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Preamble

A harmonic world

From the day Human beings were standing up, they have nessedeeeking their
origins. This ultimate search motivates Human beings telréawards an under-
standing of the mysteries of Nature and this quest takes ary fieams. Harmony of
sounds gave birth to music, that of colors to painting, tthdbaly to theatre and dance,
that of language to eloquence. In the antique world thedeseaf human creativity
were then all considered on a par with the birth of scientifethod. Pythagore de
Samos for instance tried to describe the orbits of celestidles in terms of musical
harmony. What distinguishes physics as being an exactcisithe powerful mathe-
matical formulation of its models and the test of these nottebugh the experimen-
tal method. With the emergence of modern science the seénttusical harmony
as a fundamental paradigm to describe physical phenomeaaneea chimera. Nev-
ertheless periodic phenomena like pendulum motion or dicowaves are described
by a very common quadratic frequency term, or quadratic ¥htesm. Hence a vo-
cabulary which is very reminiscent of harmony ; words likeafimonic oscillator”
and frequency are to remain in mathematics and physics éamgh the physical
concepts they evoke turn out to be very different. In paldicwithin the context of
particle physics, the harmonic oscillator, through Faun®des decomposition, is a
basic building block towards the identification of the plogdispectrum of quantum
field theories and their interactions.



2 Preamble

The concept of field was first introduced by Michael Faradafl jr?] in a very intu-
itive way in order to explain the electric and magnetic cangs to point charges and
electric currents: “The point (...) was, whether it was nasgible that the vibrations
which in a certain theory are assumed to account for radiatil radiant phenomena
may not occur in the lines of force which connect particles eonsequently masses
of matter together ; a notion which, as far as it is admittel, dispense with the
ether (...)". Faraday reasoned by deduction in terms of al@ittures with a constant
appeal to the experimental research he pursued himselfwiklbmanaged to justify
Faraday’s intuition mathematically speaking by introdgdihe notion of electromag-
netic field of which the dynamics is described by what is knawour contemporary
view as the Maxwell equations [3].

As of today models of particle physics are constructed fraangum gauge field theo-
ries. This implies that to each spacetime event there quorets a quantum harmonic
oscillator. These harmonic oscillators are all coupled te another in a manner
consistent with the required Lorentz covariance. A pattblen is defined as a rela-
tivistic propagating energy-momentweigerrquantum of that field. The introduction
of gauge symmetry in (quantum) field theories enables toa@xgberturbatively) the
local interactions of particles. Indeed the realisatiorsyrthmetries requires the ex-
istence of gauge bosons, which mediate the interactions fnoe spacetime event to
another. However global effects related to topologicakierations on the one hand,
and non perturbative field configurations on the other haredpaorly understood in
those gauge theories of direct relevance to our physicatuse.

The context of our research work

Topological aspects are playing a central role in many gaygihenomena and the-
oretical models : topological defects and phase transfiddmaronov-Bohm effect,
fractional statistics, models with compactified extra gpdenensions, topological
(quantum) field theories, etc. Indeed these physical effewy not be described
locally and refer thus to global aspects. These global asp@e for instance the
homology of the underlying manifold on which the theory idided, the homotopy
of the compact submanifold defining holonomies or globaltatawy conditions, and
likewise in the spaces of field configurations. Hence glolaaiables (or modes of
zero momentum) are “topological invariants” associatecbtwomology groups while
physical configurations are sometimes classified accotdiagtopological number”
like the winding number, related to homotopy groups. Howelthough (quantum)
gauge field theories are well understood locally, diffi@dtinay arise as soon as global
aspects, related to low energy configurations, are takeracttount. A way of eluding
this issue is by taking the lead from some theories of coretbphysics which are in



some cases non relativistic limits of (gauge) field theoaiegery low energy, where
the sector of global variables resides. Often our reseageld guch techniques as a
laboratory test for dealing with topological aspects ofggmfield theories. However,
in the case of interacting theories, the covariant extensfocondensed matter the-
ories to field theories is non trivial since then dynamicake®become mixed with
global modes.

A better control of their global sector could enable one tim gaore insight into some
of the current open issues related to gauge field theoriegpigal example of such
issues is confinement and chiral symmetry breaking in quactromodynamics de-
scribing the strong interactions among quarks and gluonishi\this context, this
quantum gauge field theory is well described at high enemputih usual perturba-
tion schemes in the coupling constant. However phenomgitalbevidence concurs
with the expectation that in such a theory, quarks and glamasonfined into mas-
sive colourless bound states. Unfortunately there doegxist a definitive under-
standing of the actual dynamics responsible for this featlihe problem that arises
in Yang-Mills theories at low energy is that the coupling stamt becomes large and
perturbative methods no longer apply. Hence the observesiqdi field configura-
tions of colourless hadrons are by essence non perturksitice they reside in the
strong coupling sector of the theory. Even in the case of Marey-Mills theory, a
rigorous mathematical proof that glueball states of boundrs develop a mass gap
remains yet to be established. Many techniques have bedarpuatrd and developed
in order address this type of issues. A non exhaustive lidtidtes for instance

e Lattice gauge theory
Lattice simulations have shown that Yang-Mills models bxhtonfinement.
However these techniques do not offer a genuine undersigiodthe underly-
ing dynamics (see [4] for a recent review).

o Effective field theories

Let us mention for example the dual superconducting modehodmoelectric
strings introduced by 't Hooft. This technique consistsitraducing a projec-
tion onto the Cartan subalgebra of the gauge group, thisiSeeing expected to
be the main culprit for confinement at low energy. This kingbadjection tech-

niques has known developments of interest through the Gltloléev-Niemi

decomposition (see [5, 6] and references therein). Natiegptofound connec-
tion of abelian projection with other methods like field edators or compact
QED (see [7] for a review). Let us also mention the recenbuhiction of the

spin-charge decomposition in [8, 9].



4 Preamble

o Duality properties of gauge field theories and string theory
A recent avenue of investigations through Seiberg-Wittaality and holo-
graphic QCD, for example.

Whatever their category, all these techniques seem to shattdpological aspects
play a crucial part in the understanding of the mechanisnonficement. Since con-
finement arises at low energy where global modes become @dainia complete un-
derstanding of that mechanism may require first to tame allgiobal topological
effects involved in the ground state and next to be able tiglerthe gap between local
and global aspects as soon as dynamical effects are takeacodunt.

For example, physical states of the pure Yang-Mills theorhe confining phase are
glueballs described by non perturbative field configuratiomhe original fields in-
volved in the definition of any gauge theory do not generatesigial configurations
since these fields are not gauge invariant degrees of freed@ra matter of fact,
several approaches to isolate genuine physical degreeseafdm are available. The
gauge fixing procedure effectively removes redundant gaagant degrees of free-
dom. However such gauge fixing usually suffers Gribov prolsleexcept in some
exceptional cases. Another approach consists in constguefactorised dual formu-
lation. Indeed, following a convenient redefinition of theldis gauge variant degrees
of freedom are decoupled from the physical ones. Althoughllg trivial, the sector
of gauge variant variables may be sensitive to global effedterefore, important
topological content may be lost when a gauge fixing proceuagplied, especially
within the context of order in condensed matter physics offining states in QCD.
The purpose of our research is to show how these non trivialtgical effects may
arise and have direct consequences on the physical spectrum

For the sake of simplicity we have chosen first to illustréese notions within the
simplest case of theories generating a mass gap where tppalleffects are of prime
importance: the so-called topologically massive gaugertbs. These abelian gauge
theories describe the dynamics gf-form andd—p form in a spacetime of dimension
d+1 coupled through a topologicaB'F"term. This term generates a mass for the
physical degrees of freedom without breaking the abeliailggénvariances.



This work

This Thesis describes the original research | have purdiesetiast four years, some
of which having already been partially published, see [1], Briefly speaking, this
Thesis actually consists in two original issues addressedrieful detail:

e How to properly define the formal limits in the coupling cams of gauge
fields theories through which topological sectors appear ?

e What is the influence of this topological sector on the playsipectrum of the
theory ?

Furthermore in Science, every answer implies new questlargarticular we formu-
late in this Thesis two novel unexpected results of our rebea

e The most famous mass generation mechanisms preservindp#tiaragauge
symmetry are related through an intricate network of dirditmodulo the pres-
ence of topological terms generating possible topologifacts.

e Our analysis could open a new avenue towards the construofigeneralised
topological defects in any dimension.

Our concluding remarks will summarise how the answers tditsietwo questions led
to our new propositions.






CHAPTER 1

Aspects of abelian gauge field theories

The present introductory Chapter is dedicated to a generahdew of abelian gauge
field theories which focusses onto some issues which areessktt in this Thesis.
The simplest example of all such theories, the Maxwell theerfirst extended to
gauge fields of any tensorial rank. Another simple extensiay also be obtained
by transmuting the coupling constant into a real dynamicalar field. The Euler-

Lagrange equations of motion then describe electromagtiefds propagating in a
medium. Finally the most famous examples of local mass ggoermechanisms
preserving the abelian gauge symmetry are recalled.

Any gauge field theory possesses spurious degrees of freging from the con-
struction principle of gauge invariance. In abelian gaugglditheories, the pure
gauge degrees of freedom are the longitudinal ones which lmagolated through
Hodge decomposition. The non explicitly covariant Hamildm formulation — which
requires a complete analysis of constraints in the case afjgaheories — enables to
select those among the physical degrees of freedom whichctwally propagating.
The first order Lagrangian formulation provides the linkdween the Hamiltonian and
Lagrangian formulations and offers the great advantageifadly involving physical
degrees of freedom. The study of the formal limits of thedindtr actions of abelian
gauge theories is the first step of the programme developihisiiThesis of which one
of the main purposes is the identification of topologicatsexin gauge field theories.



8 Chapter 1. Aspects of abelian gauge field theories

1.1 Maxwell theory

1.1.1 Usual Maxwell theory for the photon field

The familiar Maxwell Lagrangian density describing the dgnics of the photon field
is a gauge theory defined in terms of the fundamental gaugeectionA,, (),
1

L — — oz b B = Ay ", (1.1)
where the Greek index = 0,1...d refers to the Minkowski spacetime of dimen-
sion (@-+1) endowed with metrie),, = diag1,—1,...,—1). Indeed, for the sake
of simplicity, the choice of the underlying spacetime maluifis restricted to a flat
connected manifold but possibly not homotopically trivighis Lagrangian density is
expressed in terms of the field strength curvature

F;ux = BMAV - BUA;L )

whereg,, is the derivative with respect to the vector coordinatewhile the matter
current/*(z) is conserved §,, J# = 0. This latter continuity condition which directly
results from the Maxwell equations,

77” ﬁ“p apF;w = 62 J? )

is in fact related the invariance of the theory under theiahél (1) gauge transforma-
tions. If we consider#* () as the current associated to dynamical matter fields which
couple to the gauge field, this conservation law is an exfmess Noether’s theorem.

As a matter of fact, abelian gauge transformations are dkfisesmooth maps
U:M—UQ): (,F) — Ult,©) = oD |

where the parameter(x) of the transformation depends on spacetime coordinates.
The transformatiorU (¢, £) acts on the connectiod,,(z) and its associated field
strength curvaturé),, (=) in the usual way:

A, =UAU ' +iU, U, F,, =UF,U". (1.2)

In the case of a non simply connected space(time) manifwidlesvaluedness of the
transformationd/ (¢, ¥) implies thata(¢, ) may be decomposed into a periodic and a
non periodic paftt Hence, this general notation covers all the possible gaagsfor-
mations including the ones which are not connected to thdiigdransformation and
thus are associated to winding numbers around the nonlthieiaology cycles of the

1in the case ofM =R x T, whereT? is the torus of dimensiod, see the discussion in [12].
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space(time) manifold, also referred to as “large gaugefoamations”. This group of
transformations is also called the “modular group” sinds ilefined as the quotient
of the group of gauge transformations by the subgroup okfoamations homotopic
to the identity. As far as these latter “small gauge tramsfdions” are concerned, any
transformation of this type may be reached through suocgestinitesimal transfor-
mations of the form

Al = A, + 0,0

Hence the Maxwell Lagrangian density is manifestly invariander small gauge
transformations sinc&, J/* = 0 andF,, = 0.

Given these gauge transformations, a physical variablevariable defined without
gauge ambiguity, namely a gauge invariant variable. Heheespace of physical
field configurations of any gauge theory is defined as the gubbtf the space of
field configurations by the full gauge group, namely the spdcguge orbits relating
fields configurations equivalent up to gauge transformatidinere exist thus in any
gauge field theory physical degrees of freedom and spurimugedegrees of freedom
redundant in the description of the system. For what corsctra Maxwell theory,
such a splitting applies to the gauge field (x) through the Hodge decomposition
into longitudinal and transverse parts,

A= AL+ AL = 0,0 + 0 0,0 - (1.3)

When a homotopically non trivial manifold is consideted harmonic term must
be added in order to account for global degrees of freedontigsd to the period
(winding number) of the field along non homologically trivircles on the spacetime
manifold. The longitudinal part ofl, (z) possesses a single degree of freedom while
the remaining degrees of freedom reside in the transverse# longitudinal part
carries all the gauge variant character of the gauge figllr) since it transforms
under the abeliaty (1) gauge transformation according to

0 =0+a.

This spurious degree of freedom is referred to as being “gauge”. The remaining
gauge invariant transverse degrees of freedom are thergephysical ones. This de-
composition already shows that the longitudinal part ob@xf fieldsB,,,, (x) consists
of d degrees of freedom. The conservation law for the currenti@sgphat/*(x) is a
transverse vector field, hence the gauge invariant confehisdfield.

Finally, when the time coordinate is privileged, propagatiegrees of freedom reduce
to the —1) polarisation states of the photon field described in terfric@electric
and magnetic fields. These propagating physical fields aseritbed in section 1.3
within the context of the non explicitly covariant Hamilian formulation.

2t has been also assumed that the periodicity propertiel,¢f:) on the spacetime manifold are trivial.
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1.1.2 p-form Maxwell theory in any dimension
Notations

The differential form formalism is introduced in order todgeto compact notations
while introducing a straightforward generalisation of firevious concepts to fields
of any tensorial rank defined on any connected spacetimefobdulit of dimension
(d+1). Letw(x) belong toQ? (M), namely, the set of real-valuegforms on M

1
Wp = = Nr -y dz* AL A datr
p:
where Greek indicegy,v = 0,1, ...,d, denote the coordinate indices of the space-
time manifold M. The Hodge operatar mapsp-forms to ¢ —p-+ 1)-forms provided
that M is endowed with a Lorentzian metric structure (of mostlyateg signature)
and is defined as

Vh
= meltl"'ltpul"'Vd—p+l
whereh is the absolute value of determinant of the meftric while €., ...,y vy, s

is the totally antisymmetric Levi-Civita symbol such thgt.;, = 1. This pseudo-
tensor obeys the following contraction rule:

H1p1 Hpp. vy Vd—p+1
*Wp h o hERPR W, L, AT AL AT

M1 PP Pd—pt1 p! 5;71 5Pd—p+1

€Ly vt Vd—pi O

and is related to the totally antisymmetric tenstitroughe . ..., 1 = VA €4y pugy s -

The real-valued inner product 6 (M) x Q7(M) is defined as

(Wp,mp) = /M wp A *1p 1.4)

1
= / Vh Wty opiy Mooy DY REPTP diz,
b Jm

from the definition of the wedge productand Hodge operator. The exterior deriva-
tive operator maps g-form w,, to a (p+1)-formdw,,.

1
d: QP(M) — PTHM) @ w, — o Opy Wpay ooy At A A dahett
From this definition, the following operators are constegict

at : QPM) = QP M) s wp, — —aP TP s d ke w,,
A QP(M) = QP(M) :wp — (ddT + dTd)w, ,

where we have definegl = (—1), and correspond to the coderivative and Laplacian
operators, respectively.
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The generalised formulation

The p-form Maxwell theory is obtained through the substitutidrttee electromag-
netic field A, () in the usual formulation of the Maxwell theory bypeform field of
spacetime components,, ..., (x), a connection for a source of elementary extended
objects of dimensionp(— 1), see [13, 14]. Hence, given a real valyetbrm field A

in QP (M), this generalised Maxwell action is of the form

SwaxlA] = o (FF) — (4,.]). (15)

Given a choice of units such that= 1, the physical dimensions of,,, ., (z) are
L—?, whereas the coupling constastis of physical dimensio ~! L¢~*. According
to our conventions, the components of the field strengthotefis-d A read

F

1
K1 pipyl = 17 a[m ANZ'”NPJrl] ) (1.6)

where square brackets on indices denote total antisynsagn.

Unfortunately, it is no longer possible to express abeliamge transformations for
form gauge fields like in (1.2) in terms of univalued scalaagdnfactors. In that case
such a generalisation is possible if each spacetime evassiciated to a coordina-
tised manifoldc* (), with = (¢!, ..., 0P~ 1), embedded in the spacetime manifold.
Hence the 1-form connectiofi°[z(5)] is defined on the principal bundle of extended
objects of dimensionp(— 1) spanned by:*(5). The local character ofi“[z(5)] re-
quires that this connection is related to réorm field A(z) in (1.5) through

Az (5)]dr = l| Apyopy dzf AL A datP

P Jz(5)

where the integral covers the manifaltl (). HenceA¢[z()] transforms like any
(abelian) connectichaccording to

(A°) =igdg™*, with g = exp <—i/( )04) , 1.7)

whered is the appropriate exterior derivative defined on the ppaldbundle whereas
ais a p—1)-form. It may be then proved that abelian gauge transfdaonatact on
thep-form field A(x) according to

A =A+a. (1.8)

31t is worth to note however that this generalisation is cotilex with spacetime locality only if the
gauge group i€/ (1), see [15].
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Often in the literature, thp-form &(z) is required to be exact, namely=da. How-
ever, if we relax now this condition and consid€rr) as being a closed formi{=0),
the cohomology structure of the spacetime manifold offerglagant generalisation
of the concepts of small and large gauge transformations-form gauge fields.

In the case of a homologically trivial manifold, any closednf is also exact. In the
case of a homologically non trivial manifold, according ke tHodge theorem any
closed formi(x) may uniquely be decomposed (for a given metric structute)tire
sum of an exact and a harmonic fdtnsee [16] for a review. The exact part &f
defines small gauge transformations whereas the modulapgsdhe quotient of the
full gauge group by the subgroup of small gauge transfownatinamely essentially
the set of large gauge transformations. These transfasnsatiannot be built from a
succession of infinitesimal transformations. They cormesito the cohomologicalfy
non trivial, namely the harmonic componentsidf).

The spacetime components of fiéorm current/(z) may be equally written in terms
of a pseudo-tensor or a tensor with covariant Lorentz irdi¢@ese two notations are
related through

0-17
.
P By J .

ﬁhﬂlyl BRI TP 7%
The invariance of the action (1.5) under the gauge transdtiom defined in (1.8)
requires the conservation of this current

*dxJ =0 &0, JH " =0.
This condition also follows from the equation of motion
sdx F=oPe?J, (1.9)

which is the generalisation to gauge fields of any tensaaiak of the Maxwell equa-

tions. Here we consider the currentin its generic form andat@ssociate it neither to
the history of any extended charged object nor to dynamiedtienfields of extended

objects. In such specific cases, the equations of motiondth@uconveniently com-

pleted. Nevertheless, the Maxwell equation (1.9) is alwagsvered if we assume a
minimal coupling to the)-form gauge field.

Finally, everyp-form field defined on the spacetime manifold of dimensién+ 1)
accounts foC;j*l degrees of freedom at any given space point, with

cart __ (d+1)!
P pl(d—p+1)!
4A p-form wy, is said harmonic iAw, = 0.
5The p" de Rham cohomology group, denoték? (3, R), characterises the topology of the manifold
and is associated to global variables of non zero periodmarbomology cycles.
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Moreover by virtue of the Hodge theorem [16], gmjorm field A(x) may uniquely
be decomposed into the sum of an exact, a co-exact and a hiarfoion with respect
to the inner product specified in (1.4),

A=A+ A+ A, . (1.10)

Hence such a decomposition amounts to a split of the fieldsaifongitudinal part, a
transverse part and a “global” part. Starting from the Irfgauge field, an iterative
process enables to count for eacform field,p=1, . . . d, the number of “pure gauge”
longitudinal degrees of freedom

p—1
p_ i _ (@D g
NL_,X;UP Td—it1 - G

and likewise the number of physical transverse degreegefltrmNy = Cg. We will
consider later the global degrees of freedom sensitivergie lgauge transformations
on homotopically non trivial manifolds.

1.2 Gauge invariant mass generation mechanisms

Often observable massive vector fields arise in diverse gghena, for example in
particle and condensed matter physics. However it is aldbkmewn that the pres-
ence of a “direct” mass term like the Proca term spoils gangariance of field theo-
ries, and consequently, their renormalisability in a quamtontext. The compromise
found between these two antinomic requirements is the apeous breaking of the
local symmetry where the action is invariant under a givemggasymmetry but this
symmetry is hidden to the observer since not manifest in Hysipal spectrum. The
secret of this mechanism relies on the presence of compddaxrdeeld(s) of which the
condensation in the non vanishing vacuum expectation yednelers the gauge fields
massive. The Brout-Englert-Higgs (BEH) mechanism was diesieloped within the
context of condensed matter physics when a physical systel@rgoes a phase tran-
sition. Indeed, phase transitions are often associateu sgibntaneous symmetry
breaking, for example in the BCS theory of supercondugtiwihere condensation
of Cooper pairs arises below the critical temperature.

Furthermore, the BEH mechanism provides masses for thelyed&racting gauge
vector bosons in the Standard Model, while remaining coesisvith the renormal-
isability and unitarity constraints. However, the preditHiggs boson has yet to be
discovered. Within this context, the quest for alternatnass generation mechanisms
is quite fascinating. The two other mass generation meshanwhich compete with
the BEH mechanism in the sense that they are local and peefergauge symmetry



14 Chapter 1. Aspects of abelian gauge field theories

are the Stueckelberg and the topological mass generatiohansms. However these
theories do not offer presently a serious alternative tetbetroweak model since they
do not admit a satisfying non abelian generalisation (irstirese of the Occam’s razor
and renormalisability) while their coupling to fermiongirains mysterious.

1.2.1 Brout-Englert-Higgs mechanism

The basic concepts of the celebrated BEH mechanism arenpiyeseviewed within
the context of the Maxwell-Higgs model. A more advanced ysialmay be found in
[17] or any other book dedicated to gauge field theories. Thawell-Higgs model
is a model of scalar electrodynamics of which the Lagrandemsity reads

1
— gz P P+ D> =V (2]¢]?) . (1.12)

The scalar field couples to the gauge connection throughaveriant derivative,
D,p=0,0—-14,¢,

which by construction makes the Maxwell-Higgs model ingatiunder the abelian
gauge symmetry

Lan =

A=A, + 0, ¢ =e%p, D¢ =e“Dyué. (1.12)

This way of coupling &/ (1) complex scalar field to a gauge field is called the “mini-
mal coupling”. The then associated current reads

J;L =i (¢* Du(b - ¢ (DN¢)*) ; (113)
and is conserved by virtue of Noether’s theorem.

The usual self-interacting quartic potential for the scéikdd in the Maxwell-Higgs
model reads

V(21¢1*) = @* | + Alel*

whereji> < 0 and)\ > 0 in order to recover the familiar “Mexican hat-shaped”
potential. Therefore the complex scalar field:) possesses a non vanishing vacuum
expectation value (vev) given by

_wv _ =
<¢>—ﬁ, v=y\ (1.14)

Any complex scalar field may be factorised into a physical pad a pure gauge part
which correspond, respectively, to the modulus and theemathe polar parametri-
sation. Let us then parametrigér) in terms of two real scalar fields, a physical field
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o(x) and a gauge field(x) which transforms a8’ = § 4+« under the abelian gauge
transformation introduced in (1.12). The perturbationhef physical degree of free-
dom carried byo(«) will be not considered in the vicinity of the metastable vau
at¢(x) = 0 but around any particular configuration minimising the eyer

r)=— gcei(””):i
or) = 5 ol@) e’ = =

hence the introduction of the physical Higgs figld:) with (g) =0 whereagp) =v.

(8(z) + v) ™), (1.15)

According to this representation, the Lagrangian dengity1) takes now the form
L= —41—2F,W Fo L 10,6—1(5 4 0) (A, — 00—V (3 +v)%) , (1.16)
e 2
while the gauge invariant current reads
J.=0% (0,0 —A,) . (1.17)

At this stage, what corresponds to the massless Goldstswnb(r) in the sponta-
neous breaking of global symmetries may be gauged awaygaesied by the form
of the conserved current (1.17). Hence under this “unitanygg” choice, the BEH
mechanism of spontaneous breaking of a local symmetry @sfitiat the phase of the
complex scalar field is absorbed as a single longitudinatetegf freedom for the
gauge field4,, (z), making the latter field massive. A glance at the above Lagasmn
density reveals that the gauge field then acquires a mass: e2 v? while the scalar
Higgs field(z) is a physical mode of mass, = —u?.

The BEH mechanism, presently introduced in a textbook manvik be dealt with
in a slightly different way in Section 1.4 in terms of the pitgd propagating elec-
tromagnetic fields. The difficulties, which inevitably a&i#hen such techniques of
isolating physical variables are used, will be emphasiseal first introduction to the
kind of issues which will be tackled in this Thesis.

1.2.2 Stueckelberg mechanism

In the Maxwell-Higgs model, the London limit is the limit inhich the mass of the
Higgs field becomes infinite while the mass of the gauge bosorains finite. As
a matter of fact, within this limit the dynamics of the Higgsldi is in some sense
frozen to its vacuum expectation value. Hence, in termseptirameters of the usual
quadratic “Mexican hat-shaped” potential, the Londontiraads

_/12

A — 00, u?— oo, such that = - be finite.
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Applying now this limit to the Lagrangian density (1.16),

2

Lisu= —:?F,“, Fr 4 5 (A, —0,0)°

the action resulting from the decoupling of the massive Hifigld is nothing other
than the Stueckelberg action for a 1-form gauge field (sefdi@references therein).
Within this limit, the gauge invariant curred, (z) in (1.17) which may be then asso-
ciated to the Stueckelberg mass term is interpreted asahswvierse part of the gauge
field A, () wheread), = d,,0(z) is associated to its longitudinal part.

In contradistinction to the Maxwell-Higgs model, the Stkelberg action may be
readily extended to any-form field A(z) in QP (M)

P 02 - 2
Sp-sulA, 0] = % (F.F)—o" = (A _ 9) .

In the above actiond(z) is a closedp-form of which the transformation under the
abelian gauge symmetry

é/zé—i-oz

compensates for that of theform gauge fieldA(x) defined in (1.8) is order to pre-
serve the gauge invariance of the mass term. In the preseamt€hwe do not allow
6(z) and A(z) to possess a harmonic component, hefieedd. Thus thep-form

a = da only parametrises small gauge transformations. Noticeahmore general
action for the Stueckelberg mechanism will be introduce@lrapter 4 in terms of

a real arbitrary parametér Very interesting aspects like Stueckelberg extensions of
the Standard Model through a mass term for the photon or &#tthoson (see for
example [18, 19]) are outside the scope of this Thesis.

1.2.3 Topological mass generation
Topological field theories

Topological field theories (TFT, see [20] for a review) haleypd an important role
in a wide range of fields in mathematics and physics ever gimee were first con-
structed by A. S. Schwarz [21, 22] and E. Witten [23]. Thes®tles actually possess
so large a gauge freedom that their physical, namely theigganvariant observ-
ables solely depend on the topology (more precisely, tHedatiiorphism equivalence
class) of the underlying manifold. Another related featoi@ FT is the absence of
propagating physical degrees of freedom. Upon quantisatiwse specific proper-
ties survive, possibly modulo some global aspects relategiaintum anomalies. As
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a consequence, topological quantum field theories (TQREpdfave a finite dimen-
sional Hilbert space and are quite generally solvable, ¢#veagh their formulation

requires an infinite number of degrees of freedom. Thergsaifamous classification
scheme for TQFT, according to whether they are of the Scher¥itten type [20].

As a class of great interest, TFT of the Schwarz type havessict action which is
explicitly independent of any metric structure on the uhdeg manifold and does not
reduce to a surface term. The present Subsection focusdissoictatheories defined
by a sequence of abeliaBF' theories for manifolds\ of any dimensiond+ 1)
[21, 22, 24, 25]. Given a-form field A(x) in QP (M) and a(d—p)-form field B(x)
in Q4=P(M), the general TFT action of interest is of the form

SBAF[A,B]:A/ (1-¢)FAB—oP¢ AN, (1.18)
M

the constank being some real normalisation parameter of which the ptegseare
specified throughout the discussion hereafter. This adiovariant under two inde-
pendent classes of finite abelian gauge transformatioimgesgparately in either the
A- or B-sector,

A =A+a, B' =B+ 3, (1.19)

where« andg are closeg- and(d—p)-forms onM, respectively. The derived quan-
tities F'=dA and H = d B are the gauge invariant field strengths associatetl(t9
and B(x). The arbitrary real variabl¢ we have introduced in order to parametrise
any possible surface term is physically irrelevant for aprapriate choice of bound-
ary conditions onM. Given the definition of the wedge product, the integrand in
(1.18) is a {+1)-form, the integration of which ovek1 does not require a metric.

Hence the Lagrangian density fBrF' theories reads, for example in 3+1 dimensions,

KJ vpo K/ LV po
Ly = gge“ P7 Ay Hypo + (1 =€) Ze’ P Fy Bpo (1.20)

in terms of two fieldsA,, (z) and B, (z) on which gauge transformations (1.19) act
according to

Al = Ay + 0,A, B, = Bu, + 0 Agﬁf .
Let us recall that this notation does not cover possibleslgauge transformations.

In the particular situation when the number of space dinuerssi is even and such
thatd = 2p with p itself being odd, in addition to th& F' theories defined by (1.18)
there exist TFT of the Schwarz type involving only the singlform field A(x) with
the following actiof,

SanrlA] = K /M ANF (1.21)

81f p is even withd = 2p, this action reduces to a surface term.
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These theories are said to be of thé' type throughout this Thesis. They include the
well-known (abelian) Chern-Simons theory in 2+1 dimensif#i, 22, 26] of which
the Lagrangian density reads

Los = %MW 0,4, A, (1.22)

in terms of the spacetime componedtg(x) of the 1-form fieldA(z).

This sequence of TFT of the Schwarz type formulated in anyedsion, and re-
lated to one another through dimensional reduction [27$speses some fascinating
properties. First, the space of gauge inequivalent classautions is isomorphic to
HP(M) x H¥P(M), H?(M) being thep™" cohomology group of the manifold.
Second, the types of topological terms contributing toéteegtions define generalisa-
tions to arbitrary dimensions of ordinary two-dimensioamayons. Namely, non local
holonomy effects give rise to exotic statistics for the egied objects which may be
coupled to the higher order tensor fields [28, 29, 30]. Thihgse types of quan-
tum field theories display profound connections betweerarattics and physics for
what concerns topological properties related, say, to thiom group, the Ray-Singer
torsion and link theory. These connections appear withénctimonical quantisatién
of these systems [31, 32].

Action for topologically massive gauge theories

Analogies between theoretical particle physics and cosel@matter may again be
fruitful. For example, Chern-Simons terms account for fiemic collective phenom-
ena, such as in the quantum Hall effect. Generally speakiagtatistical transmu-
tation of extended objects in higher dimensions may relyopological couplings of
the BF type. From a relativistic point of view, (quantum) field thies in any space-
time dimension are a general framework of potential relegaa high energy physics
as well as mathematical investigations for their own sakéhiwthis context such
topological BF' terms define couplings between two independent tensor fididse
dynamics is characterised by the action

1 1
S A Bl = — GPFA*F + — " PHAxH
TMGT[ ) ] /M2620 * +2920 *
—|—/~€/ (1-&FAB—oP¢ANH, (1.23)
M

provided the spacetime manifalt! is endowed now with a Lorentzian metric struc-
ture allowing for the introduction of the Hodgeoperator. The parameteraindg are

"WhenM =R x ¥, the physical Hilbert space is the set of square integrabiietions onH? (3) [24].
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arbitrary real constants corresponding to coupling caonistaehen matter fields cou-
pled to A and B are introduced. Without loss of generality for the preseralysis,
these parameters are assumed to be strictly positive. ImlBrdnsions, one recovers
the famous Cremmer-Scherk action [33, 34, 35] and in 2+1 d&ioas, the doubled
Chern-Simons theory [36]. Given the total action (1.23)tteri out in component
form, the Cremmer-Scherk Lagrangian density thus reads

1 LV
Live = _@FMVFI +

¢
6

H;wp HHre (124)

1—
A Hypo + TgF;w Bpg) .

12 g2

4+ getveo <

It is well known that the topological terms generate a mags ga
Mpr=hp="hreg,

for the dynamical tensor fields without breaking gauge iirare. Unfortunately,
the topological mass generation mechanism offf#étype is not generalisable to a
renormalisable non abelian gauge theory, unless furtidsfége introduced (see [37]
and references therein).

In the particular circumstance thét= 2p with p odd, a topological term of thd F’
type (1.21) generates also a mass gap,

MAF:h[L:ﬁIi62,

even though the action involves a singtéorm field A,

-1

StmeT[A4] :/ — FA*F + AN (1.25)
M 2e 2

In 2+1 dimensions, this action defines the famous Maxwelr@tSimons theory [38,

39, 40] of which the Lagrangian density is of the form

1 1
Lycs = —EFMU FH 4 Zne‘“’” F. A,, (1.26)

when expressed in terms of the spacetime components offtrentfield. As a matter
of fact, nothing forbids to add this topological term to thexwell theory since this
term preserves invariance under abelian gauge transfiamsaand does not require
the introduction of extra degrees of freedom. The Cherne@srterm breaks the
invariance under time reversat’, #) — (—2°,#) and parity in 2+1 dimensions,
(20, 2!, 2?) — (29, —2t, 22) as is the case for the topologigaterm in Maxwell or

Yang-Mills theories irB+1 dimensions. But contrary to tifeterm, the Chern-Simons
term is not a pure derivative and generates a “topologicalsrfor the gauge field.

8At least for what concerns small gauge transformations.s@ening the invariance under large gauge
transformations implies further restriction feras will be discussed hereafter.
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1.3 Hamiltonian formulation and propagating variables

We have expressed so far gauge field theories within the bggma formulation
which is explicitly Lorentz covariant. Let us single out néfe time coordinate in
order to highlight the dynamical evolution of the systenotighout time. The dy-
namical system may be thus expressed in terms of the norcilypliorentz covariant
Hamiltonian operator which generates time translatiomkiatherefore associated to
the (conserved) energy. The Hamiltonian formulation tmegées to identify among
physical variables those which are actual propagatingmijced variables. In order to
define this formulation, the spacetime manifdid is now taken to have the topology
of M =RxX, whereX is a compact orientabledimensional Riemannian space man-
ifold without boundary. Adopting then synchronous cooat@s onM, the spacetime
metric takes the form

ds® = dt? — hy; da da? (1.27)

Whereﬁij () is the positive definite Riemannian metric &1 Here Latin indices,
i=1,...,d, label the space directions ¥awhile 0 denotes the time componentin

The Hamiltonian formulation is defined in terms of a canohtitamiltonian H,, given
by the Legendre transformation of its associated Lagrangia dependent on phase
space variables. This phase space is endowed with a geoswtplectic structure.
The built-in gauge invariance of the Lagrangian of any gdiedé theory implies that
the configuration space within the Lagrangian formulat®mat in one-to-one cor-
respondence with the phase space within the Hamiltoniaf, tvece the existence
of constraints. Therefore gauge field theories require afahtreatment which is
known as the “analysis of constraints” in order to identifgit Hamiltonian formula-
tion [41, 42]. This algorithm will be discussed presenthaiparticular case.

