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Introduction

There are just three possibilities:
1. Charm is not found, and I eat my hat.
2. Charm is found by hadron spectroscopy, and we
celebrate.
3. Charm is found by outlanders, and you eat your hats.

Shelly Glashow

For thousands of years human beings were observing different phenomena
and then they were trying to find explanations to the observations. However,
the c-quark has been discovered in the opposite way. First, it has been
predicted by the theory, and second, its existence has been demonstrated by
the experiment. This is exactly the reason why c-quark is called charm. The
quark has been discovered in 1974 [1, 2]. Since then, a lot of experiments
have been performed to study its properties but even today there are dark
areas in the knowledge about this particle.

The analysis presented in this thesis concerns the production mechanism
and the decay properties of charmed hadrons. The analysis is based on
the events observed in neutrino and anti-neutrino deep inelastic scattering
on emulsion target. The events originate primarily from charged current
production of charm quarks,

ν + N → µ− + c+X (1)

ν + N → µ+ + c+X (2)

and were collected by the CHORUS collaboration during the years 1995-1998
at CERN.

In the last decade of XXth century several observations pointed to the
possibility that neutrinos may have masses. The difference between their
masses and non-zero mixing angles lead to so-called neutrino oscillations

1



2 Introduction

when a particle of one type transfroms into another type of particle without
external interactions. Originally, the CHORUS experiment was designed
to discover νµ → ντ oscillations by the appearance of ντ in a νµ beam.
The selection of events with τ produced in neutrino interactions is based on
flightpath. Since charmed hadrons have similar flightpaths as τ , they are
background events for the oscillations. The data sample collected for the
discovery of oscillations would contain a lot of charmed hadrons which gives
a unique opportunity to explore heavy quark production mechanisms. The
subject of this thesis is limited to charm production in neutrino-induced
charged-current interactions.

Neutrino-nucleon deep-inelastic scattering is a very effective way to study
the dynamics of c-quark production, to explore the inner structure of the
nucleon and to measure several parameters in the Standard Model of elemen-
tary particles interactions. For example, the charm production in neutrino
interactions allows to measure the difference between nucleon strange sea
content, |Vcd| and |Vcs|, the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements. Looking at the decay products of charmed hadrons permits to
directly measure the average muonic branching ratio.

The Standard Model

The Standard Model of particle physics is a model which describes the
strong, weak, and electromagnetic fundamental forces, as well as the fun-
damental particles that make up all matter. Developed in sixties and early
seventies, it is a quantum field theory, and consistent with both quantum
mechanics and special relativity. To date, almost all experimental tests
of the three forces described by the Standard Model have agreed with its
predictions. However, the Standard Model is not a complete theory of fun-
damental interactions, primarily because it does not describe gravity and
masses. The model has been proposed by S. L. Glashow, S. Weinberg and
A. Salam [3, 4, 5] and is being extended since then.

The Standard Model contains both fermionic and bosonic fundamental
particles. Fermions are particles which possess half-integer spin and obey
the Pauli exclusion principle, which states that no fermions of the same type
(electrons, quarks, etc) can share the same quantum state. Bosons possess
integer spin and do not obey the Pauli exclusion principle. The two sorts of
particles play different role in nature: fermions are particles of matter and
bosons are particles that transmit forces.

In the Standard Model, the theory of the electroweak interaction (which



3

describes the weak and electromagnetic interactions) is combined with the
theory of quantum chromodynamics. All these theories are gauge theories,
meaning that they model the forces between fermions by coupling them
to bosons which mediate (or ”carry”) the forces. The Lagrangian of each
set of mediating bosons is invariant under a transformation called a gauge
transformation, so these mediating bosons are referred to as gauge bosons.
The bosons in the Standard Model are:

• Photons, which mediate the electromagnetic interaction.

• W± and Z bosons, which mediate the weak force.

• Eight species of gluons, which mediate the strong nuclear force. Six of
these gluons are labeled as pairs of ”colors”(charges) and ”anti-colors”
(for example, a gluon can carry ”red” and ”anti-green”.) The other
two species are a more complex mix of colors and anti-colors.

• The Higgs boson, which induce spontaneous symmetry breaking of the
gauge groups and give a mass to the particles.

The gauge transformations of the gauge bosons can be exactly described
using a unitary group called a ”gauge group”. The gauge group of the
strong interaction is SU(3), and the gauge group of the electroweak interac-
tion is SU(2)×U(1). Therefore, the Standard Model is often referred to as
SU(3)×SU(2)×U(1). The Higgs boson is the only boson in the theory which
is not a gauge boson; it has a special status in the theory. Gravitons, the
bosons believed to mediate the gravitational interaction, are not accounted
for in the Standard Model.

There are twelve different types, or ”flavors”, of fermions in the Standard
Model. Among the proton, neutron, and electron, those fermions which
constitute the matter, the Standard Model considers only the electron as
a fundamental particle. The proton and neutron are aggregates of smaller
particles known as quarks, which are held together by the strong interaction.
The fundamental fermions in the Standard Model are given in Table 1.
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The fermions can be arranged in three ”generations”, the first one con-
sisting of the electron, the electron neutrino, the up and down quarks. All
ordinary matter is made from these first generation particles; the higher
generation particles decay quickly into the first generation ones (except for
the neutrinos that are thought to be stable) and can only be generated for
a short time in high-energy experiments. The reason for arranging them
in generations is that the four fermions in each generation behave almost
exactly like their counterparts in the other generations; the only difference
is their masses. For example, the electron and the muon both have half-
integer spin and unit electric charge, but the muon is about 200 times more
massive.

The electron and the electron-neutrino, and their counterparts in the
other generations, are called ”leptons”. Unlike the other fermions, they do
not possess a quality called ”color”, and therefore their interactions (weak
and electromagnetic) fall off with distance. On the other hand, the strong
force between quarks gets stronger with distance, so that quarks are always
found in colorless combinations called hadrons. These are either fermionic
baryons composed of three quarks (the proton and neutron being the most
familiar example) or bosonic mesons composed of a quark-anti-quark pair
(such as pions). The energy of such aggregates exceeds that of the quark
components due to the presence of a gluon field. This field plays an ex-
tremely important role in the hadrons production and is associated with
the mass threshold effects when a heavy quark is produced at the energies
close to the bare quark mass. And, in general, the gluon field describes the
transition between quarks as free particles into bound hadrons.

There is yet another distinctive particularity related to the quarks∗. The
quark mass eigenstates are not the same as the weak eigenstates. Phrased
differently, the quarks participating in strong and weak interactions are not
the same. This difference is accounted by introducing a mixing. By conven-
tion, the mixing is expressed in terms of a 3×3 unitary matrix V operating
on the charge −e/3 quark masses eigenstates d ′

s ′

b ′

 =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

  d
s
b

 , (3)

where d′, s′ and b′ are the weak interaction eigenstates. The first explicit
parametrization of the matrix has been made by Kobayashi and Maskawa
[6] in 1973. It is actually a generalization of the four-quark case, where

∗And to the neutrinos in the case of mixings between neutrinos of different sorts.
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the matrix is described by a single parameter, the Cabibbo angle [7]. Their
parametrization involves four parameters, three angles θ1, θ2, θ3 and a phase
δ. The phase is needed to describe the breaking of the CP invariance in the
weak interactions.

A frequently used approximation was proposed by Wolfenstein [8] which
qualitatively shows the relations between the matrix elements

V =

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 +O(λ4) , (4)

with A, ρ and η real numbers that were intended to be of order unity and
0 < λ < 1. This approximate form is widely used, but care must be taken,
since the CP -violating phase enters Vcd and Vcs through terms that are of
higher order in λ.

The precise measurements of the CKM matrix elements are extremely
important tasks because they are parameters of the Standard Model and
they enter into the Lagrangian. Also, a deviation from the unitarity would
indicate the existence of a fourth generation of the fermions. The unitar-
ity constrain is usually presented as a triangle on a plane which combines
different measurements. It is shown in Fig. 1.

Tests and predictions

The so-called GIM mechanism [10] predicted the charm quark before it was
observed experimentally. Later when a bottom quark has been discovered,
most physicists were sure of the existence of the top quark. The only ques-
tion was its mass. The top quark has been observed in the 90s.

On top of that, the Standard Model predicted the existence of W± and
Z bosons and the gluon before these particles had been observed. Their
predicted properties were experimentally confirmed with good precision.

The Large Electron-Positron collider at CERN tested various predic-
tions about the decay of Z bosons, and found them confirmed. To get an
idea of the success of the Standard Model let compare measurements of
several quatities that are dependent in the model. As it follows from the
mass terms of electroweak Lagrangian, cos θW = mW

mZ
, where θW is so-called

Weinberg angle. However, it is possible to measure some of these quatities
separetely [11, 12]. The comparison is summarized in Table 2.
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Figure 1: Representation in the complex plane of the triangle formed by
the CKM matrix elements. The plot was made by combining different
measurements [9]. The three angles are defined by α = arg

[
− VtdV

∗
tb

VudV
∗
ub

]
,

β = arg
[
− VcdV

∗
cb

VtdV
∗
tb

]
, γ = arg

[
− VudV

∗
ub

VcdV
∗
cb

]
. The constants ∆md and ∆ms are

oscillation frequencies. They are defined as mass difference between the two
mass eighenstates BH and BL for Bd and Bs respectively. η = η(1 − λ2/2)
and ρ = ρ(1− λ2/2). The area around the vertex of the angle α correspond
to the unitarity of the triangle.
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Challenges to the Standard Model

Although the Standard Model has had great success in explaining experi-
mental results, it has never been accepted as a complete theory of funda-
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Table 2: Experimental results on the masses ofW and Z bosons and sin2 θW.
The ratio of mW and mZ gives sin2 θW = 0.222±0.001 which should be
compared to the value shown in the table. Recent results from NuTeV
show [13] that the value of sin2 θW is higher that it is in the table. The
difference may come from difference between the distributions of strange
and anti-strange sea quarks in the model.

Quantity Measured value
Mass of W boson 80.425±0.038 GeV
Mass of Z boson 91.188±0.002 GeV

sin2 θ
(on−shell)
W 0.225±0.002

mental physics. This is because it has two important defects:

• The model contains 19 free parameters (six quark masses, three charged
leptons masses, three CKM mixing angles and a phase, W and Z boson
masses, Higgs boson mass, electromagnetic, weak and strong coupling
constants) which must be determined experimentally plus another 7 if
neutrinos have masses (three masses, three mixing angles and a phase).
These parameters cannot be independently calculated.

• The model does not describe the gravitational interaction.

Since the completion of the Standard Model, many efforts have been made
to address these problems.

One attempt to address the first defect is known as grand unification.
The so-called grand unified theories (GUTs) hypothesized that the SU(3),
SU(2), and U(1) groups are actually subgroups of a single large symme-
try group. At high energies (far beyond the reach of current experiments),
the symmetry of the unifying group is preserved; at low energies, it re-
duces to SU(3)×SU(2)×U(1) by a process known as spontaneous symmetry
breaking. The first theory of this kind was proposed in 1974 by Georgi
and Glashow[14], using SU(5) as the unifying group. A distinguishing char-
acteristic of these GUTs is that, unlike the Standard model, they predict
the existence of proton decay. In 1999, the Super-Kamiokande neutrino
observatory reported that it had not detected proton decay, establishing a
lower limit on the proton half-life of 6.7×1032 years. This and other exper-
iments have rejected numerous GUTs, including SU(5). Another extension
of the Standard Model can be found in the theory of supersymmetry, which
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proposes a massive supersymmetric ”partner” for every particle. But no
evidence of superpartners have been found so far.

In addition, there are cosmological reasons why the standard model is
believed to be incomplete. Within it, matter and anti-matter are symmetric.
While the preponderance of matter in the universe can be explained by
saying that the universe just started out this way, this explanation strikes
most physicists as inelegant. Furthermore, the Standard Model provides no
mechanism to generate the flatness of the universe and its extraordinary
homogeneity, consequences of omission of gravity in the Standard Model.

The Higgs boson, which is predicted by the Standard Model, has not
been observed yet (though some phenomena were observed in the last days
of the LEP collider that could be related to the Higgs; one of the reasons to
build the LHC is that the increase in energy is expected to make the Higgs
observable).

The first experimental deviation from the Standard Model came in 1998,
when Super-Kamiokande published results indicating neutrino oscillation.
This implies the existence of neutrino masses in the case of none-zero mix-
ing anlges. The Standard Model do not accommodate massive neutrinos,
because it assumes the existence of only ”left-handed” neutrinos, which have
spin aligned counter-clockwise to their axis of motion. If neutrinos have non-
zero mass, they necessarily travel slower than the speed of light. Therefore,
it would be possible to ”overtake” a neutrino, choosing a reference frame in
which its direction of motion is reversed without affecting its spin (making
it right-handed). Since then, physicists have revised the Standard Model
to allow neutrinos to have mass, which make up additional free parameters
beyond the initial 19.

Synopsis of the thesis

The subject of this work is a determination of the muonic branching ratio
of charmed hadrons produced in neutrino charged current interactions. The
measurement is based on about 100,000 neutrino interactions found in the
emulsion. About 2,000 events from the charged current sample have been
manually confirmed as charm decay candidates. This statistics is about
fifteen times bigger than one of E531 [15, 16] and about two times larger
compared to the previous measurement of the muonic branching ratio by
CHORUS collaboration [17]. On top of that, the method to extract the
ratio is based only on the secondary tracks and the muon identification
procedure is totally different from the previous measurement by CHORUS
which significantly improves the systematic error.
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Another subject covered in this thesis is related to extraction of Vcd

CKM matrix element and to study of Bjorken x distributions. It is worth
to mention that the analyses related to charm production are not finished.
Here only the analyses framework is discussed and preliminary results of the
methods are shown.

The chapters of the thesis are organized as follows:
Chapter 1 provides the theoretical framework of the analysis.
Chapter 2 describes the experimental setup including the beam and the elec-
tronic detectors.
Chapter 3 contains the detailed description of the Netscan technique to scan
the emulsion and to reconstruct the events.
Chapter 4 is devoted to the measurement of muonic branching ratio of
charmed hadrons.
Chapter 5 is related to the preliminary results on charm production, the
measurement of x-distribution and |Vcd|.



Chapter 1

Neutrino-nucleon scattering

The chapter covers the theoretical framework of the charged current neutrino
scattering on a nucleon and charm production.

1.1 Deeply inelastic scattering kinematics

A deeply inelastic scattering (DIS) process is generally of the form

l(k) + h(p) → l′(k′) +X, (1.1)

where l(k) represents an incident lepton of four-momentum kµ, l′ is an out-
going lepton of momentum k

′µ,h(p) a hadron of momentum pµ and X an
arbitrary hadronic state. In our case, l is a neutrino, l′ is a muon, h(p) is
either a proton or a neutron. The process illustrated in Fig. 1.1, is initiated
by the exchange of vector boson W . The discussion of DIS, more than that
of any other cross-section, is couched in a rather specialized kinematic nota-
tion, which we shall briefly review. The usage of the kinematic notation goes
beyond the models describing leptoproduction: the parton model and even
perturbative Quantum Chromodynamics (pQCD). For example, description
of interactions between hadrons and nuclei is based on similar notation.

In charged current neutrino interactions, the momentum transfer be-
tween lepton and hadron, q, is space-like,

qµ = kµ − k
′µ,

−q2 = Q2. (1.2)

In addition, as the term implies, in DIS the hadronic final state X has
an invariant mass much larger than that of the nucleon. This is normally

11
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Figure 1.1: Deeply inelastic scattering.
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parametrized in terms of the Bjorken scaling variable x,

x =
−q2

2p · q
=

Q2

2Mν
, (1.3)

where M is the mass of the nucleon, ν is the energy transfered from the
lepton to the nucleon in the nucleon(target) rest frame,

ν = Ek − Ek′ = p · q/M. (1.4)

ν is naturally related to the dimensionless variable y,

y =
p · q
p · k

=
Ek − Ek′

Ek
=

ν

Ek
, (1.5)

which measures the ratio of the energy transfered to the hadronic system
to the total leptonic energy available in the target rest frame. This variable
also has a very simple interpretation in the parton model. If we denote θ̂ as
a lepton scattering angle in the lepton-quark center of mass frame then

y =
ν

Ek
=

2Mν

sm
=

Q2

xsm
= −(k − k′)2

xsm
=

=
sm(1− cos θ̂)

2sm
=

1− cos θ̂
2

= sin2 θ̂

2
, (1.6)
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where sm = (kµ + pµ)2 is the usual Mandelstam varibale.
For a nucleus with mass number A, it is usually convenient to rescale x

by A, so that the denominator in Eq. 1.3 is still the mass of the nucleon.
For fixed x, the mass of the hadronic final state is given by

W 2 = M2 +
Q2

x
(1− x). (1.7)

Thus, for x fixed and Q2 large, the mass of the hadronic final state is also
large.

The incoming lepton may be an electron, a muon, or a (anti)neutrino,
and the exchanged vector boson a photon, W±, or Z. At lowest order
in electroweak interactions, the cross-section of neutrino scattering on a
nucleon may be split into leptonic and hadronic parts,

dσ =
d3k

2s|k′|
c4V

4π2(q2 −m2
V)
LµνlV (k, q)W V h

µν (p, q) , (1.8)

where V labels the exchanged vector boson, of mass mV , and where cV can
be:

cW± =
g

2
√

2
, cγ = e (1.9)

Note that each weak-interaction coupling involves g = e/ sin θW . In this
equation, we neglect the gauge- and mass-dependent term qαqβ/mW in the
vector-boson propagator (gαβ − qαqβ/m

2
V )/(q2 −m2

V ). Corrections to this
approximation are proportional to the ratio ml/mV for V = W± and are
neglected in further calculations.

The leptonic tensors can be evaluated explicitly from

LµνlV (k, q) =
∑
spin

ū(k)Γµu(k′) · ū(k′)Γν†u(k) = Tr[kΓµk′Γν†] , (1.10)

where the last equation is true for a completely polarized neutrino beam
and the coupling in the most general form reads

Γµ = γµ[gRl(1 + γ5) + gLl(1− γ5)] . (1.11)

Substituting Eq. 1.11 to Eq. 1.10 gives

Lµν(k, q) = u(k)γµ(1− γ5)u(k′) · u(k′)γν(1− γ5)u(k)
= 8

[
kµk

′
ν + kνk

′
µ − gµνk · k′ ∓ iεµναβk

αk′β
]

(1.12)
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where the last term’s sign plus(minus) refers to incident neutrinos(anti-
neutrinos) respectevely.

