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Foreword

Over the past decades, the gauge symmetry structure of the Standard
Model of strong and electroweak interactions has been thoroughly
checked and confirmed in great detail. However, a whole sector of
the theory has not yet been observed. This Higgs sector has been
eagerly anticipated since the start of the LEP and Tevatron experiments.
The combination of the direct lower bound (coming from LEP) and
indirect upper bound (from electroweak precision data) has significantly
constrained the range of possible values for the Higgs mass. The
Tevatron and LHC will thus be soon able to confirm or not the existence
of the Higgs particle.

If the Higgs particle turns out to be exactly as expected, then the
Standard Model is closed from a mathematical point of view. In that
case, it is conceivable that any new physics will be far beyond the reach
of future colliders. On the contrary, if the data do not reveal any
scalar particle, it is likely that the LHC will spot some unexpected or
unexplained events since the unitarity of the theory is broken around
1 TeV. From a mathematical point of view, the first possibility is
probably more appealing but the latter is certainly the most interesting
one for us, now. Indeed, in spite of its simplicity, the Brout-Englert-
Higgs mechanism also raises some questions.

In the Standard Model, all forces are explained in terms of boson
exchange. These bosons are associated with a gauge symmetry.
However, the scalar sector of the theory as it stands cannot be considered
as a fifth force. The Higgs boson is moreover the only particle that
knows the difference between the fermion families as well as between the
generations. The coupling is indeed proportional to the mass instead
of some conserved charge. This particular status is quite intriguing.
Furthermore, these masses seem to be completely arbitrary and display
a huge hierarchy, not to mention the astonishingly small mass of the
neutrinos.

The mass generation mechanism is also intimately connected with the
SU(2)L gauge symmetry. This connection is at the root of some of
the most interesting properties of the Standard Model, namely flavour
mixing and CP violation.
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Foreword

The Standard Model requires thus some new flavour physics, in
particular to explain the fermion mass spectrum and the number of
families and generations. These numbers must be somehow connected
with the mass generation mechanism. Most of the proposed extensions
of the Standard Model fail to meet these criteria. Some problems
of the Standard Model have indeed been solved by grand unification
theories, supersymmetry, technicolour, horizontal symmetries and
others. However, it has always been at the expense of a complexification
of the theory, for instance a zoo of new particles or a rather large group
of symmetry. The LHC will certainly help us to select the best candidate
for new physics. We hope that it will also surprise us.
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Thesis Aims

Fermion mixings arise naturally in the theory of electroweak interactions
and result from a mismatch between mass- and weak-eigenstates. Within
the assumption of a Higgs mechanism, mixings and masses have the same
origin and are bound together in the Yukawa couplings. This mechanism
however fails to give an explanation of the observed fermion spectrum.
Therefore, the Standard Model is probably not the end of the story but
only a low energy effective theory.

In this work, we do not aim at finding a new mechanism that could
explain this spectrum, but we rather assume that fermion masses and
mixings are calculable in a yet-to-be-found more fundamental theory.
Our goal is to glean as much information as possible from the observed
fermion masses and mixings in order to identify some hidden structures
that could significantly lower the number of free parameters and help us
to get some clues about what could be this fundamental theory.

To achieve this goal, we follow two distinct paths:

• The analysis of the various parametrizations of the flavour
mixing matrix points us to a specific decomposition. We note
that the parameters of this decomposition can be independently
and accurately computed if we impose some simple textures
to the Yukawa couplings. We propose then a straightforward
combination of these interesting textures in order to recover the
observed quark flavour mixing.

• We study the properties of a successful mass relation for the
charged leptons. We propose some generalizations of this relation
which also apply to the neutrinos and the quarks. One of them
successfully combines the masses and mixings in a kind of weak-
eigenstate mass. Another one describes the lepton masses through
a well-defined geometric picture.

Hopefully, these two paths lead to similar conclusions and allow us to
speculate about some interesting properties new flavour physics should
display.
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1
A Mass Definition

1.1 Three Concepts

Giving the definition of a word is usually not within the scope of physics.
Yet, if one concept of physics deserves such a privilege, mass is probably
that one. In day-to-day life, people mix up the notions of mass and
volume. A big box looks always heavier than a small one. On the
contrary, everybody has a very good intuition about its properties: on
Earth, an object is harder to set in motion or is harder to lift than
another one. However, we do not usually pay to much attention on what
these properties really mean. They refer indeed to two very different
concepts: inertia and gravitation, respectively.

The classical, or naive, idea that the mass is intimately connected with
the amount of matter in an object finds its roots in the etymology of
the word. In Latin, “massa” meant lump or dough [1]. This notion of
“aggregation of matter” has been conserved through the centuries [2].
In 1828, the Webster’s dictionnary did not make any connection with
physics but gave only the following definition:

A lump; a body of matter concreted, collected or formed into
a lump; applied to any solid body; as a mass of iron or lead;
a mass of flesh; as mass of ice; a mass of dough.

Later in the century, in 1863, in the first edition of the Hachette
dictionary Émile Littré gave a similar definition:

Amas de parties qui font un corps ensemble.
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CHAPTER 1. A MASS DEFINITION

Together with

Terme de physique. Somme des points matériels que chaque
corps renferme, par opposition à volume qui exprime l’espace
occupé. La gravitation s’exerce en raison directe des masses
et en raison inverse du carré des distances.

Mass is thus defined as the amount of matter. This mere fact implies
however the existence of fundamental, and countable, pieces of matter.
In this view, mass is similar to volume: more matter implies a bigger
volume and thus a bigger mass. This connection is also found in the
original definition of the kilogram: the mass of one litre of water at zero
degree [3].

This definition is however disturbing in regard to modern physics. At
the atomic level, one mole of helium or one mole of an heavy gas like the
radon both correspond to the same number of fundamental particles.
Consequently, they will share almost the same volume under equivalent
conditions of temperature and pressure. One has to go deeper into the
atoms and the nuclei to explain in terms of nucleons the mass difference,
or rather the density difference. In elementary particle physics, the
fundamental building blocks of matter have all a zero spatial size but
present a large variety of mass scales, from the light electron to the heavy
top quark. As a result, the concept of amount of matter has again lost
its meaning. Unless, of course, these particles are found to be themselves
composite.

In addition to this intrinsic definition, a mass m may also be defined
with respect to its various properties:

The inertial mass is a measure of an object’s resistance to changing
its state of motion when a force is applied. This concept is behind
the second Newton’s law: F = ma.

The gravitational mass is a measure of the strength of an object’s
interaction with a gravitational field 1. This concept is at the heart
of Newton’s theory of gravitation: F = GmM

r2
.

1In principle, there is an active and a passive gravitational mass. The former
is defined as the mass that induces gravitation, whereas the latter is defined as the
mass susceptible to gravitation. They are here represented by M and m, respectively .
Newton’s third law (action equals reaction) ensures the equality of these two concepts.
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1.2. MODERN VIEW

Here, the mass is defined in terms of its reaction with respect to an
inertial force and a gravitational force. The priority of force over mass
is therefore implicitly assumed. A more modern way of thinking is
to consider energy as more fundamental than force. In that case, the
inertial mass is easily defined thanks to the kinetic energy: E = mv2

2 . It
requires more work, or energy, to impart a certain velocity to a hammer
than a feather.

The inertial and gravitational mass definitions are conceptually
completely different. However, at the experimental level, no difference
has ever been found between them. Galileo illustrated this equality in a
famous thought experiment 2: the feather and the hammer both fall at
the same speed (at least in the vacuum); in opposition to what Aristotle
taught. This empirical fact has been raised to the status of fundamental
law in general relativity, under the name of equivalence principle.

Once again, elementary particle physics cannot accommodate itself to
these definitions. For instance, the definition in terms of inertia assumes
the existence of a frame in which the particle is at rest. However,
special relativity has proved that such a frame does not exist for massless
particles. Moreover, this definition is only valid if, at some point, the
particle is free from any interaction. Yet, the confinement of the quarks
prevents them to move freely and their inertial mass does not make
sense.

1.2 Modern View

In special relativity the mass is identified as the norm of the four-
momentum

pµ = (E/c, ~p) . (1.1)

2The experiments did not really take place at the leaning tower of Pisa but were
actually conducted by rolling balls down inclined planes. It is worth mentioning that
similar results were found some years before by Simon Stevin while throwing lead
balls from the Delft churchtower. Isaac Newton also confirmed the equivalence by
measuring the period of pendulums of different mass but identical length. Nowadays,
the best measure is achieved via a torsion balance. The observed difference of
acceleration between two different masses is smaller than 10−15 m/s2 [4]. These
tests are of crucial importance since many attempts to quantify general relativity
allow for a violation of the equivalence principle.

7



CHAPTER 1. A MASS DEFINITION

This value is scalar and therefore invariant under any Lorentz
transformation.

m2c2 = pµpµ =
(

E

c

)2

− (~p)2 . (1.2)

At the classical level, a change of mass was interpreted as a flux of
matter. The indestructibility of matter was indeed implied, together
with the identification of matter and mass. Within special relativity,
the mass is no longer an additive property. For instance, the mass of
an atom of hydrogen is smaller than the mass of its constituents, the
difference being the binding energy between the proton and the electron.
At rest, there is a full equivalence between the mass of a free particle
and its energy, i.e. mass is just a form of energy: E0 = mc2.

In quantum field theory, the situation is much the same. The particles
are assumed to be point-like and not made up of other particles. Each
of these particles has a defined mass, spin and charge.

1.2.1 Self-Energy Contribution

It is known that the environment contributes to the effective mass of a
moving object. Let’s imagine two identical dense objects, one in water,
the other one in the air. Their mass, measured at rest with a balance,
is exactly the same in both cases 3. However, if a given force is applied
on these objects, their acceleration will be different. When moving, the
object in water will behave as if it were heavier than the one in the
air. The same phenomenon appears with charged particles moving in
an external electromagnetic field. For instance, an electron moving in
a crystal behaves as a free particle in the vacuum but with a different
mass, called effective mass.

Up to now, we did not make any distinction between charged and neutral
particles. However, the mass-energy of a moving charged particle in its
own electromagnetic field should, in principle, also contribute to the
observed mass.

In classical electrodynamics, this reasoning leads to inconsistencies
because the electric field ( ~Eq) is divergent at small distance. Indeed,

3The Archimedes’ principle can be safely neglected here.
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1.2. MODERN VIEW

+ p

k

p− k + + · · ·

Figure 1.1: Self-energy contributions to the electron propagator.

if we assume that the electron is a charged spherical shell of radius re,
the energy in the field is given by

δm c2 =
∫

dV
ǫ0E

2
q

2
=
∫ ∞

re
dr 4πr2 ǫ0

2

(

e

4πǫ0r2

)2

=
e2

8πǫ0re
. (1.3)

This correction is infinite if the electron is point like. The value of re
that makes δm equal to the measured electron mass is called the classical
electron radius:

rce ≡
e2

8πǫ0mec2
=
α

2
~

mec
∼ 10−15 m (1.4)

where α = e2

4πǫ0~c is the fine-structure constant. This classical radius is
however much smaller than the Compton wavelength of the electron:

λe = 2π
~

mec
∼ 10−12 m (1.5)

below which quantum corrections cannot be neglected.

In quantum field theory, the behaviour at small distance is only slightly
better [5]. What we want to compute is the correction to the mass due to
the self-interaction of the electron in his own field. We need then to take
into account the photon loop contributions to the electron propagator.
The thorough computation can be found in many books, for instance
[6]. Here, we shall only sketch the various steps.

The propagator of the electron S(p) gets new contributions proportional
to the one loop contribution Σ(p) (Fig. 1.1):

iS(p) iS(p) + iS(p)Σ(p)S(p) + iS(p)Σ(p)S(p)Σ(p)S(p) + · · ·
= iS(p)

[

1 + Σ(p)S(p) + (Σ(p)S(p))2 + · · ·
]

=
iS(p)

1− Σ(p)S(p)
=

i

S−1(p)− Σ(p)
(1.6)
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CHAPTER 1. A MASS DEFINITION

with S(p) = 1
/p−m+iǫ . Then the corrected propagator S′(p) is

iS′(p) =
i

/p−m− Σ(p) + iǫ
. (1.7)

The pole of the propagator is no more the mass m but a loop corrected
mass m′ = m + Σ(p). The self-energy contribution to the mass of the
electron is then the one loop contribution Σ(p).

Its computation requires an integration over all possible values of the
momentum k running in the loop. In the Feynman gauge, one finds:

ie2
0Σ(p) = − e2

0

(2π)4

∫

d4k
1

k2 + iǫ
γα

m+ /p− /k
(p− k)2 −m2 + iǫ

γα . (1.8)

The term linear in /k disappears through the angular integration and the
leading term at short distance, i.e. large momentum, scales like

∼
∫

d4k

k4
(1.9)

which is “only” logarithmically divergent compared to the linear
divergence at the classical level (1.3). This divergence is at first sight
disturbing. Fortunately, mathematical tools have been developed to deal
with this infinity.

Regularization

To make the integral (1.8) mathematically meaningful, we need to write
it as a suitable limit of a convergent integral. This process, called
regularization, is not unique.

The simplest one is probably the cut-off method in which the high
momentum region — the source of the divergence — is cut off in the
integral. A quite similar method is the lattice regularization where
the space-time is discretized. As a consequence, the short distance
contribution to the space-time integration is under control. This is quite
similar to considering that the electron has a finite size in the classical
electrodynamics. However, both methods have some drawbacks, the
breaking of the gauge or Lorentz invariance, respectively.

Before presenting another regularization method, let’s first go back to
the classical electrodynamics. The mass of a spherical charged particle

10



1.2. MODERN VIEW

includes the mass of the spherical shell. If the shell’s mass is allowed
to be negative, it might be possible to have a regular point-like limit.
This is called renormalization since the bare mass, i.e. the mass of a
fictitious non-interacting particle, is tuned to compensate the infinities
coming from its self-energy. The observed mass is the renormalized mass.
The bare mass and the corrections coming from self-energy cannot be
disentangled from one another.

The same trick is used in quantum field theory within a dimensional
regularization. The dimensional regularization assumes that space-time
dimension is not four but rather d = 4 − ǫ. When ǫ is positive, the
integral (1.8) is convergent. The renormalization of the electron mass
and charge is not unique. We have to choose how the divergent piece
will be subtracted out in the renormalization process. This prescription
is called renormalization scheme.

The on-shell scheme assumes that the renormalized mass is the pole
of the propagator once self-energy are taken into account (see (1.7)).
This pole mass is really the physical mass since it is energy and gauge
invariant. Unfortunately, the propagator of the quarks is ill-defined.
Indeed, quarks are always confined in colourless bound states, such as
mesons (qq) or baryons (qqq), and can never be observed directly. As
the strong coupling constant is increasing with decreasing energy, the
pole mass for quarks is therefore infrared divergent. This is particularly
true for the light quarks u, d and s.

As a consequence, another prescription is commonly used for the quarks,
the modified minimal subtraction scheme (MS). Its main advantage is
that the renormalization constants in this scheme are independent of
mass parameters of the theory. However, the renormalized parameters
are now energy dependent and are called running parameters. In
contrast to the on-shell scheme, the running masses for the quarks at
a given energy, m(µ), is well-defined. The running mass is not really
a physical mass but reflects the contribution of the mass to a given
process. It is worth mentioning that the renormalization point is not
itself a physical quantity. The prediction of the theory, calculated to
all orders in perturbation, should in principle be independent of the
renormalization point. However, in practice, the infinite summation is
truncated at a given order. When computing a physical process, one
chooses thus a renormalization point close to the typical energies and
momenta involved in the interaction.

11



CHAPTER 1. A MASS DEFINITION

1.2.2 Mass Issues

Defining a word or a concept does not means it is totally under control.
At this stage, we still have no clue about its origin. Moreover, in contrast
with the electric charge which takes only quantized values (±1, ±2

3 , ±1
3

and 0), the mass spectrum of the elementary particles does not show
any obvious pattern. One should also be puzzled by the huge mass scale
between the lightest fermions (the neutrinos, lighter 4 than 1 eV) and
the heaviest one (the top quark, around 200 GeV). The same mass ratio
(∼ 1011) is found when comparing a mosquito and a blue whale. One can
also wonder how the top quark is so heavy while it is as point-like as the
electron in the Standard Model for electroweak and strong interactions.
It has indeed the same mass as one molecule of vitamin C (C6H8O6),
an antioxidant found in abundance in potato [8]. If a mechanism for
generating masses has to be found, it should explained this amazing
hierarchy.

Another open question concerns the so-called missing mass problem. In
spiral galaxies, if one assumes that the mass distribution is proportional
to the luminosity, most of the mass is concentrated in the central bulge.
In the Newtonian approximation, the orbital velocity of the stars in the
spiral arms is then given by

GM

r2
=
v2

r
(1.10)

where r is the distance from the centre of the galaxy. This velocity
should therefore vary in r−1/2. However, one observes an almost constant
velocity over a long range of distances. So, the galactic rotation curve
cannot be explained by the visible matter alone. This result suggests
that most of the galaxy mass is contained in a relatively dark spherical
halo. In other words, a big part of the mass seems to be invisible.

A missing mass problem is also present in the cosmic microwave
background radiation (CMB) [7]. When the universe was much younger
and hotter, the electrons, protons and photons were highly interacting
through Thomson scattering. As the universe expanded, this plasma
cooled down until it allowed the formation of neutral hydrogen. At
this moment, the universe was roughly 400 000 year old. The photons

4The stringent constraint comes from a model dependent analysis of the Cosmic
Microwave Background [7]:

∑

mν < 0.61 eV at 95%CL
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1.3. AN ARTIFACT

scattered then off the newly formed neutral atoms and began to travel
freely. Because of the fluctuation of matter at the recombination, the
last scattering surface was not completely homogeneous. The CMB is
really a picture of the early universe since the fluctuations depend on
its energetic content. Within the context of general relativity, the size
and distribution of the tiny observed variations allow us to conclude
that the baryonic matter, i.e. protons and neutrons, represents less than
5% of the total energy content of the universe in striking agreement
with our understanding of the Big Bang nucleosynthesis. The 95%
remaining are totally unknown. The only thing we know about them
is that 23% consist of massive but non-baryonic matter, i.e. matter
which interacts only gravitationally with the “normal” matter. This
dark matter may explain the missing mass in galaxies. The remainder,
72%, is simply called dark energy since it has no mass and behaves as a
diffuse substance.

1.3 An Artifact

The International System of units (SI) has defined seven base units 5.
Formally, four of them are related to metrology. The mole, ampere and
candela are indeed connected to a counting of “elementary entities”,
electrons or photons, respectively; while the kelvin is an average on a
set of particles. On the contrary, the three remaining units, length, time
and mass, are the cornerstones of physics with space, time and matter.