1.3.1 Maxwell-Chern-Simons theory by way of example

The Maxwell-Chern-Simons theory (1.26) introduced in thievpus Section as a
particular case of topological mass generation mecharsschasen to illustrate by
way of example the algorithm of analysis of constraints inggfield theories. This
natural extension of the Maxwell theory is not chosen in ahlaaprd way. The great
advantage in considering such an extension is that the pasevigll theory may be
recovered in each step of the Hamiltonian analysis of caimf by simply setting
x = 0. Moreover, the Hamiltonian formulation of the MCS theoryllveie useful in
Chapter 2 in order to introduce to our factorisation of degref freedom.

90r equivalently, the Hessian matrix of the Lagrangian dbsa singular systems has zero modes.
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Phase space and symplectic structure

The Lagrangian formulation of the MCS theory consists in lthgrangian density
(1.26) defined in terms of the configuration space variallg&, ) and their gen-
eralised velocitie$)y A, (¢, ¥). These latter variables will be henceforth denoted as
AH (t,Z), where a dot stands for differentiation with respect to theetcoordinate.
The phase space of the associated Hamiltonian formulaiepanned by the field
variablesA,, (¢, ' ) and their conjugate momeng¥' (¢, z ) and is endowed with a sym-

plectic structure which is related to the following can@hioisson bracket algebra

{Az( 7‘%’)7 Pj(tag)

|
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(1.28)

These Poisson brackets are to be evaluated at equal timerdheg to the definition
of the Legendre transformation, the conjugate momenta efiaet! as functions of
configuration space variables through the following reladi

S Lmcs [A, A} )

. . K -
P't,r) = — == —_-06Y (7% — eV A(t, T 1.29
(755) 6Al(t7:?) 626 0](,$)+2€ J(ax)v ( )
5LMCS[AaA}
PULE) = —t 1y, (1.30)
5 Ao(t, )

In the case of the Maxwell-Chern-Simons theory it appeaart} through the defini-
tion of the time component of the conjugate momentum (1.13&) hot all conjugate
momentaP? (¢, #) and Pi(t, ) are locally independent as functions of the config-
uration space variableé.o(t, Z) and Ai(tj), implying the existence of a primary
constraintP? =~ 0 like in the pure Maxwell theory.

Hamiltonian and constraints

Having defined the phase space along with its symplectictsire, the dynamics of
the system is generated through the Poisson brackets f@pritmary Hamiltonian.

This primary Hamiltonian consists in the extension of theardacal Hamiltonian, re-

sulting from the Legendre transformation, where the prin@nstraints have been
included through their associated Lagrange multiplierewelver the primary con-
straints are required to be preserved under time evolutimhthus their total time

derivative must weakly vanish. In the case of the MCS thelnis/dondition generates
a secondary constraint,

POZ{PO’H}QJO = (p:aipi-i-gEijaiAj%O, (1.31)
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which is nothing other than the specific Gauss Law associatttee MCS theory. The
time consistency condition of this last constraint is &l satisfied, halting here the
constraints algorithm.

The primary and secondary constraints for the MCS theorndeficomplete set of
independent first-class constraints since their Poissackbts are weakly vanishing
and since they are linearly independent. From their defimjiit may be easily shown
that first-class constraints generate small gauge transfions. In the case of the
MCS theory, given any linear combination of the first clasgstraint, for example,

Ca(t):/Edea(t,f) o(t, T),

the infinitesimal action of such a combinatigr(t) on the phase space degrees of
freedomA; (t, 7 ) and Pi(t, T ),

dadi = —{Ai(t,7),(a(t)} = dia,
5 P = _{Pi(t,f),ga(t)}:gew‘aja, (1.32)

corresponds to those gauge transformationsin (1.2) whécbannected to the identity
transformation.

This discussion has showed that the Legendre transformatioich relates the La-
grangian formulation of gauge theories to their Hamiltorfiarmulation, is well de-
fined modulo a complete analysis of constraints. For furtletails, see [41, 42, 43].
For what concerns the MCS theory, its total Hamiltonian dgmeads

e2

UP0+ (U/ —AO)&- (PZ—F geij AJ) —|—81(A0P1),

1

+ o (Fy)’ (1.33)

where the last term is a total divergence. The Lagrange phielts = and«’ are ar-
bitrary functions of time and phase space variables. Theiltarian density for the
pure Maxwell theory is obtained by settirg=0 without any other redefinition.

1.3.2 Propagating variables
Fundamental Hamiltonian formulation of MCS theory

The non explicitly covariant first order action in field thisris defined as an action
of which the associated Lagrangian density is linear in titagvative of the fields.
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Any gauge field theory described in this Thesis may be fortadlas a non explicitly

covariant first order action, which is obtained by defining ttagrangian density as
the Legendre transformation of the total Hamiltonian dignshus including all the

first class constraints. In the case of the MCS theory thisa®&|[ A, P; u, u'] reads

2 2
_ 2. ] i po pi € (pi Eoi N L e
S = /dtdx{AoP + oA P =5 (P =2 A)) = (Fy)
0 / i B i
Fu PO — (u — Ag) ; (P -5 Aj) —Bi(AOP)} (1.34)

The constrainp (¢, Z ) ~ 0 generates the physically relevant small gauge transforma-
tions, see (1.31). However, we did not comment about thenseconstraintP® ~ 0.
Actually, this constraint generates symmetries relatethéopresence of Lagrange
multipliers treated as dynamical degrees of freedom arréfibie is without real phys-
ical significance. The presence of such a constraint is ateEfrsome physical vari-
ables within the Lagrangian formulation are non propaggatiramely decouple from
the system within the Hamiltonian formulation where tim@iwileged. Then an el-
egant reduction process of these physically irrelevantedegof freedom has been
introduced in [41] in terms of the removal of “layers” in orde move toward the
innermost core of the “nested” structure of Hamiltoniamfatations.

In the first order formulation of the MCS theory defined in @),3he Hamiltonian
nested structure appears clearly. Indeed, this expredsies not yet refer to a fun-
damental Hamiltonian described with the minimum of phylsjoglevant degrees of
freedom. Actually, the phase space varialAlg¢, ) and its conjugate momentum
PO(t,#) may be removed from the first order action through the simgdiefinition
@ = Ao —u' and by settingy = Ay. Provided that we keep in mind thaliy (¢) is
understood as a Lagrange multiplier, we may defihe Ay. This extra layer being
removed, the first order action is of the form

S = / dt d*z {9pA; P — Hucs} - (1.35)

The fundamental Hamiltonian density for the MCS theory saaplto a surface term

2

e . 1
Hwmes = 5 (PZ -

K
4e2

;) 2 . ;)
e A) +—5 (B + A0 0y (P + sl 4;) +ST.
Here Ay (t) is no longer a degree of freedom of the system but rather fiteyle of

a Lagrange multiplier enforcing Gauss’ law.

The great advantage offered by the fundamental first orderdtation is the explicit
introduction of the conjugate momenta within the Lagrandiarmulation. These
conjugate momenta are related to the variables of the (d&tBrconfiguration space
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through second-class constraints, without affecting thegg symmetries, thus the
first-class constraints, of the theory. Within the first arflemulation of the MCS
theory (1.35), for instance, the gauge invariant combdamati
1 , g
i = pi_ gew A;, (1.36)

€2 el

turns out to be an auxiliary field reducible through Gaussgidegration. Within the
Hamiltonian formulation, any “Gaussian variable” is rdgdeducible like a second-
class constraint, which is solved as a strict equality, jpled Dirac brackets are intro-
duced for the remaining degrees of freedom. The second-ctasstraint reads

i K s 1
P —56'7Aj:€—2F0i,

and the physical variables) (¢, 7' ) are thus readily identified to be the electric field.
Furthermore, the original relation between the configoraipace and phase space
variables, see (1.29), is recovered. In other words, thésésea one-to-one correspon-
dence between non explicitly covariant first order actiarg ldamiltonian structures,
provided that the Lagrange multipliers associated to tisé-€lass constraints are not
considered as dynamical degrees of freedom.

Propagating variables in theories of the Maxwell-type

The non explicitly covariant first order action for the puraivell theory is simply
obtained by setting =0 without any other redefinition,

S— /dtd%{e—é& E;’l—HM} . (1.37)

The fundamental Hamiltonian density reads in terms of thetat vector field

1 1
T 2¢2 4e2
with the formulation of the canonical Poisson Brackets asgigg invariance remain-
ing unaltered. Notice that the number of spacetime dim&ssitbes not appear ex-
plicitly in the above expression which remains the same extwatthis number. In 3+1
dimensions, from the three physical degrees of freedommiitie Lagrangian formu-
lation, there remain only two actual propagating degredeegidom. In the Maxwell
theory they correspond to the polarisation states of thesiess photon field.

. A .
H (EL)? + (Fi;)? — e—;) 0;EL + ST,

The Maxwell-Chern-Simons and pure Maxwell theories shareramon formulation
of their canonical Hamiltonian in terms of the electric fieldowever the presence
of the Chern-Simons topological term modifies Gauss’ Law el & the symplectic
structure of the theory since the electric field componeoisnger commutes. Hence
this CS term generates a mass gap of topological origin.
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1.4 Physical formulation of gauge field theories

1.4.1 First order actions and Maxwell theories
Maxwell theory in 3+1 dimensions

A manifest realisation of the gauge invariance principlpligs that the original fields
used to define any gauge theory do not generate physical ooatiigns since these
fields are not gauge invariant degrees of freedom. In factardposition into pure
gauge longitudinal and physical transverse degrees addrads feasible within the
Lagrangian formulation, see (1.3), but manifest spatiehlity is lost when we pro-
ceed to such a change of variables,

A= (=20 wr ay, ay =2,
The other way to isolate physical degrees of freedom is tchéxgauge, for instance,
the covariant Lorentz gaug#' A,, =0. The purpose of this gauge fixing procedure in
Maxwell theory is to remove the longitudinal part carryihg symmetry of the gauge
connection. Within the Hamiltonian formulation, it is pdde to decompose the clas-
sical phase space into a non propagating temporal partgagawge longitudinal part
and a physical transverse part. However, this decomposstiffers the same prob-
lem of locality as its covariant counterpart. Hence theodtrction of the temporal
and Coulomb gauges, respectively = 0 andd*A; = 0, in order to isolate the two
transverse propagating degrees of freedom of the photomet#sr such gauge fixings
usually suffer Gribov problems. Furthermore as will be Hgfted in this Thesis, a
careless gauge fixing procedure often implies that topokdgiontent is lost, as shown
by the counter-examples to the Fradkin-Vilkovisky theoifd#d;j.

However, without resorting to any gauge fixing procedurgsptal variables are al-
ready manifest within the first order Lagrangian formulati®he explicitly covariant
first order Lagrangian formulation for the Maxwell theorydm1 dimensions simply
results from the Lorentz covariant extension of the firseorttion defined in (1.37),

2
1
Eﬁ/lgx = _% E,, E" + 56;wpa OuAy Epy — A, JW, (1.38)

where a conserved source currdft(z) of matter fields has been added. By covari-
ant extension is meant the extension of the electric field tenaor with spacetime
covariant indicesE,,,, (x). This expression may be also obtained from the original
Lagrangian formulation (1.1) after the introduction of tBaussian auxiliary field
Eu(x).
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Two Euler-Lagrange equations may be extracted from theefimst order formula-
tion. The first relates the gauge invariant figlg, (x) to the current

P 9By =2 J" (1.39)

while the second corresponds to the equation relating tiisigdd variableE,,, (x) to
the original gauge fieldl, () through Gaussian integration

1
Eup = =3 Ty 13w P 9,A, . (1.40)

Within the Hamiltonian formulation this latter equation ynbe divided into two
second-class constraints when space and time indices litre ®pe first represents
the relation between the variablds(x) and their conjugate momenta

1 . ez
Eij = g Oik 5jl Eklm Fom = Eél = ?Ewk Eij
which are, as already seen, related to the electric vectal fiehe second second-
class constraint relates the field strength ted%pfz) to the thus physical vector field

Brlﬁg(x)
1 el 1 -
Eyi = 52 b5 €™ Fiy = 2 dij Bihg
which is known to be the magnetic field. The well-known Maxivegjuations,

6-E‘e|262jo, 6XE‘e|=—at§mg,
ﬁ'émgzo, ﬁxB)mg—atE’d:er,

are recovered if the above correspondences are appliec tegtiations of motion
(1.39) and (1.40).

Usually any abelian theory of the Maxwell-type is expressetérms of the gauge
connection4,, (x). This formulation highlights the elegant connection bew¢he
dynamical connection on an abelian fiber bundle from the emattical point of view
and the physical interpretation in terms of the mediatiothefelectromagnetic force.
However, we will prefer within the context of this Thesis tonsider the first order
Lagrangian formulation which is fundamental from a dynaahjmerspective since it
involves directly the physical propagating variables,hie present case the electro-
magnetic fields. Unfortunately, even within the first ordemfiulation of the pure
Maxwell theory, it is impossible to isolate the physical pagating fieldE,,,, from the
gauge fieldd,, (x) through a local and linear change of variables. The roleisfster
field is to generate dynamics for the former through the egnatof motion as well
as to introduce minimal local couplings to matter fields. g tevel of the Maxwell
equations, it further implies Faraday’s law of inductiordahe absence of magnetic
monopoles.
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Maxwell theory for p-form gauge fields

The present discussion of the familiar Maxwell theory in 8trhensions readily gen-
eralises tg-form Maxwell theories defined in any dimension. Adoptingayronous
coordinates oM =R x 3, see (1.27), the number of propagating degrees of freedom
of a masslesg-form field A(x) equals the number of transverse degrees of freedom
of a form defined of2?(X), that ing—l. These propagating degrees of freedom are
explicitly involved within the covariant Lagrangian firstaer formulation of (1.5),

2

Sio = gPT! % (E,E)+ / FANE—(AJ), (1.41)
M

obtained after the introduction of the Gaussian auxilidry f)-form field E(x). The

equations of motion derived from this first order formulatread

oP

E="5 *@ndd, «dE=J, (1.42)

and may be identified as the Maxwell equations expressedrirstef the generalised
electric and magnetic fields when space and time Lorentzésdire distinguished.

Usually thep-form electric fieldFe(z) is expressed in terms of its pseudo-tensorial
contravariant space components,

_ = E’Ll ip
p! \/E el

and likewise for thed—p—1)-form magnetic field of space componeﬂisé"id*“1 (x).

Then, knowing the relation between the electromagnetitovdields and the 1-form

gauge field which generates these physical fields, the dé&atien to anyp-form
gauge field is straightforward:

FEe ;Li]j] ---hipjp dz? /\.../\d..%"jp7

Eg7" = VhhUI R Ry
d—p)
. opld=p) o
B“ ld—p-1  _ d € ld—p—1J1"Jp+1 . .
mg (p+1)! J1Jp+1

This definition enables one to formulate the canonical Hamihn of the Maxwell
theory forp-form fields as the sum of the squares of the electric and ntizdiedds,
where the electric field is proportional to the conjugate rantum of the phase space
variableA;, ...;, (z).

Finally, the physical { — p)-form field E(¢,Z) may be separated into its temporal
componendlt A Ey(t, &) with Ey(t, ) being a(d—p—1)-form on¥, and its remaining
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components(t, ') restricted ta?—7 (%),

1

Eo(t,7) = mEOil»»»id,p,l(taf)dxh A... /\dxid*p’l,
. 1 , .
&) = o Bosy (68)ds" A Adar (1.43)

Hence within the Hamiltonian formulation, the first equatif (1.42) may be inter-
preted as two second-class constraints which réfg{e, #') to the magnetic field,

Bmg = 62 EO 5
on the one hand, while the variabli&¢, 7 ) and the electric field must be Hodge dual,
Eg=¢e*o? P 5y B, (1.44)

on the other hand. Furthermore this latter relation esthbfi the link between the
configuration space variables of the Lagrangian first oralen@lation and the conju-

gate momenta within the Hamiltonian formulation, to whibk electric field is equal

up to a multiplicative constant.

1.4.2 Dielectric Maxwell theories

A natural extension of the Maxwell theory %1 dimensions, of which the La-
grangian density is defined in (1.1), may be obtained by marnieg the coupling
constantl /e? into a real-valued function of spacetimgr). The resulting Lagrangian
density then reads

1
LpMax = ~1 e(x) F FW" — A, J*, (1.45)

and is often called by misuse of langu&tgae “dielectric Maxwell theory”. Whatever
its origin, we assume that the conserved curtBftz) should not explicitly depend
on the functiore(x). This function is considered as a new (possibly dynamicalles

field and describes the properties of the medium in which teet®magnetic field

propagates. However the present formulation is not the meseral. Indeed the
functione(z) should be replaced by a symmetric matjx (z) contracting the field

strength tensor in the kinetic term of (1.45). This symneetiensor accounts for the
anisotropy of the medium of which the response differs wiiesmbmitted to electric
or magnetic fields. For the sake of simplicity, we will coreidhere a scalar field
e(x), implying that the response of the isotropic medium to theppgating electric

10Thjs function equally characterises the polarisabilityt@ magnetisation of the medium.
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field is of the same magnitude as the magnetisation of thisumecksulting from the

magnetic field. This rude hypothesis is justified in Chaptah&re soliton solutions
describing an electric field embedded in a dielectric mediveconstructed within an
ansatzsetting the magnetic field to zero.

The first order Lagrangian formulation of the “dielectric’axwell theory in3+1 di-
mensions,

1 1
4 e(x)
is constructed in such a way that the scalar figld) only couples to the physical
electromagnetic fieldE,,, (). Hence this model shares in common with the pure

Maxwell theory the equation (1.39) relating the electrometig field to the current,
but differs from it through the physical meaning of this élemagnetic field

1
Cliti= = gy B B+ 5677 Oy By = Ay "

1 vpo
E.p = 55(17) Do Nw €47°7 Fpyr .

Under the above assumption that the curtéhfz) is independent of (z), as befits

such Maxwell theories in a medium, this equation relateslé éenstructed from the
Faraday tensor to a free current four-vector. Considerimg the time component
of this equation, the relation between the electric di&maentﬁa(:v) and the free

charge density;(x) embedded in a dielectric medium is recovered

— —

1
VDo = pr, wherewe defineD}, = 56”’“57% andp; = J°,

whereas if the space components are taken into accounk, ladtween the magnetis-
ing vector fieldHmg(x) and a free current densiti(x) is obtained

V X Hmng— 8;De=.J, wherewe definefl;,, = 6" Ey; .

The formulation of the Maxwell equations in terms of the fobarge and current is
thus recovered.

Let us now establish how to recover the Maxwell equationsiims of the total charge
and current. The measured electric fié@i(x) is generated both by the net free charge
densityp¢(z) and by the structural (or bounded) charge density) associated to the
response of the dielectric medium. Likewise the total mégnector fieldémg(:c)

is generated by the total current density(x). This total current includes the contri-
butions of the usual conduction current, referred to as tbe ¢urrent density (),

the bounded current associated to the magnetisation of datum, and the current
related to bounded charges. Given the familiar relatiomsdéen the electric displace-
ment and the electric vector field

Dei = € Eg,
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and defining the relation between the magnetisation and etiagrector fields as
ﬁmg =& gmg,

the Maxwell equations read

6'E’e|:p_T, 6><E’e|:—at§mga
€o

The scalar fieldt(x) is assumed to possess a vacuum expectation value denoted
which is associated to the permittivity and permeabilitytie vacuum. The expres-
sions for the bounded charge and current densities obyidolkbw from the above
definitions and equations.

Finally the present analysis of the Maxwell theory in a metlis readily generalisable
to tensor gauge fields of any rank wathever the number of sipseaimensions.
For example, the Maxwell theory for&aform gauge field propagating in a medium
described by a function(x) in 3+1 dimensions reads

1 1
LoMax = 2 e(x) Hywp H*P + 3 B,, K", (1.46)

where the conserved currelit*” does not explicitly depend on the functiefx).

1.4.3 Physical formulation of the Maxwell-Higgs model

In this Subsection a rather unfamiliar perspective on thewdl-Higgs model in
terms of its physical first order formulation will be introtkd and some troubles re-
lated to gauge fixing procedures will be brought to the foret us first start with the
first order Lagrangian formulation of the Maxwell-Higgs nebd

62

. 1 1 .
i = ~ B EM fww Oy Ay, Epo+ 5 18,0 —10 (A, —8,0)> =V (0?),
(1.47)

originally built from the Lagrangian density (1.16) resudf from the polar parametri-
sation of the complex scalar field, see (1.15). Within thetextnof abelian gauge
field theories, there exist plenty of ways to define actiongims of gauge invariant
quantities. The most common of course remains the gaugefirimcedure. Indeed,
for gauge field theories like abelian Higgs or Stueckelbbeapties, a tempting pos-
sibility is to express the Lagrangian density in terms of glaeige invariant current
J#(x). The conservation law for this curreft;J,, = 0, in such theories acts like a
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Lorentz gauge fixing procedure but in this case this “on Sleelhstraint results from
Noether's theorem. Therefore the change of variables Y hi&

1
A, — 0,0 = ?JH =nGy,

introduced in [45, 46] for examplg seems at first sight to be equivalent to the fixing
of the unitary gauge. However the identification of the argntof the complex scalar
field as longitudinal part of the gauge field arises only ati¢ivel of the equations of
motion. Within the unitary gauge, this identification is firequired independently of
whether the equations of motion are satisfied or not.

Hence under such a reparametrisation, the first order Lggmarfiormulation of the
Maxwell-Higgs model now reads

Llp = ~S B B 4 10w79,G, By + 0 2 GGV 4 £
MHP — q 9 v Lipo 9 0 Gy )

1
+ 7 S Boo (1.48)

whereX,,, is related to the scalar fielt{z) through

Y = 0, 0,0
The Lagrangian densitg, (o, 0,.0),
1 1. 1
Lo=50u0d"0— 5" 0"+ 7 A0, (1.49)

describes the dynamics for the self-interacting scalad fiék). We define the first
line of (1.48) as the physical formulation of the Maxwellggs model which only
involves the electromagnetic field,, («) and the current generating this field.

However contrary to what happens under the choice of thayngauge, it is crucial
to keep the term in the second line of (1.48), since othervifigportant topological
content would be lost. Indeed the univalued phase in ther plel@omposition of the
complex scalar field(x) does not forbid the fiel@(z) to possess a non periodic part
at infinity, associated to a non zero winding number. In tlzetec topological con-
siderations then require thet{x) vanishes on some spacetime submanifold, where
its phase is undefined. Therefore the unitary gauge fixinggzhore becomes patho-
logical while the introduced parametrisation of the fielghisblematic since bound-
ary conditions must be specified already at the level of thgrduagian formulation.
Indeed in the physical formulation (1.48),,, (x) is interpreted as the current of a
vortex string of which the worldsheet coincides with thesethin spacetime of zeros
of o(z). Models for effective magnetic strings based on this okztéra were built in
[47, 48, 49], see also [46]. In Chapter 5 we will shed new ligithis issue.

1we have introduced the normalisation parametef physical dimensiorE L for later convenience.
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1.5 Topological sector of gauge field theories

1.5.1 Formal limit of the Maxwell-Chern-Simons theory

In contradistinction to the usual formulation of the MaxitbEory we proceeded to a
rescaling of the gauge field by the coupling constarsio that this coupling constant
now multiplies the kinetic term for the gauge field, see (1Tis rescaling, already
known within the context of the scale anomaly in QCD, enatdesake the covariant
derivative independent of the coupling constant wheneyeanhical matter fields,

whether of fermionic (QED) or bosonic character (scalar Q&2 introduced. This

rescaling further implies that the coupling constant mplitis the squared term in the
physical electromagnetic field within the first order Lagyam formulation of gauge

field theories like the Maxwell theory, see (1.38) and (141§ Maxwell-Higgs model

(1.47) and the Maxwell-Chern-Simons theory,

e? 1
Lo =—=FE,E" + 19" Fur QE, + 1 4p) (1.50)

master 2

through an inverse coupling compared to that of the origioahulation. The study
of the asymptotic formal limit in the parametewithin the first order formulation of
abelian gauge field theories may be considered as a firststepds a more ambitious
project whose basic ideas were suggested in a heuristicw&@]. In that paper such
limits have been studied within the context of theories efYang-Mills type for non
abelian semi-simple Lie groupsin 1+1, 2+1 and 3+1 dimerssion

Usually the problem of confinement is tackled by isolatingoa perturbative sector
of physical field configurations. However such a procedugeires a careful treat-
ment of topological effects which may be lost when one prdsde gauge fixing
procedures, as highlighted in Section 1.4. Furthermoresatiwvorks based on lat-
tice simulations, effective and dual field theories apphescshow that the dynamics
responsible for confinement may possibly be dominated bglégjcal effects, gen-
erated by a topological sector of configuration space. I $b8h topological sector
candidates appear in an heuristic way through formal linnitthe gauge coupling
constant in non abelian gauge field theories. Notice thdtaabgauge field theories
already exhibit such characteristics. For example theenlinit of an infinite cou-
pling constant — oo in the usual Lagrangian the MCS theory (1.26) leads to a pure
topological field theory (TFT) of thd F'-type, see (1.21), while a TFT of thieF' type

is recovered in the limi¢ — 0 within the first order Lagrangian formulation (1.50).

In this Thesis, we have managed to isolate properly thisltapical sector and to show
in which sense it generates topological effects in abebaolbgical mass generation
mechanisms. In fact working with abelian gauge theoriestsinrealistic since lattice
simulations, studies at lower dimensions and effective elmdeem to show that the
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physical sector at low energy resides in the Cartan subedgeithe non abelian gauge
group. Furthermore, topologically massive gauge theayeserate a mass gap of
topological origin. Therefore the systematic consideratif topological effects for
this type of theories, often neglected in the literatureyldgrovide crucial insights
towards the study of confinement in non abelian gauge fieloribe

1.5.2 Our solution: a dual projection method

The main difficulty which arises in such a programme is to gieaning to the formal
limits introduced in [50]. The analysis of the limit — 0 did not reach significant
results. Within the pure Maxwell theory it has been showri 2] fhat the limite — oo

is ill-defined in the physical spectrum of the theory. Ourrapagh to deal with this
type of issue is totally different and only applies to thesrgenerating a mass gap,
that is in this case TMGT. Considering in Chapters 2 and 3 & phaegection method
and a generalisation of the Lowest Landau level projectiamwill properly define
the formal limit mentioned above, at the classical as wedltabe quantum level.

The notion of duality (for a review, see [51]) has played alible in a large range of
fields in theoretical physics as distinct as statistical Ima@écs, confinement in Yang-
Mills theories or the quest for a fundamental quantum urtificeof all particles and
interactions. Duality relies on the existence of two eqlgiridescriptions of a model
using different fields and turns out to be especially intitngswhen an explicit re-
lation between the fields is established since it typicatighanges strong and weak
coupling regimes. It may then allow for perturbative cadtigns in the variables of
the dual theory. In this Thesis another interesting feattmieh may arise from duali-
sation processes is introduced. Indeed, upon a converigefinition of fields, gauge
variant degrees of freedom are decoupled from the physitad and thus the dual
formulation is factorised. There exists quite a number @hegles of gauge theories
where this kind of technique has been developed and whiamietmes referred to
as “dual projections” [52, 53]. The difficulty then relatesthe fairly rare existence
of such a reparametrisation being local, linear and coirsgtiie number of degrees
of freedom. That is not the case for the Maxwell theory, faaraple, as recalled in
Section 1.4. However, we will show for the first time that theatfactorisation is
possible for TMGT whether of th& F or the AF type in any dimension.

Then more realistic theories are obtained by extending oatyais to non abelian
gauge groups and by coupling to matter fields. In such casesgction resulting from
our reparametrisation turns out to be split into two secpangially decoupled. This
may offer perspectives in the development of new approXxanachemes from the
non perturbative topological sector. Finally, Chaptersd & of this Thesis will be
dedicated to other unexpected consequences of our fattoriswhen topologically
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massive gauge theories interact with real scalar fieldsitftralielectric couplings. In
fact, we will properly establish in Chapter 4 that all thedbgauge invariant mass gen-
eration mechanisms introduced in Section 1.2, includirgadlebrated BEH mech-
anism, are related through an intricate network of dualitteking into account in
Chapter 5 the presence of topological terms generatinddgjmal effects.



CHAPTER 2

LFactorisation of topologically massive gauge theories

The original fields involved in the definition of any gaugeottyalo not generate phys-
ical configurations since these fields are not gauge invdrialence two approaches
to isolate genuine physical degrees of freedom are availabhe first involves some
gauge fixing procedure which usually suffer Gribov problerike second consists
in constructing a factorised dual formulation. Indeed,ldaling a convenient re-
definition of the fields, gauge variant degrees of freedomdeeoupled from the
physical ones. The main difficulty arising for this prograsnthe fairly rare exis-
tence of such reparametrisations which at the same timeaaal land conserve the
number of degrees of freedom. Moreover field redefinitiotisinvthe covariant La-
grangian formulation are not necessarily associated toiegjent canonical transfor-
mations within the corresponding Hamiltonian formulatiwhile preserving at each
step gauge invariance. However, topologically massiveggatheories do not en-
counter such restrictions. Through a local and linear fieddlefinition within the first
order Lagrangian formulation, or the associated canonitahsformation within the
Hamiltonian one, the dual action possesses the same gaogaelyy structure as the
original theory and is decoupled into a propagating sectbmassive physical vari-
ables and a sector with gauge variant variables defining atogical field theory.
These results hence provide a complete understanding of/el general structure
for topologically massive gauge theories, referred to agpdlogical-Physical” (TP)
factorisation, which involves both the Lagrangian and Hiéoniian formulations.

*

* *

35
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2.1 Hamiltonian formalism and TP Factorisation

This Chapter discusses a new salient property of the ab&ENSBT of the BF' type
(1.23) or AF type (1.25) valid whatever the number of space dimensibasd the
tensorial rank of the fields: the Topological-Physical (fd@}orisation of their degrees
of freedom. This new result, presented in one of our papdr [48s first achieved
within the Hamiltonian formulation through a canonicalnséormation of classical
phase space leading to two independent and decoupled $ecldre first of these
sectors, namely the “physical” one, consists of gauge iamavariables which are
canonically conjugate and describes massive propagdiygiqal degrees of freedom.
The second sector, namely the “topological” one, consittsanonically conjugate
gauge variant variables which are decoupled from the togahifonian and, hence,
are non dynamical. This sector is equivalent to a pure TFhefaF or AF type.
This factorisation enables the identification of a mass ggimg mechanism for any
p-form or, by Hodge dualisation, any ¢ p)-form. These two possible “pictures” are
constructed without introducing any gauge fixing conditimisecond-class constraint
whatsoever as has heretofore always been the case in tlatuie

2.1.1 The case of the Maxwell-Chern-Simons theory

The famous Maxwell-Chern-Simons (MCS) theory defined iag)represents a typ-
ical example of topologically massive gauge theories ofdtietype which is defined
in 2+1 dimensions. For pedagogical reasons, our factisatill be first introduced
within the Hamiltonian formulation of the MCS theory in théape, which is the
simplest case of the topological mass generation mechamfsme our factorisation
applies. Next the general case of topologically massivgg#ueories of thé3 I type
defined on spacetime manifolds of any dimension will be askid.

The total first-class Hamiltonian density (1.33) for the M&X-Chern-Simons the-
ory has already been obtained in Section 1.3 through an ekti@w@analysis of con-
straints. However the kinematic variables which span thesplspace (1.28) of the
MCS theory are not physical since the gauge fi¢)d, ) and its conjugate momen-
tum P(¢, ¥ ) are not invariant under thé (1) abelian gauge transformation. However
instead of proceeding to a gauge fixation procedure or spthiafirst-class constraint,
the physical Hamiltonian for the MCS theory may be obtairredugh a novel local
field redefinition which preserves canonical commutatidatiens.

1In other words, the Poisson brackets of variables belortgitige two distinct sectors vanish identically.
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Let us first consider the new field variable
2 .
2Ai:Ai__€ijP'7- (21)
K

This choice is made in such a way that Gauss’ law in (1.33) Ipeemsed in terms of
this variable only :

Kk Ag Eij BZ\AJ' ~0. (22)

The field components of the new variablégt, #) form a pair of canonically conju-
gate variables of which the Poisson bracket reads

(A7), Al )} = 5 82 —7) 23)

The abelian gauge transformation defined in its local fornflir32) acts on these
variables according to

A second new field variabl&’ (¢, # ) may be defined as
. . K ..
E'=PpPi— B €V A, (2.5)

and turns out to be complementary to the first one introdubedea When considered
in combination with the equations of motion, this varialsgroportional to the elec-
tric field E,(t, ¥ ), see (1.36), of which the Poisson bracket of its field comptseo
longer vanishes,

{El(t,f),E2(t,§')}:—f$§2(f—gj’), (2.6)
in contradistinction to the pure (massless) Maxwell theory

This canonical transformation defines a new parametrisatighase space which is
then decoupled into two independent and orthogonal seddgrsrthogonal is meant
the fact that their Poisson brackets are mutually vanishing

{Ai(tvf)v Ej(tvg)} =0,

and by independent the fact that these two sectors do nok $peane another at
the level of the Hamiltonian density, provided that the laagye multipliers in the
associated first order formulation are redefined in an ap@ai@owvay, namely

. 1 . K ..
u = Ao, (’LL/ — Ao) = —AO — m 81- (El — 5 e ./4]) . (27)

where a dot stands for differentiation with respect to threetcoordinatet, € R.
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Hence the fundamental Hamiltonian density of the Hamidlomested structures for
this gauge invariant dynamics [41] reads within its facied formulation
e? n2 11
= _ (E? -
H 2 ( ) + 2 e2 K2

Obviously,Aq is a Lagrange multiplier enforcing the first-class constraihich gen-
erates the small gauge transformations (2.4).

(0,E")” — k Ay € 9. A; + ST. (2.8)

When restricted to the physical subspace for which this tcaimg is satisfied, the
above gauge invariant Hamiltonian reduces to a functioepédding only on the dy-
namical physical sector which solely consists of the psetettor fieldE (¢, 7 ). This
sector, which is invariant under parity, describes the dyioa of a single propagating
massive “field degree of freedom” in 2+1 dimensions.

