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Introduction

The study of heavy-quarkonium states started with the discovery of the first charmo-
nium states in 1974 [1, 2] and bottomonium states in 1977 [3].Since then, many
experiments have been dedicated to the analysis of the spectrum of quarkonia, and
new states are still discovered nowadays. As a recent example, theηb, i.e. the lowest
state in the bottomonium system, has only been discovered for the first time in 2008 by
the BABAR collaboration [4]. In addition to predicted quarkonium states, other exotic
states have been found, whose interpretation is still unclear (see for example [5]).

On the theoretical side, heavy-quarkonium bound states provide a very rich ground to
to probe QCD, theSU(3) gauge theory of the strong interactions. Even if the con-
finement effects are not tractable from first principles, themass of the heavy quarks
provides us with a high scale that legitimates the use of perturbative techniques, by
virtue of the asymptotic freedom behavior of QCD. Many properties of heavy quarko-
nium spectra, including the striking narrow width of theJ/ψ, can be explained within
this framework.

The use of perturbative QCD in the prediction of heavy-quarkonium production or
decay rates is based on a factorization principle, that isolates the low-energy non-
perturbative effects into a set of universal parameters in the expression of the rates.
One of the first attempts at such a factorization procedure isthe Color-Singlet Model
(CSM) [6, 7, 8], in which the perturbative heavy quarks are assumed to be created on-
shell, with the same quantum numbers as the physical quarkonium state. The total rate
is expressed as the product of a process-dependent factor associated with the creation
or the annihilation of the perturbative heavy quarks, and a universal factor that takes
into account the transition between the heavy quarks and thephysical quarkonium.
Usually, this last factor is approximated by the value of a Schrödinger wave function
at the origin, or its derivatives.
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The CSM gives a simple prescription for the computation of the rates and is very pre-
dictive, but it has a certain number of drawbacks. For S-wavequarkonium decays, cal-
culation beyond the static approximation revealed a very large relativistic correction at
orderv2 [9], with v the velocity of the heavy quark in the quarkonium rest frame.As
the CSM does not provide a correct prescription to compute the relativistic corrections
in general, higher correction terms are a priori not under control. The situation is even
worst for the P-waves, where the presence of infrared divergences appearing at higher
orders inαs explicitly breaks the validity of the factorization procedure adopted by
the CSM.

In the search for a more rigorous factorization procedure, the theory of Non-Relativistic
QCD was introduced in 1994 [10]. In this theory, perturbative amplitudes are system-
atically expanded in powers ofv. In this approach, transitions in which the perturba-
tive heavy-quark pair is created in a different quantum state than the physical quarko-
nium are also included, as such transitions arise naturallyin thev expansion. For each
transitionQQ̄(n) → Q, a non-perturbative parameter enters in the expression of the
decay/production rate. In NRQCD, these parameters, also called long-distance matrix
elements (shortened as LDME), have a precise definition in terms of vacuum expecta-
tion of quantum field operators. They encode the low energy effects associated to the
evolution of the heavy-quark pair into a quarkonium state. The infrared divergences
that arise in the computation of the perturbative factors are consistently reabsorbed
into these long-distance matrix elements through a matching procedure. As a result,
one can properly handle the computation of quarkonium ratesbeyond the leading or-
der inαs. In particular, the QCD corrections to P-wave decay/production rates are
then tractable [11, 12].

Despite its theoretical appeal and the undeniable successes, not all the predictions of
the NRQCD factorization approach have been firmly established, and the experimental
evidence of the universality of the LDME’s still requires further phenomenological
investigation. Among the questions still open stands the relevance of the color-octet
contributions in theJ/ψ production: they seem to play a dominant role at the Tevatron
and inγγ collisions, but they look marginal ate+e− at low energy, in photoproduction
at HERA [13] and in fixed-target experiments [14]. Moreover,NRQCD predicts a
sizeable transverse polarization forJ/ψ ’s at high-pT at the Tevatron, in contrast to the
latest data, which now clearly indicate thatJ/ψ’s are not transversely polarized [15].

Given such a puzzling landscape, it is mandatory to re-examine in detail the key ob-
servables and the corresponding theoretical predictions and to try to improve system-
atically upon them. The estimation of the impact of the transitions at work for quarko-
nium production relies on the accuracy with which the corresponding short-distance
coefficients can be computed. Cross sections at leading order in αS andv are normally
affected by very large uncertainties and cannot give a reliable estimate of the yield. In
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these cases, it can be problematic to gather information on the underlying production
mechanism(s) from data. A first direction of research that has been followed in this
thesis is the computation of higher-order corrections for specific processes, and the
investigation of their phenomenological implications.

The second way to gain further insight on the mechanisms at work in quarkonium
production is to extend the set of the typical observables that have been analyzed an-
alyzed so far, not only by studying new processes but also by making predictions
for more exclusive observables. Experimental analyses of potentially interesting new
ideas can be simulated with the support of a multi-purpose matrix element based gen-
erator. This new generation of codes, which have become widely available recently,
are born to ease phenomenology studies at colliders. They are able to create auto-
matically the matrix elements corresponding to a given process and then to generate
unweighted parton-level events that can be passed to standard Monte Carlo programs
such as Pythia [16] or Herwig [17], for showering and hadronization, and eventually
to detector simulation. As a second direction in this thesis, we present the work that
we have done in the construction of an event generator for quarkonium production.
Various examples of application of such a tool are given in details.

The thesis is organized as follows. In the first chapter, we review the concepts of
the NRQCD theory, emphasing the features to keep in mind for the next chapters.
In chapter 2, we present the techniques that we have developed to study physical
observables in the framework of NRQCD. In chapter 3, we present our new results for
quarkonium production at B-factories, at the Tevatron and LHC hadron colliders, and
at HERA. We finally give our conclusion. Most of the results presented here can be
found in the following publications:

• Charm-pair Rescattering Mechanism for Charmonium Production in High-energy
Collisions.
P. Artoisenet and E. Braaten.
arXiv:0907.0025

• J/ψ production at HERA.
P. Artoisenet, John M. Campbell, F. Maltoni, and F. Tramontano.
Published in Phys. Rev. Lett., 102:142001, 2009.

• Υ Production at Fermilab Tevatron and LHC Energies.
P. Artoisenet, John M. Campbell, J. P. Lansberg, F. Maltoni,and F. Tramontano.
Published in Phys. Rev. Lett., 101:152001, 2008.

• Automatic generation of quarkonium amplitudes in NRQCD.
P. Artoisenet, F. Maltoni, and T. Stelzer.
Published in JHEP, 02:102, 2008.
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• Hadroproduction ofJ/ψ and in association with a heavy-quark pair.
P. Artoisenet, J. P. Lansberg, and F. Maltoni.
Published in Phys. Lett., B653:60-66, 2007.

as well as in several conference proceedings [18, 19, 20, 21]. Some aspects are ex-
panded in more detail, such as the spin correlation effects in the decay of vector-like
quarkonium states (Section 2.2), the validity of the fragmentation approximation (Sec-
tion 2.3), the Monte Carlo techniques (Section 2.4), theJ/ψ hadroproduction in as-
sociation with a charm-quark pair at the LHC (Section 3.3). We also present here for
the first time some original results for the relativistic corrections to the inclusiveJ/ψ
production ine+e− annihilation (Section 3.1).



Chapter 1
Quarkonium production in
NRQCD

After several models had been proposed for the computation of heavy-quarkonium
cross sections such as the color-singlet model or the color-evaporation model, a rig-
orous formalism that legitimates the use of perturbative QCD in heavy quarkonium
physics has been provided with the theory of NRQCD [10]. As this theory is the
reference theoretical ground for the work presented in thisthesis, we review in this
chapter the important features of the formalism that shouldbe kept in mind in the next
chapters. In Section 1.1, we recall the steps leading to the factorized expression of the
cross section into a sum of products of short-distance coefficients and long-distance
matrix elements. The general techniques for the computation of the short-distance
coefficients are presented in Section 1.2. We next review some important properties
of the long-distance matrix elements in Section 1.3. In the last Section of this chapter,
we briefly discuss recent work on the investigation of the proof of the factorization
theorem on which the NRQCD expansion is based.

1.1 NRQCD factorization

The production of quarkonium states is a multi-scale process. On the one hand, the
creation of the heavy-quark pair involves energy scales of ordermQ of larger. On
the other hand, the dynamics of the quarkonium state is characterized by much lower
energy scales: if we denote byv the velocity of the heavy quark in the bound-state
rest frame, the relative momentum between the quarks is of the order ofvmQ, and the

13



14 Chapter 1. Quarkonium production in NRQCD

binding energy is of the order ofv2mQ. To the extend thatv is a small parameter for
heavy quarkonium states, these three scales are relativelywell separated. The value of
v2 is of the order of0.1 for the bottomonium ground state, and of the order of0.3 for
the charmonium ground state.

Provided that the mass of the heavy quark is much larger thanΛQCD, the creation of a
heavy-quark pair involves a large energy scale at which the strong coupling constant
can be treated as an expansion parameter. Hence one may hope to use perturbative
techniques to calculate the rate of production of a heavy-quark pair1. However, the
rate of production of heavy-quarkonium states also involves effects from the low-
energy scalesvmQ, v2mQ associated with the dynamics of the quarkonium state.
These effects cannot be handled by the formalism of perturbative QCD. Nevertheless,
if high- and low-energy scales are well separated, one expects the dynamics of the
bound state to be rather insensitive to the details of the creation of the heavy-quark
pair. Indeed, the wave length associated with the bound state dynamics≈ 1/vmQ

is too long to resolve the spatial extension≈ 1/mQ associated with the creation of
the heavy-quark pair. Provided thatv is sufficiently small, the creation of the heavy-
quark pair appears to be almost point-like compared to the size of the bound state, and
one expects to be able to factorize high-energy effects fromlow-energy effects in the
production rate in a process-independent way.

The framework of effective field theories provides a powerful prescription to disen-
tangle different energy scales. Non-Relativistic QCD (NRQCD) is the effective field
theory that separates high-energy scales of ordermQ or higher from low-energy scales
in quarkonium production or annihilation rates. The NRQCD Lagrangian is derived
from the QCD Lagrangian by integrating out energy-momentummodes of ordermQ

or higher. The resulting dynamical fields associated with the heavy quark and anti-
quark are expressed in terms of two-component Pauli spinorsψ andχ, which cor-
respond to the upper and lower components of the Dirac fields,respectively. The
effective Lagrangian has a UV cutoffΛ ∼ mQ, that plays the rôle of a factorization
scale. Energy-momentum modes above this factorization scale are encoded into the
coupling constants of local operators, similar to the way inwhich the coupling con-
stantGF of a local 4-fermion interaction encodes the high energy modes of orderMW

in the Fermi effective theory of the muon decay.

More precisely, the NRQCD Lagrangian has the following form

L = Llight + Lheavy+ δL . (1.1)

In this expression, the first term accounts for the low energymodes associated with
the gluon and the light quarks. The termLheavy describes the low-momentum modes

1The perturbation expansion may be spoiled by soft gluon exchange between the heavy-quark pair and
the other partons in the creation process, an issue that is addressed in the factorization of the different energy
scales.
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associated with the heavy quarks

Lheavy = ψ†
(
iDt +

D
2

2M

)
ψ + χ†

(
iDt −

D
2

2M

)
χ, (1.2)

whereψ is the Pauli spinor field that annihilates a heavy quark,χ is the Pauli spinor
field that creates a heavy anti-quark,Dt andD are the time and space components
of the gauge covariant derivativeDµ. Spin and color indices are understood. High
energy-momentum modes in the quarkonium rest frame correspond to the propagation
of highly virtual states over short distances, and are incorporated in the NRQCD La-
grangian through local operators represented by the termδL in Eq. (1.1). By system-
atically including operators of higher dimension, the Green functions resulting from
the NRQCD Lagrangian approximate the corresponding Green functions computed in
the full QCD theory up to an arbitrary high order inv, the heavy quark velocity in
the quarkonium rest frame. Provided thatv is a small parameter, the expansion of the
Green functions inv can be truncated within a certain accuracy, which corresponds to
keep a finite number of terms in the NRQCD Lagrangian.

This procedure applies also to the computation of quarkonium production rates. The
inclusive production process for a quarkoniumH is accounted for in the NRQCD
Lagrangian through the introduction of 4-fermion operators that have the general form

On = χ†κnψa
†
HaH(Λ)ψ†κnχ , (1.3)

wherea†HaH is the projector onto states that in the asymptotic future contain the
quarkoniumH plus light partonsX

a†HaH(Λ) =
∑

X

|H +X, t→ ∞〉〈|H +X, t→ ∞|, (1.4)

and the factorization scaleΛ acts as a cutoff of the high energy modes2. The factors
Kn andK′

n in Eq. (1.3) are products of a color matrix (either the unit matrix or T a), a
spin matrix (either the unit matrix orσi), and a polynomial in the covariant derivative
D and other fields. These operators are evaluated in the quarkonium rest frame and
have definite scaling withv. The operators of dimension 6 are

OH
1 (1S0) = χ†ψ

(
a†HaH

)
ψ†χ, (1.5)

OH
1 (3S1) = χ†σiψ

(
a†HaH

)
ψ†σiχ, (1.6)

OH
8 (1S0) = χ†T aψ

(
a†HaH

)
ψ†T aχ, (1.7)

OH
8 (3S1) = χ†σiT aψ

(
a†HaH

)
ψ†σiT aχ. (1.8)

2It is understood that the projector in Eq. (1.4) is evaluatedin the quarkonium rest frame.
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The most relevant operators of dimension 8 for the phenomenology are

OH
1 (1P1) = χ†(− i

2D
↔i

)ψ
(
a†HaH

)
ψ†(− i

2D
↔i

)χ, (1.9)

OH
1 (3P0) =

1

3
χ†(− i

2D
↔

· σ)ψ
(
a†HaH

)
ψ†(− i

2D
↔

· σ)χ, (1.10)

OH
1 (3P1) =

1

2
χ†(− i

2D
↔

× σ)iψ
(
a†HaH

)
ψ†(− i

2D
↔

× σ)iχ, (1.11)

OH
1 (3P2) = χ†(− i

2D
↔

(iσj))ψ
(
a†HaH

)
ψ†(− i

2D
↔

(iσj))χ, (1.12)

PH1 (1S0) =
1

2

[
χ†ψ

(
a†HaH

)
ψ†(− i

2D
↔

)2χ + h.c.
]
, (1.13)

PH1 (3S1) =
1

2

[
χ†σiψ

(
a†HaH

)
ψ†σi(− i

2D
↔

)2χ + h.c.
]
, (1.14)

as well as the corresponding color-octet operators for the P-waves. The symbolD
↔

refers to the difference between the covariant derivative acting on the spinor to the
right and on the spinor to the left. The notationT (i,j) refers to the symmetric traceless
components of a rank-2 tensor. The rate of production of a quarkoniumH is expressed
in terms of the vacuum expectation value of the operatorsOH

n . The termψ†κnχ|0〉
(resp.〈0|χ†κnψ) corresponds to the creation (resp. the annihilation) of a heavy-quark
pair in a staten at the same space-time point. The projectora†HaH takes into account
the evolution into a physical state that includes a quarkoniumH .

In the expression of the cross section, each long-distance matrix element〈0|On(Λ)|0〉
appears with a certain strengthσ̂n(Λ), also called the short-distance coefficient, which
encodes the high-energy modes above the factorization scale Λ, that are associated
with the creation of the heavy-quark pair in a definite staten. As a result, the cross
section is given by

σ(H) =
∑

n

σ̂n(Λ)〈0|OH
n (Λ)|0〉. (1.15)

This formula can be read as a double expansion inαs and inv. On the one hand, the
short-distance coefficients are computed order by order in the QCD coupling constant
αs. They are process-dependent, i.e., they do depend on the collisions at work. On the
other hand, the long-distance matrix elements encode the non-perturbative effects that
lead to the formation of the quarkonium bound state and are universal. The scaling
rules that apply to these matrix elements define the expansion in v. A summary of
the power counting rules of the most relevant long-distancematrix elements can be
found in [22]. In Eq. (1.15), the scale dependence in the short-distance coefficients is
cancelled by the scale dependence in the long-distance matrix elements order by order
in αs andv.
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The coefficientŝσn appearing in Eq. (1.15) can be obtained by requiring that thepro-
duction rate of a perturbative heavy-quark pair computed within NRQCD matches
the corresponding production rate computed within QCD. In other words, the short-
distance coefficients are fixed by the matching condition

σ(QQ̄)|pert. QCD=
∑

n

σ̂n〈0|OQQ̄
n (Λ)|0〉|pert. NRQCD. (1.16)

Beyond leading order inαs, ultraviolet and infrared divergences arise in the calcu-
lation of the right-hand side of Eq. (1.16). UV divergences are removed by renor-
malization of the strong coupling constant and the heavy-quark mass. IR divergences
cancel between the real and the virtual amplitude whenever the KLN theorem [23, 24]
applies. The remaining IR poles are expected to factorize over the Born and to be
reabsorbed by either the parton distribution functions, orthe fragmentation functions,
or NRQCD long-distance matrix elements. It is the goal of thefactorization theorems
to prove that this procedure can be applied at any order inαs. Recent works have
clarified the validity of the NRQCD factorization, as we willreview in Section 1.5.

1.2 Short-distance coefficients

As explained in the previous section, the short-distance coefficients in a given process
are obtained by matching the computation of the cross section for the production of a
perturbative heavy-quark pair in the QCD and NRQCD frameworks. For the compu-
tation of a given coefficient, one can use covariant projectors [6] to select the relevant
state of the heavy-quark pair. For calculations beyond the leading order inαs, the pro-
jection method has been generalized ind dimension of space-time in order to handle
the UV and IR pôles through dimensional regularization [25]. A potential drawback
of the projection method is that a new computation is required for each short-distance
coefficient. Instead, in the threshold expansion method [26, 12], one expands the full
QCD amplitude in the heavy-quark relative momentum aroundp = 0. Therefore, at
each order inv, all of the relevant short-distance coefficients appear in this expansion.