The official unit of mass, the kilogram, has a particular feature which
deserves some interest: the kilogram is the only unit which is still based
on an artifact. Its official definition dated from 1889 [9].

The kilogram is equal to the mass of the international
prototype of the kilogram kept at the Bureau International

5The seven base units are:

metre m length
kilogram kg mass
second s time
ampere A electric current
kelvin K thermodynamic temperature
mole mol amount of substance
candela cd luminous intensity

13
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des Poids et Mesures (BIPM). It follows that the mass of the
international prototype of the kilogram is always 1 kilogram
exactly [. . . ]

However

[. . . ] due to the inevitable accumulation of contaminants on
surfaces, the international prototype is subject to reversible
surface contamination that approaches 1 µg per year in
mass. For this reason, the BIPM declared that, pending
further research, the reference mass of the international
prototype is that immediately after cleaning and washing by
a specified method.

The first official definition of the gram can be found in a French decree
of 1795 stating that the gram is equal to the absolute weight of a volume
of water equal to the cube of the hundredth part of the meter, at the
temperature of melting ice [3]. Four years later, an all-platinum kilogram
prototype was manufactured with the objective that it would equal,
as close as was scientifically feasible for the day, the mass of a cubic
decimetre of water. Ninety years later, this prototype was replaced by
the current artifact. Six sister copies were made at the same time and
held in the same place. Official copies are also made available around
the world and are periodically checked with the international standard.

The current definition of the kilogram does not allow it to be
reproducible. By definition, the error in the measured value of the
original prototype’s mass is exactly zero. However, any changes in the
prototype’s mass over time can be deduced by comparing its mass to that
of its official copies stored throughout the world. These verifications have
demonstrated the stability of the artifact although a slow but inexorable
divergence between the copies has also been observed.

By contrast, the other units are directly or indirectly connected
to fundamental constants of nature. Their definitions allow the
reproducibility of their realizations, provided you have the suitable
technology. For instance, the unit of length, the meter, has been defined
in 1983 as

the length of the path travelled by light in vacuum during a
time interval of 1/299 792 458 of a second.
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This definition fixes the value for the speed of light but also relies on
the definition of the second, this latter being

the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine
levels of the ground state of the caesium 133 atom.

The meter is therefore directly or indirectly related to two important
constants of Nature: the speed of light c and the Planck constant h.
While the theoretical uncertainty associated with these definitions is
zero, the practical accuracy of their realization will be always limited by
the current technology.

Efforts are being done in order to free oneself of the kilogram prototype.
The most promising techniques are based either on atom-counting
approach or on electronic approach. In the former case, the Avogadro
number would be fixed and the definition would refer to the amount of
matter. Whereas in the latter case, depending on the technique, the
gravitational constant or the electron charge would be fixed and the
definition would refer to the gravitational or inertial definition of the
mass, respectively. None of these techniques have been able to reach
the level of precision achieved by the prototype which is of the order 6

of 20 µg with respect to 1 kg, i.e. ∼ 2 parts per 108 [9].

Nowadays, the most precise measured mass of a fundamental particle is
the electron. Its mass is actually measured with respect to the mass of
a nucleon [10]. The most precise value is then given in units of atomic
mass u. A conversion factor is used to recover kilograms 7

me = 9.10938215(45) 10−31 kg (1.11)

or

∆me
me

≈ 5 10−8 . (1.12)

6This is actually the mean drift observed between the official copies and the
original prototype since their last calibration. The relative error achieved during
the calibration itself is of the order of 10−9.

7The two digits between the parentheses denote the uncertainty at 1σ standard
deviation in the two least significant digits.
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The current measure has already reached the precision of the kilogram
realization! The next most precise mass is the muon. Its mass is actually
measured in the muonium, a µ+e− bound state, via a function of the
masses’ ratio

Reµ ≡
me
mµ

= 4.83633171(12) 10−3 (1.13)

or

∆Reµ
Reµ

≈ 2.5 10−8 . (1.14)

which has a better relative uncertainty than the electron mass itself.
Thus the error in the muon mass comes mainly from the electron mass:

mµ = 1.88353130(11) 10−28 kg . (1.15)

Obviously, the absolute mass of these particles should not become more
precise as long as the realization of the kilogram is not first improved.
This is of course not true for mass ratios.

1.4 Fermion Masses

The quantum field theories 8 for fundamental interactions are based in
the Lagrangian formalism. We need thus to explain what a fermion mass
means in this formalism [11] since we are mainly interested in quarks and
leptons throughout the next chapters.

For a free field, the only constraint for a mass term is the Lorentz
invariance. The Lorentz group, SO(3, 1), is locally isomorphic to
SU(2) ⊗ SU(2) whose representations are labelled by their spin. The
simplest one, (0, 0), corresponds to a scalar field. The simplest non-
trivial representation 9, (1/2, 0), corresponds to the so-called Weyl spinor
χ of spin 1/2.

It is already possible to form a Lorentz invariant mass term from only
a single Weyl spinor. This is called a Majorana mass term:

L = 1
2m(χT ǫχ+ H.c.) (1.16)

8From now on, we shall use the natural units: c = ~ = 1.
9(1/2, 0) and (0, 1/2) have both a spin 1/2 but have opposite chirality (cf. (1.30)).
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where ǫ = iτ2 is the 2 × 2 antisymmetric matrix and the τi’s are the
standard Pauli matrices:

τ1 =

(

0 1
1 0

)

τ2 =

(

0 −i
i 0

)

τ3 =

(

1 0
0 −1

)

(1.17)

As it is constructed from a single Weyl spinor, this is the simplest
realization of a fermion mass term. However, (1.16) is not invariant
under a U(1) symmetry. As a result, a Majorana mass is not allowed
for fermions carrying a conserved charge, i.e. electric or colour charge as
well as lepton or baryon number. More generally, if χ transforms under
a complex representation of a symmetry, a Majorana mass is forbidden.
Indeed, let us consider

χ Uχ (1.18)

where U is a unitary transformation acting on a set of Weyl spinors.
The mass term (1.16) transforms then as

χT ǫχ χTUT ǫUχ = χT ǫUTUχ . (1.19)

In the last step we use the fact that U and ǫ act on different spaces.
The term is invariant only if UTU = 1, which is true only if the unitary
transformation is real.

If a Weyl fermion transforms under a complex representation of an
unbroken symmetry, then we need to introduce a second Weyl fermion
that transforms under the complex-conjugate representation in order to
construct a Lorentz invariant mass term. This is called a Dirac mass.
Let χ and ξ transform under the (1/2,0) representation of the Lorentz
group, and transform under some unitary symmetry as

χ Uχ (1.20)

ξ  U∗ξ . (1.21)

Then, a Lorentz-invariant mass term which respects the symmetry may
be formed

L = m(ξT ǫχ+ H.c.) (1.22)

since
ξT ǫχ ξTU †ǫUχ = ξT ǫχ . (1.23)
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Accordingly, two Weyl spinors are required to construct a Dirac mass.
We can then introduce a new object, a Dirac spinor, which is a four-
component object constructed from a pair of (1/2, 0) Weyl spinors χ, ξ:

ψ =

(

χ
ǫξ∗

)

. (1.24)

In terms of a Dirac spinor, a Dirac mass is written in the familiar form

L = −mψψ = −m
(

χ† −ξT ǫ
)

(

0 1
1 0

)(

χ
ǫξ∗

)

(1.25)

= m
(

ξT ǫχ− χ†ǫξ∗
)

(1.26)

where ψ = ψ†γ0 and ǫ† = −ǫ. The final expression is identical with
(1.22). Note also that we are using a specific basis for the gamma
matrices, the so-called Weyl or chiral basis:

γ0 =

(

0 1
1 0

)

γi =

(

0 τi
−τi 0

)

(1.27)

where each entry in the above matrices is itself a 2× 2 matrix. We can
also define

γ5 ≡ iγ0γ1γ2γ3 =

(

−1 0
0 1

)

. (1.28)

In this basis, the chiral projection operators (1 ± γ5)/2 project out the
Weyl spinors,

ψ = 1−γ5

2 ψ + 1+γ5

2 ψ = ψL + ψR (1.29)

where

ψL =

(

χ
0

)

and ψR =

(

0
ǫξ∗

)

. (1.30)

Thus a Dirac spinor transforms as the (1/2, 0)⊕ (0, 1/2) representation
of the Lorentz group.

While a Dirac spinor is composed of two Weyl spinors, a Majorana spinor
is a four-component object composed of a single Weyl spinor

ψM =

(

χ
ǫχ∗

)

(1.31)
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and
L = −1

2mψMψM (1.32)

is a Majorana mass term.

The charge-conjugation matrix C is suited to write fermion masses. In
the Weyl or chiral representation of the Dirac matrices it reads

C ≡ iγ2γ0 =

(

−ǫ 0
0 ǫ

)

. (1.33)

Given a Dirac spinor ψ, we can form the conjugate spinor via

ψc = Cγ0ψ∗ =

(

ξ
ǫχ∗

)

. (1.34)

This definition implies
ψcM = ψM (1.35)

i.e. a fermion with a Majorana mass is its own antiparticle. It is easy to
check that

L = −1
2m

(

ψcR ψL + H.c.
)

(1.36)

L = −1
2m

(

ψTL C ψL + H.c.
)

(1.37)

are also Majorana masses. These expressions for the Majorana masses in
terms of Dirac spinors are commonly used when working with neutrinos.

1.5 Standard Model and Symmetries

The cornerstone of the Standard Model is the gauge invariance principle.
Three of the four known interactions are accurately described by a
SU(3)c ⊗ SU(2)L ⊗ U(1)Y local symmetry. Yet, a number of global
symmetries appear, they are not imposed by construction but arise
naturally in the theory. We have chosen here to build the theory step
by step in order to highlight these accidental symmetries which play an
important role for the fermion masses and mixings.
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1.5.1 Free Field

The first step consists in a massless free field. The renormalizable
Lagrangian which fulfils the Dirac equation of motion is then:

L = iψ /∂ ψ = iψL /∂ ψL + iψR /∂ ψR . (1.38)

At this stage, we did not impose any symmetry but this Lagrangian is
accidentally invariant under

U(1)V : ψ  eiθψ

U(1)A : ψ  eiγ5θψ

which is isomorphic to

U(1)V−A ≡ U(1)L : ψL  eiθψL

U(1)V+A ≡ U(1)R : ψR  eiθψR .

This simple description should be extended to the case of n massless
particles. The new Lagrangian is simply the addition of n times (1.38).
It can be equivalently written in a much concise form where the new
accidental symmetries will be more apparent. The Lagrangian (1.38)
keeps the same but the operator /∂ should now be read as a diagonal
operator and ψ as a vector field with n components.

ψ =







ψ1
...
ψn






. (1.39)

Clearly, the Lagrangian is now invariant under U(n)L and U(n)R. These
symmetries are isomorphic to SU(n)L ⊗ U(1)L and SU(n)R ⊗ U(1)R,
respectively. A mixing between the n fields is then allowed but would
have no physical consequence since they all have a zero mass and no
charge in order to tell them apart.

In the Standard Model, the number of generations is not fixed by
any symmetry. However, there is strong evidence in favour of only
three generations; notably (see [12] and references therein) the three
observed charged leptons, the observation of six quarks (albeit not
free), the invisible width of the Z associated to three light neutrinos
(mν < mZ2 ), . . . From now on, otherwise stated, we will only consider the
case of four families of fermions with three generations (see eq. (1.42)).
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1.5.2 Interacting Fields

The second step is to switch on the gauge interactions. For simplicity,
we first focus on QED.

QED

The free Lagrangian (1.38) is manifestly not invariant under the
U(1)Q local gauge symmetry. To achieve this goal, it requires two
modifications. First, the normal derivative should be replaced by a
covariant one:

∂µ  Dµ = ∂µ + ieQAµ (1.40)

where e is the coupling constant of the gauge symmetry and Q is the
charge of the field. The second modification consists in a kinetic term
for the gauge boson Aµ: −1

4FµνF
µν , where the field strength is

Fµν = ∂µAν − ∂νAµ . (1.41)

We need now to describe the fermion content of the theory. Let ψ be a
vector containing the fields with the same electric charge:

ψν =







ψν1
ψν2
ψν3






, ψl =







ψe
ψµ
ψτ






, ψU =







ψu
ψc
ψt






, ψD =







ψd
ψs
ψb






. (1.42)

The QED Lagrangian then reads

L = −1
4FµνF

µν + iψ /Dψ = −1
4FµνF

µν + iψL /Dψl + iψR /DψR (1.43)

where a sum over the various families is understood.

The particle content consisting of four families with different charges,
the global symmetries are now

[U(3)L]4 = [SU(3)L ⊗ U(1)L]4 (1.44)

[U(3)R]4 = [SU(3)R ⊗ U(1)R]4 (1.45)

The particles being massless, they are again indistinguishable and are
allow to mix, at least between particles of the same charge, without
physical consequence.
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QCD

When we switch on the SU(3)c gauge symmetry (QCD), the fields
representing the quarks should be extended to include the three colours,

ψu =







ψRu
ψGu
ψBu






, . . . (1.46)

The same ingredients as in QED are used to make the Lagrangian
invariant under this new gauge symmetry. The covariant derivative
becomes

∂µ  Dµ = ∂µ + ieQAµ + igSG
a
µT
a (1.47)

where gS is the coupling constant associated with strong interactions
and T a are the eight generators of SU(3). This modification requires
the introduction of eight new gauge bosons, the gluons. Their kinetic
term is −1

4G
a
µνG

aµν , where

Gaµν = ∂µG
a
ν − ∂νGaµ − gSfabcGbµGcν . (1.48)

The structure constants fabc are completely determined by the
symmetry group:

[

T a, T b
]

= ifabcT c . (1.49)

As a result, in a non-abelian symmetry, the gauge bosons are self-
interacting and present trilinear and quadrilinear couplings. In other
words, they have a non-vanishing charge associated to the gauge
symmetry.

Obviously these modifications will keep intact the global symmetries
that were present with QED only. However, the complex vacuum
structure of QCD calls for some precautions. Indeed, as explained
in App. B, one of the U(1)A symmetries is explicitly broken by non-
perturbative effects of QCD.

This approximation of massless fields has been extensively used in QCD
for the light quarks u, d and s which, at first order, are massless. The
natural scale for the strong interactions is indeed of O(1 GeV). In this
context, the accidental global symmetry is called chiral symmetry and
corresponds to SU(3)L⊗SU(3)R⊗U(1)V . This approximate symmetry
is spontaneously broken by quark condensates

〈ss〉 = 〈dd〉 = 〈uu〉 6= 0 (1.50)
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leaving only the vectorial sub-group SU(3)V ⊗U(1)V unbroken. Noether
theorem implies that a charge should be conserved for each unbroken
symmetry. The conservation of the baryon number is associated to
U(1)V while SU(3)V is the Gell-Mann SU(3) of flavour.

Because of the spontaneous breaking of the chiral symmetry, eight 10

pseudoscalar Goldstone bosons should appear, in this case: the three
pions π±, π0, the four kaons K±,K0,K0 and the 11 η. However, since
the u, d and s quarks have different masses, the chiral symmetry is only
approximate. The mass of the Goldstone bosons is therefore not exactly
zero but nevertheless is much lower than O(1 GeV).

1.5.3 Massive Particles

So far, all the particles were assumed massless. Yet, the SU(3)c⊗U(1)Q
gauge symmetry does not forbid a mass term for the fermions. The
vanishing mass of the gauge bosons is however protected by the gauge
symmetry.

The special case with the SU(2)L weak interactions switched on will
be later detailed. For now, nothing prevents us from adding to the
Lagrangian an explicit mass term for the fermions.

L = iψ /Dψ − ψM ψ . (1.51)

Global Symmetries

This mass term breaks most of the accidental symmetries that were
present in the Lagrangian. In particular, if a mass is different from zero,
the corresponding axial symmetry is broken.

In the most general case where all the masses are different, the fields are
unambiguously defined and (1.51) is no more invariant under SU(3)L
and SU(3)R. For each family, the remaining unbroken symmetries are
[U(1)V ]3 corresponding to the individual vectorial symmetries. This
result will be slightly modified once the weak interactions will be
switched on.

10One for each broken generator of the chiral symmetry.
11To be precise, the η and the η′ share the same quantum numbers and therefore

mix.
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In the particular case of massless neutrinos, the [U(1)V ]3 symmetries
coming from the charged leptons sector can be associated to the
conservation of the individual lepton numbers: Le, Lµ and Lτ . It
is readily seen that the Lagrangian is also invariant under a global
rephasing of the field ψ. However, this latter symmetry is only a
particular case of the former ones and corresponds to the conservation
of the global lepton number: L = Le + Lµ + Lτ . With massive Dirac
neutrinos 12 or in the quark sector, this picture will be modified by the
weak interactions, keeping only the global lepton and baryon numbers
unbroken.

Mass Matrix

The mass M in (1.51) is not necessarily diagonal but could be any
three-by-three complex matrix. In the most general case, the Hermitian
conjugate of the mass term should then be added to the Lagrangian in
order to keep it self-adjoint.

The mass matrix can be easily diagonalized thanks to the accidental
symmetries. The interaction term in the Lagrangian is indeed invariant
under [U(3)L ⊗ U(3)R]4 which allows the bi-diagonalization of the four
mass matrices (one for each family).

However, one U(1)A of the quark symmetries is broken by the vacuum
structure of QCD (Cf. App. B). Therefore, the remaining symmetries
(SU(3)L ⊗ SU(3)R ⊗ U(1)V ) do not ensure that the resulting physical
masses will be real and positive.

1.5.4 Neutrino Digression

In the Standard Model, the neutrinos are only left-handed and massless.
Yet, there is now convincing evidence that the neutrinos oscillate and are
thus massive, albeit very light. This observation calls for an extension
of the Standard Model. Here are some of them.

Dirac Right-handed Neutrinos The most immediate scenario is to
add three right-handed neutrinos and to write a Dirac mass (1.51) for

12A Majorana mass is not invariant under U(1) and would break the lepton number.
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the neutrinos. All the fermions are then on an equal footing. This is
the case we have considered so far although this is not the simplest one.
Moreover, this extension assumes that the same mechanism is at work
for all fermion families. The huge mass scale between neutrinos and the
other fermions needs then to be explained.

Majorana Left-handed Neutrinos The neutrinos are neutral with
respect to QED and QCD. Their simplest mass term is thus a Majorana
mass. Keeping only the left-handed neutrinos of the Standard Model,
we are allowed to give them a Majorana mass:

L ∋ −1
2

(

νcLML νL + νLML ν
c
L

)

. (1.52)

However, in the Standard Model, the left-handed neutrino and electron
transform as a doublet of SU(2)L and their weak-isospin charge is
different from zero. Such a mass term would then be an explicit
violation of the gauge symmetry. This issue might be solved via
a Higgs mechanism (see Sec. 1.6) involving, for instance, a triplet 13

of SU(2)L [13]. In particular, the extension with the usual Higgs
scalar doublet and a scalar triplet is sometimes referred as Type II
seesaw. In that case, the resulting masses for the neutrinos are inversely
proportional to the mass of the triplet, allowing for naturally small
masses [14]. The existence of a scalar triplet is however strongly
constrained by the ρ parameter (cf. Sec. 1.6.1).