The hadronic tensor, on the other hand, is defined to all orders in the
strong interaction in terms of the matrix elements

W (V h)
µν (p, q) =

1
8π

∑
σ

∑
X

< h(p, σ)|jV †µ (0)|X >

× < X|jVν (0)|h(p, σ) > (2π)4δ4(p+ q − pX) . (1.13)

Here, jVµ (x) is the appropriate electroweak current operator, labeled by the
corresponding vector boson and divided by the appropriate cV (see Eq. 1.9).
When appropriate, we average over the nucleon spin σ, which simplifies our
analysis. We have performed this average in Eq. 1.13, and the normalization
factor includes a factor 1/2 for this average.

The hadronic tensor is a second rank tensor which parametrizes the
structure of the boson-nucleon vertex. There are only two independent
vectors upon which Wµν can depend – p and q. The most general rank-
2 tensor can be constructed by expanding it in terms of scalar structure
functions W (V h)

i

W (V h)
µν = −gµνW (V h)

1 (x,Q2) +
pµpν
M2

W
(V h)
2 (x,Q2)−

−iε
Pqµν

2M2
W

(V h)
3 (x,Q2) +

qµqν
M2

W
(V h)
4 (x,Q2) +

+
pµqν + qµpν

2M2
W

(V h)
5 (x,Q2) +

pµqν − qµpν
2M2

W
(V h)
6 (x,Q2) , (1.14)

where εPqµν = εαβµνpαqβ. The structure functionsW (V h)
i are Lorentz scalars

that depend on q2 and p · q, and, in general, they depend on the target and
on the incident lepton. Note that there is a variety of conventions in the
literature about the definition of Wi and of the variable ν. Our conventions
for the Wi’s are consistent with those in Ref. [18].

It is worth noting that the hadron structure functionsW4, W5, W6 do not
enter to the cross section because they are multiplied by factors proportional
to the lepton mass from the lepton vertex and give minor contribution to
the cross section.

The structure functions are generally parametrized in terms of x and Q2.
At this stage, there is no relation between the W (V h)

i for different bosons V .
The functions Wi of Eq. 1.14 are usually replaced, for the purposes of

exhibiting data, by alternate, but equivalent, structure functions Fi, which
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will turn out to be particularly simple in the parton model,

F1(x,Q2) = W1(x,Q2),

F2(x,Q2) =
ν

M
W2(x,Q2), (1.15)

F3(x,Q2) =
ν

M
W3(x,Q2).

Yet another equivalent basis for the structure functions is inspired by as-
signing polarizations to the vector boson V , in the target rest frame:

εR(q) =
1√
2
(0; 1;−i; 0),

εL(q) =
1√
2
(0; 1; i; 0), (1.16)

εlong(q) =
1√
Q2

(
√
Q2 + ν2; 0; 0; ν).

This corresponds to helicities of +1, -1 and to longitudinal (sometimes called
“scalar”) polarization for the exchanged particle, respectively. Up to cor-
rections of order M2/Q2, W (V h)

µν has the expansion

W (V h)
µν =

∑
λ

ε∗λ(q)µελ(q)νF
(V h)
λ (x, q2), (1.17)

where λ = L, R, long labels the helicity. In this approximation, the “helic-
ity” structure functions are related to the structure functions of Eq.1.15 by
the simple relations

FL,R = F1 ± F3, Flong =
F2

2x
− F1. (1.18)

The notation in terms of helicities is useful in calculation of mass threshold
effects discussed later in Section 1.3.

The structure functions can be found directly from the experiments in
which only the outgoing lepton’s momentum is measured. For instance,
the differential cross-section in terms of the dimensionless variables x and
y may be rewritten in terms of incoming and outgoing leptons energies and
scattering angle in the target rest frame as

d2σ(lh)

dxdy
=
Ek′y

M
N (lV )

[
2W (V h)

1 (x, q2) sin2(θ/2) +W
(V h)
2 (x, q2) cos2(θ/2)±

W
(V h)
3 (x, q2)

Ek + Ek′

M
sin2(θ/2)

]
, (1.19)
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where the ± corresponds to V = W±, and where

N (νW+) = N (νW−) = πα2 ME

2 sin4(θW )(Q2 +M2
W )2

. (1.20)

Here, θW is the weak mixing angle, and πα2/(2M4
W sin4 θW ) = G2

F/π, with
GF the Fermi constant.

Other useful expressions for the cross-section are given directly in terms
of y,

d2σ(lh)

dxdy
= N lV

[y2

2
2xF (V h)

1 +
(
1− y − Mxy

2E
)
F

(V h)
2 + δV

(
y − y2

2
)
xF

(V h)
3

]
,

(1.21)
where δV is +1 for V = W+ (neutrino beam), -1 for V = W− (anti-neutrino
beam), while M is the target hadron mass as before.

The experimental results from different experiments are shown in Fig. 1.2.

Figure 1.2: σT/Eν , for the muon neutrino and anti-neutrino charged-current
total cross section as a function of neutrino energy. The error bars include
both statistical and systetic errors. The straight lines are the averaged values
over all energies as measured by the experiments in Ref [19, 20, 21, 22] =
0.677± 0.014(0.334± 0.008)× 10−38 cm2/GeV. There is a change in energy
scale at 30 GeV.
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1.1.1 Cross sections and parton distributions

Now let us see what the parton model has to say about deep-inelastic scat-
tering. In the parton model the scattering on the nucleon is due entirely to
the scattering on its individual constituents. If these constituents are quarks
and gluons, then only quarks will couple to electroweak currents in the Born
approximation. The DIS cross section is then given by the probability qT(ξ)
of finding a quark of flavor q and fractional momentum ξ in hadron T , times
the cross section for the elastic scattering of that parton.

A typical parton-model DIS cross section is therefore given by

dσ(lT )

dEk′dΩk′
(p, q) =

∑
q

∫ 1

0
dξ

dσ
(lf)
Born

dEk′dΩk′
(ξp, q)qT(ξ). (1.22)

The distribution qT is undetermined at this point. The perturbative equiv-
alent of the parton-model picture of DIS is illustrated, in “cut diagram”
notation, in Figure 1.3 (left).

We note the absence of diagrams such as Fig. 1.3 (right), in which the
scattering of quark q with fraction ξ interferes with the scattering of a quark
of fraction ξ′, the momentum being made up by an extra gluon. This feature
is referred to as the “incoherence” of the parton model.

From the Eqs. 1.8, 1.14 and 1.15 we derive relations for the structure

Figure 1.3: Parton-model picture of deep-inelastic scattering. Left: parton-
model scattering. Right: the interference graph. The vertical line indicates
the sum over all possible hadronic final states. V stands for a vector boson.

h(p)

V
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Figure 1.4: Born-level diagram.

functions Fi in the parton model,

F (V h)
a =

∑
q

∫ 1

0

dξ

ξ
F (V q)
a (x/ξ)qT(ξ)(a = 1, 3), (1.23)

F
(V h)
2 =

∑
q

∫ 1

0
dξF

(V q)
2 (x/ξ)qT(ξ). (1.24)

Here the F (V q)
i are the structure functions at the parton level; they can be

calculated from the Born diagram of Fig 1.4. The factor 1/ξ in Eq. 1.23
arises from the normalization of the parton states and from the factors p in
the definition of the structure functions from Wµν . The vector pµ must be
changed to ξpµ for scattering on a parton.

It is worth stressing that the difference between electromagnetic and
weak interactions at this stage is limited mainly to the coefficients. All the
calculations above can be easily rewritten for the (γh) vertex. To show this
fact, let us write the hadronic tensor for the scattering off a quark mediated
by a photon and write down the explicit relations between the structure
functions. For the electromagnetic scattering, we have

(W (γq)
µν )Born =

1
8π

∫
d3p′

(2π)32ωp′
Q2
fTr[γµ(p̂+ q̂)γν p̂]× (2π)4δ(4)(p′ − p− q),

(1.25)
where eQq is the electric charge of the quark of flavor q. A factor e has been
absorbed into cγ in Eq. 1.9. This gives

2F (γq)
1 (x) = F

(γq)
2 (x) = Q2

qδ(1− x). (1.26)

Substituting these functions into 1.23 and 1.24, we find the electromagnetic
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structure functions in terms of quark distributions,

2xF (γh)
1 (x) = F

(γh)
2 (x) =

∑
q

Q2
qxq

T(x). (1.27)

Two important aspects of these expressions are (i) the structure functions
depend on the Bjorken scaling variable x only, and not on the momentum
transfer directly; (ii) the two functions satisfy the relation 2xF1 = F2.

The first result is known as scaling [23]. Its observation [24, 25, 26] was
the inspiration for the parton model. The second, known as the Callan-Gross
relation [27] follows from the specific of the Born diagram, Fig. 1.4, and as
such is evidence of the spin 1/2 nature of charged partons (the quarks).

Evidently, measuring F1 or F2 immediately gives an experimental deter-
mination of the combination of distributions,

∑
q Q

2qT(x) for T a proton or
a neutron. Now isospin invariance implies the following relations between
the quark distributions

up = dn,

dp = un, (1.28)

with u the up and d the down quark. In the approximation that the proton
and the neutron contain u and d quarks only, a measurement of F2 for p and
n, combined with Eq. 1.28, determines the distributions uT and dT. These
distributions can then be used to predict other DIS cross sections, such as
neutrino scattering, to the same approximation.

Of course, in real life things are not so simple. Quantum mechanics
tells us that virtual states will include quark-antiquark pairs of every flavor.
These are called sea quarks in opposition to the valence quarks responsible
of the identity of the different hadrons. The sum in Eq. 1.27 will therefore
include strange, charm, and even the bottom and top quarks, with their
anti-quarks. Although we may expect that the contribution of very heavy
quark pairs in a nucleon is relatively small, we clearly need more information
to determine the distributions of light quarks, for instance. For this purpose,
we shall find neutrino and anti-neutrino scattering ideal.

Scaling of the structure functions at high Q2 is explained by the parton
model. The deep inelastic scattering environment is described in a highly
relativistic frame – the so-called infinite momentum frame. In this frame,
quarks interact among themselves on time scale much longer than that of
the collision, so the scattering is incoherent. Inelastic neutrino-nucleon scat-
tering reduces to elastic scattering on free, individual partons. The partons
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are on-shell, they travel collinearly with the nucleon and carry a fraction ξ
of its momentum.

Elastic scattering of point particles depends only on the center of mass
energy and the net angular momentum of the system. Assuming that neu-
trinos have no mass, neutrinos are left-handed and anti-neutrinos are right-
handed. A similar assumption is made for the quarks and anti-quarks. Con-
sidering spin 1/2 and spin 0 constituents of the nucleon, the possible helicity
dependent cross sections for elastic neutrino-parton scattering are given by

dσνq

d cos θ̂
=

dσν̄q̄

d cos θ̂
=

G2
FMEν

π(1 +Q2/M2
W )2

(total spin 0) ,

dσνq̄

d cos θ̂
=

dσν̄q

d cos θ̂
=

G2
FMEν

π(1 +Q2/M2
W )2

(1 + cos θ̂
2

)2
(total spin 1) ,

dσνk

d cos θ̂
=

dσν̄k

d cos θ̂
=

2G2
FMEν

π(1 +Q2/M2
W )2

(
cos

θ̂

2

)2
(total spin

1
2
) , (1.29)

where θ̂ is the muon’s center of mass scattering angle and which is related
to y by Eq. 1.6 and the sum is made on all quark flavour in the final state.
The superscripts identify the spin 1/2 partons with the quarks and anti-
quarks. In reality, partons have transverse component of the momentum.
Technically, this is attributed to spin 0 constituent, which is identified by
the superscript k. The V –A structure of the weak interaction causes spatial
parity to be maximally violated, so for massless partons only left-handed
particles and right-handed antiparticles participate. The possible configu-
rations for high energy neutrino-quark scattering are shown in Figure 1.5.

The probability of scattering from a particular type of parton is intro-
duced with a parton distribution function p(x). The quantity p(x)dx is
interpreted as the probability of finding a parton of type p in a hadron car-
rying a fraction x to x + dx of the hadron’s momentum. Then using the
parton momentum distribution function xp(x), the differential cross section
for scattering off one parton is

d2σ

dxdy
∼

G2
F2MEν

π(1 +Q2/M2
W )2

xp(x) (1.30)

and gathering all contributions from the constituents of a target T , the cross
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sections for neutrino and anti-neutrino scattering are

d2σνT

dxdy
=

G2
Fxs

π(1 +Q2/M2
W)2

[
qνT(x) + (1− y)2q̄νT(x) +

+2(1− y)kνT(x)
]
, (1.31)

d2σν̄T

dxdy
=

G2
Fxs

π(1 +Q2/M2
W)2

[
q̄ν̄T(x) + (1− y)2qν̄T(x) +

+2(1− y)kν̄T(x)
]
. (1.32)

The parton distributions are associated with the structure functions by
comparing the y dependences of the above formulas with Eq. 1.21, yielding:

2xF ν(ν̄)T1 = 2
[
xqν(ν̄)T(x) + xq̄ν(ν̄)T

]
, (1.33)

F
ν(ν̄)T
2 = 2

[
xqν(ν̄)T(x) + xq̄ν(ν̄)T(x) + 2xkν(ν̄)T(x)

]
, (1.34)

xF
ν(ν̄)T
3 = 2

[
xqν(ν̄)T(x)− xq̄ν(ν̄)T

]
, (1.35)

Figure 1.5: Possible helicity configurations in the scattering between neutri-
nos or antineutrinos and quarks or antiquarks. a) corresponds to the case
where both spins are opposite yielding total spin 0, realized in neutrino-
quark or antineutrino-antiquark scattering. b) corresponds to the case where
both spins are parallel yielding total spin 1, realized in neutrino-antiquark
or antineutrino-quark scattering. a)

-ν � q

-ν̄ � q̄

b)
-ν � q̄

-ν̄ � q
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where the term proportional to Q2/ν2 has been dropped out. Thus, in the
parton model, deep inelastic structure functions are simply related to the
momentum fractions of the partons in the target.

Neutrino scattering has the ability to resolve the nucleon constituents.
The charge conservation and the absence of quarks with electrical charge
greater than that of electron limit neutrinos to scatter from d, s, ū and c̄.
Finally, the quark densities that contribute to the structure functions are:

qνp(x) = qνn(x) = d(x) + s(x),
q̄νp(x) = q̄νn(x) = ū(x) + c̄(x),
qν̄p(x) = qν̄n(x) = u(x) + c(x),
q̄ν̄p(x) = q̄ν̄n(x) = d̄(x) + s̄(x). (1.36)

(1.37)

Here, we have assumed the strong isospin symmetry Eq. 1.28 and that the
sea quarks (s and c) have the same distributions in proton and neutron.
Also an assumption is made that the sea anti-quarks are distributed exactly
as the sea quarks and that the contribution from the heavy quarks b and t
is neglected. Recent results show [28, 29] that the latter is not true in the
low x region. This will be discussed later in the x-distributions chapter.

1.2 Quantum Chromodynamics

The parton model explains the scaling of the structure functions in terms of
spin 1/2 point-like constituents, but by itself offers no explanation for the
dynamics between the constituents. The need to refine the parton model
was also apparent from detailed studies of structure functions, which found
that scaling is only an approximate phenomenon, and that logarithmic scal-
ing violations are present. Advances in understanding of non-Abelian gauge
group theories led to Quantum Chromodynamics. QCD provides a consis-
tent theory of quark dynamics, explains the scaling violations of the struc-
ture functions, and offers the detailed phenomenology formalism of deep
inelastic scattering.

There are two important consequences of non-Abelian structure of QCD:
confinement and asymptotic freedom. Quarks are confined in a hadron be-
cause the self-interactions of gluons tend to anti-screen a color charge, so
that the strong force between two quarks increases as the distance between
the quarks gets larger. This effect is known as quark confinement. However,
at shorter distances (or equivalently, larger momentum transfers), the strong
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coupling αs decreases, so that as the momentum transfer Q2 →∞, αs → 0,
and the quarks begin to act as free particles.

Similar to Quantum Electrodynamics, the inclusion of higher order or
loop diagrams leads to terms that are ultraviolet divergent. These terms
involve integrals of the form 1/(k2−m2)2 and may be thought of as virtual
states in which energy conservation is violated by an arbitrary large amount.
As any other meaningful quantum field theory QCD is renormalizable. The
renormalization involves introducing a free parameter µ2

R, which is called
renormalization scale. A calculation of observable quantities, like a cross
section, must be independent of the scale. This requirement is expressed in
the form of the renormalization group equation

µ
M
dµ

= 0, (1.38)

the renormalization group being the set of all rescalings µ2. Then, to the
next-to-leading order, the renormalization scale dependence of the coupling
constant αs is given by the beta functions

µ
dαs(µ2)
dµ

= −β1

2π
α2

s (µ
2)− β2

8π2
α3

s (µ
2) +O(α4

s(µ
2)), (1.39)

where the coefficients are given by

β1 = 11− 2nf/3,
β2 = 102− 38nf/3, (1.40)

and nf is the number of quark flavors. The positive contributions come
mainly from non-Abelian diagrams and the negative ones depending on nf ,
which weaken asymptotic freedom, come from fermion loop diagrams. The
solution to Eq.1.39 is usually given in terms of the dimensional parameter
Λ:

αs(µ2)
4π

=
1

β1 ln(µ2/Λ2)
− β2 ln[ln(µ2/Λ2)]

β3
1 ln2(µ2/Λ2)

+O
( 1

ln3(µ2/Λ2)

)
. (1.41)

Therefore, measurement of Λ is equivalent to measuring αs(µ2
0). Λ effectively

sets the scale of the running coupling constant, and so it marks the boundary
between quasi-free quarks and gluons and hadronic bound states.

There are several ways of making renormalization. The set of rules that
specify the value of the renormalization scale for each divergent diagram
describes the renormalization scheme that is used. One of the most popular
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schemes is MS or minimal subtraction scheme. In this scheme the parton
distributions are defined directly in terms of hadronic matrix elements. If
renormalization is carried out according to the MS scheme then the corre-
sponding Λ is called ΛMS.