In the next chapters we will use the projection method, as itsnumerical implemen-
tation is easier. In this section, we rederive the expression of the projectors, starting
from the expansion of a generic heavy-quark production amplitude. We only consider
tree-level processes and assumed = 4 dimensions of space-time. Thus the formal-
ism below can be applied for computing the short-distance coefficients at the Born
level. Beyond the leading order inαs, the following approach can be followed for
the computation of the real part of the short-distance coefficients. These quantities
are infrared divergent in a four-dimensional space-time. However, infrared singulari-
ties factorize over lower-order contributions. In particular at next-to-leading order in
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αs, each infrared pôle factorizes over the Born amplitude in a universal way. One
can take advantage of this property to build from the Born amplitude subtracted terms
(e.g. dipoles [27]) that match the IR poles in the real amplitude. For the calculation
of cross sections at NLO accuracy, such procedures do not require the knowledge of
the real amplitude in genericd dimensions of space-time, and one can therefore con-
siderd = 4 for the computation of the real part. This procedure has recently been
generalized at NNLO (see for example [28]).

Let us denoteu, p1, r (resp. v, p2, s) the Dirac spinor, the momentum and the spin
index associated to the heavy quark (resp. heavy anti-quark). Color indices associ-
ated to the heavy quarks are understood. Let us consider the amplitude for a generic
production process of a perturbative heavy-quark pair

ū(p1, r)Mv(p2, s). (1.17)

In Eq. (1.17),M is a matrix carrying Dirac and color indices. We first analyzethe
Dirac structure. Using the Dirac representation for theγ matrices, we can express the
spinorsu(p1, r) andv(p2, s) in the following way:

u(p1, r) =
p/1 +m√
E1 +m

u0(r), v(p2, s) =
−p/2 +m√
E2 +m

v0(s). (1.18)

In this expression,u0 andv0 are the rest-frame spinors. From now on, we consider the
Dirac representation, which is more convenient for the non-relativistic limit. In this
representation, the explicit representation of the spinorsu0 andv0 reads

u0(r) =

(
ξr
0

)
, v0(s) =

(
0

ηs

)
(1.19)

whereξr andηs are two components spinors with understood color indices. The spin
indicesr, s will also be dropped hereafter. We consider the following complete basis
in the Dirac space:

{γA} = {1, γ5, γµ, γ5γµ, γ0γi, γ0γiγ5} (1.20)

Any matrixN in the Dirac space can be decomposed in terms of the matricesγA:

N =
∑

A

cAγ
A, cA = Tr(NγA)/Tr(γAγA) (1.21)
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Applying this decomposition to the matrixN = (p/1 +m)M(−p/2 +m), we find that
the production amplitude reads

1

4
√

(E1+m)(E2+m)

{
ū0v0Tr [(p/1 +m)M (−p/2 +m)]

+ ū0γ
5v0Tr

[
(p/1 +m)M (−p/2 +m) γ5

]

+ ū0γ
0v0Tr

[
(p/1 +m)M (−p/2 +m) γ0

]

− ū0γ
0γ5v0Tr

[
(p/1 +m)M (−p/2 +m) γ0γ5

]

− ū0γ
iv0Tr

[
(p/1 +m)M (−p/2 +m) γi

]

+ ū0γ
0γiv0Tr

[
(p/1 +m)M (−p/2 +m) γ0γi

]

+ ū0γ
0γiγ5v0Tr

[
(p/1 +m)M (−p/2 +m) γ0γiγ5

] }
.

(1.22)

In the Dirac representation, the only non-vanishing terms in the above expression
come from the sandwiched matrices with off-diagonal blocks

ū0γ
5v0 = ū0γ

0γ5v0 = ξ†η (1.23)

ū0γ
iv0 = ū0γ

0γiv0 = ξ†σiη (1.24)

i.e. the production amplitude is decomposed into a spin0, Eq. (1.23) and a spin
1, Eq. (1.24), contributions. This decomposition is obviously not Lorentz invariant.
In the matching procedure aimed at identifying the short-distance cross sections, we
work in the center-of-mass of the heavy-quark pair. In this frame, the relative momen-
tum is notedp, andE =

√
m2 + p2 refers to the energy of either of the heavy quarks.

Introducing the projector

P− =
γ0 − 1

2
(1.25)

and

Π0 =
1√

2(E +m)
(−p/2 +m)P−γ

5(p/1 +m), (1.26)

Π1 = − 1√
2(E +m)

(−p/2 +m)P−γ
i(p/1 +m), (1.27)

we see that Eq. (1.22) reduces to

1√
2
ξ†ηTr [MΠ0] +

1√
2
ξ†σiηTr

[
MΠi

1

]
. (1.28)

The expressions defining the spin projectors in Eqs. (1.26, 1.27) should be evaluated
in theQQ̄ center-of-mass frame. Such expressions do not have a covariant transfor-
mation law under Lorentz boosts, due to the projectorP− ∝ γ0 − 1, which leads to a
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mixed transformation forΠ0 (pseudo-scalar + pseudo-vector) and forΠ1 (vector+rank
2 tensor). It is interesting to express these projectors in acovariant form, in such a way
that the decomposition in Eq. (1.22) specific to the heavy-quark-pair center-of-mass
frame can be easily obtained from the expression of the momenta in any frame. To
this aim, we first redefineE andP−

E =
1

2

√
(p1 + p2)2, P− =

(p/1 + p/2) + 2E

4E
, (1.29)

With this redefinition, the first trace in Eq. (1.28) is invariant under the Lorentz group,
whereas the second trace transforms as a vector. We next decompose the color struc-
ture of the production amplitude. As the heavy-quark pair can be either in a singlet or
in an octet state, we readily obtain

M =
1

Nc
Tr(M)1 + 2

∑

a

Tr(T aM)T a (1.30)

where the trace is now over the color indices of the heavy-quark line. For the sake of
clarity, it is useful to introduce the color projectors

C [1] =
1√
Nc

, C[8]
a =

√
2T a. (1.31)

So far we have disentangled the spin singlet/triplet, colorsinglet/octet contributions
in the production amplitude. We have not expanded yet the amplitude in powers of
v = p/E. In particular, the spin projectorsΠ0 andΠ1 defined in Eqs. (1.26,1.27) are
accurate to all orders inv. Their expression is consistent with the form derived in [29].

We now proceed to square the amplitude. By color symmetry of the NRQCD opera-
tors, terms that mix a color-singlet state with a color-octet one vanish. However terms
with different angular momentum states may interfere in theproduction rate. Indeed,
states with different orbital momentum may have a non-zero overlap with a given
physical state|H +X〉 in Eq. (1.15). When one computes the squared amplitude, the
relative momentum in the amplitudep should be kept distinct from the relative mo-
mentump′ in the complex conjugated amplitude. We will assume|p| = |p′|, so that
the energy of the heavy-quark pair is well defined. In a similar way, as heavy-quark
spin symmetry is not an exact symmetry, terms belonging to different intrinsic spin
representations may interfere. Keeping track of these interference terms, we find that
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the squared amplitude reads

1

2Nc
η′†1spin⊗ 1colξ

′ξ†1spin⊗ 1colηTr
[
C [1]MΠ0

]∗
p′

Tr
[
C [1]MΠ0

]
p

(1.32)

+
1

2Nc
η′†σi ⊗ 1colξ

′ξ†σj ⊗ 1colηTr
[
C [1]MΠi

1

]∗
p′

Tr
[
C [1]MΠj

1

]
p

(1.33)

+
1

2Nc
η′†σi ⊗ 1colξ

′ξ†1spin⊗ 1colηTr
[
C [1]MΠ0

]∗
p′

Tr
[
C [1]MΠi

1

]
p

(1.34)

+
1

2Nc
η′†1spin⊗ 1colξ

′ξ†σi ⊗ 1colηTr
[
C [1]MΠi

1

]∗
p′

Tr
[
C [1]MΠ0

]
p

(1.35)

+η′†1spin⊗ T aξ′ξ†1spin⊗ T bηTr
[
C [8]
a MΠ0

]∗
p′

Tr
[
C

[8]
b MΠ0

]
p

(1.36)

+η′†σi ⊗ T aξ′ξ†σj ⊗ T bηTr
[
C [8]
a MΠi

1

]∗
p′

Tr
[
C

[8]
b MΠj

1

]
p

(1.37)

+η′†σi ⊗ T aξ′ξ†1spin⊗ T bηTr
[
C [8]
a MΠi

1

]∗
p′

Tr
[
C

[8]
b MΠ0

]
p

(1.38)

+η′†1spin⊗ T aξ′ξ†σi ⊗ T bηTr
[
C [8]
a MΠ0

]∗
p′

Tr
[
C

[8]
b MΠi

1

]
p
. (1.39)

Gauge invariance of the NRQCD operators implies that the product of the two traces
in Eqs. (1.36-1.39) is proportional toδab:

Tr
[
C [8]
a MΠ

]∗
Tr

[
C

[8]
b MΠ

]
=

δab
N2
c − 1

Tr
[
C

[8]
d MΠ

]∗
Tr

[
C

[8]
d MΠ

]
, (1.40)

where from now on, a sum over repeated indices is understood.

We now proceed to carry out the phase-space integration. We integrate over all un-
observed quantities, except the relative momentum betweenthe heavy quarks. The
Lorentz invariant expression of the phase-space measure for N final particles

dφ =
N∏

i=1

d3Pi
(2π)32Ei

(1.41)

is used consistently with the relativistic normalization adopted so far. Let us denote by
dφ̃ the Lorentz-invariant phase-space measure for theQQ̄ state of total momentumP
and for the other final particles. The density of states associated with the heavy-quark
pair depends on the normalization of the external states. Inevaluating the right-hand
side of Eq. (1.16), it is convenient to choose a non-relativistic normalization for the
heavy-quark state|QQ̄(p)〉. As a result, the appropriate phase-space factor to integrate
the amplitude in Eqs. (1.32-1.39) reads

2(E1 + E2)

4E1E2
× dφ̃. (1.42)
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whereE1 (E2) is the energy of the heavy (anti-)quark. In the first factor of Eq. (1.42),
the numerator compensates for the relativistic phase spacein dφ̃, and the denominator
compensates for the relativistic normalization of the spinprojectors. We recall that
the matching procedure aimed at determining the short distance coefficients is carried
on in the center-of-mass frame of the heavy quarks. In this frame, the first factor in
Eq. (1.42) reduces to1E , with E introduced earlier. This factor is usually reabsorbed
into the definition of the spin projectors. As it is universal, we prefer to keep it fac-
torized. Its origin can be traced back in the different choices of normalization in QCD
and NRQCD theories. The phase-space measuredφ̃ can be evaluated in any frame, as
it is Lorentz invariant.

We also expand the amplitude inp. We first consider the production of S-wave states,
as they are leading inv = |p|

E . At leading order, the relative momentum is merely set
to zero, such that the integration of the traces in Eqs. (1.32,1.33) gives

1

2Ncm

∫
d̃φTr

[
C [1]MΠ0

]∗
Tr

[
C [1]MΠ0

]
≡ σ̂(1S

[1]
0 ) (1.43)

1

2Ncm

∫
d̃φTr

[
C [1]MΠi

1

]∗
Tr

[
C [1]MΠj

1

]
≡ σ̂ij(3S

[1]
1 ) (1.44)

1

(N2
c − 1)m

∫
d̃φTr

[
C [8]
a MΠ0

]∗
Tr

[
C [8]
a MΠ0

]
≡ σ̂(1S

[8]
0 ) (1.45)

1

(N2
c − 1)m

∫
d̃φTr

[
C [8]
a MΠi

1

]∗
Tr

[
C [8]
a MΠj

1

]
≡ σ̂ij(3S

[8]
1 ). (1.46)

At this order inv, invariance of the NRQCD operators under rotation implies that the
crossed terms in Eqs. (1.34,1.35, 1.38,1.39) vanish. So thesquared amplitude reduces
to

σ̂
(

1S
[1]
0

)
η′†1spin⊗ 1colξ

′ξ†1spin⊗ 1colη (1.47)

+ σ̂ij
(

3S
[1]
1

)
η′†σi ⊗ 1colξ

′ξ†σj ⊗ 1colη (1.48)

+ σ̂
(

1S
[1]
0

)
η′†1spin⊗ T aξ′ξ†1spin⊗ T aη (1.49)

+ σ̂ij
(

3S
[1]
1

)
η′†σi ⊗ T aξ′ξ†σj ⊗ T aη. (1.50)

The four-spinors products in Eqs. (1.47-1.50) can be identified with the matrix el-
ements of the NRQCD operators in Eqs. (1.5-1.8) after the replacementa†HaH →
a†QQ′(p′)aQQ(p), up to spin correlation effects. In the computation of unpolarized
cross section for a physical quarkoniumH , the spin indices in the long-distance ma-
trix element decouple from those in the short-distance coefficient which allows us to
reduce the number of long-distance matrix elements. By rotational invariance we have

〈χ†σiψ
(
a†HaH

)
ψ†σjχ〉 =

δij

3
〈χ†σlψ

(
a†HaH

)
ψ†σlχ〉, (1.51)
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and similarly for the corresponding color-octet matrix elements. We therefore intro-

duce the scalar short-distance coefficientsσ̂
(

3S
[1,8]
1

)
= 1

3 σ̂
ii

(
3S

[1,8]
1

)
.

The perturbative P-wave states appear at higher order inv. The terms in Eqs (1.32,1.36)
expanded at orderO(p, p′) give the leading contribution for the spin-singletP -wave
state. Introducing the coefficients

σ̂mn(1P
[1]
1 ) =

1

2Ncm

×
∫
d̃φ

{
∇m
p′

(
Tr

[
C [1]MΠ0

]∗)} ∣∣∣∣
p′=0

{
∇n
p

(
Tr

[
C [1]MΠ0

])} ∣∣∣∣
p=0

(1.52)

σ̂mn(1P
[8]
1 ) =

1

(N2
c − 1)m

×
∫
d̃φ

{
∇m
p′

(
Tr

[
C [8]
a MΠ0

]∗)} ∣∣∣∣
p′=0

{
∇n
p

(
Tr

[
C [8]
a MΠ0

])} ∣∣∣∣
p=0

(1.53)

we get the following contributions

σ̂mn
(

1P
[1]
1

)
η′†pm1spin⊗ 1colξ

′ξ†pn1spin⊗ 1colη (1.54)

+σ̂mn
(

1P
[8]
1

)
η′†pm1spin⊗ T aξ′ξ†pn1spin⊗ T aη. (1.55)

The four-spinors products in Eq. (1.54) can be identified with the matrix elements of
the NRQCD operators in Eq. (1.9) after the replacementa†HaH → a†QQ′(p′)aQQ(p),
up to spin correlation effects. Again, in the case of unpolarized cross section, rota-
tional invariance can be used to decouple the vector indicesso that only one scalar
matrix element is left. The resulting scalar short-distance coefficient is defined by

σ̂
(

1P
[1]
1

)
= 1

3 σ̂
mm

(
1P

[1]
1

)
. In Eq. 1.55, the identification of the octet1P1 matrix

element works in the same way, and leads to the definition of the scalar short-distance

coefficientσ̂
(

1P
[8]
1

)
= 1

3 σ̂
mm

(
1P

[8]
1

)
.

For the P-wave spin-triplet piece at orderO(p, p′), the short-distance coefficient is a
rank-4 tensor. Considering the color-singlet part, we define

σ̂im,jn(3P
[1]
1 ) =

1

2Ncm

×
∫
d̃φ

{
∇m
p

(
Tr

[
C [1]MΠi

1

]∗)} ∣∣∣∣
p=0

{
∇n
p′

(
Tr

[
C [1]MΠj

1

])} ∣∣∣∣
p′=0

.(1.56)

In the case of unpolarized cross section, this tensor is contracted with a operator that
is a rank-4 rotation tensor. The vacuum expectation of this operator is invariant under



24 Chapter 1. Quarkonium production in NRQCD

rotations. As the tensor representation(⊗1)4 contains three times the representa-
tion 0, there are three independent reduced scalar matrix elements, corresponding to
the states with definite total angular momentumJ = 0, 1 or 2. The corresponding
short-distance coefficients can be identified by projectingEq. (1.56) onto the tensors
1
3δ
miδnj , 1

2 (δmnδij − δmjδni) and1
2 (δmnδij + δmjδni)− 1

3δ
miδnj . We readily find

σ̂
(

3P
[1]
0

)
=

1

3
σ̂aa,bb (1.57)

σ̂
(

3P
[1]
1

)
=

1

3

[
1

2

(
σ̂ab,ab − σ̂ab,ba

)]
(1.58)

σ̂
(

3P
[1]
2

)
=

1

5

[
1

2

(
σ̂ab,ab + σ̂ab,ba

)
− 1

3
σ̂aa,bb

]
(1.59)

The corresponding color-octet short-distance cross section σ̂
(

3P
[8]
0

)
, σ̂

(
3P

[8]
1

)
and

σ̂
(

3P
[8]
2

)
can be obtained in a similar way.

To summarize the results of this section, we have derived theexpression of the un-
polarized short-distance coefficients for the S- and P-wavestates. In our conventions,
the short-distance coefficients include a factor1/(2Nc) in the case of color-singlet
transition, and a factor1/(N2

c − 1) in the case of color-octet transitions. We have
also included a spin average factor1/(2J + 1) in the definition of the short-distance
coefficients, as well as a factor1/E (expanded at the correct order inv) for the nor-
malization of the quarkonium state. As a final remark, we notethat we can obtain the
short-distance coefficients of the long-distance matrix elements in Eqs. (1.13, 1.14),
which give a correction term of orderv2 to the color-singlet production of S-wave
states. These coefficients come from collecting thep2 andp′2 terms Eqs. (1.32, 1.33),
as well as thep2 arising from the expansion of the phase space measure in Eq. (1.42).

1.3 Long-distance matrix elements

The long-distance matrix elements that appear in Eq. (1.15)encode the non-perturbative
evolution of a heavy-quark pair into a physical quarkonium state. At present, they can-
not be computed from first principles, but they are expected to be process-independent,
i.e., they do not depend on the details of the production of the perturbative heavy
quarks. Based on this universality, their value at a certainscale can be extracted from
experimental data relative to a given production process and then used to predict the
cross section in another experiment. The evolution with thefactorization scale can
be predicted on the basis of a perturbative calculation. TheNRQCD formalism is
predictive, provided that the relative velocity is sufficiently small. In such a case, the
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series defined in Eq. (1.15) can be truncated at a given accuracy in v. Only a restricted
number of long-distance matrix elements contribute to the production rate. In order
to increase the predictive power, approximate relations among these matrix elements
can be derived, as we review in this section.

