
sector (that is, the terms with energy ED) constitutes a negligible relativistic
correction and may be ignored to a very good approximation throughout the
numerical analysis. Substituting the change of integration variable and taking
these simplifications into account provides the following effective potential per
unit volume

Veff =
1

2g
|∆o|2−

N(0)
2

Z
ξc

−ξc

dξ

√
ξ2 + |∆o|2−

N(0)
β

Z
ξc

−ξc

dξ ln
[
1+ e−β

√
ξ2+|∆o|2

]
(5.15)
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as well as the gap equation

1
2

Z
ξc

−ξc

dξ

{ 1√
ξ2 + |∆o|2

tanh
β

2

√
ξ2 + |∆o|2

}
=

1
gN(0)

. (5.16)

In the previous relation, there appears the BCS coupling constant gN(0) which
is a standard feature for superconducting materials: numerical values for com-
mon substances are provided in Tab. 1.1 of Chapter 1. In the following, we
shall restrict the discussion to weakly coupled materials, with a coupling con-
stant between 0.18 and 0.39. Eliashberg developed a specific approach for the
study of strongly coupled superconductors by which he identified some cor-
rections to the gap energy [84]; the case of such materials will not be addressed
here but could constitute an interesting extension of the present model.

The critical temperature and the maximal gap

In the limit of vanishing temperature β → ∞, hyperbolic tangents tend to the
unit value and the solution to the gap equation provides the maximal value of
the gap

|∆o(0)|= ξc

sinh
(

1
gN(0)− ξc

2ωF
tanh(β|ωF |)

) ∼ ξc

sinh
(

1
gN(0)

) . (5.17)

On the other hand, the critical temperature is inferred from the limit case at
which the gap is completely closed: using the approximation [13]

Z
α/2

0

dx
x

tanhx ' ln
(

α
2eγ

π

)
, γ = 0.577 . . . (Euler’s constant)

valid for α = βcξc & 5, we obtain

β
−1
c = kTc =

2eγ

π
ξce−1/gN(0) . (5.18)

Finally, combining (5.17) and (5.18) yields

|∆o(0)|= πe−γ

βc

1
1− e−2/gN(0) . (5.19)

Again, these values coincide with those of the usual non-relativistic BCS the-
ory, since the positron contributions constitute perfectly negligible corrections
that have been ignored.
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Analytic approximations

The shape of the effective potential as a function of the order parameter and
the temperature dependence of the gap equation are obtained by numerical
integration of the two relations. We consider only the dimensionless gN(0)
external parameter as the sole input in our analysis, from which we calculate
the critical temperature in our system of units using (5.18). The maximal gap
∆o(0) is also evaluated, and then numerical integration of the effective poten-
tial is performed at a given temperature such that 0 < T/Tc < 1, for a whole
range of values of the gap parameter ∆o in the vicinity of this maximal value.
The curves on the following graphs display the modified potential

g
ξ2

c
V (x) ≡ F(x) (5.20)

=
1
2

x2−gN(0)
Z 1

0
du
{√

u2 + x2 +
2

βξc
ln
[

1+ e−βξc
√

u2+x2
]}

as a function of the rescaled gap parameter x = |∆o|/ξc; the integration is per-
formed over u = ξ/ξc and the value of the temperature is taken as a fraction
τT = T/Tc of the critical temperature

(βξc)−1 = τT (βcξc)−1 = τT
kBTc

ξc
= τT

2eγ

π
e−1/gN(0) 0≤ τT ≤ 1 . (5.21)

The effective potential is recovered simply by multiplying this expression by
a scaling factor, up to an arbitrary constant shift Vo. As expected, there exists
a minimum value of the potential for a finite value of x: this suggests to com-
pare this effective potential with the fourth order polynomial of the original
Ginzburg-Landau theory. By requiring identical values at zero density F(0)
and at the minimum F(xo), the GL approximation is given by

G1(x) = F(xo)+ [F(0)−F(xo)]
(

x2

x2
o
−1
)2

. (5.22)

As expected from the GL theory, this quartic formula matches fairly well the
effective potential close to the critical temperature and around the equilibrium
value of the order parameter; it is however a rather poor approximation for
the analysis of fluctuations with a significant amplitude or in a temperature
range distant from the transition point.

An alternative analytic approximation to the integral representation (5.20)
may be proposed using

G2(x) = F(xo)+ [F(0)−F(xo)]
(

ln(x2
o +λx2

o)− ln(x2 +λx2
o)

ln(x2
o +λx2

o)− ln(λx2
o)

)2

(5.23)
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Figure 5.1: Rescaled effective potential (solid line) and ∆4 approximation (dashed
line) as a function of the order parameter for different values of the reduced tem-
perature. The quantities V and ∆ are given in arbitrary units.

where λ should be obtained by evaluating first and second derivatives of the
potential as well in order to match the curves not only at the origin and the
minimum value x = xo, but also for the inflection point between them. Practi-
cally, this expression has been evaluated numerically with a range of plausible
values for λ and then the best approximation in the sense of a least square fit
has been kept. Reproducing the analysis for coupling parameters gN(0) = 0.18
and gN(0) = 0.39 in order to account for all Type I superconductors, it turns
out that the parameter λ corresponding to the best fit of the potential admits
an exponential temperature dependence

λ = 0.4 e4T/Tc . (5.24)

As shown in Fig. 5.2, the logarithmic function with this phenomenological
parameter provides a better approximation than the fourth order polynomial
for a much larger domain of order parameters x and for all temperatures below
the critical transition.
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Figure 5.2: Rescaled effective potential (solid line) and logarithmic approxima-
tion (dotted line) as a function of the order parameter for different values of the
reduced temperature. The ∆4 approximation has also been displayed (dashed
line) to show the increased precision using the logarithmic analytic approxima-
tion. The quantities V and ∆ are given in arbitrary units.

Finally, we tried to write even better power approximations by considering
possible polynomial exponents. We used the approximating function

G3(x) = F(xo)+ [F(0)−F(xo)]

1−


[
1+ γ

x2

x2
o

]α

−1

[1+ γ]α−1


2 (5.25)

with optimal values for the coefficients α and γ given by the temperature-
dependent polynomial expressions

α = 0.71−0.6 T
Tc

+
(

T
Tc

)2
−1.3

(
T
Tc

)3
+1.1

(
T
Tc

)4

γ =
1

4
(

T
Tc

)2
−0.25

(
T
Tc

) (5.26)
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chosen to obtain the best fit for coupling constants gN(0) again within the in-
terval 0.18 to 0.39. Fig. 5.3 shows the effective potential and all approximations
at half the critical temperature, so that one clearly notices the gain in precision
in the successive analytic approximations. The relative improvement between
all models is identical at all temperatures.
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Veff  

(a.u.)   

∆ (a.u.) 

Figure 5.3: Rescaled effective potential (solid line), ∆4 approximation (dashed
line), logarithmic approximation (dash-dotted line) and approximation with ra-
tional exponents (dotted line) for T/Tc = 0.5 only. V and ∆ are given in arbitrary
units. Zoomed portion of the inset shows improvement of successive approxima-
tions.

This is actually the main result of this section: by considering the case
of a homogeneous order parameter in the absence of any external electro-
magnetic field, it has been shown that the contribution of the positrons pro-
vides a negligible relativistic correction to the usual BCS gap equation, as
should be expected. Furthermore, under these hypotheses, the effective action
may be identified as the effective potential for the electron pairs. It is deter-
mined through an integral expression that can be evaluated numerically, and
then approximated by several analytic functions. The fourth order polyno-
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mial corresponding to the Ginzburg-Landau potential reproduces the condi-
tions in which the GL theory is valid, namely close to the critical temperature
and within small fluctuations of the order parameter; alternative power-like
approximations are proposed, which give analytic expressions for the effec-
tive potential at all temperatures between 0 and Tc and which remain close
to the integral expression even for large fluctuations (that is, significantly
different from the order parameter value minimising the potential). In that
sense, these approximations are definitely an improvement over the usual
Ginzburg-Landau functional for the practical study of superconductivity away
from equilibrium.

It would be interesting to consider, for example, what such improved an-
alytic approximations to the effective potential entail for the order parameter
radial profile of Abrikosov vortices, and more generally giant vortices and
vortex arrays, as well as their stability as a function of the Ginzburg-Landau
parameter.

5.2 First order effective action

We now turn to the first order correction in the expansion of the effective ac-
tion in (4.53)

S(1)
eff =− 1

2β
Tr S−1

o ∆S . (5.27)

In general, we have

Tr S−1
o ∆S =

Z
d4x

Z
d4y tr S−1

o (x,y)∆S(y,x)

=
Z

d4x
Z

d4y
(Z d4k

Vk
e−ik(x−y)tr S−1

o (k)
)(

δ
(4)(y− x)∆S(x)

)
=

Z
d4x

Z d4k
Vk

tr S−1
o (k)∆S(x) (5.28)

where the small trace notation stands for the usual matrix trace over the diag-
onal elements of the 8×8 matrices, and Vk represents an elementary volume in
k-space. Since the imaginary time x0 = τ is (anti-)periodic over a period [0,β],
the zeroth component of the Fourier transform runs over discrete Matsubara
frequencies, with even frequencies ωn = 2nπ/β for bosons with periodic condi-
tion in imaginary time and odd frequencies ωn = (2n+1)π/β for fermions with
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antiperiodic boundary conditions in τ. Consequently, we write in general

Tr S−1
o ∆S =

Z
β

0
dτ

Z
d3x

1
β

∑
n

Z d3k
(2π)3 tr S−1

o (iωn,k)∆S(x) . (5.29)

In the present analysis, the homogeneous static part So is given by (5.3)
and the deviations from this situation are contained into

∆S(x) =

 −µ(x)γ0− eAp(x) · γγγ ∆(x)γ5

−∆
†(x)γ5 µ(x)γ0 + eAp(x) · γγγ

 (5.30)

with
µ(x) = µec(x)−µo =−eA0

p(x)
∆(x) = ∆p(x)−∆o

(5.31)

where the subscripts p refer to the physical fields after the transformation per-
formed for a gauge invariant split. In order to simplify the notations, this
subscript will be omitted until the end of the analysis.

5.2.1 Correlation functions

As already mentioned, the inverse operator S−1
o is the Green’s function of the

differential operator So and can be obtained by evaluating the time-ordered
correlation functions 〈T ψi(x1,τ1)ψ j(x2,τ2)〉β for all combinations of the fields
and their charge conjugates. Hence in principle, it may contain an explicit
dependence in the imaginary time and we denote most generally

S−1
o (x1,τ1;x2,τ2) =


〈

ψ(τ1,x1) ψ(τ2x2)
〉

β

〈
ψ(τ1,x1) ψc(τ2x2)

〉
β〈

ψc(τ1,x1) ψ(τ2x2)
〉

β

〈
ψc(τ1,x1) ψc(τ2x2)

〉
β

 , τ1 > τ2 .

(5.32)
To include the imaginary time dependence in the fields, they are provided in
the Heisenberg picture

ψH(x,τ) = eiHoτ
ψS(x)e−iHoτ. (5.33)

If the fields are expressed in terms of the Bogoliubov operators B(k,s), D(k,s)
and their conjugates, the correlators

〈T ψi(x1,τ1)ψ j(x2,τ2)〉β =
Tr
[
T ψi(x1,τ1)ψ j(x2,τ2) e−βHo

]
Tr e−βHo

(5.34)
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are immediately computed and further converted into the Matsubara corre-
lators; the detailed calculations are presented in Appendix E, which finally
yields the inverse operator

S−1
o (x1,τ1;x2,τ2)=

1
β

∑
n

Z d3k
(2π)3 e−iωn∆τ+ik·∆x 1

a2−4µ2
oω2 ∗

(5.35)

∗



[2µoω2−a(µo− iωn)]γo
∆oγ5[2µo(k.γγγ+m)γo−a]

+[2µo(µo− iωn)−a](k.γγγ−m)

∆†
oγ5[2µo(k.γγγ+m)γo +a] [a(µo + iωn)−2µoω2]γo

+[2µo(µo + iωn)−a](k.γγγ−m)


with a = ω2 +µ2

o + |∆o|2 +ω2
n. It is easy to verify that this is indeed the Green’s

function of the differential operator So (see Appendix E).

Once the propagator is known, the first order expansion of the effective
action is easily computed: stationary configurations at equilibrium are consid-
ered, hence the matrix containing inhomogeneities does not depend on time
and the τ integration can be readily performed, cancelling the factor 1/β from
the Matsubara propagator. Using the standard properties of the γi matrices
under the trace operation leads to the following first-order correction:

Seff = − 1
2β

Z
d3x

Z d3k
(2π)3 ∑

n
∗

∗ 4
a2−4µ2

oω2

{
2µoµ(x)

(
a−2ω

2
)

+a
(

∆o∆
†(x)+∆

†
o∆(x)

)}
.(5.36)

At this point we need to evaluate the sum over the Matsubara frequencies.

5.2.2 Sum over Matsubara frequencies

Perturbative calculations in Thermal Field Theory often require the evaluation
of infinite sums

∑
n

M(iωn)

with even Matsubara frequencies iωn = 2nπ/β in the case of bosonic fields and
odd frequencies iωn = (2n + 1)π/β for fermionic fields. There is a standard
method for evaluating these sums, which consists in converting the sum into
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a contour integral over the imaginary axis [69, 85]. Let fβ(k0) be a function
with simple poles of residues unity at k0 = iωn; if the function M(iωn) has no
singularity along the imaginary axis, then we may multiply it by fβ(k0) and
convert the Matsubara sum into a contour integral in the complex plane

∑
n

M(iωn) =
I

C

dk0

2πi
M(k0) fβ(k

0) (5.37)

where the contour C encloses all frequencies on the imaginary axis (Fig. 5.4-a).
If the product M(k0) fβ(k0) falls off sufficiently fast to zero at infinity, the con-
tour may be deformed towards the two infinite loops C1 and C2 (Fig. 5.4-c),
which have been reversed to consider the appropriate orientation for the con-
tour integration. Generally, one chooses fβ(k0) = β

2 tanh βk0

2 for fermionic Mat-

subara frequencies and the corresponding coth βk0

2 when working with bosons.
Hence in the present case, Matsubara sums are evaluated according to

∑
n

M(iωn) = −β

2

I
C1∪C2

dk0

2πi
M(k0) tanh

βk0

2
. (5.38)

Figure 5.4: Step-by-step deformation of the contour integration in the evaluation
of Matsubara sums. (a) The sum over the residues of a function along the imag-
inary axis (here we consider a fermion field with odd frequencies) corresponds
to an integration around a contour that encloses every pole individually; (b) this
contour can be deformed to run along the imaginary axis on either side; (c) if the
function vanishes at the infinity, the contours can be closed and reversed so to end
with C1 and C2.
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The advantage of this analysis becomes clear when the original function
M(iωn) has poles located somewhere inside the contours C1 and C2: in that
case, the contour integrations are further transformed into sums over those
poles and we are left with the final expression to be computed:

∑
n

M(iωn) = −β

2 ∑
poles o f M(k0)

Res[M(k0) tanh
βk0

2
]. (5.39)

All terms in (5.36) involving Matsubara frequencies may be re-expressed in
terms of several functions having poles at the quasiparticles energies±EB and
±ED from (5.12); performing the summations, the first order effective action is
finally shown to be

S(1)
eff =

Z
d3x

Z d3k
(2π)3 × (5.40){

µ(x)
[ (µo−ω)

EB
tanh(

1
2

βEB)− (µo +ω)
ED

tanh(
1
2

βED)
]

−1
2

(
∆o∆

†(x)+∆
†
o∆(x)

)[ 1
EB

tanh(
1
2

βEB)+
1

ED
tanh(

1
2

βED)
]}

.

We observe that this expression is nothing but the first term of the series ex-
pansion of the lowest order effective action (5.3) around the homogeneous
order parameter ∆o and the constant chemical potential µo:

S(1)
eff =

Z
d3x

Z d3k
(2π)3 × (5.41){

(µ−µo)
∂

∂µ

[
[2ω−EB−ED]− 2

β
ln
[
1+ e−βEB

]
− 2

β
ln
[
1+ e−βED

]]
µ=µo

+(∆−∆o)
∂

∂∆

[
. . .

]
∆=∆o

+(∆†−∆
†
o)

∂

∂∆†

[
. . .

]
∆†=∆

†
o

}
.

In consequence, the first order effective action extends the expression of the
effective potential so that the order parameter and the electrochemical poten-
tial may now contain some space inhomogeneities; likewise, higher orders in
the expansion of the effective action shall contribute to the other terms of the
series expansion of the effective potential.
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5.3 Second order effective action

5.3.1 Preparing the analysis of the effective action

Anticipating the analysis of the second order expansion of the effective action,
we first consider the generalised Ginzburg-Landau free energy functional in
the form

F =
Z

d3x
{

f (∆,µ)|(∇∇∇− iqA)∆|2 +Veff(∆,µ)+g(∆,µ)|∇∇∇µ|2 +h(∆,µ)|B|2
}

.