1.2.1 Factorization theorem

In perturbative QCD the parton model is generalized by the theorem of
factorization of long-distance from short-distance dependence of deeply in-
elastic scattering [30, 31]. Phrased differently, the structure functions can
be decomposed into two parts, a parton distribution and a hard scattering
function. The theorem can be expressed in the following way

Wαβ(q, p) =
∑
a

∫ 1

ξ

dξ

ξ
ω̂αβa (q, ξp,Λ, αs(µR))φa(ξ,Λ, µ2)

=
∑
a

ω̂αβa (q, ξp,Λ, αs(µR))⊗ φa(ξ,Λ, µ2). (1.42)

Here, the sum is over all partons a: quark, gluons, and anti-quarks. The inte-
gration is made over all parton momentum fractions ξ. The hard-scattering
function ω̂αβ describes the probability for the scattering to take place and is
infrared safe, calculable in perturbation theory. It depends upon the label
a, the exchange boson, on the parton, and on the renormalization and fac-
torization scales, but it is independent of long-distance effects. For example,
it is independent of the identity of the hadron h. The parton distribution
φ contains all the infrared sensitivity of the cross sections, it also depends
on Λ and is particular for each hadron h. However, it is independent of the
particular scattering process. The parton distributions are to be determined
from the experiment once the hard-scattering functions are evaluated.

Generally speaking, µR and Λ need not to be equal. The former is the
renormalization scale and is necessary for any perturbation theory. The
latter is specific for the factorization and serves as a separator between
short-distance and long-distance effects. Roughly speaking, any propagator
that is off-shell by Λ2 or more enters into the hard-scattering function ω̂αβ

and φ otherwise.

1.2.2 Evolution of the parton distributions

Up to this point we were carrying out the discussion at fixed Q2. A remark-
able feature of QCD is that once the parton distributions are measured at
one Q2 scale, QCD predicts how they evolve to any other Q′2. This fact
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enormously improves the predictive power of QCD. The evolution of parton
distributions is governed by the Gribov-Lipatov-Altarelli-Parisi equations
[32, 33]:

dqNS(x, t)
dt

=
∫ 1

x

dy

y
PNS
qq (

x

y
, t)qNS(y, t), (1.43)

dqS(x, t)
dt

=
∫ 1

x

dy

y

[
P S
qq(
x

y
, t)qs(y, t) + 2NfPqG(

x

y
, t)g(y, t)

]
, (1.44)

dG(x, t)
t

=
∫ 1

x

dy

y

[
PGq(

x

y
, t) + PGG(

x

y
, t)g(y, t)

]
, (1.45)

where t = ln(µ2/Λ). The non-singlet (“valence”) and singlet quark distri-
butions are given by

qNS(x, t) =
∑
i

[qi(x, t)− q̄i(x, t)],

qSI(x, t) =
∑
i

[qi(x, t) + q̄i(x, t)], (1.46)

and the gluon distribution is denoted as g(x, t). The evolution kernels Pqq′
express the tendency for a parton of type q′ carrying a momentum fraction
y to be resolved as a parton of type q with the momentum fraction x < y.
The splitting functions Pqq′ take into account the radiative corrections and
can be calculated at any order. The splitting function diagrams are shown
in Fig. 1.6.

To summarize, consider the relation between the structure functions
F

(V h)
a , V = W±, and the physical parton distributions qh(x, µ2). The

method is as follows:

• (a) Calculate the infrared-regulated distributions q and g to some order
in the perturbation theory,

• (b) Calculate F (V j)
a , with j = q, g to the same order,

• (c) Combine the results of (a) and (b) to derive ω̂αβa to this order,

• Combine ω̂αβa with experimentally determined F (V h)
a to obtain the non-

perturbative qh to the same order in perturbation theory by applying
the factorization theorem.

These distributions can be combined with the hard-scattering functions
from other processes to derive the predictions from the theory unless the
factorization scheme is consistent in both cases.
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Figure 1.6: Altarelli-Parisi splittings. Top: diagrams that contribute to
the leading order splitting functions. Bottom: The next-to-leading-order
splitting function diagrams.

1.3 Mass threshold effects

In the previous sections we were considering the leptons and the partons to
be massless. This is a good approximation for the large momentum transfer.
However, average momentum transfer for CHORUS is of the same order as
the charm quark mass and the mass of the nucleon, and these two effects are
to be taken into account. This also leads to the violation of the Callan-Gross
relation 2xF1 = F2. The difference decreases as the momentum transfer Q2

increases.
Recent calculations [18, 34] give a description of both effects by using a

suitable reference frame, taking the axis along the direction of the W boson.
This procedure is referred to as the “helicity formalism” since this choice of
basis provides a natural separation of the structure functions for different W
boson helicities 1.17. To fix this coordinate system, we define polarization
vectors for a W boson with momentum q in the target nucleon rest frame
as

εL(q) =
1√
2
(0, 1, i, 0) , (1.47)

εR(q) =
1√
2
(0, 1,−i, 0) , (1.48)

εl(q) =
1√
−q2

(
√
−q2 + ν2, 0, 0, ν) , (1.49)

corresponding to left-handed, right-handed and longitudinally polarized bo-
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sons, respectively. The longitudinally polarized case is often called as ’scalar’.
With these definitions, we can replace the tensor decomposition of equation
1.14 with a helicity decomposition:

Wα
β =

∑
λ=L,R,l

ε∗λ(p, q)
αελ(p, q)βFλ(x, q2) , (1.50)

where the dependence of ε on the coordinate system is indicated through
the argument p, the four-momentum of the target nucleon. The helicity
decomposition can be inverted to obtain a definition of the helicity structure
functions Fλ:

Fλ=L,R,l = ε∗λ(p, q)α W
α
β ελ(p, q)β . (1.51)

The correspondence between the helicity structure functions and scaling
structure functions can be worked out to obtain

FL = F1 +
1
2

√
1 +

Q2

ν2
F3 , (1.52)

FR = F1 − 1
2

√
1 +

Q2

ν2
F3 , (1.53)

Flong = − F1 +
(

1 +
Q2

ν2

)
1
2x

F2 . (1.54)

Note that the zero target mass limit M2/Q2 → 0 is equivalent to Q2/ν2 =
4x2M2/Q2 → 0, which implies FL = F1 + F3/2, FR = F1 − F3/2 and
Fl = −F1 + F2/(2x). To discuss the cross section in terms of these helicity
structure functions, let us go back to the matrix element and rewrite it using
helicity indices n, m instead of Lorentz indices α, β:

M =
√

2 GF jn(Q2)
d1(ψ)mn

1 +Q2/M2
W

〈X|Jm|p, σ〉 . (1.55)

In this expression, j and J are the leptonic and hadronic currents, respec-
tively, and d1(ψ) is a spin-1 rotation matrix specifying the relative orienta-
tion of the leptonic and hadronic vertex, as illustrated in Figure 1.7. Con-
sidering the “rest frame” of the exchanged W boson, the coordinate axis can
be taken parallel to the hadron momenta or to the lepton momenta, and the
hyperbolic cosine coshψ describes precisely the transformation between the
two. Written out, the d1(ψ) matrix is

d1(ψ) =


1+coshψ

2
− sinhψ√

2

1−coshψ
2

− sinhψ√
2

coshψ sinhψ√
2

1−coshψ
2

sinhψ√
2

1+coshψ
2

 . (1.56)
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Figure 1.7: The coordinate systems used in the helicity formalism. In a) the
axis is taken to be in the plane defined by the W and hadron momenta. In
c) the axis is taken to be in the plane defined by the W and lepton momenta.
After a Lorentz boost to the frame where the W is at rest, a) transforms to
b) whereas c) transforms to d).
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The hyperbolic cosine itself can be obtained from the formulae

coshψ =
2 · (k + k′)

∆(−Q2, p2, p′2)
(1.57)

=
Eν + Eµ√
Q2 + ν2

=
η2M2 −Q2 + 2η(s−M2)

η2M2 +Q2
(1.58)

M→0−→ 2− y

y
, (1.59)

where the first equality is general, the remaining relations are given in the
laboratory reference frame. The triangle function is

∆(a, b, c) =
√
a2 + b2 + c2 − 2(a · b+ a · c+ b · c). (1.60)

In these expressions, η is a generalization of the Bjorken scaling variable
x for the case where the target nucleon mass is taken into account. It is
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defined through the implicit equation

2 q · p =
Q2

η
− η M2 . (1.61)

To show the correspondence between x and η more clearly, 1.61 can be
rewritten as

1
x

=
1
η
− η

M2

Q2
. (1.62)

It is clear that x and η become identical in the limit M2/Q2 → 0. The
variable η is sometimes referred to as the Nachtmann variable [35]; it also
applies to the inclusive neutrino cross section in the absence of heavy quarks.

In Eq. 1.21, we showed the decomposition of the inclusive cross section
for deeply inelastic scattering in terms of the scaling structure functions Fi.
A similar derivation gives this cross section in terms of the helicity structure
functions:

dσν(ν̄)

dxdy
=

yQ2

4π(1 +Q2/M2
W )2[

(1 + cosh2 ψ)
FR + FL

2
+ sinh2 ψFl ∓ coshψ(FR − FL)

]
, (1.63)

where the plus (minus) sign in the last term refers to the case of neutrinos
(antineutrinos).

To understand what we have gained by these transformations, we have
to return to the factorization theorem, Equation 1.42. The point to note is
that the tensor decomposition of Wαβ and the tensor decomposition of ω̂αβ

no longer coincide when masses are introduced. The hadronic tensor Wαβ is
decomposed in terms of linear combinations of the four-momentum transfer
q and the hadronic four-momentum p, whereas the partonic tensor ω̂αβ is
decomposed in terms of linear combinations of the four-momentum transfer q
and the partonic four-momentum ξ′p. Neglecting both the nucleon mass and
all quark masses involved, there is a direct correspondence between Wi and
ω̂i: the hadronic structure functions are obtained by simple multiplication
of ω̂i with the parton structure functions, summing over all partons. This
situation changes dramatically as masses are introduced since the p and ξ′p
will no longer be parallel. Therefore, the Wi will be linear combinations of
all ω̂j , including non-diagonal terms for which j 6= i. In general, the partonic
four-momentum can be written as p̂µ = ζpp

µ + ζqq
µ. The zero-mass limit is

then recovered through the replacements ζp → ξ′ and ζq → 0.
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On the other hand, in the helicity formalism, tensors are decomposed
with respect to the W boson polarization vectors, introduced in Equations
1.47–1.49. Analogous to the hadron decomposition given in 1.51, we can
define parton helicity structure functions

ω̂λ=L,R,l = ε∗λ(p̂, q)α ω̂
α
β ελ(p̂, q)

β . (1.64)

The simplification of the helicity approach now follows from the fact that
the two sets of polarization vectors ελ(p̂, q) and ελ(p, q), as opposed to the
two sets of Lorentz invariants in p̂ and p, are identical and remain iden-
tical when masses are introduced: the direction of the polarization axis
is given by three-momenta, not four-momenta. In the infinite momentum
frame, the three-momenta p̂ and p are collinear by construction. Thus, the
helicity formalism retains the one-to-one correspondence between hadronic
and partonic structure functions, even when quark and nucleon masses are
introduced.

Furthermore, because of the chiral couplings of electroweak theory, the
parton-level helicity amplitudes ωλ exhibit a simple symmetry and structure.
In particular, for the W -exchange process encountered in charged current
neutrino scattering, only left-handed chiral couplings are involved. Working
out the parton helicity structure functions for this process, we obtain

ωR = |V12|2
Q2 +m2

1 +m2
2 −∆(−Q2,m2

1,m
2
2)

∆(−Q2,m2
1,m

2
2)

δ

(
ξ

χ
− 1

)
, (1.65)

ωL = |V12|2
Q2 +m2

1 +m2
2 + ∆(−Q2,m2

1,m
2
2)

∆(−Q2,m2
1,m

2
2)

δ

(
ξ

χ
− 1

)
, (1.66)

ωlong = |V12|2
(m2

2−m2
1)2

Q2 +m2
1 +m2

2

∆(−Q2,m2
1,m

2
2)

δ

(
ξ

χ
− 1

)
, (1.67)

where m1 and m2 are the masses for the initial state and final state quarks,
respectively and V12 is the CKM matrix element for the transition between
quark flavours 1 and 2. Finally, χ is a further generalization of the Bjorken
scaling variable x, now for the inclusion of quark masses. In terms of the
previously introduced Nachtmann variable η, it is defined as

χ = η
Q2 +m2

2 −m2
1 + ∆(−Q2,m2

1,m
2
2)

2Q2
. (1.68)

Now we have all the necessary components to calculate the charm pro-
duction cross section. Neglecting the masses of d and s quarks and taking the
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sum in Eq. 1.42 the following equations for the helicity structure functions
are obtained

FL = g2
La2q

a
N(χ) , FR = 0 , Flong = g2

La

m2
c

2Q2
2qaN(χ) , (1.69)

where the sum is over a which can be either d or s quark. It’s worth noting
that the Callan-Gross relation (Flong = 0) is violated if the charm quark
mass is taking into account. Substituting the expressions of the structure
functions into Eq. 1.63:

d2σ

dxdy
= G2

F

yQ2

π

(
|Vcd|2d(χ) + |Vcs|2s(χ)

)[(1 + coshψ
2

)2
+

m2
c

2Q2

sinh2 ψ

2

]
,

(1.70)
where GF is Fermi constant. To get similar expression for the anti-neutrino
nucleon scattering, it is sufficient to replace d(χ) and s(χ) by d̄(χ) and s̄(χ)
respectively.

1.4 Radiative corrections and polarization effects

Radiative corrections due to strong interactions are taken into account by
redefinition of the structure functions as described in Section 1.2.2. Ra-
diative corrections due to electromagnetic processes are included explicitely
since they affect the kinematical variables. The dominant effect is that the
measured momentum of outgoing muon is lower than it is considered in the
calculations. Such a smearing is simulated using the formalizm from Ref.
[36]. TAUOLA software package [37] takes care of the polarization effects
of the outgoing lepton.

1.5 Quasi-elastic charm production

In addition to the deeply inelastic production of charm, there is also a signif-
icant contribution of charm produced in quasi-elastic processes (QE). These
processes are as follows

νµn→ µ−Λ+
c , (1.71)

νµn→ µ−Σ+
c (Σ+∗

c ) , (1.72)
νµp→ µ−Σ++

c (Σ++∗
c ) . (1.73)

The key features of the QE interactions are low hadronic energy along with
two charged tracks at the primary vertex: one is muon and the other one
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is charmed hadron. The cross section for the quasi-elastic charm has been
measured by CHORUS collaboration [38] and is found to be

σ(QE)
σ(CC)

= [0.23+0.12
−0.06(stat)+0.02

−0.03(syst)]× 10−2 . (1.74)

To estimate the quasi-elastic charm production a specific Monte Carlo
generator QEGEN [39] has been written. The generator is based on a theo-
retical model which uses SU(4) symmetry in the matrix elements calculation
for different processes. The details of the model are in Ref. [40].



Chapter 2

The CHORUS beam and
detector

The CHORUS experiment was designed to search for νµ → ντ oscilla-
tions through the detection of τ produced in charged current interactions.
Although the charm physics was not originally foreseen, it became feasible
due to fast emulsion scanning systems. This chapter considers the neutrino
beam and the parts of the detector that are essential for the charm analysis:
the emulsion target, the calorimeter and the muon spectrometer.

2.1 Neutrino beam

High-energy neutrino beams were built for the first time back to 1960s when
the existence of muonic neutrino has been discovered at Brookhaven. The
neutrinos are produced by the decays of π and K mesons coming from the
interaction of a boosted hadron and a nucleus. By installing magnetic lenses
on the path of the secondary hadrons it is possible to separate positively
charged hadrons from the negative ones and thus enhancing a neutrino beam
component against anti-neutrinos and vice versa. It is also possible to give
a desired shape to the neutrino beam spectrum.

For the purposes of the CHORUS experiment the West Area Neutrino
Facility (WANF) [41] provided a beam of mainly muonic neutrinos in wide
spectrum band mode. Schematic representation of the beam-line is shown
in Fig. 2.1. Protons from the Proton Synchrotron (PS) are accelerated in
Super Proton Synchrotron (SPS) to 450 GeV in a cycle of 14.4 s. After
the acceleration protons are extracted in two spills each lasting 6 ms and
separated by 2.7 s, and then stopped in a Be target producing mainly pions
and kaons of both charges. The magnetic system made of horn and reflector

33
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Figure 2.1: Sketch of WANF beam-line.
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focuses positively charged particles and bends out the negative species. The
beam of unstable π+ and K+ enters into the 290 m long vacuum tunnel where
they decay to muonic neutrino channels with branching ratios of 99.99% and
66.7% respectively :

BR(π+ → µ+νµ) = 99.99%
BR(K+ → µ+νµ) = 63.4% (2.1)

BR(K+ → π0µ+νµ)

The protons, which did not interact in the target, charged leptons or hadrons
from the meson decay or surviving π+ or K+ are all absorbed in a shielding
composed of 225 m of iron and 144 m of earth. The neutrino beam in
front of the detector is composed of predominantly νµ, with unavoidable
5.6% νµ contamination, 0.7% of νe and 0.17% of νe. Since the experiment
was designed to discover neutrino-oscillations any significant source of ντ
would have dramatic consequences for the analysis. The level of ντ from
D+
s → τντ was estimated to be below one detected event over the lifetime

of the experiment. Fig. 2.2 shows the simulated beam spectra by GBEAM
[42] utility. The average νµ energy in the beam was < Eν >=27 GeV.

2.2 Beam flux measurement

The beam flux has been measured for the purpose of the structure function
analysis [43, 44]. Let us briefly review it.

To measure the energy spectra and the integral fluxes charged current
neutrino interactions reconstructed in the calorimeter are used. Since the
neutrino cross section is approximately proportional to the neutrino energy
Eν , the energy spectrum of neutrino interactions is directly related to the
energy weighted beam spectrum. The normalization is chosen such that the
energy weighted beam flux corresponds to the rate of interactions on an
target of surface density of (1 ton · m2). The interaction rate is determined
from the number of events in bins of different energies N(Ei), corrected for
detector acceptance and resolution, and normalized to the bin size ∆Ei, the
surface density ρ, and the number of protons on target Npot:

Φ(E) =
N(Ei)

Npot∆Eiρ
. (2.2)

The resulting beam spectra are shown in Fig. 2.3 together with the re-
sults from the GBEAM simulation. In neutrino beam mode, the neutrino
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component is typically 15% below the GBEAM values, except around 60
GeV, where they agree with each other. The measured anti-neutrino con-
tamination is also lower than GBEAM, except at very high and very low
energy.

The integrated interaction rate and the average interaction energy of the
measured beam spectra and of the simulation are summarized in Tables 2.1
and 2.2.

Although the interaction rates are given at the calorimeter they should
not be much different at the emulsion target.

2.3 CHORUS detector

The CHORUS detector [45] contains several parts each performing its own
task:

Figure 2.2: Simulated flux of the different components of the neutrino beam
as a function of the neutrino energy.
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Figure 2.3: Measured and simulated beam spectra in neutrino beam mode.