Vacuum-saturation approximation

This approximation [30] allows us to relate production matrix elements to those in-
volved in the decay in the case of color-singlet transitions. Such a relation appears
when we assume that the sum in Eq. (1.4) is dominated by the quarkonium stateH
plus the NRQCD vacuum. The decay and production matrix elements are then identi-
cal, up to a factor2J + 1 that is the number of polarization degrees of freedom of the
quarkoniumH . The vacuum-saturation approximation is accurate up to corrections of
relative orderv4.

Color-singlet matrix elements for the decay are related in turn to theQQ̄ wave func-
tions at the origin, or their derivatives. Potential modelscan then be used to evaluate
these wave functions [31]. Within this approximation, there are no free parameters
left for the production of quarkonium via color-singlet transitions.

Heavy-quark spin symmetry

Heavy-quark spin symmetry is only an approximate symmetry of the NRQCD La-
grangian. Indeed, at orderv2 relative to the leading term, the Lagrangian includes the
termψ†B.σψ − χ†B.σχ, which breaks the spin symmetry. If we neglect correc-
tions of relative orderv2, then the spin of the perturbative heavy-quark pair matches
the spin of the quarkonium state. This leads to approximate relations for the polar-
ized long-distance matrix elements. In particular, for theproduction of a spin-triplet
S-wave quarkonium state of polarizationλ, we have [26]

〈χ†σia†H(λ)aH(λ)ψ
†σjχ〉 =

1

3
ǫiλǫ

∗j
λ 〈OH

1 (3S1)〉, (1.60)

〈χ†σiT aa†H(λ)aH(λ)ψ
†σjT aχ〉 =

1

3
ǫiλǫ

∗j
λ 〈OH

8 (3S1)〉, (1.61)

〈χ†σi(− i

2
D
↔m

)T aa†H(λ)aH(λ)ψ
†σj(− i

2
D
↔n

)T aχ〉 = ǫiλǫ
∗j
λ δ

mn〈OH
8 (3P0)〉. (1.62)
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1.4 Quarkonium production at high energy

In the previous sections, we have seen how the formalism of NRQCD succeeds in
separating momentum scales of ordermQv or smaller from momentum scales of order
mQ or higher. On the one hand, the order of magnitude of the long-distance matrix
elements is controlled by the mean relative velocityv inside the quarkonium state.
On the other hand, the relative sizes of the short-distance cross sections are controlled
by the strong-coupling constantαs. The amplitude related to the high-energy process
(or equivalently the short-distance process) can be computed within the perturbation
theory, as the strong interaction is perturbative above theenergy scalemQ. As v is
also a small parameter, quarkonium production amplitudes can be expanded up to a
certain order inαs and inv.

At large energy, a new range of perturbative scales becomes relevant. The perturbative
expansion is not entirely under the control of the strong-coupling constant. Although
additional parton emissions are suppressed by powers ofαs, the phase-space for such
emissions increases rapidly. This feature manifests itself in the cross section by the
presence of large logarithms , that can spoil the perturbation expansion. In such cases,
there is a need to rearrange the perturbative expansion to boost the convergence of the
cross section, which can be achieved by resumming the leading logarithm behavior of
the cross section.

1.4.1 Fragmentation processes at large transverse momen-
tum

We first analyze the case of quarkonium production at large transverse momentum
PT ≫ mQ. In this limit, a new hierarchy of energy scales appears in the short-distance
process, and the leading contribution is not guaranteed to be given by the lowest order
term in the strong coupling constant. If we assume that all infrared sensitivity has
been factorized into non-perturbative parameters, the short-distance process is char-
acterized by momentum flow ranging frommQ to PT . Exchange of particles with
virtualities of orderPT suppresses the probability amplitude, as it corresponds tothe
scattering of particles in a very small volume1

P 3
T

. For some mechanisms though, in-

termediate particles are kinematically allowed to travel over distances of order( 1
mQ

),

which lead to an enhancement ofPTmQ compared to the previous case. Therefore, if the
energy scalesmQ andPT are well-separated, the kinematics of the mechanism under
work is a determinant factor to estimate the size of its contribution to the probability
amplitude, together with the strong coupling constant.
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Owing to this feature, channels opening at higher order in the strong-coupling con-
stant can dominate the cross section the limitmQ

PT
→ 0, if they receive a kinematic

enhancement
(
PT
mQ

)n
compared to the Born-level mechanism. In such a situation,

reliable phenomenological studies must take into account NLO or even NNLO con-
tributions in order to include these mechanisms in which theparton-level production
takes place in a volume of order1

m3
Q

. At this stage, beside the technical difficulty of

performing such higher order calculations in the frame workof NRQCD, there is an-
other problem that can spoil theentireconvergence of theαs expansion. Considering
the amplitude|M |2 at ordern, the contribution at ordern+1 from radiation of an ex-

tra gluon from the heavy-quark line gives a correction term∼ αs log
(
mQ
PT

)
× |M |2,

which is not small compare to|M2| if PT ≫ mQ. This issue points out the need
to disentangle the two energy scalesmQ andPT in the short-distance coefficients in
order to avoid large logarithms of the ratio of these scales.The realization of this
new factorization within the fragmentation picture also proves to simplify greatly the
calculation of quarkonium amplitudes, as we will see in the next section.

Historically, the importance of the fragmentation contributions in quarkonium produc-
tion was first realized in the case ofS-wave quarkonium states in the framework of
the color-singlet model [32], and the implications for the phenomenology in electron-
positron collisions and at hadron colliders were investigated soon thereafter. Frag-
mentation processes originate from the production of intermediate partons that sub-
sequently split into a heavy-quark pair (and possibly otherpartons). At large trans-
verse momentum, the dominant contribution is characterized by a virtuality for the
intermediate parton of the order ofmQ, which is much lower than the energy in the
center-of-mass frame. Gluon-fragmentation channels intoS-wave charmonium states
open up at orderα4

s andα5
s for the 1S

[1]
0 and the3S

[1]
1 states, respectively, whereas

charm-fragmentation channels open up at orderα4
s for both the spin0 and the spin

1 quarkonium states. Although the fragmentation mechanismsappear at higher order
in αs, they are enhanced by a factor( PTmQ )n compared to the Born-level contribution,
which therefore becomes subdominant at sufficiently largePT .

In the limit mQPT → 0, the fragmentation piece decouples from the production ampli-
tude squared associated with the production of the intermediate parton, such that the
cross section can be written as

dσQ =
∑

i

∫ 1

0

dzdσ̂i(
p

z
)Di→Q(z, µ), (1.63)

up to corrections of ordermQPT . In Eq. (1.63),dσ̂i(
p
z ) corresponds to the production

of a partoni with momentump
z . All of the dependence onmQ has been factorized

in the fragmentation functionDi→Q, which describes the splitting of this parton into
a quarkonium state of momentump. As the intermediate parton is not observed, all
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species must be taken into account. The fragmentation approximation, which disre-
gards correction terms of ordermQPT , greatly simplifies the calculation. As the frag-
mentation contributions to quarkonium production often occur at higher-order inαs,
a complete calculation is generally much more difficult to handle.

When we consider the radiative corrections to the fragmentation contributions, the
intermediate parton can experience multiple splitting before giving rise to the heavy-
quark pair. These splittings generates large logarithms ofmQ

PT
in the amplitude. These

logs a priori spoil the factorization of the different energy scales and compromise the
perturbative expansion. As usual, this issue is solved by introducing a factorization
scaleµ

log
mQ

PT
= log

µ

PT
+ log

mQ

µ
. (1.64)

The second term is reabsorbed in the fragmentation function, and the factorization
scaleµ is set to≈ PT in order to avoid large logs in the short-distance amplitude.
In the framework of the color-singlet model, the fragmentation functionDi→Q(z, µ)

can be computed perturbatively at the scaleµ corresponding to the minimum invari-
ant mass of the splitting parton (which is necessarily above2mQ), and hence can be
evolved to an arbitrary scale by using the evolution equation

µ
∂

∂µ
Di→Q(z, µ) =

∑

j

∫ 1

z

dy

y
Pi→j(

z

y
, µ)Dj→Q(y, µ). (1.65)

The fragmentation functionsD(c→ cc̄
(
2S+1LJ [1]

)
have been derived in [32] forS-

wave states and in [33, 34] for P-wave states. Gluon fragmentation into quarkonia have
been derived in [12, 35, 36] forS-wave sates and in [12, 37, 38] forP -wave states.
This last process provides a very nice illustration of the NRQCD factorization proce-
dure. At orderαs, only the color-octet transition3S[8]

1 contributes to the fragmentation
function for P-wave state. The color-singlet short-distance coefficient at orderα2

s de-
velops an infrared pôle, that matches the infrared pôle in the radiative correction to the
color-octet matrix element〈OχQ(3S

[8]
1 )〉. As a result, the IR pôle in the perturbative

amplitude can be reabsorbed into this NRQCD matrix element.The color-octet ma-
trix element also develops a UV pôle that is removed by renormalization. It acquires a
dependence in the factorization scale introduced by the regularization procedure. The
color-singlet short distance coefficient also depends on the factorization scale in such
a way that the overall scale dependence cancels in the fragmentation function.

1.4.2 kt factorization at small x

Another large ratio of perturbative scales that appears in hadron collisions at high
energy isŝ/s = x1x2, wheres refers to the center-of-mass energy squared of the
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colliding hadrons,̂s to the center-of-mass energy squared of the colliding partons, and
x1, x2 are the Bjorken fractions. At very smallx, the evolution of the parton distribu-
tion function proceeds over a large region in rapidity, and effects of finite transverse
momenta of the partons cannot be ignored. In this region, thecross section can be
expressed as the convolution of an off-shellkt dependent partonic cross section and a
kt-unintegrated parton density functionF(z, k2

t ). This unintegrated gluon density is
described by the BFKL evolution equation. We refer to Refs [39, 40] for a nice review
of thekt factorization approach.

In the case of heavy-quark production in hadronic collisions, the leading-order off-
shell matrix element for thegg → QQ̄ process estimates the impact of the on-shell
NNLO processgg → ggQQ̄. In this respect, thekt factorization approach can be seen
as a prescription to obtain the leading behavior of theα2

s-suppressed cross section
computed in the collinear factorization frame work, in the high energy limitŝ/s→ 0.
This procedure also applies for quarkonium production, which has been intensively
studied in the framework of thekt factorization [41, 42, 43, 44, 45, 46, 47]. A paral-
lelism can be made with the fragmentation approximation, which extracts the leading
behavior of the cross section in the limitmQPT → 0.

1.5 Proof of the NRQCD factorization

As we have seen in the previous section, the formalism of NRQCD allows to factorize
the non-perturbative effects inherent to the quarkonium states into a finite number of
parameters, expressed as matrix elements of 4-fermion operators. The uncancelled
infrared pôles that arise beyond the leading order inαs must be reabsorbed into these
NRQCD long-distance matrix elements. A well known example of application is the
production of a P-wave quarkonium state from the fragmentation of a gluon, as we
mentioned in Section 1.4.1.

Whether such a procedure can be applied at all order inαs and inv is not obvious.
In particular, it is not clear that all the uncanceled pôles in the computation of the
short-distance coefficients can always be matched by the NRQCD matrix elements.
The investigation of this issue is of capital importance, asit is the fundamental ground
for the use of perturbative QCD in the computation of heavy quarkonium cross sec-
tions. Several efforts have recently been made to analyze the validity of the NRQCD
factorization approach at higher order inαs. We briefly review some of these new
results.

Nayak et al. [48, 49] have investigated the production of quarkonium states at large
PT from gluon fragmentation. At NNLO accuracy inαs, they found uncanceled pôles
that do not appear in the perturbative calculation of the long-distance matrix elements.
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They showed that, if the color-octet matrix elements are modified by the introduction
of Wilson lines that make them gauge invariant, the factorization is restored at NNLO.
This restoration makes use of the fact that the IR pôle does not depend on the direction
of the Wilson line. It is therefore unclear whether the factorization holds at higher
order inαS .

In more recent papers [50, 51], Nayaket al have analyzed associated heavy quarko-
nium production, i.e. the production of a quarkonium state plus a heavy-quark pair of
the same flavor. They showed that the standard NRQCD factorization procedure does
not apply in phase-space regions in which one of the passive quarks is co-moving with
the active heavy-quark pair with almost zero relative momentum. In such a configura-
tion, color exchange between the active and passive heavy quarks leads to an infrared
pôle that cannot be matched by any of the standard NRQCD long distance matrix
elements.

Recently Bodwinet al. [52] have outlined the proof of the factorization theorems for
exclusive two-body charmonium production in B-meson decayand ine+e− annihi-
lation, both of these processes being particularly relevant from the phenomenological
point of view. Considering all orders in the strong couplingconstant, they find that
factorized expressions hold up to corrections of ordermc/mb in B-meson decay, and
up to corrections of orderm2

c/s in e+e− annihilation, wheremc, mb and
√
s are the

charm-quark mass, the bottom quark mass and thee+e− center-of-mass energy, re-
spectively. For the specific process ofe+e− → J/ψ+χc0, the NLO cross section has
been computed explicitly in [53]. The factorization has been found to hold exactly at
this order, provided that the relative velocity inside the S-wave quarkonium state is set
to zero.



Chapter 2
Improving our predictions

The main subject of this thesis is the study of the phenomenological consequences
of NRQCD. In order to assess whether the factorization principles summarized in the
previous Section are experimentally validated, predictions and measurements have
to be confronted with each other, through observables that allow us to identify the
mechanism(s) at work in the production of quarkonium states. This procedure entails
the computation of the short-distance coefficients perturbatively in the strong-coupling
constantαs. Here we will consider the Feynman-diagram techniques to compute the
amplitude at a given order inαs. Because of the number of diagrams, the calculation
of scattering amplitudes cannot be achieved by hand when thenumber of external
particles is large. Also in this case, the handling of the phase-space integration may
not be straightforward. In this chapter, we describe how we have automated these
steps through numerical algorithms for quarkonium production.

2.1 NRQCD amplitudes at tree-level

As we have seen in the first chapter, quarkonium squared amplitudes in the framework
of NRQCD are obtained by means of an expansion in powers of therelative velocity
v between the heavy quarks. At leading order inv, the intermediateQQ̄ state can be
specified by the spectroscopic notation

n = 2S+1L
[c]
J , (2.1)

whereS identifies the spin state of the heavy-quark pair,L the orbital momentum
state,J the total angular momentum state, andc = 1, 8 the color state.

31
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To evaluate the short-distance coefficients we use the general algorithms for Feynman-
diagram based computations that are available in MadGraph [54]. MadGraph can pro-
vide partonic helicity amplitudes for any process in the Standard Model, and for many
processes beyond the Standard Model, at the tree level. In the case of quarkonium, we
start from the helicity amplitude information for open quark-antiquark production and
then apply several projection operators that select the specific quantum state numbers,
2S+1L

[c]
J . The projectors are universal and depend only on the quantumnumbers to

be selected and not on the specific process requested. In fact, only the color projection
has to be performed within MadGraph itself since it changes the way the amplitudes
are calculated (and in particular selects which diagrams contribute) while spin projec-
tions and velocity expansions are performed at runtime. Ourmethod entails that any
squared matrix amplitude|M(ij → QQ̄(2S+1L

[c]
J )+X)|2 can be generated in any of

the models available in MadGraph. Limitations are typical to Feynman-diagram based
matrix element generators and are connected to the factorial growth in the number of
diagrams.

Let us stress a few important points. First, our implementation also allows the calcula-
tion of the relativistic corrections for S-wave state production. Second, the employed
projectors are general enough to handle the case in which thequark and the anti-quark
are of different flavor, and therefore have a different mass.In our approach, the full
polarization information is kept, so that the interface with a quarkonium decay algo-
rithm with all spin correlation effects included is possible. It is also direct to extend
our procedure so that it can also handle the production of non-relativistic exotic states,
such as those introduced in the literature [55, 56]. Generalization to double heavy-
quarkonium is straightforward.

2.1.1 Projection method and its implementation

In this Section, we discuss how to combine the open-quark helicity amplitudes gener-
ated by MadGraph in order to select a specific configuration2S+1L

[c]
J for the heavy-

quark pair. We restrict ourselves toS- andP -wave states, although the algorithm can
be extended to higher orbital-angular-momentum configurations. Our method can be
seen as a generalization and automation of that proposed in Refs. [57, 58].

First we address the computation of the color factors. In MadGraph, the color struc-
ture of the parton-level amplitude is obtained by organizing the amplitude into gauge
invariant subsets, corresponding to different color flows in the large-NC limit [59].
The total amplitude is then expressed as a sum over the color flows

M =
∑

m

fm(a, b, . . . )Am , (2.2)
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where thefm’s are color factors (orthogonal in the largeNc limit) that depend on color
indicesa, b, . . . carried by gluons and quarks, and theAm’s are gauge invariant quan-
tities, the so-called partial amplitudes. These amplitudes are computed in MadGraph
with the help of HELAS subroutines [60]. The color factors are evaluated at the level
of the squared amplitude, each color index being contracted:

|M|2 = (A∗
1, A

∗
2, . . . )




f∗
1 f1 f∗

1 f2 . . .

f∗
2 f1 f∗

2 f2 . . .
...

...







A1

A2

...


 . (2.3)

The decomposition of the partonic amplitude into partial gauge-invariant amplitudes,
as well as the evaluation of the matrix of color factors, are computed automatically for
any process at tree-level.

In order to compute the color structure related to the processij → QQ̄(2S+1L
[c]
J )+X ,

the quark and anti-quark are required to be in a given color state[c]. Given that3⊗ 3̄ =

1 ⊕ 8 the pair can be either in a singlet or an octet state that can beobtained by using
the projectors [25]

C1 =
δij√
NC

, C8 =
√

2(T a)ij , (2.4)

wherei andj are the color indices of the heavy quarks. These projectors have been
implemented in MadGraph. The color structure for the quarkonium production ampli-
tude is then computed by using the same technique as for the open quark production.