(5.42)
In particular, we search for the specific form of the f (∆,µ) parameter which
affects the squared gradient of the pair density, and the contributions to the
electric and magnetic sectors in the parameters g(∆,µ) and h(∆,µ) respectively.
For reasons that will become clear somewhat later, there is no need to provide
the magnetic term as the curl of the vector potential. One further assumes that
the pair density and the electrochemical potential may both be separated into
a homogeneous part and some fluctuations, namely ∆ = ∆o +∆ and µ = µo +µ.
Introducing the Fourier transform of these two functions, we get, to lowest
order in the fluctuations:

Z
d3x f (∆,µ)|∇∇∇∆|2 −→

Z d3k
(2π)3 f (∆o,µo) |k|2∆

†(k)∆(k)

Z
d3x g(∆,µ)|∇∇∇µ|2 −→

Z d3k
(2π)3 g(∆o,µo) |k|2µ(−k)µ(k) . (5.43)

On the other hand, we consider the second order corrections to the effec-
tive action given in terms of the Matsubara propagator S−1

o (iωn,k) calculated
in the previous section, and the matrix containing variations of the fields ∆S .
Actually, the analysis may be restricted to the terms with squared ∆, µ and
A; other terms either contribute to the expansion of the effective potential,
or they contain some corrections to higher orders in the order parameter, its
fluctuations and those of the electromagnetic potentials, which should then be
completed by a perturbative expansion of the effective action to higher orders.
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We have

S(2)
eff =

1
4β

Tr [S−1
o ∆SS−1

o ∆S ]

=
1

4β

Z
d3x1d3x2

Z d3k1

(2π)3
d3k2

(2π)3 ∑
n

e−i(k1−k2)·(x2−x1) ×

tr ∆S(x1)S−1
o (iωn,k1)∆S(x2)S−1

o (iωn,k2)

(5.44)

=
1

4β

Z
d3x1d3x2

Z d3k1

(2π)3
d3k2

(2π)3 e−i(k1−k2)·(x1−x2) ×{
F∆∆(iωn,k1,k2)

[
∆

†(x1)∆(x2)+∆(x1)∆
†(x2)

]
+ Fµµ(iωn,k1,k2) µ(x1)µ(x2)

+ FAA(iωn,k1,k2) A(x1) ·A(x2)

+ FkA(iωn,k1,k2)
[
A(x1) ·k1A(x2) ·k2 +A(x1) ·k2A(x2) ·k1

]
+ irrelevant terms . . .

}
.

The exact content of the coefficients F� � is not important for the present discus-
sion. It is easy to see that the Fourier components of ∆, µ and A depend only
on the momentum difference k2 − k1. Hence, in order to compare with the
coefficients (5.43) which have a local form in momentum space, we provide a
series expansion of k1 and k2 around their average position, namely

k1 = K− k
2

, k2 = K+
k
2

. (5.45)

The coefficients (5.43) are then identified with specific terms of the series ex-
pansion of the corresponding terms in the effective action. The analogy be-
tween the contributions involving the order parameter is rendered more ap-
parent by noting that the exact form of the coefficient F∆∆ is not sensitive to
the exchange of the momentum vectors k1 � k2 ; we may therefore simplify

[∆†(k)∆(k)+∆(−k)∆†(−k)] F∆∆ = 2∆
†(k)∆(k) F∆∆.

The comparison between the electrochemical contributions is readily estab-
lished. Finally, one has to recall that the vector potential has been subjected to
a specific transformation to ensure gauge invariance of the corrections to the
effective action (Section 4.4), and is given explicitly by

A(x) =−1
2
(x−xo)×

Z 1

0
du B(xo +u(x−xo)) .
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This expression would obviously diverge if one considers the x-integration
over the whole space. However, for a superconducting sample with finite di-
mensions, this space integration is limited by some boundary condition and
the resulting vector potential is proportional to the magnetic field B. In con-
sequence, the terms of the effective action involving a squared power of A
should only be considered to the lowest level of the series expansion in order
to identify the magnetic correction.

In summary, the required parameters are given by

f (∆o,µo) =
2

4β

Z d3K
(2π)3 ∂k2 F∆∆|k=0

g(∆o,µo) =
1

4β

Z d3K
(2π)3 ∂k2 Fµµ

∣∣
k=0 (5.46)

h(∆o,µo) =
1

4β

Z d3K
(2π)3

[
FAA|k=0 +

2K2

3
FkA|k=0

]
where ∂k2 � |k=0 denotes the second order term of the series expansion in k
around K. To establish the last identity, we considered the isotropic depen-
dence of the effective action in momentum space, so that

Z
d3K F(|K|) KiK j = δ

i j
Z

d3K F(|K|) K2

3
. (5.47)

The complete scheme for the analysis of the second order corrections to the
effective action is to be performed as follows: starting with the second order
correction to the effective action expressed in matrix form, all terms involving
squared powers of the fluctuations are collected separately. Then, the summa-
tions over the Matsubara frequencies are computed using contour integrations
in the complex plane, as is the case for the first order corrections. Finally, the
coefficient affecting the squared gradient of the order parameter and the con-
tributions to the electric and magnetic energies are identified as specific terms
of the series expansion in momentum space of the corresponding terms.

5.4 Explicit calculation of the coefficients

Considering the explicit form of the operator matrices as well as the trace
properties of the Dirac matrices γ i , we identify the relevant coefficients F� �

and perform the Matsubara summations: it turns out that these coefficients
take then a very concise form. Anticipating the substitution k1,k2 → k,K and
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subsequent series expansion in k around K, we introduce the following nota-
tion:

k2
i = K2 +λ k ·K+

k2

4
,

{
λ =−1⇔ i = 1
λ = +1⇔ i = 2

(5.48)

and

Eα

λ
=
√

(ωλ +αµo)2 + |∆o|2 ,

{
α =−1⇔ Eα

λ
= EB(ki)

α = +1⇔ Eα

λ
= ED(ki)

(5.49)

Hence λ = ±1 is associated to the location of the corrections in momentum
space, and α =∓1 discriminates between electron and positron contributions
respectively. With these notations, we have

F∆∆ = β ∑
α=±1

∑
λ=±1

ωλ +αµo

ωλ

1
Eα

λ

tanh
βEα

λ

2

[
kλ · (k−λ−kλ)−2αµoωλ

(ωλ +2αµo)2−ω2
−λ

]

Fµµ = 2β ∑
α=±1

∑
λ=±1

ωλ +αµo

ωλ

1
Eα

λ

tanh
βEα

λ

2

[
kλ · (k−λ +kλ)+2m2

ω2
−λ
−ω2

λ

]
(5.50)

FAA = 2e2
β ∑

α=±1
∑

λ=±1

ωλ +αµo

ωλ

1
Eα

λ

tanh
βEα

λ

2

[
ω2

λ
− (kλ ·k−λ +m2)

ω2
λ
−ω2

−λ

]

FkA = 2e2
β ∑

α=±1
∑

λ=±1

ωλ +αµo

ωλ

1
Eα

λ

tanh
βEα

λ

2

[
1

ω2
λ
−ω2

−λ

]
.

Then the series expansions in k around K are performed for all the terms.
The second order is considered only for the coefficients affecting squared ∆

and µ, and the lowest order for the coefficient of the squared vector potential.
Defining

ω =
√

K2 +m2

Eα =
√

(ω+αµo)2 + |∆o|2 (5.51)

rα =
ω+αµo

ω

tα = tanh
βEα

2
,
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we are left with

f (∆,µ) =
Z d3K

(2π)3 ∑
α=±1

{
1

8rα

[
1+

2K2

3ω2

]
Cα

1 +
K2

6rα

Cα
2

− 1
Eα

tα
1

8αµoω

[
1+

µ2
o

2ω2rα

][
1− K2

3ω2

]}

g(∆,µ) =
Z d3K

(2π)3 ∑
α=±1

{
ω2

2

[
Cα

2 +
2K2

3
Cα

3

]
+

1
8

[
Cα

1 +
4K2

3
Cα

2

]}
(5.52)

h(∆,µ) =
Z d3K

(2π)3 ∑
α=±1

{
−α(µ2

o +αµoω)
2K2 +3m2

6ω3Eα

tα−
K2

6ω2
β

2
(1− t2

α)

}

with

Cα
1 =

[
αµo

2ω3Eα

+
r2

α

2E3
α

]
tα−

r2
α

2E2
α

β

2
(1− t2

α)

Cα
2 =

[
− 3αµo

8ω5Eα

− 3rααµo

8ω3E3
α

− 3r3
α

8E5
α

]
tα

+
[

3rααµo

8ω3E2
α

+
3r3

α

8E4
α

]
β

2
(1− t2

α)

+
3βr3

α

8E3
α

β

2
(1− t2

α) tα (5.53)

Cα
3 =

[
5αµo

16ω7Eα

+
µ2

o

16ω6E3
α

+
rααµo

4ω5E3
α

+
3r2

ααµo

8ω3E5
α

+
5r4

α

16E7
α

]
tα

−
[

µ2
o

16ω6E2
α

+
rααµo

4ω5E2
α

+
3r2

ααµo

8ω3E4
α

+
5r4

α

16E6
α

]
β

2
(1− t2

α)

− β

8

[
αµor2

α

ω3E3
α

+
r4

α

E5
α

]
β

2
(1− t2

α) tα

− β2

48
r4

α

E4
α

β

2
(1− t2

α) t2
α

+
βr4

α

48E4
α

[
β

2
(1− t2

α)
]2

.
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Once these terms are identified, one provides an expression of the effec-
tive action which may be compared to the Ginzburg-Landau free energy func-
tional. In particular, it is possible to identify the penetration lengths for the
electric and the magnetic fields inside a superconducting sample. These two
characteristic length scales should answer the question of the electric and
magnetic screenings and explain the results of the experiment described in
Chapter 3. This very point is the topic addressed in the last chapter.





6
Relativistic BCS theory

III. Electric and magnetic screenings

6.1 The results so far

6.1.1 The effective potential

In the previous chapter, the following expression was identified as the effec-
tive potential:

S(0)
eff =

Z
d3x

{
1

2g
|∆|2 +

Z d3k
(2π)3 ∑

α=±1

[
ω(k)−Eα(k)− 2

β
ln
(

1+ e−βEα(k)
)]}

.

(6.1)
Indeed, this has been obtained from the exact evaluation of the partition func-
tion in the particular case of a superconducting sample with a homogeneous
density of Cooper pairs, in the absence of external electromagnetic fields. The
analysis of the first order corrections to the effective action then showed that
the homogeneous effective potential could be extended to the more general
case considering an order parameter with possible fluctuations around the
homogeneous value ∆(x) = ∆o + ∆(x) and variations of the electromagnetic
potential. In particular, the chemical potential must be replaced by the elec-
trochemical potential µec(x) = µo− eA0(x).
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The general form of the energy in (5.12) is therefore

E2
α = (ω+αµ)2 + |∆|2

= (ω+α(µo− eA0))
2 + |∆o +∆|2

= E2
α−2αeA0(ω+αµo)+(eA0)2 , E2

α = (ω+αµo)2 + |∆o|2 (6.2)

ignoring the fluctuations of the order parameter. This allows for an expansion
of the effective potential which renders explicit the dependence in the electro-
static potential:

S(0)
eff =

Z
d3x

{
1

2g
|∆|2 +

Z d3k
(2π)3 ∑

α=±1

[
ω−Eα−

2
β

ln
(

1+ e−βEα

)]}

+
Z

d3x eA0

Z d3k
(2π)3 ∑

α=±1
α

ω+αµo

Eα

tα (6.3)

+
Z

d3x
1
2
(eA0)2

Z d3k
(2π)3 ∑

α=±1

[
−|∆

2
o|

E3
α

tα−
(ω+αµo)2

E2
α

β

2
(1− tα)

]

where Eα must now be understood to stand for the value of the energy con-
sidering the chemical potential only: Eα =

√
(ω+αµo)2 + |∆o|2 ; as previously,

we used the shortened notation tα = tanh(βEα/2). This constitutes the major
feature of the present work: to the best of our knowledge, the fluctuations of
the effective potential in the electrostatic potential have never been studied
before: even in the work by Koláček et al [42, 86], the electrostatic potential
inside a superconducting material is considered without taking into account
possible contributions coming from the superconducting potential. This how-
ever explains in a very natural way how the electric field is prevented from
entering a superconductor, as it will be shown in the next section.

6.1.2 The quadratic contributions

From the analysis of the second order corrections, one identified the following
contributions:
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S(2)
eff =

Z
d3x |(∇∇∇−2ieA)∆|2

Z d3k
(2π)3 ×

∑
α=±1

{
− 1

8αµoω

(
1− k2

3ω2

)
1

Eα

tα

+
1

E2
α

[
rα

16
+

k2

24ω2

(
1− αµo

2ω
− 3r2

αω2

2E2
α

)][
tα
Eα

− β

2
(1− t2

α)
]

+
β2k2

96E3
α

r2
α tα(1− t2

α)

}
(6.4)

+
Z

d3x
1
2
(−∇∇∇eA0)2

Z d3k
(2π)3 ∑

α=±1

{[Cα
1

4
+ω

2Cα
2

]
+

k2

3

[
Cα

2 +2ω
2Cα

3

]}

+
Z

d3x (eA)2
Z d3k

(2π)3 ∑
α=±1

{
− 2k2 +3m2

6αµoω3 (µ2
o +αµoω)

tα
Eα

− k2

6ω2
β

2
(1− t2

α)

}

where the expression affecting the covariant gradient has been written in a
somewhat different form compared to (5.52), in order to remove the apparent
singularities 1/rα at the Fermi level. The meaning of all coefficients is given in
the previous chapter.

6.1.3 The electromagnetic contribution

The question of the contribution of electromagnetic field to the effective action
has not been addressed so far. This is done by identifying the hamiltonian den-
sity which corresponds to the free electromagnetic lagrangian Lem =− 1

4 FµνFµν,
Fµν = ∂µAν−∂νAµ. It yields the following contribution [87]:

S(tot)
eff =

Z
d3x
{1

2
E2 +

1
2

B2−A0(∇∇∇ ·E−ρtot)
}

=
Z

d3x
{1

2
(E+∇∇∇A0)2 +

1
2

B2− 1
2
(∇∇∇A0)2 +A0ρtot

}
(6.5)

where ρtot represents the total charge density as it appears in Maxwell’s equa-
tions, including not only the conduction electrons, but also the valence elec-
trons and the charge of the ion lattice. In the following, we shall operate the
distinction between the conduction electrons, to which the analysis of the ef-
fective action refers, and the remaining “static” charges that will be included
in ρlattice.
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6.1.4 The complete effective action

We now possess all the ingredients to establish the complete effective action
to second order in the fluctuations of the electromagnetic field and the or-
der parameter. One must recall that the effective action has been obtained
in a completely general case by writing the general lagrangian density for
a system of free electrons with a specific attractive coupling: hence no dis-
tinction has been operated to isolate normal electrons from those which take
part in the superconducting condensate. This fact is mathematically trans-
lated by the fact that integral expressions cover the whole momentum space
−∞≤ k≤∞, or equivalently, the whole energy domain starting from the mass
energy me ≤ ω ≤ ∞. The manifestation of superconductivity is the appear-
ance of an energy gap ∆(k) which modifies the energy spectrum in a range
[−ωD,ωD] around the Fermi level EF below the critical temperature. One
may therefore separate this small interval from the remaining energy domain,
where the gap is never present: one may write

Seff =
Z

d3x Leff

with

Leff =
Z

∞

me

dω L[ω,∆] =
Z

∞−2ωD

dω L[ω,∆ = 0]+
Z

ωF +ωD

ωF−ωD

dω L[ω,∆]

where “∞−2ωD” stands for the whole energy domain minus the small interval
of width 2ωD around the Fermi energy. The contribution of L[ω,∆ = 0] on this
small integral may be added and then subtracted to close the whole energy
domain and we have

Leff =
Z

∞

me

dω L[ω,∆ = 0]︸ ︷︷ ︸
(n)

+
Z

ωF +ωD

ωF−ωD

dω [L[ω,∆]−L[ω,∆ = 0]]︸ ︷︷ ︸
(s)

. (6.6)
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In the previous expression, a distinction has been operated between the con-
tribution in the normal state and the remaining part which is non-vanishing
only below the critical temperature, hence associated specifically to the super-
conducting state. In terms of the previous results, we separate

Seff =
Z

d3x Leff =
Z

d3x [L(n)
eff +L(s)

eff ] ,

with

L(n)
eff =

Z d3k
(2π)3 ∑

α

[
ω−|ω+αµo|−

2
β

ln
(

1+ e−β|ω+αµo|
)]

+eA0

Z d3k
(2π)3 ∑

α

α
ω+αµo

|ω+αµo|
tanh

β|ω+αµo|
2

+A0ρlattice (6.7)

+
1
2
(eA0)2

Z d3k
(2π)3 ∑

α

{
−β

2
(1− tanh2 β|ω+αµo|

2
)
}

+
1
2
(∇∇∇eA0)2

Z d3k
(2π)3 ∑

α

{[Cα
1

4
+ω

2Cα
2

]
+

k2

3

[
Cα

2 +2ω
2Cα

3

]}
∆=0

− 1
2
(∇∇∇A0)2

+(eA)2
Z d3k

(2π)3 ∑
α

{
−2k2 +3m2

6αµoω3 (µ2
o +αµoω)

1
|ω+αµo|

tanh
β|ω+αµo|

2

− k2

6ω2
β

2
(1− tanh2 β|ω+αµo|

2
)
}

+
1
2

B2

and
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L(s)
eff =

1
2g
|∆|2 +

Z
ξD

d3k
(2π)3 ∑

α

{
−Eα−

2
β

ln
(

1+ e−βEα

)
+|ω+αµo|+

2
β

ln
(

1+ e−β|ω+αµo|
)}

+eA0

Z
ξD

d3k
(2π)3 ∑

α

{
α

ω+αµo

Eα

tanh
βEα

2
−α

ω+αµo

|ω+αµo|
tanh

β|ω+αµo|
2

}

+
1
2
(eA0)2

Z
ξD

d3k
(2π)3 ∑

α

{
− |∆|2

E3
α

tanh
βEα

2
− (ω+αµo)2

E2
α

β

2
(1− tanh2 βEα

2
)

+
β

2
(1− tanh2 |ω+αµo|

2
)

}

+
1
2
(∇∇∇eA0)2

Z
ξD

d3k
(2π)3 ∑

α

{[Cα
1

4
+ω

2Cα
2

]
+

k2

3

[
Cα

2 +2ω
2Cα

3

]
−
([

�
]
+
[
�
])

∆=0

}

+(eA)2
Z

ξD

d3k
(2π)3 ∑

α

{
−

[
2k2 +3m2

6αµoω3 (µ2
o +αµoω)

1
Eα

tanh
βEα

2

+
k2

6ω2
β

2
(1− tanh2 βEα

2
)

]
+

[
�

]
∆=0

}

+|(∇∇∇−2ieA)∆|2
Z

ξD

d3k
(2π)3 ∑

α

{
− 1

8αµoω

(
1− k2

3ω2

)
1

Eα

tα

+
1

E2
α

[
rα

16
+

k2

24ω2

(
1− αµo

2ω
− 3r2

αω2

2E2
α

)][
tα
Eα

− β

2
(1− t2

α)
]

+
β2k2

96E3
α

r2
α tα(1− t2

α)

}
(6.8)

where integrals with a “bare” symbol run over the whole possible spectrum
and those with a subscript ξD, once turned into an energy integration, are re-
stricted to the small domain around the Fermi level bounded by the Debye
energy. Considering the above equations, one may collect the contributions
to the energy of the electromagnetic field in (6.7) and (6.8), and denote them
as |E|2 1

2 (1 + εe) and |B|2 1
2 (1 + εm), with εe and εm being the integral expres-

sions affecting (∇∇∇eA0)2 and (eA)2 respectively. However, performing a nume-
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rical analysis of the integrals1 shows that they do not contribute significantly
(εe ∼ 10−7 and εm ∼ 10−9 respectively, hence negligible against unity) and may
therefore be omitted. However, the remaining parts of the lagrangian density
are sufficient to explain why the experiment did not show any dependence in
the external electric field.