Majorana Right-handed Neutrinos Compared with the other
families, it seems natural to consider the existence of right-handed
neutrinos. In the Standard Model, the right-handed fields transform
as a singlet of SU(2)L. Their charge being exactly zero for all gauge
symmetries, an explicit Majorana mass term is allowed:

L ∋ −1
2

(

νcRMR νR + νRMR ν
c
R

)

. (1.53)

Such a mass term violates the lepton number. Since this number
was associated to an accidental symmetry this is not really an issue.
However, if for some reason we would like to preserve this global
symmetry, this term must be disregarded.

13Charge conservation rules out the possibility of a singlet.
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Type I seesaw With right-handed neutrinos in the theory, there is no
reason to privilege either a Dirac or a Majorana mass. Both are indeed
allowed by the gauge symmetries. In the general case [15], the neutrino
mass matrix is effectively described by a six-by-six matrix M:

L ∋ − νL m νR − 1
2ν
c
R MR νR + H.c.

= −νL m νR − νR m νL − 1
2ν
c
R MR νR − 1

2νR MR ν
c
R

= −1
2

(

νL νcR

)

(

0 m
mT MR

)(

νcL
νR

)

+ H.c.

= −1
2n
c M n+ H.c. (1.54)

since νcRm
T νcL = νRmνL. In (1.54), we have defined

n =

(

νcL
νR

)

M =

(

0 m
mT MR

)

. (1.55)

With such a rewriting, the resulting fields n appears to have a Majorana
mass.

It seems natural to assume that the neutrino Dirac mass m has the same
order of magnitude as the other fermions. On the contrary, the scale
associated with the Majorana mass MR is completely free and could be
very high. Within this assumption (m ≪ MR), the diagonalization of
M leads naturally to very small neutrino masses:

U =

(

O(1) O(mM−1
R )

O(mM−1
R ) O(1)

)

(1.56)

UTMU =

(

−mTM−1
R m 0

0 MR

)

. (1.57)

Consequently, the light neutrinos are to a good approximation mixtures
of the left-handed neutrinos only while the right-handed ones are
extremely massive. A naive estimate for their mass yields a new scale:

mν = m2/MR ∼ v2/MR ∼ 0.1 eV⇒MR ∼ 1014 GeV (1.58)

which is close to the Grand Unification scale. It is worth mentioning
that the heavy right-handed neutrinos can also play an important role
in baryogenesis [16].
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1.5.5 Weak Interactions

Let’s come back to the construction of the Standard Model Lagrangian.
For simplicity, we shall first assume that the electric charge is equivalent
to the hypercharge: Q = Y

2 . The inclusion of the weak interactions in
the scheme used above is not straightforward. A first issue comes from
the fermion mass terms which are not invariant under SU(2)L. For
the moment, we tolerate an explicit breaking of the symmetry and do
not care with the problem of non-renormalizability. This problem can
indeed be solved in various ways, most notably through the so-called
Higgs mechanism (cf. Sec. 1.6). The second issue is related to the fact
that the weak interactions connect particles which do not belong to the
same field ψ as defined in (1.42).

So far, the gauge interactions were accidentally invariant under a global
[U(3)L⊗U(3)R]4 symmetry, if we neglect the U(1)A problem. Therefore,
there is no reason to assume that a W± would couple directly to ψUL
and ψDL but it would rather couple to some transformed fields:

ψ′UL = UUL ψUL

ψ′DL = V DL ψDL
(1.59)

where UU,DL are unitary matrices.

The neutral currents are clearly invariant under such transformation
while the charged currents require a suitable transformation of both
fields involved in order to become diagonal. The relevant parts of the
Lagrangian read indeed:

L ∋ − ψU igW+
µ γ
µ (1−γ5)

2 V ψD + H.c.

− ψU igZµγµ (1−γ5)
2 ψU − ψD igZµγ

µ (1−γ5)
2 ψD

− ψUMU ψU − ψDMD ψD

(1.60)

where V ≡ UU†L UDL is, in general, not diagonal.

It should be noted that the transformations (1.59) are also used for the
diagonalization of the mass matrices. A priori these new transformations
are independent from the former ones. One should not expect that the
same set of matrices UUL and UDL allows for both diagonal masses and
diagonal weak currents. In the most general case, the weak charged
currents have thus no reason to be diagonal and we observe a physical
mixing between the states.
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1.6 Higgs Mechanism

When considering weak interactions, the fermion mass terms create an
explicit breaking of the gauge symmetry. Moreover, the masses for the
weak gauge bosons are strictly forbidden by the local invariance. The
Standard Model’s solution to these issues is the Brout-Englert-Higgs
mechanism [17, 18] which requires scalar fields.

1.6.1 Electroweak Symmetry Breaking

We should first relax the assumption about the hypercharge. The third
generator of SU(2)L being diagonal, it is allow to mix with the generator
of U(1)Y . The electric charge arises as a linear combination of the
charges associated to these two generators: Q = TL3 + Y

2 .

We would like to break the SU(2)L ⊗ U(1)Y group down to the U(1)Q
subgroup while keeping SU(3)c unbroken. The Higgs field should thus
be colourless but needs some non-zero weak isospin and hypercharge. In
order to become massive, the three gauge bosons require three Goldstone
bosons. In the simplest realization of the Higgs mechanism, the scalar
field is thus a complex doublet of SU(2)L. Since we want to keep
electromagnetism unbroken, we chose a doublet of hypercharge +1:

φ =

(

φ+

φ0

)

(1.61)

while its SU(2)L conjugate doublet is

φ̃ ≡ iτ2φ
†T =

(

φ0∗

−φ−
)

. (1.62)

The Higgs part of the Lagrangian then reads

LHiggs = Dµφ
†Dµφ− V (φ) (1.63)

where the last term represents the potential of the scalar field:

V (φ) = −µ2φ†φ+ λ(φ†φ)2 . (1.64)
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V

ℑ(φ)

ℜ(φ)

Figure 1.2: Higgs Potential with a non-zero vacuum expectation value.

The covariant derivative in (1.63) is given by

Dµ = ∂µ + igW iµ
τi
2

+ ig′Bµ
1
2 (1.65)

where g and g′ are the coupling constants of SU(2)L and U(1)Y ,
respectively, while the W ’s and the B are the associated gauge bosons.

The Higgs mechanism is based on the assumption that the vacuum
expectation value of the scalar field breaks spontaneously the gauge
symmetry. This is possible if both µ2 and λ are real and positive. In that
case, the potential takes a Mexican-hat shape (Fig. 1.2) whose minimum
is reached for

φ†φ =
µ2

2λ
(1.66)

Thanks to the gauge invariance, the minimum of the potential can always
be rotated in order to keep the electromagnetism unbroken:

〈φ〉 =
1√
2

(

0
v

)

(1.67)

where v =
√

µ2

λ . The fluctuations of the Higgs field around this minimum
have this form:

φ =
1√
2

(

π1 + iπ2

H + v + iπ3

)

. (1.68)

The π1,2,3 modes are the would-be Goldstone bosons “eaten” by the
gauge bosons, while H will become a physical massive scalar, the Higgs
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boson. After insertion of (1.68) into the Lagrangian (1.63), the mass of
the Higgs bosons is indeed readily found:

mH =
µ2

2
(1.69)

The gauge boson mass spectrum is determined by |Dµ 〈φ〉 |2 where

Dµ 〈φ〉 =
iv

2
√

2

( √
2gvW+

µ

(g′Bµ − gW 3
µ)v

)

(1.70)

with
W±µ =

1√
2

[

W 1
µ ∓W 2

µ

]

. (1.71)

It is readily seen that the W±µ bosons become massive:

mW =
1
2
gv (1.72)

while only the combination (g′Bµ − gW 3
µ) get a mass in (1.70). The

orthogonal combination (g′Bµ + gW 3
µ) remains thus massless and is

identified with the photon. Defining

tan θW =
g′

g
(1.73)

the physical fields are then given by

Aµ = cos θWBµ + sin θWW 3
µ

Zµ = − sin θWBµ + cos θWW 3
µ

(1.74)

while their mass is

mA = 0

mZ =
1
2

gv

cos θW
=

mW
cos θW

(1.75)

As simple analysis of the neutral electroweak currents gives back the
QED coupling constant:

e = g sin θW = g′ cos θW (1.76)

where sin θW ≈ 1
2 [12]. The vacuum expectation value of the Higgs field

can then be computed from (1.72): v ≈ 246 GeV.
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It is noteworthy that the ratio

ρ ≡ mW
mZ cos θW

(1.77)

is exactly one in the Standard Model 14. This prediction is specific to the
choice of a scalar doublet. Other representations do not lead naturally
to ρ ≈ 1. The accidental SU(2) symmetry protecting this value is called
custodial symmetry.

It is also worth mentioning that the physical Higgs boson is required
for the mathematical consistency of the theory but has not yet been
observed. Direct searches at LEP have excluded a Higgs lighter than
114.4 GeV [19]. Its mass can also be bounded from above. For instance,
the unitarity of the theory would be broken by the W −W scattering at
around 1 TeV [20]. The occurrence of a scalar particle would cure this
issue. A more stringent indirect constraint comes from the radiative
corrections to ρ = 1: mH < 182 GeV [19]. The remaining admissible
window will be thoroughly searched at LHC.

1.6.2 Yukawa Couplings

In the simplest realization of the Higgs mechanism, the scalar doublet is
also responsible for the fermion masses. In this section we shall use the
usual representations for the fermions: left-handed doublets and right-
handed singlets of SU(2)L (see Tab. 1.1). In the Standard Model, the
right-handed neutrinos are absent and the most general gauge invariant
and renormalizable interaction between the fermions and the scalar field,
called Yukawa interaction, reads:

LY = −
(

QL Y
nφnR +QL Y

pφ̃pR + LL Y
lφlR

)

+ H.c. (1.78)

= −
[

(

pL nL
)

Y n
(

φ+

φ0

)

nR +
(

pL nL
)

Y p
(

φ0∗

−φ−
)

pR

+
(

vL lL
)

Y l
(

φ+

φ0

)

lR

]

+ H.c. (1.79)

where the Yukawa couplings, Y p,n,l, are arbitrary complex three-by-
three matrices.

14At least at tree level. One-loop radiative corrections are however very small.
The biggest contributions come from the top quark (∼ m2

t ) and the scalar sector
(∼ logm2

H).
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SU(3)c SU(2)L U(1)Y

QiL =

(

piL
niL

)

3 2 1
3

piR 3 1 4
3

niR 3 1 −2
3

LiL =

(

viL
liL

)

1 2 −1

viR 1 1 0

liR 1 1 −2

Table 1.1: The fermion content of the standard model and their gauge

quantum numbers (Q = T3 + Y
2

). We use different names to avoid confusion

with the mass eigenstates. pi and ni are the up- and down-like quarks,

respectively; while vi and li correspond to the neutrinos and charged leptons,

respectively.

After the spontaneous symmetry breaking, the Higgs field is replaced by
its vacuum expectation value (1.67) leading to fermion mass terms:

LY = −
[

nLM
nnR + pLM

ppR + lLM
llR
]

+ H.c. (1.80)

where the mass matrices are proportional to the Yukawa couplings:

Mx = Y x
v√
2

(x = n, p, l). (1.81)

Their diagonalization will be detailed in the next chapter.

Since the vacuum expectation is v ≈ 246 GeV, a naive estimate
(Y = O(1)) of the order of magnitude for the fermion masses yields
174 GeV. If the top quark is right at the expected mass, all others
fermions are much lighter. The Yukawa couplings require thus some
fine-tuning in order to reproduce the fermion mass spectrum.

1.7 Grand Unification Theories

The running of the three gauge coupling constants displays a convergence
just below the Planck scale. This unexpected behaviour suggests that
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the SU(3)c ⊗ SU(2)L ⊗ U(1)Y gauge symmetry of the Standard Model
could originate from a bigger local symmetry unifying all interactions.
The minimal anomaly free Lie group which contains the Standard Model
as a subgroup is SU(5) [21], whereas SO(10) is the smallest group with
right-handed neutrinos on an equal footing.

The unification of the gauge couplings at high energy effectively reduces
the number of free parameters. For instance in SU(5) at, or above,
the unification scale (∼ 1015 GeV), the weak angle, defined in (1.73), is
readily found to be

sin2 θW = 3
8 . (1.82)

At lower energy, this angle changes along with the running of the
coupling constants and becomes quite close to its observed value at the
Fermi scale.

In theories of Grand Unification, quarks and leptons are gathered
together in irreducible representations. In SU(5), the τ and the b
quarks must have the same mass at the unification scale [22]. At lower
energy, they evolve differently and their ratio become comparable to the
experimental value. The same kind of relation can also be obtained for
the lighter generations, but with less success [23, 24].

One of the main drawback of grand unification theories is the
introduction of new gauge bosons which, in general, break the lepton and
baryon numbers and therefore allow the proton to decay. The current
measurement settles firm constraints on these models and has ruled
out many of them, including the original SU(5). Another drawback,
aesthetic this time, is related to the breaking of the Grand Unification
group. Usually, this breaking requires several Higgs representations
which imply a rather complex scalar sector with many physical scalar
particles.
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2
A Peculiar Mixing

The occurrence of mass matrices in the Lagrangian is intimately
connected to flavour mixing in the charged weak currents. Within
the Higgs mechanism, they both have the same origin: the Yukawa
couplings. In this chapter, we proceed with their diagonalization and
explore the properties and representations of the mixing matrix. It is
known that nine different parametrizations exist. We show that one of
them has some unique features. A simple texture for the mass matrices is
presented. Their diagonalization allows us to compute quite accurately
the quark mixing angles as function of mass ratios.

2.1 Diagonalization

The Yukawa couplings, and thus the mass matrices, are in general
arbitrary complex three-by-three matrix and their diagonalization
requires a bi-unitary transformation. In the quark sector, one has

pL = UpLuL

pR = UpRuR

nL = UnLdL

nR = UnRdR

(2.1)

where uL,R and dL,R represent the chiral components of the quarks mass
eigenstates, i.e. the physical quarks. The three-by-three unitary matrices
UpL and UpR are chosen in order to bi-diagonalize Mp, while UnL and UnR
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bi-diagonalize Mn.

UpL
†
MpU

p
R = diag(mu,mc,mt) ≡Mu

UnL
†MnU

n
R = diag(md,ms,mb) ≡Md .

(2.2)

The matrices Mu and Md are, by definition, diagonal and their elements
are real and positive.

The charged currents, which were diagonal in terms of the electroweak
eigenstates, may now be written in terms of the mass eigenstates:

JW ∼ pLγ
µnL = uLU

p
L
†
γµUnLdL = uLγ

µVckmdL . (2.3)

In general, they are no more diagonal and the mixing matrix Vckm —
named after Cabibbo [25], Kobayashi and Maskawa [26] — is defined as

Vckm ≡ Up†L UnL ≡







Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb






. (2.4)

On the contrary the neutral currents remain diagonal:

JZ ∼ pLγ
µpL = uLU

p
L
†
γµUpLuL = uLγ

µuL . (2.5)

This important feature is possible thanks to the unitarity of Up,nL ,
ensuring the non-existence of Flavour Changing Neutrial Current
(FCNC) at tree-level.

The same reasoning is valid for the lepton sector. Ml is bi-diagonalized
thanks to unitary transformations of the fields. However, if we assume
massless neutrinos, it is always possible to find a neutrino transformation
in order to cancel the mixing matrix of the lepton sector:

vL = U lLνL

lL = U lLeL

lR = U lReR

(2.6)

where e and ν represent lepton mass eigenstates. The same
transformation U lL has been used for lL and vL, cancelling thus any
flavour mixing. Furthermore, the unitary matrices U lL and U lR are chosen
such that

U lL
†
MlU

l
R = diag(me,mµ,mτ ) ≡Me . (2.7)
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In the lepton sector of the Standard Model, the electroweak currents
are diagonal in terms of both the electroweak and mass eigenstates.
However, we know that neutrinos can oscillate and are therefore massive,
albeit very light. The usual extensions, presented in Sec. 1.5.4, can be
summarized in two categories: Dirac or Majorana neutrinos.

Dirac Neutrinos

In this extension right-handed neutrinos are present in the theory and
lepton number is conserved. All families are on a equal footing and the
procedure is the same as for the quarks. The two mass matrices are
bi-diagonalized thanks to unitary transformations of the fields:

vL = UvLνL

vR = UvRνR

lL = U lLeL

lR = U lReR

(2.8)

where Uv,lL,R are chosen in order to have

UvL
†MvU

v
R = diag(mν1,mν2,mν3) ≡Mν

U lL
†
MlU

l
R = diag(me,mµ,mτ ) ≡Me .

(2.9)

Exactly as for the quarks, a mixing matrix — named after
Pontecorvo [27], Maki, Nakagawa and Sakata [28] — appears in the
charged currents:

Vpmns ≡ U l†L UvL ≡







Ve1 Ve2 Ve3
Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3






. (2.10)

For historical reason, the definition of the lepton mixing matrix is
different from the quark’s one. It is indeed conventionally considered
that the up-type quarks and the charged leptons are diagonal, i.e.
U lL = UpL = 1, while the mixing occurs only for the down-type quarks
and the neutrinos, i.e. Vckm = UnL and Vpmns = UvL. We emphasize here
that this basis fixing choice is purely conventional and that the “real”
way how the mixing is split among the species may only be known, if
ever, from extensions to the Standard Model.
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Majorana Neutrinos

We have already seen that they are different ways of realizing Majorana
neutrinos. Let us first consider the case of a mass term involving only
the right-handed neutrinos, i.e. with no Dirac mass nor seesaw:

L ∼ −1
2ν
c
RMR νR + H.c. (2.11)

The diagonalization of MR requires a unitary transformation of the
right-handed neutrinos only. The left-handed neutrinos can be freely
transformed in order to cancel the part of the mixing coming from the
charged-leptons,

The observed mixing in the lepton sector requires thus a mass term
involving the left-handed neutrinos. This condition is met either with
left-handed neutrinos only or with a seesaw mechanism. In this latter
case (see (1.54)), we have

vL = UvLνL

vR = UvRνR
(2.12)

such that

UvR
†MRU

v
R = diag(mNR1

,mNR2
,mNR3

) ≡MNR
UvL
† (MTv M

−1
R Mv) UvL = diag(mν1,mν2,mν3) ≡Mν .

(2.13)

The mixing matrix Vpmns is again given by (2.10). From now on, when
speaking of Majorana neutrinos, the type I seesaw is understood.