The second sector which consists of the variat}ét, ) whose components form
a pair of canonically conjugate variables actually shanessame symplectic struc-
ture, (2.3), Gauss law constraint, (2.2) and gauge tramsfton, (2.4), as the phase
space description of the pure Chern-Simons theory. Heiig&Ghern-Simons sector”
accounts for the parity violating Chern-Simons theory edasel into the Maxwell-
Chern-Simons theory. The Chern-Simons theory a being ¢gjel field theory, its
Hamiltonian density vanishes identically. In the same waayye will see in Chapter 3,
this “CS sector” may imply, depending on the topology of thelerlying space man-
ifold, a degeneracy in the energy spectrum, hence its cldation with the Landau
problem in quantum mechanics.

2.1.2 The case of TMGT @F type in any dimension
Hamiltonian formulation

Because of the built-in gauge invariances of these syst#rasanalysis of the con-
straints [41, 42] of topologically massive gauge theogagquired in order to identify
their Hamiltonian formulation. Given the total action (3)2vritten out in component
form the associated Lagrangian density reads,

ciga, = VB e
TMGT 2 e2 (p_|_1)! M1 HPpt1
d—
—+ ﬁ 0.71) H HVl"'Vd7p+1

267 [@—pt D)
(-8 s

s ’ 1% IJ,T_,F

B RN "
§aP

o £

pld—p+1)

By,

1 Hptl

e
ehr e P A oy o1y (29)
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where our conventions introduced in Section 1.1 apply agHie above expression,
with the single parametermultiplying each of the topologicd A F' andAA H terms
while ¢ parametrises a possible surface term, does not entail asyofogenerality.
Had two independent parameterand A\ multiplying each of the topological terms
been introduced, only their surfx, + X), would have been physically relevant, the
other combination corresponding in fact to a pure surfaaa.te

Adopting synchronous coordinates ¢ = R x X, see (1.27), the configuration
space variablel(¢, ¥ ) may be separated into its temporal componrgm Aq(t, 7)
with Ay (¢, Z) belonging tg2?~1(X), and its componentd(t, 7' ) restricted td2? (X),

_
(p—1)!

. 1 ) .
A(t, %) A, (BT) et A A da

Ao(t,f) AOil...ipil(t,f)dZCil N .../\dIiP*l7 (210)

A similar decomposition applies to tH€—p)-form B(¢, # ). The actual phase space
variables are then the spatial componeh#dB along with their conjugate momenta
P and( defined to be the following differential forms @t

~ 1 1 -~ ~ L . )
P = ——"h; ... hi P“.“ZdeJl/\.../\dZCJp,
p! \/E 1J1 pJp
- 1 1 - - o . _
Q B (d - P)' \/E hiljl B hid—pjd—p Q“”.ldip dzZt AL A dIJd7p7 (211)

of which the pseudo-tensorial space component®are’» and@Q’ “-», Expressed
in terms of the configuration space variables, these lattentities are given as

piie = gFojl...jp pidr | piede 4 ((;__5))! L : T
- K z% oPld=P) ¢hrria—piidn Ay (2.12)
while the canonical brackets,
{Aiya, (6,2), PP (8,57) ) = ol 670 8D (@ — ),
{Biria ,(6,8), Q7 7r ()} = ot 0 6 D@ —g),  (219)

characterise the symplectic structure of Poisson bracketwiori, phase space also
includes the canonically conjugate variablesand P°, and B, andQ®.
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The Legendre transform of the Lagrangian (2.9) leads to dked gauge invariant
Hamiltonian,

Ho- < (*P—ﬁ(1—§)3)2+$ (ad)" + (u, P")
+ (*Q + mﬁal’(d‘p)A) + 2ig2 (dB)2 + (v,Q") + (surface term

+
M\ N>|Qmm|

o (u' + Ag) /\d(*p+n§é)

n /Eadfp(u’ + By) Ad (*Q — k(1= £)oPdP) 21) . (2.14)

In this expression as well as throughout hereafter, the Hedgperation is now con-
sidered only on the space manifdilendowed with the Riemannian metrig;. In
(2.14) the inner product 0% (%) x QF(X) is constructed as

(wi)? = (g, wr)  with (wk,m)=/ka*nk- (2.15)
b))

The quantities:’ andv’ are Lagrange multipliers for the two first-class constsaint
associated to the two abelian gauge symmetries whdadwv are those for the first-
class constraint®? = 0 and@® = 0 arising because the fields, and B, are auxil-
iary degrees of freedom of which the time derivatives do maitigbute to the action.
Upon reduction to the basic layer of the Hamiltonian nestadctture [41],P° andQ®
decouple from the system wheredg and By play the role of Lagrange multipliers
enforcing the two Gauss laws. These constraints genexade tfauge transformations
in (1.19) which are continuously connected to the identapsformation, namely the
small gauge symmetries, one generated by the fieldad B and the other byl and
Q, respectively. Note that given Hodge duality, the phasespariables are associ-
ated to isomorphic space@?(¥) = Q¢P(X). Hence at any given spacetime point,
phase space has dimensiafi’.

Topological-Physical (TP) factorisation

The above results are well-known. However the fields useditsteuct the theory
do not necessarily create physical states since these bgange invariant variables.
Therefore, let us now introduce the new Physical-Topolaldactorisation of the clas-
sical theory, by also requiring that these field redefingiare canonical and preserve
canonical commutation relations. First consider the gtiast

A:_lap<d—1)>*@+(1_g)/1, B:l*PJrgB, (2.16)
K K
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defined on the dual sef®’ (X)) andQ¢—?(%). This choice is made in such a way that
the two Gauss laws are expressed in term of these variablgsasris the case for a
topological BF theory,

koPA P dA=0, oPrdB=0. (2.17)

As a matter of fact, these variables are canonically cotgjga
. . 1 (= =
{Ail...ip(t,x),le...jdfp(t,y)} = Eeil"'ipjl"'jd—pis (I—y) (218)
The two finite gauge transformations in (1.19) act on thesevagiables according to
the relations,

A=A+a, B =B+4 (2.19)

At a given spacetime point, these canonically conjugatibbes carry2C?; degrees
of freedom. The remainin@C”) degrees of freedom are associated to the following
pair of gauge invariant variables,

G=Q+kKE *A, E=P—k(1—-§) 0?4 P B (2.20)

Their pseudo-tensor Lorentz components are defined aslith)(@hile they possess
the following non vanishing canonical Poisson brackets,

(B0 (1,2), GP o0 (1, )} = —w it i 53 - ) (2.21)

When considered in combination with the equations of mottbhese variables are
proportional to the non commutative electric fields asgediaespectively, to the field
strength tensors o and B. Consequently, we have achieved a coherent reparametri-
sation of phase space which, in fact, factorises the systemiwo orthogonal sectors,
namely sectors of which mutual Poisson brackets vanishiisty,

)} =0, {Ai ., (t

)G (1)} =0,
JE), B (1)} =0, {Bi,..ip_, (t

&), GIIee (t, )} = 0.

Finally in order to obtain the factorised formulation of ftiadamental Hamiltonian,
the Lagrange multipliers in (2.14) may be redefined in a coierd way as

) g(P—1)(d-p)
u= Ay, Ay=Ag+v + ————+d(kB-2%E), (2.22)
2 g2 K2
. 0'p d—
'U:BO, BOZBO“’-U/“’-m*d(I{A—F(l)p( P)2*G)
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Consequently the basic total first-class Hamiltonian ofsystem reads,

2

2
€ 2 2 g 2 2
HIE,G,.AB] = = (E) +W (d'E) + 5 (@) + 553 (d'G)
+ fi/apAo/\dB—a(”+1)(d_p)80/\dA. (2.23)
3

Obviously, Ay and By are Lagrange multipliers enforcing the first-class coistsa
which generate the small gauge transformations in (2.19),

G —dA. ¢ —aB. (2.24)

When restricted to the physical subspace for which thesetints are satisfied,
the above gauge invariant Hamiltonian reduces to a funatid@pending only on the
dynamical physical sector, given by the expression in tis¢lfive of (2.23).

The topological sector

This reparametrisation of phase space have indeed achie¥@thnounced factorisa-
tion. A first sector is comprised of the variables constrdate(2.16), which decouple
from the physical Hamiltonian and are therefore non propagaegrees of freedom.
Furthermore, the canonically conjugate variablesind B actually share the same
Poisson brackets, Gauss law constraints and gauge trar&fons as the phase space
description of a pureé3 F' topological field theory constructed only from the topo-
logical terms in the action (2.9). Hence this “topologicalditheory (TFT) sector”
accounts for théB F' theory embedded into the topologically massive gauge yheor

The physical sector

Physical and non physical degrees of freedom are mixed inrigenal phase space.
Our redefinition of fields deals with the original degreesreefiom in such a way
that within the Hamiltonian formalism, non propagatingdayauge variant) degrees
of freedom are decoupled from the dynamical sector. Thierlaector describes only
physical degrees of freedom, namely the gauge invariarttréeally conjugate elec-
tric fields (up to a multiplicative constant), which diagisathe physical Hamiltonian
(2.23) in such a way that they acquire a mass through a mixirnigeooriginal vari-
ables (2.20). However the Poisson bracket structure remaiaffected since these
field redefinitions define merely a canonical transformatidence within the phys-
ical sector, the Hamiltonian formulation of a Proca theaydacovered which offers
then two equivalent interpretations or “pictures”.
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On account of Hodge duality betwe&# (%) andQ?—7(X), one readily identifies in
the dynamical sector the Hamiltonian of a masgivierm field of massn = A,
1

2 1 1
HIC,E, A B = 5 (O +5 (d0)* + 5 (B)’ + 3,7 (AB)" + Hierl A, B

In comparison with (2.23) the following identifications lesveen applied,
E (d-p)
uw=lkeg|, E— —, xG =eroP\ TP O,
(&

whereC' is ap-form field of which the Lorentz components are covariantbarmanner
of (2.10). Physical phase space is then endowed with thesgiary Poisson brackets

{Ciroiy (4, 8), B0 ()} = 81107 6D (& = 37)

Alternatively one may also obtain the Hamiltonian of a maséil — p)-form field of
massm = hyu,
1

HIC,G, A, B = ”; ©2+1w@ers @2y

5 5 (dG)2 + HTFT[A, B],

22
in which, in comparison with (2.23), the following identiditons have been applied,

G—>g, «F=—grC.
)

In this case(' is a (d— p)-form field with covariant Lorentz components and

{Ciyoig, (4,T),GI a0 (2, )} = 67

[i1

T 0 (E ),
are the elementary Poisson brackets for these physicat sipase variables.

To conclude this discussion of the factorised Hamilton@niulation of these TMGT,
let us emphasize once more that no gauge fixing proceduresadatr was applied,
in contradistinction to all discussions available untibnin the literature, leading
to an identification of the physical content of these thenri&@hrough the present
approach, the TFT content of TMGT is made manifest in a traresg and simple
manner, with in addition a decoupling of the actual physaad dynamical sector
of the system from its purely topological one, the lattemygiag only topological
information characteristic of the topology of the undertyspacetime manifold.
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2.2 Covariant extension

This Section presents results of one of our papers [11] wihdwgs been shown that
in 2+1 dimensions the canonical transformation introduicethe previous Section
within the Hamiltonian formulation is complementary to atiprojection for the La-
grangian first order formulation of the Maxwell-Chern-Simsaheory [52, 53]. In the
same way, the covariant extension of the factorisationtiied within their Hamilto-
nian formulation leads to a dual projection for topologigahassive gauge theories
in any dimension and for all tensorial ranks, which has nanbeonsidered previ-
ously. The covariant extension proceeds then by extendli@gelations (2.16) and
(2.20) between the phase space fields to a covariant repisation of their associ-
ated spacetime components within the Lagrangian first daderulation, introduced
in Section 1.4 (keeping in mind the relation (2.12) betwdendonjugate momenta
and the time derivative of the original gauge fields).

Contrary to what is sometimes tacitly taken for granted @liierature, the correspon-
dence between a change of variables within the Lagrang#rofider formulation and
its associated canonical transformation within the Hamilin formulation is far from
being obvious. Actually, the covariant extension of canahiransformations is trivial
in the infrared limit, namely when only the global sector ef@ momentum modes
is retained. In that case, any covariant factorisation @esong technique is associ-
ated to a corresponding canonical transformation withégnHamiltonian formulation.
However this feature does not necessarily survive for fiedbties. As an example,
the soldering that fuses self-dual and anti-self-dual aagrans into the Maxwell-
Chern-Simons-Proca theory cannot be associated to a cahtransformation within
the Hamiltonian formulation [54], although it is the casehe infrared limit [55, 56].
However gauge field theories like TMGT do not encounter seslrictions.

2.2.1 The case of the Maxwell-Chern-Simons theory

The reduction of a “master” Lagrangian [57] accounts foredbmmon origin of both
the Maxwell-Chern-Simons (MCS) and “self-dual” Lagrantd58]. The master La-
grangian is the first order form of the MCS Lagrangian afterittiroduction of gauge
invariant auxiliary fieldsf,,, readily reducible through Gaussian integration,

1 1,
Cotiter = 5€ Ju " + 3 By (26, + 5 4p) . (2.25)

However, to a certain extent the reduction of the master dragjan as introduced
in [57] is analogous to a procedure of gauge fixing. Indeedataction of gauge vari-
ant variables within the Lagrangian formulation is analagjto the resolution of the
associated first-class “Gauss” constraint within the Hemmian formulation (1.31).
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In contradistinction to the master Lagrangian method [8#,dual factorised theory
is constructed through a local and linear field redefinitioence of which the path
integral Jacobian is field independent, leading to a redefibf the master action
Smaster[Aa f] - SSD[Ea A]' namely

Eu (A;ufu) :fua -Au (A;Lafu) = %fu"'Au- (226)

This transformation resulting from the Lorentz covariaxteasion of the phase space
canonical transformation (2.1) and (2.5) is equivalenttat tised in [52, 53] and so
the dual projection technique is recovered. Note that tleis fiedefinition is well
defined provided only the topological mass parameismon vanishings £ 0. Upon
reduction through Gaussian integration, the gauge invaviariables?,, are found to
correspond to the electric and magnetic field components,

1 ; 1
El' = 6_2 €ij Egl’ EO = 6_2 Bmg-
Consequently, a coherent reparametrisation of configarrapace is achieved. In fact,
it factorises the action into two decoupled contributions,

L3 = Lop (B, 0,E,) + Los (A, 04 A) + ST,

In deriving this expression a total surface term “ST” mixithg two types of field

variables has been ignored, since it does not contributarfprappropriate choice of
boundary conditions. It may, however, play a role when thentum field theory is

defined on a manifold with boundaries.

The physical self-dual padsp consists of Proca and topological mass terms,

1 I
Lsp = §e2 Ey B" — """ 0,E, B,

This part describes a single propagating spin one freeatanitof massn = h x e?
and violates parity. The Legendre transformation along #ie reduction of second-
class constraints inherent to such singular systems givke th& physical part of the
factorised Hamiltonian density (2.8). This is also the dasehe topological sector,
showing the closed structure formed by our TP factorisdtismveen the Hamiltonian
and Lagrangian formulations.

The second parf g consists of gauge variant variables defining a purely tagiodd
Chern-Simons theory,

Los = %ne‘“’” O A, A,. (2.27)

This last part, already expected within the path integramigation approach [59],
is absent from the dual Lagrangian when the master actiohadgb7] is used in
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which case all the topological content inherited from thigioal Chern-Simons term
is lost. In particular, non trivial topological featurescoene manifest in the presence
of external sources, or when the space manifoldas non trivial topology. It is also
noteworthy to mention that in the infrared limit dual prdjea techniques bring to the
fore the existence of thB, quantum anomaly of topological origin [56, 60].

As far as the local part is concerned, the fact that the puerrGBimons theory de-
scribes gauge fields of flat connection implies, in combaratvith (2.26), that

K DA, = kP DA, + P D, f, 0.

One recovers of course the condition for the reduction oftiaster action in [57],
but in the present approach this condition is required asakwenstraint preserving
the gauge symmetry content between the dual formulatioms pfesent factorisation
may be generalised to TMGT of th&F" type in any dimension, see (1.25).

2.2.2 The case of TMGT @F type in any dimension

The equivalence between gauge non-invariant first ordes g@serating theories for
anyp-form and topologically massive gauge theories (TMGT) ef#f" or BF type
has so far been shown in diverse dimensions through the kamiah embedding
due to Batalin, Fradkin and Tyutin (BFT), either partial [@R] or complete [63,
64], through the covariant gauge embedding method [65, &Bjwthe Lagrangian
formulation, through the master action [67], etc. All medb@eveloped so far share a
common characteristic, namely that in fact the dual actioeschot possess the same
gauge symmetry content as the original formulation. Hen¢beaquantum level the
equivalence between the two dual formulations applies forlpure theories defined
on space manifolds of trivial topology.

The TP factorisation approach readily applies to topolaigicass generation in any
dimension and for all tensorial ranks, whatever the topploigthe space manifold.
In order to construct the dual factorised action of TMGT & B type, the original
action (1.23) must be written in its first order form after ih&oduction of gauge
invariant auxiliary(d—p)- andp-form fieldsf andh, respectively,

e 2,9 2
Smaster = 5“) +?(h) + F/\f‘f'H/\b
M
+ n/ (1-¢§FAB—-0?¢ANH. (2.28)
M
The convenient notatiow)? = —o* (wy,ws) is defined from the inner product

(1.4). A simple local and linear transformation in the mastetion (2.28), of field
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independent path integral Jacobian and inducing the retiefin
Smastcr[Aa Ba fa h] - Sfact [E, Ga A7 B], namely;

E =7, A:A—éop(dfp)[j,

1
G=W, B=B+ Ef’ (2.29)
enables the factorisation of the theory into two decoupéstis's,
Sfact[E, G, A, B] = den[E, G] + SBF[.A, B] + / ST. (2.30)
M

Once again this transformation is well defined provided tpological couplings
does not vanish. This transformation is nothing other ti@nlLtorentz covariant ex-
tension, in combination with the expressions for conjugatenenta, of the canonical
transformation (2.16) and (2.20) in the phase space of igegaf TMGT within their
Hamiltonian formulation (2.14). The total divergence$ereed to as “ST” and mixing
the variables4 andB with E andG, respectively, are again parametrisecby

The first contributiorS4y, [E, G] consisting of dynamical physical variables reads

2 92 1
(E)2+3(G)2+E/ o PEEANAG - (1-€)dEAG. (2.31)
M

den = %
The gauge independent “self-dual” action generalised yodimension of [66, 67]

is recovered. The constagtwe have introduced in (1.23) appears explicitly in the
factorised Lagrangian density (2.30), in contradistimieto its associated Hamiltonian
density (2.23). This means that the factorised Langrandgasity leads to the same
factorised Hamiltonian formulation through Lengendrasfarmation and analysis of
constraints, independently of the paramégterowever, the interpretation in terms of
one particular picture depends on the valu&.ofrhen the first order formulation of
the Proca action for g- or a(d—p)-form field is readily identified. Indeed, by setting
¢£=1 and integrating out the then Gaussian auxiligty p)-form field £, one derives
the action of g-form field G of massm = fiu,

SH

g
u?
with u =k e g. Alternatively one may also obtain the action ofda-p)-form field £
of massm = hu, by fixing £ =0 and eliminating the Gaussianform field G,

92 2 92 2
SayalG) = 5 (O) + 5 75 (AG)* .

2 2 d
2 g
= (B + ==

€ 2
— dE)” .
2M()

den [E] =

Finally some works [68] have fixed the value of our constatu % for the action of
TMGT of the BF type (1.23) in 2+1 dimensions, modulo surface terms. Onéef t
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convincing arguments is that upon setting % this action may be obtained through
the dimensional reduction &f. (1) x U, (1) Maxwell theory in 3+1 dimensions with
a gauge field and a pseudo-gauge field

The second contributiofiz »[.A, B] to the dual factorised action (2.30) involves gauge
variant variables transforming as follows under the abajauge symmetries (1.19),

A=A+a, B =B+5, (2.32)

and defines in fact once again a pure topological field thebtlyeoB F' type,
SBr :n/ (1-FAB—-d?¢ANH,
M

whereF = dA andH = dB. This decoupled TFT sector thus insures that the gauge
structure of the original theory is preserved through daetdrisation. Moreover, as

in the MCS case, the presence of this topological term, sbdedly evoked in the
literature for very particular types of TMGT [70], has ventriguing consequences.
Indeed non trivial topological effects arise from this ttqgical term when TMGT are
defined on topologically non trivial manifolds or are coupte matter fields.

2.3 Conclusion and schematic overview

2.3.1 TP factorisation : a general and completed structure
This covariant generalisation emphasizes the universabciter of the Topological-
Physical factorisation, whatever the formulation of theaty, hence leading to the

following general and completed structure.

Legendre transform

Lagrangian : Hamiltonian
of TMGT (1.23) ) ) of TMGT (2.14)
Constraints analysis
{ Auxiliary fields
Master Canonical
Lagrangian transformation
{ Factorisation
Factorised Legendre transform Factorised
Lagrangian (2.30) Hamiltonian (2.23)

Constraints analysis

2Notice however the relative sign between the kinetic terngHe photon and the pseudo-photon [69].
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At first sight the introduction of the first order form of thetian (1.23) and thus
the extension of the configuration space by auxiliary GaumsBelds seems artificial.
As a matter of fact, to express directly the fields of the oagjiLagrangian formu-
lation of TMGT as explicit functions of those of its dual fomhation (2.30) turns
out to be impossible because the two formulations do notgsssthe same numbers
of degrees of freedom. Although the two formulations déscthe same physics,
there are extra auxiliary degrees of freedom in the dual @detion. Therefore, a
convenient Lagrangian must be chosen among those leadthg same constrained
Hamiltonian [41]. The convenient formulation is the firstler one (2.28) for which
the comparison with the dual formulation is readily achéfrem the local and linear
transformation (2.29). This transformation simply redisttes the degrees of free-
dom, conserving the number of auxiliary fields and maintajrthe gauge symmetry
structure of the theory. In section 2.1 where the Topoldgitgysical factorisation
was achieved within the Hamiltonian formulation, all sedarass constraints are be-
ing reduced using Dirac brackets. Therefore, the two phpaees possess already
the same number of degrees of freedom at any given spacetimegmd dualisation
is directly achieved. The first order Lagrangian formulated TMGT makes mani-
fest the relation between the covariant field redefinitiams the associated canonical
transformations within the Hamiltonian formulation.

2.3.2 Conclusion

The main new result of this Chapter is the identification & Bhysical-Topological
(PT) factorisation of abelian topologically massive gatigmries (TMGT) in any di-
mension, into a manifestly gauge invariant and dynamiaztbseand a gauge variant
purely topological sector of th8F or AF type. Our novel approach considers the
most general action for abelian TMGT in any dimension anéforp-form fields, in-
cluding the two possible types of topological terms reldtedugh an integration by
parts. The possibility of the factorisation is intimateglated to the fact that TMGT
generate a mass gap. Indeed within the Hamiltonian formoulahis mass gap in-
volves the non trivial dynamical global (or “zero-mode”ct® (which carries the
structure of harmonic oscillators). It turns out that thmeachange of variables fac-
torises also the local sector. It was then possible in Seetib to factorise phase space
through a canonical transformation, see (2.16) and (2\20igh is obviously local,
using the mass gap parameter

In Section 2.2 this change of variables has been extendetheméfestly Lorentz co-
variant way by considering the first order form of the oridgic@grangian of TMGT. In
comparison to other methods developed so far in the litezathe technique consist-
ing in constructing the dual action for TMGT by a local ancebm redefinition of the
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fields is, firstly, much more direct and, secondly, presetive&ntire gauge symmetry
content of the original action, while at each step maintajmhanifest Lorentz covari-
ance. In this sense, this type of dual projection methodlesdb isolate the physical
content of the theory in a gauge invariant way, the entirgggatariant contributions
residing only in the second sector of the action which reduoea pure topological
field theory. The relevance of our conclusions for generalGlIMs confirmed by
some partial results already achieved for particular tygfeEMGT within the path
integral framework [59, 70].

The appearance of the topological sector, which insuregtibayauge symmetry con-
tent is maintained, has dramatic consequences. Firsttapedogical term could be
of prime importance for theories where thdorm fields are connections coupled to
extended objects carrying the associated relevant chaigesond, as described in
Chapter 3 within the context of canonical quantisatiors tarm controls the degener-
acy of the physical spectrum of the original TMGT throughdlmgical invariants of
the space manifold when it is of non trivial topology. Our HEetbrisation will then
lead to a generalisation of the lowest Landau level prajeatif the Landau problem,
which makes sense even at the classical level.



CHAPTER 3

LA new perspective on the lowest Landau level projection

The Landau model and its quantum Hall limit is known to be aealidation for a
physical realisation of the simplest example of nhon comtiugt@eometry. This ac-
tual physical model decribes charged electrons movingérpilane in the presence of
an external uniform magnetic field transverse to that plafee limit of strong mag-
netic field is the famous Landau projection onto the fundaelguantum state which
implies the non commutativity of the space coordinates. Maewell-Chern-Simons
theory may be seen as the gauge field theoretic realisatitnifechanism since the
Landau problem is recovered in the long wavelentgh limihaf theory [55, 56]. Fur-
thermore the Landau projection onto the ground state of ti@&SMheory boils down
to a projection onto a pure topological Chern-Simons theory

The clue to our new TP factorisation introduced in ChapteeRes on the identifi-
cation of a topological field theory embedded in the full tiogically massive gauge
theory, not manifest within the original Hamiltonian fortation. Actually, the TFT
sector with its reduced phase space appears already at Hssicial level, indepen-
dently of any projection onto the ground state. Furthernttwe TP factorisation al-
lows for a straightforward quantisation of these systentthe identification of their
spectrum of physical states, accounting also for all theotogical features inherent
to such dynamics. This Chapter not only offers a novel péctiithe lowest Landau
level projection through our new TP factorisation alreadhlig at the classical level,
but also generalises it to TMGT of tH&F type in any dimension.

*

* *
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3.1 Lowest Landau level projection at the classical level

3.1.1 Hodge decomposition : local and global sectors

The space manifoll having been assumed to be orientable and compact, let us now
consider the consequences of its cohomology group steyobspecially in the case
when the latter could be non trivial. Throughout the dismrsst is implicitly as-
sumed that the- and(d — p)-form fields A and B are globally defined differentiable
forms inQ? (M) andQ?¢-?(M). When parametrising the theory in terms of the PT
factorised variables, the latter assumption of a topokdgibaracter concerns only
the TFT sector. The variables of the dynamical sector aeadir globally defined
whatever the topological properties of the original vaesb By virtue of the Hodge
theorem [16], the phase space variables of the TFT secter globally defined o,
may uniquely be decomposed for each time slice into the suan @fkact, a co-exact
and a harmonic form, see (1.10), with respect to the innaetymrospecified in (2.15).

A likewise decomposition applies to the dynamical sector.

The local sector

Such a decomposition amounts to a split of the fields into gitadinal part (subscript
L), atransverse part (subscripj and a “global” part, using the derivative operador
and the coderivative operatdf introduced in Section 1.1. The transverse and longi-
tudinal parts are associated to idempotent orthogonatption operators,

Lo 1 _
T _ i L ;
H(P) - A(L)d(p-q-l)d(p)a H(p) = Ed(pfl)d(lﬂ)’
p p
nh, r(s) — (Z))P(D), Mk - or(s) — Z77(5), (3.1)

whereA(lp) is the Laplacian operator acting on the sp&g(X) of p-forms from

which the kernel kr A,y of the LaplacianA,, has been subtracted, whil&' )
(resp. Z%) is the space of co-closed (resp. closgeprms non cohomologous to
zero. One therefore has the following properties,

d— T _ L T L _ 1
(=PI = 0y, TG +TIG) = 1dg),
wherex is the Hodge operator on and Id(Lp) the identity operator of’] (X).

In order that the longitudinal and transverse componernsgss the same physical
dimensions as the original fields, the Hodge decompositifirlds may be expressed
in terms of a convenient normalisation,

VOALA=dAL +dTAr, VALB=dBr, +d'Br. (3.2)
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Let us then define a new set of variables in the TFT sectorgukim projection oper-
ators (3.1),

=TI, 1) AL, #Qu = T1(, 41 Ar,
DNy B Pl e B ©9)

where the components ef’, and*()y are pseudo-tensors defined in a manner anal-
ogous to the conjugate momenta in (2.11). In terms of thesevaeiables the non
vanishing Poisson brackets are

N i . 1 1+ L
{onmsa (&), PEP (L)} = © ()50 6@ 7).
~ TN . 1 J1dd—p— R,
{19i1"'7:d—p71(t’x)’ 391 e l(tvy)} = _E (HT)le...j;7P7]1 6(d)(x _y)'

In conclusion, in the TFT sector, rather than working in terof the phase space
variablesA and 5 one may parametrise these degrees of freedom in terms of the
“longitudinal” fields ¢ and¥ as well as their conjugate momenta, namely the “trans-
verse" fieldsP, and @y, to which the harmonic components, and B;, must still

be adjoined. The same procedure may be applied to the vesialbithe dynamical
sector. The Hamiltonian (2.23) then decomposes into aveass, a longitudinal and

a harmonic contribution from these latter variables only.

The global sector

A natural consequence of the Hodge decomposition is thedgaimism between the
p" de Rham cohomology grougy?(%,R), and the space of harmonjeforms,
ker A(,). This means that each equivalence clas#/6{, R) has an unique har-
monic p-form representative identified through the inner prod2ct%). It is possible
to choose a basis fder A(,,) in such a way that the harmonic component of any
form is expressed in a topological invariant way. This maybkieved by defining a
topological invariant isomorphism between the componefas equivalence class of
thep™ (singular) homology grougl,, (3, R) and the components of a formitar A,y
(the p-homology group is the set of equivalence classes-ofcles differing by ap-
boundary). Thus, instead of constructing the basis fromHtbdge decomposition
inner product (2.15), one uses the bilinear, non degenarat¢opological invariant
inner productA defined by

A H,(¥)x HP(X) - R: A([F],[w]):/rw, (3.4)
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making explicit the Poincaré duality between homology asttbenology groups [16].
Given the Hodge theorem, this inner product naturally iredec topological invariant
inner product between the equivalent classef pf>) and the elements dder A ;).

Therefore, if one introduces generators of the free abeglam of thep" singular
N.
homology group of rankv,, {Z?p)} ", a convenient dual bas{s\ "} of ker A
=1
may be chosen such that !

() 00 o

Using the duality (3.4), the harmonic compondnt of the p-form variableA is thus
decomposed according to

A=A (5] ) X0
=1

These components of;, in the basis{ X7} are topological invariants because they
express the periods od over the cycle generators éf,(3). This is thus nothing
other than the classical Wilson loop argument over thesergéors,

a’ = jé Ap. (3.5)
E?P)

In other words, the variables' (¢) specify the complete set of remaining “global”
degrees of freedom in the TFT sector for the fidld

Np
An(t, @) = a"(t) XV(F).
=1

In a likewise manner, the harmonic component of e $)-form variable3 may be
decomposed according to

By, = %A ({Egd_p)} ,Bh) Y7,
=1

Np
where {Y7} is the dual basis of the cycle generatorsHp_, (%), {E?dip)} .
y=1
Hence, the components of harmonic{p)-forms are expressed as
by = 7{ By, (3.6)

5
E(dfp)
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leading to a similar decomposition of the global degreese#dom for the fields,

=z

Bu(t,7) =S (1) Y(Z).
1

2
I

The Poisson brackets between the above global variablésgotegical invariants,

4 1 ’
{an,m } — I, (3.7)
K
namely the signed intersection matrix of which each entthéssum of the signed
intersections of the generatorsBf,(X) andH,_, (%),
" SR <0l

=T [z(p),z(dfp)} . (3.8)
Within our approach, we recover the results of [71, 31, 32P+#1, 3+1 andd+1
dimensions, respectively, for pure topological field thesof theAF and BF' types.

3.1.2 Large and small gauge transformations

Only the TFT sector is not gauge invariant. Its phase spatahtas transform exactly
like in a pureBF theory, see (2.19). Let us recall that in (2.1®@)and s are, respec-
tively, closedp- and(d—p)-forms onX and their respective exact parts define small
gauge transformations, generated by the two Gauss lawclass-constraints (2.17).
Given the Hodge decompositions in the TFT sector (3.2) ar),(Bhese constraints,
which require that the phase space variableand B of the TFT sector be closed
forms, reduce to

GV = /AT % Qy, G® = /AL «P,. (3.9)

Small gauge transformations act only on the exact part oflftHE sector fields by
translating them, namely in terms of the longitudigat1)- and(d—p—1)-form fields
defined in (3.3),

0 =+ ar, ¥ =9+ 6z,

whereay, and 3y, are, respectively, the longitudingh—1)- and (d —p — 1)-forms
defining the exact components of the gauge transformationsa andg through a
construction similar to that in (3.3). The harmonic computsefa andS define the
associated large gauge transformations.
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Small gauge transformations

The physical classical phase space inthe TFT sector istloéaléfield configurations

A and B obeying the first-class constraints setting to zero thairdverse degrees of
freedom, see (3.9), and identified modulo the action of allggatransformations,
whether small or large. Since under small transformatibeddngitudinal modeg
andd are gauge equivalent to the trivial configuration of vamgHongitudinal fields,

like in any pureBF TFT the physical phase space of the TFT sector, so far for what
concerns small gauge symmetries, is thus finite dimensi@mélisomorphic to the
ensemble of harmonic forms defined modulo exact forms,

P = HP(Z,R) @ H¥?(Z,R), (3.10)

where H? (X, R) is thep™ de Rham cohomology group. Let us recall that according
to Poincaré duality[/?(X) is isomorphic taH~?(X). Hence, whether one considers
functionals of harmonig-forms or(d — p)-forms is of no consequence. The finite di-
mension of this group is given by the corresponding Betti berv,, (for example in
the case of the torug; = Tj;, N, = C?)). The physical phase space of the TFT sector
is thus spanned by the global degrees of freedd) andb”(¢), which are indeed
obviously invariant under all small gauge transformatidfgwever, this phase space
is subjected to further restrictions still, stemming fraargle gauge transformations.

Large gauge transformations

In a manner similar to the above characterisation of the iphlyphase space in the
TFT sector, the modular group is the quotient of the full gaggoup by the sub-
group of small gauge transformations generated by thediass constraints, namely
essentially the set of large gauge transformations. Heaxrge lgauge transformations
correspond to the cohomologically non trivial, namely tlaerhonic components of
« and 3. However the strict invariance of the global phase spacebi@sa” and
b under large gauge transformations will be not required.h&athaving in mind
abelian gauge symmetries fpiforms fields defined in terms of the univalued expo-
nential (1.7), the global physical observables to be regiio remain invariant under
large gauge transformations are the holonomy or Wilson mogrators of the TFT
sector around compact orientable submanifélgendX,;_, in X. The only non triv-
ial Wilson loops are those around homotopically non trigiatles, namely elements

Np
[[',] of H,(X,Z) which may be decomposed in the ba%E?p)} . Consequently,
=1
given the basis ofer A ,,) constructed from (3.4) one has the?ollowing set of global
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Wilson loop observables

Np Np
Wl = exp|i 207 ]{ Al =exp |1 207 a”
=1 o y=1
()
N, N,
Wap = exp|i Zfﬂ ?f B|=expli Zfﬂ by
y=1 oY y=1

(d—p)

whereo?, &7 are arbitrary integers. Large gauge transformations &seaito closed
formsa andg act on the global variables’ andb” according to

d'=ad +a", W =b 43, (3.11)

wherea” and3” are given by

= ?{oz, B —EW?{ p.