Next we consider the projection of the amplitude onto a definite total spin state of the
heavy-quark pair. The spin projectors were first derived in Ref. [6, 7, 8], and we em-
ploy the normalization of Ref. [25]. Since the code is also designed for the production
of heavy quarkonia of mixed flavors, we distinguish the mass of the quark (m1) from
that of the anti-quark (m2). p1 (p2), the momentum of the heavy quark (anti-quark)
can be expressed in terms of the total momentumP and the relative momentump:

p1 =
E1

E1 + E2
P + p, p2 =

E2

E1 + E2
P − p , (2.5)

whereE1 (E2) stands for the energy of the quark (anti-quark) in the quarkonium rest
frame. The partial helicity amplitudes can be combined to yield a specific spin state
for the heavy-quark pair:

M(ij → QQ̄(S, λ)+X) =
∑

λ1,λ2

N(λ|λ1, λ2)M(ij → Q(λ1)Q̄(λ2)+X) , (2.6)
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where the Clebsch-Gordan coefficientsN(λ|λ1, λ2) can be written in terms of the
heavy-quark spinors1,

N(λ|λ1, λ2) =
1√

8m1m2
v̄(p2, λ2)ΓSu(p1, λ1) , (2.7)

with ΓS=1 = ǫλµγ
µ for a spin-oneQQ̄ state (ǫλµ being the polarization vector), and

ΓS=0 = γ5 for a spin-zeroQQ̄ state. Note that this expression is accurate only
at leading order in the relative momentump. The helicity amplitudesM(ij →
Q(λ1)Q̄(λ2) + X) are computed by MadGraph in a specific Dirac representation
employed in the HELAS subroutines [60]. These subroutines can also be invoked for
the evaluation of the current in the rhs of Eq. (2.7). The spinprojection formula in
Eq. (2.6) can then be easily incorporated in a generic numerical algorithm.

We then consider the projection onto a specific orbital-angular-momentum state. For
S-wave state production at leading order inv, one can simply setp = 0 in the short-
distance amplitude. ForP -wave state, the leading order contribution inv is given by
the derivative of the amplitude with respect to the relativemomentum. We approach
this derivative numerically by examining the quotient

M(∆pi) −M(0)

∆pi
(2.8)

in the quarkonium rest frame in the limit∆pi → 0.

Eventually, for spin-oneP -wave states, the spin index is combined with the orbital-
angular-momentum index in order to select a given angular momentum state,J = 0, 1

or 2.

2.1.2 Polarized amplitudes

Contributions to the squared amplitude from different spinstates are disentangled in
our procedure. By default, the spin quantization axisŝ is the direction of the quarko-
nium state in the partonic center-of-mass frame, but any other choice can easily be
implemented. In the quarkonium rest frame, the polarization vectorsǫa’s are defined
by

T .ŝǫa = aǫa, for a = −1, 0, 1. (2.9)

whereT is the spin1 representation of theSO(3) generators. The definition of the
polarization vectors in Eq. (2.9) is extended to any frame byLorentz transformation.

1We use the normalization̄u(pi, λi)u(pi, λi) = 2mi = −v̄(pi, λi)v(pi, λi).
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In the case of3S1 and1P1 intermediate states, helicity amplitudes are directly ob-
tained by contracting the polarization vector in the helicity basis with either the index
of the spin projector or the orbital-angular-momentum index of the amplitude (see
Eqs. 2.6-2.8). In the case3PJ intermediate states, we apply the reduction1 ⊗ 1 =

0 ⊕ 1 ⊕ 2 to separate the different helicity components. If we denoteby Mµν the
rank-2 tensor amplitude, the reduction reads

A(3P0) = Mµν
ǫµ
1
ǫν
−1+ǫ

µ
−1
ǫν1−ǫ

µ
0
ǫν0√

3
, (2.10)

A(3P1, λ = 1) = Mµν
ǫµ
1
ǫν0−ǫ

µ
0
ǫν1√

2
, (2.11)

A(3P1, λ = 0) = Mµν
ǫµ
1
ǫν
−1−ǫ

µ
−1
ǫν1√

2
, (2.12)

A(3P1, λ = −1) = Mµν
ǫµ
0
ǫν
−1−ǫ

µ
−1
ǫν0√

2
, (2.13)

A(χc2, λ = 2) = Mµνǫ
µ
1 ǫ
ν
1 , (2.14)

A(3P2, λ = 1) = Mµν
ǫµ
1
ǫν0+ǫµ

0
ǫν1√

2
, (2.15)

A(3P2, λ = 0) = Mµν
ǫµ
1
ǫν
−1+ǫ

µ
−1
ǫν1+2ǫµ

0
ǫν0√

6
, (2.16)

A(3P2, λ = −1) = Mµν
ǫµ
0
ǫν
−1+ǫ

µ
−1
ǫν0√

2
, (2.17)

A(3P2, λ = −2) = Mµνǫ
µ
−1ǫ

ν
−1. (2.18)

In this way, desired polarization information is easily extracted: the spin-density ma-
trix for a given choice of the spin quantization axis can be readily evaluated. It is
than easy to interface the code with a routine for quarkoniumdecays that takes into
account all spin correlation effects. In the case of electromagnetic decay of vector-
like quarkonium states, the decay into leptons has been implemented in MadOnia (see
Section 2.2).

An additional comment should be added for the production of vector-like quarkonium
states via a color-octetP -wave transition:

QQ̄
(

3P
[8]
J

)
→ Q(1−−) . (2.19)

Up to now, we have explained how to derive numerically the squared amplitude pro-
jected onto definite states of total angular momentumJ, Jz of the intermediate pair.
Although this will give the correct unpolarized cross section, this procedure will
fail to predict the polarization of a physical quarkonium state produced via a3P [8]

J

pair [26, 61, 62]. Since heavy-quark symmetry is an approximate symmetry in the
NRQCD Lagrangian, the intrinsic angular momentum of the intermediate heavy-quark
pair is transferred to the physical quarkonium state, up tov2 corrections. A correct
way to account for the polarization in this case is to projectthe amplitude onto states
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of definite orbital momentumL,Lz and intrinsic angular momentumS, Sz, to square
the amplitude, and then to sum over orbital-angular momentum degrees of freedom:

σ(ij → QQ̄(3P
[8]
J ) +X → Q(ǫ(n̂)) +X) =

∑

L.n̂

σ̂
[
ij → QQ̄ (L.n̂, ǫ(n̂)) +X

]
〈3P [8]

0 〉Q (2.20)

This projection procedure has been implemented as an optionin our code.

2.1.3 Relativistic corrections to S-wave state production

The relativistic corrections toS-wave-state cross sections arise when the relative mo-
mentump between the heavy quarks is kept different from zero in the computation of
the squared amplitude and in the phase-space parametrization.

The computation of such corrections requires the use of spinprojectors accurate to
all orders inp. As we have seen in the first chapter, and according to the result of
Ref. [29], the Clebsch-Gordan coefficients can be written as

N(λ|λ1, λ2) =
1√

2(E +m)
v̄(p2, λ2)

P/ + 2E

4E
ΓSu(p1, λ1) , (2.21)

whereE =
√
P 2

2 (in this case we assume that the quark and the anti-quark are of
the same flavor,m1 = m2 = m). The contribution to anS-wave configuration is
selected by projecting the amplitude onto the spherical harmonicY m=0

l=0 . This entails
an average of the amplitude over the direction of the relative momentum which can
be performed during the phase-space integration: the relative momentum appearing
in the amplitude and in the complex conjugated amplitude arekept distinct and their
directions determined on an event-by-event basis by the phase space generator. In
addition,p2 corrections to the mass of the quarkonium state are accounted for in the
phase-space parametrization. The output of the computation is the short-distance cross
sectionσ̂(p2) for an input value of|p|. The part of the algorithm connected with the
phase space has not been automatized yet.

Once the short-distance cross sectionσ̂(p2) is at hand, it can be expanded to extract
thev2 correction, bypassing the tedious relativistic expansionof the amplitude and of
the phase-space measure. As our algorithm does not explicitly perform the Taylor-
expansion, it can be also used to resum the relativistic corrections arising from the
wave function, as proposed in Refs. [63, 64].
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2.1.4 Validation

Preliminary checks

In order to gain confidence in our implementation, we have performed several checks
listed below.

• Gauge invariance has been systematically verified for all the processes consid-
ered by using longitudinal polarization for the external photons or gluons.

• Numerical cancellation among diagrams has been checked foramplitudes that
vanish by symmetry considerations:

A(1S
[1]
0 + (2k + 1) photons) = 0,

A(3S
[1]
1 + 2k photons) = 0,

A(3P
[1]
0,2 + (2k + 1) photons) = 0,

A(1P
[1]
1 + 2k photons) = 0,

A(3P
[1]
1 + 2k photons) = 0,

with k = 1, 2, 3. The first three equations result from the Furry’s theorem,
whereas the last two equations result from the Yang’s theorem (a spin-one par-
ticle cannot decay into two photons).

• We have compared our numerical amplitudes against the analytic results point-
by-point in phase space for (i, j, k = quarks or gluons):

1. ij → Qk for all S- andP -wave states, both color-singlet and color-octet
amplitudes, [8][65][66];

2. ij → QV , with V = Z,W for the relevantS- andP -wave states, both
color-singlet and color-octet amplitudes [67];

3. ij → Qφ, φ being a scalar or pseudo-scalar for the relevantS- andP -
wave states, both color-singlet and color-octet amplitudes [68];

The agreement forS-wave amplitudes is at the level of the machine precision,
while for P -waves, which are obtained through a numerical derivative,it is
typically at the10−5 level.
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(fb) 1S
[1]
0

3S
[1]
1

1P
[1]
1

3P
[1]
0

3P
[1]
1

3P
[1]
2

e+e−@mZ 1.69 · 103 2.37 · 103 1.78 · 102 1.08 · 102 2.23 · 102 2.40 · 102

γγ@LEP II 0.519 5.23 0.162 2.69 · 10−2 5.80 · 10−2 0.266

γp@HERA 3.66 · 102 1.76 · 103 85.4 21.7 51.7 2.02 · 102

pp@LHC(gg) 3.94 · 107 9.83 · 107 5.20 · 106 1.82 · 106 4.40 · 106 1.05 · 107

pp@LHC(qq̄) 1.37 · 105 8.34 · 105 2.95 · 104 1.10 · 104 2.69 · 104 7.26 · 104

pp̄@Tev II(gg) 2.56 · 106 6.30 · 106 3.28 · 105 1.24 · 105 2.83 · 105 6.62 · 105

pp̄@Tev II(qq̄) 2.64 · 104 1.62 · 105 5.70 · 103 2.12 · 103 5.21 · 103 1.41 · 104

Table 2.1: Cross sections (femtobarn) for the color-singlet contributions to the inclu-
sive production ofBc.

(fb) 1S
[8]
0

3S
[8]
1

1P
[8]
1

3P
[8]
0

3P
[8]
1

3P
[8]
2

e+e−@mZ 1.59 2.22 0.167 0.102 0.209 0.225

γγ@LEP II 4.9 · 10−4 4.9 · 10−3 1.5 · 10−4 2.5 · 10−5 5.4 · 10−5 2.5 · 10−4

γp@HERA 1.18 8.46 0.506 7.64 · 10−2 0.244 1.61

pp@LHC(gg) 4.11 · 105 1.79 · 106 1.17 · 105 1.38 · 104 6.23 · 104 2.29 · 105

pp@LHC(qq) 1.03 · 103 7.03 · 103 251 30.7 174 616

pp̄@Tev II(gg) 2.85 · 104 1.26 · 105 8.13 · 103 9.80 · 102 4.25 · 103 1.57 · 104

pp̄@Tev II(qq) 199 1.37 · 103 48.6 5.95 33.7 120

Table 2.2: Cross sections (femtobarn) for the color-octet contributions to the inclusive
production ofBc.
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Example 1: Bc production at various colliders

Bc production has been extensively studied at various colliders, and the many avail-
able results provide us with a further testing ground for ourcode.

We present the results for inclusive cross sections at several colliders for all theS−
andP−wave states, both color-singlet and color-octet. Since ourpurpose is to pro-
vide reference numbers, we use a very simple set of input parameters common to all
processes:

• mb = 4.9 GeV,mc = 1.5 GeV,mBc = 6.4 GeV,

• 〈O
(

2S+1S
[1]
J

)
〉 = (2J + 1) 0.736 GeV3 ,

• 〈O
(

2S+1P
[1]
J

)
〉 = (2J + 1) 0.287 GeV5 ,

• 〈O[8]〉 = 0.01〈O[1]〉,

• µepa = µF = µR = 12.8 GeV ,

• αS(µR) = 0.189,

• pdf set: cteq6l1,

• αEM = 1
137 .

Our results are summarized in Tables 2.1 and 2.2. For the processesgg → Bcbc̄

we compared with Refs. [69, 70], and found agreement for all intermediate states.
For color-singletS-wave-state production inγg interactions, our results agree with
those of Ref. [71]. For color-singletBc photo-production, our code has reproduced
the results of Refs. [72, 73]. Several of the results in the Tables are new and provided
as reference for future projects.

Example 2: Relativistic corrections to e+e− → J/ψ ηc

DoubleS-wave charmonium production at B factories has attracted attention, as the
leading order NRQCD prediction for the cross section [74, 75] is far below the mea-
surements [76, 77].

The v2 correction to the leading-order (inαS and v2) cross section fore+e− →
J/ψ ηc was computed analytically in [74] and offers the possibility to check the al-
gorithm discussed in Section 2.1.3. We have reproduced thisresult using the package
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Figure 2.1: Short-distance cross sectionσ̂(e+e− → J/ψηc), as a function of the
relative momentum in the spin-one charm-quark pair (a), in the spin-zero charm quark
pair (b).

FeynCalc [78]. The analytic forms for the derivatives of theshort-distance cross sec-
tions with respect to the relative momentum in theJ/ψ (qJ/ψ) or in the ηc (qηc)
are [74, 75]

1

σ̂0

dσ̂

dq2
J/ψ

∣∣∣
q2
J/ψ

=0
=

(
2

m2
c

− 40

3s
− 12

s

λ(s, (2mc)2, (2mc)2)

)
, (2.22)

1

σ̂0

dσ̂

dq2
ηc

∣∣∣
q2
ηc

=0
=

(
14

6m2
c

− 40

3s
− 12

s

λ(s, (2mc)2, (2mc)2)

)
, (2.23)

wheremc is the mass of the charm quark,s is the squared center-of-mass energy,
σ̂0 = σ̂(q = 0) is the leading-order short-distance cross section andλ(x, y, z) =

x2 + y2 + z2 − 2xy− 2xz− 2yz. In Eq. (2.22) (Eq. (2.23)), the two first terms come
from the derivative of the squared amplitude with respect toqJ/ψ (qηc), whereas the
last term comes from the expansion of the phase space measure. There is no factor
associated with the normalization of the wave function, as it has been factorized out
of the short-distance cross section. Usingmc = 1.5 GeV and

√
s = 10.6 GeV, one

finds

1

σ̂0

dσ̂

dq2
J/ψ

∣∣∣
q2
J/ψ

=0
= 0.613 GeV−2 ,

1

σ̂0

dσ̂

dq2
ηc

∣∣∣
q2
ηc

=0
= 0.761 GeV−2 . (2.24)

Our procedure is as follows. We first setqηc = 0 and compute the short-distance cross
section as a function ofqJ/ψ. We then fit the result with a polynomial inq2

J/ψ

σ̂(q2
J/ψ) = α+ βq2

J/ψ + γ(q2
J/ψ)2 + . . . (2.25)



2.2. Decay of vector-like quarkonia into leptons 41

whereα, β, γ, . . . are obtained by the fitting procedure. The value ofα gives the
leading-order cross section:

σ0 = α× 〈OJ/ψ(3S
[1]
1 )〉〈Oηc (3S

[1]
1 )〉 = 6.04 fb. (2.26)

The expression in Eq. (2.22) is approximated by the ratio ofβ andα, which is found

1

σ̂0

dσ̂

dq2
J/ψ

∣∣∣
q2
J/ψ

=0
=
β

α
= 0.613 GeV−2 , (2.27)

which is in agreement with the analytical result of Eq. (2.22). Moreover, we learn
from the linearity of the plot in Fig. 2.1 (a) that, although thev2 correction is large,
higher-order corrections that are due to the relative motion of the quarks are well
under control. Analogous steps can be repeated to find the correction associated to the
relative momentum in theηc (see Fig. 2.1 (b)), giving

1

σ̂0

dσ̂

dq2
ηc

∣∣∣
q2
ηc

=0
= 0.762 GeV−2 , (2.28)

which is also in good agreement with the analytic value of Eq.(2.23).

2.2 Decay of vector-like quarkonia into leptons

The electromagnetic decay ofJPC = 1−− quarkonium states is particularly important
in phenomenological studies. Indeed, in hadron collisionsat high energy a vector-like
quarkonium state is observed through its decay into leptonsand the polarization of the
quarkonium can be determined by analyzing the angular distribution of the leptons.
In this case, a general way to account correctly for the polarization information is to
decay the vector-like quarkonium state into leptons at the matrix element level. In
the Feynman gauge, this can be achieved by replacing the polarization vector of the
quarkonium by the leptonic current

Jµem(k1, k2, λ1, λ2) =

√
3

8m
√
π
ūℓ−(k1, λ1)γµvℓ+(k2, λ2) . (2.29)

The normalization is fixed by the condition

∑

λ1,λ2

∫
dΩJµem(k1, k2, λ1, λ2)J

ν†
em(k1, k1, λ1, λ2) = −gµν +

PµP ν

m2
Q

, (2.30)

wheredΩ is the infinitesimal solid angle associated to the directionk1, P = k1 + k2

is the momentum of the quarkonium state, andmQ is its mass.
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The cross section then reads:

σ(J/ψ) =
1

2s

∫
dφMµν

∑

λ1,λ2

∫
dΩJµem(k1, k2, λ1, λ2)J

ν†
em(k1, k1, λ1, λ2). (2.31)

This method has two main advantages. First it is directly connected to the experimen-
tal analysis. The acceptance of the detector may bias the measurement of the cross
section and polarization. However, even when cuts are applied, the angular distribu-
tion of the leptons is the physical observable that can be used to compare theory and
measurements. Second, it is Lorentz invariant and therefore does not impose an a pri-
ori choice for the frame where the polarization informationis extracted. The decay of
vector-like quarkonium states has been set-up as an option in our code.