Table 2.1: Interaction rates on a 180×180 cm2 surface at the calorimeter
for neutrinos between 10 and 200 GeV. The units are (1016Npot)−1(ton ·
m−2)−1GeV−1. The first error is statistical and the second is systematic.
The difference between the data and the simulation can be attributed by
a simulation of the focusing power that is not as strong in reality as is
simulated in GBEAM.

Data GBEAM
νµ 580.1 ± 0.6 ± 17.5 645.9 ± 2.0
ν̄µ 12.9 ± 0.1 ± 0.4 14.1 ± 0.2
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Table 2.2: Average neutrino energies in units of GeV on a 180×180 cm2

square surface at the calorimeter for neutrinos between 10 and 200 GeV.
The first error is statistical and the second is systematic.

Data GBEAM
νµ 47.07 ± 0.04 ± 0.84 46.83 ± 0.16
ν̄µ 48.87 ± 0.25 ± 0.74 50.20 ± 0.70

• Emulsion target. Emulsion serves not only as a target to the neutrino
beam but also allows to make a detailed investigation of the events. It
is possible due to the outstanding spatial resolution of the emulsion.

• Hexagonal magnet. The magnet is used as a hadron spectrometer.

• High resolution calorimeter. The calorimeter measures the energy and
the direction of electromagnetic and hadronic showers.

• Muon spectrometer. This installation measures the momentum of hard
muons and their charge.

• Trigger system. Using logical combinations of the signals coming from
different trigger planes, the trigger system selects specific types of
events: charged current or neutral current interactions. It also rejects
events not related to the neutrino-induced processes.

The detector overview is schematically shown in Fig. 2.4.

2.3.1 Target area

The target area contains four emulsion modules followed by scintillating fibre
trackers as shown in Fig. 2.5. Each emulsion module is made of two rows
of four sub-modules with a size of 0.36 × 0.76 m2 put into a metallic frame.
Every sub-module has successive 36 bulk sheets, a special sheet (SS) placed
just immediately after the most downstream bulk sheet and a changeable
sheet (CS) located 38 mm further downstream to separate the tracks. A bulk
sheet has a 90 µm plastic transparent base and is covered with 350 µm of
nuclear emulsion on each side. In total, 206 litres of emulsion weighting 770
kg were used. Bulk sheets serve as a neutrino target and after development
allow to manually scan interesting events. Bulk emulsion has been exposed
for two years in the beam while it was typically several months for the CS
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Figure 2.4: CHORUS detector overview.

or SS interface sheets. The special sheets and the changeable sheets are
used to align the tracks in emulsion with tracks reconstructed in further
downstream electronic detectors. For this purpose, an emulsion module has
been followed by a scintillating fibre tracker system [46, 47]. To reduce
extrapolation errors and to avoid ambiguities in the tracks reconstruction,
the tracker system must offer good two-track separation such that a track
can be located in emulsion.

Fibre trackers follow the pattern of the emulsion sub-modules and con-
sists of eight modules interleaved between the four emulsion stacks. Every
module consists of four planes, measuring the two transverse coordinates
Y ,Z and two orthogonal stereo projections Y ±,Z± rotated by ±8◦ with re-
spect to Y and Z. A tracker plane consists of seven layers of scintillating
fibres 500 µm diameter each. The far ends of fibres are covered with alu-
minium to act as a mirror while the other is attached to an opto-electronic
chain with a CCD camera. There are about one million fibres connected to
58 opto-electronic chains. Corrected for intrinsic angular resolution in the
emulsion scanning, the achieved precisions are ∼ 150 µm in position and ∼
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Figure 2.5: Overview of the emulsion target area. The emulsion modules
are placed along the X-axis and each of them is followed by a scintillating
fibre tracker system.

2 mrad in slope.

2.3.2 Hexagonal magnet spectrometer

An air-core magnet[48] with hexagonal shape is placed between the target
region and the calorimeter for the measurement of the charge and momen-
tum of the particles (mainly hadrons and slow muons) coming from the
target area. A field of 0.12 Tesla is produced such that its value does not
change much with radial distance.

The measurement of particles momentum uses a fit to curvature of track
trajectory. Track slope and position are measured in front of the magnet
and right behind it by another system of scintillating fibre trackers. Severe
geometrical design constraints limit the resolution of the hexagonal magnet
spectrometer.

The momentum resolution ∆p
p is the quadratic sum of two terms: a
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Figure 2.6: The muon momentum resolution for the hexagonal magnet spec-
trometer. The solid lines show the result of the fit by convoluting the two
known spectrometer resolution: below and above 6 GeV.
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constant term from multiple scattering within the magnet

∆p
pscat

= 22%, (2.3)

and a term which reflects the measurement accuracy and is proportional to
momentum

∆p
pmeas

= 3.5%× p/GeV. (2.4)

The momentum measurement resolution of the spectrometer was ob-
tained comparing muon momentum reconstructed by the muon spectrom-
eter and hexagonal hadronic spectrometer. This resolution is presented in
Fig. 2.6.
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2.3.3 High resolution calorimeter

Reconstruction of the kinematical variables in the electronic detectors is of
great importance starting from the selection of events to be scanned to the
selection for each particular analysis. It implies that the hadronic shower
should be measured with good energy and angular resolution. The calorime-
ter also has a capability to measure track information to link tracks in the
Target Tracker and the muon spectrometer.

These requirements are fulfilled by a spaghetti calorimeter with scin-
tillating fibres embedded into a lead matrix and interleaved with a set of
streamer tubes. Each fibre has 1 mm in diameter. The lead to scintillator
volume ratio is 4:1 which assures both compensation and good sampling,
and consequently good hadronic energy resolution. The fibres are placed
perpendicular to the beam direction to provide good angular resolution for
showers and the tracking of muons of any origin.

The CHORUS calorimeter has a modular structure and consists of three
sections with decreasing granularity : electro-magnetic calorimeter (EM),
hadronic calorimeters HAD1 and HAD2. A sketch of the calorimeter is
shown in Fig. 2.7. EM and HAD1 are made of scintillating fibres and lead
while HAD2 lead layers are interleaved with scintillating strips. The tracking
capability of charged particles is improved by 22 streamer tube planes.

The total calorimeter thickness is 144 radiation lengths or 5.2 interac-
tion lengths. Such thickness is sufficient to contain 99% of showers produced
by a 5 GeV/c pion. About 90% of hadrons produced in neutrino interac-
tions have momentum less than 5 GeV/c which makes leakage to the muon
spectrometer small enough for interactions in the emulsion.

The calibration of the calorimeter was made with test beams of well-
defined energy. First, the calorimeter response was studied using an electron
test beam in the range 2.5 to 10 GeV/c. The energy resolution is well fitted
by the function

σ(E)
E

=
(13.8± 0.9)%√

E(GeV)
+ (−0.2± 0.4)%. (2.5)

By studying electron showers in different calorimeter zones, the nonunifor-
mity was estimated to be of the order of 5%. A similar test has been per-
formed with pion beams with an energy range from 3 to 20 GeV/c. From
Gaussian fit to the response distributions the energy resolution for pions was
estimated to be

σ(E)
E

=
(32.3± 2.4)%√

E(GeV)
+ (1.4± 0.7)%. (2.6)
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Figure 2.7: Schematic overview of the calorimeter with the three sections.
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The energy resolution for hadrons and electro-magnetic components is
presented in Fig. 2.8.

Figure 2.8: Energy resolution of the calorimeter. Left side: electromagnetic
component, right side: the hadronic part of the shower.
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2.3.4 The muon spectrometer

The spectrometer is located further downstream the calorimeter. The calori-
meter absorbs nearly all particles except muons because they are less affected
by the media as they propagate through it. As shown in Fig. 2.9, the spec-
trometer is constructed from six magnetized toroidal modules and tracking
detectors consisting of drift chambers and streamer tubes previously used in
the upgraded CDHS detector [49, 50] and later in the CHARM II electronic
detector [51, 52, 53, 54]. In addition, scintillator planes interleaved with the
magnet iron provide a measurement of the leakage of hadronic showers from
the back of the calorimeter. The fast signals from these scintillator planes
are also used for triggering.

The momentum of a muon is determined from the bending of its tra-
jectory in the six toroidal magnets. If a low momentum muon stops in the
spectrometer its momentum is also estimated from the range measurement.
Each magnet is constructed from twenty 2.5 cm thick iron disks with an
outer diameter of 375 cm, interleaved with 0.5 cm thick scintillator planes
put into the 0.6 cm gaps between the disks. Each magnet weights about 43
tons.
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Figure 2.9: The muon spectrometer overview (top) and its details (bottom).
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The iron is magnetized by four water-cooled copper coils passing through
a 8.5 cm wide hole in the centre of each magnet. The field in iron is nearly
symmetric in azimuthal angle and varies by 25% along the radius. To max-
imize the acceptance for τ− decays, the polarity of the current is set such
that negatively charged muons are bent towards the centre of the magnets.

The calibration of the end-system was performed using 75 GeV/c test
beam muons. The momentum resolution has been evaluated with a detailed
simulation and is presented in Fig. 2.10.

Figure 2.10: The momentum resolution, determined from a Gaussian fit
to 1/P distribution using a test beam with both signes muons and a sim-
ulation. The measured resolution (13-15%) is reasonably well reproduced
by the Monte Carlo. Somewhat inferior resolution for the test beam at 12
GeV/c can be attributed to the dispersion of the beam momentum. At
the lowest momentum (12 GeV/c), which was at the limit (or even slightly
beyond) of the beam line capabilities, the maximum was shifted in vertical
plane by about 3 mrad from the beam core and differed from the “nomi-
nal” value by as much as 1 GeV/c. Moreover, at 12 GeV/c the variation of
the average momentum with the angle within the narrow angular window
was signicant (about 10%) which contributed to the measurement of the
momentum resolution.
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Table 2.3: Geometrical characteristics of the trigger hodoscopes. The units
for strip width and strip length are cm while the covered area is in cm2.

E T H V A
# strips/plane 7 15 20 20 16

Strip width 20 10 10 20 20
Strip length 148 160 200 320 200
Area covered 150×148 160×160 200×200 400×320 200×320

2.3.5 The trigger system

The CHORUS trigger system was designed primarily to select neutrino in-
teractions in the emulsion target region and in synchronizing the data ac-
quisition with the beam spills. The main difficulties arise from the need to
form a “strobe” with no incoming charged particle and from the limitation
that CCD opto-electronic can handle only 2 events per neutrino spill. On
the other hand, the trigger system should be flexible enough to select neu-
trino events in the calorimeter and, possibly, in the spectrometer. In total,
only about seven events per spill are selected for detailed investigation. In
the 14.4 s cycle of the SPS accelerator there are two 6 ms neutrino spills,
separated by 2.7 s.

The trigger system consists of several scintillator planes (trigger-hodo-
scopes) E(mulsion), T(iming), H(odoscope), V(eto) and A(nti-counter) as
displayed in Fig. 2.11. The geometrical characteristics of the planes are
summarized in Table 2.3. Logical combinations of the hodoscopes are used
to select neutrino interactions and to reject the background coming from
cosmic rays, beam charged remnants and neutrino interaction outside the
target. A neutrino trigger in the target region is defined as a hit coincidence
in E, T planes and H consistent with a particle slope |tanθ| < 0.25 with
respect to the neutrino beam. A veto is formed by any combination of a
counter hit in the veto hodoscopes (V and A) and a hit in T, with a precise
timing of 2 ns at FWHM to avoid vetoes due to backscattering.

The observed rate of neutrino interactions is 0.5 events per 1013 protons
on the SPS target corresponding to an effective neutrino target mass of
1600kg. About one half of these events originate in the emulsion target.
The cosmic background is very small, about one T × H × V̄ per 100 ms.
Owing to the high redundancy of the trigger system and to the simplicity of
the requirements, a trigger efficiency of 99% was simulated for νµ charged
current interaction and is more than 90% for neutral current events.
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Figure 2.11: Overview of the trigger system hodoscopes.



Chapter 3

Event reconstruction in the
emulsion

At present time emulsion experiments have outstanding angular and
space resolutions in terms of tracking. However, the price has always been
the huge emulsion scanning load, which translates into high expense of time
and manpower. As an example, analyzing the CHORUS emulsion manually
would take hundreds of man-years. Thanks to the latest achievements in
automatic emulsion scanning, CHORUS has collected about one hundred
thousand charged-current neutrino interactions which contain a subsample
of two thousand charm events. It is worth stressing that the quality of the
collected data is very different with respect to the other neutrino dimuon
experiments. In these experiments events with two hard muons are studied:
one muon comes from the neutrino interaction vertex and the other one
is from charm decay. The advantage of such experiments is high statistics.
However, the main disadvantage is low spatial resolution which the reason of
significant level of the background in dimuon data. The background events
are mainly muonic decays of strange particles or pions. In CHORUS every
charm event is verified by manual confirmation and the background is very
low (<5%) if compared to usual dimuon data (up to 30%).

The event reconstruction in the emulsions, the so-called Netscan tech-
nique, was developed in Nagoya University originally for the DONUT exper-
iment at Fermilab. The main feature of Netscan is that all track segments
within a fixed volume centred on the vertex position are picked up. The
automatic scanning technique, developed by CHORUS for the oscillation
search, is based on an extremely fast automatic follow back in the emul-
sions of a long track reconstructed by the electronic detectors. Such a track

49
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is called scanback track. In the oscillation search, the scanback track is a
candidate for being a decay product of the τ , and it is traced back to the
neutrino interaction vertex. Then, further measurements are made to search
for the presence of a τ decay vertex.

The Netscan technique extends the automatic scan to a full inspection of
the emulsion volume surrounding the interaction vertex. The events which
are analyzed are those for which a neutrino interaction vertex has been lo-
cated using the scanback track technique. A surface of 1.5×1.5 mm2 is
automatically scanned on eight consecutive planes: the plate immediately
upstream from the vertex plate, the vertex plate itself and the six plates
downstream. All the tracks found in the volume are written to a data
file for further analysis. Then, by software, the reconstruction of the full
event topology can be performed. In four years of data taking CHORUS
has collected about 30 times the statistics of the previous similar experi-
ment E531 [15, 16](∼ 4000 charged and neutral current interactions of νµ
and νµ), by increasing both the target mass (770 kg of emulsion) and the
integrated neutrino flux. Given the complexity of the automatic scanning
technique, its overall efficiency is definitely lower than that of the manual
scanning performed by E531. In this chapter, the main features of Netscan
are described as well as the event location and selection efficiencies.

3.1 Event simulation in the emulsion

Neutrino charge current interactions for a beam simulated by GBEAM [42]
utility are simulated by deep inelastic scattering event generator JETTA [55].
The JETTA generator is derived from JETSET [56] combined with LEPTO
6.1 [57]. The JETTA generator is devoted to the deep inelastic regime with
a cut of 2 GeV2 for mass of the recoiling hadronic system W 2. The quasi-
elastic events are generated by RESQUE [58] generator. Apart from the QE
event, RESQUE generates production of baryonic resonances.

The response of the eletronic detectors is simulated by EFICASS utility
which is based on GEANT [59] software package. At this stage of the simu-
lation the Monte Carlo is processed through the same event reconstruction
program as the real data. The reconstruction program is based on a software
package called CHANT. CHANT recosntructs tracks, vertices and performs
particle identification. Finally, the response of the emulsion is simulated as
explained below.

A complete simulation of emulsion and its scanning is a very challenging
task. There are many effects that have to be taken into account: distortion,
fog from grains, response of microscope mechanics, optics, chemical devel-
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Figure 3.1: Production of τ lepton in ντ charged current interactions and
its muonic decayas an example. The τ decay vertex is found requiring an
angle between τ and µ tracks.
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opment of the emulsion and reconstruction software. Fortunately, the full
emulsion simulation can be avoided by using real data. Fiducial volumes
with no found scanback track (muon) provide the most realistic conditions.
However, in some cases the scanback tracks has not been found basically
due to inefficiencies. Obviously, the ideal “empty” boxes would be fiducial
volumes arbitrary taken in the emulsion. This has not been done in the
experiment because the priority is given to the scanning of real data. Fi-
nally, an event is simulated by merging simulated tracks into such an empty
acquisition set. After this procedure the event is processed through exactly
the same reconstruction software as the real data. Let briefly review the
complete chain of the simulation.

3.2 Event location in emulsion

CHORUS has finished data acquisition and analysis searching for νµ → ντ
oscillations without finding any evidence. The searched signal was repre-
sented by the observation of the decay of the τ produced in a ντ interaction.
The characteristic topology of the τ decay with one charged daughter is a
kink, i.e. a change of the track direction that indicates the decay point (see
Figure 3.1).
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The emulsion scanning was based on the selection of a track candidate
which was followed up to bulk emulsion until the vertex plate which is char-
acterized by the disappearance of the track. This fully automated procedure
is called scanback track location and is performed by a hardware video im-
age processor interfaced to a microscope through a CCD camera, the Track
Selector.

The CHORUS sample is divided in two sets, according to the two decay
modes that were used for the τ search: events containing a negative muon
(1µ) and events without muon (0µ). In the 1µ sample, the negative muon
was selected as a scanback track, while in the 0µ case, one or more negative
hadrons were used. The scanback was then performed on events recon-
structed by the fiber tracker with the vertex predicted in the bulk emulsion.
The 1µ sample contains many charmed hadrons produced in the charged
current interactions which is a background for the τ decays search on one
hand and allows to study charm production on the other hand.

This work concerns charm production in neutrino charged-current inter-
actions, thus we focus on events with a muon: a 1µ event is then sent to
the scanback if the angle that the muon forms with the beam direction is
less than 400 mrad. The angular cut has been introduced due to the limited
efficiency of the Track Selector at higher angles.

The location of the primary vertex is a very complex procedure. The
automatic search of a track in the target emulsion has to be limited to
very small areas (∼ 1 mm2) and to a small angular range (a few mrad)
because of the presence of huge amount of background tracks in the emulsion.
This is essentially due to the fact that the exposure of the emulsions was
2 years and hence all particles traversing the emulsion in that period are
recorded. A muon reconstructed in the muon spectrometer is extrapolated
to the changeable sheet, using the slopes measured by the scintillating fiber
trackers that were right downstream of emulsion. Then if the track is found
in the changeable sheet, the parameters are measured with higher precision
and the track is searched for in the special sheet. Again, if it is found, the
track is followed up to bulk, plate by plate (only the most upstream 100 µm
are scanned) until it is not found in two consecutive plates: this determines
the primary vertex plate.