2.2 Properties of Mixing Matrices

2.2.1 Parameters

From a mathematical point of view, a ng by ng complex mixing matrix 1

contains 2n2
g degrees of freedom. Fortunately, only a few of them turn

out to be physical.

First, the unitarity of the mixing matrices (2.4) and (2.10) imposes n2
g

constraints, leaving n2
g free parameters for each one. Secondly, the

1ng is the number of generations.
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Lagrangian is invariant under rephasing of the fields thanks to the
accidental U(1) symmetries.

In the quark sector, this ensures the cancellation of 2ng − 1 unphysical
relative phases between the quarks. Consequently, the number of
physical parameters of the quark mixing matrix is

Nparam = n2
g − (2ng − 1) = (ng − 1)2 (2.14)

i.e. Nparam = 1 (the Cabibbo mixing angle) for two generations while
Nparam = 4 for three generations.

In the lepton sector one should be more careful. Indeed, a Majorana
mass term is not invariant under U(1). As a consequence, the number
of phases which can be cancelled is only ng, yielding

Nparam = n2
g − ng = ng(ng − 1) (2.15)

i.e. Nparam = 2 for two generations while Nparam = 6 for three
generations. With Dirac neutrinos, the number of parameters is
obviously the same as for the quarks.

2.2.2 Representation

A unitary matrix is a complex extension of an orthogonal matrix. A
natural way to parametrize the mixing matrix is to identify some of
these parameters as mixing angles, the remaining ones being phases. A
ng by ng orthogonal matrix can be represented by a limited number of
rotations 2:

Nangle = 1
2ng(ng − 1) . (2.16)

For quarks and Dirac neutrinos, the number of physical phases is

Nphase = Nparam −Nangle = 1
2(ng − 1)(ng − 2) . (2.17)

At least three generations are thus required in order to have some phases.
If ng = 3, this unique phase is sometimes called Dirac phase.

In case of Majorana neutrinos, the number of angles is of course the
same as before (2.16), but the number of physical phases is bigger:

Nphase = Nparam −Nangle = 1
2ng(ng − 1) (2.18)

2This number corresponds to the dimension of SO(ng).
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giving Nphase = 3 for three generations. These two additional phases —
called Majorana phases — can actually be “factorized out” (see Sec. 2.3):

Vpmns = V · Φ (2.19)

where V is an unitary matrix with the same number of parameters as
for the quarks and Φ a diagonal matrix with two phases.

It is worth mentioning that these Majorana phases do not affect neutrino
oscillations but would influence other processes like neutrinoless double-
beta decay, see [12, 29] for a review.

2.2.3 CP Violation

A pure gauge Lagrangian is necessarily 3 invariant under CP . In the
Standard Model, with one Higgs doublet, the scalar potential is also
CP conserving. Consequently, a CP violation can only arise from the
simultaneous occurrence of Yukawa and gauge interactions.

The CP transformation of the fields are detailed in App. A. If we impose
CP conservation for the SU(2)L gauge interaction terms involving the
scalar fields (∼W+ϕ− −W−ϕ+), it is readily seen that

(CP) W+µ(t, ~r) (CP)† = −eiξWW−µ (t,−~r)
(CP) W−µ(t, ~r) (CP)† = −e−iξWW+

µ (t,−~r) .
(2.20)

Similarly, the CP conservation of QED gives for the quarks

(CP) uα(t, ~r) (CP)† = eiξαγ0C uTα(t,−~r)
(CP) uα(t, ~r) (CP)† = −e−iξαuTα(t,−~r)C−1 γ0

(CP) dk(t, ~r) (CP)† = eiξkγ0C d
T
k (t,−~r)

(CP) dk(t, ~r) (CP)† = −e−iξkdTk (t,−~r)C−1 γ0 .

(2.21)

In terms of the mass eigenstates, the charged-current interaction
transforms under CP like

(CP) W+
µ uαL γ

µVαk dkL (CP)† = ei(ξW+ξk−ξα)W−µ dkL γ
µVαk uαL

3We neglect here the possible parity violation by the vacuum of the theory (Cf.
App. B). This violation has never been observed and must be extremely small to
accommodate with the constraint on the neutron electric dipole moment.

40



2.2. PROPERTIES OF MIXING MATRICES

which has to be compared to W−µ dkL γ
µV ∗αk uαL. As a result, the weak

interactions are CP invariant only if

V ∗αk = ei(ξW+ξk−ξα)Vαk . (2.22)

Since the phases ξW , ξk and ξα are arbitrary, this latter condition
can always be fulfilled if we consider only one element of the matrix.
However, when considering several matrix elements 4, this condition
implies that they all should be real. The CP violation is therefore
equivalent to the existence of a physical phase in the flavour mixing
matrix. The strength of the CP violation is however not directly
proportional to this physical phase. This fact will become clearer once
explicit representations of the mixing will be introduced.

It can be shown [30] that, for three generations, there is only one CP
violating invariant which arise from the determinant of the commutator
of the mass matrices: det[Mp,Mn]. If the mass matrices are not
Hermitian, det[MpM †p ,MnM

†
n] has to be used instead. To simplify the

reasoning, we shall work in a specific basis:

UpL = 1 and UnL = Vckm . (2.23)

We then define
Hu = MpM

†
p = M2

u

Hd = MnM
†
n = V †ckmM

2
dVckm .

(2.24)

If Vckm is real, HuHd = (HdHu)T and the commutator is skew-
symmetric. It follows:

det[Hu, Hd] = det[Hu, Hd]T = det(−[Hu, Hd])

= (−1)3 det[Hu, Hd]

= 0 .

(2.25)

On the contrary, if Vckm is complex, HuHd = (HdHu)† and the
commutator is skew-hermitian, yielding:

det[Hu, Hd] = det[Hu, Hd]T = det(−[Hu, Hd]∗)

= (−1)3(det[Hu, Hd])∗

= iK

(2.26)

4This is a simple exercise to check that the relation (2.22) cannot be automatically
fulfilled for more than seven matrix elements at the same time in the case of three
generations.
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where K is real. An explicit computation gives

det[Hu, Hd] = 2iJ ∆2
uc∆

2
ct∆

2
tu∆2

ds∆2
sb∆

2
bd (2.27)

with
∆2
ij = m2

i −m2
j (2.28)

and
J
∑

γ,l

(ǫαβγ ǫjkl) = ℑ(VαjVβkV ∗αkV
∗
βj) . (2.29)

As a consequence, CP violation only occurs if the flavour mixing matrix
is complex and if all the up-type (down-type) masses are different.

From the definition (2.29), it is obvious that the choice of the four matrix
elements in the right-hand side must be made by selecting a two-by-two
submatrix. Manifestly, there exist nine different choices.

2.3 Parametrizations

The mixing matrix can be represented via three rotations and one phase.
A general three dimensional rotation matrix can indeed be constructed
from three simple rotations. The choice of the rotation axes is not
unique and we have no clue on which ones Nature could have chosen.
For simplicity, we shall use a simple basis :

R12(θ) =







cos θ sin θ 0
− sin θ cos θ 0

0 0 1







R23(θ) =







1 0 0
0 cos θ sin θ
0 − sin θ cos θ







R31(θ) =







cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ






.

(2.30)

Two rotations around two different axes do not commute, on the contrary
two rotations around the same axis can be regarded as only one.
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Therefore, there exist only twelve different combinations of these three
rotations:

(1) R12(θ1)R23(θ2)R12(θ3)

(2) R12(θ1)R31(θ2)R12(θ3)

(3) R23(θ1)R12(θ2)R23(θ3)

(4) R23(θ1)R31(θ2)R23(θ3)

(5) R31(θ1)R12(θ2)R31(θ3)

(6) R31(θ1)R23(θ2)R31(θ3)

(7) R12(θ1)R23(θ2)R31(θ3)

(8) R12(θ1)R31(θ2)R23(θ3)

(9) R23(θ1)R12(θ2)R31(θ3)

(10) R23(θ1)R31(θ2)R12(θ3)

(11) R31(θ1)R12(θ2)R23(θ3)

(12) R31(θ1)R23(θ2)R12(θ3)

The six first contain two times a rotation around the same axis while
the last six consist of rotations around the three different axes. However
only nine of them are structurally different. The products RijRklRij and
RijRmnRij (ij 6= kl 6= mn) are indeed correlated with each other [31].
For instance

R12(θ1)R23(θ2)R12(θ3) = R12(θ1 +
π

2
)R31(θ2)R12(θ3 −

π

2
) . (2.31)

We have now to introduce the fourth parameter, the phase φ. The easiest
way is to modify one of the rotations. Since the resultant matrix should
remain unitary, there are three different possibilities. For instance for
R12:

R12  







cos θ eiφ sin θ 0
−e−iφ sin θ cos θ 0

0 0 1






= P1(−φ) ·R12(θ) · P1(φ)

= P2(φ) ·R12(θ) · P2(−φ)
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or

R12  







eiφ cos θ sin θ 0
− sin θ e−iφ cos θ 0

0 0 1






= P1(−φ) ·R12(θ) · P2(φ)

= P2(φ) ·R12(θ) · P1(−φ)

or

R12  







cos θ sin θ 0
− sin θ cos θ 0

0 0 e−iφ






= R12(θ) · P3(φ) (2.32)

= P3(φ) ·R12(θ)

where

P1(φ) =







e−iφ

1
1







P2(φ) =







1
e−iφ

1







P3(φ) =







1
1

e−iφ






.

(2.33)

The two other rotations R23 and R31 can also be modified in the same
way. From now on, we shall use the third modification (2.32) as it is
the simplest one. This choice is however not really important since the
location of the phase in the flavour mixing matrix can be easily modified
via rephasing of the individual fields. It is moreover always possible to
locate the phase in a two-by-two submatrix, the remaining five elements
being real. The nine possibilities of such an arrangement correspond to
the nine different parametrizations [31] of Tab. 2.1.

All these parametrizations are mathematically equivalent. The interest
of choosing one or another depends mainly on the context or the habit.
The usual parametrization is the so-called standard or PDG convention
[12] corresponding to P3. In addition to this most-used parametrization,
we should also mention the original mixing proposed by Kobayashi and
Maskawa [26] corresponding to P2; and the Fritzsch convention [32] P1.
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Param. Decomposition

P1 V = R12(θ1)R23(θ2)P1(φ)R12(−θ3)
P2 V = R23(θ1)R12(θ2)P3(φ)R23(−θ3)
P3 V = R23(θ1)R31(θ2)P2(φ)R12(θ3)
P4 V = R12(θ1)R31(θ2)P2(φ)R23(−θ3)
P5 V = R31(θ1)R12(θ2)P3(φ)R31(−θ3)
P6 V = R12(θ1)R23(θ2)P1(φ)R31(θ3)
P7 V = R23(θ1)R12(θ2)P3(φ)R31(−θ3)
P8 V = R31(θ1)R12(θ2)P3(φ)R23(−θ3)
P9 V = R31(θ1)R23(θ2)P1(φ)R12(−θ3)

Table 2.1: The nine independent parametrizations of a mixing matrix in terms
of rotation matrices. See (2.30) and (2.33) for definitions

These two latter ones, mostly because of their symmetric construction,
have already been studied in various contexts [26, 32, 33, 34, 35, 36].
Indeed, their first and third rotations involve the same axes and allow
for a symmetric decomposition of the mixing. To our knowledge, the
others conventions did not receive any in-depth studies.

Thanks to these parametrizations, (2.19) is easily demonstrated. For
instance, let us consider P1 but with three independent phases. Using
the permutation relations:

Pi(φ) ·Rij(θ) · Pj(−φ) = Pj(−φ) ·Rij(θ) · Pi(φ) (2.34)

one finds successively

Vpmns = R12R23 P1(φ1)P2(φ2)P3(φ3)R12

= R12R23 P1(φ1)P2(φ2)R12 P3(φ3)

= R12R23 P1(φ1)P1(−φ2)R12 P2(φ2)P1(φ2)P3(φ3)

= R12R23 P1(φ1 − φ2)R12 P2(φ2)P1(φ2)P3(φ3) .

(2.35)

Finally, a global rephasing of the charged leptons allows to cancel one
of the outer phases, for instance P1, leading to

Vpmns = V · P2(φ2)P3(φ3) . (2.36)

Consequently, the two Majorana phases can always be factorized out.
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Param. θ1 θ2 θ3 φ

P1 (5.36±0.13)◦ (2.43±0.03)◦ (11.07±0.87)◦ (101.04±10.28)◦

P2 (2.05±0.16)◦ (13.14±0.03)◦ (1.00±0.02)◦ (100.00±10.39)◦

P3 (2.42±0.03)◦ (0.23±0.01)◦ (13.13±0.03)◦ (56.70±9.56)◦

P4 (13.13±0.03)◦ (0.47±0.04)◦ (2.39±0.03)◦ (24.37±1.17)◦

P5 (10.38±0.12)◦ (13.36±0.03)◦ (10.53±0.11)◦ (1.07±0.12)◦

P6 (13.14±0.03)◦ (2.39±0.03)◦ (0.47±0.04)◦ (155.67±1.17)◦

P7 (2.45±0.03)◦ (13.13±0.03)◦ (0.23±0.01)◦ (124.34±9.44)◦

P8 (0.48±0.04)◦ (13.13±0.03)◦ (2.48±0.03)◦ (156.67±1.07)◦

P9 (0.23±0.01)◦ (2.42±0.03)◦ (13.14±0.03)◦ (123.33±9.55)◦

Table 2.2: Angles and phases in the nine different parametrizations of the
quark mixing matrix Vckm in terms of rotation matrices. Errors are at 1σ.

2.4 Quarks

In addition to the inherent advantages of a particular decomposition we
may legitimately wonder if the values of the mixing angles, extracted
from the data, would single out one of these parametrizations.

The computation of the parameters has been performed via a maximum
likelihood. The input parameters consist of the absolute value of the
mixing matrix elements. The analysis has been performed on two
different sets. First we used the latest [12] values for |Vij | plus the well-

measured angle β = arg
(

−VcdV
∗
cb

VtdV
∗
tb

)

. The second set was composed of
the mixing matrix elements already constrained by a global fit as found
in [37]. We have moreover assumed that the error on each input was
Gaussian. The differences between the results from the two input sets
were not significant. The CP violating parameter J has been computed
afterwards for each parametrization and compared to its experimental
value (J = (3.05± 0.2)× 10−5) as a cross-check.

The angles can always be chosen to lie in the first quadrant while the
phase remains in the first two quadrants. It is worth mentioning that
the phase can also be shifted (φ π − φ), for instance by changing the
sign of one of the angles. Numerical results are summarized in Tab. 2.2.

In view of these results, two classes of parametrization are readily
spotted. The six parametrizations which have rotations around the three
axes (P3, P4, P6, P7, P8 and P9) present indeed the same pattern. They
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all have approximately the same angle for each identical rotation. In
other words, the angles for the rotation R12 in all these parametrizations
are approximately the same, let’s call it θ12 ∼ 13.13◦; and equivalently
for R23 (θ23 ∼ 2.45◦) and R31 (θ31 ∼ 0.35◦). The only difference
between these parametrizations is the order in which the individual
rotations appear. Obviously, rotations around two different axes do not
commute. However, because of the hierarchy among the three angles,
the commutators are very small, bringing only minor corrections to the
angles. For the same reason, the phases are also roughly equal (up to
a 180◦ difference). Consequently, at this level, there is no particular
difference among these six parametrizations.

The three remaining parametrizations (P1, P2, and P5) were
constructed in a symmetric way with rotations involving only two
different axes. Their angles and phase are quite different from the
previous ones, except for the middle rotation. θ2 is indeed almost equal
to the corresponding angle coming from the preceding case, i.e. θ2 ≃ θ23

for P1 and θ2 ≃ θ12 for P2 and P5.

The absolute value of the quark mixing matrix is almost symmetric.
Since these three latter parametrizations are also constructed
symmetrically, this particularity implies that θ1 and θ3 should be of
the same order of magnitude. It is worth mentioning that, in P5, the
two outer angles will never be equal although the error bars seem to
allow it. A plot of the admissible zone for θ1 and θ3 (Fig.2.1) shows that
their error bars are indeed highly correlated.

Among all these parametrizations, P5 is the most peculiar. This is
the only one where all the angles have the same order of magnitude,
corresponding roughly to the Cabibbo angle. Moreover, the most
striking feature is probably the smallness of its phase: φ ∼ 1◦, while
the other parametrizations have all a much bigger phase: φ ∼ 60◦. This
can be easily explained after an expansion à la Wolfenstein [38]. If we
make the further assumption that the sine of all angles is equal to λ,
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10.2 10.4 10.6 10.8

10.2
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10.6

10.8

θ1

θ 3

Figure 2.1: θ3 with respect to θ1 (in degree) in the P5 convention. The
admissible zone corresponds to a 3σ deviation. The dash line represents
θ1 = θ3.

one finds

V5 =







c1c2c3 + s1s3e
−iφ c1s2 −c1c2s3 + s1c3e

−iφ

−s2c3 c2 s2s3

−s1c2c3 + c1s3e
−iφ −s1s2 s1c2s3 + c1c3e

−iφ






(2.37)

≈







1 + λ2(e−iφ − 3
2) λ λ(e−iφ − 1)

−λ 1− λ2

2 λ2

λ(e−iφ − 1) −λ2 λ2 + e−iφ(1− λ2)






. (2.38)

The smallness of Vub and Vtd can only be explained by a very small
phase. Let us remark that the difference between θ1 and θ3 can be seen
as a small perturbation to the limit case where the absolute value of the
mixing matrix is symmetric. In the same idea, the phase introduces a
very small perturbation only visible on the (3,1) and (1,3) elements.

The smallness of this phase revives the old idea of explaining all the
mixing parameters only in terms of mass ratios 5, in a way similar to the
famous

θCabibbo ≈
√

ms
md

= (13.5± 1.9)◦ . (2.39)

5Hereafter, unless specified, all quark masses are the running masses at the Z mass
(Cf. Tab. 3.2)
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In all the other parametrizations, including the standard one, the phase
is of the order of 1 radian. This latter value cannot be easily obtained via
a ratio because of the mass hierarchy. However, in P5, such a relation
can be straightforwardly found. For instance:

φ ≈ ms
mb

= (1.08± 0.22)◦

or

φ ≈ mb
mt

= (0.96± 0.02)◦

are really close to the extracted value: φ = (1.07 ± 0.12)◦.

CP violation

Whatever the representation, the J parameter has only two forms [31]:

J =

{

s1c1s2c
2
2s3c3 sinφ for P3, P4, P6, P7, P8, P9

s1c1s
2
2c2s3c3 sinφ for P1, P2, P5

(2.40)

Its maximal theoretical value is reached for θ1 = θ3 = 45◦ and

θ2 =

{

arcsin 1/
√

3 ≈ 36.2◦

arccos 1/
√

3 ≈ 54.7◦
(2.41)

yielding:

Jmax =
sinφ

6
√

3
. (2.42)

For given angles, the maximum CP violation is therefore related to a
maximum phase: φ = 90◦. However, in general a bigger phase does not
necessarily implies a bigger violation since the angles and phase are all
linked within the mixing matrix.