6.2 Electric and magnetic penetration lengths

In order to identify the relevant characteristic lengths, the complete lagrangian
density is reformulated through a simplified expression

L = f |(∇∇∇−2ieA)∆|2 +A0ρtot−
1
2

g A2
0−

1
2
(∇∇∇A0)2 +

1
2
(∇∇∇×A)2 (6.9)

where f and g are numerical coefficients that may be calculated using the cor-
responding integrated expressions in (6.7) and (6.8); it is important to keep in
mind the fact that they both depend on the temperature and the chemical po-
tential. Infinitesimal variations of the lagrangian density with respect to the
fields provide the Euler-Lagrange equations of motion; in the London limit
(∆ constant) and considering the Coulomb gauge (∇∇∇ ·A = 0), these equations
for the electromagnetic field take the form

∇∇∇
2(A0)−g (A0)+ρtot = 0 ,

−∇∇∇
2× (A)+8e2|∆|2 f A = 0 .

(6.10)

For an electrically neutral sample, the total charge is zero and both equations
have the same structure, which leads naturally to the identification of the elec-
tric and magnetic penetration lengths. This is manifest when considering the
case which was studied experimentally (Chapter 3), namely an infinite slab of
thickness 2a in crossed stationary electric and magnetic fields. According to
the axes system depicted in Fig. 6.1, the field configuration is

E = E(x)x̂ , E(x) =− dA0
dx ,

B = B(x)ŷ , B(x) =− dAz
dx .

(6.11)

1One should take care of the choice of an appropriate cutoff for the evaluation of the integrals
running over the whole momentum domain in the so-called normal effective lagrangian density;
this question is also addressed for the evaluation of the characteristic lengths and shall be detailed
in the next section.
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Figure 6.1: Infinite superconducting slab in crossed stationary electric and mag-
netic fields, as considered in Fig. 2.2.

For this particular configuration, the system (6.10) for a neutral sample
becomes

d2A0

dx2 −g A0 = 0 ,

−d2Az

dx2 +8e2|∆|2 f Az = 0 ,

(6.12)

from which we infer an exponential decay of the electric and the magnetic
fields inside the sample, over characteristic lengths λe and λm respectively
given by

1
λ2

e
= g ,

1
λ2

m
= 8e2|∆|2 f . (6.13)

In terms of the relevant integral coefficients in L(n)
eff and L(s)

eff , ignoring the cor-
rections to the electric and magnetic gradients, numerically shown to be neg-
ligible, the explicit relations defining the penetration lengths are finally:
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(6.14)
These two relations constitute the central theoretical result of the present work.
One also identifies the electric charge as the terms which couple to the electro-
static potential A0 in (6.7) and (6.8):

ρtot = ρlattice + e
Z d3k

(2π)3 ∑
α

α
ω+αµo

|ω+αµo|
tanh |ω+αµo| (6.15)

+ e
Z

ξD

d3k
(2π)3 ∑

α

{
α

ω+αµo

Eα

tanh
βEα

2
−α

ω+αµo

|ω+αµo|
tanh |ω+αµo|

}
.

For practical purposes, one may have to regularise the possibly infinite inte-
gral in the expression of the electric penetration length, by choosing an appro-
priate cutoff so that the numerical integrations are possible without truncat-
ing the result. We first observe that the hyperbolic tangent rapidly tends to±1
outside a small domain such that its argument (ω+αµ)≈ 0. Consequently, the
function [1− tanh2 β(ω+αµ)

2 ] always vanishes for α = +1: we immediately con-
clude that positrons do not contribute significantly to this integral and may
be ignored. Only the electrons (α =−1) whose energies are close to the Fermi
level (x = ω−µo ≈ 0) shall therefore contribute. Then consider the integral

Z
∞

−∞

dx
[

1− tanh2 βx
2

]
=

Z
∞

−∞

dx
d
dx

[
2
β

tanh
βx
2

]
= 2∗ 2

β

to be compared to the integral of some rectangle function
Z

Λ

−Λ

dx = 2Λ .
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A reasonable approximation (see inset in Fig. 6.2 for the particular case
2/β = 1) of the integral is provided by the rectangle function with

Λ =
2
β

. (6.16)

On the other hand, the expression of the electric charge (6.15) also requires
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Figure 6.2: Numerical evaluation of the quantity β

2 (1− tanh2[β(ω− µo)/2]) to be
integrated for obtaining the Thomas-Fermi length of a neutral sample (µo = ωF ).
The value of β = 1/kBT corresponds to the room temperature. Inset: comparison
of the expression (1− tanh2 x) (solid line) with the rectangle function f (x) = 1,
−1≤ x≤ 1 (dashed line).

the study of the function α tanh β(ω+αµ)
2 . This function is essentially unity over

the whole domain when α = +1 and rapidly reaches a plateau at ±1 away
from the Fermi energy when α =−1, as shown in Fig. 6.3. The sign α affecting
the function is of crucial importance. The lower integral bound is defined by
the electron mass in either cases, and the upper bound may be chosen arbi-
trarily as long as the functions have reached their plateaus, since any addi-
tional contribution from the electrons when changing the cutoff Λ→ Λ+δΛ is
then balanced by an identical contribution of the positrons with opposite sign.
Hence, one is free of choosing a symmetrical interval around the Fermi level;
considering the Fermi kinetic energy KF = ωF −mc2 = ωF −me (c2 = 1), the
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interval [ωF −KF ,ωF + KF ] = [me,ωF + KF ] certainly covers the whole energy
domain over which the function takes non-trivial values and may be used for
the numerical evaluation of the unbounded integrations. Actually, this is by
far too much, as an interval delimited by a few times the Debye energy, which
is much smaller than KF , would be sufficient2. However, the domain over
which the hyperbolic tangent is non-trivial broadens when temperature is de-
creased and KF constitutes then a natural choice for the limit over which the
function certainly vanishes at any temperature.
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Figure 6.3: Numerical evaluation of the quantities (− tanh[β(ω− µo)/2]) (solid
curve) and (tanh[β(ω + µo)/2]) (dashed curve) for a neutral sample (µo = ωF ) at
room temperature.

6.2.1 The Thomas-Fermi length

Above the critical temperature, one considers normal electrons only and λe

should in principle reproduce the usual Thomas-Fermi length, which describes
how the electrostatic potential is screened by the free electrons in metals [82].
For most common metals, the Thomas-Fermi length λT F does not exceed a few
angstroms. From the electric penetration length in (6.14), the electric screening

2It is useful to keep the orders of magnitudes in mind for all these quantities: for aluminum,
EF = 511.012 keV, KF = 11.65 eV and ωD = 0.037 eV.
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above the critical temperature is given by

1
λ2

T F
= e2 β

2

Z
∞

d3k
(2π)3 ∑

α

(
1− tanh2 β|ω+αµ|

2

)
. (6.17)

An analytical approximate analysis of (6.17) may be performed: as it has been
shown previously, the contribution of the positrons (α = +1) may be ignored
and the remaining electron contribution may be approximated by

e2 β

2

Z
∞

−∞

d3k
(2π)3

(
1− tanh2 β|ω−µ|

2

)
≈ e2 β

2
N(0)

2

Z µ+Λ

µ−Λ

dω , Λ =
2
β

= e2N(0) . (6.18)

Using N(0) = 3n
2KF

(see Appendix B), one obtains an analytical expression for
the Thomas-Fermi length

λ
2
T F =

2KF

3e2n
(6.19)

which agrees with the usual expression 2εoEF
3e2n in the non relativistic limit [76].

Finally, numerical integration is performed over the interval
[ωF −KF ,ωF + KF ]. One should observe that the above expressions provide
the quantity 1/λ2 in units of squared energy; this is a direct consequence of the
initial choice of units h̄ = c = 1. According to this choice, the electric and mag-
netic permittivities are also equal to unity, and the value of the electron charge
becomes e2 = 4πα, with α = 1/137 the fine structure constant. Consequently,
to obtain a numerical values in SI units, one should divide this relation by
(h̄c)2. At room temperature (T=293 K) for a neutral sample (µ = µo = ωF ) one
obtains the Thomas-Fermi length λT F = 4.84 ·10−11 m, in agreement with the
tabulated value for aluminum.

6.2.2 Temperature dependence of the penetration lengths

Once the Thomas-Fermi length for normal electrons is obtained, one has to
study how it is affected in presence of the superconducting condensate. In
particular, the penetration of external electric field inside the sample, as it was
assumed in Chapter 2, would require a total electric penetration length com-
parable to the dimensions of the sample, namely a few tens of nanometres.
On the other hand, it is also interesting to study how the magnetic penetration
length is affected by the relativistic corrections. Both electric and magnetic as-
pects are studied by performing the numerical integration of the expressions
(6.14) below Tc.
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Figure 6.4: Numerical evaluation of the electric (dotted curve) and magnetic
(solid curve) penetration lengths as a function of the reduced temperature. The
input parameters are those for aluminum (see text for numerical values). Inset:
electric penetration length (Thomas-Fermi length) evaluated up to room temper-
ature.

The results of the numerical integrations are displayed in Fig. 6.4. The or-
der parameter ∆ is taken homogeneous (London limit), considering the value
∆o which minimises the effective potential and numerical external parameters
are those for aluminum, namely gN(0) = 0.18, ωF = 511.012 keV,
ξc = ωD = 0.037 eV. The integrated expressions are further converted in SI units
by dividing the quantities in (6.14) by (h̄c)2.

The magnetic penetration length is of the order of the nanometric scale, as
expected. At T = 0 K, it tends to some finite value λo = 1.22 · 10−8m, which
matches perfectly with the London penetration length (1.3) for aluminum:
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indeed, considering the density of free electrons per unit volume in Al
n = 1.81 ·1029 m−3, one gets

λL =
√

me

µone2 = 1.25 ·10−8 m . (6.20)

This value does not correspond to the tabulated value for Al, which has been
verified experimentally to be approximatively 50 nm; however, one must re-
call that the expression of the penetration length must be extended beyond
London’s homogeneous limit for the order parameter, by taking into account
specific features of the sample such as its purity. It was shown by Pippard [9]
that the following effective expression holds in general:

λeff = λL

(
1+ c

ξo

l

)1/2

,

{
c = 1 at T = 0 K ,

c = 0.75 close to Tc ,
(6.21)

where ξo is the coherence length in Pippard’s theory and l is the mean free
path of a free electron between two collisions. A complete discussion of the
effective penetration length as a function of the purity, but also of the geome-
try and dimensions of the sample can be found in Refs. [11, 13].

The temperature dependence of the magnetic penetration length also re-
produces the generally admitted empirical dependencies. Considering the
London limit and extremely pure materials, the most widely used empirical
dependence had been proposed by Gorter and Casimir [8] in the framework
of their two-fluid model; on the other hand, from the BCS theory, one may also
identify an expression which is valid close to Tc only: these two expressions
are respectively given by [13]

Gorter-Casimir: λL(0)
λ(T ) =

√
1−
(

T
Tc

)4
,

BCS: λL(0)
λ(T ) =

√
2
(

1− T
Tc

)
.

(6.22)

As shown in Fig. 6.5, our expression of the magnetic penetration length
matches fairly well with these two models, at least considering their respec-
tive hypotheses of validity.

Turning to the analysis of the electric penetration length in the vicinity
of the critical temperature, the values obtained just below this temperature
do not differ from those just above which correspond to the Thomas-Fermi
screening length, namely a fraction of an angstrom: hence, any external elec-
tric field is screened just as if the sample would be in the normal state.
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Figure 6.5: Inverse magnetic penetration length (solid curve) as a function of the
reduced temperature, compared to the two-fluid model (dotted curve) and the
BCS model close to Tc (dashed curve). The input parameters are those for alu-
minum.

One must admit that the Cooper pair condensate does not play a significant
role in the enhancement or screening of electric fields inside the sample.

This observation provides a microscopic answer to a long-lasting debate
which was raised in a series of contradictory articles, over the electrostatic
response of a superconductor. J.E. Hirsch theoretically studied the surface
charge inside a superconductor, and obtained some results related to our early
guess, namely the exponential decay of electric field over a distance of the or-
der of the magnetic penetration length [88]. In a comment to Hirsch’s pub-
lication, T. Koyama pointed out a misleading gauge choice and proposed a
more appropriate gauge condition to reproduce the qualitative assumption
that the electric screening length is still given by the Thomas-Fermi length in
the superconducting phase [89]. This comment is further rejected by Hirsch,
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who develops several arguments to support his claims; in particular he dis-
tinguishes the role played by the superconducting condensate and the normal
electrons in the screening of an external electric field [90]. Our model provides
the definite answer to the debate between the two authors: since we start from
a microscopic description of all conducting electrons, we naturally take into
account the electrodynamics of all charge carriers inside the superconductor,
whatever their superconducting or normal behaviour. Our theory provides a
firm argument supporting the qualitative claim that the Thomas-Fermi length
still describes the electric penetration, hence confirming Koyama’s argument
without need of any particular gauge choice.
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Figure 6.6: Electric penetration length (asterisks) as a function of the reduced
temperature, compared to the

√
T model (solid curve). The input parameters are

those for aluminum.

Finally, the temperature dependence of the electric penetration length has
been identified to be

λe(T )
λe(TC)

=
√

T
Tc

(6.23)
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close to the critical temperature (Fig. 6.6). This dependence in
√

T agrees with
that of the Debye-Hückel screening length, which is analogous to the Thomas-
Fermi screening, but was obtained in an earlier treatment using the Maxwell-
Boltzmann distribution for the electron gas instead of the Fermi-Dirac distri-
bution [91].

6.2.3 Depleted superconducting sample

In order to investigate their possible modification with charge depletion, the
electric and magnetic penetration lengths (6.14) are studied as functions of the
chemical potential µ. At this point, one has to recall that the chemical potential
enters the hamiltonian of the system together with the number of conserved
charges in a term µN = µ〈ψ†ψ〉; in a neutral sample at zero temperature, all
free electrons are arranged on successive energy levels from the mass level
ω = me (c2 = 1) up to the Fermi level ωF (the situation at non-zero temperature
is analogous, but for a fuzzy limit around the Fermi energy due to the thermal
excitations of some electrons close to that level). When a negative voltage is
applied, part of the free electrons are removed from the sample and the Fermi
level is progressively lowered.

All electrons will be removed when the Fermi level reaches the mass en-
ergy, which is a non-physical limit but constitutes anyway the theoretical lower
limit for the numerical investigations of the characteristic lengths. It would
also be arguable to apply the present model to a situation in which the to-
tal number of free electrons has been lowered to a very small number, that is
when the chemical potential has been lowered close to the electron rest-mass
energy: indeed, the whole theory has been constructed on the basis of a ther-
modynamic formalism, for which the number of particles is assumed to be
large. Consequently, the limit µ → me in Figs. 6.7 and 6.8 must be taken with
great care.

The complete numerical procedure was reproduced for three different tem-
peratures, namely T/Tc = 0.2, T/Tc = 0.5 and T/Tc = 0.8. Starting from the
Fermi energy µ = µo = ωF , the chemical potential was progressively lowered as
µ = µo−αKF , 0≤ α≤ 1. The integrals in (6.15) were also evaluated to identify
the total charge ρn +ρs; they confirmed that the total number of freely moving
charges goes to zero as µ→me. All results are summarised in Fig. 6.7. By look-
ing at the different curves, it is clear that the two penetration lengths increase
when the sample is progressively depleted, which is not surprising since the
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Figure 6.7: Numerical evaluation of the electric (dotted lines) and magnetic (solid
lines) penetration lengths as a function of chemical potential, which is progres-
sively lowered from the Fermi level down to the mass energy. Expressions are
evaluated for three different temperatures: T = 0.2 Tc (cyan), T = 0.5 Tc (blue) and
T = 0.2 Tc (magenta). Required input parameters are those for aluminum.

number of charges that take part in the screening mechanism is then smaller.
In particular, the magnetic penetration length diverges rapidly. However, the
electric penetration length increase is less than an order of magnitude and the
curves corresponding to different values of temperature all converge towards
a same finite value when ρfree = 0. This graph shows that the experimental
phase diagram obtained in Chapter 3 would not have been significantly af-
fected by the external electric field, even if we had applied a constant voltage
on the superconducting slab to remove part of the free electrons.
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The dependence of both characteristic lengths with decreasing chemical
potential could actually have been predicted from the approximate expres-
sions of the energy gap at zero temperature and the Thomas-Fermi length

∆o(0)∼ 1
sinh(1/gN(0))

, λ
2
T F ∼

1
e2N(0)

(6.24)

as functions of the density of energy states at the Fermi level N(0) = kF ωF/π2.
Indeed, the magnetic penetration length is inversely proportional to the squa-
red gap, while the electric penetration length is essentially unaffected by the
condensate of Cooper pairs. Since the density of states decreases when the
sample is progressively depleted, the energy gap also decreases, so that λm

is progressively increased. Above 0 K, the gap is only a fraction of ∆o(0) but
the qualitative evolution with a lowered potential is unchanged. On the other
hand, the electric screening length is also raised up to a finite value (Fig. 6.8).
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Figure 6.8: Evolution of the energy gap and the Thomas-Fermi length with de-
creasing chemical potential. Both quantities are normalised to their value in a
neutral sample, when the chemical potential is at the Fermi level.