J
) (d—p)

Although the Wilson loops are constructed on the free abeffahomology group
H,(X,Z), the cohomology group including the large gauge transftionparameters
is dual to the singular homology grodf), (X, R). Hence, the only allowed large gauge
transformations correspond to components of the harmaonieat of the forms: and

(£ which are discrete and quantised,

ol = 7{ a=2ml],, B = 74 B=2mll,_,. (3.12)
E’(YP) Ezd*m

Hereé(”p) andf(”d_p) are integers which characterise the winding numbers ofatge!|
gauge transformations, namely the periods of these tremat@mns around the ho-
mology cycle generators. The requirement of gauge inveeari all Wilson loops
hence constrains the parameters of large gauge transfonaéb belong to the dual
of the free abelian homology group. As a consequence, fitlalyphysical classi-
cal phase space in the TFT sector is the quotient of the de Rbaomology group
HP(X,R)® HYP(X, R) by the additive lattice group defined by the transformations

v o_ Yy Iy o Y
AV =al w2l VY= ol

namely a finite dimensional compact space having the togatbg torus of dimen-
SION2N,,.
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3.1.3 Classical TP Factorisation and Landau projection

To venture so deeply into topological aspects is essenifhimthe context of our TP
factorisation of topologically massive gauge theorieddeled we have extended the
analysis usually developed for pure topological field tiheto dynamical topolog-
ical mass generation theories. As a result the topologaabs consists in a finite
dimensional phase space (3.10) of global variables as isatbe for any purel F’ or
BF topological field theory. This phase space endowed with gpsgetic structure
is further restricted into a compact torus by the action ofdagauge transforma-
tions. The isolation of the TFT sector is very reminiscerd @fandau projection onto
the quantum ground state of topologically massive gaugerige (TMGT), already
known for the Maxwell-Chern-Simons theory (1.33) whichhis gauge field theoretic
extension of the Landau problem [55, 56]. But now the TFT @eistmade manifest
already at the classical level through a simple reparasatioin of phase space.

Likewise the dynamical sector may also be splitinto local global sectors following
the same process, which is a novel approach within this gtntdence, in contradis-
tinction to what is sometimes advocated in the literatume dynamical sector contains
also global variables belonging to a symplectic vector spsemorphic to (3.10) and
which are therefore topological invariants. Of course ghidal dynamical subsector
may not be referred to as being topological since any dyrareéctor of the Hamil-
tonian necessarily requires the introduction of a metrigcstire. Therefore, not only
our analysis enables to distinguish the topological andadyinal sectors but also to
split these sectors into subsectors of local and globahlebes, leading to the structure
in Fig.3.1 valid for all types of TMGT in any dimension.

Topologically D : .
. PE - ynamical sector of BF Topological
massn(/)? gzla:utg[e;etheory actorisatios physical variables + field theory

Action of small and large
gauge transformations

Global subsector Local subsector Global subsector

Topological invariant Mode decomposition Phase space restricted
phase space of the phase space to a compact torus

Figure 3.1:Classical factorisation of TMGT within the Hamiltonian foulation, in-
cluding the local and global subsectors.

LActually, what is usually called “global sector” is the smcof modes of zero momentum resulting
from a metric dependent spectral decomposition of the phpaee variables, for a given space manifold
3. Therefore, these*modes” are not topological invariant. However in our presgproach in terms of
the topological invariant inner product (3.4), a globaltseof topological invariant phase space variables
is isolated without specifying any metric structure.
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3.2 Hilbert space factorisation in canonical quantisation

The BRST formalism offers a powerful and elegant quantisgtrocedure for TMGT
but requires the introduction of ghosts. In some respdutsfarmalism has also been
used for the definition and characterisation of topologicaintum field theories [20].
In a related manner, the path integral quantisation of thieseries also brings to the
fore the characterisation of topological invariants tlyleeoncepts of quantum field
theory. For example, the two-point correlation function®f' (and AF) theories
provides a quantum field theoretic realisation of the ligkinimber of two surfaces of
dimension® and(d — p) embedded inV and its path integral representation through
the Ray-Singer analytic torsion of the underlying manifolotwithstanding these
achievements, this Chapter will not rely on such methodswhiecessarily require
some gauge fixing procedure. Rather, ordinary Dirac caabgitcantisation methods
will be implemented to unravel the physical content of TMEiFst, this quantisation
procedure is best adapted to a condensed matter inteipretiitalso enables to deal
with large gauge transformations on homologically noriaftimnanifolds. Second, the
new TP factorisation identified within the Hamiltonian farfation independently of
any gauge fixing procedure makes canonical quantisaticecesly attractive.

3.2.1 Dynamical and topological sectors

Canonical quantisation readily proceeds from the cornedence principle. Accord-
ing to this principle, classical Poisson brackets are mdgpe¢o equal time quantum
commutation relations for the classical variables whiah romoted to linear self-
adjoint operators acting on the Hilbert space of quanturtesta the Schrédinger
picture at the reference time= t,,

8Nz —7),

i1 lpJ1 - Jd—p

) L 3 ih

{‘A’i]"'ip(to’x)’le"'.jd—p(tO’y)} — ¢

_@ hipiija—p §(d) (& —1]).
K :

{Eilmip (to, ), Gt 34 (1, 17)}

A possible representation of the associated Hilbert spade terms of functionals
U[A, E] with their canonical hermitian inner product defined in terof the field
degrees of freedom(Z ) and E(Z).

It should be clear that the PT factorisation identified atdlassical level extends to
the quantum system. The full Hilbert space of the systenofasts into the tensor
product of two separate and independent Hilbert spaceh, @aghich is the repre-
sentation space of the operator algebra of either the gavgdaant dynamical sector
or the TFT sector. As a consequence of the complete decogugithese two sectors,
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one of which contributes to the physical Hamiltonian ol bther to the first-class
constraint operators only, a basis of the space of quantatessinay be constructed in
terms of a likewise factorisation of wave functionals. Syiitally one has

U[A, B] = B[E] U[A].

The componen®|E] associated to the dynamical sector is manifestly gaugeiania
and is the only one which contributes to the energy spectriine physical Hilbert
subspace associated to the TFT se6ity, consists of those wave functionalé’ [ A]
which are invariant under small gauge transformations,atanvhich belong to the
kernel of the first-class constraint operators generatiagd transformations. Further-
more the physical wave functional carries a projective@sentation of the group of
large gauge transformations (LGT) [32] or may be requirdektinvariant under these
transformations from a more restrictive perspective.

When the space manifold is topologically trivial, for instance in the case of the
hyperplane, quantisation of TMGT does not offer much irggper sebesides the free
dynamics of the dynamical sector, since the TFT sector tlossgsses a single gauge
invariant quantum state. However in the presence of extemaces, or when the
space manifold does have non trivial topology, new and interesting featamse.
In the latter situation, to be addressed hereafter, theefthitugh multi-dimensional
gauge invariant content of the TFT sectd’[.4], does not contribute to the energy
spectrum. As demonstrated later, the resulting degenefdlog energy eigenstates of
the complete system depends on topological invarianis @ince the physical wave
functional W ”[4] in the topological sector coincides with that of a pure togaal
quantum field theory, one recovers the results of R. J. SZ2®jofho solved within
the Schrodinger picture the pure topologiédt’ theory in any dimension.

3.2.2 Local and global subsectors

At the classical level, phase space has been separatedvatdetcoupled sectors:
the TFT and the dynamical sectors. According to the Hodgemeosition theorem
(1.10), each of the corresponding fields may in turn be decsexgbinto three fur-
ther subsectors in terms of their longitudinal, transversgglobal components. The
Gauss law constraints in conjunction with invariance ursteall gauge transforma-
tions reduce the TFT sector to its global variables onlyratizrised by the vector
spaceP of the de Rham cohomology group in (3.10), which is to be sl further
into a compact torus by the lattice action of the appropdégerete large gauge trans-
formations. Likewise in the dynamical sector, the globajrédes of freedom of phase
space are also purely topological and are again isomorphieet2 N,,-dimensional
symplectic vector spac® in (3.10). In each case, these spaces are spanned by the
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global variables defined as in (3.5) and (3.6), nantely; 4”) and(E”, G7), respec-
tively. It is intuitive to introduce for these even dimensab vector spaces a complex
structure parametrised byN§, x IV, complex symmetric matrix; = $(7) +1ip, such
that (—7) takes its values in the Siegel upper half-sgacuch a complex structure
introduced over the phase space of global degrees of freetiaivies the definition
of a holomorphic phase space polarisation, hence qudntisat these sectors. The
same decomposition in terms of longitudinal, transverskgiabal degrees of free-
dom applies at the quantum level. Through the correspordericciple, these three
subsectors of quantum operators obey the Heisenberg algelhether for the TFT or
the dynamical sector.

3.3 The topological sector

3.3.1 Hilbert space and holomorphic polarisation
For what concerns the local operators, one has
. —
(Gt s to. ). B2 t0,)] = () 6 - ), 319
K iy

e

ih
K i1eig_po1

8

[Bireiayr (b0, ), Q0 (10, 5)] = = - 7),

while for the global operators,
~_ 1 h, ’
a” (tg),b" (t =i-1"".
[a (to), 0" ( 0)} 1 K

Introducing now the holomorphic combinations of the latiperators,
NP
. K ~5 7o
Ny Z (Iwm +rsb ) : (3.14)
é]; = 1/ Z Lsa -‘rTwsbé)

wherel, s is the inverse of the intersection matrix,

NP

5’7/ ’Y/
S L1 =067
=1

2Namely the set ofV,, x N,, complex symmetric matrix whose imaginary part is positieéirdte.
3|t is implicitly assumed here that the parameteis strictly positive. If« is negative, the roles of the
operatorsi” andb” are simply exchanged in the discussion hereafter.

o
2
I
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one finds the Fock type algebra

{éw éi’} = STy = Py (3.15)

all other possible commutators vanishing identically. eéNttat this result implies
that the inner product in this sector of Hilbert space is talbéned in terms of the
imaginary part(pfl)wl, in a manner totally independent from the Riemannian met-
ric structure of the compact space submanifldA priori, physical observables in
pure topological quantum field theories ought neverthétess independent from any
extraneousd hocstructure introduced through the quantisation process asche
present complex structure.

Gauss law constraints and large gauge transformations hesdonsidered in the wave
functional representation of Hilbert space. The lattempiarmed by the direct prod-
uct of basis vectors for the representation spaces of trebedg (3.13) and (3.15).
These consist of functionaiB[y, ¥, ¢] of the infinite dimensional space of field con-
figurations in the TFT sector. Accordingly, the inner prodefcsuch states is defined

by

<\Ijl |\112> :/[D(p] [,Dﬁ] [Hch] (detp)il/Q \Ils{[(p’ﬂ’c] \112[9071970]7

v

which requires the specification of a functional integnatioeasure. This measure is
taken to be the gaussian measure for fluctuations in thespwneling fields, which is
induced by the Riemannian metric &hfor fluctuations inp and?,

Sp? = /dfh“kl(f)...hipflkpfl(f)5901-1...1-?71(1?)6<pk1...kp71(f),
b

§9? = /dfhjlll(f)...hjdfpflldfpfl(f)dﬂjl...jdfpfl(f)51911...1(171)71(f),
b))

or else by the complex structurean the global sector,

Np

5t = 3" (p1) dey dey . (3.16)

y'=1

In contradistinction to an ordinary pure topological quenfield theory, such a space
metric is readily available within the context of TMGT, bginecessary for the speci-
fication of the dynamical fields. Independently from the cterstructure introduced

in the global sector, independence of the physical Hilgeste measure in the, 9)
sector on the metric ol will be established hereafter. Consequently the canonical
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commutation relations (3.13) and (3.15) in the TFT secterrapresented by the fol-
lowing functional operators acting on the Hilbert space evlanctionals. On the one
hand those refering to the local operatgrandd,

9277;1"'7:;)71 (f) = Piqvip_ (f) ) /(9i1"'7:d7p71 (f) = /(9i1"'7:d7p71 (f) ’

and their conjugate momenta,

. ih qqryineio- g
pirie-1(z = —— HT o

s ((E) P ( )]1"']1_771 590]'1"']';771(5) )

Y () = - ( )jl...jd,p,l 80y ecjuy 1 (T)

and on the other hand those constructed from the globalrsgcid),

Np

0

Py Fo
1 867/

= o=
Cy=c¢y , CL=

(3.17)

r—

v'=

3.3.2 Gauss law constraints

The physical Hilbert space is invariant under all gaugedi@mations. A first restric-

tion arises by requiring the physical quantum states to \eri@ant under small gauge
transformations generated by the first-class constraiftigs set is the kernel of the
Gauss law constraint operators (2.24) which remain defisad toe classical theory
since no operator ordering ambiguity is encountered,

0
50 in 2 (7)
)
8piy iy o (T)

G(l) |\IJP> - O = \I/P[(IO,’L?,C] = 07

G(2)|\I/P>:O = TP [p,9,c] = 0.

Hence physical quantum states necessarily consist of wanaidnals which are to-
tally independent of the longitudinal variables, (/). When restricted to such states
and properly renormalised, the inner product integrati@asare is constructed from
the definition (3.16) of the gaussian metric on the space ofifations in the global
coordinates,

(y [02) = [ T[de, (detp) ™ Wi(e) Bale)
vy
This measure on the physical Hilbert space is thus indeegpieddent of the Rie-
mannian metric ort;, and involves only thed hoccomplex structure introduced
towards the quantisation of the global TFT sector.
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3.3.3 LGT and global variables

Construction of the operator generating LGT

The structure of the physical Hilbert spatfe, dramatically depends on the way one
deals with LGT. Given the holomorphic parametrisation43, linder the lattice action

of LGT of periods(¢/ [ d p)) (Lip) Lia—p)) @s defined in (3.12) the new global
operators should transform as,

N,
272 K ' '
& = &t 7 Z (IW’ Clpy + v ézd—p)) ’
v'=1
1T T 27% K o v = v
o = dTEY (JW 0+ T %H)))- (3.18)
v'=1

Using the following Baker-Campbell-Hausdorff (BCH) forfadior any two operators
A and B commuting with their own commutator,

ABeA=B + [A, E} , AB — o—3[AB] A eB, (3.19)

it may be seen that the quantum operater (ﬁ(p),ﬁ(d_p)) generating the large
gauge transformations of periogg, and/;_,, is

Np
~ K _ ’
Uer = C (é(p)?g(d—p)) H exp {QW \ 27 (P (3.20)

v, s€

% (e by + Tacliapy) v = (T €y + T2 ) €10 |-

The 1-cocycleC, (g(p),g(d_p)) will be determined presently. This operator (3.20)
defines the action of LGT on the Hilbert space in the global $Egtor,

Ny
Uer¥(c,) = H o™ 5 [T 04705 €0ap)] (07 (L €y 77 £a ]
v.y'56,€
Np
x T eV s o t7as lap ] 07 e (3.21)
vy'56

2K
xCg U [ ey +m/— Z Ly ﬁ(p) + Tyt £(d ) ,
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where the BCH formula (3.19) has been used. However, a>*l{{}) 2-cocycle
wa(k; £) appears in the composition law of this quantum represemiati

N . -~ C N N
__—2imwa(k;l) k+£
u (E@) Loy ka—p + 4<d—p>) =e e g Y (E@)’E(d—p)) u (vaﬁ(d—p)) ,

Np
™K ’ /
w2 (E(,,),E(d,p);é(p),é(d,p)) =—=> > L [%—m Koy = Kla—p) %)} :
vy =1
The 1-cocycleC (g(p),g(d_p)) appearing in (3.20) may be determined by requir-
ing that the abelian group composition law for LGT is receer This implies that
wa(k; £) is a coboundary,

walkit) = O (kg + Loy kap +Lap)
1 (kg k) = Cr (b ) (modZ),
_ 287 C1 (L) Liap
c, = C (ﬁ(p),ﬁ(dip)) —e ( (p)5( )),

A careful analysis, analogous to the one in [72], finds thatuthique solution to this
coboundary condition is

N,
h T ’
=5 Th Ol lap)= [] & lentorfo, @22)

vy'=1

wherek € Z and' T = det (IW € N. Itis noteworthy to recall that although., is
arational valued matrixf 1, is integer valued. Note also the quantisation condition
arising for the coefficient multiplying the topological terms in the original action of
TMGT.

Characterisation of the physical Hilbert space

If k& is rational, namely ifk = ki /ko with kq, ko strictly positive natural numbers,
invariance of physical states under LGT cannot be achievavever in this case
the LGT group has a finite dimensional projective represeamavhich may be con-
structed by finding a normal subgroup generated by the LGTabpes. As demon-
strated in [32], the TFT part of the physical wave functioasies a projective repre-

“Recall thatx, hencek is assumed to be strictly positive in the present discussitiile the situation
for a negatives or k is obtained through the exchange of the seci6randd”.
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sentation of the group of LGT while the above discussionb#istzes that the dimen-
sion of the physical Hilbert spatés

NT—’
dim (H’&}””) =[] k1 k2T Min(Zss) .
6=1

Any state of a given irreducible representation gives thaesaatrix element for a
physical observable. The characterisation of Hilbert spaEitanges qualitatively for
integer or rational values @f, but the theory remains well-defined.

If we takek to be an integer, see (3.22), wave functions of the physidbEH space
may be classified in terms of irreducible representatiorte®fjroup of LGT (3.21),

Np
U miey + VTR (L k) + T Koy | (3.23)
’Y,

N,
= —nZk _ _ ’ € €
= I I exp {T |:I’Y<;k?p) + T’Yék?d—p):| (p 1)'7'7 |:I'Y,€k(17) + T’Y,€k(d—p):|}
7,7

S
NP
X H exp {—\/WIk {Lﬂ; k?p) + Tys k?d_p)} (p~HM c,y/}
vy'56
Np
x [ exp {2mm (ki Eiga—p) — iTRT K], Ly kgp)} U (nise,)
el

where the 1-cocycley; (E(p),k(d_p)) characterises the irreducible representation.
Since for an abelian group each of its irreducible repregemts is one-dimensional,

physical states corresponding to a given irreducible epr&tion are singlet under
LGT.

As is well-known, functions obeying such a double periagiciondition are noth-
ing other than the generalised Riemann theta functionseat&fimany dimension on
the complexiV,-torus [32], with the compact reduced phase space restittingthe
requirement of invariance under LGT,

Np

w@)er - (e

7y'=1
Tk
(] -zi).
T

N, 5's
ooty T (as +7s0)
bs

©

5Notice that we obtain a slightly different result from thaRef. [32].
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where
rs € [O,ICIMiﬂ(I&;/) — 1] C N.
Each physical subspace, characterised by the 1-cocycle

ab
1 (ks ka_p)) = ay Ky +by k], where a,,by €[0,1[CR,

is invariant under a particular irreducible representatibLGT. The TFT component
of each physical Hilbert space is of dimension

NT—’
dim (H%) = [[ #Z Min(I55) .
5=1
In general, the choice of physical Hilbert space which isifant under all LGT is the
representation space with (E(p),k(d_p)) € Z, namely corresponding o,, b, = 0.

3.4 The dynamical sector : Hamiltonian diagonalisation

Based on Hodge’s theorem, (1.10) and (3.2) define the decsitiggoof the dynam-
ical sector into three decoupled subsectors of canonicalhjugate variables: the
global harmonic sector and the loddl';, Pg) and (G, Q¢) sectors. In turn the
classical Hamiltonian (2.23) decomposes into three sépa@ntributions, one for
each subsector. When quantising the system in each subsdtdotal quantum
Hamiltonian follows from the classical one without any agter ordering ambiguity,

I;[[Ef;] = ﬁh[Eh,éh] + ﬁl[ELapE] + ffz[G'L, QE]

The physical spectrum is thus identified by diagonalisintheaf these contributions
separately.

3.4.1 Global degrees of freedom

The choice of normalisation used previously in the harmasictor relies on the
Poincaré duality between the basis eleméit¥] and[Y ] of the relevant cohomol-
ogy groups and their associated homology generét@)rysand E(Wdfp), respectively,
see (3.4). This choice is of a purely topological charadt#ervever in the dynamical
sector, there is a remaining freedom as far as the normalisaitthe choice of the har-
monic representative of the cohomology group is concemhegiending on the metric
structure, and thus fixing the basis elemeNts of ker A,y andY™” of ker A 4_,).
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This choice involves the inner product in (2.15) on which Hwge decomposition
relies. Hence one sets

/ XV A *XV, = E Q'YV” / Y’y N *YV, = QV’Y” (325)
by ) by

(NS

whereQ),., and(),,, areN, x N, real symmetric matrices. Given this normalisation,
the global part of the metric dependent quantum Hamiltowiparator constructed
from (2.23) is expressed as

N.
A A At 1 d ~ At A AT
B, G = 5eg Y (BB Q0 + GG 0 (3.26)
v,y'=1

while the non vanishing commutation relations between tbbaj phase space oper-
ators read

{EV, &' = —ihk . (3.27)

[E—

As in the TFT sector, see (3.14), the following holomorpltotapisation of the global
dynamical sector is used,

N.
1 & A .
d, = Lo B —v aGa) ,
gl Tfma_l( g Y
1 &
di = (IQEO‘—UQGQ),
v \/2ﬁlia:1 K K

wherev = R(v) +io is theN, x N, complex symmetric matrix characterising the
complex structure introduced in the global dynamical plsasee sector, of which the
imaginary part determines the non vanishing commutatitatioms of the Fock like
algebra

[dv,dH - (3.28)

In order to readily diagonalise the Hamiltonian in the glcd®ector which is of the har-
monic oscillator form, it is convenient to make the folloginhoice for the complex
structure matrix as well as for the normalisation quantities specified in§3.2

NP
%(’U) = 0’ O—'Y'Yl = Q’Y’Y, = 5'7')’/’ Q’Y’Y’ = Z Ia’y Iﬁ,y/ 6(16, (329)
a,B=1
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whered™"" is the N,, x N, Kronecker symbol. With these choices, the contribution of
the global variables to the Hamiltonian is indeed diagonal,

N,
1 . /
Hg:iﬁ”NP"‘hN E: dldy &7, H=cgh.
7' =1

One recognizes the Hamiltonian of a collectiondf independent harmonic oscilla-
tors of angular frequenéy:, which turns out to be the mass gap of the quantum field
theory. The operators, anddg are, respectively, annihilation and creation operators
obeying the Fock algebra (3.28) now wity.,» = d-,,. The energy spectrum in the
global dynamical sector of the system is readily identifieide normalised fundamen-
tal state is the kernel of all annihilation operators,

1
da |O> = 07 6?0) = ENPh’:uv <O|O> = 17

Wheree?o) is the vacuum energy. Excited statgs,), are obtained through the action

of the N, creation operatordL on the fundamental state. This leads to the energy
eigenvalue for any of these states,

No o Np
ny) =] (@)"10), ey =cloy Hhu D> s, (3.30)

y=1V n'Y! y=1

{"W}JWV; being the eigenvalues of each of the number operdﬁpt$, hence positive
integers.

3.4.2 Local degrees of freedom on the torus

The canonical treatment of the global degrees of freedomtimtne TFT and dynam-
ical sectors does not require the explicit specificatiohefdpace manifolt with its
topology and Riemannian metric, yet allowing the genersd¢assion of the previous
Sections. However, in order to identify the full spectrundghamical physical states,
the space manifold including its geometry has now to be completely specifiece Th
explicit choice to be made for the purpose of the presenudion is that of the-
dimensional Euclidean torug; = T, enabling Fourier mode analysis of the then
infinite discrete, thus countable set of degrees of freedmd diagonalisation of the
harmonic oscillator structure of the Hamiltonian.

6Recall that under the assumptions of the analysis, this owtibn of parameters is indeed positive.
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Notations

This particular choice of thé-torus is motivated by the fact that this manifold is
the simplest flat yet non simply connected manifold. Thisotopical space may be
defined in an equivalent way as the product

T,=S'® -8,
N——————’
d

or as a quotient spacE? = R?/ ~. The first definition highlights the structure of
the first homology (homotopy group) @f; while the second definition relies on any
choice of lattice vectors specifying the geometry of dhirus.

The lattice vectors are to be deno&da=1,...,d. This basis of which the associ-
ated metric is denotegl,;, generates the lattice

A= {Z: G|t =0, o ¢ Z} :

where an orthonormal basis of vectaisis introduced as a linear combination of
vectors of the original basig,, and conversely

é’azeZé}, gabzefl&jeg.
Then the elementary cell of volunié= /det(g) is defined as
C(A) = {Z =2'¢|a" =2%¢l, 2" € [0,1]} .
The dual bases ande® of these lattice vector& andé, are respectively defined as
‘(@) =0y,  €(g)=2d;.
Then the relation between the dual bases is expressed in tdrtime coefficients?,
et =éle,  Eley=0f.
Given these definitions, the dual lattice is generated byrinbasis vectors such that

A= {k = kie'|k; = kaé}, kq € [0,1]} ,

wherek are discrete vectors of which the components are measurgutsof L.
Their norm is expressed agk) = \/kl k; o4 = \/ka kq gob.

Therefore the equivalence relatiendefining thed-Torus reads
P~mjei=g+l, (=0¢ccA,

where the representative of each equivalence class ischobelong taC'(A).
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Fourier mode expansion

Accordingly, the variabled andG of the dynamical sector are periodic around the
torusp- and(d — p)-cycles, respectively. Their Fourier mode expansions read

Eill (Z) = 6071 . §ivdr Z Z 50‘ k) B (E)e%ﬂ&(i)’
k#0 a1=1

Qp—1 =1

whereE“t“r (k) is a complex valued antisymmetric tensor. Note that the merdes
of the fields are not included in these expressions, as enzghaidsy the subscript..
In fact, these zero modes are the global degrees of freedach\whve already been
dealt with in the previous Section. The real valued tensﬁlfs;;‘? (k) define a basis
of orthonormalised polarisation tensors for edch 0. In our conventions, these
tensors are constructed from a orthonormalised basis afipation vectors¢ (k) for

a vector field such that

e9 (k) e (k) 67 = 527, (3.31)

whered*? is the Kronecker symbol in polarisation space. This basibdsen in such
a way that, for eaclt # 0, the dual lattice vector?(k) is longitudinal whereas the
vectorsz*(k) are transverse fat = 1,--- ,d — 1. Finally, it is convenient to choose
for the longitudinal vector
el(k) = —F~, k#0.
w

Given the recursion relation induced by the Hodge decontipasheorem, the general
polarisation tensor of any-tensor field may be expressed as

which may likewise be decomposed into transverse and lodigial components,

-1
Longitudinal : {Ef‘llﬂﬁ%fl‘d (’f)} ;

tp—1%p T A yenny O‘T—'*lzl
. a1y d—1
Transverse : q&;".; " (k) . (3.32)
at,...,ap=1

Given any mode, th€") degrees of freedom of a phase space field then separate into
C»~1 longitudinal andC?_, transverse degrees of freedom. These notations having
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been specified, and using the decompositions defined in, (Byelevant quantum
operators’' '* () andG'?"*~* (') are Fourier expanded as

d—1
fai1rip _ i1J1 ipip ar-ap_1d a1 ap 1
EY = D Q& grirp e 5, (k) B (k)
k#0 ar=1
ap 1 1
d—1
ip J1Jd—
6 . P a1 ad— 1d ag 1 2i7 k(T
K Pk Pk
LS ol DECAS RO L (k) ,
(x1:1
ag_p-1
d—1
Niprid—p 141 g pid— arag_po1d Aay g
G/ = E o't ytd-rld=r(d — p) E €1 dap (k) Gy, (k)
k#0 a1:1
ag_p-1
d—1
K Q1o d Qo 2imk(Z
N Jl “Jp i1 id—p 17 Qp—1 P 1 p—1 k e imk(Z)
+ (p—l) 6 jp 1Jp ) E (_) .
a1:1
ap,l

The self-adjoint property of the operatbf: - i» () translates into the following rela-
tions between the associated mode operators and theingdjoi

d—1 d—1
aran_1d P a1 d At oy o,
€ g1 gy BV BT (R) = Z € gyt gy TRV BT (=R),
a;=1 a;=1
ap;‘lzl ozp;'izl
= a1 ad p—14d Aat..0g_po1 = aj.ag_p1d AT ar..ag_p1
Z T (k) Qg (k)= Y il (k) Qg (k).
1=1 al 1
adfpfl Xd—p—1

Similar relations apply for the modes of the self-adjoinegtorGi» ia-» (@).

Consequently, this decomposition of the non zero modeseofidiid operators in the
dynamical sector leads to two decoupled subsectors, eashioh is comprised of
a countable set of mode operators withA 0. In the first subsector one has the
operators?;, (k) and P (k) with the following non vanishing commutation relations,

B (), P )| =g 60 gte Pl (3.39)
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while in the second subsector the operat@fgk) andQ ¢ (k) possess the commutator
algebra,

~t e g A —p— : h
G ), QT )] =i 6 e g, (3.39)

Diagonalisation of the Hamiltonian

This Fourier mode decomposition reduces the problem ofatialising the Hamilto-
nian to a simple exercise in decoupled quantum oscillatath,

A~ A~ A~ 2 2 A~
i Pr) = 5o > (P ®) (3.35)
" kA0
Vo1 1 i Cr oyt )\ 2
AR P S (B w)
A~ A A 2 2 A
Hy (G, Q] = %ﬁ Z( glmadipfl(ﬁ))Q (3.36)
" kA0
1% 1 1 5 Ao p1 ) 2
+ 2 (d—p—1)! K2e2 kzﬂwQ(E) (GL (E))

In these expressions the following notation is being used,

R 2 o R
(Egl...ap,l (E)) — Z Eg]"'ap—l (E) Ez B1-Bp—1 (k) 6(1161 o 5o¢p,1ﬁp,1.
ag,...,ap1=1
B1,-Bp—1=1
The operators (3.35) and (3.36) are nothing other than thmiltémians of a collec-
tion of C%~ andC?”_, independent harmonic oscillators, respectively, all ajidar
frequency

w(k) = Am*w (k) +p*,  p=egk.

The physical spectrum may easily be constructed by intrioduannihilation and cre-
ation operators associated to the algebras (3.33) and)(3.84 annihilation operators
are defined by

1 Vok) [ rara, LGP K% ~ana
Qa1 Qp—1 I{J - — E 1 p—1 k P 1 p—1 k
aneri i) = L2 (e i L B )

1 Vo) [ Aaran CKZe? e
a1 gd—p—1 k —— = 1 d—p—1 k 1 d—p—1 k
oo ) = S (g 1 S Qg ) |
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whereas the creation operataris®*»-1(k) andb’ @1--i-»-1(k) are merely the
adjoint operators of®* -1 (k) andb® " *i-r-1(k), respectively. One then estab-
lishes the Fock algebras,

[aay-up,l(k)’ aT B1--Bp— 1( )} R [B1 g1 Bp—1] 5@’7 (337)

k
[bal.--ad—p—l( ) bT B1Bd—p— 1(& )} = o [81  §od—p—1 Ba—p—1] 5@/ ’

whereas (3.35) and (3.36) then reduce to the simple expressi

d—1
I%h[cu aT] =h Z@(E) (% Cg:ll + Z af a1..-ap71(k) aal...apl(k)> 7

E#0 a1 < <apog

d—1
ﬁQ[b, bT] = ﬁzaj(k) (%Cgl + Z bT al»--adfpfl(k) b(n-..ad,p,l (E)) .

E#0 ay<--<ag_p_q

The Fock space representation is based on the normaliskd&oeum|0), (0|0) = 1,
which is the kernel of all annihilation operators

a®@ot(g)[0) =0, b (E)[0) = 0,

where the divergent total vacuum enee@&gQ associated to this fondamental quantum
state reads

el = 3h0E > o)
k#0
Excited states are obtained through the action onto the Fackum of allC%) =

cg:} + C%_, creation operators, see (3.37). This leads to statgs)) with energy
eigenvalues

E(na () = E(o) + I > Z n. (k (3.38)

k#0~v=1

where{n, (k) Sil are positive integers corresponding to number operateneaues.
A shorthand notation is used in (3.38) with the indebelling theC?; possible com-
binations of a set gp distinct integers in the randé, d], {a1,..., a4, ..., ap}iizl,
which will be referred to a§®,.
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3.5 Spectrum and projection onto the TFT sector

3.5.1 Physical spectrum on the torus

Combining all the results of the previous Sections for wioataerns the diagonalisa-
tion of the physical TMGT Hamiltonian on the spatiatorus’: = Ty, the complete
energy spectrum of states is given as

Emy ) = E0) Fh Y Dy (k) D(k), (3.39)

kezd v
which is the sum of the contributions (3.30) and (3.38), Sge3R2. Note that on the
d-torus, thep™ Betti number,N,,, equalsC’. The components of the vectprof the
dual lattice may take any integer values since it is impiic(8.39) that{n, (0) 7021 =
{”v}ivir However, the index has a different meaning whethlerz2 0 or k = 0. In
the first case it refers to a value in the $&t and denotes one of the possitil&

polarisations, while in the second case it is a (co)homoladegx,y = 1,---,CY.
The total vacuum energy, in (3.39) is divergent,

1 N
ey = 5hcg;’ ];Z:dw(@),

and must be subtracted from the energy spectrum.

The positive integer valued functioms, (k) count, for eactk # 0, the number of
massive guanta of g or (d — p)-tensor field of momentur@rh k, of polarisation
(3.32), namely

Transverse : ¢} ., (k), ye€Ty ;

Longitudinal : ¢7*, (k), ~veT? 1, (3.40)

i1-ip
and of rest mags
M=hu=hkeg. (3.41)

There are also the contributions of the global quanta optfeed(d — p)-tensor fields,
where{n.(0) Sil count the numbers of excitations along the homology cycte ge

eratorszzp) andZ?dip). In the particular case when= 1, the integergn., (E)}jzl

count, for eachk # 0, the number of massive photons of momenti &, of rest
massM and of polarisation

Transverse :{s](k)}d_l

k)Y 2y, Longitudinal :c¢(k) .

A quantity indeed positive under the assumptions made.
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Figure 3.2: Factorisation of Hilbert space for TMGT and the contributiof each
sector to the energy spectrum. The physical Hilbert spatieeoT FT sector is defined
modulo the action of SGT and according to the way we deal Wafh.L

Depending on how one deals with large gauge transformatiotise TFT sector,
each energy state is either infinitely degenerate for a ralaled &, see (3.22), or
(]_[(];V:P1 k1 ko T Min(Iss/)) times degenerate if is a rational number of the foriia =
k1/ks. If k is an integer, each energy stateﬁé&l kZ Min(Iss/)) times degenerate
and the mass gap is then quantised,

h2
M=—Tkeg.
21w

In the Maxwell-Chern-Simons (MCS) casedr-1 dimensions (1.26), we recover in
the global sector a quantum mechanical system correspgtalthe Landau problem
of condensed matter physics on the 2-torus.