2.2.1 Tracing back the polarization content

The connection between the quarkonium polarization and theangular distribution of
the leptons originating from the quarkonium decay is made easier in the quarkonium
rest frame, where a natural basis for the polarization vectors is given by the eigen-
states of the spin-one representation of the rotation generator around the quantization
axis [79]. If, in addition, we choose a frame in which the quantization axis is aligned
in the ẑ direction, the corresponding spin eigenstates read

ǫ−1 =
1√
2
(0, eiγ , ieiγ , 0), ǫ0 = (0, 0, 0, eiα), ǫ1 =

1√
2
(0,−eiβ, ieiβ , 0), (2.32)

whereα, β andγ are arbitrary phases. The spin matrix associated with this choice of
quantization axis is defined by

ρλ,λ′ = Mµνǫ
µ
λǫ

∗ν
λ′ . (2.33)

This matrix is hermitian. From now on we set the arbitrary phasesα, β andγ to
zero. Then, from the expression of the polarization vector,we directly find thatρ1,0 =

−ρ−1,0. Moreover, if we assume thatMµν is a symmetric tensor, we haveρ1,1 =

ρ−1,−1.

We can then use the completeness relation

∑

λ

ǫµλǫ
∗ν
λ = −gµν +

PµP ν

m2
Q

(2.34)

to identify the contribution of each spin matrix component in Eq. (2.31). Dropping
the arguments of the electromagnetic current, we can express the cross section as

σ(Q) =
1

2s

∫
dφ

∑

λ,λ′

ρλ,λ′

∫
dΩǫ∗µλ ǫ

ν
λ′Jem,µJ

†
em,ν . (2.35)
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In the quarkonium rest frame, the lepton momenta read

k1 = m(1, sin θ cosφ, sin θ sinφ, cos θ),

k2 = m(1,− sin θ cosφ,− sin θ sinφ,− cos θ). (2.36)

After introducing the expression forJem,µJ
†
em,ν in the quarkonium rest frame, we

directly obtain the expression for the squared amplitude interms of the spin matrix
ρλ,λ′ and the anglesθ andφ:

σ(Q → l+l−) =
1

2s

∫
dφ

3

8π

∫
dΩ

{
1

2
(ρ1,1 + ρ−1,−1)(1 + cos2 θ)

+ρ0,0(1 − cos2 θ) + sin2 θRe
(
e−2iφρ1,−1

)
(2.37)

+
1√
2

sin 2θRe
(
e−iφρ1,0

)
− 1√

2
sin 2θRe

(
eiφρ−1,0

) }
.

The expression in Eq. (2.35) can be simplified in the case in which only the momenta
of the muons and the initial particles are resolved. Indeed,the directions associated
with these momenta are coplanar in the lab frame. The same plane is generated by
the direction of the initial momenta in the quarkonium rest frame, where we sit from
now on. Assuming that the quantization axis —denotedẑ— is contained in this plane,
we can choose thêy axis to be orthogonal to this plane. With our choice of phases
α = β = γ = 0 in Eq. (2.32), any three-product ofǫλ with one of the initial-particle
momenta is real. As a result, the spin matrix components willbe real, provided that we
integrate over all degrees of freedom except the initial momenta and the momentum
of the quarkonium state.

In this case, the angular distribution reads [79]

dσ

dΩdy
∝ 1 + λ(y) cos2 θ + µ(y) sin 2θ cosφ+

ν(y)

2
sin2 θ cos 2φ

wherey stands for a certain (set of) kinematics variable(s) associated with the quarko-
nium state. The parametersλ, µ, ν are related to the spin density matrix elements
through:

λ =
ρ1,1 − ρ0,0

ρ1,1 + ρ0,0
, µ =

√
2ρ1,0

ρ1,1 + ρ0,0
, ν =

2ρ1,−1

ρ1,1 + ρ0,0
. (2.38)

Notice that the relation between the parametersµ, ν and the components of the spin
density matrix depends on the phase convention for the polarization vectors. Theλ
parameter measures the relative contributions of the transverse and longitudinal com-
ponents with respect to the quantization axis. Equivalently, it is connected to the polar
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Figure 2.2: Helicity parametersλ andν for the J/ψ produced frompp collisions
at

√
s = 10 TeV at leading order inαs and inv, as functions of the rapidity of the

J/ψ (a) and thePT of the J/ψ (b). The red line is based on the extraction of the
helicity parameters from the spin density matrix. The greendots are the result of the
fit of the angular distribution of the leptons. The blue crosses have also been obtained
from fitting the lepton angular distribution, but with the extra cut|η(l±)| < 3 on the
pseudo-rapidity of the leptons.

anisotropy in the distribution of the leptons in the quarkonium rest frame. After aver-
aging over the polar angle, the azimuthal anisotropy is described by theν parameter.
Theµ parameter disappears after integration over eitherθ of φ and is therefore difficult
to extract experimentally.

2.2.2 Illustration

As we have mentioned in the previous section, cuts on leptonsoriginating from the
vector-like quarkonium state can affect the relation in Eq.(2.38) between the lepton
angular distribution and the components of the spin densitymatrix. In order to illus-
trate this feature, let us consider theJ/ψ production from proton-proton collisions at

leading order inαs andv. The corresponding parton-level processgg → gcc̄
(

3S
[1]
1

)

includes six Feynman diagrams, which are obtained by attaching the three gluons to
the charm quark line in the3! possible ways.
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The polarization of theJ/ψ depends on the choice of the spin quantization axis. Here
we choose the flight line of theJ/ψ in the lab frame. We only discuss the prediction
for the polarization parametersλ andν relative to this choice of axis. According to
the discussion in previous section, these parameters can either be obtained directly
from the component of the spin density matrix, or from the angular distribution of the
leptons originating from theJ/ψ. As long as no cut is applied to the leptons, the two
methods must give the same result, as is illustrated in Fig. 2.2 by the red curves and
the green dots.

If we now reject all events with at least one lepton with a pseudo-rapidity larger than
three, the values of the parametersλ andν fitted from the angular distribution of the
leptons change substantially. This is illustrated by the blue crosses in Fig. 2.2. In the
region where theJ/ψ has a low rapidity, the effect is only marginal. At higher rapidity,
the production is still dominated byJ/ψ events with a low transverse momentum. In
order to pass the cut criteria, the leptons must be emitted preferentially in the direction
transverse to the beam. This explains why the value of theλ parameter is decreased
compared to the case where no cut is applied directly to the leptons. This effect is
also observed in the distribution in Fig. 2.2 (b), but only atvery lowPT . When the
J/ψ has a larger transverse momentum, it is most of the time emitted in the direction
transverse to the beam, and the leptons are preferentially emitted along the flight line
of theJ/ψ to pass the cut.

2.3 Validity of the fragmentation approximation

As we have seen in Section 1.4, it is easy to understand the importance of the fragmen-
tation contributions at sufficiently highPT . One illustration is provided by the color-
singlet production of aJ/ψ at the Tevatron. As analyzed in [80, 81], the charm-quark
fragmentation channel dominates theαs leading-order mechanism already abovePT =

6 GeV.

However, working within the fragmentation approximation,one has to keep in mind
that it is only accurate up to correction scaling asmQ

PT
. Although these terms vanish

at very largePT , their contribution in the phase space region accessible toexperimen-
talists is a priori not known. We address this problem in the present Section, for some
specific fragmentation processes.

One way to estimate the correction to the fragmentation approximation is to compare
thePT spectrum derived from Eq. (1.63) with the one obtained usingthe full matrix
element associated with the fragmentation process. This matrix element includes nat-
urally topologies that are not taken into account in the fragmentation approximation.
In general such a comparison is not possible, because the corresponding full matrix
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Figure 2.3: Comparison of the color-singlet fragmentationprocessc → cc̄
(

3S
[1]
1

)
c

with the full computation at small (a) and largePT (b).

element is not known. For example, in the case of the color-singlet gluon fragmenta-
tion intoηc, this comparison would require the knowledge of the full order-α4

s matrix
element, which is not available. For this reason, we focus inthe following on the
associated production

gg → cc̄cc̄
(

2S+1L
[n]
J

)
, (2.39)

since in this case, the full matrix element requires only a tree-level computation which

can be achieved automatically with MadOnia. In Eq. (2.39),cc̄
(

2S+1L
[n]
J

)
denotes a

charm-quark pair forced into a specific configuration.

2.3.1 Color-singlet fragmentation from a charm quark

We start by considering the fragmentation process

gg → c̄
(
c→ cc̄

(
2S+1L

[1]
J

)
c
)

(2.40)

at the Tevatron, run II (
√
s = 1.96 TeV). We compare thePT spectrum derived in

the fragmentation approximation with the one obtained froma full matrix element
computation, for which we use MadOnia. As our purpose is to quantify the validity
of the fragmentation approximation we use fixed-order fragmentation functions at the
initial scaleµ = 3mc, i.e. we do not resum the emission of soft gluons. We fix the
factorization and renormalization scales at2mc both in the fragmentation and in the
full matrix element calculation.

We first consider theJ/ψ, which is the most important case from the phenomenolog-

ical point of view. Using〈OJ/ψ
(

3S
[1]
1

)
〉 = 1.16 GeV, and the PDF set cteq6l1, we
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Figure 2.4: Charm-quark fragmentation approximation in the color-singlet approxi-
mation versus full matrix element computation for theηc, χc0 (a) and for theχc1,
χc2.

obtain the comparison displayed in Fig. 2.3. At smallPT , the fragmentation approxi-
mation underestimates the yield by a large factor. In particular, it cannot be trusted in
thePT range0 − 30 GeV accessible to experiment at the Tevatron. As is illustrated
by Fig. 2.3 (b), the gap between the two curves is reduced to a discrepancy of10

percent at100 GeV. It is interesting to note that forJ/ψ production frome+e− anni-
hilation, the fragmentation approximation is only6% away from the full contribution
at
√
s = 50 GeV [57].

One may try to gather an intuitive explanation for such glaring difference by consid-
ering the Feynman diagrams contributing to the two processes. Ine+e− annihilation,
there are only four diagrams at the leading order, all of which contribute to the frag-
mentation topologies. On the other hand, the dynamics underlying the3S1-quarkonia
production at the Tevatron is much more involved. The numberof Feynman diagrams
is significantly larger and only a few of them give rise to fragmentation topologies.
As a result, the fragmentation approximation starts to be relevant at a much higher
regime inPT . The same observation was made for the processγγ → J/ψcc̄ [82]. A
similar situation exists also for theB∗

c hadroproduction, for which it was noticed that
the fragmentation approximation was not reliable at the Tevatron [83, 84].

The performance of the charm-quark fragmentation approximation strongly depends
on the quantum numbers of the bound state. For theχc0, the situation is a bit less
dramatic than in theJ/ψ case, as is illustrated in Fig. 2.4 (a) (lower panel). On
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Figure 2.5: Double charm-quark pair production via a3S
[8]
1 transition. The full matrix

element result is compared with the fragmentation approximation.

the other hand, the fragmentation approximation is completely off in the case of the
ηc, χc1, χc2 states, for which the comparison is also displayed in Fig. 2.4.

2.3.2 Color-octet fragmentation from a gluon

We now turn to the color-octet transition via a spin-tripletS-wave state. We consider
the full matrix element for the process

gg → cc̄cc̄(3S
[8]
1 ) (2.41)

and compare itsPT spectrum with the result from the fragmentation approximation.

As we can see in Fig. 2.5 the fragmentation approximation in this case is very accurate
already atPT ≈ 8 GeV. In the phase-space region above this threshold, topologies
in which the projectedcc̄ pair is produced by one gluon of virtuality2mc largely
dominate over the other topologies.

We close this Section by noting that a similar approach couldbe followed to inves-
tigate at which energy thekt factorization formalism extract the leading behavior of
the (N)NLO collinear cross section. Although this formalism is well motivated in
the asymptotic high energy limit (or equivalently smallx), it is not guaranteed that it
captures the relevant features of the cross section at the Tevatron collider.
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2.4 Monte Carlo techniques

In Section 2.1, we have described a general algorithm aimed at generating any quarko-
nium amplitudes at tree-level in the framework of NRQCD2. However, we have not
discussed yet how to generate distributions of events that can be compared to mea-
surements. We go back to this point is this Section.

In Section 2.4.1, we first detail the Monte Carlo integrator that has been interfaced
with the amplitude generator of Section 2.1 to produce differential distributions or
more generally any desired distributions of quarkonium events. In Section 2.4.2, we
discuss the generation of unweighted events and the interface to a shower Monte-Carlo
program.

2.4.1 Multi-channel phase-space integration

Among the various algorithms aimed at performing the numerical integration over the
phase space, the Monte Carlo techniques are particularly suitable. First, their conver-
gence is independent of the number of dimensions, which makes them more efficient
than other methods when the number of external particles is large. Second, their ran-
dom nature brings them closer to the experimental conditions of a real measurement,
a point that will be clear in Section 2.4.2.

A Monte Carlo program generates random points in order to approximate the integral
I ≡

∫
dzf(z), (z is ad-vector in[0, 1]d ) by the estimator

E =
1

N

N∑

n=1

f(zn). (2.42)

This estimator converges to the true value of the integralI owing to the large num-
ber law. The standard deviation of the estimatorσI is related to the variance of the
functionσ2(f) —σI = σ(f)√

N
— which can be approximated by:

σ2(f) ≈ 1

N − 1

N∑

n=1

[f(zn) − E]
2

=
1

N − 1

N∑

n=1

(f(zn))
2 − N

N − 1
E2. (2.43)

Even with Monte-Carlo techniques, the integration of scattering amplitudes is a com-
plicated problem, as the integrand varies over several order of magnitudes over the
phase space. The propagators in the amplitude introduce a structure in peaks, con-
trolled by the invariant masses of the exchanged particles.As a result the variance of
the integrand is large and the convergence is slow.

2As discussed in Section 2.1 there are some limitations.
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Figure 2.6: Illustration of two different channels in a single process: in (a), the invari-
ant mass of particles3 and4 should be mapped onto a single phase-space variable; in
(b), the invariant mass of particles4 and5 should be mapped onto a single phase-space
variable.

One way to speed up the convergence is to use an adaptive MonteCarlo integra-
tor [85], which learns about the function as it proceeds. Therandom points are then
distributed according to a grid, which is adapted iterationby iteration to probe with
higher-statistics regions in which the integrand is the largest in magnitude. Owing to
storage and efficiency requirements, the grid is usually expressed as a separable func-
tion ind dimensions. In this case, the adaptive algorithm is only efficient if the variable
that controls the size of each peak in the integrand is mappedonto a single variable of
integration. In an adaptive Monte Carlo integration, the parametrization of the phase
space is therefore crucial for the rapidity of convergence.After having identified the
peak structure, one should map it onto a set of variables (orchannel) in which all the
peaks in the integrand are controlled by decoupled phase-space variables.

Let us review first how the phase-space integration is achieved in the case of open-
quark production [86, 87]. For a given Feynman diagram, the peak structure is directly
related to the kinematic invariants appearing in the propagators, such that the phase-
space mapping is straightforward. The integration of the squared scattering amplitude
requires in general more than one channel, since each Feynman diagram can a priori
be mapped to a different channel (see illustration in Fig. 2.6). The question is then
which weight should be given to a specific channel [88]. Amongthe possible solutions
to this problem, we stick to the Single-Diagram-Enhanced multi-channel technique,
(implemented in the integrator MadEvent [89]). In this method, the weight attached to
a given channel is proportional to the squared amplitude of the corresponding diagram.
More precisely, the squared amplitude is expressed in the following way

|M |2 =
∑

j

|Aj |2∑
i |Ai|2

|M |2, (2.44)
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whereAi is the amplitude corresponding to a single Feynman diagram.Each of the
terms in the sum overj is then integrated using the channelj corresponding to the
propagator structure of the diagramAj .

We apply the same technique to integrate quarkonium amplitudes over the phase
space. Each diagram|Aj | is associated with a specific channel, and the corresponding

weight is given by |Aj |2
P

i |Ai|2
. As the two heavy quarks are bound into a single particle,

we map a diagram with a propagator structure leading tom final particles to a channel
with only m − 1 particles. For sake of simplicity, this channel is chosen among the
channels defined for the production of point-likem−1 particles [86]. This is a poten-
tial source of inefficiency, as not all the invariants associated with the propagators are
mapped onto distinct phase-space variables.

Choosing the correct phase-space mapping for a given Feynman diagram is therefore
not straightforward in the case of quarkonium production. In our automatic procedure,
only the kinematic invariants associated with propagatorswhich are not connected to
one of the heavy-quark lines leading to the quarkonium stateare guaranteed to be
correctly mapped onto uncorrelated phase-space variables. For the other propagators,
the associated invariants do not necessarily enter into thephase-space parametrization.
In general, if the center-of-mass energy is of the order of the quarkonium mass, there is
no problem of efficiency, as the range of variation for the virtuality of each exchanged
particle is restricted. On the other hand, at large energiesE ≫ mQ, one has to be
more careful about the channels used for the integration.

One example of difficulties that arise in the large-energy regime is given by the pro-
duction of a charmonium state in association with a charm-quark pair. Two specific
Feynman diagrams for this process are displayed in Fig. 2.7.In our algorithm, the
first diagram is mapped onto the correct channel, where the invariant (p1 + p2)

2

is mapped onto a single phase-space variable. If the center-of-mass energyEcm
is much larger than2mc, then the dominant phase-space region is characterized by
(p1 + p2)

2 ≈ (3mc)
2, and is properly emphasized in by the adjustment of the grid.

The second diagram in Fig. 2.7 also contributes to the fragmentation piece in a general
gauge. Therefore, the contribution of this diagram at high energy is a peaked function
of the invariant(p1 + p2)

2, or equivalently(p12 + p2)
2 i.e. the invariant mass squared

of the exchanged gluon. The channel used for the integrationof this diagram must be
identified with the channel associated with the first diagramin Fig. 2.7.

Although the mapping between diagrams and channels is done automatically in MadO-
nia, one should keep in mind that this procedure might not be optimal for some cases.
If problems of low efficiency are encountered, it is still very easy to rewrite channels
that are more appropriate to the kinematics at work.
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Figure 2.7: Two Feynman diagrams contributing to the fragmentation of a charm
quark into a charmonium state.

2.4.2 Quarkonium event generator

As we recalled in the previous Section, a Monte Carlo integration consists of generat-
ing a series of random phase-space points, which we will alsocall parton-level events.
To each event is attached a weight that is the product of the squared matrix element
and the phase-space measure. The adjustment of the grid alsoleads to a non-uniform
weight over the phase space, which can be accounted for in thephase-space measure.
The total cross section is then expressed as the sum over the events of the weights
associated with each event.