In particular, in terms of the P5 parameters, the J parameter reads

J = s1c1s
2
2c2s3c3 sinφ (2.43)

J being fixed and P5 having three angles of the same order and relatively
big compared to the others, its phase is minimal.
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2.5 Leptons

It would be interesting to study the parametrizations of the lepton
mixing matrix in the same spirit of the quarks. Unfortunately, from the
four (or six with Majorana neutrinos) parameters, only two angles are
measured. They are usually quoted within the standard parametrization
P3 (at 1σ) [39, 40, 41]:

sin2 θsun ≈ sin2 θ12 = 0.32± 0.023 ⇔ θ12 = (34.45± 1.41)◦ (2.44)

sin2 θatm ≈ sin2 θ23 = 0.50± 0.055 ⇔ θ23 = (45.00± 3.15)◦ (2.45)

The third angle is only weakly constrained (at 95% CL):

sin2 θch ≈ sin2 θ31 < 0.033 ⇔ θ31 < 10.5◦ (2.46)

The Dirac phase is completely unknown and may even be irrelevant with
vanishing θ31. In that case, a useful ansatz is the so-called tri-bi-maximal
mixing matrix [42] which is compatible with all current data:

|V | = |R23(θ23)R12(θ12)| (2.47)

=









√

2
3

1√
3

0
1√
6

1√
3

1√
2

1√
6

1√
3

1√
2









. (2.48)

The values θ23 = arcsin(1/
√

2) = 45◦ and θ12 = arcsin(1/
√

3) ≃ 35.26◦

reflect a maximal mixing between two and three species, respectively. It
is worth mentioning that only five from the nine parametrizations (P1,
P2, P3, P7 and P9) are compatible with this ansatz (Cf. Tab. 2.3),
that is to say the ones where R23R12 appear in that order in their
decomposition. These are also the only ones in which the apparent
quark-lepton complementarity [43, 44] may be realized:

θquarks
12 + θleptons

12 ≈ π

4
. (2.49)

Instead of using the tri-bi-maximal ansatz, we can can choose a
reasonable lepton mixing matrix. The central values of θsun and θatm

have been used together with θch = 5◦ and φ = 45◦. The results are
presented in Tab. 2.4. In this case, P5 is noteworthy again. It displays
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Param. θ1 θ2 θ3 φ

P1 0◦ 45◦ 35.26◦ ℜ
P2 45◦ 35.26◦ 0◦ ℜ
P3 45◦ 0◦ 35.26◦ ℜ
P4 26.56◦ 24.09◦ 39.23◦ 0◦

P5 45◦ 54.73◦ 60◦ 0◦

P6 45◦ 35.26◦ 30◦ 180◦

P7 45◦ 35.26◦ 0◦ ℜ
P8 26.56◦ 24.09◦ 50.77◦ 0◦

P9 0◦ 45◦ 35.26◦ ℜ

Table 2.3: Mixing parameters for the tri-bi-maximal mixing matrix. If one of
the mixing angle is vanishing, the phase is unphysical and can be any reals (ℜ).

Param. θ1 θ2 θ3 φ

P1 7.1◦ 45.2◦ 31.0◦ 131.7◦

P2 39.9◦ 34.8◦ 8.8◦ 134.0◦

P3 45◦ 5◦ 34.5◦ 45◦

P4 28.0◦ 21.5◦ 40.8◦ 12.6◦

P5 47.1◦ 56.0◦ 58.2◦ 9.6◦

P6 45.2◦ 37.5◦ 27.4◦ 169.5◦

P7 47.4◦ 34.3◦ 6.1◦ 134.8◦

P8 24.0◦ 25.9◦ 51.6◦ 192.8◦

P9 7.1◦ 44.8◦ 38.0◦ 137.2◦

Table 2.4: Mixing parameters for the lepton mixing matrix. P3 is used as
input.
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the smallest phase of all parametrizations and its three angles are of
the same order of magnitude, exactly as for the quarks. The choice of
the input values is not restrictive. The computed angles and phases are
indeed only slightly sensitive to the input chooz angle. On the contrary,
the computed phases are highly dependent on the input phase. However,
we have checked that the hierarchy between the phases in the various
parametrizations is almost conserved for φ = 0◦ to 180◦ as input : P5
presents the smallest phase for the biggest part of the parameter space.

2.6 Mass Textures

Within the Standard Model for electroweak interactions, adopting
a particular parametrization of flavour mixing is arbitrary and not
a physical issue. Nevertheless, it is quite likely that the actual
values of flavour mixing parameters, including the strength of the CP
violation, would give interesting information about the physics beyond
Standard Model. In many models, the generation of quark masses is
intimately related to the phenomenon of flavour mixing. A particular
structure of the underlying mass matrices calls for a particular choice
of parametrization. Moreover, if we assume that the masses and mixing
can be computed within a new flavour theory, this theory will probably
pick one of the nine parametrizations.

The angles of the P1 parametrization have already received some
physical interpretation (see [36] and references therein). In the limit
of a heavy third generation, i.e. mt ≫ mc > mu and mb ≫ ms > md,
the angle θ2 would be vanishing. In this decoupling limit, the angle
θ1 describes a mixing between the up and charm quarks, whereas θ3

connects the down and strange quarks. A simple pattern of mass matrix
representing this limit case would be:

M =







a b 0
b c 0
0 0 d






. (2.50)

The mass hierarchy implies d≫ c, b > a ≈ 0 and leads to

θ1 ≈
√

mu
mc
≈ 3.0◦

θ3 ≈
√

md
ms
≈ 13.5◦

(2.51)
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which is quite close to the observed values for P1.

Unlike P1, the P5 parametrization has never attracted much attention.
One would like to know if the peculiarities of this parametrization could
also be reflected in a simple mass matrix.

The symmetric construction of P5 calls for a symmetric separation of
the mixings coming from the up- and down-type quark sectors. Ideally,
one would like the flavour mixing matrix to be described by

Vckm = Up†L U
n
L

=
(

R31(θu3 )RT12(θu2 )
) (

R12(θd2)RT31(θd3)
)

.
(2.52)

For the moment, we do not consider CP violation and the inclusion of
a phase in this decomposition will be done later.

Let us first imagine that all quark masses are equal but different from
zero. The symmetry in the Lagrangian is increased and the mixings are
unphysical, yielding Vckm = 1.

The deviation from this symmetric situation, could occur in a sort of
cascade breaking. Some mechanism will first modify the heavy quark
mass while the lighter ones keep degenerated. In each sector, the mixing
is then merely a rotation in the (1,3) plane. In the limit of θ1 = θ3, which
is very close to the real world, the flavour mixing is again disappearing:
Vckm = 1.

The flavour mixing will only be present once a splitting between the first
and second generations is introduced. This new hierarchy will generate
a mixing in the (1,2) plane, yielding (2.52).

For the first stage of this scheme, one may be tempted to use the same
kind of mass matrix successfully used with P1, but with a (1,3) mixing:

M =







a 0 b
0 c 0
b 0 d






. (2.53)

Unfortunately, this naive assumption leads to completely wrong angles
for P5:

θu3 ≈
√

mu
mt
≈ 0.18◦

θd3 ≈
√

md
mb
≈ 1.8◦ .

(2.54)
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This situation is however not hopeless. We note indeed that

θu3 ≈ 4

√

mu
mt
≈ 3.2◦

θd3 ≈ 4

√

md
mb
≈ 10.3◦ .

(2.55)

Whereas the first ratio is a bit too small, the second one fits perfectly
the observed value. Moreover, the rotation in the (1,2) plane is also
recovered:

θ2 = −θu2 + θd2 ≈ − 4

√

mu
mc

+ 4

√

md
ms
≈ −13.1◦ + 27.8◦ ≈ 14.7◦ . (2.56)

These results are quite promising and seem to indicate that the flavour
mixing could arise from a simple texture, not for the mass matrix, but
for its square root. From this perspective, we should build the mass
matrix M from a more fundamental matrix S which would play the role
of its square root:

M = SS† . (2.57)

It is worth mentioning that, within this context, the mass matrices are
always Hermitian and the θ-strong problem might get a natural solution
(Cf. App. B).

The mixing angles are now related to the bi-diagonalization of S and
the ratios (2.55) are readily found from a very simple matrix:

S =







0 0 a
0 b 0
a 0 c






. (2.58)

For simplicity, we assume that the parameters a, b and c, are real. In
this case, they can be computed from

TrS = b+ c =
√
m1 +

√
m2 +

√
m3

DetS = −a2b =
√
m1
√
m2
√
m3

Tr(SS†) = 2a2 + b2 + c2 = m1 +m2 +m3

(2.59)

where the index on the masses corresponds to the generation. This
system has a solution only if one of the square roots is actually negative 6,

6This is not an issue since the mass will still be positive.
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for instance
√
m1  −

√
m1. This gives

a = 4
√
m1m3

b =
√
m2

c =
√
m3 −

√
m1 .

(2.60)

The matrix S is diagonalized thanks to an orthogonal matrix
corresponding to a rotation in the (1,3) plane with an angle θ given
by

tan(2θ) =
2a
c
⇔ θ = arctan 4

√

m1

m3
. (2.61)

Starting from

S =







0 a′ 0
a′ b′ 0
0 0 c′






. (2.62)

The ratios in (2.56) are equivalently found. Indeed, with

a′ = 4
√
m1m2

b′ =
√
m2 −

√
m1

c′ =
√
m3

(2.63)

the mixing angle is

tan(2θ′) =
2a′

c′
⇔ θ′ = arctan 4

√

m1

m2
. (2.64)

The challenge is now to find a way to combine (2.58) and (2.62) such
that their individual properties are kept almost intact. This goal can
be easily achieved, however, if the number of parameters is bigger than
three, we will loose any power of prediction since the remaining ones
can always be fine-tuned in order to fit the observations. Instead of
combining directly the matrices — which would lead to at least four
parameters — another way would be to combine their results (2.60)
and (2.63). The eigenvalues of the resulting matrix will no more be
the observed masses. Nevertheless, we can hope that the difference will
remain small such that the matrix represents a good approximation to
the real world.
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Our first guess is the mere superposition of the results (2.60) and (2.63):

S =







0 4
√
m1m2

4
√
m1m3

4
√
m1m2

√
m2 −

√
m1 0

4
√
m1m3 0

√
m3 −

√
m1






. (2.65)

This texture is close to the ones used in [34, 45]. However, its eigenvalues
have changed significantly. This scheme needs thus some modification,
for instance:

S =







√
m1

4
√
m1m2

4
√
m1m3

4
√
m1m2

√
m2 −

√
m1 0

4
√
m1m3 0

√
m3 −

√
m1






(2.66)

which induces only a difference of order O(m1) in m2 and m3.

The diagonalization of (2.66) requires in general three rotations but one
of them will be very small. Analytical expressions are rather involved
and, from now on, we shall proceed numerically. In terms of P5, the
mixing matrices for the up and down sectors are described by the angles:

θu1 = 3.4◦ θu2 = 12.9◦ θu3 = 0.2◦

θd1 = 12.2◦ θd2 = 25.6◦ θd3 = 1.8◦
(2.67)

This is exactly what we were expecting for, up to a big difference: the
rotations appear in the wrong order with respect to (2.52).

The correct orthogonal matrix is found by tackling the problem from
the opposite side. The matrix we are looking for is indeed

S = R12(θ′)R31(−θ)







−√m1 √
m2 √

m3






R31(θ)R12(−θ′) (2.68)

where θ and θ′ are given in (2.61) and (2.64). The hierarchical structure
of the masses leads to a simple approximation:

S ≃









√
m1

4
√
m1m2 − 4

√
m1m3

4
√
m1m2

√
m2 −

√
m1

4

√

m3
m2

√
m1

− 4
√
m1m3

4

√

m3
m2

√
m1

√
m3 −

√
m1









. (2.69)

This matrix is very similar to (2.66) except the non-vanishing elements
(2, 3) and (3, 2).
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For each sector, the angles in the P5 parametrization are now exactly
the ones we were expecting for

θu1 = −0.16◦ θu2 = 13.5◦ θu3 = 3.1◦

θd1 = −1.8◦ θd2 = 29.6◦ θd3 = 9.6◦
(2.70)

The combination of these two mixings leads to the flavour mixing matrix
with:

θ1 = 0.22◦ θ2 = 16.1◦ θ3 = 8.2◦ (2.71)

The second and third mixing angles corresponds roughly to the observed
values. Unfortunately, the first one is still too small. This situation can
however be improved.

So far, we did not consider CP violation. In the above scheme, a phase
can appear as a mismatch between the mixings coming from the up- and
down-sector [45, 46]. It turns out that the best results are achieved with
a phase φ = 180◦ which acts on the third generation:

Vckm = UP †L P3(φ) UnL . (2.72)

At the level of the S matrix, this modification corresponds to a rephasing
of the elements (1,3), (3,1), (2,3) and (3,2), i.e. the elements that would
generate the mixings involving the heavy quarks:

S  







X X Xeiφ

X X Xeiφ

Xe−iφ Xe−iφ X






. (2.73)

With this modification, the angles of the new flavour mixing matrix, in
terms of P5, are

θ1 = 6.6◦ θ2 = 16.1◦ θ3 = 7.9◦ φ = 180◦ (2.74)

Thanks to the inclusion of a maximal mismatch between the phases of
the up and down sectors, the two outer angles are now roughly the same.
Although the phase is not correct, the diagonalization of (2.69) leads to
a flavour mixing which is still close to Vckm. These results are quite
encouraging since the matrix texture (2.69) is rather simple. It would
be interesting to know whether these mass matrices can be implemented
beyond the Standard Model.
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Unfortunately, the same texture (2.69) applied to the leptons leads to
a wrong flavour mixing matrix. This issue arises probably from the
neutrino sector. The mechanism which generates the neutrino masses
could be different from the one responsible for the other fermions. It is
indeed quite unlikely that the neutrinos have only a Dirac mass since
it would require an additional symmetry. In particular, if the neutrino
masses arise from a seesaw mechanism, the Dirac texture (2.69) will be
modified by the right-handed neutrino Majorana mass matrix.

In this chapter, we have shown that the P5 parametrization of the flavour
mixing matrix presents some unique features for both the quarks and the
leptons. We have postulated that these peculiarities are an insight on
what could be the physics beyond Standard Model. If the mass matrices
are actually built by squaring a more fundamental matrix, the mixing
angles seem a priori computable from simple ratios. We have proposed
a simple texture for this “square root” matrix which leads to a quark
flavour mixing similar to the observed one.

It appears that the square roots of the masses present some physical
interest for flavour mixing. If they are related to some new physics,
these square roots should also appear in other contexts. In particular,
in the next chapter, we study an extremely successful empirical relation
connecting the square roots of the charged lepton masses.
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In the Standard Model of electroweak and strong interactions, the
Yukawa couplings contribute to most of the free parameters of the
theory. The gauge couplings and the Higgs potential represent 5 free
parameters 1, while the fermion content requires 12 masses and at least 8
mixings parameters. Since the advent of the Standard Model, physicists
have aimed at reducing these numbers. There were many attempts to
get further insights on how these constants arise and whether one might
calculate them. The Yukawa textures presented in the previous chapter
are one of them, the grand unification theories are another. These two
techniques are typically representative of the two possible approaches
that have been used.

The top-down approach tries to define a more general point of view and
to observe its consequences on a testable sector. On the contrary, in the
bottom-up approach, one starts from a particular situation and tries to
clarify the properties that a general theory should meet.

The early success of SU(5) and SO(10) has motivated a lot of
interests in the top-down approaches. However, the simplest grand
unification groups are strongly constrained by the proton decay while
their supersymmetric variants introduce a bunch of new free parameters.

On the other side, the Yukawa textures and the horizontal symmetries,
i.e. symmetries between generations, are able to provide good estimates
of the mixing angles. A number of patterns and symmetries have been
proposed. However, no simple pattern or symmetry has ever conducted
to the precise computation of masses or angles.

1To be complete, we should also take into account the θ strong parameter.
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In a colourful description, the top-down approach is like looking for a
needle in a haystack. The number of models is virtually infinite and
one has to try them one by one before finding the good one. This way
of doing cannot reasonably work without a first selection to limit the
possibilities. Making this selection is the role of the bottom-up approach.
For instance, in this picture, this could be the discovery that the needle
is ferromagnetic.

Currently, this latter approach (bottom-up) seems to us the most
promising. In our opinion, before trying to build a model able to explain
the fermion mass spectrum, one should first have a better understanding
of the mass hierarchy. In this chapter, we shall analyze an extremely
successful empirical relation among the masses. If this relation is indeed
realized in Nature, its properties should give us some interesting hints
of what could be the flavour physics beyond Standard Model.

3.1 Koide Mass Relation

In 1982, while looking for an empirical relation giving the Cabibbo angle
in terms of the masses of the fermions, Koide proposed a relation that
bound together all the charged-leptons masses [47]. At that time, the
τ mass was only badly known and the formula allowed him to give a
good estimate of it. This is maybe the reason why the relation has been
neglected for some years until the precision of the masses increases. The
formula got recently a new lease of life once its accuracy could be tested
and impressively checked [48].

In its original form, the relation is written:

me +mµ +mτ = ql
(√
me +

√
mµ +

√
mτ
)2 (3.1)

where ql is supposed to be 2
3 . The latest charged-leptons masses [10, 12]

are:
me = 0.510998910± 0.000000013 MeV

mµ = 105.6583663± 0.0000038 MeV

mτ = 1776.99± 0.29 MeV.

(3.2)

Since the muon mass is measured with respect to the electron’s one,
their errors are highly correlated. The same references give their Pearson
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correlation coefficient: reµ = 0.7006. A first order propagation of the
errors gives

ql = 0.666667 ± 0.000016 (3.3)

which is indeed compatible with 2
3 with a 5-digit precision.

This relation can of course be inverted in order to give a prediction for
the τ mass — which is the least precise mass — after imposing ql = 2

3 :

mτ = 1776.968874± 0.000061 MeV . (3.4)

The accuracy of the relation (3.1) has no equivalent in any other
proposed model or pattern. The legitimate question is then to wonder
how such a relation could emerge from a theory. These efforts will be
detailed later. We should first focus on the properties of the relation
and their implications.

3.1.1 Features and Issues

Democracy

The relation (3.1) is democratic, in the sense that all generations are
on an equal footing. The relation is indeed invariant under a change
of generation: mi ↔ mj (i and j stand for e, µ or τ), i.e. a S(3)
permutation symmetry. In particular, this interesting feature suggests
that a democratic behaviour must exist at some point in the mechanism
generating the masses.