It is important to note that the distinction between the so-called normal
and superconducting electrons cannot be given a precise technical definition
from such a microscopic model which basically accounts for all conducting
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electrons, in this case considered as a gas of free relativistic electrons whose
density is fixed by the choice of the chemical potential. The variation of the
effective potential with respect to the order parameter could determine the
density of Cooper pairs, namely essentially the order parameter itself. The
local Cooper pair density could in turn lead to the local density of the remain-
ing free “normal” electrons; in particular, this would help understanding bet-
ter how the condensation of Cooper pairs leads to a redistribution of charges
within the material and thereby generate some surface electric fields. Studies
of such issues are available in the literature (see [86] and references therein);
however, since they are based on phenomenological or even empirical models,
it remains to be seen how they would compare with our microscopic approach
and which physical properties the latter implies.

6.3 A few words on the coherence length

In addition to the electromagnetic penetration lengths, the obtained effective
action allows for the calculation of the coherence length, which is a measure
of the rigidity of the condensate. An infinitesimal variation with respect to ∆∗

yields an expression comparable with the relations (6.10) for the electromag-
netic potentials, namely

− f (∆o,µo)∇∇∇
2
∆+∆

∂Veff(|∆|2)
∂|∆|2

= 0 . (6.25)

Considering the fluctuations ∆ of the order parameter around its homoge-
neous value ∆o, we may expand this equation of motion to first order in the
fluctuations; we get

f (∆o,µo)∇∇∇
2
∆− (∆o +∆)

[
∂Veff(|∆o|2)

∂|∆|2
+(∆o∆

∗+∆
∗
o∆)

∂2Veff(|∆o|2)
∂|∆|4

]
= 0 (6.26)

where ∂2 � /∂|∆|4 stands for the second-order derivative with respect to the
squared order parameter density. The first-order derivative of the effective
potential is nothing but the gap equation and vanishes identically; taking all
quantities real in the remaining terms, and keeping only terms linear in ∆,
yields

f (∆o,µo)∇∇∇
2
∆−2∆|∆2

o|
∂2Veff(|∆o|2)

∂|∆|4
= 0 , (6.27)
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from which we identify the coherence length:

1
ξ2(T )

= 2
|∆o|2

f (∆o,µo)
∂2Veff(|∆o|2)

∂|∆|4
. (6.28)

The integral expression for f (∆o,µo) has already been used for the magnetic
penetration length in (6.14) and the following expression is easily obtained:

∂2Veff(|∆o|2)
∂|∆|4

=
Z

ξD

d3k
(2π)3 ∑

α

{
1

2E3
α

tanh
βEα

2
+

1
2E2

α

β

2

(
1− tanh2 βEα

2

)}
. (6.29)

It is therefore possible to evaluate the coherence length (6.28) within the whole
range between 0 K and the critical temperature with the numerical input pa-
rameters corresponding to aluminum: the results are displayed in Fig. 6.9. At
T = 0 K, one obtains ξo = 1556 nm, in agreement with the tabulated value of
1600 nm [14]; furthermore, the coherence length is essentially constant close
to this limit, as it is generally admitted [13]. However, the simple-minded de-
pendence in 1/

√
1−T/Tc obtained from the Ginzburg-Landau theory is not

recovered in the vicinity of the critical temperature, and one observes an in-
triguing change in concavity which still needs to be fully explored and under-
stood.

Figure 6.9: Temperature dependence of the coherence length; the input parame-
ters are those for aluminum.
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6.4 Summary

To summarise the results of the present chapter, we have shown that the ef-
fective potential may be given as a function of the electrostatic fluctuations
that affect the chemical potential. Then the second order corrections to the
effective action of the relativistic BCS model, expanded around the homoge-
neous density of Cooper pairs and considering possible fluctuations of the
electromagnetic potential inside the sample, have led to the identification of
the characteristic screening lengths for the electric and the magnetic fields,
the relative contribution of the normal electrons and the Cooper pair conden-
sate remaining an open issue. In particular, the electric penetration length
extends the usual expression of the Thomas-Fermi length and exhibits a neg-
ligible contribution of the superconducting condensate. Even if the sample
is depleted of nearly all its free charge carriers, the penetration of the electric
field remains essentially unaffected. Both these conclusions explain why the
experiment conducted with the Al slab was not sensitive to the external elec-
tric field. Finally, the coherence length may also be calculated and matches
the tabulated values at 0 K; however, it exhibits an unexpected temperature
dependence which still need to be fully analysed.

It is important to note that all these results have been obtained for the spe-
cific case of aluminum, that is, in the limit of a weak coupling (gN(0) = 0.18). It
would certainly be interesting to extend the present analysis to some materials
in a strong coupling regime: presumably the relativistic effects would then be-
come more important and eventually lead to some observable but albeit small
effects.



Conclusion

The important thing is not to stop questioning...
Albert Einstein (1879 - 1955).

Motivated by the desire of understanding nanoscopic superconducting
phenomena for relativistic time scales, a Lorentz-covariant extension of the
phenomenological Ginzburg-Landau theory has been developed initially on
basis of the U(1) local gauge invariant Higgs model.

It has first be shown that the variational principle applied to the Higgs
action for stationary configurations in the absence of external electric fields
results in a set of equations of motion equivalent to the Ginzburg-Landau
equations which minimize the thermodynamic free energy. These equations
have been studied in the case of mesoscopic samples with cylindrical symme-
tries, namely for infinitely long cylinders and annuli. For such geometries, we
identified particular solutions for which the order parameter describing the
density of Cooper pairs vanishes on closed surfaces within the sample: these
topologies were called annular vortices of order n and vorticity L, n referring
to the number of cylindrical domains on which the order parameter vanishes
and L to the fluxoid quantum number, namely the total number of magnetic
flux quanta carried by the complete system of vortices. The maximal number
of annular vortices which can be accommodated within the sample has also
been studied as a function of the sample dimensions and of the characteristic
superconducting parameters of the material.
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Since these configurations solve the Ginzburg-Landau equations, they de-
fine local extrema of the free energy, but it has not been established under
which circumstances these are minima or maxima, thus leaving open the ques-
tion of the stability of such solutions; however, even if unstable, these partic-
ular topologies could possibly play a role in the dynamics of the switching
mechanisms between different states.

In a second stage of our analysis, we identified a criterion which could con-
firm or invalidate the covariant extension Ginzburg-Landau theory through
experimental measurements: this possible discrimination between the usual
and the covariant Ginzburg-Landau models relies on the possible penetration
of an electric field inside the superconducting sample. Considering an infinite
slab of mesoscopic thickness submitted to a static electric field perpendicular
to its surface as well as a static magnetic field parallel to the slab, the study
of the phase diagram which characterises the superconducting transition in
terms of its critical parameters has led to a definite and clear-cut distinction
between the two models: in a weak field approximation for the external elec-
tric and magnetic fields, we observed that the critical electric field in the ab-
sence of a magnetic field remains bounded below for any temperature in the
covariant model, while it goes to zero with increasing temperatures in the
non-covariant model.

This major difference with this particular choice for the configuration of
the external electromagnetic fields opened the possibility of discriminating the
two approaches simply by measuring the critical phase diagram for a super-
conducting device whose dimensions are of the order of a few tens of nanome-
tres and which approximates as well as possible the situation of an infinite
slab in crossed static electric and magnetic fields. To this end, we identified a
complete process for manufacturing such a device using e-beam lithography
techniques. Then, resistivity measurements were carried out at low temper-
atures in various configurations of the external electric and magnetic fields.
Surprisingly, they did not show any dependence of the phase diagram on the
external electric field whatever the magnetic field and for all temperatures be-
tween some hundreds of millikelvins up to the critical temperature Tc. These
experimental results are in complete opposition not only with the numerical
simulations based on the covariant model, but also with the usual Ginzburg-
Landau theory. They suggested a possible screening of the electric field by
surface charges, to be studied from a microscopic point of view.
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In the third stage of the present work, through a microscopic approach
to superconductivity, we extended the standard BCS theory into a relativistic
framework using a functional integral method exploiting techniques of quan-
tum field theory at finite temperature. First we showed that all possible ways
of describing a local phonon-mediated attractive interaction between pairs of
electrons may be restricted to a linear combination involving only three of the
five quadrilinear structures that can be constructed from the basic Dirac bilin-
ears. Amongst these three, given their time reversal properties and their spin
structure, we identified the only bilinear coupling which reproduces the usual
BCS order parameter for s-wave pairing of electrons with opposite spins in the
non-relativistic limit.

Within the formalism of Finite Temperature Field Theory in imaginary
time, we identified the euclidean action describing the dynamics of a relativis-
tic fermion field coupled to the electromagnetic sector in a gauge invariant
manner, considering the relevant relativistic BCS coupling mentioned above.
This euclidean action was studied exactly in the limiting case corresponding to
a homogeneous density for the order parameter in the absence of any external
electric and magnetic field. This particular situation provides an expression
of the effective potential under these specific hypotheses, which can be ex-
tended to all situations with possible fluctuations of the order parameter and
when an electrostatic potential couples to the chemical potential. From the
effective action, we deduced the critical temperature and the maximal value
of the energy gap at zero temperature, whose numerical values are in perfect
agreement with the commonly admitted and experimentally measured val-
ues. Also, numerical simulations proved that the positron sector provides a
perfectly negligible relativistic correction. Finally, power-like analytic approx-
imations were proposed to fit the integral expression of the effective potential
at all temperatures between 0 K and Tc: in that sense, these approximations
constitute an improvement over the usual Ginzburg-Landau quartic potential
for practical study of superconductivity away from the critical temperature.
These analytical approximations should certainly be studied further; in par-
ticular, it would be interesting to consider what they entail for the profile of
Abrikosov vortices, for instance.

Building on the knowledge of the effective potential, the expansion of the
effective action up to second order in the perturbation around the exactly
solved part was performed in order to identify the squared gradients of the
fields. In particular, numerical values of the corrections to the electric and
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magnetic field energies –namely corrections to the effective electric and mag-
netic permittivities of the material– were shown to be negligible.

The term containing the squared gradient of the order parameter leads to
the expression of the magnetic penetration length as a function of the temper-
ature and the chemical potential. On the other hand, the dependence of the
effective potential in the electrostatic potential provides the integral expres-
sion of the electric penetration length, which also depends on the temperature
and the chemical potential. Our results for the magnetic penetration length
in the limit of vanishing temperature and the electric penetration length at
room temperature, which then correspond to the usual Thomas-Fermi length,
both reproduce the generally admitted numerical values for the case of a neu-
tral aluminum sample. We also showed that, below the critical temperature,
electric screening remains, for all practical purposes, unaffected by the su-
perconducting phase and the electric penetration length remains close to the
Thomas-Fermi screening length. Finally, even if the sample is depleted from
nearly all free charge carriers, which is modelled by lowering the chemical po-
tential from the Fermi level down to the electron rest-mass energy, the electric
screening remains essentially unaffected and in no way does it reach the order
of magnitude of the magnetic screening. Both these conclusions explain why
the experiment conducted with the superconducting slab did not show any
manifest dependence of the phase diagram on the external electric field.

In retrospect, the main question which motivated most of this work, namely
“How does an electric field get expelled from a superconductor, and over
which length scale?”, finds its answer in the effective potential, and more
specifically in its dependence on the chemical potential. To the best of our
knowledge, such a dependence of the effective potential, which corresponds
to the Ginzburg-Landau potential in the phenomenological theories of super-
conductivity, has not been explored in the literature to any great extent. Nev-
ertheless, by separating the electrostatic contributions through a power series
expansion of the effective potential, one identifies, first, the charge distribu-
tion of the conducting electrons in the superconducting phase, and second,
the electric penetration length of the Thomas-Fermi type, but inclusive of the
condensate contributions. As such, both so-called superconducting and nor-
mal electrons contribute at once to these phenomena, as well as to the mag-
netic penetration and condensate coherence lengths, but the only expression
of the total electric charge could not allow for explicit identification of the elec-
trons which take part in the superconducting condensate. It would be worth
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studying these specific issues further, for instance in order to understand bet-
ter how the condensation of Cooper pairs could lead to a redistribution of
charges within the material and thereby generate some electric field on its
surface, albeit small, and then of which order of magnitude. In particular,
it would be interesting to study how this microscopic model compares with
other approaches existing in the literature and dealing with related issues. By
extension, such questions of charge redistribution through Cooper pair con-
densation are of even greater interest when it comes to magnetic vortices and
their arrays, possibly even more when the sample is no longer neutral.

Still, the present work has put to rest the main question which it raised, in
the case of a simple s-wave BCS superconductor. Nevertheless, it also points
to further avenues of potential interest for exploration. Besides those men-
tioned above and related to charge redistribution at the phase transition, one
may also wonder what kind of superconducting properties would be implied
by the two other types of order parameters which our classification scheme
identified. A general analysis could include two or even three order param-
eters, corresponding to models for materials with more than one gap in their
energy spectrum, with at least one which no longer is purely s-wave. Clearly,
this fact raises the possibility that such models could be of relevance to some
of the superconducting materials discovered over the recent past.





APPENDIX

A
Notations and conventions

This appendix is by no means a complete listing of all symbols used in this
thesis: it collects symbols that may be confused with each other as well as the
main conventions which are commonly used in Field Theory. The numerical
values of the fundamental constants used in the calculations have also been
included.

Constants

e electron charge e =−|e|< 0 |e|= 1.602×10−19 Cb
q Cooper pair electric charge q = 2e < 0
h̄ Reduced Planck’s constant 1.055 ·10−34 J.s
kB Boltzmann’s constant 1.38 ·10−23 J/K = 8.617 ·10−5 eV/K
me electron mass 9.109 ·10−31 kg = 511 keV/c2

Φo Magnetic flux quantum 2.0710−15 Wb = 2.0710−7 gauss/cm2
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Variables

β Inverse temperature, defined as β = 1
kBT

EF Relativistic Fermi energy (inclusive the rest-mass energy)
if h̄ = 1, then EF = ωF

n Number of free electrons per unit volume
N(0) Density of energy states at the Fermi level
Φ Electrostatic potential
τ Imaginary time, related to the real time through t =−iτ
ξ Energy relative to the Fermi level: ξ = ω−ωF

ξD or ωD: Debye energy, which fixes the cutoff of the phonon energy spectrum

Possible confusions

• EF is used for the relativistic Fermi energy, except in the description of
the non-relativistic electron gas (App.B) where it does not include the
rest-mass energy.

• λ is used for the magnetic penetration lengths, except in Sec. 5.4 where
it is associated to the location of the fluctuations in momentum space.

• µo stands in general for the chemical potential; in Chaps. 1 and 2 how-
ever, it represents the vacuum magnetic permittivity.

• ξ generally describes the energy relative to the Fermi level (see above); it
may also stand for the superconducting coherence length when explic-
itly stated.

Conventions

Einstein’s rule: Einstein’s implicit summation is used for repeated crossed in-
dices:

aibi ≡
3

∑
i=1

aibi (A.1)

Fourier transformations: in general, the Fourier transformation of a function
F(x) in configuration space will be used with the following normalisa-
tion:

F(x) =
Z d3k

(2π)3 eik·x F̃(k) , F̃(k) =
Z

d3x e−ik·x F(x). (A.2)
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The tilde notation will often be omitted when no confusion arises. For
time-dependent quantities, (anti-)periodicity with period β in imagi-
nary time leads to a similar transformation with a discrete variable in
frequency space: the Matsubara sum is then defined as

F(τ) =
1
β

∑
n

e−iωnτF̃(iωn) , F̃(iωn) =
Z

β

0
dτ eiωnτF(τ) (A.3)

with even Matsubara frequencies ωn = nπ/β for periodic boundary con-
ditions (boson field) and odd frequencies ωn =(2n+1)π/β for anti-periodic
boundary conditions (fermion field).

Indices: Greek indices refer to four-dimensional vector indices running from
0 to 3 and latin indices describe three-dimensional indices running from
1 to 3; e.g. the position vector

xµ = (x0,xi) = (ct,x). (A.4)

Metric: We use the Minkowski metric gµν with signature (1 -1 -1 - 1).

Units: Unless explicitly stated, Field Theory is studied in a system of natural
units such that h̄ = c = 1. The electric and magnetic permittivities in
vacuum are related to each other and to the velocity of light according
to εoµo = c−2; in natural units, we shall further assume that εo = µo = 1.
On the other hand, the fine structure constant is given by

α =
e2

4πεoh̄c
' 1

137
;

consequently, in the natural system of units, the fundamental electric
charge is dimensionless and takes the numerical value e2 = 4π/137' 0.1.