3.5.2 Projection onto the topological field theory sector

As introduced in Section 1.5, the naive limits of infinite ping constantsg — oo
andg — oo, in the classical Lagrangian of topologically massive gatlihgories, see
(1.26) and (1.23), must lead to a pure topological field th€®FT) of the AF or BF'
type. However, as pointed out by several authors (see fonpbeg[71, 56]), a paradox
seems to arise at the quantum level (as well as within theicksHamiltonian for-
mulation) when the pure Chern-Simons (CS) theory is vievgtha limite — oo of
the Maxwell-Chern-Simons (MCS) theory. The Hilbert spatthe CS theory is con-
structed from the algebra of the non commuting configuradjmarce operators which
are in fact canonically conjugate phase space operatorfar/s the MCS theory is
concerned, its Hilbert space is constructed from the Hésgnalgebras of twice as
many phase space operators. This problem is generic wheaguee quantum TFT
(TQFT) is considered as the limit of its associated TMGT liseawo distinct Hilbert
spaces are being compared. Actually, due to the seconsl-adastraints appearing in
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the Hamiltonian analysis of a TFT which is already in Hanrilem form, non vanish-
ing commutation relations apply to the configuration spgoerators. Furthermore,
the Gauss law constraints of pure TFT are not the limit of tha<s law constraints of
TMGT. The former operators tend to restrict too drasticdily physical Hilbert space
in comparison to the limit of the TMGT physical Hilbert space

This problem of an ill-defined limit is usually handled by facting from the Hilbert
space of the TMGT onto its degenerate ground state. Thiggop acts in a manner
similar to second-class constraints which then lead to acedi phase space and non
vanishing configuration space commutation relations d@texd from the associated
Dirac brackets. The global sector of the MCS theory is aralsgo the classical Lan-
dau problem of a charged point particle of massnoving in a two dimensional sur-
face in the presence of an uniform external magnetic fizfterpendicular to that sur-
face. The mass gap (3.41) then corresponds to the cyclarqudncy., [55, 56, 73].
The spectrum of the quantised model is organised into Latedals (with a degen-
eracy dependent on the homology structure of the underiyiagifold), of which the
energy separatiof, is proportional to the rati@/m. The limit B — co orm — 0
effectively projects onto the lowest Landau level (LLL) irhieh one obtains a non
commuting algebra for the space coordinates. By analogjegtion onto the ground
state reduces the phase space of the MCS theory (1.33) tatiomically conjugate
configuration space operators of a pure CS theory. In theagk#ztor, the projection
from a TMGT, (2.14), onto a pure TQFT offers in some sense &igdisation of the
LLL projection in any dimension. The mass gap (3.41) of the@Mbecoming in-
finite for coupling constants running to infinity, all exdtstates decouple from the
physical spectrum, leaving over only the degenerate gratetés. Projection onto
these ground states restricts the Hilbert space to that Qff&aIT

Interestingly, the PT factorisation established in Chaftenables the usual projec-
tion from TMGT to TQFT to be defined in a natural way. Alreadytle classical
Hamiltonian formulation phase space is separated into teeoudpled sectors, the
first being dynamical and manifestly gauge invariant, arelsbcond being equiva-
lent to a pure TFT with identical Gauss law constraints antiroatation relations.
The present approach does not require any gauge fixing proeadatsoever. Actu-
ally the non commuting sector of a CS theory or, more genethié reduced phase
space of a TQFT appears no longer after the projection ortgtbund state at the
quantum level (or after the introduction of Dirac brackdis) is manifest already at
the classical Hamiltonian level. By lettingor g grow infinite, the mass gap (3.41)
becomes infinite, hence dynamical massive excitationsuggeavhereas the TFT sec-
tor, which is independent of the coupling constants, remaiaffected. In this limit,
the system looses any dynamics, the latter being intimagddyed to the Riemannian
metric structure of the spacetime manifold, while all tisathien left is a wave function
depending on global variables only, namely the quanturesiata TQFT.



78 Chapter 3. A new perspective on the lowest Landau level giioje

3.6 Discussion

Duality relations are especially interesting when an explielation between fields
of the two descriptions is established since it typicallgleanges strong and weak
coupling regimes. In chapter 2 and 3 another feature which ange from some
dualisation processes has been addressed, namely th@isalba dynamical sector
of physical variables. Applied for the first time in our papgt0, 11] to topologically
massive gauge theories (TMGT) in any dimension and irré¢sgeof whether the
Lagrangian or Hamiltonian formulation is being used, thislity transformation is
referred to as TP factorisation and sheds new light ontodheept of Lowest Landau
Level projection.

As a matter of fact, it was already established in [74] thas possible to identify
among the phase space variables of a TMGT combinationsspameling to those
of a TFT. Indeed in a particular case of an underlying madifeith boundary, edge
states may be understood in terms of a TFT, already at theicdhdevel. Neverthe-
less, this paper did not realise the powerful gauge fixing fagtorisation leading to a
dual theory decoupled into two sectors as described in @mftand 3. Incidentally,
it should be of interest to analyse how this new approach rhag siew light onto
this paper, in a manner akin to that in which it properly defitiee projection onto a
topological field theory through the limits g — co. Inthe present approach, the TFT
sector is actually made manifest already at the classieal (see Fig.3.1), indepen-
dently of any projection onto the quantum ground state, tw physical edge states in
the case of a manifold with boundary. This TFT sector accofartthe degeneracy of
the physical spectrum depending only on topological irarg#s. The energy spectrum
includes two types of contributions, as illustrated in Big. The first one originates
from a sector of global variables where a metric structunetireduced but not explic-
itly specified in order to diagonalise the Hamiltonian. Tkeand one originates from
a sector of dynamical variables where the spacetime marefudlowed with its metric
structure must be specified in order to diagonalise the Hanién through a spectral
decomposition.

The formalism of TMGT defined by the actions (1.25) or (1.2B&1s a possible de-
scription of some phenomena such as effective supercamiiy§rs, 74], Josephson
arrays [76] for compact gauge groups, confinement by flux fdBe78], etc. In this
case, the TP factorisation stands for a generalisationeoE #8mdau projection which
enables to isolate the essential topological content. Tiredenomination “topolog-
ical sector” has to be understood not only in terms of topicllgcouplings, but in a
more general context as being the sector where all nonlttopalogical effects arise.
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Dual formulation of abelian Higgs models

The TP factorisation technique introduced in Chapter 2 égissin constructing a
dual formulation of TMGT which is factorised into a dynantisactor of massive
physical variables and a gauge dependent sector defining@ldgical field theory.
This technique enables one to establish that the Maxwejfisimodel in the symmetry
breaking phase shares a common physical sector with a peettidorm of TMGT of
the BF-type coupled to a real scalar “Higgs” field in a specific wayhig duality
relation may be extended to the usual formulation of theiabéliggs action in terms
of acomplex scalar field. Nevertheless, it then turns ouétipossible to maintain at
the same time the gauge content of gauge theories and kpaalitr dual factorisation
techniques also apply to TMGT of thg' type and novel duality relations then arise.
The general case of TMGT in any dimension is next addressepéaific couplings
to scalar fields constructed in such a way that our TP factdio be not broken.

Furthermore, following a similar approach, this Chaptetroduces a generalisation
of the already known duality between TMGT of fB&'-type and Stueckelberg theo-
ries, based on the “London limit” of the dualities mentionaldove. Hence a struc-
ture of dual equivalences between mass generation mechsaniemely the Higgs,
the Stueckelberg and the topological mass generation nmésing, is easily obtained,
provided that the scalar Higgs field does not vanish. In famt zero of the Higgs field
on some subset of space which is of zero measure is assotateel existence of a
topological defect localised on this subset, as will be aised in Chapters 5 and 6.

*

* *
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4.1 The dual Maxwell-Higgs model in 3+1 dimensions

4.1.1 The dielectric Cremmer-Scherk action: two pictures
The dielectric Cremmer-Scherk Lagrangian density

Asiis to be discussed presently, a dual formulation of thewdikHiggs model ir3+1
dimensions in the symmetry breaking phase may be obtaioedthe topologically
massive Cremmer-Scherk action (1.24) by transmuting thke dactorg into a real
dynamical scalar field(x). The resulting Lagrangian density then reads

1 L1 1 )
E%‘MGQ = _@F;UIFH +T772?H‘uupH'u P+£g (41)

£

1—
+ ¥ atdid (6AM H,jpa- + TgFNV Bpo’) .

The field o(x) thus interacts with the tensor fiel,,, (x) through a dielectric cou-
pling. Such types of Lagrangian densities in 3+1 dimenswiligherefore be called
“dielectric Cremmer-Scherk theories". In the present Gaip will be assumed that
the fieldo(z) does not vanish anywhere on the spacetime manifold. Thisrgstion

will be relaxed later on but at this stage it ensures that thiemremains finite for a
field strengthH,,, ,(x) which is well defined everywhere on the spacetime manifold.
As is established in Chapters 5 and 6, zeros of the scalardieléhtimately related

to the existence of topological defects. As usuy,is the Lagrangian density for a
massive real scalar field:

1
L,(0,0.0) = 50000" 0=V (0%) , (4.2)

where there is no need to specify the self-interaction piaev (gz) at this stage.

The arbitrary real variablé € [0, 1] we have introduced is physically irrelevant for
an appropriate choice of boundary conditions since it pateses any possible sur-
face term. This implies for instance that the equations dfioncare independent of
£. Nevertheless this does not mean that the introductionisfidrameter is useless.
We have already proved in Section 2.2.2 without having resmto any gauge fixing
choice whatsoever thdt parametrises a classification of the generalised Proca the-
ories. These theories account for the physical sector of mpologically massive
gauge theories as made manifest through our TP factonstdmhniques. Another
reason for introducing the parameges to offer an elegant interpretation of the dielec-
tric Cremmer-Scherk theory (4.1) in terms of théorm field A(x) or the(d—p)-form
field B(x) whetherg =1 or £ =0, respectively. In fact the two possible interpretations
already apply within the original non factorised formutettiof the theory.
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The “ B-field picture”: ¢ =0

Let us first consider the Lagrangian density (4.1) With 0, and isolate the contribu-
tions involving the gauge fiel@,,, (),

_ 1
=0 ng
££TMGQ = _@wa FM + Lo+ LEva, -

We then have:

5 11

1
Tice = 73 g i H' + 75677 Fuy By

In comparison with the “dielectric” Maxwell theories inttaced in Section 1.1, the
part where the field,,, (x) is involved describes the dynamics di-form gauge field
embedded in a medium described by a suitable dielectrictibme(z), see (1.46).
Hence the scalar field(x) plays the role of this dielectric function:

1
£E=——>,
n? 0?

where we recall that it is assumed in the present Chapterpthatdoes not vanish
anywhere on the spacetime manifold.

If the associated-form conserved currert #¥ () is written® as
KW = g e phe P Eog . (4.3)

the source for the electromagnetic field associate,to(x) reads

1 vpo a
Eop = ) Now My €77 0pAs, N OuLap = 0. (4.4)

The fact that this current involves the dynamical gauge fiéldx) does not imply
any particular consequence in the present discussion. jdgtisharacterises the un-
derlying dielectric model described by the dielectric Creen-Scherk theory (4.1).
However it is of prime importance that the curréi)f, (=) does not explicitly depend
on the scalar fiel@g(z) as befits any dielectric theory of the form (1.46).

The choicet =0 is naturally related to a realisation of the dielectric Creen-Scherk
theory as a dielectric theory for theform field B, (x) or, more generally, to an
interpretation of the underlying physical system in terrhthe electromagnetic field
constructed fronB,,, (x). For this reason we will henceforth refer to this case as the
“ B-field picture”.

1This choice for the normalisation of the current involvingand the scale factar? is made for later
convenience.
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The “ A-field picture”: £ =1

Let us next consider the Lagrangian density (4.1) With1, and isolate the contribu-
tions involving the gauge field , (x),
=1 11

= _ ny A
LSt = Tgg0 5 oo B + L4+ Lvic, (4.5)

Now we obtain:

1 v 1 vpo
E%MGQ = —@F#VF“ + 6/@6“ PT AL Hypo -

In comparison with the Maxwell theories introduced in Sawetl.1, the part where
the field A,,(z) is involved describes the dynamics ofdorm gauge field, where the
conserved current”(x), written for later convenience as

T =kn? * 0t Ga, (4.6)
reads, according to (1.1) and (4.5),
1
772 92 Gy = 5 yem eMP? 9, Bpa , W”aau (772 92 Goc) =0, (47)

and thus generates the electromagnetic field associatégl(to).

As is to be discussed presently, the Lagrangian density ¢4érs a dual formula-
tion of the Maxwell-Higgs model i3+ 1 dimensions. Hence within this context,
the scalar fieldb(x) plays the role of the Higgs field. In fact, the Lagrangian dgns
(4.5) was already obtained previously by K. Lee [79] throag¥ath integral formula-
tion but has so far never been analysed in detail except ihdhdon limit or within
the context of effective vortex-string theories. Our agmivhighlights the necessary
careful treatment of the gauge content of such theories anmef a local and linear
reparametrisation of the first-order Lagrangian formolatiindeed we are going to
prove that the Lagrangian density (4.5) is not dual tolth{¢) abelian Higgs model
but rather more specifically to the first order formulationha latter in terms of phys-
ical variables (1.48). Again the equivalence is estabtismedulo a topologicaBF
term. The other great advantage of this new approach is pdagliglearly the possi-
bility of constructing new topological defect solutions this dual formulation and to
give some clues towards that goal. The casdl naturally relates to an interpretation
of the underlying physical system in terms of the electronedig field constructed
from al1-form gauge field. For this reason we will henceforth refethie case as the
“ A-field picture”.
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4.1.2 Factorisation and duality within the Lagrangian fatation
Physical and topological sectors
This duality identification first proceeds from the definitiof the first order La-

grangian formulation associated to (4.1), hence the inictdn of the Gaussian aux-
iliary fields E,,,, () andG () :

m 62 v 1 vpo
ETMGQ = -7 E., E" + 56“ P70, A, Eps
772 2 1
+ > 0“ G, G" + 56‘“’"" 0uBy, G
1—
+  ketr? (%AM Hypo + TgFH,, BPU) +L,. (4.8)

When considered in combination with the equations of matiefining the Gaussian
integration, these physical variablés,, (z) and G,,(z) correspond to the currents
introduced in (4.4) and (4.7) within thB-field and A-field pictures, respectively.

The Topological-Physical factorisation is not really aftsd by the presence of the
dielectric coupling. Indeed under the same parametrisasothe one introduced for
the free TMGT in Section 2.2, that is

1 1
Au = -A,u - EG,LL ) B,uz/ = B,ul/ + EE,LW ) (49)

the dual action is again factorised into a dynamical sedtphgsical variables and a
topological sector of gauge variant variables, modulo @ wirface term, “ST”,

Stac [E, G, A, B, o] = Sump [E, G, o] + Sgr [A, B +/ ST. (4.10)
M
Similarly to the free case, the surface term is ignored whiéetopological sector,
L —§E mPT A My + (1 — €) SeP £, B
BF — 66 1 vpo ( 5) 46 pv ~po

is as usual a pur8F' topological field theory.

In fact only the physical sector significantly changes sihoew inherits the dynam-
ical scalar fieldo(x) to which the physical field+,,(x) couples:

62 ,]72 9
£MHP = _ZENV ErY 4 ? 0 Gu G" + EQ (411)

1
+ g€ (€0,G Bpr — (1= €) 0,By, Go) .
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TP Factorisation

massil—g%ci’:ecl)gi;ﬁgygauge General relation szl D el + BF Topological
theory (4.1) V Proca theory (4.11) field theory

'N
~
~
~
~

~ Gauge f p = 1) Gauge
~ ~

~ - .
Old relation, ~ & fixing E — 1 J embedding
~

forp=1,8=1 S«
E N
Maxwell
Higgs theory

Figure 4.1: Duality relation between the physical sector of TMDGT (4aby the
generalised first order formulation of dielectric Proca thies obtained through TP
factorisation techniques. The dual Maxwell-Higgs modedé®vered through a gauge
embedding procedure in a very specific case. In blue: ourrduirtion.

~

This new Lagrangian density may be considered as the most@donrmulation for
dielectric Proca theories, for which the first order forntioias known so far in the
literature are recovered upon settifig 0 or =1. In particular for the latter value of

&, namely within theA-field picture, we have already encountered such a Lagrangia
density in Section 1.2. It is nothing other than the first oiddegrangian formulation

of the Maxwell-Higgs model expressed in terms of physicahldes, see (1.48), with

n = 1/k. In this sensey(z) plays the role of the Higgs field provided th&s defined

in (4.2) be the Lagrangian density for the decoupled parhefHiggs field (1.49),
namely the kinetic term of the scalar field together with §ymaetry breaking quartic
potential. This potential may be thus chosen to be of the form

~2 A
V(e®) =g+ St (4.12)
2 4
wherefi2 <0 and\ >0, in order to recover the usual “Mexican hat-shaped” pognti
Therefore the Higgs field possesses a non vanishing vacupetgtion value,

(o) =v = _T[LQ#O- (4.13)

In contradistinction to discussions available until nowitie literature, see for exam-
ple [79], we have precisely established to which Lagrantiendielectric Cremmer-
Scherk theory (4.1) is dual, that is the first order physicatfulation of the Maxwell-
Higgs model along with a topologic& F' term, as illustrated in Fig.4.1. Moreover
this duality is constructed from a linear and local redeifiniof the first order formu-
lation of the dynamics.
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Restoration of theU (1) broken symmetry

At this stage, the usual formulation of the Maxwell-Higggkangian (1.11) is thus
recovered through the inverse procedure to that which leatse physical formula-
tion, discussed in Section 1.4. This procedure requiresanaal extension of the
gauge content. The gauge invariant variaB|g x) is associated to the Hodge dual of
the field strength oB,,,, (z) through Gaussian integration, see (4.7), in the first order
formulation (4.8). After the transformation (4.9),,(z) obeys the following equation

of motion associated to the physical sector of the factdrisgrangian (4.11),

1
772 92 Gy = —Noap E elrr? 9, Epa‘ .

A conservation law naturally arises from this latter equtio* (92 GM) =0 (on
shell). In this sense the variablg, x ¢* G,, is interpreted as a current to which a
gauge connection couples within thefield picture, see (4.6). This current may be
that of the complex scalar field of which the Higgs field:) is the radial part in the
polar parametrisation, following the example of (1.17) evhiesults from (1.13).

However, in order to proceed to a consistent reparameuisaf the field configura-
tion space, the connection may not be the origida(x) connection as often advo-
cated in the literature (see for example [35, 80]). Firss thtter choice would lead
to an inconsistent counting of the degrees of freedom assfdéine transformations
(4.9) are concerned, although it remains consistent witetjuations of motich(at
least as long as couplings to fermions are not consideredpril, an extension of the
gauge content of the system is required in order to rester& th) symmetry under
which the complex scalar field transforms. This extensi@irslar in spirit to gauge
embedding or other related dualisation [81] procedureasEmnew gauge connection
A,,(z) is introduced, which allows to redefine the gauge invarianiableG, () as

1 -
k> G, = —?JH = r2n? (Au — BMG) , (4.14)

where the transformation of the varialfléex) under the new/ (1) gauge symmetry
compensates for that of the connectidp(x) in order to preserve the gauge invariance
of J,(z),

Al = A, + 0,4, 0 =60+a. (4.15)

Here the local notation for the gauge transformation is usechuse global vari-
ables have no influence in this specific case on account oE#igative assumptions
made in this Chapter (topologically trivial manifold andwieere vanishing scalar field

o()).

2The equations of motion relate the transverse part of thgegield A, (z) to the physical field7,, ().
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Given the redefinition of the physical field, () in (4.14) the Lagrangian density of
the Maxwell-Higgs model is recovered from the physical ge¢4.11) upon setting

=1,
1 -~ =~ 1 . ~ 2
ﬁngez_wFle“ +§’8MQ_1I€77Q(AM—BM9)’ —V(Q2).

Therefore, the total gauge embedded action dual to (4.augir TP-factorisation is
decoupled into thé/ (1) Maxwell-Higgs action and a pure topologidaF’ action,

S [A,A,B, g,e} = San [A, 0, 9} + Stpr [A, B] +/ ST.
M

This action turns out to be invariant under three independesses of finite abelian
gauge transformations acting separately in eitherthehe5-, the (4,6)-sector. This
latter restored transformation allows to define a complalesdield of which the polar
parametrisation follows in terms of the two real scalar Belt) andfd(x):

(z) = % o) 1) (4.16)

Thus the usual formulation of the Maxwell-Higgs Lagrangi@msity before symme-
try breaking is recovered froifiy g:

1o e 2
Lan =~ Fu F* +‘D#¢>‘ —V (2]9]?) . (4.17)

In this Lagrangian density, the covariant derivative,

Dup =0, —iknA, o, (4.18)
is defined from the connectiof of which the field strength tensor reads

F, =0,A, —0,A,,
as usual.

This conclude the discussion about the local dual formamadif the Maxwell-Higgs
model in 3+1 dimensions. It will be shown in Section 4.2 that$tructure of dualities
in Fig.4.1, hence the dual formulation of the Maxwell-Higgedel is extensible to
any dimension, notwithstanding the non renormalisableadtar of the scalar field
quadratic potential,

V21617 = @2 [6]* + Alol*, (4.19)

in more than four spacetime dimensions.
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4.1.3 Duality within the Hamiltonian formulation

The Hamiltonian analysis of constraints applied to the bhagian formulation of the
dielectric Cremmer-Scherk (DCS) theory in (4.1) shows thatsimple transmutation
of the scale factoy into the dynamical scalar field(x) readily leads to the Hamilto-
nian formulation of this DCS theory from the uncoupled Haarilan (2.14),

e2?

. K- 2
Hivee = = (Pl—(l—f)gﬁkajk) +

5 (Fij)?

i
4 e2
)
1212 &2
/ i K ijk 0
— (' + Ag) 0, (P +e5e Bjk) tuP
+ (v + Boi) 9; (Q7 — (1= &) k" Ag) 4 v0; Q"
+ 0i (A4 P'+ Bo; Q7) , (4.20)

s ’ y 2
b T2 QU ene A 4

(Hijk)2 +H,

where the last term is a pure surface term characteristicenhalysis of constraints
for such gauge theories. Again the symplectic structureoigd®n brackets is speci-
fied by the canonical brackets between phase space variidfieed in (2.13), adapted
to this specific number of dimensions. This Hamiltonian dgnshares the same
gauge structure and thus the same first-class constraititatasf the pure Cremmer-
Scherk theory. The only difference resides in the presehtteealynamical dielectric

scalar fieldo(x) along with its conjugate momentuniz) such that

{o(t, %), 7(t,9)} = 6*(F — §). (4.21)
To this new set of phase space variables is associated thététaen density/,,
1 1
He=3 ™+ 5 (9i0)> +V (%) , (4.22)

which is decoupled from the gauge fields and their conjugatieenta.

In the same way as within the Lagrangian formulation, thesgmee of the dielec-
tric coupling does not affect our factorisation techniqueserefore, under the same
canonical transformations, (2.16) and (2.20), and red&finof Lagrange multipliers,
(2.22), as in the uncoupled case, the factorised fundarigatailtonian reads

2 i\ 2 2
. e N2 1 0 E n i3 2 1 P31 2
Mo = 5 ) 4 g (U) + 00+ gz 0,6
K .. ..
+ Mot g Ao €9% 9B — 1 Bo; €77 9; Ay, + ST. (4.23)

This factorised density is explicitly independentéofThis means that on account of
Hodge duality, one readily identifies in the physical setierformulation for either
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the A- or the B-field picture. In particular, when considered in combioatwith the
equations of motions (2.12) and our TP canonical transféoms (2.20), the physical
variableG¥ (x) reads

G = QY + ket Ay,
and therefore, on the ground of the analysis of Section 1a4, loe interpreted as the
electric displacement tens®rZ (z) associated to the original fielfl,,,, (),

(DB = # 5% 69! How = G'9 | within the B-field picture  (4.24)

Likewise the variable? (z) is proportional to the electric vector field (),
(Ee“,‘)Z =6 Fy; =€ E*,  within the A-field picture (4.25)
associated to the field strength tensor of the original béeid, (x).

The equations for Gaussian integration, see as a remind&)(and (1.44), make
manifest the Hodge duality between the space componerits pfiysical fields within
the first order Lagrangian formulation (4.8),; andG;, and the phase space variables
of the physical sector within the Hamiltonian formulatiehZ3),E* andG%,

B = %a’jk Ej, GY=¢€kq,. (4.26)
In terms of these latter variables, the dynamical part offttatorised Hamiltonian
formulation (4.23) reads within thB-field picture

Mo = T [e(08)"] + 5o [0 (05)"]

1 1 2
(Eij)* + (E i Ejk]> +H,, (4.27)
with the following non-vanishing Poisson brackets betwiéenphase space variables

{(DE) (4,7), Bu(t.7)} = nof 8460 - ).

Similarly, the dynamical part of (4.23) reads within tA€field picture

N
1 /24\2 1 VE4
A _ A |
Hapn = @(Ee') +2772I$2< Qe>
n? 2 1 2

+ ?(QGZ') +m(6[iGﬂ) +Hg,

with the following non-vanishing Poisson brackets betwi#benphase space variables
{(B4) (1.),G50,5) ) = ke 61097 - 7).

The present analysis is readily generalised to any numbsgasfetime dimensions.
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4.2 Abelian Higgs models in any dimension

4.2.1 The dual Chern-Simons-Higgs theory in 2+1 dimensions

Throughout this Chapter we are constructing dual equieagrirom topologically
massive gauge theories of tli&f-type with specific dielectric couplings. A query
which naturally comes to mind is to wonder what happens irctiee of topological
mass generation theories of thd -type, (1.25), with a dielectric coupling between
the scalar field and the singteform gauge fieldA(z). Surprisingly the construction
of this kind of dual equivalence has never been considergdnaw. In this Subsec-
tion, we address duality relations specifically in 2+1 disiens, but the equivalences
may be extended whatever the even number of space dimenpiongled that this
number be such that= 2p with p odd.

Let us first consider the Maxwell-Chern-Simons theory (1 &6vhich the gauge field
A, (x) couples dielectrically to a dynamical scalar fiel:),

1 1 K
Lyicse = —4—772?17)“, 4+ Ze’”’p FoA,+L,. (4.28)

As a reminder, in this expressialy, (o, 0,0) is the non coupled Lagrangian density
for a self-interacting dynamical scalar field (4.2). We aning to establish by means
of a field transformation that the above Lagrangian denbiyes a common first order
physical formulation with the Chern-Simons-Higgs (CSHydhy. This latter theory
is a particular type of an abelian Higgs model in 2+1 dimensiohere the gauge field
is governed by a Chern-Simons Lagrangian instead of thd Maavell Lagrangian
(see [73] and references therein).

Let us start as usual from the first order formulation of (3,28

LYESy = %772 0" E, B + %Ewp Fu E, + ZE‘“”J Fu Ay + Ly,
obtained after the introduction of the Gaussian auxiliaeidffs,, (). Under the same
local and linear transformation of the fields as in the purexM&l-Chern-Simons
case, see (2.26), the above first order Lagrangian dendagtisrised, modulo a sur-
face term ST, into a sectdi,,,, Of physical variables and a topological secthfs
consisting of a pure Chern-Simons theory (2.27) where thiesarriginal gauge sym-
metry content resides:

Ellc\?[CCSg = Edyn (Elh aﬂElM 0, 8#9) + ECS (A'L“ 8“./41/) +ST.

This physical sector having been made manifest through Bufagtorisation proce-
dure turns out to be also the first order physical formulatbthe Chern-Simons-
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Higgs theory which reads

1 1
ﬁdyﬂ = 5772 Q2 Eu E* + ﬂEHUP BMEU Ep + EQ .

Hence the announced dual equivalence is thus established.

In comparison to duality relations established for the Mabwiggs model, a further
step may be taken in order to recover the usual formulatioth@®fChern-Simons-
Higgs Lagrangian. This implies the restoration of the brok€1) symmetry in the
physical sector, with its cortege of subtleties relatecho dauge embedding proce-
dures. Indeed, the physical varialdlg () may be written again as tHé(1) current
of a complex scalar field, see (4.14) and (4.15). Hence thsighlysector turns into a
U(1) gauge (embedded) theory and reads

L o 9 9 (5 2K ii
Losup = 5127 0 (Ap—0.0) + L 0,4, Ay 4 L,
Once the gauge symmetry is restored, th@) gauge variant complex scalar field
¢(z) is readily constructed in its polar parametrisation in terofi the Higgs field
o(x) and the gauge variant fielt{x), see (4.16). Then the Chern-Simons-Higgs La-
grangian before symmetry breaking is recovered:

K . )
os = 0 0,3, 4, + Dy v 1)

whereD* denotes the usual covariant derivative (4.18) with the ectianA,, ().

As usual in abelian Higgs models a Bogomol'nyi self-dualisture exists for soliton
solutions, but within this model this type of structure asifrom a specific sixth order
potential for the scalar field:

V (20¢]%) = A¢l? (|82 —%)* .

This potential possesses two degenerate vacy@ at v and|¢| = 0 but only the
former breaks thé/ (1) gauge symmetry. The main interest of this covariant model
resides in its unusual soliton solutions of two distingei$tlypes emerging from this
sixth-order potential at the self-dual point and carryinghmagnetic flux and electric
charge. Thefirst type, referred to as “topological solitolugon” [82, 83] interpolates
from the origin, where the Higgs scalar field vanishes, todhele at infinity where
the Higgs field takes its non zero vacuum expectation viglire v. The second type,
the so-called “non topological soliton solution” [84], ikaracterised by a Higgs field
keeping its zero expectation value on the circle at infiritgwever the study of these
soliton solutions in the dual formulation and their possigéneralisations is beyond
the scope of this work and thus will not be addressed here.
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4.2.2 The most general network of dualities in any dimension
The unbroken TP factorisation

The dual formulation of the Maxwell-Higgs model in 3+1 dins@ns (4.1) pertains
to a very specific form of topological mass generation for thiorm gauge field
A(z) with a dielectric coupling between a real scalar field andabeplementary
(d—1)-form field B(z). Otherwise a general formulation of the action of topologi-
cally massive dielectric gauge theories with couplingsyioainical real scalar fields,
StMGew [A, B, w, o], may be written as

a1 o 1 ol P 1
= — — FA%F 4+ —— —  HAxH
SThice= /M 2 @) T g
+ SprlA, B+ Su [w] + S, 9] , (4.29)

where the scalar fields (z) andg(x) couple through the dielectric functioagw (z))
andg (o(x)) to the kinetic terms of the-form A(z) and the(d —p)-form B(x), re-
spectively. The usual topological couplisg »[A, B] appears in the action (4.29),

SBF[A,B]:I{/ 1-&§FAB—-0o?¢£ANH. (4.30)
M

In fact, this action is the most general construction of togally massive gauge
fields coupled to real scalar fields of which the decoupletlipaminimal

1
S, 0] :/ idg/\*dg—*V(gz) ,
M

and which at the same time preserves our factorisation iatowapled physical and
topological sectors. There is no need at this stage to gpefpotentials for the two
scalar fieldsy (w?) andV (¢?).

Despite the presence of dielectric scalar fields in the tmgiohl mass generation
model (4.29), the dual factorised formulation is obtainedhe same way as within
the non coupled case, see Section 2.2, and thus first prott@edgh the extension
of the field content of the theory. Indeed the covariant firgieo formulation of the

action (4.29) reads

1 1
SRR = (@) B+ 360G+ [ FAE+HAG
M

+ SprlA, B+ Su [w] + S, 0] ,

after the introduction of the auxiliaryl—p)- andp-form fields E(x) andG(z). Then
through a reparametrisation similar to that of the non cedphkse,

1 1
A=A+ -cg?¥ PG . B=B->F,
K K
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the action is factorised into a pure topological field theafithe B F-type,Sgr[A, 5],
and a dynamical sectdiyy, of the form

Sam = 3 (@) B)* + 1 (9(0) G)* + S [] + S, 1o (a:31)
+ %/Mad_ng/\dG—(1—§)dE/\G+/MST,

modulo a surface term, irrelevant for an appropriate chofd®mundary conditions on
M. Hence a similar structure to that of Fig.4.1 in 3+1 dimenssoobtained whatever
the number of spacetime dimensions from the generaliséshaot(4.29).

The TP factorisation within the Hamiltonian formulationtopologically massive di-
electric gauge theories may be cast in the same mould asgrahgian counterpart
since the canonical transformation leading to the factdrfsndamental Hamiltonian
remains the same as in the non coupled case. Therefore dlisittiession pursued in
the particular case of the dielectric Cremmer-Scherk th@oSection 4.1 is readily
extended to the general case in any dimension, from the hggma density (4.29).
Hence within theA-field picture, the scalar fieleb(z) acts like of a dielectric field
while the scalar fieldb(x) plays the role of a “Higgs” field associated to generalised
London equations for g-form. Likewise, within theB-field picture, the scalar field
o(z) acts like a dielectric field while the scalar field() plays the role of a “Higgs”
field associated to generalised London equations far-agj-form.

Recovering the Maxwell-Higgs models

Finally, the range of dual formulations for Maxwell-Higgdels in any dimension
reduces actually to very particular cases of topologicalgsive dielectric gauge the-
ories subjected to the following restrictions:

e One of the two gauge fields is arform field. Let us choosd to be this field.

e The dielectric functiorz (o(z)) reduces to a constaat

e The dielectric functiory (o(x)) has the simple formg(o) = no .

The following action results from these assumptions,

oP g?r 1
M n- e

from which the Maxwell-Higgs model (4.17) is recovered thgh our TP factorisation
techniques and some gauge embedding procedure in the algesitor.
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TheU (1) symmetry breaking in this range of Maxwell-Higgs models iy dimen-
sion is dictated by the complex scalar fiel(ic) in (4.16) possessing a non vanishing
expectation value in the vacuum. Otherwisey i 1, it is not possible to reconstruct
a complex scalar field from the polar parametrisation (4.&#)ce the currenf (z)
introduced in (4.14) is then no longer a 1-form.

4.2.3 The London limit and the dual Stueckelberg models
The “London limit” for TMDGT

In the Maxwell-Higgs model, the London limit is the limit inhich the mass of the
Higgs field becomes infinite while the mass of the gauge fietdaias finite, as is
seen in Section 1.2. Likewise an equivalent limit may be itgdadentified for the
topologically massive dielectric gauge theories (TMDGEJided in (4.29), within
the context of the duality relations displayed in Fig.4.bweéver, as there is no need
to specify explicitly the shape of the self-interactinglacgotentials, by “London
limit” we shall refer to any asymptotic limit or relation lveten the diverse coupling
constants which leads to the “freezing” of the scalar fiebdbeir vacuum expectation
values. In this sense, the action for pure topologicallysivesgauge theories (1.23)
is recovered through the London limit,

e(Cw) — e(C(m)=e, gne) — gmie) =g,

of the action (4.29) for TMDGT.