Moreover, the challenging middle value of ql = 2
3 turns out to be an

extremely efficient measure of the mass splitting inside the charged
lepton family (Cf. Tab. 3.1). Its maximal value (q = 1) would
correspond to a full hierarchy (m1,m2 ≪ m3) while its minimal
value (q = 1

3) would occur in the case of complete degeneracy
(m1 = m2 = m3). Let us remark that Nature comes close to
these boundary values with the up quark and the neutrino families,
respectively.

This property has received a nice geometrical interpretation [49]. Let
us first indeed define a three dimensional space where each axis is
associated to a generation (~e, ~µ and ~τ). In this generation space, the
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45◦

ψl

(1, 1, 1)

~e

~µ

~τ ~Sl

Figure 3.1: Geometric representation of the Koide mass relation. The
cross represents the vector containing the square roots of the lepton masses
~Sl = (

√
me,
√
mµ,
√
mτ ). It lies on a cone with aperture ψl = 45◦ aligned with

the vector representing degeneracy: (1, 1, 1). For illustration purposes, the cone
is not drawn at scale.

relation (3.1) states that the vector ~Sl containing the square-roots of the
charged-lepton masses lies at 45◦ of the vector (1, 1, 1) representing the
degeneracy among the masses (Cf. Fig. 3.1):

cosψl =
(
√
me,
√
mµ,
√
mτ ) · (1, 1, 1)

|(√me,√mµ,
√
mτ )||(1, 1, 1)| =

1
√

3ql
(3.5)

giving

ψl = (45.00005± 0.00070)◦ . (3.6)

This democratic behaviour is really impressive. For instance, if we
switch off the small electron mass, we obtain a completely wrong tau-to-
muon mass ratio: 0.072, to be compared with the experimental value:
mµ/mτ ≈ 0.059.

We may hope that the parameter q actually arises from some flavour
symmetries broken above the Fermi scale. In that case, its value could
be related in one way or another to the number of generations or to
some quantum numbers. In particular, we may assume that a mass
relation should be possible order by order with an increasing number of
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q ψ

Degeneracy 1
3 arccos

√

1/1 = 0
Charged leptons 2

3 arccos
√

1/2 = 45◦

Strong hierarchy 1 arccos
√

1/3 = 54.73◦

Table 3.1: Special values of the splitting parameters

generations. With only one generation, the relation is indeed trivially
satisfied for ql1 = 1. However, with two generations, the electron and
the muon, its value does not seem particular ql2 = 0.8784. We can
nevertheless do it all the same with a fourth generation. The most
stringent limit on the mass of an heavy charged lepton comes from direct
search (W → νl±) [12]:

m4 > 100.8 GeV . (3.7)

This latter constraint is equivalent to

ql4 > 0.7474 . (3.8)

The interesting possibility ql4 = 3
4 leads to m4 = 103.5 GeV.

Square Roots

The occurrence of square roots of masses in (3.1) is not real surprise for
us. We have seen that they naturally appear during the diagonalization
of a mass matrix (Cf. Sec. 2.6). However, here, the square roots of the
masses seem to play a special role in their own hierarchy, independently
of any mixing angles.

If one wants to explain the mass relation from some symmetries, this
mere fact constitutes an important issue. Indeed, square roots of masses
do not appear so easily from the Lagrangian. It is also worth reminding
that the precision achieved does not allow to neglect the small electron
mass. The mass relation should therefore arise as an exact expression.

In the geometric description (3.5), we have also pointed the importance
of the square roots of masses. This impression will be confirmed all
along this chapter.
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Pole Masses

Equation (3.1) provides a wonderful numerical relation among the
observed masses. So far, we have implicitly, and naturally, used the
physical mass of the charged-leptons, corresponding to their pole mass.
However, we have seen that, in the Standard Model, this choice is not
unique. Depending on the context, one usually refers to one of the
bare, running or pole mass (Cf. Sec. 1.2.1). At tree level all these
definitions are of course equivalent and this is quite sufficient for many
mass relations. However, the precision achieved by (3.1) legitimates the
question: which masses?

The question might first seem irrelevant for the charged leptons whose
masses are quite stable under renormalization. Indeed, at one loop, the
evolution of their running mass reads [50]:

µ
dm(µ)

dµ
= −6α(µ) . (3.9)

In this leading log approximation 2 all the masses evolve in the same way
and one has to go beyond this approximation to observe a tiny variation
in their ratios. The mass relation is therefore virtually constant under
renormalization albeit energy scale dependent.

However, the key point is the transition from the pole masses to the
running masses. The renormalization group equations for QED give the
relation connecting the running mass m(µ) at a given scale µ and the
pole masses m. At one loop, one has for the fermions [50]:

m(µ) = m

[

1− α(µ)
π

(

1 +
3
2

log
µ

m(µ)

)]

. (3.10)

Clearly, the mass ratios are not constant under such a transformation.
Although the variation is small, the effect is still important enough with
respect to the precision achieved [51]. For instance, the charged lepton
masses at the Z scale [52] are:

me(MZ) = 0.486570161(42) MeV

mµ(MZ) = 102.7181359(92) MeV

mτ (MZ) = 1746.24(20) MeV

(3.11)

2In the leading-log approximation, one keeps only the dominant contribution
coming from the gauge bosons, here photons. Beyond this approximation, one takes
also into account the contribution of fermions loops
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Figure 3.2: Running ql for the charged leptons

giving
ql(MZ) = 0.667928(11)

ψl(MZ) = 45.0541(5)◦
(3.12)

which are no longer compatible with 2
3 or 45◦. These numbers can be

slightly improved when going at lower energy where the (running) mass
ratios are bigger, i.e. where the hierarchy is weaker (Cf. Fig. 3.2).

If we assume that the relation (3.1) should be valid — as it seems — for
the pole masses, we are probably facing the biggest problem raised by
the relation. The first obvious issue concerns the quarks. Indeed, quarks
are never free. Consequently, their propagator as well as their pole mass
are ill-defined. Any generalization should then use their running mass
leading to only approximate relations. The second issue of the pole
masses arises when trying to build a model explaining the relation. As
we have seen, the Standard Model way to derive relations is to impose
some extra symmetries to the Lagrangian. However, these symmetries
are actually applied to the bare masses which are not related to the pole
masses in a simple way. So, we do not see how Lagrangian symmetries
could gather together pole masses in such a concise form and such a
precise way.
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mu(MZ) = 1.27 ± 0.5 MeV mc(MZ) = 0.619± 0.084 GeV
md(MZ) = 2.9± 1.24 MeV mb(MZ) = 2.89± 0.09 GeV
ms(MZ) = 55± 16 MeV mt(MZ) = 171.7 ± 3 GeV

Table 3.2: Running quark masses computed at the Z mass [52].

Other Families

When looking at (3.1), the first idea is to check if the same relation
applies to the other families [53]. However, as explained before, the
relation might be valid only for the pole masses whereas the running
masses of the quarks should only give a rough equality.

In principle, for the up quark family, it could be possible to work with
pole masses although the errors for the charm quark might be big [52]. In
that case, we find that the pole mass of the up quark should be heavier
than the charm one to satisfy qu = 2

3 , which is excluded.

A better solution could be to use the running masses computed at the
same scale. For instance, at the Z scale, (Cf. Tab. 3.2), we get:

qu(MZ) ≈ 0.888 (3.13)

qd(MZ) ≈ 0.746 . (3.14)

The running of the mass ratio is again not enough to recover the relation
at a lower scale. The direct transposition of (3.1) to the quark sector
seems hopeless since the observed hierarchies are here too strong.

On the contrary, the neutrinos appear almost degenerate. While
their mass differences are well-measured [12], their global scale is still
unknown:

∆m2
21 =m2

2 −m2
1 = (8.0± 0.3)× 10−5 eV2

|∆m2
32| =|m2

3 −m2
2| = (2.5± 0.2)× 10−3 eV2 .

(3.15)

Moreover, there is still an arbitrariness in their hierarchy: normal (N)
or inverted (I), respectively when ν3 is the heaviest or the lightest
neutrino. In both case, when ν1 is getting heavier, the mass differences
are becoming relatively smaller and qν tends to the limit value for the
degeneracy [54]: qν → 1

3 . Conversely, the hierarchy is maximal when m1

has its lowest value: mN1 = 0 or mI1 =
√

∆m2
32 −∆m2

21 ≈ 49.19 meV.
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In both case, one of the mass is thus vanishing and, at first order, the
relation involves only two almost degenerated species. The maximal
value for the parameter qν is therefore close to 1

2 :

qνN ≈ 0.583

qνI ≈ 0.500 .
(3.16)

These results could at first sight be disappointing. However, since (3.1)
is not trivially fulfilled by the other families of fermions, it may be
a chance to incorporate in the formula a connection with the mixing
angles or with the other families. This generalization then could be the
missing link towards a viable dynamical model.

Let us also stress that a generalization to the neutrino and quark sectors
makes only sense if the mass generation mechanism is the same as for the
charged-leptons. In particular, if the small neutrino mass is generated
via a see-saw mechanism, the mass relation (3.1) will certainly be spoiled
by the Majorana mass term.

3.1.2 Models

A number of dynamical models have been proposed to explain the mass
relation (3.1). It is worth mentioning that almost all of them have
been proposed by Koide (see [48] and references therein). The major
reason of the lack of proposals in this domain resides probably in the
above mentioned problems. Apart from the pole masses, the biggest one
is to find a dynamical model which ensures the appearance of square
roots of the masses. Moreover, none of these models seems particularly
convincing, mainly because they need a lot of new particles or they
do not work for all the fermion’s families at the same time. This fact
motivates us for a bottom-up approach to the problem: to focus first
on a better understanding of the properties and to find a generalization
valid for the other families.

In broad outlines, all models implement a democratic behaviour in one
way or another, for instance a democratic mass matrix [55] or a S(3)
symmetry on the scalar sector [56]. Furthermore, the masses in these
models are generated via one of these mechanisms [48]: radiative masses
or universal seesaw. These correspond to the two main ways of dealing
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g∗ g

(a) Radiative mass generation

mD M m∗D
(b) Universal seesaw

Figure 3.3: Two proposed topologies for mass generation.

with square roots of mass in a Lagrangian. Fig 3.3a is representative of
a radiative mass generation:

m ∼ |g|2

while Fig 3.3b corresponds to a universal see-saw mechanism:

m ∼ mDM−1m∗D .

Obviously, these two possibilities imply an extension of the particle
content of the Standard Model, namely new heavy fermions and scalars.

It should be noted that the first idea developed by Koide [47] was based
on a preon model. In this model, the fermions are supposed to be
composite of more fundamental particles, preons, which are massless
but can form bound states with a dynamical mass. This is a property
shared by all technicolour-like models. The originality lies in the fact
that there are two types of interactions. The first one has a coupling
proportional to a charge zi which is different for each generation i. The
second one is identical for all generations and has a coupling proportional
to the mean of the square of the generation charges:

z2
0 = 1

3

∑

i

z2
i . (3.17)

Finally the charged-lepton masses are proportional to the sum of these
two interactions:

mi = E(zi + z0)2 (3.18)

where E is a common scale. With these hypothesis, the mass relation
(3.1) is equivalent to

∑

i

zi = 0 . (3.19)

This latter relation is quite interesting because it is very similar to
anomaly cancellation constraints in an horizontal gauge symmetry.
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This particularity deserves a deeper analysis. The parameters of this
model are easily computed:

zi =
2
√
mi −√mj −

√
mk

3
√
E

(i 6= j 6= k) (3.20)

z0 =
√
mi +

√
mj +

√
mk

3
√
E

(3.21)

while E is completely arbitrary allowing to choose a normalization for
the zi’s. An interesting choice consists in seeing the zi’s as forming a
unit vector in a Cartesian generation space:

∑

z2
i = 1. Within this

assumption, we find:
E = 941.58(17)

z1 = −0.554053(12)

z2 = −0.242366(16)

z3 = 0.796419(4)

z0 = 1√
3

.

(3.22)

Defining

Z =







z1

z2

z3






and Z0 =







z0

z0

z0







it is clear that Z0 is also a unit vector, pointing in the direction of
degeneracy, or democracy, in the generation space, i.e. it has no preferred
direction. Moreover, because of (3.19), Z is perpendicular to Z0. The
vector containing the square root of the masses is proportional to the
sum of these two unit vectors, see (3.18). One recovers then the
geometrical interpretation of (3.5). In other words, the formula can now
be regarded as the maximal breaking from a degeneracy state towards
the direction defined by Z. This idea will be developed later in Sec. 3.2.4.

Interestingly, the same kind of relations involving square roots of
mass have also been derived in another (supersymmetric) composite
model [57, 58]:

mem
2
τ = m3

µ

mc
mu
− ms
md

=
mµ
me

mt
mc
− mb
ms

=
mτ
mµ

(3.23)
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Although these relations are only roughly satisfied, composite models
seem to provide a suitable framework for generating square root type
relations.

3.2 Generalizations

3.2.1 Matrix Form

The occurrence of square root of masses constitutes a problem for model
building. We can legitimately wonder if is it possible to remove them 3.
The answer is yes. First, we rewrite (3.1) by expanding the parenthesis
(ql = 2

3) :

m1 +m2 +m3 = 4 (
√
m1m2 +

√
m2m3 +

√
m1m3) .

Then, taking its square and keeping all the remaining square-roots on
the right-hand side gives

(m1 +m2 +m3)2 − 16(m1m2 +m2m3 +m1m3) =

32
√
m1m2m3 (

√
m1 +

√
m2 +

√
m3) .

Once again, taking the square, yields

(

(m1 +m2 +m3)2 − 16(m1m2 +m2m3 +m1m3)
)2

=

322m1m2m3 (
√
m1 +

√
m2 +

√
m3)2 .

At this point, we note that the remaining square-roots are exactly the
ones in (3.1). A simple replacement gives then

(

(m1 +m2 +m3)2 − 16(m1m2 +m2m3 +m1m3)
)2

=
3
2 322m1m2m3(m1 +m2 +m3) . (3.24)

3Let us remark that (3.1) can also be rewritten in terms of only square-roots of
masses:

(
√
m1 +

√
m2 +

√
m3)

2
= 6 (
√
m1m2 +

√
m1m3 +

√
m2m3) .
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From a mathematical point of view, this last relation is not equivalent to
the original one. However, the relation (3.1) implies the relation (3.24).
To be precise, if we suppose that two masses are fixed, the original
equation (3.1) has only two solutions for the third mass:

m3 = 7(m1 +m2) + 20
√
m1m2

± 4
√

3
√

(
√
m1 +

√
m2)2 (m1 + 4

√
m1m2 +m2) . (3.25)

If m2 > m1, the solution with the minus sign is always smaller than m2.
Therefore, if we assume a normal hierarchy, we are left with only one
physical solution. The new equation (3.24) has two more solutions:

m3 = 7(m1 +m2)− 20
√
m1m2

± 4
√

3
√

(
√
m1 −

√
m2)2 (m1 − 4

√
m1m2 +m2) . (3.26)

These two solutions are real only for

0 ≤ m2 ≤ (7 − 4
√

3)m1 < m1 (3.27)

or

m2 ≥ (7 + 4
√

3)m1 ≃ 14m1 . (3.28)

Only this last possibility is allowed if we suppose normal hierarchy. In
that case, only the solution with a plus sign in (3.26) is always greater
than m2. The special case where m1 = m2 gives m3 = −6m1 should
also be discarded. In conclusion, with the new relation (3.24), we have
two admissible solutions, instead of one.

Interestingly, (3.24) can easily be transformed in a matrix form. In the
Standard Model, the masses are not a priori the eigenvalues of the mass
matrix. Without any more assumption, the masses are indeed given
by the positive square root of the eigenvalues of MM † or M †M . For
simplicity, we shall assume that the mass matrix M is hermitian. Its
characteristic polynomial is then :

P (λ) = −λ3 + c2λ
2 − c1λ+ c0 (3.29)

where

c0 = Det(M) = m1m2m3

c1 =
1
2

[

Tr(M)2 − Tr(M2)
]

= (m1m2 +m2m3 +m1m3)

c2 = Tr(M) = m1 +m2 +m3 .
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This shows that (3.24) can be written in a matrix form :
[

7(Tr(M))2 − 8Tr(M2)
]2

= 3
2 322Det(M)Tr(M) . (3.30)

Although the goal of removing the square roots has been achieved, the
new relations (3.24) and (3.30) are not particularly attracting since the
simplicity of the original relation has been lost in the process. If the
mass matrix is not Hermitian, the resulting relation would be even more
complex.

3.2.2 Pseudo-Masses

The empirical mass relation (3.1) is now precise at the level of 10−5.
Yet, at first sight this remarkable but mysterious mass relation seems to
be a false trail. Any attempt to apply it to the quarks or neutrinos is
indeed doomed to failure.

Interestingly, the relation is democratic, in the sense that all generations
are on an equal footing and the q parameter turns out to be an extremely
efficient measure of the mass splitting. The strong hierarchy observed
in the quark sector (q → 1) should be opposed to the almost degeneracy
between the neutrinos (q → 1

3).

We argue that the flavour mixing which also displays quite different
patterns, from the small angles of the CKM matrix for the quarks to
the large ones of the PMNS matrix for the leptons, could hold the
key of this puzzle. In models with flavour symmetries, small angles
are closely linked to mass hierarchy and large ones to mass degeneracy
(Cf. Sec. 2.6). This points us the way towards a universal mass/angle
relation.

We would like to take advantage of the recent experimental progress in
the neutrino sector to generalize the mass relation (3.1) for the lepton
families. A lepton-quark connection beyond the Standard Model is then
called upon to validate it also for the quark families.

Lifting the near degeneracy in the neutrino family

A first attempt to apply the original mass relation (3.1) to the neutrinos
was unsuccessful in both schemes [54]. The reason simply lies in the
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mild splitting of the neutrino masses: the strongest hierarchy, ensured
for m1 = 0, always implies qν < 0.6. One way out is to amplify the mass
hierarchy with the help of the well-measured neutrino mixing matrix
elements (UνL)ij . We thus propose [35] the following minimal extension
of relation (3.1):

∑

m̃i =
2
3

(

∑√
m̃i
)2

(3.31)

which involves the “pseudo-masses” m̃i defined as

m̃i ≡ |
∑

j

U ijL mj | (3.32)

rather than the physical masses mj . In our convention,
U †L MUR ≡ diag(m1,m2,m3) such that if UR = 1, these Dirac pseudo-
masses are simply related to the Yukawa couplings of a single Higgs
doublet.

The latest results from neutrino experiments at 1σ [41] are in good
agreement with θch ≈ θ31 = 0, since

sin2 θ31 < 0.033 (95% CL) .