The event location has several sources of inefficiencies due to distortion
of the emulsion, dirt, bad alignment, attachment of the scanback track to
a background track, etc. Depending on event, the sources may correlate
with each other which makes the simulation of each source of inefficciency
difficult to reproduce. Instead, the simulation of all effects taken together
is made as a parametrization. During the simulation the location efficiency
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has been parametrized as a function of the muon momentum and the slope.
The muon momentum distribution is different for the two samples of charged
current events, containing or not charm. The dependence of the ratio of the
location efficiencies as a function of visible energy is not strong, and the
average value of the ratio is

εcharm
loc

εccloc

= 0.92± 0.02 . (3.1)

Table 3.1 contains the value of the ratio per different visible energy bins.
During the 1996-1997 exposure period the CHORUS collaboration has

collected and reconstructed in the emulsion 93807 1µ and 18178 0µ events.

Table 3.1: The Netscan location efficiencies for charged-current and charm
events as obtained with simulation. The units of the energy bins are GeV.

Evis < 30 30 ≤ Evis < 50 50 ≤ Evis Average
εccloc 0.65±0.01 0.69±0.01 0.63±0.01 0.65±0.01
εcharm
loc 0.60±0.01 0.64±0.01 0.57±0.01 0.60±0.01

εcharm
loc /εccloc 0.92±0.02 0.93±0.02 0.91±0.02 0.92±0.02

3.3 Netscan technique

3.3.1 Data acquisition

The basic idea of the automatic emulsion scanning is to transform the three-
dimensional information contained in the emulsion volume, into many tomo-
graphic images (given by the interplay of a microscope and a CCD camera)
taken at different focal depths.

The automatic scanning in CHORUS is performed by a computer con-
trolled microscope of 3 µm depth of field, whose view is sent to the Track
Selector[60], a hardware video image processor composed of a Fast Pro-
grammable Gate Array, a Fast Memory and a grabber board connected to
a CCD camera of 512×512 pixels at 120 Hz frame rate. The actual view
corresponds to 150×150 µm2 and is determined by the microscope optics.
The system is described schematically in Fig. 3.2 and 3.3.

In the scanback data taking, the most upstream 50 µm (which corre-
sponds to approximately 100 µm of not swelled emulsion) of the plate are
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Figure 3.2: Schematic view of the components of the automatic scanning
system at CERN [61].
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Figure 3.3: An overview of the automatic scanning systems at Nagoya [62,
60, 63].
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subdivided in 16 slices, which correspond to different depths of field of the
microscope. Correspondingly, 16 tomographic images are taken in the most
upstream 3 µm of each slice and digitized, then shifted horizontally with
respect to the first layer, according to the angle predicted by the special
sheet. The track is identified as a peak in the pulse height: this can range
from 1 to 16, since each frame can give 1 if a track segment over the fixed
greyscale threshold is found therein, or 0 otherwise. An example is shown
in Fig. 3.4.

A threshold at a pulse height of 12 is set to accept a track: this on
one hand introduces an inefficiency mostly for large angle tracks, but also
rejects random coincidences. Table 3.2 shows the TrackSelector efficiency for
various angle ranges when the pulse height threshold is set. The efficiencies
were measured considering three consecutive plates, with no track segment
found in the middle one and a signal in the outer ones, and checking manually
if the segment missed by the TrackSelector was actually present. This was
repeated for different sets of tracks according to their angle with respect to
the neutrino beam.

There are two main reasons why the tracking efficiency decreases with
increasing track angle. The first is the shift of the sixteen emulsion slices that
the TrackSelector performs to identify the track, according to its predicted
angle: in the extreme case of 0 angle, there is no shift at all, so that no
mistake can occur. In intermediate situations, the bigger is the track angle,
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Figure 3.4: The main steps in image processing by the Track Selector. The
images are shifted in the focal plane according to the track slope and then
they are summed up to form a pulse-height.
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Table 3.2: Track Selector efficiency as a function of the track slope.

Angle range, mrad Efficiency,%
0 - 50 99.7±0.1

50 - 150 98.6±0.2
150 - 250 90.8±0.4
250 - 350 85.6±0.6
350 - 450 62.9±0.9

the larger is the absolute error on the TrackSelector shift. The second reason
is that such tracks go away from the fiducial volume.

The last generation of TrackSelector, the UTS, performs the analysis at
1 cm2/hour. Such high processing speed allows to handle huge emulsion
data similar to the emulsion data of CHORUS.

As mentioned, the events located with the scanback method are inherited
by Netscan and used as a prediction of the vertex position. The Netscan
data acquisition is performed by the same instrument as for scanback, but a
much larger area is scanned, with a large angular acceptance, and no angular
prediction from electronic detectors.

A fiducial volume of 1.5 mm ×1.5 mm ×6.32 mm is considered. The
longitudinal dimension corresponds to 8 plates: the vertex plate, 1 plate
upstream and 6 plates downstream are scanned. The volume is optimized
to search for secondary vertices of τ or charm, which both have an average
decay length of about 1 mm. The fiducial volume is shown in Fig. 3.5.

As for the scanback, sixteen tomographic images are taken in the most
upstream 100 µm of each plate at different focal depths. The threshold on
pulse height to retain a track segment is set to 10. All track segments, within
the angular acceptance, in the fiducial volume are measured and stored. The
angular acceptance is set to −400 mrad < θy,z < 400 mrad, where θy and θz
are the angles between the track and the beam axis (conventionally chosen
as x) in the (x, y) and (x, z) planes. This is because of the decrease of
efficiency of the UTS at larger angles. With the last version of the UTS, the
netscanning of one event takes about 10 minutes.

3.3.2 Offline reconstruction

The raw track segments undergo several operations, whose final aim is to
reconstruct tracks and vertices of the event. The offline reconstruction then
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Figure 3.5: The fiducial volume for the Netscan data taking. The hatched
area represents the transparent plastic base of the emulsion plate. The black
thick parts of the tracks show the Netscan reconstructed segments.
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consists in alignment, tracking and vertex finding. Since much of the digital
information is in fact not associated to the event, also a heavy work of
background rejection must be performed. The reconstruction program is
written in C++ and is divided in two block: ECFSAL (Emulsion Chamber
First Structure ALignment) which performs first alignment and tracking,
and ECVTXA (Emulsion Chamber VerTeX Analysis) for background track
rejection, fine alignment and vertex reconstruction.

Alignment and tracking

Once the reliable track segments are selected on the basis of the pulse height
cut off, ”ghosts” must be rejected, i.e. copies of segments which are seen
twice because they fell in the intersection zone of two microscope views.
Then, if two segments having the same angle are found, the distances to the
original track are compared. If the distance for one of them is greater than
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5 µm, then it is rejected.
After the segment selection, the recursive alignment-tracking program

(ECFSAL) is run. It compares the pattern of segments in two neighbour
plates to determine the position and rotation parameters of the plate to
plate alignment.

The tracking consists in the extrapolation of the segments of the first
plate to the following one, looking for a matching segment in a cone of
angle dependent on the alignment residuals (20 mrad being the maximum
angle), and in about 4 µm in position, corresponding to 3σ of alignment
resolution. If no candidate is found, the starting segment is kept anyway, and
the matching is tried in the further upstream plate. This means that gaps
are allowed in the Netscan tracks which improves the track reconstruction
efficiency.

Rejection of low momentum tracks and fine alignment

At the end of the first alignment-tracking process, on average 5,000 tracks
are reconstructed in the fiducial volume but only a few of them are real
event tracks. The large part are low momentum tracks coming from cosmic
rays, radioactivity, low energy interactions of neutrals, accumulated during
the years of emulsion exposure. It is then mandatory to eliminate as more
background as possible, and then a second, fine alignment is performed once
the event has been cleaned. This is done within the fine alignment-verticing
program (ECVTXA).

Tracks are obtained by the connection of several track segments, and
the number of reconstructed tracks depends on the angular acceptance in
the extrapolation from a segment to the following plate: the larger is the
acceptance, the easier a segment will fall inside the solid angle. At the
moment, in ECFSAL the tolerance is a floating value which depends on
the plate alignment residuals: this means that low momentum tracks, that
undergo large scattering, can appear splitted in track segments. Of course it
would be easy to make them connected increasing the acceptance, but this
can be risky because one could also attach event tracks to background tracks.
It is then necessary to find a good balance between the level of misconnection
introduced and the number of reconnected low momentum tracks. It was
found [62] that the optimal minimal momentum is 100 MeV/c.

After low momentum track rejection, a second, fine alignment is per-
formed using informations from the surviving tracks, similar in procedure
to the first level one. After the second alignment, the resolution is 0.5 µm
in position and 2 mrad in angle.
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3.3.3 Vertex reconstruction

Before reconstructing the vertex, one must eliminate those tracks that seem
to belong to the event only because they happen to pass through the fiducial
volume, but do not originate therein. These are mainly particles produced
in other neutrino interactions and their decay daughters.

A track is defined to be a stopping track if it escapes the fiducial volume
not more than once (no matter where, be it from the downstream face,
or from the borders, or from the upstream face). All tracks which escape
twice, are defined passing through tracks and thus are not related to the
event. After low momentum track rejection, on average 40 stopping tracks
are found in the fiducial volume.

Most of the surviving tracks clearly are still background: in fact, they
are originated from fragments of low momentum tracks that ECVTXA was
not able to reconnect and eliminate. Completely isolated segments are elim-
inated. Still included are the fragments of low momentum tracks made of
two (or more) connected segments: since the minimum number of connected
segments necessary to form a standalone track is 2, that fragment of a low
momentum track is already considered a stopping track itself. One could
increase the number of segments that form a track, but the price of this
is a loss in the tracking efficiency. It was preferred to leave a bigger con-
tamination but also higher efficiency, and use other methods to reject the
background.

One of such methods is based on tighter cuts during the vertex recon-
struction. At first stage, stopping tracks are considered two by two and
two track vertices are constructed. The requirement for two tracks to form
a vertex is that the distance between them is less than 20 µm. Also single
segments can be reincluded, provided they are matched at less than 30 mrad
with a target tracker track, but at least one of the two tracks building the
vertex must be connected in two plates. Two track vertices are then clus-
tered to form a real vertex, requesting that the distance between two tracks
that form the two track vertices is less than 10 µm.

On average 3.9 vertices are reconstructed per event. At this level, no
hypothesis is done on the reliability of the vertices. In the following we
shall see that the validation of the target tracker is needed to discard fake
vertices.

An example of located vertex as seen with the microscope is shown in
Fig. 3.6.
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Figure 3.6: Microscope view of a vertex found in the emulsions. The depth
of images goes down with the beam direction. The two tracks of charged
particles marked with arrows get closer as they approach the neutrino in-
teraction point. The black tracks that are seen at 0 µm depth are highly
ionazing nuclear fragments and slow hadrons.

3.3.4 Charm selection

Once the vertex reconstruction has been performed, one defines a primary
vertex (and its associated tracks) and possibly one or more secondary ver-
tices to which daughter tracks are attached. To select interesting decay
topologies while preserving a good efficiency for charmed hadron detection,
the following selection is applied:

• The primary muon track and at least one of the daughter tracks are
detected in more than one plate and the direction measured in the
emulsion matches that reconstructed in the fiber tracker system.

• The parent angle should be within θp < 400 mrad
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• A cut is made on the impact parameter of the secondary tracks IP >√
52 + (2σdx)2 < 130 µm, where dx is the vertex depth from the down-

stream surface of emulsion sheet and σ =
√

0.0032 + (0.0194 · tan θ)2.

• The flight length of a candidate is more than 25 µm.

The parameters are shown in Fig. 3.7.
The events which have passed the criteria described above are consid-

ered as charm candidates. However, such a selection would have a signif-
icant background from false vertices, non-charm hadronic decays, gamma-
rays conversion, etc. In order to improve the charm selection purity every
selected event has passed through eye check. The manual scanning also al-
lows to precisely reconstruct the charm decay topology and to measure the
parameters of the secondary tracks.

The possibility of manual scanning is the greatest advantage of emulsion
experiments over the other types of detectors. The price that is paid for
such an advantage is the time needed to perform the scanning and certainly
it requires experience. On average, it takes about fifteen minutes to scan
one event. This results in limited statistics of the charm sample. But,
then again, the background is much smaller compared to the other types of
experiments.

From the current sample of 93 890 scanned and analyzed events, charm
selection criteria select 2963 events which have been visually inspected to
confirm the decay topology. A secondary vertex is accepted as a decay if the
number of charged particles is consistent with charge conservation and no
other activity (blob because of nuclear evaporation or an Auger-electron) is
observed. During the eye-check charm candidates have been subdivided into

Figure 3.7: The parameters that are used to apply the charm selection
criteria.
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several sub-samples by the number of charged daughters (sometimes called
prongs), that is C1 stands for one charged daughter of charged charm, V2
for two daughters of neutral charm, etc. It is worth noting that the net three
momentum of the charged daughters is not necessarily conserved because of
possible neutral daughters. The result of the visual inspection is given in
Table 3.3. The purity of the automatic selection is found to be 73.2%. The
rejected sample consists mainly of hadronic interactions, δ-rays or gamma
conversions (∼ 35%) and of low momentum tracks which, due to multiple
scattering, appear as tracks with a large impact parameter (∼ 55%). The
remaining 10% consists either of false vertices, being reconstructed using one
or more background tracks, or of vertices with a parent track not connected
to the primary vertex. The details are summarized in Table 3.3.

Table 3.3: The number of charm candidates in each prong sample and the
relative number of background events in the various samples

Decay topology Charm candidates Background events
C1 452 43.3±2.4
V2 819 36.6±3.5
C3 491 3.8±0.2
V4 226 negligible
C5 22 1.5±0.1
V6 3 negligible

Total sample 2013 85.2

There is a non-negligible fraction of non-charm events in the manually
confirmed sample. This contamination is mainly due to hadronic interac-
tions that fake charm decays (white kinks), and decays of Σ±, K0

s and Λ0.
The backgrounds from the decays of the strange particles were estimated us-
ing the JETTA [55] MC generator which is based on LEPTO 6.1 [57]. The
production rate of the strange particles normalized to the charged-current
events was found to be consistent with the NOMAD data [64, 65]. The last
column of Table 3.3 shows the number of background events in the charm
decay topologies.
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3.4 Data and Monte Carlo comparison

Before going into the discussion concerning the selection efficiency, let make
ourselves confident about the description of the data by the simulation. In
the following Figures 3.8, 3.9, 3.10 the general kinematical quatities are
compared for the charm sample and the charm from the Monte Carlo. It is
worth mentioning that the shown distribution for Eshower is not the original
MC spectrum. Original MC data are slightly different from the presented
distributions. This is taken into account by fitting MC distributions to the
real data using a linear function. The corrected value for the MC is

Ecorr
shower = 0.9Eshower . (3.2)

The simulated data have been tuned on the charged current events and not
specifically for charm data. As it is seen from the plots, in average the
agreement between the charm real data and the simulated data sample is
good.

Figure 3.8: Data vs Monte Carlo comparison of the primary muon momen-
tum for the events with charmed hadrons.
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Figure 3.9: Data vs Monte Carlo comparison of the hadronic shower energy
for the events with charmed hadrons.
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Figure 3.10: Data vs Monte Carlo comparison of the the visible energy
(defined in 5.3.1), for the events with charmed hadrons.
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3.5 The charm selection efficiencies

The event selection efficiency is a function of many variables: charm species,
flight path, energy of the charmed hadron, number of prongs (decay daugh-
ters), etc. It also depends on particle identity of the decay daughters. For
example, the selection efficiency for charmed hadrons decaying muonically
is different from an inclusive charm selection efficiency. This fact, of course,
has to be taken into account in the estimation of the muonic branching ra-
tio of the charmed hadrons. Thus, the sixteen average efficiencies are to be
estimated: four charm species times two decay topologies and similar to the
previous but considering only muonic decays. Let us look at it a bit closer
to be sure that the dependencies can be qualitatively understood.

Figures 3.11 and 3.12 show the efficiency dependence as a function of the
flight length per each charm species and per each decay topology. The low
value of the selection efficiency at short flight lengths is explained by the
difficulty to separate the two vertices. If a track from the seconday vertex
is attached to the primary then the efficiency to reconstruct the secondary
vertex becomes lower. At long flight paths the selection efficiency goes down
because the decay point is quite close to the edge of the fiducial volume
then few secondary tracks can be reconstructed. The simulation shows that
approximately 3% of D0 decay out of the fiducial volume, 12% of D+, 3%
of D+

s and <1% of Λ+
c .

Figure 3.13 shows the selection efficiency as a function of the visible
energy. The dependence between the two is due to the correlation between
the incident neutrino energy and the charmed hadron Lorentz-boost factor.



3.5. The charm selection efficiencies 67

Figure 3.11: Dependence of the charm selection efficiency as a function of
the flight path for D0 (top) decaying into two prongs and four prongs and
D+ (bottom) decaying into one and three prongs respectively. At low Evis

the efficiency is lower because the primary and secondary tracks go out of
the fidicial volume. At high Evis the selection efficiency goes down because
the charmed hadrons go out of the fiducial volume.
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Figure 3.12: Dependence of the charm selection efficiency as a function of
the flight path for D+

s (top) and Λ+
c (bottom) decaying into one and three

prongs.
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Figure 3.13: Dependence of the charm selection efficiency as a function of
the visible energy. The histogram shows the simulated distribution before
the selection.
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The determination of the muonic branching ratio of charmed hadrons
depends on the ratio of the selection efficiency for all decay modes of these
hadrons (D0, D+, D+

s and Λ+
c ) and for their specific muonic decay channels.

The other charmed hadrons disintegrate through strong or electromagnetic
interactions into these four charmed particles. The difference in the recon-
struction efficiency is taken into account by introducing the following factor
for each number of prongs n:

R(n-prong) =

∑
Di→n

fDiεDi∑
Di→n

fDiε
µ
Di

, (3.3)

where, for example, the sum is taken over D+
s , D+ and Λ+

c if n is odd. The
quantities fDi are the charm production fractions which include the differ-
ent charm production processes, εDi is the selection efficiency for different
charm species, εµDi

is the selection efficiency for the charm particles with
a muonic decay. For D0 →V2 or V4 (decay of a neutral particle into two
or four charged prongs), the R-factor becomes just the ratio of these two
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Table 3.4: Charm production fractions times the branching ratio to de-
cay topology from a reanalysis of the E531 data (second column) [67] and
from the JETTA generator (third column). The fractions take into account
the branching fraction of the D0 into final states with all neutrals [66] and
they are normalized to the total charm production. The last two columns
represent the average selection efficiency and the selection efficiency for de-
cays with a muon in the final state. The efficiencies are normalized to the
events located in the emulsion. The average charm selection efficiency is
εcharm
sel = 0.51 where the errors are negligible.