APPENDIX

B
Elements of Solid State Physics

Since several fundamental notions such as the Fermi level or the density of states
are constantly used in this work, it may be useful to briefly review them in
their original context, with special attention to the framework –be it relativistic
or not– in which one works.

At a macroscopic level, current transport in electrically conducting mate-
rials is governed by Ohm’s law V = R I, which simply states that the electric
current I carried through a conducting material is proportional to the potential
difference V causing the charge motion, the proportionality coefficient being
the (electric) resistance R.

In the simplest picture, electric current is seen as a flow of nearly free elec-
trons through a regular lattice formed by the positively charged atomic cores.
The erratic motion of the electrons results in stochastic collisions with the ions
through which they loose part of their kinetic energy: the macroscopic mani-
festation of this energy exchange is the heating of the conductor –namely the
Joule effect– with a thermal dissipated power given by W = RI2. Electric re-
sistance is therefore a measure of the energy loss incurred through collisions
of the electron flow in the material. Alternatively, to factor out any depen-
dence on the geometry of the conductor, one introduces the notion of resisti-
vity ρ, which accounts only for the electric resistive properties of the material.
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Its inverse, the conductivity σ, enters the constitutive equation

J = σE , σ =
1
ρ

(B.1)

setting the relation between the local current density J induced by an applied
electric field E. Table B.1 lists values for the resistivity of some typical conduc-
tors, semiconductors and isolating materials.

Material Resistivity Material Resistivity
(Ω ·m) (Ω ·m)

Conductors Semiconductors
Silver - Ag 1.51 10−8 Germanium - Ge 0.60
Copper - Cu 1.56 10−8 Silicon - Si 2300
Gold - Au 2.04 10−8 Insulators
Aluminum - Al 2.45 10−8 Rubber 103 - 106

Niobium - Nb 15.2 10−8 Wood 108 - 1011

Lead - Pb 19.0 10−8 Glass 1010 - 1014

Table B.1: Resistivity of typical isolating, semiconducting and conducting mate-
rials at room temperature [81, 92].

At the microscopic scale, conductivity is modeled by analyzing the dy-
namics of individual electrons. At this point, it must be emphasized that the
whole discussion is henceforth restricted to the so-called DC conductivity, i.e.
induced by a constant voltage. The reader should refer to Refs. [81] and [82]
for a detailed discussion of both AC and DC conductivity.

The classical Drude model

The first model of electrical conductivity was given by P. Drude only three
years after the discovery of the electron. As already mentioned, Drude as-
sumes that the current is composed of a flow of electrons moving through
a network of regularly arranged ions with which they may collide occasio-
nally. Two successive collisions are separated by a mean relaxation time τ, dur-
ing which the electrons are considered as freely moving. Resistivity is related
to τ through

ρ =
m

ne2τ
(B.2)

where m is the electron mass, e its electric charge, and n the average number
of free electrons per unit volume in the sample. The relaxation time τ is also
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inversely proportional to another typical parameter, the mean free path λ be-
tween two successive collisions, which will turn to be of crucial importance
for the determination of the purity of a sample. This purity has a non negligi-
ble role in superconductivity, since it appears to influence the formation and
dynamics of vortices [11, 25].

At this point there is no apparent dependence of the resistivity on the tem-
perature. Drude simply introduced it by requiring that the distribution of the
electron velocities be coherent with the kinetic theory of gases, through the
Maxwell-Boltzmann distribution.

The Drude model was rapidly accepted and remained for a long time a
standard for the physics community, since it could account well for conducti-
vity measurements, until it appeared that it failed to explain thermal conduc-
tivity satisfactorily. This is the point where quantum mechanics took over
from where the Drude model failed: the temperature distribution of free
electrons follows the Fermi-Dirac statistics, instead of the one described by
Maxwell and Boltzmann. This was the first argument that compelled A. Som-
merfeld to include quantum features into the description of conducting elec-
trons.

Semi-classical theory of solids

Starting from the same hypothesis that conductivity is related to the motion
of free incoherent electrons, Sommerfeld required that each electron obeys
Schrödinger’s equation, resulting in the quantisation of its energy levels:

E(k) =
p2

2m
=

h̄2k2

2m
(B.3)

in terms of discrete values for the wave vector k:

kx = nx
2π

Lx
, ky = ny

2π

Ly
, kz = nz

2π

Lz
, nx, ny nz integers

having assumed a finite-size rectangular box of dimensions Lx, Ly and Lz.
However, since the number of free electrons is large, one may approximate
the discrete wave vector spectrum by a continuous one in k-space, leading to
an analytic expression for the density of states per unit energy

2
d3k

(2π)3 = dE g(E) , g(E) =
1

2π2
2m
h̄3

√
2mE , (B.4)
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Figure B.1: Graphical representation of wave vectors in k-space. Energy levels
are associated to unit cells that are piled up isotropically; for a large number of
unit cells, one can approximate the volume by a sphere [93].

where the overall factor 2 accounts for Pauli’s exclusion principle, so that each
energy state can contain at most two electrons with opposite spins.

Since there is no thermal energy at zero kelvin, all energy levels are filled
from the lowest one up to some highest level: this upper state is called the
Fermi level and defines a sphere in k-space with a radius related to the number
of electrons per unit volume n:

EF =
h̄2

2m
(3π

2n)2/3 . (B.5)

Once the Fermi level is known, one can compute the density of states at the
Fermi level, usually denoted N(0):

N(0) = g(EF) =
(2m)3/2

2π2h̄3

√
EF =

3n
2EF

. (B.6)

In some circumstances, it may be useful to know the Fermi temperature, which
follows from the identity

EF = kBTF (B.7)

where kB is Boltzmann’s constant.

At non-zero temperature, electrons may be thermally excited into levels
above the Fermi energy; their energy distribution is then given by the Fermi-
Dirac statistics

f (E) =
1

e(E−EF )/kBT +1
. (B.8)
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Figure B.2: Fermi-Dirac distribution of the energy states at zero and higher tem-
peratures [93].

We conclude this section by providing numerical values for the main
relevant variables in a standard metal. Considering the case of aluminum,
with density ρ = 2700 kg/m3 and atomic weight M = 26.98, each atom con-
tributes to the electron gas three conduction electrons and the average number
of free electrons per unit volume is n = 1.81 ·1029 m−3. It follows that

EF = 1.86 ·10−18 J = 11.67 eV

N(0) = 1.46 ·1047 J−1.m−3 (B.9)

TF = 1.35 ·105 K

βF =
1

TF
= 6.77 ·10−3 K−1 .

Relativistic electron gas

The discussion of the previous section can be extended to the description of a
relativistic free fermion gas; in that case, the energy levels are modified so to
include the mass energy:

E =
√

(pc)2 +(mc2)2 . (B.10)

In order to compare with the non-relativistic limit, it is useful to separate the
mass contribution to the energy, defining the kinetic energy

K = E−mc2 . (B.11)
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The Fermi level is re-expressed in terms of the above quantities, and in parti-
cular the density of states at the Fermi level becomes

N(0) =
1

π2h̄3c3
EF

√
E2

F − (mc2)2 =
1

π2h̄2c2
EF(3π

2n)1/3 . (B.12)

In the system of units such that h̄ = c = 1, the previous relation simply writes
N(0) = kF ωF/π2. For the case of aluminum, the values of N(0) and TF do not
differ significantly from their non-relativistic values, but we have to consider
instead

EF = 511.735 keV (B.13)

KF = 11.68 eV .

(B.14)

In comparison, the Debye energy is

ωD = kBθD = 0.037 eV (B.15)

and usual BCS quantities are evaluated to be

kBTc = 1.012 ·10−4 eV (B.16)

∆o = 1.76 kBTc = 1.76 ·10−4 eV . (B.17)
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Figure B.3: Relative orders of magnitudes of the different energy scales for a rel-
ativistic free electron gas in aluminum.
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Band structures

Although Sommerfeld’s model matched fairly well with a number of experi-
mental verifications, theorists knew that it had to be refined, simply because
the hypothesis of free electrons was too strong. Considering the crystallo-
graphic classification of ionic lattices –the so-called Bravais lattices–, F. Bloch
considered electrons submitted to a periodic potential. This leads to the
description of energy levels in terms of families of solutions, continuously
extended to energy bands usually separated by forbidden areas, or gaps, in the
energy spectrum.

In the modern picture of conductivity, the electrical features of materials
depend on the way the energy bands are filled (Fig. B.4) for an electric current
can emerge only in partially filled bands –where electrons can then jump along
adjacent levels. If the Fermi level is located inside one band, then conduction
will be possible, but if the electrons perfectly fill a band separated from the
next one by a gap larger than the thermal energy, then it will never be possible
to observe an electric current. Semiconductors correspond to a special class of
materials for which several energy bands are partially filled and separated by
a gap less than the thermal energy: under certain circumstances it is possible
for some electrons to hop from one band to the next and develop conduction
mechanisms.

Figure B.4: The electrical properties of materials depend on their band structure
and the way they are filled [93].





APPENDIX

C
Elements of Classical and
Relativistic Field Theory

Probably the best known equation of Modern Physics is Einstein’s relation
E = mc2 which allows for the transformation between mass and energy. One
consequence is the impossibility of maintaining a description of Nature in
terms of (classical or relativistic) dynamical systems with a fixed number of
particles, even at a quantum level, since particles may be created or annihi-
lated provided the energetic content of the system is preserved. This is one of
the arguments supporting the development of Field Theory, which provides a
natural framework to account for multiparticle states. Whether at a classical
or quantum level, the dynamical description of a field can be inferred from a
lagrangian or a hamiltonian formulation [79, 94].

C.1 Relativistic invariance

Before addressing any consideration about fields, we first review the basic
properties of Lorentz transformations, which underlie the mathematical ex-
pression of relativistic invariance [70, 94]. We consider a system of units such
that h̄ = c = 1.
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Two observers in different inertial frames may describe a same physical
event within their own system of space-time coordinates, say xµ for the first
observer and (xµ)′ for the second, both systems being related through a Lorentz
transformation such that

(xν)′ = Λ
ν

µxµ (C.1)

where Λ is determined in terms of six parameters associated to three space
rotations and three Lorentz boosts. The basic Minkowski space invariant is
the proper time interval

ds2 = dxµdxµ. (C.2)

From these relations, it follows that the transformation coefficients should
verify

Λρ
µ
Λ

ρ
ν = δ

µ
ν , (C.3)

which in particular implies that det |Λ| = ±1. The positive value det|Λ| = +1
is associated to so-called proper (or orthochronous) Lorentz transformations,
while the negative value corresponds to improper transformations. More gen-
erally, the Lorentz group is defined as the group of all 4×4 matrices preserving
the spacetime invariant, thus satisfying the restriction

gµν = Λ
ρ

µgρσΛ
σ

ν (C.4)

where the Minkowski metric is conventionally taken to be
gµν = diag(1 −1 −1 −1). If these signature signs were all the same, the group
would be O(4), but since a sign difference distinguishes time from spatial co-
ordinates, the Lorentz group is usually denoted O(3,1).

Equipped with these transformations, one defines some specific classes of
objects, such as scalars and vector fields defined by the following transforma-
tion properties:

scalar: s′(x′) = s(x) (C.5)

vector: vµ′(x′) = Λ
µ

νvν(x); (C.6)

namely, scalars are invariant under Lorentz transforms whereas vectors trans-
form as the coordinates do. Finally, the formulation of a dynamical system is
said to be Lorentz covariant if the relations between its physical observables
remain unchanged under Lorentz transformations. One must distinguish be-
tween covariant and contravariant quantities, such as xµ and xν respectively
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in the case of four-vectors (note the position of their indices), which are con-
nected by raising and lowering indices with the help of the Minkowski metric;
for instance

xµ = gµνxν.

Thus, one has for example

xµ = (t,x) , xµ = (t,−x)

∂µ =
∂

∂xµ = (
d
dt

,∇∇∇) , ∂
µ = (

d
dt

,−∇∇∇).

The Lorentz invariant contraction of four-vectors thus also reads

p ·q = pµqµ = pµqνgµν = p0q0−p ·q. (C.7)

C.2 Field dynamics

Considering a classical system described by a field φ(x) over the time and the
space coordinates x = (t,x), the dynamics of the system is governed by the ac-
tion integral built from the lagrangian density L(φ,∂µφ), which is a functional
of the field and its derivatives:

S[φ] =
Z

d4x L(φ,∂µφ). (C.8)

Applying the variational principle to such an action leads to the Euler-Lagrange
equation of motion

∂µ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0. (C.9)

Within the hamiltonian formulation, phase space consists of the field con-
figurations φ(x) and their conjugate momenta

π(x) =
∂L

∂φ̇(x)
(C.10)

where φ̇ denotes the time derivative of the field. The hamiltonian density is
then given by

H (π,φ) = π(x)φ̇(x)−L (C.11)

leading to the hamiltonian

H =
Z

d3x H .

When one deals with relativistic theories, the advantage of the first formu-
lation is clear since the lagrangian and the equations of motion are manifestly
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covariant under Lorentz transformations. On the other hand, the hamilto-
nian formulation is more directly related to some physical observables, such
as for example the energy as an eigenvalue of the hamiltonian spectrum in
the case of stationary states. Furthermore, canonical quantization follows the
hamiltonian formulation since the (anti-)commutation relations are just in di-
rect correspondence with the Poisson brackets which define an algebra over
the phase space spanned by the field and its conjugate momentum.

C.3 The Dirac field

C.3.1 Dirac equation

In the spacetime described by the four-components coordinates x, the tradi-
tional form of the Dirac lagrangian which describes the dynamics of a free
relativistic fermion field is

L =
i
2
[ψ̄γ

µ(∂µψ)− (∂µψ̄γ
µ
ψ)]−mψ̄ψ . (C.12)

The Dirac spinor field ψ(x) admits the following Fourier decomposition:

ψ(x) = ∑
s=1,2

Z d3k
(2π)3 2k0 [b(k,s)u(k,s)e−ikx +d†(k,s)v(k,s)eikx] (C.13)

with k0 = ω(k) = (k2 + m2)1/2, k · x = k0x0 −k · x and the plane wave spinors
being solutions to {

(γµkµ−m)u(k) = 0
(γµkµ +m)v(k) = 0.

In the Dirac representation of the Clifford algebra for the γµ matrices, these
solutions admit the following form:

u(k,s) =
1√

ω+m

(
(ω+m) ϕs

k ·σσσ ϕs

)
, v(k,s) =

1√
ω+m

(
k ·σσσ ϕs

(ω+m) ϕs

)
(C.14)

where ω
2 = k2 +m2 , ϕ+ =

(
1
0

)
, ϕ− =

(
0
1

)
.

The quantum prescription for the components of the Dirac field is the equal
time anti-commutation relation verified by the operators b(k,s) and d(k,s):

{b(k,r),b†(k′,s)}= {d(k,r),d†(k′,s)}= (2π)3 2ω(k) δ
rs

δ
(3)(k−k′) (C.15)
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with all other anticommutators vanishing. This yields the hamiltonian, in nor-
mal ordered form

H = ∑
s

Z
d3k k0[b†(k,s)b(k,s)+d†(k,s)d(k,s)]. (C.16)

In terms of individual particles, each Fourier component of the spinor has an
immediate interpretation: for instance

b(k,s)u(k,s)e−ikx annihilates a positive energy electron with momentum k
and spin s

d†(k,−s)v(k)eikx creates a positive energy positron with momentum k
and spin − s.

C.3.2 Dirac algebra

The Dirac lagrangian (C.12) involves a set of 4× 4 matrices which define the
Dirac (or Clifford) algebra: these are the γµ matrices satisfying the anticommu-
tation relations

{γ
µ,γν}= 2gµν. (C.17)

Traditionally, the following notations are introduced:

ψ̄ = ψ
†
γ

0 , a/ = aµγ
µ . (C.18)

In this thesis, we consider exclusively the Dirac representation for this algebra,
in which the γµ matrices admit the following explicit realisation:

γ
0 =

(
I 0
0 −I

)
, γ

i =

(
0 σi

−σi 0

)
(C.19)

where I is the 2×2 identity matrix and the σis are the Pauli matrices

σ
1 =

(
0 1
1 0

)
, σ

2 =

(
0 −i
i 0

)
, σ

3 =

(
1 0
0 −1

)
. (C.20)

It proves useful to introduce two further Dirac objects, whose utility will ap-
pear below:

γ
5 = iγ0

γ
1
γ

2
γ

3 =

(
0 I
I 0

)
(C.21)

and
σ

µν =
i
2
[γµ,γν], (C.22)



142 Elements of Classical and Relativistic Field Theory

where the square brackets denote the commutator of the two matrices; the
explicit form in the Dirac representation is:

σ0i=

(
0 σi

σi 0

)
σi j=εi jk

(
σk 0
0 σk

)
. (C.23)

The most essential properties of those matrices are summarised below:

(γµ)† = γ0γµγ0

(γ0)† = γ0

(γi)† =−γi , i = 1,2,3
(γ5)† = γ5

(γ5)2 = I
{γ5,γµ}= 0
[γ5,σµν]= 0

(C.24)

showing that γ0 and γ5 are hermitian and γi are anti-hermitian. They also verify
the following contraction identities:

γµγµ = 4
γνγµγν =−2γµ

γργµγνγρ = 4gµν ,

(C.25)

and some of their essential trace properties are

tr γµ = 0
tr γ5 = 0
tr (γµγ5) = 0
tr (γµγν) = 4gµν

tr σµν = 0

(C.26)

and in general the trace of an odd number of γµ matrices vanishes.