Within this procedure, it is extremely easy to get the distribution of the weights with
respect to specific observables, and hence to derive differential cross sections. Indeed,
one has merely to add up the weights according to a certain binning of the selected
observables during the integration process. The resultingdistributions give the cross
sections differential in these observables. It is also clear that parton-level cuts can
readily be implemented in a Monte Carlo integration: kinematic conditions are im-
posed on each generated event, and the weights associated with the points that failed
the cuts are simply disregarded.

Despite the merits of a Monte Carlo integrator to facilitatethe comparison between
predictions and measurements, at this stage we are still farfrom a simulation of the
experimental environment inherent in the reconstruction of quarkonium events. The
weights that we have considered so far are attached to parton-level events. However,
partons are not directly observed. As a result, cuts cannot be imposed on the kinemat-
ics of the partons themselves. Instead, partons in a given configuration are expected
to undergo multiple QCD radiations (showering), before confinement turns them into
hadrons (hadronization). The kinematics of these hadrons are then reconstructed in
the detector within a certain accuracy.
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The showering and hadronization process can be simulated byalgorithms such as
Pythia [16] or Herwig [17]. These programs need to know the color structure of the
parton-level events, as partons will ultimately be turned into colorless states. For this
reason, we keep track in MadOnia of the color-flow information, as well as all other
parton quantum numbers. After the event has been evolved into a hadron-level config-
uration, it can be passed through another algorithm that simulates the reconstruction
in the detector. Through the whole process, the weight initially attached to the parton-
level event is not affected3.

The interface with showering, hadronization and detector-simulation algorithms brings
the prediction much closer to the experimental conditions inherent to a realistic mea-
surement of a scattering process. The whole event generatorcan also serve as a tool
to optimize selection criteria for a given process. However, such analyses are highly
CPU-consuming, owing to the complexity of the detector. Thetime required for the
processing of one event is large enough that we do not want to spend time on an event
that has a small weight relative to the other events. For thisreason, it is preferable to
work with unweighted events, i.e. events that all have the same weight. In this case,
distributions of the weights are just the same as distribution of events, (up to a normal-
ization factor), which is also a source of simplification. The unweighting procedure
makes use of the adjustment of the grid in order to the flatten the weight distribution as
much as possible. The rest of the job is achieved by throwing away a certain number
of events.

In our quarkonium studies, we make use of the unweighting procedure implemented
in MadEvent [90]. The efficiency of production is in general less than for the case
of open production, since the adjustment of the grid itself is less efficient (see the
discussion of the previous Section).

2.5 Next-to-leading-order real amplitudes

Beside the tree-level predictions, we will also present newobservables computed at
NLO in the strong coupling constantαs. In Section 3.3 we will discuss the NLO
corrections to theJ/ψ and Υ production at the Tevatron. In Section 3.4 we will
present the new NLO prediction for the polarization of theJ/ψ in photoproduction.

The NLO results for polarization observables presented in the next chapter make use
of MadOnia for the computation of the polarized real amplitude ind = 4 dimensions
of space time. Along with the virtual piece [91], these real amplitudes have been
implemented in the Monte Carlo program MCFM [92]. This code makes use of the

3Events can of course be rejected if they do not pass experimental cuts during the reconstruction process
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dipole-subtraction scheme developed in [93] in which the cross sections are expressed
in the following way:

σNLO =

∫

m+1

[
dσR − dσA

]
+

∫

m

[
dσV +

∫

1

dσA
]
. (2.45)

The subtracted dipolesdσA in the first term on the rhs cancel all the IR singularities
in the real amplitudedσR, such that the integration over them + 1-particle phase
space is finite. The IR singularities present in the integrated dipole

∫
1 dσ

A are either
canceled by the IR poles in the virtual amplitudedσV , or factorized into a universal
non-perturbative function.

This scheme allows us to consider the computation of the realamplitude at NLO only
in 4 dimensions of space time, which can be generated with MadOnia. However, it is
important to check that the resulting numerical amplitude demonstrates a very good
stability when either the soft or the collinear region is approached. Let us first consider
the soft limit4, i.e. when the momentumpj of a final-state gluon becomes soft. This
limit can be parametrized in terms of a four-vectorqµ and a scale parameter:

pµj = λqµ, λ→ 0. (2.46)

In the soft limit, we obtain the following factorization formula:

|Mm+1(1, . . . , j, . . . ,m+ 1)| → − 1

λ2
4παsM

∗
m[Jµ(q)]†[Jµ(q)])Mm, (2.47)

whereJµ(q) is the eikonal current for the emission of the soft gluonq

Jµ(q) =
∑

i

T i
pµi
pi.q

(2.48)

andT i is a operator that acts on the color space of the hard partons in the Born ampli-
tudeMm. Owing to this color correlation, the squared amplitude|Mm+1|2 factorizes
over the Born amplitude squared only up to color rearrangements.

The collinear limit of momentapi andpj can be parametrized in the following way:

pµi = zpµ + k⊥ − k2
⊥
z

nµ

2p.n
, pµj = (1 − z)pµ − k⊥ − k2

⊥
1 − z

nµ

2p.n
,

2pi.pj = − k2
⊥

z(1 − z)
, k⊥ → 0, (2.49)

wherepµ andnµ are two light-like vectors satisfyingp.k⊥ = n.k⊥ = 0, andk⊥ is a
space-like vector that controls the deviation from the collinear limit. In the collinear

4Our presentation for the soft and collinear limits follows closely ref. [93]
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limit, them+ 1 amplitude squared factorizes over the Born amplitude squared in the
following way:

|Mm+1(1, . . . , i, . . . , j, . . . ,m+ 1)| →
1

pi.pj
4παs(P̂(ij),i(z, k⊥))ss′ |Mm(1, . . . , ij, . . . ,m+ 1))|s′s, (2.50)

where them-parton matrix element on the rhs of Eq. (2.50) is obtained byreplacing
the partonsi andj with a single partonij carrying the quantum numbers of the pair
i+ j in the collinear limit.(P̂(ij),i)ss′ denotes the Altarelli-Parisi splitting function in
four dimension, which acts on the helicity space associatedwith the partonij.

The Eqs (2.47) and (2.50) have been proven for any analytic real amplitudes. In our
code, though, the limited numerical accuracy may spoil these relations when either
the soft or the collinear limit is approached too closely. Hence, one has to check
the numerical stability of the amplitudes. Here we stick to one specific example: we
consider theJ/ψ color-singlet process

g(p1)g(p2) → g(p3)g(p4)J/ψ(p5) (2.51)

and analyze the behavior of the squared amplitude in the collinear limit

p3.p4 → 0. (2.52)

As is illustrated in Fig. 2.8, the amplitude shows a very goodstability down to
p3.p4 = 10−8 GeV2. The horizontal line is the product of the Altarelli-Parisisplitting
function P̂gg(z, k⊥) with the Born-level matrix element|M(g(p1)g(p2) → g(p3 +

p4)J/ψ(p5))|, with appropriate contraction of the helicity of the final gluon.

2.6 Applications

2.6.1 Higgs decay into Υ +X.

In this Section we illustrate through a very simple example how a multi-purpose matrix
element code allows one to quickly assess the phenomenological relevance of new
ideas.

A light Higgs ofmH . 140 GeV in the Standard Model as well as in extensions such
as in SUSY or in generic two-Higgs-doublet models (2HDM), decays predominantly
into bb̄. If we assume a2 → 1 production mechanism at hadron colliders, such asgg
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Figure 2.8: Illustration of the stability of the amplitude squared in the collinear limit
p3.p4 → 0.

or bb̄ fusion, a twob-jet signature is obtained. Such events are extremely difficult to
trigger on and to select from the enormous QCD two-jet background. In fact, in this
mass range, the golden channel for discovery isH → γγ which has a branching ratio
of the order of only 10−3 in the SM but has a very clean signature: it can be triggered
on and the invariant mass determination is very accurate, giving the possibility of
reconstructing a small Breit-Wigner peak over a very large background. However,
in some scenarios beyond the standard model, such as for example at largetanβ in
SUSY or in a generic 2HDM, the branching ratio to two photons is highly suppressed
and other decay modes need to be considered.

The presence of anΥ in the final state could help both in the triggering (through
theµ+µ− pair) and in the invariant-mass reconstruction and give a viable discovery
mode [32]. Let us consider two cases.

As the simplest decay mode, considerH → Υbb̄ [Fig 2.9 (left)]. This is analogous to
Z → Υbb̄, which can also be described by the fragmentation-functionapproach. The
full tree-level matrix element calculation gives:

Γ(H → Υbb̄)

Γ(H → bb̄)
= 1.56 · 10−5 , (2.53)
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Figure 2.9: Higgs decays intoΥ: in association with abb̄ pair (a) and with a photon
(b).

where we have usedmH = 120 GeV,〈OΥ(3S
[1]
1 )〉 = 9.28 GeV3 andαS = 0.118.

Another, potentially cleaner mode, which would have excellent invariant mass resolu-
tion, is the decayH → γΥ, Fig 2.9 (right) Note that the crossed decayΥ → γH has
been considered before in the literature [94, 95, 96, 97] as asearch mode for a light
scalar or pseudoscalar and it is known at the NLO accuracy [98]. By means of our
code, we obtain

Γ(H → Υγ)

Γ(H → bb̄)
= 6.17 · 10−7 , (2.54)

where we have usedmH = 120 GeV,〈OΥ(3S
[1]
1 )〉 = 9.28 GeV3 andαEM = 1/137.

The BR’s for both decay modes in the SM (and also in SUSY, sincepossible large
tanβ enhancements cancel in the ratio of the widths), are found tobe rather small,
especially considering that the branching ratio of the quarkonium state into leptons
has yet to be included.

2.6.2 γγ → J/ψ +X at LEP II

J/ψ production inγγ collisions at LEP II (
√
S = 196 GeV) has been studied in

Ref [99]. In that paper, the direct (γγ), the single resolved (γg) and the double re-
solved (gg) components have been taken into account. However, the onlydirect con-
tribution that has been considered is the color-octet transition

γγ → cc̄
(

3S
[8]
1

)
g , (2.55)
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Figure 2.10:J/ψ direct photoproduction. Production mechanism (a) proceeds via a
3S

[8]
1 state, while the photon-associated (b), thecc̄-associated and the multi-gluon (d)

mechanisms can proceed via a color-singlet transition.
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Figure 2.11: Transverse momentum distributions forJ/ψ production inγγ collisions

displayed in Fig. 2.10 (a). We now address the evaluation of the color-singletJ/ψ
production in (unresolved)γγ interactions. Owing to color conservation, the final

statecc̄
(

3S
[1]
1

)
g is forbidden. However, if we turn the gluon into a photon, thecor-

respondingα3
EM -process is allowed [Fig. 2.10 (b)]. Charge conjugation conservation

forbids the final statecc̄
(

3S
[1]
1

)
gg, so the only color-singlet process at orderα2

EMα
2
S

is the associated production of acc̄ pair [Fig. 2.10 (c)]. Finally, the channelJ/ψ+

light partons occurs at orderα2
EMα

3
S [Fig. 2.10 (d)], so the Born-level contributions

for the color-singlet production are given by

γγ → cc̄
(

3S
[1]
1

)
γ, γγ → cc̄

(
3S

[1]
1

)
cc̄, γγ → cc̄

(
3S

[1]
1

)
ggg. (2.56)

Note also that the final statecc̄
(

3S
[1]
1

)
gqq̄ is also allowed, but is not finite: the frag-

mentation partγ → qq̄ → qq̄g is effectively included in the single-resolved contribu-
tions.

Using the Weiszäcker-Williams approximation at LEP2,αS = 0.189,mJ/ψ = 2mc =

3 GeV,αEM = 1/137, 〈O
(

3S
[1]
1

)
〉 = 1.16 GeV3, 〈O

(
3S

[8]
1

)
〉 = 1.06 · 10−2 GeV3,

we obtain thePT spectra displayed in Fig. 2.11 for the color-singlet and color-octet
processes. We find that the associatedcc̄ production is by far the dominant one for
pT (J/ψ) > 5 GeV.
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Chapter 3
Quarkonium phenomenology

3.1 Charmonium production in e+e− collisions

Quarkonium production in electron-positron annihilationprovides a rich ground to test
the factorization principles of NRQCD. Both exclusive and inclusive measurements
have been reported at B-factories [76, 77, 100], and have been compared intensively
with theoretical predictions for several years.

One of the most striking result reported by the Belle and BABAR collaboration is
the cross section for exclusiveJ/ψ + ηc production [77, 100]. The measurement
appeared to be one order of magnitude larger than the leadingorder NRQCD predic-
tion [74, 75], a situation which has been referred to as the largest discrepancy in the
standard model [101]. The full NLO correction, computed in [102, 103], was shown
to be large, pushing the predicted cross section closer to the measurement. As the
v2 correction [74] proved to be large, it was then suggested that a non-relativistic
expansion was not appropriate to describe this process, andan alternative approach
in term of a light cone wave function was proposed to reproduce the measured cross
section [104]. A following work then showed that part of the enhancement in the light-
cone approach actually corresponds to correction of relative-orderαs in the NRQCD
formalism [105]. Moreover, a resummation of a class of relativistic corrections toS-
wave states production [64] demonstrates that the NRQCD expansion is actually well
behaved. Applying this resummation and taking into accountthe fragmentation contri-
bution to the pure QED amplitude, the inclusion of the effects of the running ofα and
the inclusion of the contribution that arises from the interference between the relativis-
tic corrections and the corrections of next-to-leading order inαs, a refined analysis of

61
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the theoretical uncertainties showed that the discrepancywas resolved [106]. More re-
cently, the factorization theorem on which this NRQCD result is based was proved to
hold at all orders inαs up to corrections of orderm2

c/s [52]. The Belle collaboration
also reported a measurement of double production of S-wave +P-wave charmonium
states. The corresponding NRQCD prediction at NLO accuracy[53] in αs was shown
to reach the lower bound of experiment.

Another chalenge was addressed to the quarkonium production community with the
measurement of the inclusiveJ/ψ cross section [76, 107, 108]. In this case as well,
the leading-order NRQCD prediction [57, 109, 110] turns outto underestimate the
experimental yield. Moreover, the Belle collaboration reported that of most the re-
constructedJ/ψ are produced in association with charm mesons: the most recent
measurement [108] for the ratio

Rcc =
σ[e+e− → J/ψ + cc̄+X ]

σ[e+e− → J/ψ +X ]
= 0.63 ± 0.23 (3.1)

is in disagreement with the NRQCD leading-order predictionRcc = 0.1 − 0.3. The
computation of the QCD correction for both processese+e− → J/ψ + cc̄ +X and
e+e− → J/ψ + gg + X have been completed [111, 112] recently, and found to
bring the ratioRcc in better agreement with the experimental result. In the meantime,
standard NRQCD factorization has been shown to break down for the associated pro-
duction at NNLO inαs, due to color transfer between co-moving active and passive
charm quarks [50, 51]. This effect is expected to catalyze the production rate when
one of the charm quark is produced in the same direction as theJ/ψ. It could in prin-
ciple be quantified experimentally by measuring the angularseparation bewteen the
J/ψ and the charm meson.

3.1.1 Relativistic correction to inclusive J/ψ production

The relativistic correction to inclusiveJ/ψ production is another source that can affect
the ratioRcc defined in the previous Section. We present here an original computation
of the v2 correction toJ/ψ + cc̄ production at B-factories. In the writing of this
thesis, the computation of thev2 correction to this process was achieved by the authors
of Ref. [113]. In that work, they decided not to expand the phase-space measure in
v. Instead they used the physical mass of theJ/ψ in the phase-space factor so that
corrections of higher-order inv in the phase space are taken into account to all orders
in v. In contrary to the procedure in Ref. [113], we also expand the phase-space
measure and find that the resulting correction is the dominant source ofv2 correction.
Moreover, we argue that the order-v4 correction to the wave function is small, so that
the NRQCD expansion is well behaved.
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Figure 3.1: Short distance cross sectionσ̂(e+e− → J/ψcc̄), as a function of the
relative momentum in the spin one charm-quark pair.

We follow essentially the same approach as in Section 2.1.4,i.e., we compute the
short-distance cross section as a function of the relative momentum associated with the
bound heavy-quark pair. Usingmc = 1.5 GeV,

√
s = 10.58 GeV,αem = 1/129.6,

αs = 0.258, we obtain the curve displayed in Fig. 3.1. We fit the result with a
polynomial inq2

J/ψ:

σ̂(q2
J/ψ) = a+ bq2

J/ψ + c(q2
J/ψ)2 + . . . (3.2)

wherea, b, c, . . . are obtained by the fitting procedure. The value ofa gives the cross
section at leading order inv:

σ0 = a× 〈OJ/ψ(3S1)〉 = 163 fb, (3.3)

if we set〈OJ/ψ(3S1)〉 = 1.16 GeV3. Thev2 correction is approximated by the ratio
of b anda

1

σ̂0

dσ̂

dq2
J/ψ

∣∣∣
q2
J/ψ

=0
=
b

a
= −0.34 GeV−2 , (3.4)

If we use the result in Ref. [64] for the order-v2 NRQCD matrix element

m2
cv

2 = 0.5, (3.5)
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we find that the order-v2 correction decreases the cross section by only 8 %. The
decrease is essentially coming from the reduction of the phase-space when the relative
momentum is increased. We learn from the linearity of Fig. 3.1 that thev4 correction
is much smaller than thev2 correction, so that the expansion is well behaved.

We can try to apply the same procedure in order to extract the order-v2 correction
that is associated with the processe+e− → J/ψgg. However, if we consider a non-
vanishing value of the relative velocityv between the heavy quarks in theJ/ψ, the
short-distance coefficient develops infrared pôles that should be reabsorbed into color-
octet matrix elements. One should therefore achieve the computation analytically, in
dimensional regularization for example, in order to regularize the pôles. Here, we
merely note that we can extract the order-v2 correction for the cross section restricted
to a limited phase-space area defined by a lower cutoff on the gluon energies. Our
computation reproduces the results in [57] when we set the relative velocity and the
cutoff to zero. We then compute the short-distance coefficient as a function ofv. For
the cutoffEg > 1 GeV, we obtain

1

σ̂0

dσ̂

dq2
J/ψ

∣∣∣
q2
J/ψ

=0
=
b

a
= 0.08 GeV−2 , (3.6)

whereas this value goes to zero when we increase the value of the cutoff to1.5 GeV.
We can therefore expect thev2 correction to be small for this process as well. We
conclude that the relativistic corrections have a very small impact on the ratioRcc
defined earlier.