So, let us therefore assume the following flavour mixing matrix

Vpmns ≡ U e
†

L U
ν
L = R23(θatm)RT12(θsun)

≡







1 0 0
0 cos θatm sin θatm

0 − sin θatm cos θatm













cos θsun − sin θsun 0
sin θsun cos θsun 0

0 0 1







(3.33)

with the experimental values for the mixing angles at 1σ [12]

sin2 θsun = 0.32± 0.023

sin2 θatm = 0.50± 0.055

i.e.

θsun = (34.42± 1.41)◦

θatm = (45± 3.15)◦ .

There are three natural solutions in this limit [59]. Either the large solar
mixing angle θsun comes from Mν and the large atmospheric angle θatm
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Figure 3.4: Exclusion domains (3σ) derived from relation (3.31). The
experimental results have been taken from the latest global fit [39, 40]

from M e, or both come from M e or Mν . The remarkable accuracy of
the relation (3.1) requires that any successful extension involving mixing
angles should reduce to this form for the charged leptons. Consequently,
we focus on the last possibility, namely

U eL = 1 , UνL = R23(θatm)RT12(θsun) . (3.34)

Numerical computations provide us with a continuous set of solutions
satisfying (3.31) and compatible with the present data (see Fig. 3.4).
All these solutions correspond to the normal hierarchy for {mi}, the
inverted one being excluded.

It appears that the predicted range for the Dirac mass of the lightest
neutrino m1 is

1.5 10−2 eV < m1 < 4.1 10−2 eV (3.35)

at 3σ. Notice that the normal hierarchy for {mi} is turned into an
inverted one for {m̃i}, i.e. 0 ≈ m̃3 ≪ m̃1 < m̃2. On the other hand, the
solar θsun and the atmospheric θatm angles are bounded from below at
3σ by

θsun > 33.4◦

θatm > 46.4◦
(3.36)

such that the so-called maximal mixing solution (θatm = π/4) is ruled
out. These two extrema cannot be reached simultaneously. The allowed
region spanned actually mainly over the 3σ region (Cf. Fig. 3.5)
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Figure 3.5: Exclusion domains (3σ) for the neutrino mixing angles derived
from relation (3.31). Circles correspond to 1, 2 and 3 sigmas experimental
values [12]. In the limit of vanishing θch, these angles are independently found
by considering a two generation mixing. Their error bars are then uncorrelated.

Pure Dirac masses have been assumed for the neutrinos to put all the
leptons on an equal footing. Needless to say that the introduction of
Majorana masses to implement the seesaw mechanism would imply less
stringent constraints on the masses and mixing angles. In particular,
we have checked that this is already the case for degenerate Majorana
masses.

Taming the strong hierarchy in the quark families

As already mentioned, a naive estimate shows that relation (3.1) is
certainly not valid for the up and down quark families, because of the
large top and bottom masses. However, if a quark-lepton connection
exists beyond the Standard Model, θ31 = 0 could be a property shared
by all elementary fermions. Viewing U eL = 1 as a basis fixing choice, one
may then write

UuL = Φ(ϕu)R23(θt)RT12(θu) , UdL = Φ(ϕd)R23(θb)RT12(θd) (3.37)

where
Φ(ϕ) ≡ diag(e−iϕ1 , e−iϕ2 , e−iϕ3) . (3.38)

If UR = 1, the number of arbitrary phases could be reduced (ϕu = −ϕd)
by imposing the auxiliary condition arg det(MuMd) = 0 from the
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conspicuous time-reversal invariance of the strong interactions, see
App. B. But anyhow, the pseudo-masses defined in (3.32) only depend
on the small rotation angles, not on the phases. So, let us try to extract
these angles from the data.

A suitable re-phasing of the quark fields leads to the CKM mixing matrix

VCKM ≡ Uu
†

L U
d
L = R12(θu) diag(e−iϕ, 1, 1) R23(θ) RT12(θd) (3.39)

where θ ≡ θb − θt. Here, the CP -violating phase ϕ is only linked to the
first and second families. This parametrization (called P1 in Chapter 2)
coincides with the one convincingly advocated in [31, 60] on the basis of
the hierarchical structure of the quark mass spectrum. We find it quite
interesting to reach the same description of the CKM mixing matrix
from two different approaches. The parameters can be computed at the
1σ level using the latest experimental data (Cf. Tab. 2.2):

θu = (5.36± 0.13)◦

θ = (2.43± 0.03)◦

θd = (11.07 ± 0.87)◦

ϕ = (101.04± 10.28)◦ .

(3.40)

So, we are just left with the freedom on one mixing angle (say θt) to
test the pseudo-mass relation (3.31) for the up and down quark families.
Contrary to the leptons, the quark masses are not directly measurable
quantities. If the quark masses are chosen at a common energy scale
MZ , both relations can be reasonably satisfied (i.e. q̃u = q̃d ≃ 0.69) for
θt = −2.18◦. Conversely, imposing q̃u,d = 2

3 gives θt = −3.53◦ together
with ms(MZ) = 133 ± 15 MeV, if the rather stable ratios of the light
quarks are used.

These theoretical results are quite encouraging once one keeps in mind
that relation (3.31) is energy scale dependent. The heavy quark mixing
(θ) and masses (mt,b) are indeed subject to strong renormalization-group
effects. In particular, the running of masses beyond the leading log
approximation in QCD flattens the hierarchy such that q̃ decreases with
increasing energy. Moreover, the original mass relation (3.1) is only
roughly satisfied by running masses and one should not expect such
precise results for quarks. We should also comment that, if the ratio of
the light quarks masses are well under control, the absolute value of the
strange mass has drastically decreased during the last decade. For all
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these reasons, we argue that relation (3.31) might provide us with some
clues for the understanding of the lepton and quark mass spectrum.

3.2.3 Family Interconnection

The original formula cannot be applied directly on the different families
of particles. There seems to be no reason that the charged leptons have
a different behaviour than the others. Maybe (3.1) is an approximation
to a more complete relation. But then, we may wonder how an
approximation can be so precise. The concept of pseudo-masses has
shown some interesting possibilities. Here we shall explore another path.

In the electroweak theory, charged-leptons and neutrinos are bound
together in a left-handed doublet; the same occurs for the up and down-
type quarks. The mass generation is intimately connected with the
SU(2)L gauge symmetry and its breaking. Instead of working with
the four families separately, we can thus assume that each of the two
fermion sectors (leptons and quarks) has to be considered as a whole.
The relation (3.1) should then be applied, not on the charge-lepton
family, but on the whole lepton sector, the sums being now on six
particles instead of three. We therefore assume that the neutrino mass
is generated in the same way as the charged lepton one and they are
thus of Dirac type. The smallness of the neutrino masses legitimizes
this approach for the lepton sector.

me +mµ +mτ +mν1 +mν2 +mν3
(√

me +√mµ +
√
mτ +

√
mν1 +

√
mν2 +

√
mν3

)2 ≡ q
L =

2
3

(3.41)

Using (3.15), this new relation allows to constrain at 1σ the unknown
mass of the lightest neutrino and the badly-known tau mass. For normal
hierarchy, there is a solution when

1777.11 GeV < mτ < 1777.28 GeV (3.42)

yielding
0 < mν1 < 46 meV (3.43)

while the inverted hierarchy is admissible when

1777.16 GeV < mτ < 1777.28 GeV . (3.44)
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leading to
0 < mν3 < 40 meV (3.45)

The preferred value, mν1 = 0 and mν3 = 0 respectively, gives the lowest
bound for mτ . It is worth mentioning that this generalization changes
the geometrical interpretation (3.5) where the angle ψ is no more 45◦

but 60◦.

Because of the smallness of the neutrinos masses, this generalization is
almost trivial unless being also valid for the quarks:

md +ms +mb +mu +mc +mt
(√
md +

√
ms +

√
mb +

√
mu +

√
mc +

√
mt
)2 ≡ q

Q . (3.46)

Assuming correlated errors, the running masses of the quarks at the Z
mass give indeed:

qQ = 2
3(1.038± 0.019) (3.47)

i.e. only a 2σ deviation! One has to remember that the relation is
not energy scale invariant and that the running masses could only give
an approximation. These results seem therefore quite encouraging. A
model in the same spirit will be developed later on for the leptons
(Cf. p. 82).

3.2.4 Cascade Breaking

Independently of the mechanism at work to generate the mass,
assumptions can be made on the way it works. For instance, the masses
could be generated via a cascade of breakings [61, 62, 63, 64, 46]. These
models were motivated by the democratic mass matrix:

M =







1 1 1
1 1 1
1 1 1






. (3.48)

On a first stage, M is diagonalized by a unitary matrix U and only one
particle gets a mass while the two others remain massless:

U †MU =







0 0 0
0 0 0
0 0 3






. (3.49)
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They would eventually acquired a mass during a second and third stage
as correction to this scheme.

We propose here a slightly different behaviour where, at first, all masses
are equal but different from zero. More precisely, the square root of
them are all equal. On the first breaking, one of them is set apart
and become heavier than the two others which keep degenerated. Their
differentiation occurs in a second stage.

So let us start from a symmetric situation where all the masses are
degenerated. In regard of the geometric interpretation (3.5), the vector
containing the square root of the masses, ~Sl123, is therefore aligned with
the normalized symmetric direction

~x1 = 1√
3
(1, 1, 1) . (3.50)

Instead of using the natural coordinates (~e, ~µ, ~τ) of the three dimensional
generation space, we would like to define a new orthogonal basis
with ~x1. Obviously, the two other vectors have to lie on the plane
P ≡ e+ µ+ τ = 0.

In the first step of the cascade breaking, the two first generations should
remain degenerated. The second basis vector is given by the intersection
of P and e = µ, namely

~x2 = 1√
6
(−1,−1, 2) . (3.51)

The third basis vector 4 which will set apart the first two generations is
then the intersection of P and e = −µ, namely

~x3 = 1√
2
(−1, 1, 0) . (3.52)

Starting from the degenerate direction ~Sl123 ∝ ~x1, the first breaking
should occur along the ~x2 direction, giving a new vector ~Sl12 (Cf.
Fig. 3.6). As shown in (3.5), this breaking has to be maximal: ψ = 45◦.
The Koide relation, via its geometrical interpretation, is now viewed as
a maximal breaking from a degenerate situation (m1 = m2 = m3) to a
partially degenerate one (m1 = m2 < m3).

4These three vectors constitutes also the tri-bi-maximal mixing U matrix in (3.49)
which diagonalizes a democratic mass matrix.
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β

~x1

~x2

~x3

~x′2

~Sl123

~Sl12 ~Sl

Figure 3.6: Schematic representation of the cascade breaking. For drawing
reasons, the vector containing the square roots of the masses, ~Sl, has been
unitarized. The circle represents the cone of aperture ψ = 45◦ aligned with ~x1.

The splitting between the first two generations is generated by a new
breaking. As the charged leptons (vector ~Sl) are lying on the cone with
aperture 45◦, this new breaking has to be a rotation around ~x1. Finally,
the vector containing the square root of the masses is given by (E is a
global scale);

~Sl = E (cosψ ~x1 + sinψ (cosβ ~x2 + sin β ~x3)) (3.53)

or, if the index k refers to the generation,

Slk =
E√

3

(

cosψ +
√

2 sinψ cos
(

β +
2kπ

3

))

. (3.54)

The computation of the parameters is straightforward. For instance,
the angle β is computed as the angle between ~x2 and ~x′2 which is the
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projection of ~Sl on the plane P ≡ e+ µ+ τ = 0.

E =
√

me +mµ +mτ

cosψ =
√
me +√mµ +

√
mτ√

3
√
me +mµ +mτ

cosβ =
−√me −√mµ + 2

√
mτ

2
√

me +mµ +mτ −√memµ −
√
memτ −√mµmτ

.

(3.55)

The angle ψ has already been computed in (3.6) and its value is
compatible with a maximal breaking. On the contrary the angle β is
surprisingly close to 2

9 :

β = 0.222221(16) . (3.56)

Unfortunately, these two angles are highly correlated and it is not
possible to assume both β = 2

9 and ψ = π
4 at the same time. In

particular, we can compute one angle while imposing the second one:

ψ = 45◦ ⇒ β = 0.2222220470(2) (3.57)

β = 2
9 ⇒ ψ = 44.99999389(7)◦ (3.58)

Strangely, the correlation line is exactly aligned with this ideal case (Cf.
Fig. 3.7). It can be shown that this correlation line corresponds to a
rescaling of the third parameter: the global scale E. Consequently, the
peculiar alignment seems to indicate that an exact β = 2

9 and ψ = π
4

would be possible if, for some reason, the global scale E is modified.

However, assuming both β = 2
9 and ψ = π

4 at this stage gives already a
very good estimate of the charged lepton mass ratios:

√
mµ√
me

= 14.3795103 vs. 14.37943957(83) (exp)
√
mτ√
mµ

= 4.10098 vs. 4.10101(34) (exp)
(3.59)

Although the discrepancy is relatively big (∼ 85σ), the precision is still
impressive (up to 5 digits). We are then encouraged to look for how
small deviations to this scheme can occurred, in particular, a change in
E. An idea could be the very small mass of the neutrinos. Indeed the
observed deviation is exactly of the order of their expected mass.
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Figure 3.7: Admissible domain for the parameters ψ and β from the cascade
breaking. For legibility purposes, the ellipse has been enlarged and corresponds
to a 300σ deviation! The cross represents the ideal case ψ = π

4
and β = 2

9
.

Neutrinos

If there exists some connection between the charged lepton and the
neutrino mass 5, we can imagine a mass generation mechanism which
consists of two parts and where each of them is proportional to some
charge.

For instance, the first part of the mass could be proportional to the third
component of the weak-isospin (T3), leading to opposite contributions
for the charged leptons and the neutrinos. While the second part could
be proportional to the electric charge, contributing only to the charged-
leptons. How to implement such a mechanism is beyond the scope of this
work but anyway, if it exists, the second contribution can be computed
from the sum of the charged lepton and neutrino masses.

This is exactly the kind of slight perturbation we where looking for in
the previous section:

Slk + Sνk =
E√

3

(

cosψ +
√

2 sinψ cos
(

β +
2kπ

3

))

(3.60)

5We therefore assume Dirac neutrinos.

82



3.3. A TOY MODEL

where β is exactly 2
9 and ψ is exactly π

4 . A maximum likelihood is
again used to compute the mass of the neutrinos. The inverted scheme
is excluded at 11σ while normal hierarchy is allowed, leading to the
constraints:

mτ = 1776.9810± 0.0005 MeV

mν1 = 0.0094± 0.0004 meV

mν2 = 8.9± 0.2 meV

mν3 = 50.8± 2.0 meV.

(3.61)

These results confirm our assumption that the small Dirac neutrino
masses could be responsible for the small discrepancy with respect to
the ideal case θ = π

4 and β = 2
9 .

3.3 A Toy Model

As a conclusion of this chapter, we would like to show a realization of
the cascade breaking scheme presented before.

We first consider a democratic mixing, i.e. a unitary mixing matrix
whose elements have all the same modulus. For ng generations, this
matrix is readily found to be (up to columns and rows permutations):

U (j,k) =
1
√
ng
ωj·k (3.62)

where ω is the ngth-root of unity:

ω = e
i 2π
ng . (3.63)

Let us remark that, in this form, the inverse of U is equal to its conjugate.
The mixing matrix is always complex for ng > 2. The most general
matrix diagonalized by (3.62) is

S =





















a b∗ c∗ · · · d c b
b a b∗ · · · e d c
c b a · · · f e d

. . . . . . . . . . . . . . . . . . . . .

b∗ c∗ d∗ · · · c b a





















. (3.64)
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For instance, with three generations, powers of ω = exp(i2
3π) arise :

U =
1√
3







ω ω2 1
ω2 ω 1
1 1 1






(3.65)

which diagonalized

S =







a b∗ b
b a b∗

b∗ b a






. (3.66)

The corresponding eigenvalues are














s1 = a+ bω + b∗ω2 = a+ 2|b| cos(β + 2π
3 )

s2 = a+ bω2 + b∗ω = a+ 2|b| cos(β − 2π
3 )

s3 = a+ b+ b∗ = a+ 2|b| cos(β)

(3.67)

or simply
sk = a+ 2|b| cos(β + k 2π

3 ) (3.68)

where β = arg b and k is the generation index. This clearly shows that
β is responsible for the splitting between s1 and s2 while the ratio |b|/a
controls the global hierarchy between the three eigenvalues:

0 < s1 = s2 < s3 ←→ b∗ = b s1 – s2 degeneracy

0 = s1 = s2 < s3 ←→ b∗ = b = a max hierarchy

0 < s1 = s2 = s3 ←→ b∗ = b = 0 degeneracy

Let us stress that the democratic mixing (3.62) leads to a maximal CP
violation. In terms of the standard parametrization the mixing matrix
U can be decomposed as

|U | = |R23(θ1)R31(θ2)P2(φ)R12(θ3)| . (3.69)

The angles are
θ1 = 45◦

θ2 = arcsin(1/
√

3) ≃ 35.26◦

θ3 = 45◦

φ = 90◦

(3.70)

and the maximal value of J (Cf. Sec. 2.4) is indeed reached for these
angles.
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The matrix

M = SS† =







a2 + 2|b|2 b2 + 2ab∗ (b∗)2 + 2ab
(b∗)2 + 2ab a2 + 2|b|2 b2 + 2ab∗

b2 + 2ab∗ (b∗)2 + 2ab a2 + 2|b|2






(3.71)

=







A B∗ B
B A B∗

B∗ B A






(3.72)

is also diagonalized by the same matrix U and the eigenvalues of M are
the square of the S ones. Now, if M is the mass matrix, the matrix S
is its “square root”.

We can easily compute the parameters of the model. The invariants of
a 3 by 3 matrix are

DetS = a3 − 3b2a+ 2b3 cos(3β) ≡√m1m2m3

TrS = 3a ≡√m1 +
√
m2 +

√
m3

TrM = 3a2 + 6|b|2 ≡m1 +m2 +m3

(3.73)

This system can be easily solved

a =
√
m1 +

√
m2 +

√
m3

3

|b| = 1
3

√

m1 +m2 +m3 −
√
m1m2 −

√
m1m3 −

√
m2m3

cos(3β) =
(2
√
m1 −

√
m2 −

√
m3)(−√m1 + 2

√
m2 −

√
m3)(−√m1 −

√
m2 + 2

√
m3)

2 [m1 +m2 +m3 −
√
m1m2 −

√
m1m3 −

√
m2m3]3/2

(3.74)

The ratio |b|/a can also be parametrized via a new angle ψ:

|b|
a

=
tanψ√

2
. (3.75)

Then, the cosine of this angle is exactly the geometric interpretation
(3.5) of the Koide relation

cosψ =
√
m1 +

√
m2 +

√
m3√

3
√
m1 +m2 +m3

. (3.76)
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In other word, for the charged leptons, ψ turns out to be π4 to a great
precision, leading thus to assume that

|b|
a

=
1√
2

. (3.77)

Within this hypothesis, (3.74) can be simplified into

cos(3β) =
√

2

( √
m1m2m3

[

3(
√
m1 +

√
m2 +

√
m3)

]3 + 1/2

)

. (3.78)

In the particular case of the charged leptons, we find:

a = 17.7161± 0.0011 MeV1/2 (3.79)

|b|2/a2 = 0.5000017 ± 0.0000245 (3.80)

β = 0.222220± 0.000020 . (3.81)

The angle β is very close to the value (3.59). This toy model is
indeed mathematically equivalent to the cascade breaking scheme. A
comparison of (3.54) and (3.68) yields the equivalence of the angles β
in both scheme and

|b|
a

=
tanψ√

2

a = E
cosψ√

3
.