The γµ matrices and their products provide a natural sixteen-dimensional
basis of the full Clifford-Dirac algebra: this basis is constructed from

Γ = {I,γ5,γµ,γµ
γ

5,σµν} . (C.27)

Moreover, this basis introduces a classification of all possible Dirac bilinears
ψ̄Γψ according to their behaviour under a Lorentz transformation S(Λ) = Λµ

ν:
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I scalar ψ̄′(x′)ψ′(x′) = ψ̄(x)ψ(x)
γ5 pseudo-scalar ψ̄′(x′)γ5ψ′(x′) = detΛ ψ̄(x)γ5ψ(x)
γµ vector ψ̄′(x′)γµψ′(x′) = Λµ

ν ψ̄(x)γνψ(x)
γµγ5 pseudo-vector ψ̄′(x′)γµγ5ψ′(x′) = detΛ Λµ

ν ψ̄(x)γνγ5ψ(x)
σµν tensor ψ̄′(x′)σµνψ′(x′) = Λµ

αΛν
β ψ̄(x)σαβψ(x)

Table C.1: Classification of Dirac bilinears.

C.3.3 Symmetries of Dirac spinors

It is instructive to consider how Dirac spinors transform under discrete trans-
formations such as charge conjugation, parity and time reversal [94].

Parity: an explicit form of the parity operator performing the transforma-
tion ψ′(−x, t) = P ψ(x, t) is found by recalling that parity is nothing but
a π-rotation followed by a specular transformation; then the operator is
simply given by

P = eiθ
γ

0 (C.28)

where θ is an arbitrary phase factor.

Charge conjugation: charge conjugation ψ′
c = Cψ(x, t) takes the explicit form

ψc = ηcCψ̄
T , C = iγ2

γ
0 (C.29)

with an arbitrary phase factor such that η†
cηc = 1. The charge conjugation

matrix has following properties:

CT = C† =−C = C−1 . (C.30)

We have in general

ψ = ηc C ψ̄T
c ψc = ηc C ψ̄T

ψ̄ = η−1
c ψT

c C ψ̄c = η†
c ψT C

(C.31)

Time reversal: the transformation ψ′(x,−t) = T ψ(x, t) is performed through
a transformation operator such that

T ψ(x, t)T −1 = eiθT ψ(x,−t). (C.32)

The T matrix is given by the explicit representation

T = iγ1
γ

3 (C.33)
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and verifies
T γµT−1 = (γµ)T = (γµ)∗

T = T−1 = T † =−T ∗ .
(C.34)

Now that we have established how spinors behave under those transfor-
mations, we could prove that Dirac bilinears transform according to
ψ̄Γiψ = s ψ̄Γiψ, with s =±1, namely they remain either unchanged or acquire a
minus sign when submitted to one of those transformations separately or the
combination of them three (CPT transformation); Table C.2 summarises these
properties.

ψ̄ψ ψ̄γµψ ψ̄σµνψ ψ̄γ5ψ ψ̄γ5γµψ

C 1 -1 -1 1 1
P 1 1 1 -1 -1
T 1 1 -1 -1 1

CPT 1 -1 1 1 -1

Table C.2: Behaviour of the Dirac bilinears under C, P, T and CPT transforma-
tions.

C.3.4 Algebra of Fock operators

The mode expansion (C.13) introduces the Fock operators b(k,s) and d(k,s)
and their conjugates, whose action on a physical state is to raise or lower the
number of particles, whether electrons or positrons. It is worth recalling some
interesting relations associated to the Fock algebra. In simplified notations, let
us consider a single Fock operator for a fermion verifying the anticommuta-
tion relations

{b,b†}= c > 0 , {b,b}= {b†,b†}= 0 . (C.35)

Its action on physical states is given by

b |0〉=0 1√
c b |1〉= |0〉 b†b |0〉=0

1√
c b† |0〉= |1〉 b† |1〉=0 b†b |1〉=c |1〉

(C.36)

with 〈0|0〉= 〈0|0〉= 1. Since at most one fermion may occupy any given state,
the trace of any given operator Â simply consists in the contributions

TrÂ = 〈0| Â |0〉+ 〈1| Â |1〉 .
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In particular, let us consider a basic operator of the form
Â = e−β

1
c ωb†b = 1−β

1
c ωb†b. Then the observable value of this operator are

〈0| Â |0〉 = e−β
1
c ω〈0|b†b|0〉 = 1

〈1| Â |1〉 = e−β
1
c ω〈1|b†b|1〉 = e−βω

so that
Tr e−β

1
c ωb†b = 1+ e−βω. (C.37)

The normalisation constant c has been reabsorbed into the trace operation and
does not appear any more in the final result; this will have important conse-
quences in the following. By expanding the exponential, it is easy to show:

Tr
(

b†be−β
1
c ωb†b

)
= e−βω

Tr
(

bb† e−β
1
c ωb†b

)
= 1.

(C.38)

Now consider two kinds of fermionic creation and annihilation operators obey-
ing identical anticommutation relations (for the sake of simplicity, we normal-
ize them to unity):

{b,b†}= {d,d†}= 1 ; (C.39)

then any state is obtained as a tensor product of two states referring to each of
the fermionic sectors, for example

|1,0〉= |1〉b⊗|0〉d

so that the full trace operation factorizes as follows:

Tr e−β(ωbb†b+ωdd†d) = (Tr e−βωbb†b)(Tr e−βωdd†d) = (1+ e−βωb)(1+ e−βωd ) .

(C.40)





APPENDIX

D
Thermal Field Theory

D.1 Path integral formulation

This Appendix provides a detailed construction of the path integral formula-
tion of quantum dynamics following Feynman’s method [95] but in a slightly
more modern approach [96, 97]. First, it is useful to recall that a quantum sys-
tem can either be described in the Schrödinger or in the Heisenberg picture. In
the former, operators are defined at constant time and the physical states may
evolve in time; in particular, they verify Schrödinger’s equation of motion

ih̄
∂

∂t
|ψ, t〉S = Ĥ |ψ, t〉S . (D.1)

In the Heisenberg picture, physical states are considered at one given time,
while the Heisenberg operators are dynamical variable which obey the equa-
tion of motion

ih̄
d
dt

ÔH(t) =
[
ÔH(t), Ĥ

]
. (D.2)

The relation between operators in these two pictures is determined through
the time evolution operator defined in term of the hamiltonian:

ÔH(t) = eiĤ(t−to)/h̄OSe−iĤ(t−to)/h̄ (D.3)

where to refers to the reference time at which the Schrödinger picture is con-
sidered.



148 Thermal Field Theory

On the other hand, the transition amplitude describing a system at a po-
sition q′ at time t ′ coming from an initial position q at time t, also called the
propagator from (q, t) to (q′, t ′), is obtained by evaluating the overlap between
the physical states at q and q′ enclosing the time evolution operator1:

P(q′, t ′;q, t) =
〈
q′
∣∣e−iH(t ′−t) |q〉 . (D.4)

The philosophy of the path integral formalism is to derive an expression for
this amplitude considering all possible ways of getting from the starting point
to the other. To this end, we first divide the evolution of the system into
two sub-intervals by considering an intermediate position in space and time
(q1, t1). The propagator is then factorised as

P =
〈
q′
∣∣e−iH(t ′−t1)e−iH(t1−t) |q〉 .

Since the {|q〉} define a complete set of eigenvectors, the closing relation may
be inserted into the propagator, which becomes

P =
〈
q′
∣∣e−iH(t ′−t1)

Z
dq1 |q1〉〈q1|e−iH(t1−t) |q〉=

Z
dq1 P(q′, t ′;q1, t1)P(q1, t1;q, t).

(D.5)
The integration simply means that we walk between q and q′ through an in-
termediate position q1, considering all possible positions of this intermediate
point. Of course we can repeat this process and divide the time interval t ′− t
into a large number N of intervals of width ε = (t ′− t)/N in order to obtain a
probability amplitude represented in terms of all N-legged paths between the
initial and final positions:

P =
Z

dq1 · · ·dqN−1 P(qN , tN ;qN−1, tN−1)P(qN−1, tN−1;qN−2, tN−2) . . .P(q1, t1;q0, t0)

where

qN = q′, tN = t ′; . . . ; q0 = q, t0 = t .

Of course no integration is performed over q0 and qN since they determine
the initial and final positions, which are fixed. It is clear that this amplitude
can be considered as a sum over all possible paths from q0 to qN moving in
succession through q1, q2, . . . qN−1, this sum being performed by the multiple
integration.

1From now on the hat notation for the operators will be omitted, and we will assume h̄ = 1
unless explicitly given.



D.1 Path integral formulation 149

Figure D.1: Propagator between (q, t) and (q′, t ′) as a sum over all N-legged paths
[97].

We can pursue further through a detailed analysis of the expression for
one given path by performing an expansion for each small time interval ε;
there are N such factors, each of the form:

P(q j+1, t j+1;q j, t j) =
〈
q j+1

∣∣e−iHε
∣∣q j
〉

= 〈q j+1|q j〉− iε
〈
q j+1

∣∣H ∣∣q j
〉
+O(ε2).

Normalising the overlap expression between position and conjugate momen-
tum as 〈q|p〉 = eiqp and introducing the closure relation in momentum space,
we have

〈q j+1|q j〉= δ(q j+1−q j) =
Z d p

2π
ei(q j+1−q j)p .

and

〈
q j+1

∣∣H ∣∣q j
〉

=
〈
q j+1

∣∣Z d p j

2π

∣∣p j
〉〈

p j
∣∣H ∣∣q j

〉
=

Z d p j

2π
H(q j, p j)ei(q j+1−q j)p j ,

so that we may write

P(q j+1, t j+1;q j, t j) =
Z d p j

2π
eiε[p j q̇ j−H(q j ,p j)] (D.6)

where we defined q̇ j = (q j+1−q j)/ε. Combining the N such factors that deter-
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mine one path, the propagator is then given by

P(q′, t ′;q, t) =
Z

dq1 . . .dqN−1

Z d p0

2π
. . .

d pN−1

2π
exp iε∑

j
[p jq̇ j−H(p j,q j)]

≡
Z

D p(t)Dq(t) exp
[

i
Z t ′

t
dt ′′
(

p∂t ′′q−H(p,q)
)]

. (D.7)

The last expression is known as the phase space path integral. This is the more
general expression for the path integral formalism. Assuming the momentum
integrals can be performed, we are left with a more compact form known as
the configuration space path integral:

P =
Z

Dq(t)eiS[q(t)] (D.8)

where S[q(t)] is the action for the system moving along each path between q
and q′. Infinitesimal variation of this action provides the usual Euler-Lagrange
equation of motion, which simply states that the system shall effectively choose
to walk along the path between initial and final positions that minimises the
action.

D.2 Path integrals in statistical mechanics

Equilibrium statistical mechanics is constructed from one fundamental ex-
pression known as the partition function

Z(β) = Tr[e−βH ] , β = 1/kT. (D.9)

Expanded in the configuration space basis, the partition function reads

Z(β) =
Z

dq〈q|e−βH |q〉 , (D.10)

and can be compared to the definition of the propagator (D.4): performing a
transformation over the time variable t →−iτ, the expression of the partition
function corresponds to a propagator between 0 and β in imaginary time, with
the additional boundary condition q(β) = q(0). The partition function may
therefore be given a path integral formulation. To illustrate the features of this
partition function, consider the hamiltonian for the classical one-dimensional
harmonic oscillator

Hho =
p2

2m
+

mω2q2

2
(D.11)
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where p = mq̇ is the momentum conjugate to the coordinate q; the algebraic
structure of phase space is derived from the canonical Poisson bracket at equal
time

{q(to), p(to)}= 1 .

The dynamics of the system may alternatively be formulated in terms of the
lagrangian L, related to the hamiltonian by the general Legendre transform
H = q̇p−L; for the harmonic oscillator,

Lho =
p2

2m
− mω2q2

2
=

mq̇2

2
− mω2q2

2
. (D.12)

We may then calculate the partition function (D.8) for that specific hamil-
tonian. In particular, the gaussian integral over momentum is readily per-
formed; in the statistical mechanics case, we are left with

Z(β) =
Z

Dq(τ) e−SE (β) (D.13)

where the time dependence of the coordinate has been turned to imaginary
time t = −iτ, and the path integration is performed over paths with period β

in imaginary time. The functional

SE(β) =
Z

β

0
dτ LE [q̇(τ),q(τ)]

is usually referred to as the euclidean action, with now q̇(τ) = dq
qτ

.

The generalisation to quantum field theory follows the considerations of
the previous section: the dynamics of a complex bosonic field φ(x) may be
inferred from its hamiltonian

H =
Z

d3x H [φ(x),π(x)]

where π(x) denotes the conjugate momentum field. Alternatively, one may
start from the lagrangian density, which is related to the hamiltonian density
through L = πφ̇−H . Then the partition function becomes

Z(β) =
Z

Dφ(x)Dφ
†(x)e−SE (β) , SE(β) =

Z
β

0
dτ

Z
d3x LE(∂µφ,φ) (D.14)

with periodicity of the field in imaginary time φ(x,β) = φ(x,0).
For a fermionic field ψ(x) however, the formal path integral representa-

tion of Z(β) given in (D.14) still holds, but the field is subject to the anti-
periodic boundary condition ψ(x,β) = −ψ(x,0). To understand the origin of
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this anti-periodic condition, recall that a field ψ describes particles which obey
Fermi-Dirac statistics; at a quantum level, this field obeys (equal time) anti-
commutation relations of the form {ψ,ψ†}= 1 which generalises the classical
Poisson bracket. This defines a two-dimensional Hilbert space spanned by |0〉
and |1〉, with

ψ |0〉=0
ψ† |0〉=|1〉 .

(D.15)

(With this notation, the field ψ† is naturally identified as the creation operator
for a fermionic particle and the basis vectors represent physical states of the
Fock space labelled by the number of particles they contain.)

We may then define “coherent fermionic states”

|η〉= e−ηψ† |0〉= |0〉−η |1〉 ; (D.16)

by convention, 〈η| = 〈0|e−η∗ψ†
. Those states are such that ψ |η〉 = η |η〉 where

the eigenvalue η is now a Grassmann number [79]. Grassmann variables
are anticommuting numbers {θi,θ j} = 0 leading to the obvious consequence
θ2

i = 0. Any polynomial series constructed from two of those numbers is thus
truncated to the form:

P(θi,θ j) = p0 + p1θi + p2θ j + p12θiθ j.

This results in a very unusual set of definitions:
Z

dθ = 0 ,
Z

dθθ = 1,

introducing the very special property that the left integral of a Grassmann
variable equals its left derivative:

Z
dθ =

∂

∂θ
.

Finally, let us mention the complex conjugation rule (θiθ j)∗ = θ∗jθ
∗
i .

Therefore, the following resolution of the identity is easily proved:

1 =
Z

dη
∗dη e−η∗η |η〉〈η| . (D.17)

Turning to the question of the trace of an operator A , which should by defini-
tion correspond to

Tr A = 〈0|A |0〉+ 〈1|A |1〉 , (D.18)
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we would naively try the following η integral
Z

dη
∗dη e−η∗η 〈η|A |η〉= 〈0|A |0〉−〈1|A |1〉 (D.19)

which manifestly differs from (D.18) by a minus sign; this can be avoided by
defining the trace of an operator A over fermionic states as

Tr A ≡
Z

dη
∗dη e−η∗η 〈−η|A |η〉 . (D.20)

Recalling the definition of the partition function (D.9), a corresponding in-
tegral expression may be given as a starting point for constructing its path
integral representation, but the opposite sign in the bra 〈−η| leads to the anti-
periodic condition in imaginary time.

D.3 Correlation function

In general, the generating functional associated to the partition function (D.10)
is defined through

Z(β; j) =
Z

Dq(τ)exp
[
−SE(β)+

Z
β

0
dτ j(τ)q(τ)

]
(D.21)

or the alternative operator form

Z(β; j) = Tr
[

e−βHT (e
R β

0 dτ j(τ)q(τ))
]

. (D.22)

Functional derivation of the integral expression yields the propagator in ima-
ginary time

P(τ1,τ2) =
1

Z(β)
δ2Z(β; j)

δ j(τ1)δ j(τ2)

∣∣∣∣
j=0

=
1

Z(β)

Z
Dq(τ) q(τ1)q(τ2) e−SE (β) . (D.23)

Recalling the general definition for the thermal average of an operator A at a
temperature 1/β

〈A〉β =
1

Z(β)
Tr
[
Ae−βH

]
,

it is straightforward to show that the propagator P(τ1,τ2) is also the thermal
average of the correlation operator with ordered time 〈T q(τ1)q(τ2)〉β between
time-dependent (Heisenberg) position operators q(τi) = eHτiqe−Hτi . Indeed,
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the generating functional (D.21) for the harmonic oscillator is easily computed
and then integrated by parts, leading to

Z(β; j) =
Z

Dq(τ)exp
[
−
Z

β

0
dτ

(
q(τ)

(
−m

2
d2

dτ2 +
mω2

2

)
q(τ)− j(τ)q(τ)

)]
;

(D.24)
completing the square in the exponential factor, the resulting exponential is
gaussian and may be integrated, leaving

Z(β; j) = Z(β) exp
[

1
2

Z
dτdτ

′ j(τ)G(τ,τ′) j(τ′)
]

(D.25)

where the Green function G(τ,τ′) is the inverse of the differential operator.
Differentiating this last expression with respect to j(τ) achieves to prove the
identity between the Green function of the differential operator and the time-
ordered correlator in imaginary time:

G(τ,τ′) = 〈T q(τ)q(τ′)〉β =
1

Z(β)
Tr
[
e−βHT q(τ)q(τ′)

]
. (D.26)

This relation generalises immediately to the case of complex fields.



APPENDIX

E
Relativistic BCS model

Detailed calculations

In this Appendix are detailed the calculations leading to the identification of
the first and second order corrections to the effective action.