3.1.2 Inclusive ηc production

The production of anηc state frome+e− collisions has been studied in the context of
associated production [110]. A typical Feynman diagram forthis process is displayed

in Fig. 3.2 (a). Using the inputsαS = 0.26,αEM = 1
137 , 〈O

(
1S

[1]
0

)
〉 = 0.387 GeV3,

we obtain

σ(e+e− → ηc + cc̄) = 58.7 fb , (3.7)

in agreement with the result obtained in Ref. [110].

The contribution toηc production coming from associated production with light par-
tons has not been studied so far. The reason is that, for color-singlet production, ne-
glecting the exchange of an off-shellZ, there is no such processes at orderα2

EMα
2
S ,

owing to color conservation and charge-conjugation symmetry. However, at order
α2
EMα

3
S the following processes can occur:

e+e− → ηcggg, e+e− → ηcqq̄g , (3.8)
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Figure 3.2: Representative diagrams forηc electroproduction via color-singlet transi-
tion: at orderα2

S in association with acc̄ pair (a), and at orderα3
S with three gluons

(b) and with a light-quark pair (c).

which are finite and could give a non-negligible cross section owing to the larger
phase space available. Typical Feynman diagrams for these processes are shown in
Fig. 3.2 (b,c). Using our generator MadOnia, we checked thatthe channelηc+ light
partons constitutes approximately10% of the inclusive cross section. The plots in
Fig. 3.3 display the differential cross section with respect to z =

2|Pηc |√
s

, the fraction
of momentum taken by theηc, and with respect to the transverse momentum of theηc.
The total cross sections are given by

σ(e+e− → ηcggg) = 3.72 fb, σ(e+e− → ηcqq̄g) = 1.63 fb (3.9)

As a result, the associated production is dominating theηc production:

σ(e+e− → ηccc̄)

σ(e+e− → ηcX)
= 91.6% (3.10)

This feature is to be contrasted with the case of the inclusiveJ/ψ production, where
the associated production is predicted to be subdominant atleading order. It would
therefore be interesting to measure the ratio in Eq. (3.10).
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Figure 3.3: Momentum fraction (upper) and transverse momentum (lower) of anηc in
e+e− collisions at

√
s = 10.6 GeV.
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Figure 3.4: Spectrum and transitions of the charmonium family (from Ref. [114]).

3.2 Inclusive quarkonium production in hadron
colliders

InclusiveJ/ψ, ψ′ andΥ(nS) production at hadron colliders has been of interest for
many years. As we mentioned earlier, such states have the right quantum numbers to
decay into a pair of leptons via a virtual photon. They therefore offer a uniquely clean
signature, provided that the resolution of lepton momenta is good.

The most accurate measurements for quarkonium hadroproduction at high energy
come from the Tevatron proton-antiproton collider at Fermilab. The Tevatron first
operated at a center-of-mass energy ofEcm = 1.8 TeV (Run I). In 2002, the energy
was increased to reach1.96 TeV. The two collaborations CDF and D0, whose detec-
tors record the signatures from thepp̄ collisions at the Tevatron, have both published
measurements of quarkonium cross sections. New analyses are still being carried on
at the current time.

The experimental number of quarkonium events reconstructed through the leptonic
channelQ(1−−) → l+l− by the CDF and D0 collaborations cannot be compared
to the prediction of NRQCD for thedirect production, in which it is assumed that
the heavy-quark pair is created from the initial partons over distance of order 1

mQ
or

smaller. Indeed, the production of the stateQ can proceed via the decay of a heavier
resonant state. In the case of charmonium production, a fraction of reconstructedJ/ψ
andψ′ originates from the decay of aB meson. As theB meson decays weakly, its
lifetime leads to a displaced vertex (called a secondary vertex), which in principle can
be resolved experimentally.
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TheJ/ψ can also originate from the decay of an excited charmonium state as illus-
trated in Fig. 3.4. The feed-down from charmonium states with a mass above2mD

decay is negligible, as these states decay almost exclusively into charm mesons. In the
case ofψ′ production, as this state is the heaviest state below the charm meson thresh-
old, there is no feed-down from charmonium states. Similarly for the bottomonium
family, the feed-down from excited states has to be considered only for theΥ(1S) and
Υ(2S), but not for theΥ(3S) which lies just below the double-B-meson threshold
(see Fig. 3.5).

In order to distinguish the different modes for the production of quarkonium states in
the following, we use the conventional terminology:

• the production ispromptif it does not come from the decay of aB-meson,

• the production isdirect if it is prompt and it does not come from an excited
charmonium state.

The CDF detector has a silicon microstrip detector (SVX) close to the beam that allows
the separation of the non-prompt fraction ofJ/ψ or ψ′ production. Up to now, there
has been no measurement of the prompt fraction by the D0 collaboration.
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The direct production was also measured by the CDF collaboration [115]. In the
case of theJ/ψ, the feed-down contribution fromχc states has been identified for
events withPT (J/ψ) > 4 GeV by observing the photon that originates in the electro-
magnetic transitionχc → J/ψγ. The feed-down from theψ′ was estimated from the
promptψ′ cross section, and from Monte-Carlo simulation of the decaysψ′ → J/ψX .
In the case of theΥ(1S), the fraction of events originating fromχb(1P ) states and
χb(2P ) states has been measured for events withPT (Υ(1S)) > 8 GeV only [116].

Measurements of quarkonium cross sections at the Tevatron have been extensively
compared to NRQCD predictions (for a recent review, see [101, 117]). In contrast
with the situation ine+e− collisions, the rôle of the color-octet transitions has been
highlighted, as the associated short-distance cross sections are enhanced by a large
factor compared to the order-α3

s cross section of a heavy-quark pair in a color-singlet
3S1 state. However, despite the successes of NRQCD, vector-like quarkonium produc-
tion at the Tevatron is still a subject of debate. Considering thePT differential cross
sections measured by the CDF collaboration, it seems that color-octet transitions are
needed to fill the gap between the color-singlet yield and thedata [37, 66, 65, 13].
But once we use the color-octet LDME’s fitted to reproduce thecross section, the
NRQCD prediction for the polarization [62, 118, 119, 120, 121] disagrees with the
CDF measurement [15]. Up to now, it is still unclear which transitions dominate
heavy-quarkonium hadroproduction

In view of this situation, it is worthwhile to improve the accuracy of the NRQCD
predictions. Concerning inclusive production, one shouldtry to extend the knowl-
edge of cross sections beyond the leading order inαs andv. Relativistic corrections
to the color-singlet yield prove to be very small in the case of S-wave state produc-
tion [122], as we confirmed with our automatic procedure thatis described in Sec-
tion 2.1.3. On the contrary, higher-order-in-αs contributions are especially important
for color-singlet production: as was analyzed in Refs. [91,123], NLO corrections
raise the differential cross section for the color-singlettransition by a large factor in
the region of large transverse momentum.

3.2.1 Higher-order corrections to the color-singlet cross sec-
tion

The cross section forpp̄ → Q + X with Q = J/ψ or Υ, has been computed in
[91, 123] at NLO accuracy. Here we use the implementation in MCFM [91, 124]. As
we have seen in Chapter 2 Section 2.5, the real polarized amplitude is provided by
MadOnia. The quarkonium state is decayed into leptons, keeping track of the spin
correlations. This allows us to extract the polarization, as is discussed in Section 2.2.
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Figure 3.6: Typical Feynman diagrams for (a)J/ψ or Υ hadroproduction + two jets,
(b) J/ψ or Υ production plus a heavy-quark pair of the same flavor.

In our calculation, we setmc = 1.5 GeV andmb = 4.75 GeV. We use the PDF set
CTEQ6L1 (resp. CTEQ6_M) [125] for LO (resp. NLO) cross sections, and always
keep the factorization scale equal to the renormalization scale:µf = µr. The central
scale is fixed atµ0 =

√
4m2

c + P 2
T . We use the saturation approximation to relate the

long-distance matrix elements for production to those involved in quarkonium decays.
We then use the values related to the Buchmüller-Tye potential [31]: 〈OJ/ψ

1

(
3S1

)
〉 =

1.16 GeV3 and〈OΥ
1

(
3S1

)
〉 = 9.28 GeV3.

In the following, we consider that the production is prompt (i.e. the quarkonium does
not come from the decay of a B hadron) and direct (i.e. the quarkonium does not
originate from the decay of an excited quarkonium state). The results are compared
with the data collected by the CDF collaboration at the Tevatron. ForJ/ψ production,
we consider the prompt measurement at

√
s = 1.96 TeV in Ref. [126], multiplied by

the average direct fraction obtained in [115]. ForΥ(1S) production, we consider the
prompt measurement at

√
s = 1.8 TeV in Ref. [127], multiplied by the average direct

fraction obtained in Ref. [116].

Differential cross section at NLO

The differential cross section at NLO is displayed in Fig. 3.7. The uncertainty bands
correspond to the variation of the scaleµ0

2 < µr,f < 2µ0, and to the variation of the
heavy quark masses1.4 GeV< mc < 1.6 GeV, 4.5 GeV < mb < 5 GeV. These
uncertainties have been combined in quadrature. The NLO yield is plotted in yellow.
For comparison, we also show the LO cross section in dark blue. The ligh-blue band
corresponds to the associated productionQ + QQ̄, which is a fraction of the NLO
yield.

ForJ/ψ production, NLO contributions raise the cross section by more than one order
of magnitude at largePT . Indeed, atα4

s, new channels become available to produce a
high-PT J/ψ at a lower kinematic price: the parton-level processesgg → J/ψ + gg
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Figure 3.7: (a)J/ψ production via a color-singlet transition, up to NLO accuracy. Ex-
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Figure 3.8: Typical Feynman diagrams forJ/ψ or Υ hadroproduction + three jets: (a)
color-singlet gluon fragmentation channel (b) high-energy-enhanced contribution.

and gg → J/ψ + cc̄ (see Fig. 3.6) behave as1
P 6
T

and 1
P 4
T

, respectively, at large

transverse momentum. This also explains why the associatedproductionJ/ψ + cc̄

dominates the NLO yield at largePT . Although NLO contributions reduce the gap
between the color-singlet prediction and the CDF data, there is still a discrepancy of
more than than an order of magnitude.

The situation for theΥ(1S) is similar, although the asymptotic behavior is reached at
much higher values ofPT , owing to the fact thatmb > mc. In particular, the associ-
ated productionΥ+ bb̄ remains a subdominant fraction among the NLO contributions
in the regionPT < 30 GeV, as it suffers from a phase-space suppression owing to the
large invariant mass in the final state. We also note that the gap between the color-
singlet prediction at NLO and the CDF data is much smaller than in the case ofJ/ψ
production.

Contributions from Q + 3jets

As we can see from Fig. 3.7, the color-singlet production at NLO in αs fails to repro-
duce the data, especially at largePT . The associated productionQ+QQ̄, has the right
PT slope, but overall it is suppressed in comparison to the measurement. Therefore,
it seems that a production mechanism with aPT behavior that is similar to that in the
associated production is missing.

If we consider the color-singlet production at order-α5
s, new parton-level mechanisms

become available. The gluon fragmentation channel via a color-singlet transition (Fig.
3.8, a) is one of them, and has the correctPT shape (asymptotically as1

P 4
T

). At this
order, the quarkonium can also produced by two slightly off-shell gluons (plus the
emission of a third one) that give part of the transverse momentum to the quarkonium
state (Fig. 3.8, b). This contribution has been approximated in thekt factorization
approach [42, 43, 44, 45, 47]. Theseα5

s contributions, or more generallypp̄ → Q +
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3j, provide us with new mechanisms to produce a high-PT quarkonium at a lower
kinematic cost. They are therefore expected to dominate over the production ofQ+1j

andQ + 2j at sufficiently large transverse momentum.

In order to quantify these arguments, we present here an estimate of these dominant
order-α5

S contributions at largepT , bypassing the presently out-of-reach inclusive cal-
culation of pp̄ → Q + X at NNLO accuracy. We consider the whole set ofα5

S

processes contributing to the color-singlet production ofa quarkonium (eitherJ/ψ or
Υ) associated with three light partons. We use MadOnia to generate the squared am-
plitude of each subprocess. In order to protect the integrated cross section from soft
and collinear divergences, we impose a “democratic” invariant-mass cutsmin

ij of the
order ofm2

Q to any pair of light partons, so that the phase-space integration remains
finite. For new channels opening up atα5

S , the dependence on the value ofsmin
ij is

expected to be small in the regionpT ≫ mQ, since no collinear or soft divergences
can appear there. For channels whose Born-level contribution occurs atα3

S orα4
S , the

invariant-mass cut results in potentially large logarithms of sij/smin
ij in the differen-

tial cross sections. However, these logs factorize over lower order amplitudes that are
suppressed by powers ofpT compared to the dominantα5

S contributions. The result
is that the sensitivity to the value chosen for the minimal invariant mass cutsmin

ij is
expected to die away aspT increases. Also, this behavior can already be checked
explicitly for the NLO cross section: we can approximate theNLO yield by the real
α4
s contributionQ + 2j, with a cut on the invariant mass of any pair of light partons.

The sensitivity to thesminij cut is illustrated in Fig. 3.9. The gray bands correspond to
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the production ofQ+ 2 jets, and converge rapidly to the NLO cross sections1 (dotted
lines). The bands associated withQ + 3 jets (in black) are much wider, especially in
the regionPT ≈ mQ. Still we see that the uncertainty related to the choice of the cut
sminij decreases asPT increases. We note also that the contributionQ+3 jets lies well
above the NLO yield at largePT , both for theJ/ψ andΥ cases.

We now add the contribution fromQ+3 jets to the NLO color-singlet cross section for
direct quarkonium production, and compare the resulting curve (called NNLO⋆) with
the CDF data. The corresponding plots are displayed in Fig. 3.10. We only consider
the uncertainties resulting from the variation of the scales µr andµf , and from the
variation of the cutsminij . The values of the quark masses remain fixed atmc = 1.5

GeV andmb = 4.75 GeV.

In the case ofJ/ψ production, we see that the gap between the color-singlet yield and
the CDF data is much smaller after the inclusion ofJ/ψ + 3j channels. However the
PT shape is not well described: despite the inclusion ofJ/ψ + 3 jet channels, the
differential cross section still drops too fast compared tothe CDF data. We also note
that the color-octet contribution has the right shape withPT to fill the gap between the
color-singlet prediction and the data.

The situation for theΥ is rather different. First, all the experimental points arecom-
patible with the NNLO⋆ uncertainty band associated with the color-singlet production.
Second, even if the prediction of the normalization is rather poor due to the large width
of the uncertainty band, the experimental slope inPT seems to be well reproduced.

ψ′ differential cross section

The CDF collaboration has recently carried on a new measurement of the promptψ′

cross section [128], using1.1 fb−1 data collected at run II. This analysis covers the
kinematic range2.0 GeV< PT (ψ′) < 30 GeV and|y| < 0.6. As for the case of
previousJ/ψ andψ′ cross section measurements, the fraction of promptψ′ events is
separated from the decay of the long-lived b hadrons, as the second production mode
can be tagged by the presence of a secondary vertex from whichtheψ′ originates.

All the arguments presented in the previous section apply naturally to the hadropro-
duction of theψ′. The resulting prediction can be compared directly to the CDF
measurement, as the feed-down from excited states is negligible. The comparison is
displayed in Fig. 3.11. As for theJ/ψ case, the real contribution at order-α5

s is seen
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to increase the differential cross section by a large factor. Still, at large transverse
momentum, the color-singlet yield fails to reproduce the data.

3.2.2 Impact of αs corrections on the polarization

We now turn to the polarization observable.J/ψ andΥ states have been decayed into
leptons in our code, keeping track of the spin correlations.Defining θ as the angle
between theℓ+ direction in the quarkonium rest frame and the quarkonium direction
in the laboratory frame, we find that the normalized angular distributionI(cos θ) reads

I(cos θ) =
3

2(α+ 3)
(1 + α cos2 θ) , (3.11)

from which we have extracted the polarization parameterα bin by bin inPT .

As is shown in Fig. 3.12,αs corrections have a strong impact on the polarization pa-
rameter. For theΥ, QCD corrections bring the polarization parameter down to≈ −0.5

at middle-largePT . TheΥ produced in association with ab-quark pair is unpolarized,
but this has almost no effect on the polarization at NLO, as the associated production

1In Fig. 3.9, the associated production is not included in theNLO curve.
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Figure 3.12: (a) Polarization parameter forJ/ψ production at the Tevatron, run II. (b)
Polarization parameter forΥ production at the Tevatron, run I.

is only a small fraction of the NLO yield belowPT ≈ 40 GeV. The channelsΥ + 3

jets give rise to the same value ofα as the one at NLO.

For theJ/ψ case, QCD corrections also push down the value of the polarization pa-
rameter. However, the situation is slightly different: theassociated production, from
which originate unpolarizedJ/ψ’s, becomes rapidly a substantial fraction of the NLO
yield. For this reason, the polarization parameter associated with the production at
NLO increases at largePT . This result agrees with the one in Ref. [123].

3.2.3 Contribution from charm-pair rescattering mechanism

A new mechanism for heavy-quarkonium production in high-energy collisions called
the “s–channel cut” was proposed by Lansberget al. in 2005 [129]. It can be identi-
fied as a contribution to the imaginary part of the amplitude for quarkonium produc-
tion in gluon-gluon collisions that corresponds to a Cutkosky cuts throughQ andQ̄
lines only. It is thus associated with a discontinuity of theamplitude in the square
of the center-of-mass energy of the colliding gluons. A physical description of this
mechanism isQQ̄ rescattering. It corresponds to the creation of the heavy quark and
antiquark through the parton scattering processgg → QQ̄ followed by the formation
of quarkonium through the rescattering of theQQ̄ pair. Lansberget al. proposed a
model to estimate this contribution to inclusiveJ/ψ production. In this model, they in-
troduce a vertex functionΓµ that connects the perturbative charm quarks to theJ/ψ.
The on-shell condition is not forced for the pertubative charm quarks that attach to
the vertex function. Gauge invariance is restored by the introduction of a four-point
vertexΓµν . The free parameters associated with the vertex function introduce large
theoretical uncertainties. Moreover, the prescription given by Lansberget al. is spe-
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Figure 3.13: Feynman diagrams forg g → c c̄.

cific to J/ψ hadroproduction and does not generalize easily to include higher-order
corrections.