D0 fD0(E531) fD0(JETTA) εD0 εµ

D0

V0 0.12 0.11 0 –
V2 0.38 0.38 0.57±0.01 0.61±0.02
V4 0.09 0.09 0.75±0.01 0.78±0.02

D+ fD+(E531) fD+(JETTA) εD+ εµ

D+

C1 0.07 0.10 0.24±0.01 0.29±0.02
C3 0.07 0.12 0.53±0.01 0.56±0.03

D+
s fD+

s
(E531) fD+

s
(JETTA) εD+

s
εµ

D+
s

C1 0.06 0.03 0.33±0.02 0.39±0.08
C3 0.05 0.04 0.70±0.02 0.77±0.05

Λ+
c fΛ+

c
(E531) fΛ+

c
(JETTA) εΛ+

c
εµ

Λ+
c

C1 0.08 0.03 0.21±0.02 0.25±0.05
C3 0.07 0.05 0.52±0.02 0.58±0.14

efficiencies, since fDi cancels out. The R-factor can similarly be defined for
a mixture of different topologies. The second and third columns of Table 3.4
show different estimations of the fractions. In both cases, the same value of
the branching ratio of the D0 into final states with all neutral particles is
used [66]. One (JETTA) is the model used in the Monte Carlo, the other
one (E531) is the only direct measurement of the fractions in the litera-
ture [15, 16]. These results on the charged charm decay topologies are split
here into two different categories, C1 and C3. It is worth stressing that the
exact values of the production fractions are not very important because the
event reconstruction efficiency does not change dramatically from one charm
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species to the other one and the effect is further weakened when taking the
sum. For this particular analysis, the ratio εDi/ε

µ
Di

plays a more important
role than the production fractions. Nevertheless, a systematic error on R is
introduced as a result of choosing the two different sets of the fractions fDi .
In many cases, the errors on R may be neglected since they are small with
respect to the other sources. The values of the R factor are summarized in
Table 3.5.

Table 3.5: The values of the R-factor defined in the text for different charm
decay topologies and their mixtures. The systematic errors include the un-
certainty on charm production fractions. The first error quoted is statistical
and, when present, the second is the systematic error. The inclusive case
is corrected for D0 into neutrals according to Table 3.4. The C5 and V6
samples are omitted because of low statistics.

Topology R

C1 0.83 ± 0.06 ± 0.01
V2 0.93 ± 0.02
C3 0.92 ± 0.06 ± 0.01
V4 0.96 ± 0.02

C1+C3 0.89 ± 0.04 ± 0.01
V2+V4 0.94 ± 0.01 ± 0.01
Inclusive 0.80 ± 0.01 ± 0.01

3.6 Anti-neutrino charged current sample

The results presented in this section come from the analysis concerning anti-
neutrino charm production Refs. [68, 69]. More details can be found in the
original works.

An event is considered as a charged current interaction if there is at
least one muon identified in the muon spectrometer. The magnetic field of
the spectrometer is oriented to bend the positively charged muons from the
centre. Thus, it is possible to measure the charge of particles. Knowing the
charge of the primary muon it is possible to separate neutrino interactions
from anti-neutrino ones. On top of 93807 charged current candidates, there
are 2704 events with a good positive muon (or of the highest-energy muon in
case of multimuon events). These events are identified as ν̄µ charged current
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Table 3.6: Estimated background in the µ+ sample of located events. The
first error is statistical and the second is systematic. The systematic errors
take into account the uncertainty on the beam flux measurement [43].

µ+ sample 2704 event
wrong µ− reconstruction 169 ± 28 ± 17
µ+ from charm decay 79 ± 16 ± 8
π, K punch-through 284 ± 45 ± 28

interactions. There is certainly a background in such a definition. To obtain
the sample of ν̄µ charged current interactions, one has to account for:

• νµ charged current events with µ− reconstructed as µ+;

• νµ-induced dimuon events for which the primary muon is not recon-
structed in the spectrometer while the µ+ from the charmed hadron
decay is seen;

• punch-through hadrons traversing the 5.2 interaction lengths of the
calorimeter and reconstructed as positive muons in the muon spec-
trometer, in charged current events with no identified µ−, or in neutral
current interactions.

It was estimated that the contribution from π and K decays into a µ
reconstructed in the specrometer is negligible. A detailed simulation of the
experiment has been performed to evaluate these contributions as well as the
overall detection efficiencies. The various contaminations to the sample of
µ+ located events, shown in Table 3.6, have been statistically subtracted to
estimate the total number of ν̄µ charged current interactions. They represent
together (19.7± 2.1)% of the complete anti-neutrino sample.

The detection efficiencies for νµ and ν̄µ charged current interactions have
been evaluated, taking into account the efficiencies of the muon reconstruc-
tion (including charge determination), the tracking downstream to the emul-
sion stack, and the scanning-back to the primary vertex plate. Their average
values are presented in Table 3.7.

Applying the correction for the detection efficiency on the anti-neutrino
sample, it is possible to estimate the ratio of ν̄µ and νµ interaction rates
in the emulsion. It is found to be 0.021 ± 0.001. This result is in good
agreement with the previous measurement of 0.022 ± 0.001 which is based
on the calorimeter data (see Table 2.1).
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Table 3.7: Detection efficiencies for ν̄µ and νµinduced events with at least
one muon in the spectrometer. The errors include the uncertainty from the
Monte Carlo statistics.

εdet(%)
ν̄µ CC 43.7 ± 0.6
νµ CC 40.3 ± 0.4

ν̄µ CC charm 28.2 ± 1.0
νµ CC charm 32.2 ± 0.2

Table 3.8: Results of the visual inspection per decay topology for anti-
neutrino sample.

Number of prongs Number of events
C1 6
V2 18
C3 7
V4 7
C5 2

Charm selection criteria (see Section 3.3.4) select 81 events for visual
inspection out of 2704. From these events 40 have been confirmed to have
a decay topology consistent with charm. The results of the visual inspec-
tion are shown in Table 3.8 as a function of the number of prongs. The
corresponding selection efficiencies are shown in Table 3.9. The C5 sample
is kept here to preserve the consistency with the original work [68].

The detection efficiencies for charm events are shown in Table 3.7. These
efficiencies are estimated by combining the efficiency to reconstruct muon in
the spectrometer, perform the tracking downstream the emulsion stack and
to find the interaction vertex. Their values are somewhat lower than the
average detection efficiencies for charged current interactions. This can be
explained by two effects: the average track multiplicity in charm events is
higher and the momentum and angular distributions of the primary muons
are different in charm and all charged current events (Ref.[69]).

There is still a large fraction of background in the sample presented in
Table 3.8. The major part of it is from the νµ-induced charm events for
which either the primary µ− was reconstructed as a µ+ or the µ+ track
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Table 3.9: Charm selection efficiency containing geometrical acceptance and
reconstruction efficiency for decays of hadrons produced in ν̄µ charged cur-
rent interactions. Similar efficiencies for νµ-produced charm are shown in
Table 3.4. The contribution from charmed D− and D−

s mesons was eval-
uated assuming D+

s /D
− = 0.627 ± 0.073 [70] and the production ratio as

obtained in Ref. [71, 72]. The errors include limited Monte Carlo statistics,
instrumental effects and the uncertainty on D+

s /D
−.

D̄0 D− + D−
s

C1 - 31.0 ± 5.2
V2 53.7 ± 2.5 -
C3 - 56.3 ± 5.0
V4 68.4 ± 4.7 -
C5 - 60.5 ± 24.4

coming from charm decay was wrongly attached to the primary vertex. To
reduce this background, stronger criteria on the muon identification have
been applied to the event candidates:

• low momentum muons stopping inside the spectrometer, for which
the reconstruction is based on few hits in the electronic detectors, are
discarded;

• the distance of the impact point on the spectrometer entrance surface
from its axis is required to be smaller than 150 cm, ensuring a long
potential path through the toroidal magnets;

• several muon reconstruction algorithms in the spectrometer are avail-
able, using only hits in the drift chambers or the combined data from
all electronic detectors. Consistency checks are applied when a muon
track is reconstructed by more than one algorithm. Otherwise, the
track length is required to be greater than three spectrometer gaps
(two magnets);

• when matching a spectrometer track with a track in the fiber trackers,
a tighter cut is applied on the χ2 of the global track fit.

With the above primary muon identification criteria, the probability to
select a νµ event as a ν̄µ goes down from (0.12 ± 0.02)% to (0.02 ± 0.01)%
while still preserving good selection efficiencies [69].
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The other important sources of backround are:

• White kinks. These are hadronic interactions with no highly ionizing
tracks or other evidence (blobs or Auger electrons). Such interactions
look very similar to C1 topology.

• Neutral strange particles that mimic V2 charm decay although in av-
erage they have a much longer flight path.

The backroung sources contributing to three or more prong decays were
found to be negligible. The total number of background events was estimated
to be 3.2±0.3.

The final sample is shown in Table 3.10. Combining the numbers with
the efficiencies from Table 3.9 gives an average for charm selection efficiency

εcharm
sel = 0.53± 0.02, (3.4)

where the error includes the uncertainty on the selection efficiencies. Bearing
in mind that the neutrino and anti-neutrino beams were not the same, this
value should be compared to the average neutrino produced charm selection
efficiency from Table 3.4.

The charm production rate in charged current interactions induced by
ν̄µ normalized to the ν̄µCC sample is found to be [68]:

σ(ν̄µN → µ+c̄X)
σ(ν̄µN → µ+X)

= [5.0+1.4
−0.9(stat)± 0.7(syst)]% . (3.5)

A similar ratio is not given for the charm production because the analysis
is still going on. A very preliminary estimation is made in the Chapter 5.
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Table 3.10: Candidate events and estimated backgrounds for each decay
topology after applying a stronger primary muon definition. The last col-
umn shows the number of events background subtracted and charm selection
efficiency corrected. The first error is statistical and the second is system-
atic. The statistical errors have been evaluated according to the statistical
approach from Ref. [84].

Decay topology Events Background Weighted sample
C1 4 1.3± 0.2 8.6+9.1

−5.1 ± 1.4
V2 16 1.4± 0.2 27.2+8.9

−6.8 ± 1.3
C3 4 0.3± 0.1 6.5+5.0

−2.9 ± 0.6
V4 6 0.13± 0.05 8.6+4.8

−3.1 ± 0.6
C5 2 0.02± 0.01 3.3+3.8

−2.1 ± 1.3



Chapter 4

Muonic branching ratio

In this chapter, the measurement of the topological muonic branching ratios
for different charm decay topologies is described. Using the obtained results,
several physical quantities are extracted.

4.1 Muon identification

Particles recognition plays an essential role in the high energy physics ex-
periments. The muon identification procedure is important not only for the
selection of muons coming from the decays of charm but also to separate
charged current neutrino interactions from neutral current ones. Most of
the identification algorithms rely on the fact that different sorts of particles
interact differently with matter. It is well known that the muons penetrate
further into the detector with respect to the electrons and the hadrons pro-
vided they have similar incident energy. This what makes them easier to
detect. The interactions of muons in the media leads to a threshold on the
muon momentum and the geometrical acceptance.

A new algorithm MURECO has been developed to identify muons for
the CHORUS experiment. This algorithm delivers a set of basic estimators
to the user. The user can combine the estimators to boolean expressions
and decide if a track is a muon or not. The boolean expressions depend on
the cuts chosen for each basic estimator. The values of the cuts will depend
on the kinematic properties of the studied muons.

The MURECO algorithm has been implemented as a module of our
general event reconstruction framework CHANT and uses information from
the downstream part of the calorimeter and from the spectrometer. It is
track driven, which means that, providing the track parameters from either

77
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emulsion or target tracker, it extrapolates the track to the calorimeter and
the spectrometer and returns the estimators. Such approach allows to check
the tracks found in emulsion and attached to the secondary vertex which
dramatically changes the situation if compared to the other measurements
which do not require an identified muon to be attached to a vertex. The
details on the MURECO algorithm can be found in the note[73].

4.2 Basic estimators

Range measured with scintillators

A cylinder is defined around the extrapolation of the track under concern.
The tolerance is different for the two parts of the detector: 7 cm for the
calorimeter and 12 cm for the spectrometer. If the center of the scintillator
slab lies within the road, it is considered. The track is seen if one of the
signals around the road is greater than the threshold value of 0.2 minimum
ionizing particle signal (MIP).

A schematic representation of the estimator construction is shown in
Fig. 4.1. In total ten planes are used: the last six calorimeter planes and
the first four spectrometer readout planes. No distinction is made between
the two projections. A subset of four consecutive planes is examined, and
a bit is set when three out of the four planes have a hit. There are also
two variations of the estimator requiring two out of the four and four out
of the four hits respectively. This procedure is repeated shifting the region
of four planes each time one plane further downstream. The six bits give
a distribution for the tracks from 0 to 63. Fig. 4.2 shows the comparison
between the data and the simulation for different types of tracks.

Range and isolation measured with streamer tubes in the calorime-
ter

The streamer tubes in the calorimeter are used in a similar manner com-
pared to the scintillators. However, this time the two projections are treated
independently and two estimators are constructed. Again each time four
consecutive planes having the same orientation are examined. The road is
defined in two steps shown in Fig. 4.3. First a pivot point is defined as
a hit in the most downstream plane out of four that is within the road.
Each possible pivot hit, defines a new straight line, using the origin of the
measured track and the pivot hit as hypothesis for the trajectory. Then the
three upstream planes are checked for the presence of hits. If two planes
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out of three have hits then the appropriate bit is set to 1. This algorithm
considers only hits in sufficiently isolated clusters (up to three hits) with the
aim to reduce the background coming from the hadronic showers. There
were in total twenty-two streamer tubes planes. The small planes near the
electromagnetic calorimeter were not used leaving nine useful planes in each
projection. These form six possible regions of four planes. The possible
values are from 0 to 63. The results are shown in Fig. 4.4.

On top of that, isolation estimators are constructed in a similar fashion
as the range measured with streamer tubes. The cluster isolation is defined
as a minimum distance to the nearest cluster. And again the two projections
are treated separetely. The possible values are from 0 to 63. The results are
shown in Fig. 4.5

Figure 4.1: Schematic representation of the scintillator estimator construc-
tion. The two projections have been merged together for simplicity. The
black squares represent a signal above the threshold. The squares outside
the road are not considered.
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Figure 4.2: Comparison of the scintillators estimator for simulated
muons(top) and hadrons(bottom), both coming from charm. The reader
should take into account that the normalization is different in the two cases.
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Figure 4.3: Schematic representation of the streamer tube estimator con-
struction. The tubes in the planes are shown as squares. The pivot hit is
shown as filled square in the most right plane. A new trajectory is defined
connecting this hit to the track origin. The new road is in general different
from the original one as shown in the figure. Only one region is shown.
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Figure 4.4: The results for the streamer tubes estimators.
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Figure 4.5: The distribution of the isolation streamer tubes estimator for
secondary muons(top) and hadrons(bottom).
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Energy in the calorimeter

Muons coming from charm decay are quite soft particles compared to the
primary ones. One of the consequences of that is the difficulty to separate the
muons from hadronic showers in the downstream part of the calorimeter. In
order to reduce the background coming from the last part of the calorimeter
an estimator is constructed which is a sum of the energy deposited in the
downstream part of the calorimeter HAD2. The units of this estimator are
MIPs.

It was found that there is a discrepancy between the data and Monte
Carlo for this estimator. That is why a decision has been made to recalibrate
it by fitting simulated charged current data to the real charged current data
using a linear function. As a result the systematic error on the muonic
branching ratios has been reduced. The output of the fit is shown in Fig. 4.6
and the numerical values are

Ecorr
HAD2 = 0.83 ∗ EHAD2 + (−3.8± 0.2)× 10−3, (4.1)

where the error is from the fit. The error on the EHAD2 slope coefficient is
negligible.

4.3 Muon identification criteria

The muon identification algorithm assumes to be ran as a post-scanning
routine. Thus the tracks under consideration come from Netscan. These
tracks are not necessarily matched to target tracker tracks but they have
to be confirmed to belong to any of the vertices related to the event. The
confirmation is made by eye-checking the presence of the secondary vertex
in the fiducial volume. The information about the vertex of origin gives an
enormous advantage in the muon identification because we can use different
criteria for the primary and for the secondary muons. It is worth stressing
that in the previous measurements [74, 75, 76, 77, 78, 17, 79, 80] the analyses
have been made requiring the presence of two (or more) tracks satisfying
the same criteria without demanding the attachment of the two tracks to
the different reconstructed vertices. By doing so we may count also soft
muons from charm that have been scattered, but we also may count muons
coming from background (π and strange particles decays). Such a low energy
background is very difficult to simulate. The level of the background muons
was different in the measurements mentioned above but it unavoidably lead
to the increase of the systematic error for all of them. To require a muon
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Figure 4.6: The result of the fit of the energy distribution in HAD2 for
simulated charged current data and real charged current data. Although a
descrapansy is seen at high HAD2, the low HAD2 region containing major
part of the events fits well.
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to be attached to the secondary vertex, gives an opportunity to measure
muonic branching ratio for each charm decay topology separately and makes
the analysis absolutely transparent.

The basic estimators defined in the previous sections are combined to
define a “muon flag”. This flag is used to separate tracks that resemble the
properties of muons from other tracks. So, the track is assumed to be a
muon coming from charm decay if it is attached to a downstream secondary
vertex found in the fiducial volume and[

q3 > qcut ∩ Pµ > 10−3
]⋃

[
q3 > qcut ∩ sy > scut ∩ sz > scut ∩ (∆θy > θcut ∪∆θz > θcut)

∩EHAD2 < Ecut

]⋃
[
q3 > qcut ∩ sy > scut ∩ sz > scut ∩ iy > icut ∩ iz > icut

]
, (4.2)

where q3 is the version of scintillator estimator requiring three hits in four
planes, Pµ is the matching probability between target tracker track and
spectrometer track, sy,z are the ranges measured with the streamer tubes
in two projections, ∆θy,z are the slope distance from primary muon in two
projections, EHAD2 is the energy deposited in the downstream part of the
calorimeter HAD2 and iy,z are the isolation estimators measured with the
streamer tubes. For the secondary muons the values of the cuts were different
for each decay topology. The purpose of this was to optimize the statistical
and systematical errors. The values of the cuts for secondary muons are
presented in Tables 4.1 and 4.2. The muon identification efficiency as a
function of the secondary muon momentum is presented in Fig. 4.7. There
are several sources of background to this muon definition. Those giving the
largest contributions are punch-through hadrons and muons from decays of
π’s and K’s that have been matched to emulsion tracks. All other processes
give a minor contribution.