E.1 First order corrections

E.1.1 Correlation functions

The identification of the first order corrections to the effective action requires
the calculation of the inverse matrix S−1

o . As shown in Appendix D, this matrix
is the Green’s function of the differential operator matrix So and may be iden-
tified with the time-ordered correlation function of the spinors in the Heisen-
berg picture 〈T ψi(x1,τ1)ψ j(x2,τ2)〉. Hence we start by expressing the Dirac
spinor (5.6) and other relevant spinors in terms of the Bogoliubov operators
B(k,s) and D(k,s) and their conjugates, defined as

B(k,s) = b(k,s) cosθB(k)−b†(−k,−s) seiφo sinθB(k)

D(k,s) = d(k,s) cosθD(k)+d†(−k,−s) se−iφo sinθD(k) ,
(E.1)

where φo is the phase of the order parameter, ∆o = |∆o|eiφo .
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We further convert them in the Heisenberg picture

ψH(x,τ) = eiHot
ψS(x)e−iHot = eHoτ

ψS(x)e−Hoτ

with the homogeneous hamiltonian (5.10) used as the evolution operator in
imaginary time; to this end, we recall the Baker-Campbell-Hausdorff (BCH)
formula

eABe−A = B+[A,B]+
1
2!

[A, [A,B]]+ . . . .

After some algebra, one obtains (for the sake of simplicity, the dependence of
the mixing angles in the momentum vectors is omitted):

ψ(x,τ) =
Z d3k

(2π)3 2ω(k) ∑
s

{
B(k,s) e−EBτ+ik·x u(k,s)cosθB

+ B†(k,s) eEBτ−ik·x u(−k,−s) sinθB (−seiφo)

+ D†(k,s) eEDτ−ik·x v(k,s) cosθD

+ D(k,s) e−EDτ+ik·x v(−k,−s) sinθD (seiφo)
}

;

ψ(x,τ) =
Z d3k

(2π)3 2ω(k) ∑
s

{
B†(k,s) eEBτ−ik·x u(k,s)cosθB

+ B(k,s) e−EBτ+ik·x u(−k,−s) sinθB (−se−iφo)

+ D(k,s) e−EDτ+ik·x v(k,s) cosθD

+ D†(k,s) eEDτ−ik·x v(−k,−s) sinθD (se−iφo)
}

;

ψc(x,τ)=
Z d3k

(2π)3 2ω(k) ∑
s

{
B†(k,s) eEBτ−ik·x (+s) v(k,−s)cosθB

+ B(k,s) e−EBτ+ik·x (−s) v(−k,s) sinθB (−se−iφo)

+ D(k,s) e−EDτ+ik·x (−s) u(k,−s) cosθD

+ D†(k,s) eEDτ−ik·x (+s) u(−k,s) sinθD (se−iφo)
}

;

ψc(x,τ)=
Z d3k

(2π)3 2ω(k) ∑
s

{
B(k,s) e−EBτ+ik·x (+s) v(k,−s)cosθB

+ B†(k,s) eEBτ−ik·x (−s) v(−k,s) sinθB (−seiφo)
+ D†(k,s) eEDτ−ik·x (−s) u(k,−s) cosθD

+ D(k,s) e−EDτ+ik·x (+s) u(−k,s) sinθD (seiφo)
}

.

(E.2)
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Indeed, one easily proves the following identities under charge conjugation:

uc(k,s) = s v(k,−s) , vc(k,s) =−s u(k,−s) .

The arbitrary phase ηc has been absorbed into the order parameter ∆o. From
these expressions it is possible to calculate the relevant correlation functions,
for instance〈

T ψr(x1,τ1) ψs(x2,τ2)
〉

=
1

Tr e−βHo
Tr
[
e−βHoψr(x1,τ1)ψs(x2,τ2)

]
, τ1 > τ2 .

Denoting ∆x = x1−x2 and ∆τ = τ1− τ2, we have〈
T ψ(x1,τ1) ψ(x2,τ2)

〉
i j

=

=
Z d3k

(2π)3 2ω
∑
s

{
e−EB∆τ+ik·∆x 1

1+e−βEB
ui(k,s)ū j(k,s) cos2 θB

+eEB∆τ−ik·∆x e−βEB

1+e−βEB
ui(−k,−s)ū j(−k,−s) sin2

θB

+eED∆τ−ik·∆x e−βED

1+e−βED
vi(k,s)v̄ j(k,s) cos2 θD

+e−ED∆τ+ik·∆x 1
1+e−βED

vi(−k,−s)v̄ j(−k,−s) sin2
θD

}
〈

T ψ(x1,τ1) ψc(x2,τ2)
〉

i j
=

=
Z d3k

(2π)3 2ω
∑
s

{
e−EB∆τ+ik·∆x 1

1+e−βEB
ui(k,s)v̄ j(−k,s)eiφo sinθB cosθB

−eEB∆τ−ik·∆x e−βEB

1+e−βEB
ui(−k,−s)v̄ j(k,−s)eiφo sinθB cosθB

+eED∆τ−ik·∆x e−βED

1+e−βED
vi(k,s)ū j(−k,s)eiφo sinθD cosθD

−e−ED∆τ+ik·∆x 1
1+e−βED

vi(−k,−s)ū j(k,−s)eiφo sinθD cosθD

}〈
T ψc(x1,τ1) ψ(x2,τ2)

〉
i j

=

=
Z d3k

(2π)3 2ω(k) ∑
s

{
−eEB∆τ−ik·∆x e−βEB

1+e−βEB
vi(k,−s)ū j(−k,−s)e−iφo sinθB cosθB

+e−EB∆τ+ik·∆x 1
1+e−βEB

vi(−k,s)ū j(k,s)e−iφo sinθB cosθB

−e−ED∆τ+ik·∆x 1
1+e−βED

ui(k,−s)v̄ j(−k,−s)e−iφo sinθD cosθD

+eED∆τ−ik·∆x e−βED

1+e−βED
ui(−k,s)v̄ j(k,s)e−iφo sinθD cosθD

}

. . ./ . . .
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〈
T ψc(x1,τ1) ψc(x2,τ2)

〉
i j
=

=
Z d3k

(2π)3 2ω
∑
s

{
eEB∆τ−ik·∆x e−βEB

1+e−βEB
vi(k,−s)v̄ j(k,−s)cos2 θB

+e−EB∆τ+ik·∆x 1
1+e−βEB

vi(−k,s)v̄ j(−k,s)sin2
θB

+e−ED∆τ+ik·∆x 1
1+e−βED

ui(k,−s)ū j(k,−s)cos2 θD

+eED∆τ−ik·∆x e−βED

1+e−βED
ui(−k,s)ū j(−k,s)sin2

θD

}
.

(E.3)
The tensor products of the free spinors u(±k,±s) and v(±k,±s) are to be con-
sidered together with the spin sums according to the following properties:

∑
s

u(k,s)⊗ ū(k,s) = k/+m , ∑
s

u(k,s)⊗ v̄(−k,s) = (k/+m)γ5γ0

∑
s

v(k,s)⊗ v̄(k,s) = k/−m , ∑
s

v(−k,s)⊗ ū(k,s) = γ0(k/−m)γ5
(E.4)

Then the inverse Fourier transforms over the imaginary time are performed,
in order to obtain the Matsubara propagators

P(iωn) =
Z

β

0
dτeiωnτP(τ) , P(τ) =

1
β

∑
n

e−iωnτP(iωn) , ωn =
2n+1

β
π , n ∈ Z .

(E.5)
Finally, the values of the mixing angles θB and θD are substituted using (5.9).
One ends up with the correlation functions

S−1
o (x1,x2) =

 〈
T ψ(x1,τ1) ψ(x2,τ2)

〉 〈
T ψ(x1,τ1) ψc(x2,τ2)

〉〈
T ψc(x1,τ1) ψ(x2,τ2)

〉 〈
T ψc(x1,τ1) ψc(x2,τ2)

〉  (E.6)
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where〈
T ψ(x1,τ1) ψ(x2,τ2)

〉
=

1
β

∑
n

Z d3k
(2π)3 2ω

e−iωn∆τ+ik·∆x

{
− 2ω

a2−4ω2µ2
o

[
γo
[
a(µo− iωn)−2µoω

2]+[a−2µo(µo− iωn)] (k · γγγ−m)
]}

〈
T ψ(x1,τ1) ψc(x2,τ2)

〉
=

1
β

∑
n

Z d3k
(2π)3 2ω

e−iωn∆τ+ik·∆x

{
− 2ω

a2−4ω2µ2
o

∆oγ5 [a+2µoγo(k · γγγ−m)]

}
〈

T ψc(x1,τ1) ψ(x2,τ2)
〉

=
1
β

∑
n

Z d3k
(2π)3 2ω

e−iωn∆τ+ik·∆x

{
2ω

a2−4ω2µ2
o

∆
†
oγ5 [a−2µoγo(k · γγγ−m)]

}
〈

T ψc(x1,τ1) ψc(x2,τ2)
〉

=
1
β

∑
n

Z d3k
(2π)3 2ω

e−iωn∆τ+ik·∆x

{
− 2ω

a2−4ω2µ2
o

[
−γo

[
a(µo + iωn)−2µoω

2]+[a−2µo(µo + iωn)] (k · γγγ−m)
]}

with a = ω2 +µ2
o + |∆o|2 +ω2

n.

E.1.2 The Green’s function of the differential operator

It is now possible to check that S−1
o provides indeed the Green’s function of

the homogeneous differential operator: let us evaluate1

SoS−1
o :

Z
d4x3So(x1,x3)S−1

o (x3,x1)

=
Z

d4x3δ
(4)(x1− x3)S o(x3)S−1

o (x3,x2)

= S o(x1)S−1
o (x1,x2) ,

S o(x1)S−1
o (x1,x2) =

 γ0∂τ1 − iγγγ ·∇∇∇x1 +m−µo γ0 ∆oγ5

−∆†
oγ5 γ0∂τ1 − iγγγ ·∇∇∇x1 +m+µo γ0

 ×

 〈
T ψ(x1,τ1) ψ(x2,τ2)

〉 〈
T ψ(x1,τ1) ψc(x2,τ2)

〉〈
T ψc(x1,τ1) ψ(x2,τ2)

〉 〈
T ψc(x1,τ1) ψc(x2,τ2)

〉  .

1The operator S o is defined through the identity So(x1,x2) = δ(4)(x1− x2)S o(x2).
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Considering the upper-left element:

(SoS−1
o )11 =

1
β

∑
n

Z d3k
(2π)3 e−iωn∆τ+ik·∆x 1

a2−4ω2µ2
o
×{

− [k · γγγ+m− (µo + iωn)γo] ×[
γo
[
a(µo− iωn)−2µoω

2]+[a−2µo(µo− iωn)] (k · γ−m)
]

+|∆o|2 [a−2µoγo(k · γγγ−m)]

}
. (E.7)

The properties of the γ matrices greatly simplify the term between brackets
and we are left with

(SoS−1
o )11 =

1
β

∑
n

Z d3k
(2π)3 e−iωn∆τ+ik·∆x = δ

(3)(∆x)∑
n

(−1)n
δ(∆τ+nβ) (E.8)

where we have used the Poisson resummation formula in the antiperiodic case

1
L ∑

n
e−iπ 2n+1

L x f̃ (π
2n+1

L
) = ∑

n
(−1)n f (x+nL)

for the special case f̃ (k) = 1, f (x) = δ(x) and L = β. The sum ∑n(−1)nδ(∆τ+nβ)
hence represents the antiperiodic delta function over a variable τ running on a
circle with circumference β. The term (SoS−1

o )22 provides the same result, and
the off-diagonal terms are shown to cancel exactly.

E.1.3 Trace evaluation and the Matsubara sums

Once the correlation functions are known, we have to evaluate the trace

Tr S−1
o ∆S =

Z
β

0
dτ

Z
d3x

1
β

∑
n

Z d3k
(2π)3 e−iωnτ+ik·x tr S−1

o (iωn,k)∆S(x). (E.9)

The matrix ∆S(x) does not contain any explicit time dependency and the τ

integration is immediately performed to cancel the 1/β factor. Since we are
interested in the trace of this product, only the diagonal terms are evaluated;
the γ matrices with a non-vanishing trace provide an additional factor of 4 and
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we are left with

Tr


〈

T ψ ψ

〉
β

〈
T ψ ψc

〉
β〈

T ψc ψ

〉
β

〈
T ψc ψc

〉
β


 −µ(x)γ0− eA(x) · γγγ ∆(x)γ5

−∆
†(x)γ5 µ(x)γ0 + eA(x) · γγγ


=

Z
d3x ∑

n

Z d3k
(2π)3

4
a2−4ω2µ2

o
×{

2µoµ(x)
(

a−2ω
2
)
−4µoe iωn k ·A(x)+a

(
∆o∆

†(x)+∆
†
o∆(x)

)}
(E.10)

with a = ω2 +µ2
o + |∆o|2 +ω2

n. By reason of isotropy, the term in k ·A(x) does not
survive the d3k integration. For the other terms, we need to perform the Mat-
subara summations. Referring back to (5.36), one has to evaluate expressions
involving one of the following sums:

∑
n

a
a2−4µ2

oω2 =
1
2 ∑

n

[
1

E2
B +ω2

n
+

1
E2

D +ω2
n

]
∑
n

1
a2−4µ2

oω2 =
1

4µoω
∑
n

[
1

E2
B +ω2

n
− 1

E2
D +ω2

n

]

for which we evaluate in a general case

∑
n

1
E2 +ω2

n
= −β

2

I dk0

2πi
1

(E2− k02)
tanh(

1
2

βk0)

= −β

2
Res

[
1

(E− k0)(E + k0)
tanh(

1
2

βk0)
]
±E

=
β

2E
tanh(

1
2

βE). (E.11)

Hence we have

∑
n

a
a2−4ω2µ2

o
=

β

4

[
1

EB
tanh(

1
2

βEB)+
1

ED
tanh(

1
2

βED)
]

(E.12)

∑
n

a−2ω2

a2−4ω2µ2
o

=− β

4µo

(ω−µo)
EB

tanh(
1
2

βEB)+
β

4µo

(µo +ω)
ED

tanh(
1
2

βED) . (E.13)
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Substituting in the previous expressions and then in the trace of the matrix
product, we obtain finally the first-order term of the effective action

Seff = − 1
2β

Z
d3x

Z d3k
(2π)3 × (E.14){

−2βµ(x)
[ (ω−µo)

EB
tanh(

1
2

βEB)− (µo +ω)
ED

tanh(
1
2

βED)
]

+β

(
∆o∆

†(x)+∆
†
o∆(x)

)[ 1
EB

tanh(
1
2

βEB)+
1

ED
tanh(

1
2

βED)
]}

.

E.2 Second order corrections

E.2.1 Identification of the relevant terms

We consider the generalised Ginzburg-Landau free energy functional

F =
Z

d3x
{

f (∆,µ)|(∇∇∇− iqA)∆|2 +Veff(∆,µ)+g(∆,µ)|∇∇∇µec|2 +h(∆,µ)|B|2
}

.

(E.15)
For reasons that will become clear somewhat later, there is no need to express
the magnetic contribution in terms of the vector potential. We expand the or-
der parameter around its homogeneous value ∆ = ∆o +∆ and the electrochem-
ical potential around the chemical potential µ = µo + µ; we may then identify
the specific form of f (∆,µ) and some contributions to g(∆,µ) and h(∆,µ) by con-
sidering the perturbations to the lowest order in the Fourier transformations
of the fields A(x), µec(x) and ∆(x) according to the general parametrisation

F(x) =
Z d3k

(2π)3 e−ik·xF̃(k) . (E.16)

The specific terms of the free energy become2:
Z

d3x f (∆,µ)∇∇∇∆
† ·∇∇∇∆

=
Z

d3x f (∆o,µo)
Z d3k1

(2π)3

Z d3k2

(2π)3 ei(k1−k2)·x (ik1) · (−ik2) ∆
†(k1)∆(k2)

=
Z d3k1

(2π)3

Z d3k2

(2π)3 f (∆o,µo) (2π)3
δ

(3)(k1−k2)(k1 ·k2)∆
†(k1)∆(k2)

=
Z d3k

(2π)3 f (∆o,µo) |k|2∆
†(k)∆(k) . (E.17)

2The variable on which the fields depend are sufficient to identify the configuration or Fourier
space and the tilde notations is therefore omitted.
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Likewise,

Z
d3x g(∆,µ)|∇∇∇µ|2 =

Z d3k
(2π)3 g(∆o,µo) |k|2µ(−k)µ(k) (E.18)

since the electrochemical potential is supposed to be real. Finally, the correc-
tions to the magnetic term simply come through

Z
d3x h(∆o,µo)|B|2 . (E.19)

These expression may be compared to specific terms of the second order
corrections to the effective action.