(3.82)

In this chapter, we have shown that an accurate relation connecting
the charged lepton masses could be used as a window on physics beyond
Standard Model. We have first proposed a generalization of this relation
which is valid, not only for the charged leptons, but for all families. This
generalization has been possible thanks to an interplay between masses
and mixings, called pseudo-mass. We have also studied the properties
of the original relation and have shown some interesting features. In
particular, it appears that the square root of masses could be of the
utmost importance in new physics. For instance, a geometric description
of the square root of masses leads to much interesting albeit intriguing
angles. The observation of a small deviation from an ideal case has
been successfully interpreted as a neutrino effect. Finally a toy model
realizing our observations has been presented.

86



4
Conclusion and Outlook

A need for new physics

The origin of mass constitutes a long-standing problem. Since the
17th century the questioning has inexorably evolved from “What is the
mass?” to “Why this particular mass?”. The Higgs mechanism has
indeed answered the first question but requires ad hoc values for the
Yukawa couplings to account for the observed mass spectrum of the
elementary particles. In particular, with massive Dirac neutrinos, the
Standard Model of electroweak and strong interactions contains 26 free
parameters. Among them, 20 are coming from the Yukawa interactions
and are thus directly related to mass matrices. Nowadays, there is
convincing evidence that the Standard Model is not the end of the story
but only a low energy effective theory. In particular, the tiny neutrino
masses call for an extension of the matter content with, for instance,
right-handed neutrinos or a scalar triplet. We should also mention the
lack of CP violation in the Standard Model to account for the observed
matter-antimatter asymmetry of the universe.

Any modification of the Standard Model should aim at reducing the
number of free parameters. However, among all the already proposed
extensions, none has ever conducted to the precise computation of
masses or mixing parameters. We may hope that the LHC or some
future colliders will help to clarify the situation by discovering new
particles or spotting some unexpected events. In the meantime, more
precise measurements of masses and mixing parameters could also play
an important role. In this work we have used a bottom-up approach
which consists in identifying some interesting properties coming from
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these data in order to speculate on the characteristics that any extension
to the Standard Model should share.

New physics and the choice of a parametrization

In the standard electroweak theory, the phenomenon of flavour mixing
is described by a three-by-three unitary matrix. This matrix can
be expressed in terms of four parameters which are usually taken as
three rotation angles and one phase (or three in the case of Majorana
neutrinos). There are only nine independent parametrizations in terms
of these parameters. Adopting a particular parametrization of flavour
mixing is arbitrary and not directly a physical issue. Nevertheless, it is
quite likely that the actual values of flavour mixing parameters, including
the strength of the CP violation, already provide us with interesting
information about the physics beyond Standard Model. It is indeed
highly probable that one of the parametrizations will be selected by new
flavour physics.

It turns out that the analysis of the various decompositions of the quark
mixing matrix singles out one of them, called P5. In this peculiar
parametrization, the three mixing angles have all roughly the magnitude
of the Cabibbo angle while the phase is remarkably small. These features
shed some new light on the CKM matrix. It is indeed generally believed
that only the quark mixing angles are linked to the mass hierarchy,
not the phase. However, the P5 parametrization has a small phase
which can also be expressed as a simple mass ratio. Furthermore, this
parametrization presents an almost symmetric decomposition, allowing
us to split the flavour mixing matrix into two very similar mixings
coming from the up and down sector, respectively. For all these reasons,
the P5 parametrization looks quite promising for model building.

The connection between masses and mixings

Throughout this work, it has been assumed that the mechanism
responsible for the generation of masses is at the same time responsible
for the flavour mixing, i.e., any change of the eigenvalues of masses would
in general also lead to a change of the flavour mixing parameters. In
many models based on flavour symmetries which go beyond the standard
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electroweak theory, the flavour mixing parameters are indeed functions
of mass ratios. This hypothesis has been checked in two different
contexts.

First, we have shown that a simple pattern for the quark mass matrix
can lead to quite an accurate computation of the mixing angles.
Then, starting from a mass relation which is amazingly precise for the
charged leptons, we have proposed a generalization which is valid for
all families. For that purpose, a suitable modification of the masses
has been performed thanks to the concept of pseudo-mass which binds
together the masses and mixings. The mixing angles in a particular
decomposition were used in order to lift the almost degeneracy among
the neutrinos and to tame the strong hierarchy among the quarks. This
generalization has furthermore given some constraints for the neutrino
masses.

The primacy of the square root of mass

In several widely different contexts, we have argued that the square root
of a mass seems to play a important role, suggesting that it could be
more fundamental than the mass itself.

In the Standard Model, all parametrizations of the flavour mixing matrix
are mathematically equivalent. However, a particular parametrization
could be more useful than the others. It is indeed reasonable to assume
that any physics beyond Standard Model would select one of them. We
have presented toy models where mass matrices are built out of more
fundamental ones playing the role of their square root. We have applied
some simple textures to this “square root” matrix. In particular, the
angles in the P5 parametrization could be individually computed from
simple ratios related to square roots of masses. A more general matrix
has also been proposed in order to combine favourably the former results.
This simple model has proved to lead to a mixing matrix rather similar
to the observed CKM one.

In a quite different context, we have analyzed the properties of an
accurate relation involving the charged lepton masses. These facts have
convinced us that a geometrical description of the observed hierarchy is
possible if the square roots of masses are used instead of the masses.
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Intriguing results

Physics is the art of confronting mathematics with nature. The natural
path of physics has always been to conceive some model, then to make
numerical predictions and finally to confront them with observations.
However, there are some famous examples where the things happen
in the opposite order, for instance with the Balmer’s formula. With
humility, we would like to point out the numerical peculiarities we have
found in a mass relation connecting the different families (ψ = π

3 ) and in
the cascade breaking scheme we have presented (β = 2

9). It is noteworthy
that both numbers arise in models combining in some way the various
families. The accuracy of these numbers is intriguing but, without any
further explanation, they remain currently at the level of curiosities.

Symmetries and pole masses

In quantum field theories, the mass parameter appearing in a Lagrangian
is subjected to the self-interaction of the particle in its own field. The
corrections induced are logarithmically divergent and lead to infinities.
The solution consists in a redefinition of the bare mass in order to cancel
these infinities. This renormalization procedure is not unique. The
propagator of a charged lepton is well-defined 1 and its renormalization
leads to the definition of pole mass, corresponding to the physical
mass. Because of the confinement, the propagator of a quark is infrared
divergent. Another renormalization scheme is then used, leading to a
well-defined running mass which is energy scale dependent.

The relation discovered by Koide is extremely accurate if the masses
involved are the charged-lepton pole masses. This mere observation is
however disturbing. Since the success of gauge theories and the advent
of the Standard Model, most of the new flavour symmetries are based on
horizontal groups. These symmetries are naturally implemented at the
Lagrangian level, i.e. on the bare masses. We do not see any obvious way
to impose a symmetry directly on a pole mass. Consequently, the Koide
mass relation cannot be explained on basis of symmetry arguments, at
least at the level of the Standard Model.

1At least if we neglect its decay.
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Perspectives

All the observations we have done plead for a deeper modification of the
Standard Model than just adding new symmetries or particles to the
Lagrangian. In regard to all these results, our guess is that the masses do
not result from a coupling to an elementary Higgs field. If we speculate
on the mechanism responsible for the electroweak symmetry breaking,
we would say that preon models could fulfil most of the properties
presented here. On the one hand, a dynamical symmetry breaking
could in principle lead to some relations between the pole masses. On
the other hand, preons constitute a suitable framework where square
roots of masses may appear. The practical way to implement such a
dynamical model is beyond the scope of this work but constitutes its
natural outcome.
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A
CP Violation

The parity symmetry P consists in the invariance of physics under a
discrete transformation which changes the sign of the space coordinates,
i.e. ~r  −~r. The charge conjugation symmetry C transforms a
particle into its antiparticle. The C symmetry asserts that it is a mere
matter of convention which of them we call particles and which we call
antiparticles. Naively, these symmetries are expected to be realized in
Nature. However, the weak interactions maximally violate the P and C
symmetry.

How to define then these operators? We start [65] from the realization
that electromagnetic interactions are C and P invariant. We then
assume that the strong interactions are C and P invariant too 1 Once
these operators are defined, they can be used as a probe to check the
invariance, or not, of the weak and strong interactions.

A.1 C and P Invariance of QED

A.1.1 Photon Field

By analogy with classical mechanics, the four-vector representing
position must transform under P as xµ = (t, ~r)  xµ = (t,−~r) and
thus ∂µ  ∂µ. Similarly, the invariance of classical electromagnetism

1All available experimental data warrant this assumption although the θ-strong
term could induce a P violation (Cf. App.B).
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leads to :
P Aµ P† = Aµ

P Fµν P† = Fµν .
(A.1)

Consequently, the Lagrangian for the photon field

LA = −1
4FµνF

µν

= −1
2(∂µAν)(∂µAν) + 1

2(∂µAν)(∂νAµ)
(A.2)

is invariant under P :
P LA P† = LA . (A.3)

It is readily seen that the charged current jµ = (ρ,~j) must change its
sign under C. In order for the electromagnetic interaction Aµjµ to be C
invariant, one postulates:

CAµ C† = −Aµ (A.4)

such that the Lagrangian is also invariant under C

C LA C† = LA . (A.5)

Within these conventions, the CP transformation of the photon field
reads:

(CP)Aµ (CP)† = −Aµ . (A.6)

A.1.2 Scalar field

We consider a massive charged scalar field, described by the Klein-
Gordon Lagrangian

L = (∂µφ† − iqAµφ†)(∂µφ+ iqAµφ)−m2φ†φ . (A.7)

In order for this Lagrangian to be invariant under parity, it is readily
seen that φ must transform like

PφP† = eiαpφ

Pφ†P† = e−iαpφ†
(A.8)

where the phase αp is arbitrary.
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The C transformation must link φ to its adjoint φ†. Thanks to the
transformation rules for the photon field, we find

CφC† = eiαcφ†

Cφ†C† = e−iαpφ
(A.9)

with αc an arbitrary phase.

The CP transformation of a complex scalar field is then

(CP)φ (CP)† = eiαφ† . (A.10)

A.1.3 Fermions

Parity

Let us first look at a generic Lorentz transformation

xµ  x′µ = Λµν x
ν (A.11)

where Λ is a 4× 4 matrix such that

gαβ = Λµα Λνβ gµν . (A.12)

Under a Lorentz transformation, a Dirac spinor transforms as

ψ(x) ψ′(x′) = S(Λ)ψ(x′) (A.13)

where S(Λ) is a 4× 4 matrix such that

S(Λ)−1γµS(Λ) = Λµν γ
ν . (A.14)

From the Dirac algebra we know that

γ0γµγ
0 = γµ . (A.15)

Since the parity transformation corresponds to a Lorentz transformation
Λµν = diag(1,−1,−1,−1), a comparison between (A.15) and (A.14)
suggests:

P ψP† = eiβpγ0ψ

P ψP† = e−iβpψγ0 .
(A.16)
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Consequently, the Dirac action is invariant under P:

P LD P† = ψγ0{γµ[i∂µ − qAµ]−m}γ0ψ

= ψ{γµ[i∂µ − qAµ]−m}ψ
= LD .

Charge Conjugation

It is readily found that the action of charge conjugation reads:

C ψ C† = eiβcψc

C ψ C† = e−iβcψc .
(A.17)

The Dirac Lagrangian is then invariant under C

C LD C† = −ψTC−1 [γµ (i∂µ + qAµ)−m]Cψ
T

= ψT
[

γTµ (i∂µ + qAµ) +m
]

ψ
T

= −ψ
[

γµ
(

i
←−
∂µ + qAµ

)

+m
]

ψ

= LD

(A.18)

where we have used the fact that ψ and ψ† are anticommuting.

CP

Finally, combining all these results, one finds the action of the CP
transformation on a spinor ψ:

(CP) ψ (CP)† = eiξψγ0Cψ
T

(A.19)

(CP) ψ (CP)† = −e−iξψψTC−1γ0 . (A.20)

A.2 C and P invariance of QCD

Up to now, there is no evidence of a C or P violation by the strong
interactions. The QCD Lagrangian reads

LQCD = −1
4F
a
µνF

aµν + qx

[

δxy(iγµ∂µ −mq) + gsγ
µGaµ

λaxy
2

]

qy (A.21)
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Here, gs is the strong coupling constant; x and y are colour indices; Gaµ
(a = 1 to 8) are the gluon fields; and the λa are the Gell-Mann matrices.
The field-strength tensor is given by

F aµν ≡ ∂µGaν − ∂νGaµ + gsf
abcGbµG

c
ν (A.22)

where fabc are the structure constant of SU(3). Notice that the Gell-
Mann matrices are either symmetric or anti-symmetric:

λaT = λa∗ = saλa (A.23)

where sa = +1 for a = 1, 3, 4, 6 and 8; and sa = −1 for a = 2, 5 and 7.

Taking into account the transformations of the quark fields (A.16) and
(A.17), the P and C invariance of the Lagrangian (A.21) gives the
following transformations for the gluon fields:

P Gaµ P† = Gaµ

C Gaµ C† = −saGaµ
(A.24)

while the field-strength tensor transforms as:

P F aµν P† = F aµν

C F aµν C† = −saF aµν .
(A.25)

The kinematic part of the Lagrangian (A.21) is finally invariant under
both transformations:

P F aµνF
aµν P† = +F aµνF aµν

C F aµνF aµν C† = +F aµνF
aµν .

(A.26)

It is also interesting to look at the transformation of F aµνF̃
aµν where we

have defined the dual field F̃µν = 1
2ǫµνρσF

ρσ. As ǫµνρσ = −ǫµνρσ, one
finds

P F aµνF̃
aµν P† = −F aµνF̃ aµν (A.27)

C F aµνF̃ aµν C† = +F aµνF̃
aµν . (A.28)

The presence of a term proportional to F aµνF̃
aµν would imply a violation

of the parity. Since the charge conjugation is conserved, this term would
break the CP symmetry.
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B
Strong CP Problem

At first sight, the QCD Lagrangian (A.21) is invariant under C and P.
However, in principle, it should also contain a so-called θ-strong term
proportional to F aµνF̃

aµν which violates parity while preserving charge
conjugation. The presence of this CP violating term is closely related to
the U(1)A problem and its solution as proposed by ’t Hooft [66].

B.1 Axial U(1) problem

In the limit where the u, d and s quarks are massless, we have shown in
Sec. 1.5.2 that the Lagrangian is invariant under a global U(3)L⊗U(3)R
symmetry. However, the axial part of this approximate symmetry is
spontaneously broken by quark condensates

〈ss〉 = 〈dd〉 = 〈uu〉 6= 0 . (B.1)

The vector symmetries SU(3)V ⊗ U(1)V are unbroken and correspond
to the SU(3) of flavour and to the baryon number, respectively. One
expects then to find nine Goldstone bosons associated with the broken
generators. Eight of them have effectively been observed. The π±,
π0, K±,K0,K0 and η are indeed massless in first approximation. The
spontaneous breakdown of the U(1)A symmetry should lead to a ninth
Goldstone bosons. The η′ has the right quantum number (a pseudoscalar
singlet) to play this role but its mass is too close to the QCD confining
scale (∼ 1 GeV) to be considered as light 1. This is the U(1)A problem.

1It can however mix with the η.
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J
µ

5

Figure B.1: Chiral anomaly.

The solution to the missing Goldstone boson came from ’t Hooft who
showed that the QCD vaccum has a non trivial structure. The complex
nature of the QCD vacuum makes U(1)A not a true symmetry of QCD
even though it is an apparent symmetry of the classical Lagrangian in
the limit of vanishing quarks masses. The chiral anomaly for the axial
currents is induced at the one-loop level (Cf. Fig. B.1) and leads indeed
to a non-vanishing divergence:

∂µJ
µ
5 = N

g2
s

32π2
F aµνF̃ aµν (B.2)

where N is the number of flavour. It can be shown [66, 67] that the
chiral anomaly leads to the breakdown of U(1)A without producing a
Goldstone boson. In return, an extra term should be added the QCD
Lagrangian:

Lθ = θQCD
g2
s

32π2
F aµνF̃ aµν . (B.3)

This new term violates the parity 2 but conserves the charge conjugation
invariance, so it violates CP (Cf. App. A). Therefore, this term should
induce a neutron electric dipole moment. The existing strong bound
(|dn| < 3×10−26e cm [68]) requires θQCD to be very small. In particular,
chiral perturbation theory gives |dn| ≈ 3.6×10−16θQCD e cm [69] leading
to θQCD < 3 × 10−10. This unexpected small value implies some fine-
tuning and is known as the strong CP problem.

One could try to avoid this problem by imposing the P or CP
invariance of the QCD Lagrangian, thereby setting θQCD = 0 by hand.
However, in the Standard Model for electroweak interactions, the quark

2It also breaks the time reversal invariance.
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mass matrices are in general arbitrary complex matrices which are
bi-diagonalized by bi-unitary transformations. These transformations
include in particular the chiral transformation necessary to make the
masses real:

θmass = arg det(MpMn) . (B.4)

Under a chiral transformation of the quarks fields both θQCD and θmass

change, but their sum θs remains constant:

θs = θQCD + θmass . (B.5)

Consequently, the solution θQCD = 0 cannot solve alone the strong CP
problem since, in general, the mass matrices are completely arbitrary
and complex.

Various solutions to this issue have been proposed. In particular,
the problem can be solved thanks to an additional chiral symmetry.
For instance, if one of the quarks has a vanishing mass, θmass would
be arbitrary since det(MpMn) = 0 and we can set θs = 0 without
loss of generality. This most simple solution with a vanishing quark
mass is however excluded [70]. Another elegant solution consists in the
introduction of a global U(1)PQ symmetry under which both the quarks
and two Higgs doublets transform non-trivially [71]. The parameter θs
becomes then a dynamical variable and can be relaxed dynamically
to zero. Since the U(1)PQ symmetry is spontaneously broken by the
vacuum, there should exist a Goldstone boson, named axion, with a
very small mass. Such an axion linked to the Fermi scale has however
been ruled out (see [72] for an argument based on K+ → π+a).
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