Equivalence between TMGT and Stueckelberg theories revisd

We have already seen in Section 1.2 that the Stueckelbevgytfar a 1-form gauge
field is recovered from the London limit of the Maxwell-Higgsodel. This latter
model shares a common physical sector with the CremmerrStheory as made
manifest through our TP factorisation. In the same way ong expect that gener-
alised Stueckelberg theories be obtained from the Londoit dif the physical sector
of TMDGT, modulo a suitable gauge embedding procedure. dfj &everal dualisa-
tion techniques have been used until now in order to estaliis dual equivalence
between topologically massive gauge theories and Stussigetheories. As far as
gauge embedding procedures are concerned, this duaktyoreis considered as an
intermediate step in order to establish the duality retatietween theories of the
Proca-type and TMGT. This type of methods, developed whetttkin the Hamilto-
nian [64] or the Lagrangian [66] formulation, are charasent by an intricate maze
of successive gauge fixing and unfixing procedures. Theoseaist other techniques
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which establish such duality relations through a masteramagjan approach, see [81].
In this latter case however the gauge fixing procedures ddehibehind the succes-
sive integrations of the equations of motion and thus noiapeare has been taken
with regards to the treatment of the gauge symmetry confehtse theories.

In contradistinction with the above-mentioned procedwfedualisation, our method
offers several advantages and consists of two steps. Férkiwe already established
in Chapter 2, through our TP factorisation, the duality ietlabetween pure TMGT
of the BF-type (1.23) and a generalised first order formulation otBritveoried

62 9 92 9 1 q

—(B)Y"+=(G) +—/ o PEENAG—(1-&dENG, (4.33)

2 2 5 Jm

parametrised by the constanive have introduced, see Section 2.2. The two theories
are dual modulo a topologicd@ F' term in which all the gauge content resides. This
procedure is free of gauge fixing and consistent for what eorecthe counting of the
numbers of degrees of freedom.

den =

Second itis only at this stage that gauge embedding proesdpply in order to make

manifest the duality between the Proca theories obtaintittiphysical sector and the
Stueckelberg theories. Hence according to our procedwdltoca theories are now
an intermediate step in establishing the duality relatidfe have briefly introduced

this type of generic procedure consisting in the extensibthe gauge content in

Section 4.1. Indeed, knowing that; = 0 andd £ = 0 and following the example of

(4.14), these two gauge invarignand(d—p)-form fields may be written as

ok (A-9) (4.34)

E = —H(B-X), (4.35)

wheref(z) is a closeg-form while x(z) is a closed d—p)-form. Under the assump-
tions we have made which do not allow for the presence of tupcél effectsf(z)
andy(z) are also exaét In this case, the gauge embedding procedure is thus well-
defined. The transformations of the fiells:) andx («) under the gauge symmetries,

0=0+a, X =x+0,

compensates for that of the two independent classes of &bh#éan gauge transfor-
mations acting separately in either tAeor B-sector,

X - A+a, (4.36)
B = Bt (4.37)

SNamely the non gauge invariant “self-dual” action of [65] §&neralised to any dimension.
4Indeed, we have assumed a topologically trivial spacetiragifold and non vanishing scalar fields.
These assumptions do not allé\{z:) andx (z) to have a global component, see [48, 79] in 3+1 dimensions.
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Topologically massive - e BF Topological
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procedure or a (d-p)-form fie

Figure 4.2:Duality relation between TMGT (1.23) and a generalised falation of
the Stueckelberg theories (4.40) obtained through TP fazttion and gauge embed-
ding techniques. The usual formulation of the Stueckelberghanism for a-form
field (4.38) and gd —p)-form field (4.39) is recovered through Gaussian integnatio
for specific values of. In blue: our contribution.

in order to preserve the gauge invarianc&gk) and E(x). We have used the same
notation as in (1.19), wher@(x) and 3(z) are two exacp- and (d— p)-forms, re-
spectively. In this sense the physical variabler) may be considered as the gauge
invariant transverse part of the gauge field variaﬁ)(e) while 6(x) is associated to
its longitudinal part. A likewise identification appliesrfthe (d—p)-form field B(z).

The parametrised dual formulation of Stueckelberg theories

It is worthwile to note that the dual gauge embedded Stubekgltheory constructed
from the physical sector of the factorised TMGT depends dtarally on the value of
our parametef. Let us first consider the two extreme valges0 andé =1, starting
from the factorised Lagrangian density (4.33). Indeed ditiregé =1, integrating out
the then Gaussian auxiliafyl — p)-form field £(x) and extending the gauge content
of the theory at the level of the-form field G(z) through the transformation (4.34),
one derives within thel-field picture the Stueckelberg action opdorm field Zl(ac),

p 2

o ~ . 7 ~ 2
Sayn = 5 /MF/\*F—i—ﬁ(A—H) : (4.38)

whereF = dA andu = ke g. Alternatively one may also obtain within the-field
picture the Stueckelberg action of@&—p)-form field by fixing¢ =0, eliminating the
Gaussiap-form field G(x) and applying the gauge embedding transformation (4.35),

s ”dp/ e+ 25 (B-y) (4.39)
=T Ao+ 2 (B-x) .
dy 292 M 292 X
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whereH = dB. These two actions above are invariant under one abeliagegsym-

metry only, of which the associated transformation readts g&36) or (4.37) whether
one considers the transformation acting ongkerm field A(z) in (4.38) or on the
(d—p)-form field B(z) in (4.39), respectively.

Finally a generalised formulation of the Stueckelberg thi@ay be obtained starting
from the first order formulation of the Proca theory and apgyhe gauge embedding
procedure to the two gauge invariant field&:) and F(x), see (4.35) and (4.34),

2 2 2 2
_ & 2(p_ 9 2 (i_
Sayn = 5 K (B X) + 5 K (A 9)
+ n/ 0l P (1 -6 ANAB—¢dANB. (4.40)
M

Our parameteg, which was originally introduced in order to parametrise plossible
surface terms, is thus not irrelevant since it determineshizh (gauge embedded)
Stueckelberg theory the topologically massive gauge tesare dudl as illustrated
in Fig.4.2. Contrary to (4.38) and (4.39), this generalig®@chulation of the abelian
Stueckelberg theory possesses two independent classeg®ffielian gauge trans-
formations acting separately in either tAeor the B-sector, see (4.36) and (4.37).

4.3 Conclusion and schematic overview

In 3+1 dimensions, a real scalar field freely propagates liRet@nsor field since the
exterior derivative of &-form is Hodge dual to that of &-form. In a more general
context, this equivalence holds (d+1) spacetime dimensions between a real scalar
field and a(d — 1)-tensor field. This explains why the £ 1)-tensor field in topo-
logical mass generation mechanisms is often considerethgm@ the same role as
the argument of the phase of the complex scalar field in thewd#»Higgs model.
Indeed these fields generate a longitudinal part to the h-fuge field and so make
it massive. However, again 8+ 1 dimensions the exterior derivative of tAeform
field may not be directly replaced by a real scalar field. In fais assumption made
until now in the literature causes some troubles becaugetilenumber of degrees of
freedom, including the pure gauge ones, @tHarm field does not match with those
of the scalar field. In the same way some gauge symmetry ddstlerst since gauge
transformations acting on tl#eform field do not correspond to those acting on the ar-
gument of the complex scalar field. Actually these pure galeggees of freedom are
of prime importance as soon as topological effects appeath&more this procedure

5The analysis as developed so far in the literature considéseduality relations between TMGT and
the different types of Stueckelberg theories as distinses480, 81].
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is non generalisable to any topologically massive (dielecgauge theory fop-form
fields, withp > 1.

Our approach is completely different. We consider (the p)-form field as a current
for the p-form field and conversely, the-form field as current for théd — p)-form
field. According to our terminology, the first case corregimto theA-field picture
while the second case is associated to/thfgeld picture. In this sense, this procedure
is close in spirit to gauge embedding procedures. We haeadyrobtained in Chap-
ter 2 the dual equivalence between topologically massiuggéheories (TMGT) and
a generalised first order formulation of Proca theories. &ktension of the gauge
symmetry content enabled us to obtain in this Chapter a notrdate network of
dualities between the most common (local) mechanisms géngra mass gap in
abelian gauge field theories, as illustrated in Fig.4.3. dlsyma dual equivalence be-
tween the Maxwell-Higgs model, (4.32), and topologicallgssive dielectric gauge
theories (TMDGT), (4.29), in the particular cgse- 1. This duality relation extends
in the London limit between the pure TMGT (1.23) and a gemszdlformulation of
Stueckelberg theories (4.40), where extreme care has akem with the gauge sym-
metry content. Indeed we have also established that alktbgaivalences are true
modulo a topologicaB F' term and, as usual, a specific type of gauge embedding pro-
cedure. Although they share the same local formulationringeof physical fields, the
gauge symmetry content of these mass generation mechastiféens dramatically. It
implies that these theories share a common dynamics butabally distinct as soon
as non trivial topological effects appear.

We think that the correct procedure is to avoid to establishlity relations between
gauge theories at any price and to give up in this case theegaubedding procedures.
We may perfectly admit that two theories are locally dualheit physical sector of
dynamical variables but are not dual if we consider theiirerfauge symmetry con-
tent. In this sense, TMDGT offer the great advantage thatdhelogical sector of
gauge variant variables is isolated from the physical setimugh our TP factori-
sation, independently of any gauge fixing procedure. Sucbicaupled topological
sector does not arise in the Maxwell-Higgs model which pssse one type only of
abelian gauge invariance. Furthermore, this topologerahtwas until now swamped
by a mass of successive procedures of gauge embeddings gadfe fixings char-
acteristic of the dualisation techniques previously idtroed in the literature. This
topological BF' term, which seems to be a simple spectator term when cotisfyuc
duality relations between mass generation mechanisnms twt to play a pivotal role
as soon as topological effects are taken into account, dbevdiscussed in Chapters
5and 6.
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Topologically Topologically
massive dielectric gauge - — > massive gauge
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Figure 4.3:Network of (local) duality relations between mass generathechanisms
in abelian gauge field theories. Gaussian integrations ofilary fields are not men-
tioned. In blue: our contributions.

The duality network established in this Chapter holds faembelian gauge field the-
ories. The understanding of the fate of these dualities veleplings to fermions are
introduced is certainly of interest but is beyond the scdpihie Thesis. Another case
of study may be the dual formulation of the Maxwell-Higgs rabdn topologically
non trivial manifolds or manifolds with boundaries, as ie ttase in superconductiv-
ity. Again the topologicalBF' term will generate non trivial topological effects in
these cases. Let us conclude this Chapter by noticing teet #xists an alternative
non local formulation of the Maxwell-Higgs model, see [48],4vhere a topological
BF term is involved in the construction of the Lagrangian. Alligh this formulation
is less usual in the literature it offers the advantage tehhe same gauge symme-
try structure as the dielectric Cremmer-Scherk (DCS) thelorfact we have proved
elsewhere [85] that this non local formulation is totallyue@lent to the local DCS
theory, even in the presence of topological defect solstion



CHAPTER D

LMagnetic vortices and (di)electric monopoles in the plane

The network of dualities in Fig.4.3 has a local character amdly holds for a scalar
field o(xz) nowhere vanishing on the spacetime manifold. However ifelaxrthis
assumption, global aspects ought to be taken into accouencklto any subman-
ifold of zero measure of zeros () is there associated a topological defect. In
particular for TMDGT in2+1 dimensions introduced in the present Chapter, we have
managed to construct novel magnetic vortex-type topodddiefects analogous to the
Nielsen-Olesen vortices arising in the Maxwell-Higgs mobikewise, these topolog-
ical defects may be seen within a physically equivalentipgcas electric monopoles
distributed within a dielectric medium. This type of tomgt@l defects in gauge field
theories, never considered until now, makes the searcholdos solutions in topo-
logical mass generation models of prime interest.

Our TP factorisation enables one to isolate the physical piarthis case common
with that of the Maxwell-Higgs model, from the topologicaltp including global
boundary conditions specific to the topological defect sotuwhile conserving the
gauge content of the original theory. In fact the topologjmat was up to now always
missing in the dualisation processes of the Maxwell-Higgdehdue to gauge fixings
characteristic of such procedures. Perhaps this is theagaaghy our new topological
defect solutions have so far never been considered. Sgdftim scratch, the pro-
cedure leading to the construction of topological defedtstve described in detail
while at the same time highlighting the analogies with thedueall-Higgs model.

*

* *
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5.1 Atopologically massive dielectric theory in the plane

We have established in Chapter 4 that the dielectric Crer8uberk theory (4.1)
shares, within thed-field picture, a dynamical sector of physical variables nwm
with that of the Maxwell-Higgs theory. In the same way, oneymaturally expect
such alocal duality relation i2+1 dimensions between the Maxwell-Higgs model and
a topologically massive dielectric gauge theory specifithtd number of spacetime
dimensions of the form

1 1 1
3 _ nz v
£T1\4Gg = —EFMU Fl — 4—7’]2?HMU H“ +£g
K v
+ 56’ PEAHypy+ (1 =& Fu By) . (5.1)

As usual, L,(p, 0,0) is the decoupled Lagrangian density for the self-intenacti
scalar fieldo(z) defined in (4.2). Unfortunately, a factorisation procesalagous
to that which leads to the double Maxwell-Chern-Simons th¢86, 75] in the free
case is no longer feasible due to this specific coupling tcstiadar field. However,
under the assumptiohaade in Chapter 4, it is still possible to isolate the dynaic
sector from the topological one since our TP factorisatemmhique is applicable, as
for any topologically massive dielectric gauge theory & tfgneral form (4.29).

In this Section, we relax one of these restrictions in allaythe scalar fielg(x) in
the Lagrangian density (5.1) to possess zeros on some Bpaatents and analyse
the implications of such an assumption. A brief glance & tlsigrangian density al-
ready suggests that something has to happen when the seddas(i) vanishes on
a subset of the spacetime manifold, namely that the kinetio for the gauge field
B,,(x) should then cancel accordingly in order to keep the enenggtfonal finite. As
a matter of fact we prove in Section 5.3 that correspondigiycsubmanifold of zeros
in o(x) there is associated a topological defect, of which the dteriatic topologi-
cal invariant is intimately related to the orders of thesmze A natural query which
comes to mind is the validity of our TP factorisation whentstapologically non triv-
ial soliton solutions arise. The answer may be obtained thigthelp of the equations
of motion which offer the hints towards the convenient pagtrigation which takes
into account the possible existence of such topologicakest

5.1.1 Equations of motion and physical variables

The action (5.1) may be written in its covariant first ordenfaafter the introduction
of the auxiliary fields=, (z) andE,, (x) so that physical variables are already manifest

lindeed, we have assumed a topologically trivial spacetirasifold and non vanishing scalar fields.
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in the Euler-Lagrange equations of motion :

m 772 2 iz 1 pvp e? iz 1 nvp
TMGo = ?Q GMG +§€ HN’JGP—FEENE +§6 FNVEP

T gew (€A, Hyy+(1— &) FuB,)+ L, (5.2)
This is in general the first step in establishing duality tietes through our TP fac-
torisation technique within the Lagrangian formulatiomeTequations obtained from

the variation oiG, () andE,, (x) relate these physical variables to their gauge variant
counterpartsB,, (z) and A, (x) respectively, through the Gaussian integration:

2772 g2 "G, = —€e"H,, (5.3)

22 pPr E, = —€"F,.

Itis on this ground that the field strentgh ten#gy, (z) has been interpreted in Section
4.1 as a current for the dynamical gauge fi#ld(x) within the B-field picture and
conversely within thed-field picture, see (4.3) and (4.6) in 3+1 dimensions. The
equations resulting from the variation Bf,(«) and A, (x) are pure divergences:

" 9, (Gy+rA) = 0, (5.4)
™ 9, (B, +KB,) = 0,

and correspond to the Gauss laws associated to each of tugge fields. Finally, the
equation describing the dynamics of the scalar figld) reads

Oo=n"0G,G" —i*0—\o”, (5.5)

whereO denotes the spacetime d’Alembertiah= n** 0,,0,.

5.1.2 The dynamical sector and local variables

These equations of motion may be expressed in terms of @iygtds alone from
(5.3) and (5.4), independently of the gauge fieldgx) and B, (x),

k1’ 0? Pt G, = €*"o.E,, (5.6)

ke*n" E, = " 9,G,.

As a matter of fact, one of the possible Lagrangian densitiesh directly gives
in return the equations of motion (5.5) and (5.6) expresadérims of the physical
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variablesE,,(z), G, (x) andg(x) is precisely the dynamical part,

3 e’ n’ 2
Lign = 3EHE“+?Q G.G"+ L,
— le‘“’” (€0.G E,—(1-¢)0,E,G,), (5.7)
K

of the dual Lagrangian density resulting from our TP facation. This correspon-
dence established locally remains globally true. It willdf®wn hereafter that the
dynamical sector is in fact not affected by the possibleterise of a subset of space-
time where the scalar field(x) vanishes, or in other words, by the presence of the
non trivial topological content associated to topologabefiect solutions.

The set of first order equations (5.6) may be locally reorggahinto a set of partially
decoupled second order equations related by the scalapfiejdnly:

2 2
v v Y 4
n P 81/ (8#Ep — 8PEH) = n p al/ hl F (8#Ep — aPE,u) + 2/'L2U_2Ey,
2
v Y
0?0y (0,Gp — pGy) = 2 p? /U_QGP' ) (5.8)

to which the equation (5.5) must be added in order to have gplenset of local
equations of motion. Let us recall that= (o) refers to the vacuum expectation
value of the scalar field which will be assumed to be non vanigh Hence from the
different available coupling constants and parametersave hlso defined

L=kKenu, (5.9)

which is associated to the mass gap generated in this typ®8f@T according to
the above equations. In fact, the second of the equatioB} i€bassociated within
the A-field picture to the Lagrangian density resulting from {5wvhereé = 1, after

the integration of the then Gaussian auxiliary fiélgl(z). Alternatively one may also
obtain the first of the equations (5.8) from (5.7) by setting: 0, namely working

within the B-field picture, and eliminating the Gaussian fi€lg (x). Notice that the
Gaussian integration of local variables does not alterdpelbgical (global) content.

At least locally, the topological part of the TP factorisedgltangian density is de-
coupled from the physical part and corresponds to a purddgjmal field theory of
the BF type. Indeed, it is worthy to recall here that the corresporeg between the
transverse part ofl,,(z) and the physical variabl€',(z), and likewise forB,,(x)
andE,(x), is required as a first-class constraint resulting from doall equations of
motion in the topological sector. However it is natural tonder whether our factori-
sation survives in the presence of non trivial topologidtgcts.

2This condition has to be required in order to construct togiokl defect solutions.
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5.1.3 The topological sector and global variables

The set of equations (5.5) and (5.6) is only locally valid aadioes not encode impor-
tant topological information. As we shall see later, anyological defect associated to
a given worldlinel’ on which the scalar field(z) vanishes in the spacetime of dimen-
sion three, defines a connection on the manifotd T which has the same homotopy
asS! x R. On this homotopically non trivial manifold, closed forniled the curvature
F =dA are not necessarily exact. Hence, Gauss’ laws (5.4) maybalsotegrated
on a two dimensional surfacgin the spacetime manifold witl as a boundary. But
rather than requiring strict equality of the harmonic comgats ofF),, andd;, G .,

a weaker relation between complex phases resulting froratpenentiation of (5.4)
will be introduced. Using Stokes’ theorem, this reads

exp <iQ ?g(nAﬂ + GH)> —1. (5.10)

A priori, the new constarf2 of which the physical dimensions must Be! L~! may
be equal to any linear combination of the available consta@nd1/x. Within the
context of the Maxwell-Higgs model, obtained after theaestion of the broke/ (1)
symmetry, (5.10) is very reminiscent of compact abeliarggaymmetries defined in
terms of uni-valued pure imaginary exponential phase factdherefore, given the
polar formulation of the complek (1) scalar field in (4.16) and the definition of the
associated current, one should fix= 7. However without any reference to a sym-
metry breaking mechanism as should be the case for the ootistr of topological
defect solutions of TMDGT, the value 6fwill be fixed later through the study of the
behaviour of the fields close to zerosggt).

At this stage, a new physical variable may be introduced atathe flux associated
to the gauge fieldi,, (x) through the set of all compact surfaces in spacetime

D[C] = / F,, dz" ndx”, C=0S.
s

Thus the above relation (5.10) reduces to an equality betlWwenomies while the
physical interpretation of the flu®[C] depends on the contour. For example, in the
static case for a given inertial frame, this Lorentz invatriquantity measures either
the total magnetic flux through a purely spacelike contotherrlectrostatic potential
difference between two spacetime events of which spacedowies are fixed. By
virtue of Stokes’ theorem, the flux reads

o [C] :%Audu“.
C
Consequently, (5.10) takes the form

me[C]:%rL[C]—Q?{GHdu“, (5.11)
C
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whereL [C] is an integer-valued functional the dependence of whicthercontouC
has yet to be specified.

The fact that the global equation (5.11) is not expresseeting of the gauge invariant
field G,,(x) alone is to be related to the fact that the holonomy of thissjay} variable
does not provide a coherent description of the global degré&eedom of the sys-
tem. Without wishing to launch into the analysis which wil 8eveloped throughout
the next Sections, let us briefly comment this fact. In (5th&)holonomy ofA,, (x)
around the set of non contractible loops has also been intaxt] namely the flux
®[C] through the surfacé = JC including zeros of the scalar field. Along with the
holonomy ofG,,(z), this flux is also considered as a physical variable becdtise i
defined on the space of field configurations in an unique waywener neither the
former nor the latter are coherent global physical varigbieR? \ T" since they are
not topological invariant. In fact, the actual global plogdivariable is their difference
for every contouC, namely the integer-valued function&lC] introduced in (5.11)
and which will be referred to henceforth as “vorticity”. Henthe knowledge of [C]
for all possible closed contours in spacetime encodes alirtformation about the
topological structure for a given field configuration, nayntble position and the de-
generacy of each topological defect core, and its dynarhicaighout the spacetime
of dimension three.

Finally, likewise definitions apply to the other vector gedigld B,,(z) and the as-
sociated flux and vorticity are referred to @$C] and L [C]. However it will be seen
that the physical variabl&, (z) is not affected by the existence of events in space-
time where the scalar field(x) vanishes. Moreover the most general formulation of
TMDGT introduced in (4.29) considers the dielectric conglbetween the kinetic
term of the vector gauge field,, (x) and a scalar fieldz(z). In the present situation,
since this functiono (z) keeps its non vanishing vacuum expectation value throughou
spacetime, the vorticity.[C] is identically zero whatever the contafiin spacetime.

5.1.4 The Topological-Physical factorisation

As seen in Section 1.2 a local formulation of the Maxwell-¢fignodel in terms of
physical variables is pathological as soon as non triviabtogical effects associated
to topological defect solutions are present. Indeed indhge, global boundary con-
ditions accounting for the singular phase of the complelasdizld must be explicitly
specified in the Lagrangian density (see for example [7948F, As far as TMDGT
are concerned the Lagrangian or Hamiltonian density majnagasplit into a dy-
namical part of physical variables and a topological parengtthe gauge symmetry
content resides through a local and linear reparametisatvithout specifying any
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global boundary condition. However our TP factorisationnighis case no longer
complete since the two sectors are only partially decoupled

As already stated before, the TMDGT introduced in (5.1) agfihed in 2+1 dimen-
sions is recovered from the general formulation (4.29) begZing the scalar field to
its vacuum expectation value. Hence no topological cornigelast when introducing
the decoupled gauge variant varialg given by

1
B#:EEP'—FBP"

since it will be shown hereafter that the fluxesi)f(x) and of E,, () are identically
zero in that case. Then, the equations of motion set thevieasis part o5, () to zero

while its longitudinal part is pure gauge. Moreover the fiBlg{z) does not include
any singular part giving rise to a non trivial flux.

Indeed within the factorised formulation of TMDGT introdectin Chapter 4, the
decoupled term describing a pure topological field theopfies that on topologically
trivial manifolds, the gauge fields have neither local nabgll parts when solving the
classical equations of motion. However this kind of topatagjterm is sensitive to
topological effects which are associated, for exampleypological defect solutions.
In fact the physical variablé,(z) inherits a singular global component from the
local behaviour of the scalar fielg{x) close to its zeros, making the local and global
degrees of freedom to mix and become interdependent. Trer¢fie sunk A,+G,
may not be associated to a new variable which decoupledytétam the system in
the topological sector. Hence the factorised action doesarsist in two independent
sectors,

S2[B,G, A, B, o] = SaynlB: G, 0] + Stopl A, G, B] + / ST,
M

but is again split into a dynamical part and a topologicat,paodulo a total diver-
gence. The factorised Lagrangian density,

e2 ,,72
L?ac = 9 Fm EF + 5 92 GuG" + L, (0,0u0) (5.12)

- %e’“’” (€0,G,E, — (1—€)0,E, G,) +ST

+ (1=, (KA, +G,) B, + £ (KA, +G,) 0,B,,

then gives in return the same partially decoupled (andlyadalcoupled locally) equa-
tions of motion in terms of physical variables as those weioled in the beginning
of this Chapter: (5.5), (5.6) and (5.11). The dynamical partsisting in the two first
lines of (5.12) is not affected by the presence of topoldgicatent associated, for ex-
ample, to topological defect solutions. However such togiglal effects dramatically
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modify the formulation of the topological sector. Hence thée of the topological
terms in the third line is to implement the global equatiori{d. The global part of
the fields of singular origin then comes to the fore throughstudy of vorticity.

5.2 Two equivalent types of topological defects

5.2.1 AnsatZor static field configurations

We are presently interested in the emergence of classili@rssolutions from equa-
tions of motion (5.5), (5.6) and (5.11). Henceforth we stialk restrict our analysis to
time independent field configurations making the actioristaty. These static field
configurations obey two sets of partially decoupled firsteorelquations for a given
spacelike sheet. On the one hand the equations rel@tjiig) and E; (x):

€V OE; = w0’ Go,
Eij(r“)jGo = —I<L€26ijEj,

on the other hand the equations relatiigz) andG, (z):

€ 0jEy = —kn? 0% 6% Gy,
Eij 81GJ = Iie2 Eo.

These two sets of equations are coupled through the dynaifrties scalar field(z):
8;0°0 = =" (Go)? 0+ (Gi)? o+ [P0 + A .

Finally, the global equation (5.11) renders complete theoequations of motion.
According to the context, these equations may describe tauivalent types of soliton
solutions, whether interpreted within tie or the B-field picture.

In order to make the set of equations simpler, it is usefuhist $tage to introduce
a furtheransatzin addition to time independence of the fields. This meansttiea
ensemble of solutions is restricted to a subset possessiag symmetries and prop-
erties. Letus recall thatin our case, Hresatzere not associated to some gauge fixing
since topological defect solutions are constructed withaphysical sector. Rather
the possiblenséatzere related to the presence of electric or magnetic chargas<o
associated to topological defects. A first naive assumptiould be to setz; = 0.
However, a brief look at the behaviour of the fi€lg (=) close to the vortex location
readily leads to the conclusion that this physical variableither equal to zero or a



5.2. Two equivalent types of topological defects 107

pure imaginary number. Obviously this latter case makesnees Thansatawvhich
will be introduced here ig€7; = 0. The local equations of motion under this extra
ansatzhen reduce to

Eij aon = —K 772 Q2 5“ Gj
Eij 81'Gj = K 62 EO
900 = 0’ (Gi)?o+ o+ Ao’ (5.13)

Notice that the case where no extiasatzs introduced, namelg; £ 0 andGg # 0,
will not be addressed here. If solutions exist, they shoatdespond to a kind of dyon
solution within theB-field picture with the magnitude of the magnetic field bouhde
by that of the electric field.

Finally the local equations of motion must be completed lygiobal one which reads
under theansatzust introduced:

me[C]:QwL[C]—Q?{GZ—dZi, (5.14)
C

where the ensemble of possible contours is restricted toefiga ones. This last
global equation accounts for the non trivial topologicahiemt characteristic of the
soliton solutions. Before constructing these topologiedéct solutions and exploring
insights that this novel avenue offers, we will presentlyeghe physical meaning of
each of thed- and B-field pictures.

5.2.2 A-field picture: Covariant description of superconducyivit

Within the A-field picture, namely fog = 1, the partially factorised Lagrangian den-
sity (5.12) is of the form

2 2
1
i, = %EH BV + % 0 Gy GV — —e"19,G, By + L, (0.9,0)
1
+ —eM (kA +G,) B, +ST. (5.15)

As already stated in Section 4.1 the dynamical part of thefesed formulation which
consists in the first line of (5.15) is very reminiscent of tingt order physical formu-
lation of the Maxwell-Higgs model. The extra topologicaintein the second line of
(5.15) points out that the scalar field is liable to have zerothe spacetime manifold.
This term is only sensitive to global effects associate@pwmltogical defect solutions.
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The local dynamical sector

By analogy with the case of the dielectric Cremmer-Schezkiti analysed in Section
4.1, the dynamical sector of the Hamiltonian density asgedito (5.15) reads

e? N2 1 O,E! 2
Hayn = B (&) +2f<&2772 ( 0 ) (5.16)

[

n in2 1 in2
where as a reminddt, (g, 9;0, 7, 9;7) defined in (4.22) denotes the uncoupled part
of the real scalar fiel@d(x) along with its associated conjugate momentu(n), see
(4.21). Of course the usual non vanishing Poisson brackéteden the other physical
variables of the phase space are recovered and take the form

{EB'(t,2),G(t,§)} = —ke! 8*(F— 7).

This Hamiltonian density will later on become useful thrbube analysis of the (fi-
nite) classical energy of topological defects. An analgsisilar to that of Section 4.1
in 3+1 dimensions implies two different interpretationstitis Hamiltonian formula-
tion either in terms of thel-field or the B-field picture.

The physical variablé, () within the A-field picture may be interpreted as the mag-
netic scalar fieI(B;ﬁg(x), modulo a multiplicative constant, whilg; (z) is related to

the electric vector field 4 (z):
BA, =€ Ey, , (E4) = E;. (5.17)

The ansatzGG = 0 previously introduced sets this electric field to zero angstthe
classical solutions within thd-field picture are purely magnetic. The other physical
phase space variabl& (x) is Hodge dual its counterpares; (), introduced within
the Lagrangian first order formulation,

G =€l ay.

In fact G;(z) may associated to the currefit(x) in the Maxwell-Higgs model intro-
duced in Chapter 4 (see (4.6) and (4.143+1 dimensions). Hence we have :

J'=kn? 00 Gy, (5.18)
and the first of the equations (5.13) which now takes the form

— A K‘/T] —
VB = * ., (5.19)
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implies that this current generates the magnetic ﬂﬁfg(x).

Hence, applying now thensatZor static field configurations, one recovers within the
dynamical sector the energy functiomﬂn(x),

2
n 1 2
San =g (@G + 155 (0:Ga) + Mo, (5.20)
which corresponds to the classical energy in supercondtycitn the local physical
sector. Likewise, applying these correspondences to thef sgjuations (5.13), the
usual Maxwell equation for the magnetic scalar field in thanpl (5.19), is recovered
along with the equations specific to Landau-Ginzburg supetactivity:

1 - J
BA = ——VxZ
me ko2
2 |j2 2 2

The first of these equations is the famous local second Loadoation describing the
Meissner effect in superconductors, see for example [86, 45

The topological sector

The dynamical part of the Hamiltonian is not affected by pre® of topological con-
tent associated to topological defect solutions. Suchltgpcal effects are actually
associated with the topological sector which consists énsicond line of (5.15) or
equivalently reads within the Hamiltonian formulation

Hiop = Bo € 0; (Aj 1 Gj) : (5.22)
K
The topological sector generates the global equation
Qr®[C]=27L[C]-Q ?{Gidzi,
c

which may also be identified as the global London equatiorhefeffective theory
of superconductivity, see [45]. The relation (5.4) betwd@magnetic field and its
associated gauge field;(z) does not appear in the factorised formulation (5.15).
Thus referring to the global variabie[C] as the flux is at first a misuse of language
which turns out afterwards to be coherent with the globaldamequation and the
second equation of (5.13). A similar thought process applithin theB-field picture

for the free electric charge.
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Dual description of covariant superconductivity

The specific TMDGT in 2+1 dimensions, of which the Lagranglansity reads

1

3 _ v
Erce = g2 b

- 4%72%1{#,, ™ + g P Ay Hyy+ L, (5.23)
and the Maxwell-Higgs model share a common first order play$ormulation and
thus a common set of local equations of motion. Moreover Hwi possess a global
London equation characteristic of vortex solutions of dis&a magnetic fluxp [C].
Hence, the Lagrangian density (5.23) admits dual magneticces within theA-field
picture but the topological origin of the classical quaatien of the flux turns out to be
rather different from that of the Maxwell-Higgs model. Iretkame way, the TMDGT
defined in (5.23) offers a dual covariant formulation of thendau-Ginzburg theory
of superconductivity in the superconducting phase. Thatgtéerence is that within
this dual formulation the formation of vortices is not reldito any symmetry breaking
mechanism. This dual description along with the notion pblogical order has been
described earlier in the London limit only and in the compzagte [74, 76, 75]. Itis
established for the first time in this Chapter that the eguatiof motion associated
to the Lagrangian density (5.1) admits topological defetitions of the vortex-type

within the A-field picture.

5.2.3 B-field picture: (di)electric “monopoles”

Let us turn now to the neuB-field picture of which the associated (factorised) La-
grangian density,

B e? U 1
Lhe = FEE"+ 50 GG+ " OB, GpL,
+ &9, (kA, +G,) B, +ST, (5.24)

describes the dynamics of electromagnetic fields propagatia medium of which
the absolute permittivity(x) is given by the real scalar fielg(«):

_ 1

n? 0% (z)’
as already stated in Chapter 4. The dielectric vacuum coinstaobviously related
to (o), and the relative permittivityg (),

e(x)
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are then defined from this absolute permittivity.

At this stage, an analysis similar to that of Section 4.1 i 8#mensions implies that
the physical variablé’; (z) may be associated with the electric fidl (),

i 1 ..

EBY = — €7 @q,

( cl) (z) €Ly,
while theansatz, =0 sets the magnetic field to zero and thus the classical sokitio
within the B-field picture are purely electric. The measured electrild f@ﬁ (x)
is generated both by the net free charge defgityz) and by the structural charge
densityp;(z) associated to the response of the dielectric medium. Byeviof this
very definition, the usual Maxwell static equations for thectric field in a dielectric
medium are recovered from (5.13) and read

= @B = B 1 1

VXxEqg=0 , V-Ej=—(ps+ps)=—pr.
€0 €0
According to the equation of motions (5.13), the total cleadgnsityp+ reads

pr = 663 X é+€RH€2E0.

If we assume that the scalar fieddlr) is everywhere frozen to its vacuum expectation
value, it may already be observed in this equation that thergbhysical variable
Ey(x) has a very natural interpretation within tfefield picture in terms of the free
charge density in the vacuum

pr=re?Ey.

The integration of this latter relation on any surfata the plane bounded by,
Q¢[C] = / ke? Eydr? = k ®[C],
S

provides a link between the magnetic flux of the vortex soluthrough the surfacg
within the A-field picture and the free electric charge enclosed by the (di)electric
defect solution within thé3-field picture.