E.2.2 Evaluation of the matrix product

The second order corrections to the effective action are

S(2)
eff =

1
4β

Tr [S−1
o ∆SS−1

o ∆S ] (E.20)

=
1

4β

Z
d4x1d4x2d4x3d4x4 tr S−1

o (x1,x2)∆S(x2,x3)S−1
o (x3,x4)∆S(x4,x1)

=
1

4β

Z
d4x1d4x2 tr ∆S(x1)S−1

o (x1,x2)∆S(x2)S−1
o (x2,x1)

=
1

4β

Z
β

0
dτ1dτ2

Z
d3x1d3x2

1
β2 ∑

n1,n2

Z d3k1

(2π)3
d3k2

(2π)3 ×

e−iωn1(τ1−τ2)+ik1.(x1−x2) e−iωn2(τ2−τ1)+ik2.(x2−x1) ×

tr ∆S(x1)S−1
o (iωn1,k1)∆S(x2)S−1

o (iωn2,k2)

=
1

4β

Z
d3x1d3x2

Z d3k1

(2π)3
d3k2

(2π)3 ∑
n
×

e−i(k1−k2)·(x2−x1) tr ∆S(x1)S−1
o (iωn,k1)∆S(x2)S−1

o (iωn,k2)

where the cyclicity of the trace operation has been used to modify the order of
the matrix product. As previously, the small trace is used to denote the usual
sum over diagonal matrix elements.
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The operator matrices are

S−1
o (iωn,k) =

1
a2−4µ2

oω2 × (E.21)

[2µoω2−a(µo− iωn)]γo
∆oγ5[2µo(k.γγγ+m)γo−a]

+[2µo(µo− iωn)−a](k.γγγ−m)

∆†
oγ5[2µo(k.γγγ+m)γo +a] [a(µo + iωn)−2µoω2]γo

+[2µo(µo + iωn)−a](k.γγγ−m)



with a = ω2 +µ2
o +∆2

o +ω2
n , and

∆S(k) =

(
−µ(k)γo− eA(k).γγγ ∆(k)γ5

−∆
†(k)γ5 µ(k)γo + eA(k).γγγ

)
. (E.22)

We may calculate explicitly the whole collection of terms, taking into account
the trace properties of the γ matrices and ignoring the terms odd in iωn in the
numerator, since they do not contribute to the summation over the Matsubara
frequencies.

In order to simplify the notations, we denote ∆i for ∆(xi) and identically
for µi and Ai. We also have a1 = ω2

1 + µ2
o + ∆2

o + ω2
n , a2 = ω2

2 + µ2
o + ∆2

o + ω2
n ,

and N1 = a2
1−4µ2

oω2
1 , N2 = a2

2−4µ2
oω2

2 . The total second order correction to the
effective action is then:
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S(2)
eff =

1
4β

Z
d3x1d3x2

Z d3k1

(2π)3
d3k2

(2π)3 ∑
n

e−i(k1−k2)·(x2−x1) 4
N1N2

×{ [
∆

†
1∆2 +∆1∆

†
2
]

{[
−µ2

o(a1−2ω
2
1)(a2−2ω

2
2)−a1a2(ω2

n + |∆o|2)
]

+(k1 ·k2 +m2)
[
− (a1−2µ2

o)(a2−2µ2
o)−4µ2

o(ω
2
n + |∆o|2)

]}
+
[
∆

†
o∆1 +∆o∆

†
1
][

∆
†
o∆2 +∆o∆

†
2
] [

a1a2 +4µ2
o(k1 ·k2 +m2)

]
+2µ1µ2

{[
µ2

o(a1−2ω
2
1)(a2−2ω

2
2)−a1a2(ω2

n + |∆o|2)
]

+(k1 ·k2 +m2)
[
(a1−2µ2

o)(a2−2µ2
o)−4µ2

o(ω
2
n + |∆o|2)

]}
+2e2A1 ·A2

{[
µ2

o(a1−2ω
2
1)(a2−2ω

2
2)−a1a2(ω2

n−|∆o|2)
]

+(k1 ·k2 +m2)
[
− (a1−2µ2

o)(a2−2µ2
o)+4µ2

o(ω
2
n−|∆o|2)

]}
+2e2 (A1 ·k1A2 ·k2 +A1 ·k2A2 ·k1)[

(a1−2µ2
o)(a2−2µ2

o)−4µ2
o(ω

2
n−|∆o|2)

]
+2µo[µ1(∆†

o∆2 +∆o∆
†
2)+µ2(∆†

o∆1 +∆o∆
†
1)]{[

(a1−ω
2
1)(a2−ω

2
2)−ω

2
1ω

2
2
]
+(k1 ·k2 +m2)

[
4µ2

o−a1−a2
]}

+
[
eA1(∆†

o∆2−∆o∆
†
2)− eA2(∆†

o∆1−∆o∆
†
1)
]
·

·
[
k2(4µ2

oω
2
1−a1a2)−k1(4µ2

oω
2
2−a1a2)

] }
. (E.23)

Let us concentrate only on the first contribution. Introducing the coeffi-
cient F∆∆ which involves all the terms between the brackets as well as the
summation over the Matsubara frequencies, we perform the Fourier transfor-
mation over the fields ∆(x1) and ∆(x2):
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S(2)
eff [∆∆] =

1
4β

Z
d3x1d3x2

Z d3k1

(2π)3
d3k2

(2π)3 ×

e−i(k1−k2)·(x2−x1) F∆∆(iωn,k1,k2)
[
∆

†(x1)∆(x2)+∆(x1)∆
†(x2)

]

=
1

4β

Z
d3x1d3x2

Z d3k1

(2π)3
d3k2

(2π)3
d3l1
(2π)3

d3l2
(2π)3 eil1·x1−il2·x2 ×

e−i(k1−k2)·(x2−x1) F∆∆(iωn,k1,k2)
[
∆

†(l1)∆(l2)+∆(−l1)∆
†(−l2)

]

=
1

4β

Z d3k1

(2π)3
d3k2

(2π)3 F∆∆(iωn,k1,k2) ×[
∆

†(k2−k1)∆(k2−k1)+∆(k1−k2)∆
†(k1−k2)

]
=

1
4β

Z d3k1

(2π)3
d3k2

(2π)3 2∆
†(k2−k1)∆(k2−k1) F∆∆(iωn,k1,k2) , (E.24)

the last step resulting from the fact that the coefficient F∆∆ is not affected by the
exchange k1 � k2. Then we assume that second order corrections are located
close to each other in momentum space and we expand k1 and k2 around their
average position:{

K = 1
2 (k1 +k2)

k = k2−k1
or equivalently

{
k1 = K− k

2
k2 = K+ k

2
. (E.25)

The term of the effective action involving the squared ∆ becomes

S(2)
eff [∆∆] =

1
4β

Z d3K
(2π)3

d3k
(2π)3 2∆

†(−k)∆(k) F∆∆(iωn,K,k) . (E.26)

Comparing with (E.17), we conclude that the parameter f (∆o,µo) corresponds
to the series expansion of F∆∆ to second order in k around K, which we denote

f (∆o,µo) =
2

4β

Z d3K
(2π)3 ∂k2 F∆∆|k=0 . (E.27)

Likewise, we may collect all terms of the matrix product involving squared
corrections in the electrochemical potential and further perform the Fourier
transform; we obtain

S(2)
eff [µµ] =

1
4β

Z d3k
(2π)3

d3K
(2π)3 µ(−k) µ(k) Fµµ(iωn,k,K) . (E.28)
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Comparing with (E.18), we identify the parameter of the correction to the elec-
tric term of the free energy as the second order term of the series expansion of
Fµµ in k around K:

g(∆o,µo) =
1

4β

Z d3K
(2π)3 ∂k2 Fµµ

∣∣
k=0 . (E.29)

Finally, terms with squared vector potential are collected in two distinct ex-
pressions:

S(2)
eff [AA] =

1
4β

Z d3k
(2π)3

d3K
(2π)3 FAA(iωn,k,K) A(−k)A(k) (E.30)

S(2)
eff [kA] =

1
4β

Z d3k
(2π)3

d3K
(2π)3 FkA(iωn,k,K) ×

2
[

A(−k) ·KA(k) ·K+
1
4

A(−k) ·kA(k) ·k
]

(E.31)

Recalling the expression of the vector potential after Wilson integration

A(x) =−1
2

Z 1

0
du [(x−y)×B(y+u(x−y))]

and assuming we may effectively perform this integration, we deduce that
only the zeroth order term of the series expansion in k around K is required to
identify the correction to the magnetic sector of the free energy, namely

h(∆,µ) =
1

4β

Z d3K
(2π)3

[
FAA|k=0 +

2K2

3
FkA|k=0

]
. (E.32)

E.2.3 Matsubara sums

Before giving the series expansion of the coefficients multiplying the terms
with squared gradients of the fields, we perform the summations over the
Matsubara frequencies, using the same method as in the case of the first order
corrections. Let us define

T1(E1,E2) =
1

E2
2 −E2

1

[
β

2E1
tanh

βE1

2
− β

2E2
tanh

βE2

2

]
(E.33)

T2(E1,E2) =
1

E2
2 −E2

1

[
βE1

2
tanh

βE1

2
− βE2

2
tanh

βE2

2

]
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where Ei ≡ E(ki) represents either electron or positron energies. With these
notations, all Matsubara sums follow from one of the expressions hereafter:

∑
n

1
N1N2

=
1

16µ2
oω1ω2

{
T1(EB1,EB2)−T1(ED1,EB2)−T1(EB1,ED2)+T1(ED1,ED2)

}
∑
n

a1

N1N2
=

1
8µoω2

{
T1(EB1,EB2)+T1(ED1,EB2)−T1(EB1,ED2)−T1(ED1,ED2)

}
∑
n

a2

N1N2
=

1
8µoω1

{
T1(EB1,EB2)−T1(ED1,EB2)+T1(EB1,ED2)−T1(ED1,ED2)

}
∑
n

a1a2

N1N2
=

1
4

{
T1(EB1,EB2)+T1(ED1,EB2)+T1(EB1,ED2)+T1(ED1,ED2)

}

∑
n

ω2
n

N1N2
=

−1
16µ2

oω1ω2

{
T2(EB1,EB2)−T2(ED1,EB2)−T2(EB1,ED2)+T2(ED1,ED2)

}
∑
n

ω2
na1a2

N1N2
=

−1
4

{
T2(EB1,EB2)+T2(ED1,EB2)+T2(EB1,ED2)+T2(ED1,ED2)

}
.

(E.34)
The coefficient affecting the second order term in ∆ then become

F∆∆(iωn,k1k2)

= ∑
n

4
N1N2

{[
−µ2

o(a1−2ω
2
1)(a2−2ω

2
2)−a1a2(ω2

n + |∆o|2)
]

+(k1 ·k2 +m2)
[
− (a1−2µ2

o)(a2−2µ2
o)−4µ2

o(ω
2
n + |∆o|2)

]}
=

{
T1(EB1,EB2)

[
−(ω1−µo)(ω2−µo)−|∆o|2

]
+T1(ED1,EB2)

[
(ω1 +µo)(ω2−µo)−|∆o|2

]
+T1(EB1,ED2)

[
(ω1−µo)(ω2 +µo)−|∆o|2

]
+T1(ED1,ED2)

[
−(ω1 +µo)(ω2 +µo)−|∆o|2

]
+
[
T2(EB1,EB2)+T2(ED1,EB2)+T2(EB1,ED2)+T2(ED1,ED2)

]}
− k1 ·k2 +m2

ω1ω2

{
T1(EB1,EB2)

[
(ω1−µo)(ω2−µo)+ |∆o|2

]
+T1(ED1,EB2)

[
(ω1 +µo)(ω2−µo)−|∆o|2

]
+T1(EB1,ED2)

[
(ω1−µo)(ω2 +µo)−|∆o|2

]
+T1(ED1,ED2)

[
(ω1 +µo)(ω2 +µo)+ |∆o|2

]
− [T2(EB1,EB2)−T2(ED1,EB2)−T2(EB1,ED2)+T2(ED1,ED2)]

}
.

(E.35)

At this point, the whole expression may advantageously be simplified by col-
lecting all terms involving hyperbolic tangents of the same type. Anticipating
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the series expansion in k around K, we introduce the following notation:

k2
i = K2 + ελ , ελ = λ k ·K+

k2

4
,

{
λ =−1⇔ i = 1
λ = +1⇔ i = 2

(E.36)

and

Eα
i =

√
(ωi +αµo)2 + |∆o|2 ,

{
α =−1⇔ Eα

i = EB(ki)
α = +1⇔ Eα

i = EB(ki)
(E.37)

Hence λ =±1 is associated with the location of the corrections in momentum
space, and α =±1 distinguishes between electron and positron sectors respec-
tively. With these notations, it turns out that the order parameter contribution
takes a very concise form:

F∆∆ = β ∑
α=±1

∑
λ=±1

ωλ +αµo

ωλ

1
Eα

λ

tanh
βEα

λ

2

[
kλ · (k−λ−kλ)−2αµoωλ

(ωλ +2αµo)2−ω2
−λ

]
. (E.38)

The factor affecting the squared electrochemical potential is treated in exactly
the same way:

Fµµ = 2∑
n

4
N1N2

{[
µ2

o(a1−2ω
2
1)(a2−2ω

2
2)−a1a2(ω2

n + |∆o|2)
]

+(k1 ·k2 +m2)
[
(a1−2µ2

o)(a2−2µ2
o)−4µ2

o(ω
2
n + |∆o|2)

]}

= 2β ∑
α=±1

∑
λ=±1

ωλ +αµo

ωλ

1
Eα

λ

tanh
βEα

λ

2

[
kλ · (k−λ +kλ)+2m2

ω2
−λ
−ω2

λ

]
. (E.39)

The coefficient of the squared vector potential is:

FAA = 2e2
∑
n

4
N1N2

[
µ2

o(a1−2ω
2
1)(a2−2ω

2
2)−a1a2(ω2

n−|∆o|2)
]

+(k1 ·k2 +m2)
[
− (a1−2µ2

o)(a2−2µ2
o)+4µ2

o(ω
2
n−|∆o|2)

]
= 2e2

β ∑
α=±1

∑
λ=±1

ωλ +αµo

ωλ

1
Eα

λ

tanh
βEα

λ

2

[
ω2

λ
− (kλ ·k−λ +m2)

ω2
λ
−ω2

−λ

]
(E.40)

with an additional term including |∆o|2 that may be omitted.
The last expression to be considered is

FkA = 2e2[(a1−2µ2
o)(a2−2µ2

o)−4µ2
o(ω

2
n−|∆o|2)

]
= 2e2

β ∑
α=±1

∑
λ=±1

ωλ +αµo

ωλ

1
Eα

λ

tanh
βEα

λ

2

[
1

ω2
λ
−ω2

−λ

]
(E.41)

where the additional term in |∆o|2 is also omitted.
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E.2.4 Series expansion

We now turn to the expansion of the previous expressions in power series of
k around K. Depending on the coefficients to be identified, the expansions
should be performed up to the lowest or the second order, which means that
some functions must be expanded up to third order in order to cancel one
singularity sometimes appearing in the denominators. Let us define

ω =
√

K2 +m2

Eα =
√

(ω+αµo)2 + |∆o|2 (E.42)

rα =
ω+αµo

ω

tα = tanh
βEα

2
.

In terms of these variables, we prove the following expansions:

(a) The common factor

ωλ +αµo

ωλ

1
Eα

λ

tanh
βEα

λ

2
= rα

1
Eα

tanh
βEα

2
−Cα

1 ελ−Cα
2 ε

2
λ
−Cα

3 ε
3
λ

(E.43)

comes with the coefficients

Cα
1 =

[
αµo

2ω3Eα

+
r2

α

2E3
α

]
tα−

r2
α

2E2
α

β

2
(1− t2

α)

Cα
2 =

[
− 3αµo

8ω5Eα

− 3rααµo

8ω3E3
α

− 3r3
α

8E5
α

]
tα

+
[

3rααµo

8ω3E2
α

+
3r3

α

8E4
α

]
β

2
(1− t2

α)

+
3βr3

α

8E3
α

β

2
(1− t2

α) tα (E.44)

Cα
3 =

[
5αµo

16ω7Eα

+
µ2

o

16ω6E3
α

+
rααµo

4ω5E3
α

+
3r2

ααµo

8ω3E5
α

+
5r4

α

16E7
α

]
tα

−
[

µ2
o

16ω6E2
α

+
rααµo

4ω5E2
α

+
3r2

ααµo

8ω3E4
α

+
5r4

α

16E6
α

]
β

2
(1− t2

α)

− β

8

[
αµor2

α

ω3E3
α

+
r4

α

E5
α

]
β

2
(1− t2

α) tα

− β2

48
r4

α

E4
α

β

2
(1− t2

α) t2
α

+
βr4

α

48E4
α

[
β

2
(1− t2

α)
]2

.
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(b) The term from the ∆2 contribution

kλ · (k−λ−kλ)−2αµoωλ

(ω2
λ
+2αµo)2−ω2

−λ

=− 1
rα

[
1+λ

k ·K
2ω2 +

1
4αµoω

(
1+

µ2
o

1ω2rα

)(
k2− (k ·K)2

ω2

)]
(E.45)

(c) The term from the µ2 contribution

kλ · (k−λ +kλ)+2m2

ω2
−λ
−ω2

λ

=
2ω2 +λ k ·K
−2λ k ·K

. (E.46)

(d) The term from the A2 contribution

ω2
λ
− (kλ ·k j +m2)

ω2
λ
−ω2

−λ

=
1
2

+O(k) . (E.47)

(e) The (k ·A)2 contribution

1
ω2

λ
−ω2

−λ

=
1

2λ k ·K
. (E.48)

Finally, we retain the following contributions:

S(2)
eff [∆∆] :

Z d3k
(2π)3 k2

∆
†(k)∆(k) ×

Z d3K
(2π)3 ∑

α=±1

{
1

8rα

[
1+

2K2

3ω2

]
Cα

1 +
K2

6rα

Cα
2

− 1
Eα

tα
1

8αµoω

[
1+

µ2
o

2ω2rα

][
1− K2

3ω2

]}

S(2)
eff [µµ] :

Z d3k
(2π)3 k2 µ(−k)µ(k) ×

Z d3K
(2π)3 ∑

α=±1

{
ω2

2

[
Cα

2 +
2K2

3
Cα

3

]
+

1
8

[
Cα

1 +
4K2

3
Cα

2

]}

S(2)
eff [AA] :

Z d3k
(2π)3 e2A(−k)A(k) ×

Z d3K
(2π)3 ∑

α=±1

{
−α(µ2

o +αµoω)
2K2 +3m2

6ω3Eα

tα−
K2

6ω2
β

2
(1− t2

α)

}
. (E.49)
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