The choice of cuts has been directed by the larger statistics on one side
and the symmetrical systematic distributions of the muonic branching ratios
on the other side. The latter is discussed in the next section. The number
of selected tracks are summarized in Table 4.3.

The physical sources of dimuon events in the four-prong sample are very
much suppressed with respect to two-prong events. Because of that, the
definition explained above for secondary muons would introduce too much
background in the four-prong sample. Therefore, for the V4 sample the
tighter requirement of a secondary track associated with a positively charged
spectrometer track was applied in order to optimize the signal to background
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Table 4.1: The values of the cuts used to identify muons coming from charm
for each decay topology. The V4 case is explained in the text. The C5 and
V6 samples are omitted due to low statistics in the data.

Number of prongs qcut scut icut Ecut

C1 6 6 46 15
V2 6 6 46 15
C3 6 6 52 15
V4 63 63 63 0

Table 4.2: Similar to the previous but per visible energy bin. This time the
samples (C1, V2, C3, V4) are mixed together.

Evis bin qcut scut icut Ecut

0 GeV < Evis < 30 GeV 16 7 16 15
30 GeV < Evis < 50 GeV 56 35 56 12

50 GeV < Evis 47 32 7 15

ratio. This criterion selects two events out of 226. If the spectrometer track
is required to have negative charge no events are selected. Background for
such events could come from hadronic charm decays with one of the charm
daughters decaying muonically. It has also been verified that the muonic
background coming from decays of strange particle (K0

s , Λ0) daughters is
small. A Monte Carlo simulation shows that the level of the muon identifi-
cation background corresponding to this sample is (3.4±0.4)×10−2.

4.4 Systematic uncertainty

The main source of systematic uncertainty on the muonic branching ratio
is the systematic error on the secondary muon identification. The selection
is not very sensitive to changes in the criteria on the matching with muon
tracks found in the spectrometer. However, it does depend on the details
of the scintillator range estimator, the streamer tubes range estimator, the
isolation measured with the streamer tubes, and the energy deposited in the
most downstream part of the hadronic calorimeter. An estimate of the sys-
tematic error is obtained by a variation of the cuts on the parameters in the
secondary muon identification procedure. For each set of parameters (cuts)
applied to the estimators a value of Bµ is obtained. Then the distribution
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Figure 4.7: Muon identification efficiency as a function of the muon momen-
tum as obtained with Monte Carlo. Only muons coming from charm decays
are presented here. One of the sources of the systematic error is the model
parameters that change the spectrum. The histogram shows distribution of
secondary muons momenta as obtained with simulation.

is fit using MINUIT package [81] to the Gaussian probability distribution
function with three parameters

f(x,N, µ, σ2) =
N√
2πσ2

exp
(−(x− µ)2

2σ2

)
, (4.3)

where N is a normalization factor which has no physical meaning and is
omitted further, µ and σ are the mean and standard deviation of the proba-
bility distribution function. The results for each dominating decay topology
and per energy bin are presented in Tables 4.4 and graphically shown in Fig.
4.8, 4.9, 4.10, 4.11, 4.12, 4.13. Using the charmed fractions from Table 3.4
the systematic errors are obtained for the mixtures of the topologies and for
the inclusive measurement. The relative errors are presented in Table 4.5.

Another source of systematic error is the choice of the parameters of
the model used in the simulation. The charm quark mass, mc, the choice
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Figure 4.8: The distribution of Bµ obtained by the variation of the cuts in
the muon identification for the C1 sample.
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Figure 4.9: The distribution of Bµ obtained by the variation of the cuts in
the muon identification for the V2 sample.
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Figure 4.10: The distribution of Bµ obtained by the variation of the cuts in
the muon identification for the C3 sample.
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Figure 4.11: The distribution of Bµ obtained by variation of the cuts in the
muon identification for the energy bin 0 GeV < Evis < 30 GeV for the mixed
topologies.
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Figure 4.12: The distribution of Bµ obtained by variation of the cuts in the
muon identification for the energy bin 30 GeV < Evis < 50 GeV for the
mixed topologies.
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Figure 4.13: The distribution of Bµ obtained by variation of the cuts in
the muon identification for the energy bin 50 GeV < Evis for the mixed
topologies.
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Table 4.3: The number of secondary tracks identified as muons in real
data, the background normalized to the number of selected tracks, and the
identification efficiency as obtained from simulation. The errors on the iden-
tification efficiencies are determined by the limited Monte Carlo statistics.
The identification criteria for the V4 sample are explained in the text. In
the inclusive case the samples are combined using the weights from Table
3.4.

Number of prongs Selected Background εidµ ,%
C1 20 0.8 36.0 ± 3.4
V2 34 9.8 34.5 ± 1.9
C3 17 8.4 26.4 ± 2.6

C1+C3 37 9.2 31.7 ± 3.1
V2+V4 36 9.8 30.1 ± 1.5
Inclusive 73 19.0 30.4 ± 2.1

of the parton distribution functions, GRV94LO[82] and CTEQ3[83], and
the relative fraction of the strange quark sea compared to the down-quark
sea, κ, affect the momentum spectrum of the muons coming from charm
decays. The variation limits for mc and κ are consistent with the values of
the fit parameters describing the energy dependence of the D0 production
cross-section measured with the same sample of events (see Ref. [66]): mc =
1.42 ± 0.08 GeV/c2 and κ = 0.38 ± 0.10. The relative systematic error
obtained in this manner corresponding to one standard deviation is equal to
σmodel

syst =1.6% to be compared with the σid
syst, Table 4.5.

4.5 Results

Bn
µ , the muonic branching ratio for each n-prong sample, can be written in

terms of measurable quantities as

Bn
µ =

∑
i

fnDi
Bn(Di → µ+X) =

N2µ −Nbg

N · εidµ
×R(n-prong), (4.4)

where the sum is taken over the contributing charmed hadrons, N is the
total number of events in the n-prong sample corrected for non-charm back-
ground, N2µ is the number of tracks identified as secondary muons, Nbg

is the number of background tracks in N2µ from Table 4.3, and εidµ is the
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Table 4.4: The results of fit as an estimate of the systematic error on the
muonic branching ratio for the each sample and inclusively per energy bin.
The mean can be reinterpreted as an average Bµ while the standard devi-
ation is the systematic error on it. The uncertainty on µ and σ and the
correlation coefficient ρ are from the fit.

Number of prongs µ σ ρ

C1 [10.83 ± 0.35]× 10−2 [5.14 ± 0.34]× 10−3 0.022
V2 [8.31 ± 0.02]× 10−2 [3.66 ± 0.21]× 10−3 -0.113
C3 [6.08 ± 0.08]× 10−2 [6.4 ± 0.79]× 10−3 0.068

Energy bin µ σ ρ

0 < Evis < 30 GeV [6.16 ± 0.06]× 10−2 [5.74 ± 0.56]× 10−3 0.036
30 < Evis < 50 GeV [8.13 ± 0.02]× 10−2 [2.46 ± 0.22]× 10−3 -0.061

50 < Evis [8.1 ± 0.07]× 10−2 [6.12 ± 0.59]× 10−3 0.273

Table 4.5: The relative systematic errors on the muonic branching ratio
from the muon identification for different decay topologies and their mix-
tures.

Topology σid
syst (%)

C1 4.7± 0.3
V2 4.4± 0.2
C3 10.7± 0.8
V4 negligible

C1+C3 5.6± 0.4
V2+V4 3.6± 0.2
Inclusive 3.3± 0.1
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Table 4.6: The muonic branching ratios for different prong samples and
their mixtures. The first error quoted is statistical and the second is the sys-
tematic error. The statistical errors include the uncertainty on the number
of identified muons and the error on the identification efficiency.

Number of prongs Bµ (%)
C1 10.8 ± 2.4 ± 0.5
V2 8.3 ± 1.4 ± 0.4
C3 6.1 ± 1.6 ± 0.6

C1+C3 8.6 ± 1.4 ± 0.4
V2+V4 8.1 ± 1.5 ± 0.3
Inclusive 7.3 ± 0.8 ± 0.2

secondary muon identification efficiency. The inclusive value of the ratio is
calculated as a weighted sum of the ratios per topology

Bµ =
∑
n

fCn ·B(Cn → µ+X), (4.5)

where Cn can be C1, V2, C3 or V4, and fCn are the average fractions ob-
tained from Table 3.4. Table 4.6 contains the values of the muonic branching
ratios as a function of the number of prongs.

The muonic decay branching ratio of the D0 could be obtained by com-
bining the results for the two-prong and four-prong samples and taking into
account the branching ratio of the D0 into only neutral particles, B(D0 →
neutrals), mentioned earlier. This yields

Bµ(D0) = [6.5± 1.2 (stat)± 0.3 (syst)]× 10−2 ,

where the systematic error is determined by the precision of the muon iden-
tification and on B(D0 → neutrals). This result is in agreement with the
value (6.6± 0.8)× 10−2 quoted in Ref. [11].

The limit for the V4 decays could be obtained using the Feldman–
Cousins approach [84] with a 90% confidence level. The result is normalized
to the total D0 cross-section:

3.0× 10−4 < Bµ(D0 → V4) < 3.4× 10−3 , (4.6)

to be compared with the existing 90% C.L. limit B(D0 → K−π+π−µ+νµ) <
1.2 × 10−3 [85]. It is also consistent with the value using D0 events in
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the emulsion, 2.0 × 10−4 < B(D0 → K−π+π−µ+νµ) < 1.5 × 10−2 at 90%
C.L., which was obtained by counting the number of four-prong charm-decay
events with two opposite-charge muons in the final state [86].

The average muonic branching ratio for the C1 and C3 samples taken
together could be reinterpreted as the average branching ratio for charged
charm hadrons D+

s , D+ and Λ+
c (taking into account the small number of

C5 events).
The inclusive muonic branching ratio for the complete sample of charm

hadrons is therefore determined to be

Bµ = [7.3± 0.8 (stat)± 0.2 (syst)]× 10−2.

Our earlier result, Bµ = [9.3 ± 0.9 (stat) ± 0.9 (syst)] × 10−2 [17], was ob-
tained using a value for B(D0 → neutrals) from the observed decay channels
only [11]. If the new determination for this topological branching ratio ob-
tained in Ref. [66] is used, the previous result is reduced by ≈ 7%. The
results are therefore compatible given the entirely different systematic un-
certainties of the two measurements. The improvement in the systematic
error is significant. Because of the limited statistics of the present sample,
the energy dependence of Bµ could be determined in a small number of bins
only. The splitting of the total sample into three subsamples (Evis ≤ 30
GeV, 30 GeV ≤ Evis ≤ 50 GeV and 50 GeV ≤ Evis) gives results compatible
with each other within one standard deviation. The dependence is shown in
Fig. 4.14.

Strictly speaking, the muonic branching ratio measured in this analy-
sis can not be compared directly with the results from other experiments
because the beam spectra are not the same. As an additional difference it
should be mentioned that the present determination is a direct measurement
while in the other experiments Bµ was extracted as one of the parameters
of a fit to kinematical distributions.

Many explicit final states of the different charmed hadrons have been
observed, in particular in e+e− colliders. However, the inclusive muonic
branching ratio has only been measured for the D0 decays. The values
quoted in PDG (Particle Data Group)[11] for the inclusive leptonic branch-
ing ratios rare

B(D0 → µ+ anything) = [6.6± 0.8]× 10−2 ,

B(D+ → e+ anything) = [17.2± 1.9]× 10−2 ,

B(D+
s → e+ anything) = [8+6

−5]× 10−2 ,

B(Λ+
c → e+ anything) = [4.5± 1.7]× 10−2 . (4.7)
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If it is assumed that electronic and muonic branching ratios are equal and
using the charmed fractions from Table 3.4 , one easily gets from Eq.4.5

Bµ = [7.8± 0.9]× 10−2,

which is in good agreement with the direct measurement. Another estima-
tion can be done by reading Eq. 4.5 in the opposite way: starting from the
measurement of the inclusive muonic branching ratio to extract a Bµ for one
particular species if the Bµ for the others are known. For example, using Bµ

for the C1+C3 sample the muonic branching ratio for D+
s can be estimated

(because it has the worst precision)

B(D+
s ) =

Bµ(C1 + C3)− fD+Bµ(D+)− fΛ+
c
Bµ(Λ+

c )

fD+
s

. (4.8)

Working out the calculations the ratio is found to be

B(D+
s → µ+ anything) = [4+6.5

−4 ]× 10−2, (4.9)

Figure 4.14: Average muonic branching ratio as a function of visible energy.
The value of visible energy for each bin is an average over the events in the
bin. The error bars include statistical and systematic uncertainties. The
last bin contains all events with neutrino energy larger than 50 GeV.
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Figure 4.15: Dimuon neutrino cross-section normalized to the charged-
current cross-section as a function of visible energy. The solid crosses show
CHORUS result and the dashed ones is the average over the other dimuon
experiments [87].
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to be compared with Eq. 4.7.
In a similar manner, one can obtain the dimuon cross-section normalized

to the charged-current cross-section. In terms of measurable quantities the
ratio is

σµ−µ+

σcc
=
N2µ −Nbkgr

Ncc · εidµ
×

εccloc

εcharm
loc

× 1
εcharm
rec

, (4.10)

where Ncc is the number of charged-current events in a bin, εloc are the
location efficiencies from Eq 3.1, and εcharm

µ is the average event reconstruc-
tion efficiency of charm decaying muonically from Table 3.4 (evaluated to
be εcharm

µ = 0.57). The result is shown in Fig. 4.15 as a function of energy.
The average value is

σµ−µ+

σcc
= [3.16± 0.34 (stat)± 0.09 (syst)]× 10−3 .

The CCFR experiment has extracted the value for |Vcd| by combin-
ing its study of opposite-sign dimuon events with a determination of Bµ
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based on the E531 data, considering only events with a visible energy above
30 GeV [77]. This approach has been adopted by the particle data group as
well [11], even though it is then applied on the average over Bµ|Vcd|2 mea-
surements from different experiments with leading order (LO) and next-
leading order (NLO) analyses which requires an assumption on the scale
uncertainty. Our value for Bµ is model independent and thus can be used
to extract the values of |Vcd| for LO and NLO separately. Averaging the
measurements at the leading order by the CDHS, CHARM II and CCFR
experiments [67], one would get

Bµ × |Vcd|2 = (0.474± 0.027)× 10−2 .

Selecting from our sample the events with a visible energy greater than
30 GeV yields a value of

Bµ = [8.5± 0.9 (stat)± 0.6 (syst)]× 10−2 .

Adding the statistical and systematic errors in quadrature, and combining
with the value above we find that

|Vcd|LO = 0.236± 0.016 .

Up to now, there is only one measurement at the next-to-leading order
by the CCFR experiment [77]

Bµ × |Vcd|2 = [0.534± 0.046 (stat) +0.025
−0.051 (syst)]× 10−2 ,

where the last error is from the scale uncertainty. Substituting our value for
Bµ and symmetrizing the errors, one gets

|Vcd|NLO = 0.251± 0.021 .

Both values should be compared with 0.221 < |Vcd| < 0.227 at 90% C.L.
which is obtained when imposing CKM-matrix unitarity and only three
generations [11]. Also they are compatible with our previous measurement
[17] |Vcd| = 0.219± 0.022.



Chapter 5

Neutrino-induced production
of charm

In this chapter, preliminary results of the measurement of the |Vcd| CKM ma-
trix element and the x-distribution of charm and anti-charm are described.

5.1 Vcd CKM matrix element

The Cabibbo-Kobayashi-Maskawa matrix is of great importance because
its elements are parameters of the Standard Model. Their values enter in
the calculation of any electroweak charged current cross section involving
a quark. The charm is produced from either d or s quark which gives an
opportunity to measure |Vcd| and |Vcs|. Several experiments [77, 76, 74, 17]
have extracted the CKM matrix elements |Vcd| and |Vcs| from a global fit
of the distributions of observable kinematical variables. More precisely, a
typical procedure was to fit the distributions of “visible” versions of the
kinematic variables E, x and the fragmentation variable z = ED/ν, ED and
ν being the energy of the charm particle and the energy transfer to the
hadronic system. The data were fitted to models with four parameters:

• mc, the charm quark mass;

• α, a parameter that describes the difference in shape between sea
q(ξ,Q2) and q̄(ξ,Q2);

• κ, the ratio of the nucleon’s momentum carried by the strange quarks

99
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relative to that carried by u or d sea quarks, defined as

κ =

∫ 1
0 [ξs(ξ) + ξs̄(ξ)]dξ∫ 1
0 [ξū(ξ) + ξd̄(ξ)]dξ

; (5.1)

• B̄µ, the mean inclusive muonic branching ratio for charmed hadrons
produced in neutrino or anti-neutrino scattering.

The analyses fit the same data either to the cross sections from a leading
order [77] or from a next-to-leading order [88] QCD model. To extract
values for κ and B̄µ, |Vcd| and |Vcs| are set to values implied by the three
generations CKM matrix unitarity. If the unitarity constrains are dropped,
then the fit parameters change from B̄µ → B̄µ|Vcd|2 and κ → B̄µ

κ
κ+2 |Vcs|2.

Then, extracting the muonic branching ratio B̄µ from other data leads to the
measurement of |Vcd| and |Vcs|. However, the values obtained in this manner
are model dependent. In CHORUS, the matrix elements can be directly
measured by subtraction of the sea component from the cross section and
normalizing it to the charged current neutrino interactions. But before going
to this lets recall the cross section formulae.

5.2 Extraction of Vcd

The method to extract the Vcd CKM matrix element is based on the subtrac-
tion of the charm produced from the sea s quark from the neutrino sample.
In this case, only charm produced from d quark stays in the sample. This
analysis is very preliminary and several assumptions have to be made in an
attempt to look at the results of the method.