Having in mind the discussion about the interpretation ef ramiltonian density
(4.27) within theB-field picture in Section 4.1, itis also useful to introdulce &lectric
displacemenﬁff (z) which is Hodge dual to the physical varialilg(x)

(DE) =¥ a;. (5.25)

3Do not confuse the scalar fiele() with the free, structural and total charge densities, dahaty
pt(z), ps(z) andpr(z), respectively.
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Hence, applying now thansatZor static field configurations, one recovers within the
dynamical sector the energy functiora@n(a:),

B 772 =5\ 1 = =g\ 2
chn="1 (eD8) + 52 (VDE) +M,, (5.26)
in terms of the electric displacemeft? () which is associated to the free charge
pt(z) density through the dielectric Maxwell equation:

.58 pr.

The well-known relation :ﬁff(x) = g(x) Eff(x) is then recovered. Finally, apart
from the usual static Maxwell equations, two other locahtiehs may be written in
terms of the electric displacement and the free charge ensi

uDi=crVpr , Vio=1|DiPo+No(0® —v?),
which are specific to our model describing electric defects.

The topological sector consists in the second line of (50t Bjjuivalently reads within
the Hamiltonian formulation

1 - = ii
Hizy = =~ Bo (VD& (@) - ke 0,45) .
This sector generates the global equation
C

taking into account the relevant topological aspects ofl f@nfigurations. These
aspects are related to new topological defect solutionsrithrsg the electric field as-
sociated to a charg@:[C], of which the classical quantisation is of topological arjg

embedded in a dielectric medium. This kind of topologicdkdes will henceforth be
referred to as “dielectric monopoles”.

5.3 Construction of topological defect solutions

The different steps leading to the construction of topalabdefect solutions in the
model of topological mass generation defined in (5.1) wilblbdressed in this Sec-
tion. Within the A-field picture, our vortex solutions are dual to those whialidbeen

put forward by Nielsen and Olesen [47] in analogy with theZbimrg-Landau theory
of superconductivity of which the Maxwell-Higgs model isethovariant extension.
What is also new and even more intriguing is the existence @cpivalent formula-

tion of these topological defects in terms of electric maslepin a dielectric medium
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within the B-field picture. Our dual vortex solutions within thé-field picture are
characterised by a different origin of the magnetic flux disation in comparison to
the Maxwell-Higgs model. The identification of topologicaintent of the field con-
figurations turns out to be original accordingly. This qused flux is related to the
quantised free charge of the (di)electric monopole defsittén the B-field picture.

The presence of the dielectric coupling in the Lagrangiarsite (5.1) gives credence
to the intuition that some non trivial effects arise eachetitne real scalar field(x)
vanishes on the space plane. These local effects are alueaayeled through a brief
analysis of the behaviour of the physical fields close tozefdhe Higgs field. More-
over, an analysis of the asymptotic behaviour of the phyéielas also shows how
these local effects have direct influence on the topologitatture of the theory.

5.3.1 Physical fields close to a single topological defect

We first allow the scalar field(z) to vanish at some discrete points in the plane.
These points are defined to be the positions of the (posséggmerate) topological
defects. For the sake of simplicity, we will concentrate attention on the particular
case of topological defects whose positions all coincida thie origin. Physical field
configurations corresponding to such topological defegssess a rotational symme-
try on the plane. Consequently, convenient coordinated tessexpress the physical
variables are the polar ones ¢),

xr=rcosp , y=rsing, (5.28)
wherer = /22 + y? is the radius whilev is the polar angley € [0, 27[. On account
of the polar symmetransatz all the physical variables are required to depend only

on the radial coordinate®(r), E(r), o(r). Then the scalar field(r) may be written
as a series expansion in powers-aiff the form;

o) =3 xmy ™
n=1

on the assumption of real analyticity.

Equations of motion under the polar symmetryansatz

Let us now establish how the set of equations of motion (5ah8)(5.14) transforms
under the polar symmetrgnsatz The covariant space components of any 1-form
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A = A;(¥) dx restricted orf2! (R?) transform under polar coordinates as

rAg
rA, = rsinpA, +cospA,,

rcosp A, —sinp A,

while the inverse relation reads

A, = rcospAy—rsinpA,,
A, = cospA; +sinpA,.

Then the first two local equations of (5.13) reldig(r) andG,(r):

f<a772Q2(7°)GS(J = 7rd.Ey, (5.29)
0,G, = rre’ By, (5.30)

while the radial componen, (r) vanishes identically. The third local equation of
(5.13) now writes

2
L0 (rdr0(r)) = T o) G2+ i olr) + A6(r), (5:31)

and determines the radial profile afr).

Finally, these local equations must be completed througlgkbbal equation,

2 2
%L[C] —k®[Cl+ [ Godp, (5.32)
0
whereC is any possible choice of circular contour centered arotwedotrigin. The
assumption that the function@lC] vanishes identically for any contour shrunk to a

point, even though this point may be the location of a topicigiefect,

é:nl() A, dp = é:n%q) [0S] =0, (5.33)
is also considered as a boundary condition. This extra tiondiears a relation to the
global equation (5.32), making a link between local and glalspects. It ensures that
the magnetic field within thel-field picture (5.14) or the free charge density within
the B-field picture (5.27) is not singular at the location of topgital defects.
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Behaviour of the fields close to the origin

The analysis of the behaviour of the fields close to the oiliggnls to the following
conclusions.

o A finite number of the first consecutive expansion coeffigarfithe scalar field
o(r) may all be set to zero. The index of the first non vanishingfeent
is called the order of the zero pfr), denoted byV, N >1.

e The physical variables possess a fixed parity required iardadhave a consis-
tent power series expansion close to the origin. Among ttéepty) and Ey ()
are even while the parity of(r) depends on the ordéy, namely even (resp.
odd) if N is even (resp. odd). The power series expansion(o,

o) =1V "X ™", (5.34)
n=0

is written again so as to reproduce the correct behavioreofigtd at the origin
and to take into account the parity properties.

¢ The power series expansion of the physical varighlér) includes a coefficient
of zero order which depends on the ordér

~2

nG, = N2 <(N + 1)@ - “—) r2+O(r*NT2) forr — 0. (5.35)
N X(O) 4

The physical variablé&; () is thus ill-defined at the origin where the topologi-

cal defect is localised. As far as tiiefield picture is concerned, only the radial

component of the measured electric vector fié@(r) survives under the polar

symmetryansatzand behaves as

) 2
(ES)" = %quianfo) Nl ot forr — 0,
while the associated electric displaceméiﬁ(r) is singular at the origin,
r 1N
(DE) —>i57 +0(r), forr—o0, (5.36)

where theB-electric monopole is located.

e The physical variablé, is regular close to the origin and may also be expanded
in even powers of, with the zero order coefficient of the form

1
ke*nEy = +— <4(N—|— 1) x@ ,[L2> +0(r?), forr—0. (5.37)
N X(0)

The magnetic field associated to the vortices within théeld picture or the
free charge density associated to the monopole defectmilihB-field picture
are thus well defined at the origin.
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5.3.2 \orticity

A careful analysis of the definition of vorticity in the topajical sector of the La-
grangian density (5.1) enables us to get a precise idea a@irigim of its topological
invariant character. In what follows, we will work mainly thin the A-field picture
in order to highlight the analogies and differences withalready known vortex so-
lutions in the Maxwell-Higgs model. Within this picture,etlexistence of our new
type of topological defects is not related to any symmetgaking whatsoever, but
rather is in direct relation with the fact that the scalardfighnishes at some points in
the plane. Of course all of the following discussion remaialgd within the B-field
picture for the quantisation of the free electric charge.

The case of a single topological defect

It will again be assumed in what follows that the scalar figld) possesses a single
zero of orderV in the plane, placed at the origin. The global equation,

/ Ak A+ @) = %” zjcl, (5.38)
S

implies that the differential(x A + G) is a closed form which is not exact. This rela-
tion remains true in a small neighbourhood around the odgghimplies the following
relation between the ordé¥ and the vorticityL[C]

lim LI[C]= @ N, C=20S, (5.39)
S§—(0,0) n
according to the boundary condition (5.33) and the behawbu,(r) close to the
origin (5.35). This relation established for an infinitemall neighbourhood around
the origin may be extended to any cont@uenclosing the origin, by virtue of the
topological invariance of [C] to be discussed presently.

In fact, the zero of ordel of the scalar field endows the physical varia@lgz) with
a singular part at the origin, while the magnetic flux is wedfided. Therefore, the
“non exact” part ofl(x A+G) has a singular character in the plane since

€ (r“)i(li A; + Gl) =27 E 62(f) .
n
Then, by virtue of Stokes’ theorem,

/Sd(fiA—i—G):]{ (kA+G),

C=08

wheneverl(k A+G) is singular at the origin, this is equivalent to the statertiest the
holonomy of(kA+G) is defined on the manifol&? \ {(0,0)}, henceforth denoted
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R2. This topologically non trivial manifold has the same hoamt as the circles!.
Consequently, any contour in the plane surrounding thdroigga 1-cycle defined
modulo a 1-boundary, thus belonging to the first homologygid; (R3, Z).

The global equation (5.38) selects in fact the global haimparts ofA(x) andG(z)
which are thus equal modulo a global form, the vortiditf’]. Hence, although the
holonomies of(x 4;) andG, are not actual global variables, the global equation im-
plies that their sum must necessarily be topological imrgri The functionaL|C] is
thus constant for the set of homotopically equivalent corgpnamely the (non con-
tractible) loops surrounding the origin. Indeed, choosingh two contour§ andC
and evaluating their dual cohomology group with respecexjta(5.38):

?{(HAJFG) —jé(nA—i—G) ~ 2T (o) - Ld),

C ¢ n

a difference between vorticities is obtained. Clearly tifeedence between the two
contours belonging to the same equivalence clasd @R, Z) is a pure boundary
and thusL[C]— L[C] =0. Following Poincaré duality, equivalent arguments leaithéo
invariance of the magnetic fluk[C] under small gauge transformatioAS= A + «

for any contouc, see [45],

@’[C]-@[C]:]{a:o,

¢
since under these transformatiang an exact form.

The topological invariance of vorticity implies that thebhl equation reads

y{(nA—i—G):%TL[C], nLlCl=ON, (5.40)
C

for all contour<C in R3 enclosing the origin. The procedure just described is vemy-r
iniscent of that which leads to the explanation of the AraheBohm effect. Actually
we will see later thatd,; (x) andG;(z) interchange their global part when interpolat-
ing from contours shrunk to zero to contours at the infinityce G; () tends to zero
for large radius. Thus the (classical) Arahonov-Bohm effeasymptotically recov-
ered. However, in contradistinction to what happens in ttehAnov-Bohm effect, the
quantisation of the (asymptotic) magnetic flux alreadyesrist the classical level and
is related to the ordeW, according to (5.40). One may further enfofee-» in order
that L [C] be integer-valued. However we introduce hereafter a nesvpnetation of
the vorticity, specific to TMDGT, which implies the integestued character of[C]

in a very elegant way.

The global equation (5.40) states that on any curvEiR3, Z), the harmonic parts
of (k A) andG belong to the same gauge orbit under the modular group défran
mations of non zero winding number on this contour. Reqgitire weaker equality
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of the Wilson loop as in Section 3.1, see (3.12), the votititkes integer values
only and is related to the winding number around the non eatible loops. Hence
L[C] = N is a topological invariant belonging to the lattice gratip(Ro, Z). How-
ever, acting on the harmonic part of singular origin, thdaegé gauge transforma-
tions” are themselves singular and field configurations@ated to topological defect
solutions break the invariance under these LGT. Two toposdgefect field configu-
rations differing by their vorticity are topologically disct*. In fact, the only allowed
gauge transformations are regular and single-valued ¢finout spacetime, namely the
“small” gauge transformation of zero winding number for aegi contouiC. Rather
the “singular” large gauge transformations classify ddf# fields configurations ac-
cording to the integer-valued vorticity functional for aleppC.

Multi-topological defects solutions

By virtue of the topological invariance of the vorticity,ethielation (5.40) is true for
all contoursC such that the surface delimited by this contour does notameo an
other zero of the scalar field. It is obviously always truehivitthe simple case of a
single topological defect at the origin. We will now gené&akhis case in allowing the
scalar fieldo(z) to vanish on a discrete set of poin{s= (zx, yr). The requirement
of afinite energy functional, of which the physical part ighod form (5.20) within the
A-field picture, generates the following condition at thedimgical defect location:

0% (G4)* < o0, forz — 2.

Consequently the condition of finite energy field configunasi does not forbid the
physical variableG; to possess a/|z — zi| singularity at the set of point§z;}.
Actually that is indeed the case as shown previously (58&)ugh the analysis in
polar coordinates of the behaviour of the fields close to tigirg where the single
topological defect had been placed.

This conclusion may readily be extended to field configuretiwith topological de-
fects located at the set of pointsin the plane. The topologically non trivial manifold
on which the global London equation (5.38) is defined thenced taR?\ {2, }. Con-
sequentlyL[C] is non zero when the contour shrinks to a paipwhere the singular
harmonic part of the global London equation (5.38) is onlgried by the physical
variableG;(z), following the boundary condition (5.33). The value B[] is then
equal to the order at this point, which will be referred tofés By virtue of the
topological invariance of the vorticity,[C] does not change for two different contours
which can be deformed to each other. However, when the suf§fidwounded byC

4This explains why the dynamical and topological sectorssaf)(are no longer completely decoupled
through our TP factorisation.



5.3. Construction of topological defect solutions 119

encounters another point where the fig{d) possesses another zero of ordér and
thus another point wherd is singular, the vorticity increases by the valtié. The
functional L|C] depending on the contodris subsequently piece-wise constant and
equals the net multiplicity of zeros inside this contour

K[C]
LlCl =) Ni.
k=1

In this equationK’[C] denotes the number of points inside the contou€. In other
words the vorticityL[C] is the sum of the contributions of a collecti®f{C] topologi-
cal defects surrounded ldyalong with their respective degenera€y. Two topolog-
ical defect configurations which cannot be deformed intdedher are topologically
distinct. Singular large gauge transformations classifge topologically distinct vor-
tex solutions according to the associated lattice group,

H'(R*\ {z},2) = Z,
to which the vorticity belongs.

For a single topological defect solution localised at thgior field configurations of
different vorticities are topologically distinct. OnceetBolution consists in more than
one topological defect, their relative positions and reipe degeneracies ought to
be also taken into account. All this information is encodethie vorticity functional
L[C]. In fact, it may be proved that the knowledge of vortict{C] for any contour
C characterises the field configuration associated to a gmgoldgical defect in an
unique way. Further, the piece-wise constant charactdifunctionalL[C] implies
that the space of multi-topological defect solutiong isdimensional, with

L= lim L[DS],
S—R2

for space manifolds without boundary.

Finally, the last important point of this Section is the getheharacter of our analysis
of the topological content specific to TMDGT. Often we havéspmecified purposely
the number of space dimensions, or even the rank of the pliygidables. Actually
our approach of the vorticity is generic for any topologio#ss generation model
with a specific dielectric coupling to a scalar field whatether number of spacetime
dimensions and the tensorial rank of thdorm fields, see (4.29). Hence although
our approach of vorticity may seem heavier than that of thewdl-Higgs model, its
range of application might possibly be far more general.
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5.3.3 Asymptotic behaviour of the physical fields

As has been shown in the previous Subsections, the messaggl day the global
equation (5.32) generated from the topological sectoras ftere exist topological
defect solutions for which physical observables consgdidtom physical variables
possess non trivial topological content. In contradistorcto the case of pure TMGT,
discussed in Chapters 2 and 3, the glolgahfodes” and local -modes” do not fac-
torise in our interacting model. Hence topologically masslielectric gauge theories
may no longer be completely decoupled into dynamical andlégjcal sectors. Even
in the London limit, despite the fact that the non interagtaase (pure TMGT) is
recovered in the physical sector, a non trivial topologamaitent subsists again.

The asymptotic London limit

One way to reach the London limit is to consider the asymptmhaviour of the fields
at infinity, requiring at a same time the (local) energy fumeal, introduced in (5.20)
within the A-field picture, to remain finite. Under the commonly made agstion
that the scalar fiel@(r) reaches its vacuum expectation value rapidly when oo,
the asymptotic values of the physical variables have to obey

2
lim (£)7(G,)? =0, lim o®(Fo)* =0,

r—00 T T—00
according to (5.20) and (5.30). The following boundary dtods are thus obtained:
p— v, G,=k+0(1/r), Ey=0(1/r), forr — oo, (5.41)

and are compatible with (5.29) provided tiat 0. In fact it may be easily seen that
the scalar field(r) approaches its asymptotic value as

o(r) = v+ 0O (e*ﬂm”) , forr — oo, (5.42)

see for example [47, 87]. The characteristic decay(rdt|ji|) " is the inverse of the
mass of the fiel@(r) in the theoretical particle physics interpretation or theerence
lengtt? in the condensed matter physics one.

As o — v rapidly enough at large radius, local equations (5.29) &gl read under
this London limit

O (roEy) = ru*Ey,

r O <E3TG¢) = ‘LLQG%,, forr — oo,
r

5Modulo a normalisation factoy/2, see (4.16).
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wherey is defined in (5.9), and are then exactly solvable. Equabdi( is redundant
with the asymptotic boundary conditions (5.41) since® = —/i? for the quadratic
potential (4.12). In fact, a free theory is recovered atdatigtances and corresponds
to the physical pattof TMGT, see (2.31), to which a topological sector must besadd
in order to reproduce the global equation (5.32). The abougle of equations reads
as follows in a more appealing decoupled form upon setiipg=r G*g, :

1

O?Ey+ -0,Ey = u*Ey, (5.43)
- - 1 -

Gy + -0,G, = <u2 + 72> G,, forr—oo.

The well known solutions to these second order equationsharenodified Bessel
functiond I,,(x) and K,,(x), where in the present situationc Z. These types of
Bessel functions are real-valued and do not manifest agierdiehaviour, as expected
for the physical fields considered. If the physical varightg(r) and G, (r) are
assumed to vanish asymptotically (5.41), then

GX(r) = régo(r):ceHKl(ur),
and E5°(r)

Cm.(] KO(:“ ’f‘) )

are the only acceptable local solutions to the asymptotiatons of motion (5.43).

Considering this asymptotic behaviour, the surface teriii #&hich arises when fac-
torising the Lagrangian (or the Hamiltonian) density tigbour TP factorisation tech-
nique, see (5.12), vanishes at the boundary of the plane

. 1 1
/ e¥ 81 ((AJ + —Gl) E()) d2I = f (A(p + —G(p) E() = O,
S2 K 0o K

and so does not contribute to the action. Finally, beforeitgathe analysis of the
asymptotic behaviour for the physical variables, it is dfrgr importance to consider
global boundary conditions not yet taken into account siheeset of equations (5.43)
is only locally defined. These global boundary condition$tfixremaining integration
constants:,, andce.

Physical fields within the A-field picture

The A-field picture where topological defects of vortex type ailisfirst considered.
As already stated, the asymptotic boundary conditionslj5é not allow the closed

80r equivalently the associated Proca theory or gauge fixaec&lberg theory, see Fig.4.3.
7Also known as Bessel functions of pure imaginary argument.
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form dG to possess a global (or “non exact”) part of singular charaaitlarge radius.
This is to be related to the fact that the conserved currefiBf5sanishes at infinity
while the magnetic flux through the plane reads

L
Do = lim [ (Bpg) da® =21 — lim L[0S] = L.
S—R? Jg Nk S—R2
By virtue of topological invariance of vorticity, the globequation (5.32) implies that
the magnetic field inherits asymptotically the singulartpddG at the origin.

Within the A-field picture, the limito — v corresponds to the asymptotic London limit
of fluxon strings [47] since vortex cores are considered awgiafinitely thin at large
distance. Let us consider now the magnetic fiBJg},(r) in this London limit which

is obviously related t&g°(r), see (5.17). Hence the integration of this latter physical
field over the plane,

2
nKe Cmg

o0
L=c 77/-@62/ rKo(ur) = g —5— = ,
e 0 5 R

fixes the value of the constant,, to
Cmg = N K v2 L.
This integration constant can only take discrete valuesu@ing on the vorticityl.

Going back to vortices of finite core, the magnetic fiB,qg(r) shares with its coun-
terpartBgy(r) in the London limit the same asymptotic behaviour which tresgls

L |mp3 _ 1
A _ wr - ) )
(Bmg) —nli\/ 5, © [1—}—(9(7’)} , forr — oo (5.44)

The behaviour of the magnetic field for vortices in the Maxviibgs formulation is
recovered, wherél /1) is the penetration depth.

Physical fields within the B-field picture

As far as theB-field picture is concerned, under the approximation of dinitely thin
dielectric monopole core at large distance, the electspldcemenDZ (r) defined in
(5.25) reads

T =V T 1
()" £= (DR) = GF = caKa(ur). (5.45)

This approximation at large radius is analogous to the Larighit within the A-field
picture since it is again assumed that the fig{d) reaches its vacuum expectation
value very rapidly, see (5.42).
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Considering now this London limit = v throughout the plane, the electric displace-
ment behaves at the origin as

Ce|1
nr

(D(i)r — forr — 0.
This limit in combination with the behaviour of the physiealriableG,,(r) close to
the origin (5.35) implies that the constantcan only take discrete values

Ce|:EL.
n

The relation (5.45) implies that the electric dispIacemﬁ@(T) falls exponentially
to zero at large radius. Therefore, the total free electnarge(; carried by the
monopole at infinity, given by the global equation (5.27ade

QOO =
f n
fixing again the valueng. Hence within theB-field picture, vorticity measures the
free electric charge in units of one quantum of charge of thkedtric monopole.

As already stated within thd-field picture, the London limip = v provides a very
good asymptotic approximation to our model. In this limite t‘measured” electric
field Eff)(r) propagates in the vacuum and is therefore proportionaldcetactric
displacementEZ = 202 DB . Therefore, within the3-field picture, the “measured”
electric fieldﬁg (r) which takes into account the response of the dielectric umedo
the free electric charg@ s behaves at large distance as:

(EEY = Lnv? ;_/:e_w [14—(’)(%)} , forr — oo, (5.46)

and decreases exponentially at infinity withy () as characteristic decay length.

5.3.4 Numerical solutions: two types of topological de$ect
Properties of the solutions

In this Subsection the solutions to the set of local equat{ét29), (5.30) and (5.31),
completed through the global boundary conditions (5.32) @én33), will be pre-
sented. These solutions were obtained through numericallaiion in collabora-
tion with Térence Delsate and, as a reminder, account fargestopological defect
localised at the origin and possibly degenerate. Intraduthe radial coordinate
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normalised to the length scale that isu = p 7, and redefining the physical fields as
variables without physical dimension:

G:nthv ézgv /’LE:_E()a X:_a
v v 1

the ensuing system of equations reads:

aﬁa—lauG—QQG = 0,
u
I R
339+58u9—§G29+A9(1—92) = 0,
80,.G—uE = 0. (5.47)

These equations depend on two parameéfarandy of which only the ratio\ is phys-
ically relevant. This set of coupled differential equagas subjected to the following
asymptotic boundary conditions

lim o(u) =1, lim G(u) =0, lim E(u) =0, (5.48)
according to our discussion of the asymptotic London limtitlesthe physical vari-
ables take the following values at the origin

0(0) =0, G(0)=1L, LeZ, (5.49)
in agreement with the behaviour of the physical fields clogbé¢ origin.

The numerical resolution of these coupled differentialapns is far from being triv-
ial. Indeed, on the one hand, these equations are non lindavrathe other hand a
part of the above boundary conditions is delocalised on thabary of the plane at
infinity. Hence, the first coefficients of the expansion in powf v at the origin must
be adjusted in order to meet the required boundary condi@mnfinity. The FOR-
TRAN subroutine “COLSYS"” has been used in order to tackle kimd of difficulties
arising in the numerical integration of the set of equatithg7) for the ensemble
of boundary conditions (5.48) and (5.49). As seen heredfiese solutions are lo-
calised (particle-like) topological defects in the sers the physical fields approach
their asymptotic vacuum values exponentially. This is coméid through our study of
the asymptotic behaviour of the physical variabﬂﬁ%(r) andEZ% (r), see (5.44) and
(5.46) respectively, which have a characteristic decagtleequal to one while the
decay length ofi(u) is (2 1)~ 2, see (5.42).

Considering the global boundary conditions (5.32), therastptic vorticity L has dif-
ferent meaning whether one considersthéield or theB-field picture. Actually,L is
the total quantised magnetic flux (in unit of flux) through fHane of the vortex field
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configuration. Within theB-field picture, vorticity around each monopole location is
associated to the quantised free electric charge carrigdi®ynonopole. As far as
the free energy is concerned, vorticity is related to thekogical sector, see (5.22),
generating the global equation (5.32) and thus not decddpen the physical sector.
This implies that topological effects are no longer asdedido the simple degener-
acy of the energy spectridnbut really affect it. Hence two topological defects with
different topological invariant, that is different voiitig, have different energy.

B-field picture: (di)electric monopoles

As already stated, the set of coupled equations (5.47) alatigthe global equation
(5.32) describes new topological defect solutions wittie B-field picture. These
(di)electric monopoles account for a free chafy€C], of which the classical quanti-
sation is of topological origin, embedded in a dielectricdinen. Usually the electric
displacememﬁg(r) is used to describe free electric fields in a dielectric mexdiu
However, the behaviour of this physical variable close ® dhigin is pathological,
see (5.36). The electric displacement is associated toréeecharge density;(r)
through the Maxwell equation (5.27). However, strictlysheg,ﬁg(r) is not gen-
erated byps (1) sinceV xﬁg # 0. Indeed although the free charge density is finite at
the defect location, see (5.37), the electric displacemsesiigular. This fact is already
made manifest through the global equation (5.27). The rémia charge distribution
pe(u), expressed in terms of the dimensionless varidtle),

pf:_Ea

is plotted in Fig.5.1, Fig.5.2 and Fig. 5.3.

As usual for this type of topological defect solutions, tiaéue of the scalar field(u),
presented in Fig.5.1, is bounded by its vacuum expectatibrevg(u) < 1, in order
that the physical fields reach their vacuum value at infinityithin the context of
superconductivity, the value of this scalar field interpegabetween the completely
disordered stateg(u) = 0) at the vortex location and the completely ordered state
(o(u) = 1) at infinity, where the Meissner effect is maximal. Likewisghin the B-
field picture, the scalar field(u) effectively acts like a dynamical dielectric medium,
of relative permittivitye p = 1/, which counterbalances the free electric field in the
vacuum sincey(r) < 1. The contribution of the dielectric medium is maximal and
even singular at the electric defect location. Accordinga®4), this singularity in
1/r? compensates for that ih/r of the electric displacement, see (5.36), with the

8As was the case for pure TMGT defined on non simply connectetfoids, see Chapter 3.
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Dielectric monopoles L=1. lambda=_5

Eel

Figure 5.1: Dielectric monopole of one quantum of free electric chartyénéinity
within the B-field picture at the Bogomol'nyi point = 1/2. This figure represents
the rescaled electric fieldEe = (1/u2nv?)(ES)", and free charge densityy =
(n/u?) pr, along with the inverse relative permittivigy=(1/cr ) as functions ofi.

result that the total “measured” electric fieldf; (r) given bye(z) EB (z)=DB (x)
be zero at the origin. In the non zero coherence length chsanéasurable electric
field is screened by the permittivity and hence protectechfaobare singularity. On
the contrary at large radius, the total electric field praag in the vacuum as the
influence of the dielectric medium becomes insignificantisTatal electric field is
related to the variable without dimensiGi{u),

1 Byu Q~2
W(Em) = G.
Fig.5.1, Fig.5.2 and Fig.5.3 present the results of numakiivestigations for this
radial field which is well defined all over the plane.

A-field picture: Dual magnetic vortices

Let us now concentrate our attention on the dual formulatiiimin the A-field picture
of the Nielsen-Olesen vortex solutions of quantised magfietx L (in unit of flux).
The magnetic fieIdani}g(u) associated to a vortex solution localised at the origin is
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Dielectric monopole. L=1

Eel lami
Esl lam
Esl lam
E laml
E lam|
E lam|

bdla=

bda=5

bda:

bdla=

=1

bda=5

bda:

=1

Figure 5.2: Dielectric monopole solutions of one quantum of free eleatharge
at infinity within the B-field picture for\ = 1,1/2,0.1. This figure represents the
rescaled electric fieldEe = (1/p2 nv?)(ES)" and the rescaled free charge density,

E=(n/u?) pt, as functions of the normalised radius

Dielectric manapole, L=2

Eel lambda=1
Eel lambda= &
Eel lambda= 1
E lambda=1
E lambda=5

E lambda=1

Figure 5.3: Dielectric monopole solutions of two quantum of free electharge
at infinity within the B-field picture forA = 1,1/2,0.1. This figure represents the
rescaled electric fieldEe = (1/p2 nv?)(EF)" and the rescaled free charge density,

E=(n/u?) pe, as functions of the normalised radius
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Magnetic vortices L=1. lambda= 5

Figure 5.4: Dual vortex solution of one quantum of magnetic flux at infimtthin
the A-field picture at the Bogomol'nyi “self-dual” poink = 1/2. This figure rep-
resents the rescaled magnetic field,= (u2/xn) Bnﬂ‘g, the rescaled current density
(e/nv) J, and the renormalised Higgs fielglas functions of..

related to the dimensionless varialfi¢u) according to

2
| A
— Bh,=FE.
R mg
This transverse magnetic field, represented in Fig.5.4efeated through the usual
Maxwell equation,

eQﬁB;ﬁg =KN «J,

by the azimuthal componedt, (u) of the current density which reads in term of the
dimensionless variablg(u)
e

—J, =G

v
Fig.5.4 presents the results of numerical investigationgHis azimuthal field well
defined all over the plane and for the normalised Higgs fi€ld. Here we do not
describe in detail the vortex solutions we obtained sineg tre already well-known
in the literature through the study of the effective modetypfe 1l superconductivity
(see [87] and references therein). We prefer to dwell onaged and differences
between vortices in the Maxwell-Higgs model and their pnéseal formulation.
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TMDGT (5.1) Maxwell-Higgs
in the plane model
Fact TP i 1 order ™.
actorisation formulation S
Sym. breaking phase S
Topological sector Physical sector Boundary conditions
Global equation on Local equations for Non univalued
R\ {z,} dynamical variables complex phase

Figure 5.5:Duality relation between vortex solutions in our dielectmodel of topo-
logical mass generation within thé-field picture introduced in (5.1) and vortex solu-
tions of the Maxwell-Higgs model * 1 dimensions. The two vortex solutions share a
common local sector of physical variables but the originhaf tlassical quantisation
of the magnetic flux, of topological character, is different

As already stated our TMDGT i1 dimensions (5.23) within thd-field picture and
the Maxwell-Higgs model share a common physical sector o&dyical variables but
they differ through their topological content. Hence thsories admit both vortices
as static solutions but the origin of the classical quatitiseof the magnetic flux is
different, see Fig.5.5. The vorticity defined in our dietecinodel of topological mass
generation and the vorticity associated to boundary cimmgiton the complex/(1)
scalar field in the Maxwell-Higgs model, see Section 1.4yel&ed through

Maxwell-Higgs TMGT
orLlC] = [T 9.6dp = nk®[C]+n §.G

Non univalued Global part

complex phase oR?\ {z;}

Topological defect configurations which cannot be deformémleach other are topo-
logically distinct. Hence singular large gauge transfaiores classify our dual vortex
solutions according to the first conomology groéf,(R \ {2}, Z). Vorticity, associ-
ated to the number and degeneracy of topological defeawlated to the parameters
of this lattice group and may only take integer values adogty. Recalling that for
non pathological manifolds, the first homology gratip(M, Z) is isomorphic to the
first homotopy groups (M), modulo the commutator subgroup, enforces the com-
parison with the boundary conditions in the Maxwell-Higgsdal. However our dual
approach remains noticeably different. In contradistorctvith the usual vortices, the
construction of our dual vortices proceeds first from thdyais of the behaviour of
the physical variables close to the position of vorticesefTthe consequences of this
local behaviour on the topological structure of the sohdiare addressed.
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5.4 Conclusion

Let us conclude this Chapter by some comments about thenexizare which has to
be taken in dealing with global effects. Two “pure” theomsbsiring a common formu-
lation in terms of physical variables through some duatisgtrocedures but differing
by their gauge symmetry content are equivalent if they afmee on topologically
trivial manifolds. As far as topologically massive dielécgauge theories (TMDGT)
are concerned a further restriction applies: the scalat leks not vanish anywhere
on the spacetime manifold since then global effects, aasatio topological defect
solutions, arise. Otherwise, the process which consiststaiblishing the dual equiv-
alence between the topologically massive action (5.23)iwthe A-field picture and
the Maxwell-Higgs model does not apply unless global bowndanditions are de-
fined (see for example [45]). Up to now the occurrence of tlidebal boundary
conditions was considered in the literature only within #edy of some effective
limit in the Nielsen-Olesen vortex solutions which lead#te formulation of Nambu
strings [47, 79]. In the context of our work, this problem idieect consequence of
the formulation of the Maxwell-Higgs model as a first ordexdhy described by local
physical variables, see Section 1.4.

The gauge embedding procedure relying on the Fradkin-Vily theorem enables
to establish duality relations between the most common gassration mechanisms
which possess different gauge symmetry structures, seé.BigHowever such dual
equivalences no longer hold as soon as topological defedtsus arise. Indeed, con-
sidering for instance the Maxwell-Higgs model and the TMD®@ithin the A-field
picture defined ir2+1 dimensions, these theories are locally equivalent butdhe-t
logical origin of the quantisation of the magnetic flux isatbt different, see Fig.5.5.
As far as the Maxwell-Higgs model is concerned, the clasgigantisation of the flux
comes from non trivial boundary conditions for thig¢1) complex scalar field which
is required to reach its vev at infinity. It is therefore inéitaly related to the sym-
metry breaking potential. Turning now to the case of the TMDd&fined in (5.1),
we have proved in this Chapter that the topological contEtpmlogical defect solu-
tions resides in the topological sector which maintainstiypes of gauge invariances.
Therefore it makes no sense to relate the formation of thege#dgical defects to any
symmetry breaking mechanism. Usually in the literature,ttipological sector was
until now swamped by a mesh of successive procedures of gangeddings and/or
gauge fixings characteristic of the dualisation methodds Ehprobably the reason
why our topological defect solutions have not been discademtil now. In fact, the
formation of these topological defects perfectly illugtsathe restricted validity of the
gauge embedding procedures relying on the Fradkin-Villguviheorem (see [44] and
references therein).
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Finally, the strong interdependence of the two equivaléttupes implies that all in-
sights gained through the study of magnetic vortices withnA-field picture might
be applied to the new dielectric monopoles within fdield picture. Among an ex-
haustive list, let us just mention the careful analyticadlgsis developed in order to
prove the existence and smoothness of finite energy vortetics (see [87] and ref-
erences therein), the quantum corrections around thecdaasn perturbative vortex
configurations, vortex dynamics and interactions [88], Btsome sense this thought
process already applies in this Chapter. Conversely a @imphd systematic analy-
sis of our novel dielectric monopoles picture might shed light on the properties
of the magnetic vortex solutions. Finally our work offerseaninsight in the analysis
of solitons in abelian gauge field theories since our progedould allow to con-
struct topological defect solutions in any dimension neersidered before. We will
hardly explore this avenue in Chapter 6 by addressirsg-indimensions a novel gen-
eralisation of vortices to 2-form gauge fields and their asged dielectric monopole
solutions for 1-form gauge fields.






CHAPTER O

New horizons

Vortex solutions in abelian gauge theories have been msttiuntil now by the strin-

gent conditionp = 1, namely they have been associated witform gauge fields.

However the topological sector of TMDGT retains the sammfdation whatever the

number of spacetime dimensions or the tensorial rank of ¢heyg fields. Therefore
our work offers new insights into the analysis of brane-tyg@ological defects in

abelian gauge field theories. We will hardly explore this raawnue in this Chapter
by addressing for the first time vortex-type topologicakdées generalised to 2-form
gauge fields im3+1 dimensions, within the3-field picture. In other respects, the
(di)electric “monopoles” obtained in Chapter 5 do not off@uch interest per se be-
sides the novel character of their construction. Indeechhest of our knowledge,
there do not exist applications where electric fields paarm dielectric medium in the
plane. However such (di)electric monopoles feiorm gauge fields admit a general-
isation in3+1 dimensions, namely a more realistic case, withinthéeld picture.

Finally this Chapter also mentions a number of possible aesrfor research leading
beyond this Thesis in cosmology, particle physics and awetematter physics.

133
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6.1 A zoo of topological defects ?

6.1.1 Dynamical and topological sectors

The construction of magnetic vortices within tHefield picture, and their equivalent
dielectric monopoles within th8-field picture, which was described in Chapter 5 for
a specific number of spacetime dimensions, is generalisalday dimension for a
large range of TMDGT. Indeed the action for topologicallyssise dielectric gauge
theories in any dimension introduced in (4.29),

P 1 o?=P 1
STMGow = /Mwa/\*F—i— 5 gQ(g)H/\*H
+ SBF[A,B] + So [w] —|—SQ [Q] , (6.1)

should possibly admit generalised topological defectyviden that at least one of
the two scalar fieldsg(z) or w(z), is allowed to vanish on a spacelike submanifold.
The worldsheet associated to the topological defect is e@fas the trajectory of the
center of the core of these defects. It may also be definedeasuttmanifold where
a dielectric scalar field vanishes, by analogy with the (divxwell-Higgs model
where vortices are related to zeros of the Higgs field. Themgelrange of extended
topological defect solutions may emerge from (6.1) with ptementary physical in-
terpretations whether one works within tHe or the B-field picture.

As usual, our TP factorisation enables to isolate the playsiaed the topological sec-
tors of these novel topological defects of which the rangsatditions should be re-
stricted by the stringent condition of finite energy. In gaudistinction with the topo-
logically trivial case addressed in Section 4.2, the duztbidsed action should be only
partially decoupled if one allows for possible topologidafect solutions and reads

Spar[Av Bv Ea Ga 0, w] = den[E7 G7 0, w] + Stop[Aa Ba E7 G] )

up to a physically irrelevant surface term for boundary é¢tos associated to topo-
logical defect configurations.

The physical sectafqyn[E, G] does not involve any topological content associated to
topological defect solutions and therefore may be writigaimas in (4.31),

S @) (B + L (0) (G +82 1]+ 5, [0
+ l/ ol PEENIG - (1 -€&)dENG.
M

K

den =
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According to the usual properties of topological defedts, $pace of physically in-
equivalent field configurations is the moduli space, thdtésspace of classical soliton
solutions modulo gauge transformations (connected taitg&nHowever in our ap-
proach, the topological defects are constructed from asettlready gauge invari-
ant variables. So any soliton solution is physical per sethedpace of topologically
inequivalent solutions is defined in an one-to-one mannetr.

The second sectdfiop[A, B, E, G] of the form

Stop = % /M(l — &) d(kA— PP Q)A(k B+ E)

— oPE(kA—oP P GYANA(kB+E),

is identified as being topological not only because the fiatdsopologically coupled
but also because this sector generates the generaliseddhberquations in any di-
mension. By analogy with the Nielsen-Olesen vortex, sohgiin 2+1 dimensions
the local form of these equations is trivial while their gibliorm embraces all the
topological content which characterizes a given topolalgiefect field configuration.
By virtue of Stokes’ theorem, these global equations arbefarm

Q jé kA — PP G = oPr Ly, Q jé KB+ E=2"PrL[Cs,,
Cp Cap
whereC,, andC,_,, are boundaries of spacelike submanifolds of dimengignandd-

p+1 respectively, whild[C,] andL[C,_,] are generalised vorticities. The fact that the
homotopy groupgl, (R%+\I') andIl,_, (Rt \T') must be non trivial constrains the
dimension of the worldsheefsandI" associated to each topological defect solution
of respective vorticityl and L.

6.1.2 Some comments about our terminology

Let us specify the terminology we use for abelian monopotk\atex solutions, in
order to avoid any confusion. A monopole will refer in our gention to a point
topological defect in space, hence a worldline in spacetaagying electric or mag-
netic charge. The generated electric vector field (resp.netigtensor field of rank
(d—2)) is radial in space and is associated tolaform (resp. {— 2)-form) gauge
field. More generally, an electric pole associateg-form gauge field is a topological
defect of dimensiong— 1) in the space manifold, whatever the number of spacetime
dimensions. We will use the terminology of electric “montspaf rankp” as usual, or
p-brane topological defect of the monopole type. For the spiftegm gauge field in

a spacetime of dimensiafi-1, the magnetic pole is also an extended defect of which
the associated worldsheet is of dimensidrp—1).
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A vortex will be defined as a topological defect of which thegmetic (resp. electric)
field is generated by a vector current defined on a spacelikéimvensional surface in
the spacetime manifold of dimensidn-1. This topological defect thus extents along
a(d—2)-dimensional surface, and so a worldsheet of dimengiefh. The generated
magnetic (electric) field is transverse to the plane alonghvthe planar current lies
and is associated to a 1-formi¢¢ 2-form) gauge field. More generally, a magnetic
vortex associated to-form gauge field is a topological defect of dimensida-p— 1)

in the space manifold of dimensiah We will use the terminology op-vortex, or
(d— p— 1)-brane topological defect of vortex type. For the sasferm gauge field

in a spacetime of dimensiomst 1, the electric vortex is also an extended defect of
which the worldsheet is dual to that of the magnetic vorterally, an instanton will
be defined as a defect of which the worldhistory reduces tdrg.po

In the specific case of TMDGT of which the action (6.1) invahael-form fieldA(z)
and its associated ¢ 1)-form field B(x), the following table is obtained:

Extension in | Extension in Extension in
2 dim. space| 3 dim. space d dim. space
Electric monopole point point point
Electric vortex line line
Magnetic vortex point line (d — 2)-hypersurface
Magnetic monopole| Instanton point (d — 3)-hyperline

In particular, the electric monopoles are generated bytmbactric charges while the
magnetic vortices are generated by a current of point édeckrarges whatever the
number of spacetime dimensions.

6.1.3 Perspectives

One might expect the emergence of a zoo of brane-type tojaladefects from the
ready extension to any dimension and to forms of any rankpflamgically massive

dielectric gauge theories, with a convenient form for tHéis¢eracting scalar poten-
tials. If they exist, these brane-type defects have a diffeorigin than those arising
in compact QED and their range should be limited by the strmgondition of a fi-

nite energy density. The coupling to gravity would also berderesting avenue to
explore in order to construct gravitational brane-typeedésfin theories with extra di-
mensions. Then the formation of these brane-type topadbdiefects involves fields
which naturally arise in processes of dimensional redunst{@nd effective string the-
ories), namely a real scalar field (dilaton, radion,etcd @al-valued tensor fields.
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6.2 Monopoles and vortices in 3+1 dimensions

6.2.1 The situation in 3+1 dimensions

Let us consider the most general dielectric extension o€tteenmer-Scherk theory,

1 1 1 1

L5 = ————F, "+ ———H,, H"? + Lo + L
TMGow 462(w) 1z + 12 gz(g) pvp + + Lo
1—
+  KketPr? (%Au Hypo + TgF#,, BPU> ,

where the general action (6.1) is restricted to the spe@8ee=1 in 3+1 dimensions.
As usual,L,(o,d,0) andL (w, 0, w) are the decoupled Lagrangian densities for the
dynamical scalar fieldg(z) andzw(z) of respective potentialg (o) andV (w?) and
arbitrary dielectric functiong? (o) ande?(w). Our TP factorisation obviously applies

and the resulting partially decoupled Lagrangian densiags

1 1

Lie = —7¢(®) B B + 5 6°(0) GuG* + Lo + Ly (6.2)

1
+ 5T (€0uGy By — (1= €) 9B, Go)
K vpo 1 1

+ 656# P (AP' — EG‘U'> 31, (Bpa’ + EEPO-)

oo ey, (4,16, (B + 1B, ) ST
2 M v K v po K po 5

taking into account the possible non trivial topologicdkefs associated to zeros of
the scalar fields.

The local sector

The first two lines of the factorised Lagrangian density Y@&&count for the local
dynamical sector expressed in terms of the physical prdjmapeariables. The local
Euler-Lagrange equations resulting from this sector read

ﬁgQ(g) MG, = —% e"P? 0, E o (6.3)

K e2(w) nhe n? E.s = €"P70,G,

This local sector is not affected by the possible existerfca subset of spacetime
where the scalar fields(x) and/orw(z) vanish. The dynamics of the scalar field
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w(x) is described through the equation

Ow = _% o(w) ¢ () By E™ — V(%) , (6.4)
and likewise for the dynamics of the other scalar figld). Notice that we have also
defined in the above equation

e/(w) — dZ(ww) , f//(w2) _ d‘/d(;ﬂ ) )

A similar convention is used to express the derivative wétspect ofo(x).

The Global sector

As shown in the previous Section, the topological sectoegaes two global equa-
tions of motion, one relating the global part4f,(x) andG,,(z)

Q (k Ay —Gp) du” =27 L[Cy] (6.5)
C1
in terms of the vorticityL[C,], and the other relating the global part Bf,, (z) and
Euw (z)
Q N
5 (k Buy + E,) du* A du” = 47 L[Co] (6.6)
Ca
in terms of the vorticityji[cg]. As far as these two global equations are concerned,
let us assume now that the curve integrals are defined alcagekie contourg,
of dimensiong = 1, 2 and that we focus on single topological defects at the origin
Then the vorticity is a non trivial topological invarianttiie spacetime manifold on
which the associated physical field of ragks regular is of the same homotopy as
S9xR*~9~1, This condition of topological origin constrains the dirsemal extension
of topological defects of vorticity,[C; ] or L[Cs], thus the dimension of the worldsheet
on which the scalar field(x) or () respectively vanishes. Hence topological defect
solutions obeying the first global equation (6.5) must biegtlike since

I, (R*\Iy) =11, (§' x R?) =Z,

whereR* \ T’y is the submanifold on whick;(z) is regular and’; is the associ-
ated worldsheet of dimension two. Likewise topologicaledt&olutions obeying the
second global equation (6.6) must be point-like since

M (R*\T1) =102 (52 x R) = Z,

whereR* \ T'; is the submanifold on which;; () is regular and’; is the associated
worldline.
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Topological defects in 3+1 dimensions

As is well known, vortex (or monopole) field configurationdfiently distant in
comparison to the size of their core may be thought as a setterfaicting Newto-
nian particles. However, the question of the multi-solismtutions, their interaction
and dynamics will not be addressed at all. The purpose of thgept Chapter will
be reduced to a preliminary classification of our novel sohg in 3+1 dimensions.
Within the context of this Thesis only dielectric monopadesl magnetic vortices will
be considered, as shown in the following table where thevatprice relation between
the two possible pictures is also indicated:

A-field picture = B-field picture
o(z) = (o), Vx | Electric monopole| point | Magnetic vortex
w(z) = (w), Yo | Magnetic vortex | line | Electric monopole

We will assume that one of the two scalar fields is frozen todisuum expectation
value. Of course other types of topological defect soligtionight exist without this
assumption but will not be addressed. For the first time, &iptesgeneralisation
of vortex solutions for 2-form fields3,,,, («) will be considered under the spherical
symmetryansatz These topological defects may be interpreted in an ecerivavay
as electric monopoles embedded in a dielectric medium, aélwiine polarisability
function is related to the scalar fietd(x). Under the cylindrical symmetrginsatz
the usual vortex string solutions are also recovered, inneigdisation of those that
were constructed in the plane in Chapter 5.

6.2.2 Topological defects within spherical symmetry

Let us now consider in particular the point-like topolodidafect solutions satisfying
the global equation (6.6). For the sake of simplicity we a#lsume that the scalar
field o(z) is frozen to its vacuum expectation value. This allows useioade

9(0)=9({0) =9. (6.7)

Consequently the topological sector which generates tier global equation (6.5) is
trivial. Only one type of topological defects may be consted from the Lagrangian
density (6.2) which now reduces to

2
o —i (@) B,y E™ + % G,G' + Lo (6.8)
1 vpo
5 (€0uGy By — (1= €) 0uB,, Go)
1-¢
4

+ ge,u.l/pd AN au (K/ Bpa' + Epo’) +

e"P? Fry (kBpe + Epo)
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Static field configurations

We are presently interested in the existence of classitigis@olutions to the equa-
tions of motion (6.3), (6.4) and (6.6) under the further dtind (6.7). These static
field configurations are thus solution to two sets of pastidéicoupled first order equa-
tions for a given spacelike sheet. The first set relétglsc) andE;; ()

ke2(w)oF o Ey; = —mo,Gy

1 ..
592 GO = —5 Ewk azEJk )
while the second set relaté%, (x) andG;(x)

K 92 Gl 5ij = Ejkl akEol
ke(w) Ey; 69 = —e*9,G, .

These two pairs of equations are coupled through the scaldrdi(z) of which the
second order static equation reads
1

Vi — (@) (@) 5

5 (B = () + V(). 6.9)

Finally the global equation (6.6) accounts for the non alitopological content char-
acteristic of the present soliton solutions.

Spherical symmetryansatz

For the sake of simplicity our analysis is restricted to fogaal defects all of whose
positions coincide with the origin. Hence convenient camaites to describe our new
point-like topological defect solutions are the spherizads since the associated phys-
ical field configurations possess the spherical symmetrycoAding to our conven-
tions, the spherical coordinates are defined as

x = rcospsind,
y = rsinpsind,
= rcos?,

wherer = /22 + y2 4 22 is the radiusy is the azimuthal angle; € [0, 27|, while
¥ is the polar angley € [0,#[. The covariant space components of any 1-form
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A = A;(¥) da restricted orf2! (R3) transform under spherical coordinates as

sin

rA, = rcospsindA, — ¢A¢+coscp cost? Ay,
sin ¢
rA, = rsing sinﬁAT—i-C(,)sgA@—i—singo cosv Ay,
sin
rA, = rcostA, —sind Ay,
while any 2-formB = 1B;; () dz’ A da? restricted orf2?(R?) transform as
r? By. = —rcospcotd B, —cospByy — 1 sing By,
B, = -—r sin ¢ cot ¥ B,., —sing Byg + 1 cosp By ,
r? Byy = 71Bp,—cotdBgy.

Finally, by analogy with the case in 2+1 dimensions devaldpe&Chapter 5, the topo-
logical defect solutions possess two possible physicafimétations whether within
the A- or the B-field picture. Each of the two pictures requires specifisétzevhich
turn out to be equivalent on account of the equations of motio

A-field picture: Dielectric monopoles

On the grounds of an analysis similar to that of Section 4@ ,ltagrangian density
(6.8) within the A-field picture € = 1) is very reminiscent of a dielectric Maxwell
theory for the gauge field!, («), see Section 1.4. At this stage, it turns out to be
useful to introduce a furthe@msatawhich cancels the magnetic field

Eo; = 05 (Hﬁg)j =0,

in order to restrict to purely electric topological defeghgions. These point-like so-
lutions describe a free electric charge dengijtyr) embedded in a dielectric medium
of dielectric functiore (z) = e~2(w) to which is associated the dielectric displacement
Dei(x)
ANi 1 ijk
(Der)" = 7€ " Ej - (6.10)
On account of the spherical symmetmysatz the electric displacement is required to

be radial and to only depend on the radial coordinate. Hereeeguire a kind of
hedgeho@nsatZor this vector field

(DY)t = DI% ., where(D3)"(r) = D(r).
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Given the relation (6.10), this implies that the physicaiafle E;; (x) is of the form
, 1 ; 1
Ejjds' Nda? = 3 sind E 0 ¢ 09 dz" ANda? = 3 Ep9dp Ndd.

where the variablé () only depends on the radius,

E,9(r,9) = —sind E(r). (6.11)

Combining all the contributions of the aboaaséatzethe static equations of motion
reduce to

r20,Gy = ke*(w)E, (6.12)
OHE = kg’ Gy.

Therefore the time component 6f,(x) must depend only on the radius, while its
space components,, G, and Gy vanish identically. Similarly to the case in 2+1
dimensions, the variabl@,(r) may be associated to the free charge density

or =K g*Go.

Finally, the local equation (6.9) now writes

1

= O (r* 0,w) = e(w) €' (w) %4 E? 4V (w?), (6.13)

and determines the radial profile ®f(r).

These local equations must be completed through the glgakion (6.6) which now
becomes

K QP[Cy] — O //E sind dp di = 47L[Cy] (6.14)

for a spherical contouf, centered around the origin. In the above equation we have
defined the flux,

P[Cy] = ¢ B, (6.15)
Ca

which is related to the free electric charge encloseddyy

Qt[C2] = £ ®[C3],

of the dielectric monopole field configuration within thefield picture.
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B-field picture: Magnetic 2-vortices

The physical sector of the Lagrangian density (6.8) withimB-field picture € =0)
may be considered as the generalisation of the physicaluiation of the Maxwell-
Higgs model, see (1.48), to 2-form gauge fields in 3+1 dimamssi The furtheansatz
introduced restricts topological defect solutions wittiie B-field picture to purely
magnetic ones, with the magnetic field depending only ondbais on account of the
spherical symmetrgnsatz

Zero electric field :  (E5)Y = e*€% Gy =0,

r-dependent magnetic field: Bﬁg(r) =e? Go(r).

According to the equations of motion, thasisatzimplies that all the components of
E,. (x) in spherical coordinates vanish identically, exceptfis (r, ) which must
be of the form (6.11).

The point-like topological defect solutions which obey #ggiations (6.12), (6.13) and
(6.14) may be considered as a generalisation to 2-form ghelgls of the Nielsen-
Olesen magnetic vortices. In particular (6.14) is seen teespond to a generalisation
of the global London equation for the effective theory ofdyp superconductivity.
The magnetic field of a 2-form gauge field in 3+1 dimensionsssalar in the same
way that the magnetic field for a 1-form gauge field is a scala2+1 dimensions.
Therefore, in comparison with the case in 2+1 dimensioresfuhctional®|[C;] de-
fined in (6.15) may be interpreted as the transverse flux ofrthgnetic field through
the hypersurface of dimension three embedded in a spacenehdion four.

6.2.3 Towards magnetic 2-vortex and dielectric monopoles

On the assumption that the scalar fieldr) be an analytic function which vanishes at
the origin ofR3, zw(r) may be written as a series expansion in powersaffthe form

w(r) =r Z Xy -
n=1

Let us recall that the positive integ@f is called the order of the zero ef(r). The
assumption that the function&l/C;] vanishes identically for any contour shrunk to a
point, even though this point may be the origin,

1
lim —7{ Buydpdd = lim ®[Cs] =0,
Cz CQHO

Co—0 K
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is considered as a further global boundary condition. luessthat the magnetic field
within the B-field picture or the free charge density within tA€field picture are not
singular at the location of topological defects.

On the grounds of the Hamiltonian density¢.23), one may readily infer the following
necessary condition for a finite energy functional

e*(w) (Eiy)?* < o0, forz — 0, (6.16)

which given the spherical symmetapsatzreduces to

1 -
62(w)—4E2<oo, forr — 0.

T

This condition constrains the first term of the expansio@()f) in powers ofr close
to the origin, according to the form of the dielectric fuctie(zw). However the

variableE(r) is also constrained by a condition of finiteness of the flux:

lin%Q //E sinddep dy = —47L.
These two conditions put together imply that the powew6f) in the dielectric func-
tion e(w) may depend on the ord@&F and must be at least of order four¥f=1. The
analysis of the behaviour of the fields close to the origimaloorates this conclusion.

Let us presently restrict our general discussion to the dasel and define the di-
electric functiore(w) to be of the form

e(w) = (w?, (6.17)

where( is a constant parameter of physical dimensioné Lz. As far as the poten-
tial V(=) is concerned one may of course consider the usual “Mexicashaped”

quadratic potential defined in (4.12). However the form &f dielectric function has
direct influence on the formulation on the potential. Indetethay be proved that a
BPS limit exists for the energy functional with a dielecfiimction of the form (6.17)

for a sixth order potential. We hope to obtain in a close fitommerical solutions
for these new topological defect solutions which alreadyifeat regular behaviours
asymptotically and close to the origin. In the c@ée- 1 the existence of topological
defect solutions of one quantum of magnetic flux within #dield picture or one

quantum of free electric charge within tiefield picture is expected.

LIn this Hamiltonian density introduced in Chapter 4, thdlacheld o(z) is dynamical whilew (z) is
frozen to its vacuum expectation value.
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6.2.4 Perspectives

The abelian Higgs models offer a common formalism for dieggeenomena where
topological defects arise in different areas like conddn®satter physics, particle
physics, cosmology, etc. In the same way the dual formulatiotopological de-
fects might be added to the exhaustive list of synergieséatwery distinct fields in
physics through a common mathematical formulation. Ther@ner-Scherk theory
defined in (1.24) offers a possible description of effectuperconductivity [75, 74],
Josephson arrays [76] for compact gauge groups, confindmgehitx tube [77, 78],
etc. The same theory was also used as a dual formulation aficagtrings [79].
We have properly established that the formulation of alkéheories as topological
mass generation mechanisms is not a happy coincidenceougthseemingly some-
what unrelated at first sight, these theories share in comamaoriginal description
as Landau-Ginzburg models or their Lorentz covariant Madixitigygs extensions,
admitting vortex solutions of quantised magnetic flux. bfse, within theA-field
picture, the dielectric Cremmer-Scherk (DCS) theory deffing4.1) admits topolog-
ical defects dual to these vortices. The formation of vediwithin this formulation
is not associated to phase transitions nor to any local syrgrheeaking. Within the
London limit the pure Cremmer-Scherk theory generates fusatex strings with a
non trivial topological sector inherited from the assosibtlielectric theory.

As far as cosmic strings are concerned, the great advant#égeformulation in terms
of (DCS) theories is the presence of a real scalar field anchtisyenmetric 2-tensor
field instead of the less natural complex scalar field of thedaa-Ginzburg model.
For what concerns the possible applications in condenséenpéysics, nothing for-
bids to describe the formation of magnetic vortices in tymeiperconductorsin terms
of our effective DCS theory. The interesting point here is different origin of the
topological content in comparison with the compact CremB8agherk (CCS) theory
introduced in [75, 76]. Within the DCS formulation, we hawablished that vortic-
ity is related to the global London equation generated bypaltmical sector of the
action. We recover the usual picture of the order in termsoofiensation of Cooper
pairs. In the second formulation, the quantisation of thgmesic flux results from the
compact character of the gauge group and the order is rdferi@s being “topologi-
cal”. An analysis of the equivalence between the Londortlaghihe DCS theory and
the compact CCS might offer new insight in condensed malttgsips.

Within this context, the TP factorisation stands for a gafigation, already at the clas-
sical level, of the Landau projection which enables to igothe essential topological
content of these models. The denomination “topologicais&bas to be understood
not only in terms of topological couplings, but in a more gaheontext as being
the sector where all non trivial topological effects ari$éis topological sector then
corresponds to the topological “ground” state, leading tteaper understanding of
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these models and opening an avenue towards new perturdatreébopments around
classical non perturbative configurations.

Finally let us briefly mention the perspective offered by $keond possible formula-
tion (6.8) of the DCS theory and its associated topologie&ct solutions. One might
expect applications of our dielectric monopole solutiohguantised free charge in
solid state physics. Within this context, the Lagrangiangity (6.8) admits particle-
like topological defects describing a free electric chageened by surrounding pos-
itive charges. Then the resulting measured electric fietchgie exponentially. Like-
wise within theB-field picture, the possible construction of point-like ddggical de-
fect solutions, generalising t3form gauge fields the Nielsen-Olesen vortices, might
be relevant in any model involving antisymmetric tensoidfel

6.3 Mass gap in non abelian gauge field theories

6.3.1 Confinementin QCD

For the sake of simplicity we have chosen first to illustrate gystematic search of
topological effects in gauge field theories within topotmdly massive (dielectric)
gauge theories. This choice was quite natural since thesgids represent a simple
case of theories generating a mass gap where topologieat®tire of prime impor-
tance. Having acquired a deeper understanding of the asfgimpological effects, it
would be interesting to consider more realistic theorig@gtals a description of con-
finement in Yang-Mills theories. Two extensions of our wdrkn naturally come to
mind : the coupling to matter fields like fermions and the esien to non abelian
gauge theories. Further, through the network of dualitie$eve identified, our work
also bears some relations with effective theories of confard.

New perturbation schemes

The standard perturbation techniques, so useful at higlggmwehere QCD exhibits

the “property” of asymptotic freedom, are expressed in saofrunphysical and gauge
variant colored objects like quarks and gluons. Howevemtheerved physical field

configurations at low energy are colourless objects. Fumibee, these latter field
configurations are by essence non perturbative since thalerim the strong coupling
sector of the theory. This requires to develop new pertishachemes but now from
the real physical quantities which have to be identified.

Let us go back to our simple model of abelian topologicallysaie gauge theories
(TMGT). Generically the introduction of matter fields in TMGspoils the decou-
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pling of the physical and topological sectors through ourfd®orisation approach.
Nevertheless the dual theory remains partially factorisethe case, for example,
of minimal coupling with fields of fermionic character sinttee sector of physical

propagating variables communicates with the gauge vasector only through the

dynamical matter fields, leading possibly to interestingragimation schemes. Such
approximation procedures would consist in two steps.

e First to solve the topological sector coupled to matter éfothe ground state,
taking into account the existence of topological effedts fractional statistics
associated to non local holonomy effects.

e Second “turning on” the dynamics of the interactions, ngneehsidering per-
turbatively the coupling of the matter fields to the phys&zdtor.

Hence, such a procedure relies from the outset on a sectehvidialready gauge
invariant, thus physical, and not on the original gauge filelgrees of freedom.

Promising results have been already achieved when TMGT aupled to matter
fields. Indeed quite a number of new effective theories magamstructed depending
on the way the matter fields are coupled either to the oridiells or to the topo-
logical sector in the dual formulation. We again obtain amvek of dualities which
is more exhaustive than that analysed in the literatureutfitgauge embedding pro-
cedures. Moreover in contradistinction with previous papall relevant topological
terms generating topological effects are now taken int@at The construction of
effective theories describing condensed matter effectemthese studies attractive.
This analysis may also bring further insights into bosaimsgprocesses in more than
2+1 dimensions.

Pure Yang Mills theory

If the TP factorisation techniques are to turn out to be applie to large classes of
gauge theories generating a mass gap, they may offer pévgsda the development
of new approximation schemes for non perturbative dynanhicparticular, it would
be of great interest to understand whether similar conatibers could apply to pure
Yang-Mills theories in order to isolate the low energy plegsiconfigurations of gluon
bound states which reside in the zero-mode sector. As faaag-¥ills theory is con-
cerned, the global and local variables are interdependehttas non trivial mixing
perhaps carries the secret of the dynamics of confinememicédjene might hope to
isolate a topological sector of global variables which vdoerrespond to the ground
state of the theory, even though the self interaction of thergyfield spoils the decou-
pling of the physical and topological sectors through oufdd®orisation approach.
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Effective theories

In contradistinction to abelian theories of the Maxwelpdy the Lagrangian first or-
der formulation of Yang-Mills theories does not involvewaltpropagating physical
variables. Indeed the associated chromo-electromagdiedtidelongs to the adjoint
representation of the non abelian gauge group and is tirereéd a relevant physical
variable to describe the propagation of gluons. Furtheeygiven Derrick’s theorem,
solitons are ruled out in Yang-Mills theory in 3+1 dimensiorowever, a number of
techniques like lattice simulations seem to show that thednergy confining states
are controlled by topological defects of the monopole antkexatype.

A possible solution to this dilemma is to develop effectivedries of QCD at low en-
ergy where it is assumed that the abelian sector dominatesxample an effective
dual superconductivity model, originally obtained thrbudual projection method,
may be reached through the Cho-Faddeev-Niemi paramétrisaee [5, 6] and refer-
ences therein. In this model, a chromoelectric vortex gtoflinear potential appears
between the quarks and antiquarks while magnetic monopoledensates. On ac-
count of the preliminary results of this Chapter, a querychitthen naturally comes
to mind is whether the dielectric Cremmer-Scherk (DCS) thedich admits vortex
solutions may be of any relevance for a dual superconduntivdgl. Does there exist
a decomposition alternative to that of Cho-Faddeev-Niaro the recent spin-charge
decomposition [8, 9] which reveals the presence of a DCSryhieathe low energy
effective theory of QCD ? Moreover, the generalisation efEYCS theory should ad-
mit a larger range of topological defects than the Maxwetigd model. Mixing then
topological defects of the vortex and the monopole typeshirigad in a long term
goal to an alternative effective description of confinement

6.3.2 Alternative mechanisms for mass generation

It is also of interest to extend this approach to Yang-Mikern-Simons theories
[38, 39, 40, 73] or to the nonabelian generalisation of then@ner-Scherk theory.
However in 3+1 dimensions there exist no direct non abeleregalisation to a local,

power counting renormalisable action while preservingstnae field content and the
same number of local symmetries as the abelian CremmemrStieory (1.24), see

[37] and references therein. Indeed such extensions eethérintroduction of extra
fields or to allow for non renormalisable couplings. Nevel#iss it would be of great
interest to understand how to apply our TP factorisatiorhia tontext in order to

achieve a relevant generalisation to non abelian gauge symes of the Cremmer-
Scherk theory, and to solve some current problems relatqddntisation.



Concluding remarks

Among a number of fundamental concepts, the understandittge@rigin of mass
remains one of the major open problems in particle physiat @@smology. As a
matter of fact difficulties arise both at the theoretical aslivas at the phenomeno-
logical level. Thus the dynamics responsible for the magsig&ang-Mills theories
is still under investigation while the predicted Higgs bogswas yet to be discovered.
While not providing definitive answers, this Thesis has stexdlight on these issues
through the Topological-Physical (TP) factorisation. @afly our original project
was to properly identify in the simple case of abelian togaally massive gauge
theories (TMGT), used as laboratories for mass gap geramati topological sector
which appears under naive formal limits within the Lagraaryfirst order formulation
of such models.

149



150 Concluding remarks

Our solution: the TP factorisation

The basic principle of the Brout-Englert-Higgs mechanisnhiat the existence of
massive fluctuations of vector fields in a variety of physjgaénomena (such as in
particle and condensed matter physics) follows from thakirg of a gauge symme-
try. This breaking is triggered by the vacuum condensatf@ome scalar fields. This
approach is successfully put to use within the Standard Madspite of the lack of
any direct experimental evidence for the existence of thggsiboson until now. In
Chapters 2 and 3 it was shown that for what concerns TMGT abfised physical
massive degrees of freedom are simply decoupled througieémeangement of field
variables, without relying on any symmetry breaking nor gayge fixing procedure.
This technique, which we refer to as the Topological-Phaldectorisation, enables
us to answer the first question in the preamble:

How to properly define the formal limits in the coupling camts of gauge fields
theories through which topological sectors appear ?

The TP factorisation technique, which consists in a localooécal transformation
within the Hamiltonian formulation, was also extended ina@ter 2 in a manifestly
Lorentz covariant way by considering the first order Lagiangormulation. The
possibility of factorisation is intimately related to treect that TMGT generate a mass
gap. The technique allows the construction of dual actiomtewpreserving the gauge
symmetry content. The entire gauge variant contributiesiles only within the sec-
ond sector of the action which reduces to a pure topologiell theory. Let us then
address the second issue raised in the preamble:

What is the influence of this topological sector on the plajsipectrum ?

The appearance of this topological sector has very intngjuionsequences when
TMGT are defined on topologically non trivial manifolds oearoupled to matter
fields, whether of a fermionic or a bosonic character, siraretrivial topological ef-
fects then arise. As shown in Chapter 3 our classical faztian readily allows for
a straightforward quantisation of TMGT and the identifioatof their spectrum of
physical states, accounting also for all the topologicatdees inherent to such dy-
namics. In that case the topological “TFT” sector accouotstie degeneracy of the
physical spectrum depending only on topological invaganthe resulting factori-
sation of quantum states makes more natural the projectitm a topological field
theory, generalising the concept of projection onto theelstw andau level within the
Landau problem. In the present approach, the TFT sectotusidcmade manifest
already at the classical level. We hardly touched upon theei®f the relevance of
our factorisation techniques when TMGT are coupled to mdidds. Let us only
point out within this context that the coupling to the higloeder tensor fields in the
topological sector should give rise to exotic statistiasfctended objects [28, 29, 30].
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The unexpected consequences

Generically the introduction of matter fields spoils thealgaing of the physical and
topological sectors through our factorisarion approacévextheless this decoupling
survives at least for the local degrees of freedom when isdagkectric couplings with
the gauge fields are introduced. Within this context,

the most famous mass generation mechanisms preservingeharagauge symmetry
are related through an intricate network of dualities, mtadthe presence of topolog-
ical terms generating possible topological effects.

In particular in the dual formulation of the Maxwell-Higgsoatel, the topological

sector carries the topological content, related to vdyticif the dual Nielsen-Olesen
vortices, as established in Chapter 5. Within a physicajyielent picture, these
topological defect solutions may also be interpreted astridenonopoles embedded
in a dielectric medium. Furthermore, the straightforwaemeyalisation of topolog-

ically massive dielectric gauge theories to fields of anysteial rank whatever the
number of spacetime dimensions suggests that

our analysis could open a new avenue towards the construcfigieneralised topo-
logical defects in any dimension.

The construction of such brane-type topological defectsiisently under investiga-
tion. Promising results have already been achieved in @nh&pihere the situation in
3+1 dimensions is partly addressed. This Chapter also orenéi number of possible
avenues for research leading beyond this Thesis.

This work has provided a deeper understanding for the appearand the role of

topological effects in gauge field theories, although tlsedssion remained restricted
to abelian gauge groups. This Thesis has also establiskertubial importance of a

systematic and careful consideration of topological éff@hich are often ignored in

the literature through gauge (un)fixings, for example, Whdo not pay due attention

to these issues. The long term goal is to gain a deeper uaddisy of the relevance of

topological sectors to the nonperturbative dynamics ofjgdield theories, ultimately

such as Yang-Mills theories coupled fermionic matter fields
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