First of all, let go back to charm production (see Eq. 1.70)

d2σ

dxdy
= G2

F

yQ2

π

(
|Vcd|2d(χ) + |Vcs|2s(χ)

)[(1 + coshψ
2

)2
+

m2
c

2Q2

sinh2 ψ

2

]
,

(5.2)
where

1
η

=
1
2x

+

√
1

4x2
+
M2

Q2
, (5.3)

coshψ =
η2M2 −Q2 + 2η(ss −M2)

η2M +Q2
, (5.4)

χ = η
Q2 +m2

2 −m2
1 + ∆(−Q2,m2

1,m
2
2)

2Q2
. (5.5)
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Assuming that the masses are small with respect to the 4-momentum trans-
fer (m/Q→ 0) the equations above read

η
M2/Q2→0

= x , (5.6)

coshψ
M2/Q2→0

=
2− y

y
, (5.7)

χ
m2

1,2/Q
2→0

= x . (5.8)

Substituting this to the equation of the charm production cross section
Eq. 5.2 gives

d2σ

dxdy
= G2

F

Q2

π

(
|Vcd|2d(x) + |Vcs|2s(x)

)[1
y

+
m2

c

Q2
2(1− y)2

]
. (5.9)

The second term in the brackets which contains confined function (1 − y)
vanishes when m2

c/Q
2 → 0. This leads to the following expression for the

cross section

d2σ

dxdy
= G2

F

xsm
π

(
|Vcd|2d(x) + |Vcs|2s(x)

)
, (5.10)

where sm is a Mandelstam variable (total energy).
Using the assumptions made above, the |Vcd| CKM matrix element can

be extracted from the data by taking the difference of the ratios

Rc =
σ(νN → µ−cX)
σ(νN → µ−X)

− σ(ν̄N → µ+cX)
σ(ν̄µN → µ+X)

= |Vcd|2 . (5.11)

The reason to subtract the ratios is to avoid problems related to the normal-
ization of the samples which are related to the neutrino and anti-neutrino
beams. The nice property of Rc is its functional dependence only on the
valence quark distribution. This fact has three virtues: the valence quark
distribution is better measured; the valence quark distribution suffers less
suppression from the charm mass; and the valence quark distribution has a
theoretical simpler QCD evolution. Also, Rc should be less susceptible to
the QCD scale errors because it depends only on the ratios.

There is a tricky point here concerning the normalizations of the charm,
anti-charm and charged current samples. The difference between charm and
anti-charm samples is mainly due to the beam spectrum described in the
previous chapter. A preliminary study of the quasi-elastic interactions and
baryonic resonanses production shows that their rate is higher than it is
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Table 5.1: Numbers of events that pass the muon identification cut and
W 2 ≥ 2GeV2 DIS cut in neutrino and anti-neutrino charged current data
and their charm subsamples.

N cc
ν N charm

ν N cc
ν̄ N charm

ν̄

Events 55842 1894 2430 32

expected to be. The reason of it is not clear for the time being. To avoid
dealing with the problem a cut is introduced on the squared mass of hadronic
system W 2 ≥ 2 GeV2. This cut kills quasi-elastic events that are from
another kinematic domain compared to DIS. Normally, one would not drop
these events but rather merge deep inelastic and quasi-elastic samples but
the analysis is not finished yet. Table 5.1 shows the number of events that
fulfill the selection requirements. In the assumption that the background
in the charm sample is affected by the cut in the same way as charm, the
contribution of the white kinks and strange particles scales to 78 events
while the anti-charm sample stays the same.

Finally, the value of Vcd is extracted using the following formula

|Vcd|2 =
N charm
ν

N cc
ν

·
εccloc(ν)
εcharm
loc (ν)

· 1
εcharm
rec (ν)

−N
charm
ν̄

N cc
ν̄

·
εccloc(ν̄)
εcharm
loc (ν̄)

· 1
εcharm
rec (ν̄)

. (5.12)

Substitution of the quantities from Eqs. 3.1, 3.4, 5.1 gives

|Vcd| = 0.225± 0.014(stat) , (5.13)

where the error is dominated by the statistics of the anti-charm sample
and includes uncertainty on the charmed fractions, location efficiencies and
charm selection. Although the value above is very preliminary it can be
compared to |Vcd| extracted from other measurements and from the unitarity
of the CKM matrix (see Section 4.5).

The result (Eq. 5.13) has been obtained by using strong assumptions
that are not satisfied in the reality. For example, an indirect cut on Q2 is
made by requiring that W 2 ≥ 2GeV2 which is comparable to the charm
quark mass mc. To make this analysis complete, the effects related to the
masses (nucleon mass, charm quark mass) have to be studied in a rigorious
way. But then again, the purpose of this part of analysis was to perform a
first test of the method.
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5.3 x-distributions

The dependence of the cross section on the Bjorken x variable gives an
insight on the distributions of the quarks in a hadron. This information is
usually measured in deep inelastic scattering experiments. The statistics of
CHORUS is much smaller than in many other experiments which makes the
competition tough. But then again, the data collected in CHORUS in terms
of the level of background are more pure than in many other experiments.
This virtue justifies the study of the production rate of charm as a function
of the Bjorken x.

The x-distributions are studied by several collaborations [89, 90, 91, 82].
These groups use different methods and parameterizations to extract the
quark distribution shapes. Such analyses are referred to as global analy-
ses. Although there are differences in their results, all in all they show
good agreement with experimental data and among each other. Using the
parametrization of the global analyses reduces the number of the parameters
in the fit.

5.3.1 Reconstruction of kinematics

Before going to the study the quality of the kinematics reconstruction should
be investigated. The kinematic variables were defined in Eqs. 1.3, 1.5, 1.2,
1.7. In practice, the following reconstructed variables are used:

Evis = Ehad + Eµ1 + Eµ2 , (5.14)
νvis = Evis − Eµ1 , (5.15)

Q2
vis = 2Evis(Eµ1 − pµ1 cos θ)−m2

µ , (5.16)

x =
Q2

vis

2mNνvis
, (5.17)

y =
νvis

Evis
, (5.18)

W 2
vis = m2

N + 2mNνvis −Q2
vis , (5.19)

where θ is the scattering angle of the incident lepton in the laboratory frame
and mN is the nucleon mass. The resolution on the visible variables is
obtained by fitting the difference between a reconstructed value and a true
for the simulated neutrino produced charm sample. The fit is made to the
Gaussian probability distribution function 4.3. Figures 5.1, 5.2, 5.3, 5.4,
5.5, 5.6, 5.7, 5.8 show a comparison between the real data and Monte Carlo
simulation of x, y, Q2 and W 2 variables. Some inconsistencies are observed
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in W 2 and y distributions between the data and the simulation. The non-
Gaussian tails in the distributions have not been simulated so far. One of the
possible reasons of such discrapency may come from the correction function
that have been used to correct the hadronic energy (see Eq. 3.2). In this
case the solution would be to introduce two correction functions: one for
DIS sample and the other one for QE+RES.
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Figure 5.1: Comparison between the charm data and the simulation in terms
of reconstructed Bjorken x. The error bars include only statistical uncer-
tainty. Although the discrepancy in the lowest x bin is more than one
standard deviation, the overall agreement is good.
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Figure 5.2: The resolution of the x reconstruction. µ = (−3.0± 1.1)× 10−3,
σ = (2.7± 0.1)× 10−2.
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Figure 5.3: Comparison between the charm data and the simulation in terms
of reconstructed Bjorken y. The error bars include only statistical uncer-
tainty. MC DIS appears at a higher y with respect to the data. The possible
explanations are that the simulated data are less smeared or that there is a
certain amount of non DIS produced charm in the data.
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Figure 5.4: The resolution of the y reconstruction. µ = (−1.0± 0.1)× 10−1,
σ = (4.7± 0.1)× 10−2.
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Figure 5.5: Comparison between the charm data and the simulation in terms
of reconstructed momentum transfer Q2. The error bars include only sta-
tistical uncertainty. Although the discrepancy in the lowest Q2 bin is more
than one standard deviation, the overall agreement is good.
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Figure 5.6: The resolution of the Q2 reconstruction. µ = (−3.6±0.5)×10−1,
σ = (7.9± 0.5)× 10−1.
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Figure 5.7: Comparison between the charm data and the simulation in terms
of reconstructed W 2. The error bars include only statistical uncertainty.
Again, the discrepancy between the two may be explained by the presence
of non DIS charm in the real data or too pure Monte Carlo.
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Figure 5.8: The resolution of the W 2 reconstruction. µ = −2.5± 0.1,
σ = 5.0± 1.2.
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5.3.2 Five-parameter fit

To extract the strange sea component of the nucleon we shall follow the ap-
proach proposed by the CDHS collaboration with a parametrization by the
E531 collaboration [16]. In their analysis, the valence d quark distribution
is parametrized as a function of the Bjorken x:

xd(x) ∝ xα(1− x)β , (5.20)

and the sea s quark distribution as

xs(x) ∝ (1− x)γ . (5.21)

In general, in Eq. 5.21 the dS quark from the sea should also be present. Its
contribution is neglected in the assumption that the dS(x) does not differ
very much from s(x) but dS(x) is Cabibbo-suppressed while s(x) is Cabibbo-
favoured. Thus, the total Bjorken x quark distribution can be written as

dN

dx
∝ Ndx

α(1− x)β +Ns(1− x)γ , (5.22)

where Nd and Ns are normalization factors.
After choosing a parametrization, Eq. 5.22 is smeared according to the

resolution of the reconstruction of x in each bin. The reason to blur the orig-
inal distribution lies in the fact that the CHORUS detector has been built
with severe design limits mainly because it was supposed to be a discovery
machine and to discover different types of events with respect to charm. The
average muon momentum resolution is about 15% which translates to ∼30%
in terms of the Bjorken x. The most convenient way to take into account the
smearing is to introduce a migration matrix Mij between the bins whose
elements are the fractions normalized to one. The matrix is defined using
the simulation of the process and the reconstruction of x. Doing so, the
function F′ in bin number i is defined as

F′i =
∑
j

FjMji , (5.23)

where F is an analytical function.
To perform a good fit, the number of degrees of freedom should be much

larger than the number of fit parameters. The data samples have been
subdivided into 40 equal bins compared to 5 fit parameters. Such a division
gives stability to the fit on one hand and statistical significance in each
bin on the other hand. The fit is made using the MINUIT package [81].
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Figure 5.9: Comparison between charm neutrino data and the result of the
five-parameters fit. The data points are corrected for the reconstruction
efficiency using the migration matrix formalism. The error bars include
only the statistical errors.
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It was used to find a set of parameters which has a minimum χ2 for the
data corrected for the charm selection efficiency. The results are graphically
shown in Fig. 5.9 and their numerical values are as follows:

Nd = 440.1± 17.6 ,
α = 0.30± 0.02 ,
β = 3.09± 0.04 ,

Ns = 236.7± 12.0 ,
γ = 5.30± 0.15 , (5.24)

while the correlation coefficients matrix from the fit is

Ccharm
fit =


1 −0.15 0.89 0.34 0.87

1 −0.29 0.87 −0.39
1 0.18 0.67

1


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Figure 5.10: Anti-neutrino charm data are compared to the result of the
fit. The error bars include only the statistical errors using approach from
Ref. [84].
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A similar two-parameters fit could be done for anti-neutrino data. Since
the data sample is much smaller, the fit is performed using only five degrees
of freedom. The results are shown in Fig. 5.10 and the numerical values are:

Ns = 15.2± 1.4
γ = 3.7± 0.6 . (5.25)

The related correlation matrix is

Canti−charm
fit =

(
1 0.75

1

)
The value of γ in Eq. 5.25 can be compared to a similar parameter in

Eq. 5.24. The discrepancy may come from the spectrum of neutrino and
anti-neutrino beam which affects the production of charm.

5.4 Discussion

The preliminary result of the first direct measurement of |Vcd| CKM matrix
element is in agreement with the value obtained from the current measure-
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Table 5.2: Comparison of κ from different experiments.

Experiment κ Ref
CDHS 0.47 ± 0.09 [74]

CHARM 0.39 ± 0.12 [75]
CHARM II 0.39 ± 0.1 [76]

CCFR 0.44 ± 0.11 [77]
E531 0.32 ± 0.25 [15]

NOMAD 0.48 ± 0.19 [78]
CHORUS calo 0.33 ± 0.08 [92]

ments of the other elements and imposing three generation unitarity.
The measurement of the distribution of charm data as a function of

Bjorken x is consistent with the previous measurements [15, 16, 93]. It is
possible to estimate the relative fractions of charm produced from d and
from s quarks. Calculating two integrals∫ 1

0
440.1x0.3(1− x)3.09dx = 60.3 , (5.26)∫ 1

0
236.7(1− x)5.3dx = 37.6 (5.27)

shows that 38.8% of all charm in neutrino interactions is produced from the
strange sea quark. The found ratio can be converted to another parameter κ
(see Eq. 5.1) by using the total quark/anti-quark ratio measured by CCFR
collaboration [94]

Q̄

Q
= 0.198 . (5.28)

Finally, the ratio of κ is obtained by taking into account the values of the
CKM matrix elements (to give |Vcd| = 0.224 and |Vcs| = 0.996):

κ =
S + S̄

Ū + D̄
=
Ns

Nd

|Vcd|2

|Vcs|2
Q

Q̄
= 0.14 . (5.29)

The obtained value is quite low if compared with other measurements shown
in Table 5.2. The reason is not understood but the descrapency may come
from non-DIS events, x-distribution parametrization(see Eq. 5.22) and statis-
tics.



Conclusions

The development of the fast automatic scanning systems allowed to enlarge
the topics of physical analyses in the CHORUS collaboration. Apart from
the νµ → ντ oscillation search, the CHORUS collaboration has studied nu-
merous subjects related to the charm quark production in neutrino-induced
charged current interactions and their decays as well as associated charm
production in neutral current neutrino interactions. In particular, this the-
sis concerns the direct measurement of the topological muonic branching
ratios of the charmed hadrons, an attempt of direct measurement of the
|Vcd| Cabibbo-Kobayashi-Maskawa matrix and the dependence of the charm
production rate as a function of Bjorken x kinematic variable. The analyses
are based on about 100,000 charged current interactions with a sub-sample
of 2013 charm decay candidates manually observed in the emulsion. The
eye-check dramatically increases the charm selection purity (>95%) while
preserving a good selection efficiency (∼70%).

The extraction of the muonic branching ratio of charmed hadrons is
based on the mixture of the ratios for each decay topology. Such an approach
allows also to measure the muonic branching ratio for D0

Bµ(D0) = [6.5± 1.2 (stat)± 0.3 (syst)]× 10−2 ,

while considering only decays with four prongs

3.0× 10−4 < Bµ(D0 → V4) < 3.4× 10−3 .

The inclusive muonic branching ratio for the complete sample of charm
hadrons is therefore determined to be

Bµ = [7.3± 0.8 (stat)± 0.2 (syst)]× 10−2.

Normalizing the above value to the charged currents gives an average dimuon
cross section

σµ−µ+

σcc
= [3.16± 0.34 (stat)± 0.09 (syst)]× 10−3 .
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The |Vcd| matrix element is extracted by subtracting the strange sea
component from the charm production. Its value is found to be

|Vcd| = 0.225± 0.014 .

This preliminary result is consistent with the previous measurements. It is
also in agreement with the value estimated from the measurements of the
other elements and from imposing a three generations unitary CKM matrix.

The x-distribution analysis shows that approximately one-third of all
charm is produced from the strange sea quarks. The x-distribution of the
charm data is fitted by an analytical function and the result is found to be

Ndx
0.30(1− x)3.1 +Ns(1− x)5.3 .

The output of the fit is consistent with other measurements where a similar
parametrization has been chosen [16].

It is worth mentioning that both analyses are directly connected to the
measurement of the charm production cross sections which is not finished
so far.



Bibliography

[1] J.-E. Augustin et al., Phys. Rev. Letters 33, 1404 (1974).

[2] J. J. Aubert et al., Phys. Rev. Letters 33, 1406 (1974).

[3] S. L. Glashow, Nucl. Phys. 22, 579 (1961).

[4] S. Weinberg, Phys. Rev. Lett. 19, 1924 (1967).

[5] A. Salam, in Elementary Particle Theory: Relativistic Groups and An-
alyticity (Nobel Symposium No. 8), 367 (1968).

[6] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[7] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).

[8] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).

[9] CKMfitter project, http://www.slac.stanford.edu/xorg/ckmfitter;
J. Charles . et al., Eur. Phys. J. C41, 1-131 (2005).

[10] S. L. Glashow, J. Iliopulos and L. Maiani, Phys. Rev. D2, 1285 (1970).

[11] Particle Data Group, S. Eidelman et al., Physics Letters B592 (2004)
1.

[12] R. A. Johnson et al., NuTeV collaboration, arXiv:hep-ex/9904028
(1999).

[13] G. P. Zeller et al., NuTeV collaboration, Phys. Rev. Lett. 90, 239902
(E) (2003).

[14] H. Georgi and S.L. Glashow, Phys. Rev. Letters 32, 438 (1974)

[15] N. Ushida et al., Phys. Lett. B206 (1988) 380.

115



116 BIBLIOGRAPHY

[16] N. Ushida et al., Phys. Lett. B206 (1988) 375.

[17] A. Kayis-Topaksu et al., CHORUS Collaboration, Phys. Lett. B549
(2002) 48.

[18] M. A. G. Aivazis, F. I. Olness, and W.-K. Tung, Phys. Rev. D 50, 3085
(1994).

[19] W. Seligman, Ph.D. Thesis, Nevis Report 292 (1996).

[20] P.S. Auchincloss et al., Z. Phys. C48, 411 (1990).

[21] D.B. MacFarlane et al., Z. Phys. C26, 1 (1984).

[22] P. Berge et al., Z. Phys. C35, 443 (1987).

[23] J. D. Bjorken, Phys. Rev. 179, 1547 (1969).

[24] E. D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969).

[25] M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969).

[26] J. I. Friedman and H. W. Kendall, Annu. Rev. Nucl. Part. Sci. 22, 203
(1972).

[27] C. G. Callan and D. G. Gross, Phys. Rev. Lett. 22, 156 (1969).

[28] M. Arneodo et al., (New Muon Collaboration), Phys. Rev. D50 (1994)
1.

[29] P. Amaudruz et al., (New Muon Collaboration), Nucl. Phys. B371
(1992) 3.

[30] J. C. Collins, D. E. Soper and G. Sterman, in Perturbative quantum
Chromodynamics, edited by A. H. Muller (World Scientific, Singapore),
p.1 (1989).

[31] G. Sterman et al., Handbook of perturbative QCD. Reviews of Modern
Physics, 67(1):157-248, 1995.

[32] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972).

[33] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).

[34] M. A. G. Aivazis, F. I. Olness, and W.-K. Tung, Phys. Rev. D 50, 3102
(1994).



BIBLIOGRAPHY 117

[35] O. Nachtmann, Nucl. Phys. b 63, 237 (1973).

[36] D. Yu. Bardin and V. A. Dokuchaeva, JINR E2-86-260, April 1986.

[37] S. Jadach et al., Comput. Phys. Commun. 76, 361 (1993).

[38] A. Kayis-Topaksu et al., Phys. Lett. B 575, 198 (2003).

[39] F. Di Capua, PhD thesis, Università Federico II and INFN, Naples,
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