As is discussed in Ref. [130], thes–channel cut mechanism forJ/ψ production arises
naturally at higher order in the theory of NRQCD, where no extra parameters are
introduced. The leading imaginary terms in the scattering amplitudegg → J/ψg are
of orderg5

s . Using the Cutkosky cutting rules, the imaginary part can beexpressed
as a sum over thes–channel cuts through the diagrams, which separate the incoming
gluons from thecc̄ pair and the gluon in the final state. At orderg5

s , the onlys–channel
cuts aregg cuts andcc̄ cuts. Thes–channelcc̄ cut, which is the charm-pair rescattering
term, can be expressed as an integral over the solid angleΩc of the charm quark in the
intermediate state. At leading order inv and inαs, the amplitude for the charm-pair
rescattering contribution reads

ImMcc̄ cut[g g → cc̄1(
3S1) g] =

(ŝ− 4m2
c)

1/2

64π2ŝ1/2

∫
dΩc

∑
M[g g → c c̄]M[c c̄→ cc̄1(

3S1) g]. (3.12)

The prefactor comes from multiplying the 2-body phase spacefor c andc̄ by a factor
of 1/2 from the optical theorem. The sum is over the helicities and the color indices
of the intermediatec and c̄. The first invariant matrix elementM on the right side
of Eq. (3.12) is the sum of the three Feynman diagrams forg g → c c̄ in Fig. 3.13.
The second invariant matrix elementM on the right side of Eq. (3.12) is the sum of
the five Feynman diagrams forc c̄ → cc̄(3S

[1]
1 ) g in Fig. 3.14. In the expression for

ImMcc̄ cut that comes directly from the optical theorem, the last factor in Eq. (3.12)
is the complex conjugate of the invariant matrix element forcc̄(3S

[1]
1 ) g → c c̄. The
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Figure 3.14: Feynman diagrams forc c̄→ J/ψ g.
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time reversal symmetry of QCD has been used to express this asthe invariant matrix
element forc c̄→ cc̄(3S

[1]
1 ) g.

We proceed to explain how we calculate the cross section for this process. We use a
helicity basis for the polarization vectors of the gluons and thecc̄ pair. The helicity
amplitudesM[g g → c c̄] andM[c c̄ → cc̄1(

3S1) g] are evaluated with MadOnia.
Squaring the amplitude in Eq. (3.12) and integrating over the two-body phase space for
cc̄(3S

[1]
1 )+g, we obtain a 3-fold angular integral. Including the integration over parton

momentum fractions, we have an 8-dimensional integral thatis calculated numerically
using the adaptive integration program VEGAS [85].

We now evaluate the charm-pair rescattering contribution to the inclusive color-singlet
cross section forJ/ψ production inpp̄ collisions at the Tevatron. We compare our
results, which have no additional parameters, to those frommodels for thes–channel
cut contributions proposed by Lansberg et al. [129, 131]. The parton cross section for
charm-pair rescattering in the color-singlet model depends only onαs, mc, and the
NRQCD matrix element〈OJ/ψ

1 (3S1)〉. To compare our results with those of Lansberg
et al., we use parameters that are as close to theirs as possible. They used a large value
for the charm quark mass:mc = 1.87 GeV. They did not specify the scaleµ that they
used for the running coupling constantαs(µ), but we take both the factorization and
the renormalization scales to be

√
4m2

c + P 2
T . They determined the normalization

factor in their vertexΓµ by fitting the partial width forJ/ψ → e+e−. At leading
order inαs, the NRQCD factorization formula for the partial width forJ/ψ → e+e−

is

Γ[J/ψ → e+e−] =
8πα2

81m2
c

〈OJ/ψ
1 (3S1)〉 , (3.13)

where we have used the relation〈OJ/ψ
1 (3S1)〉 = 3〈O1(

3S1)〉J/ψ between the stan-
dard NRQCD production and decay matrix elements [10]. Settingmc = 1.87 GeV
andα = 1/129.6, we determine the NRQCD matrix element to be〈OJ/ψ

1 (3S1)〉 =

1.05 GeV3. In Refs. [129, 131], the momentum scale of the Gaussian factor in the ver-
tex Γµ was chosen to beΛ = 1.8 GeV. In Ref. [131], there were also two additional
parameters associated with the vertexΓµν . They were adjusted to fit the inclusive
cross sections for directJ/ψ production at transverse momenta up to 10 GeV that were
measured by the CDF Collaboration. Following Lansberg et al., we set the center-of-
mass energy of the collidingp andp̄ to

√
s = 1.8 TeV and we use the MRST parton

distributions at leading order [132]. We also impose a pseudo-rapidity cut|η| < 0.6

on theJ/ψ. In Fig. 3.15, our result for the charm-pair rescattering (s–channel cut)
contribution is compared to the results from Refs. [129] and[131]. Our result is rea-
sonably close to that from Ref. [129] but much smaller than that from Ref. [131]. This
suggests that the model for the vertexΓµν used in Ref. [131] is unrealistic.
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Figure 3.15: Differential cross section for inclusiveJ/ψ production at the Tevatron
from charm-pair rescattering (s–channel cut). The differential cross sectiondσ/dpT
integrated over the pseudorapidity interval|η| < 0.6 and multiplied by the branching
fraction forJ/ψ → µ+µ− is shown as a function ofpT . The solid line is our pre-
diction in the CSM atα5

s accuracy. The dashed and dotted lines are the predictions
calculated in the model of Lansberg, Cudell, and Kalinovskyin Ref. [129] and in the
model of Lansberg and Haberzettl in Ref. [131], respectively.

We now proceed to assess the phenomenological importance ofthe contribution of
the charm rescattering mechanism in the CSM. To this purpose, we consider the ex-
perimental data published by the CDF collaboration. In Fig 3.16 we plot the prompt
differential cross section from [126] multiplied by the direct fraction measured in
Ref. [115] and by the branching fraction Br[J/ψ → µ+µ−] = 0.0588. For a con-
sistent comparison with these data, we set

√
s = 1.96 TeV and apply a rapidity cut

|y| < 0.6. We setmc = 1.5 GeV, which is natural as it close to half the mass of the
J/ψ. We use the value of wave function at the origin derived from the Buchmüller
and Tye potentiel [31], i.e.〈OJ/ψ(3S

[1]
1 )〉 = 1.16 GeV3. We also use a more recent

set of parton distributions [125]. We stick to the choiceµ =
√

4m2
c + P 2

T for the
factorization and renormalization scales.

The resulting theoretical predictions are shown in Fig. 3.16. Together with the charm
rescattering component (solid line), we plot the color-singlet differential cross sec-
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Figure 3.16: Color-singlet contributions to the differential cross section for inclusive
J/ψ production at the Tevatron compared to data from the CDF collaboration [126,
115]. The differential cross sectiondσ/dpT integrated over the rapidity interval|y| <
0.6 and multiplied by the branching fraction forJ/ψ → µ+µ− is shown as a function
of pT . The curves are the predictions of the color-singlet model at LO (dashed line),
through NLO (dotted line), and at NNLO from charm-pair rescattering (solid line).

tions at leading order (dashed line) and next-to-leading order (dotted line) inαs. The
charm recattering component is a negligible contribution to the total color-singlet cross
section. It is interesting to note, though, that the associated differential cross section
shows a rather mild decrease inPT , so that it dominates the leading order color-singlet
distribution abovePT = 12 GeV (see Fig. 3.16). Still the charm rescattering contri-
bution is subdominant in the wholePT range compared to the color-singlet yield at
NLO, and cannot be claimed to account for the dominant part ofthe cross section
measured by the CDF collaboration.
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3.3 J/ψ hadroproduction in association with a
charm-quark pair

As was discussed in Section 3.2, higher-order corrections in αs to theJ/ψ hadropro-
duction open new channels, i.e. parton-level configurations that do not necessarily
factorize over the Born-level topology. These contributions are relevant for the phe-
nomenology, as they can be kinematically enhanced at large transverse momentum.
At NLO in αs, one particular manifestation of such contributions is in the production
of aJ/ψ in association with a pair of charm quarks. In this process, the charm quarks
produced in addition to theJ/ψ are expected to evolve most of the time into charm
mesons. In order to identify the process experimentally, one needs to reconstruct at
least one charm meson in addition to theJ/ψ. As the associated production leads
to a distinct signature, it can be measured and compared against the predictions of
NRQCD. Hence, this more exclusive channel offers the opportunity to assess further
the relevance of the factorization procedure for charmonium production.

Associated production has been studied ine+e− collisions, as we discussed in Sec-
tion 3.1. The measurements by Belle and BABAR collaborations revealed an excess of
events compared to the leading-order NRQCD predictions, suggesting that the pertur-
bative expansion might not be well behaved, or that the non-factorisable color-transfer
effect [50] might lead to an enhancement of the cross section. The analog situation
in hadroproduction is not known, as there has been no experimental analysis of as-
sociated production in hadronic collisions so far. We arguein this section that such a
measurement would provide valuable information on the mechanisms at work forJ/ψ
production. In particular, this signature could be used to probe the importance of the
color-octet transitions. Along with thePT spectrum and the polarization, the direction
of flight of the charm mesons is also indicative of the transition at work, as we shall
see in Section 3.3.2, and therefore provides additional observables to disentangle the
various modes of production.

Distributions of events displayed within this section willbe calculated at leading or-
der inαs, using our Monte Carlo generator MadOnia. We first produce samples of
unweighted events, and then make use of the plotting interface MadAnalysis to draw
the various distributions displayed below. One may fear that these leading-order pre-
dictions give an inaccurate description of the distributions of events, owing to the
potentially large higher-order corrections. As we have seen in Section 3.2.1 the Born
approximation for inclusive color-singlet production is not relevant to describe the
way in which events populate the phase space, as the distribution of events is affected
by large radiative corrections. For the associated production, though, the situation is
different. Already the leading-order computation predicts that short-distance produc-
tion takes place over distances of order1

mQ
. The amplitude atα4

s is therefore expected
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to capture the important features in the distributions of events in a more accurate way
than in the case of the inclusive production. Still, one has to keep in mind that large
corrections may arise from higher-order-in-αs corrections.

Associated production is a signature that could be studied during the first stage of the
LHC. The muons originating from theJ/ψ decay can be used to trigger the events.
Reconstruction of the charm mesons could be achieved in the kaon+pion two-body
and three-body decay modes by fitting the invariant mass distribution of the possible
signatures, as has been done at the Tevatron in the case of theinclusive charm cross
section [133]. Considering the startup conditions, we willassume that the center-of-
mass energy of the proton-proton collisions is10 TeV. Most of the angular distribu-
tions presented in the following sections can be applied to associatedJ/ψ production
in pp̄ collisions at1.96 TeV, as the mechanisms at work are the same. Therefore, as
far as the Tevatron is concerned, we only present the expected rates.

3.3.1 Production rates

As for the case of inclusiveJ/ψ production, direct associated production is dominated
by gluon fusion at the LHC energy. We have checked that the light-quark-initiated
process forJ/ψ+ cc̄ production is suppressed by three orders of magnitude, and thus
this contribution is neglected in the following.

In the present analysis we consider the following conditions:

• pp collisions at
√
s = 10 TeV;

• µ0 =
√

(4mc)2 + P 2
T ;

• mc = 1.5 GeV;

• pdf set: CTEQ6M [125].

The scale defined in this section differs from the choice adopted for inclusive pro-
duction. It is bounded from below by4mc, which is the minimal invariant mass in
the final state. The color-singlet matrix element is extracted from the wave function
related to the Buchmüller and Tye potential [31] For the octet case, the long-distance
matrix elements must be fitted from experimental data. Here we use the values ex-
tracted at the Tevatron. As was first emphasized in [65], the short distance coefficients

σ̂(pp̄ → cc̄
(

3P
[8]
J

)
+X) andσ̂(pp̄ → cc̄

(
1S

[8]
0

)
+X) at orderα3

s lead to a similar

slope for the cross section differential inPT (J/ψ) at middle-large transverse mo-
mentum. As a result, the predicted yield associated with these two transitions at the
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〈O1(
3S1)〉J/ψ 〈O8(

3S1)〉J/ψ 〈O8(
1S0)〉J/ψ 〈O8(

3P0)〉J/ψ/m2
c

116 0.39 1.5 1.5

Table 3.1: Values of the long-distance matrix elements considered for the associated
production, in10−2× GeV3.
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Figure 3.17: Cross sections differential in the transversemomentum of theJ/ψ (a)
for the processpp → J/ψ + cc̄ at the LHC,

√
s = 10 TeV, (b) for the process

pp̄→ J/ψ + cc̄ at the Tevatron,
√
s = 1.96 TeV.

Tevatron is only sensitive to the combination

〈O8(
1S0)〉J/ψ + k

〈O8(
3P0)〉J/ψ
m2
c

, (3.14)

with the parameterk close to3 abovePT > 5 GeV. Several fits have been performed
to extract the values of the color-octet LDME’s [13]. The results are rather strongly
dependent on the assumptions of the fit. In this section, we decide to stick to the values
obtained in [119]:

〈O8(
3S1)〉J/ψ = 0.39 10−2 GeV3, 〈O8(

1S0)〉J/ψ+k
〈O8(

3P0)〉J/ψ
m2
c

= 6.6 10−2 GeV3

(3.15)

with k = 3.4. We note that these values are close to the recent result of the fit in [134],
where the authors used the NLO computations of orderα4

s for the short-distance cross

sectionŝσ(pp̄→ cc̄
(

3S
[8]
1

)
+X) andσ̂(pp̄→ cc̄

(
1S

[8]
0

)
)+X , and set the parameter

k in Eq. (3.14) to zero.

Although the inclusive cross sections associated with the transitions1S[8]
0 and3P

[8]
J

share the same properties for thePT spectrum in hadron collisions, some observables
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Figure 3.18: Comparison between the full color-singlet yield (in red) and the partial
contribution from phase-space regions in which at least onecharm quark is soft (in
green). The notationc2 refers to the charm quark with the lowest transverse momen-
tum.

may have a different behavior for these transitions (the polarization of theJ/ψ is an
example). For these observables, it is mandatory to assign aspecific value to each of
the two long distance matrix elements appearing in Eq. (3.14). Here we will make the
arbitrary assumption

〈O8(
1S0)〉J/ψ =

〈O8(
3P0)〉J/ψ
m2
c

. (3.16)

The resulting values of the various LDME’s are summarized inTable 3.3.1.

In Fig. 3.17 we show thePT distributions for both the singlet and the octet channels,
without any restriction on the pseudo-rapidity range. For comparison, we also plot
the analogous distributions expected at the Tevatron. For the color-singlet case, we
note that thePT distribution peaks atPT ≃ mc and then it starts a quick decrease,
dropping by two orders of magnitude atPT ≃ 15 GeV. We verified that the topologies
in which theJ/ψ is produced by two different quark lines always dominate. This
behaviour is similar toJ/ψ production ate+e− colliders, where the presence of two
extra charm mesons seems to result in theJ/ψ being created most often from two
different quark lines as well. We also checked that contributions in which at least one
charm quark is soft are subdominant at largePT , as illustrated in Fig. 3.18. Such
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Figure 3.19: Typical Feynman diagrams for the associated-production processgg →
cc̄J/ψ via (a) a color-singlet3S1 transition, (b) a color-octet3S1 transition, (c) a
color-octet1S0 or 3PJ transition.

contributions have been partially considered through the study of the c-quark-initiated
processcg → cJ/ψ. Indeed, in this process, the initial charm quark originates from
the splitting of a gluon into a pair of charm quarks collinearto the beam. One of
the quarks interacts with a gluon to produce theJ/ψ; the other quark is lost in the
beam pipe. The comparison displayed in Fig. 3.18 shows that the yield associated
with these contributions drops faster inPT than the total yield. This is expected,
since the presence of the two propagators in thec-quark-initiated process disfavors
this mechanism at largePT , compared to fragmentation contributions.

In contrast to the situation ine+e− collisions [110], in associatedJ/ψ hadroproduc-
tion the color-octet transitions play an important role. Although negligible at small
PT , the3S

[8]
1 transition starts to compete with the color-singlet transition atPT ≈ 12

GeV, and dominates the associated production at larger values of theJ/ψ transverse
momentum. The3S[8]

1 cross section, integrated over the wholePT range, remains
small compared to the color-singlet one. The preponderanceof the3S

[8]
1 transition at

largePT is due to the kinematically-enhanced channel

gg → cc̄g∗, g∗ → cc (3S
[8]
1 ), (3.17)

where theJ/ψ is produced via the fragmentation of a nearly on-shell gluon(see di-
agram (b) of Fig. 3.19). In this fragmentation topology, thepartonic subprocess be-
haves as1

P 4
T

. The fragmentation of a gluon into aJ/ψ is not allowed in the case of the

order-α4
s color-singlet production, which is therefore sub-dominant at large transverse

momentum. The color-singlet fragmentation of a charm-quark into aJ/ψ (see dia-
gram (a) of Fig. 3.19) also behaves as1

P 4
T

. However, in this case, the invariant mass of
the products of the fragmentation is larger than in the case of the gluon fragmentation.
Charm-quark fragmentation is therefore expected to be kinematically suppressed at
largePT compared to gluon fragmentation, as it is confirmed by thePT spectrum in
Fig. 3.17.
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Figure 3.20: Cross sections differential in the pseudo-rapidity of the J/ψ (a) for the
processpp→ J/ψ+cc̄ at the LHC,

√
s = 10 TeV, (b) for the processpp→ J/ψ+cc̄

at the Tevatron,
√
s = 1.96 TeV.

The color-octet1S0 and3PJ transitions have the samePT shape as the color-singlet
production, indicating that the cross section differential in PT is an observable of
limited power to disentangle the transitions at work. We have checked that the total
cross sectionsσ(cc̄cc̄(1S

[8]
0 )) andσ(cc̄cc̄(3P

[8]
J )) are dominated by topologies with

gluon exchange in the t-channel, as is illustrated in Fig. 3.19, diagram (c). The ratio
of the corresponding differential cross sections shows a similar behavior to that in
the case of the inclusive production [65]: it decreases slightly in PT to reach the
asymptotic value≈ 3.

The pseudo-rapidity distributions resulting from the various transitions are shown in
Fig. 3.20 for the cutPT (J/ψ) > 1 GeV. For comparison, we also plot the analogous
distributions expected at the Tevatron. The yellow line on the x axis indicates the
solid angle covered by the LHCb experiment, whereas the cyanline corresponds to
the region in which the muons are reconstructed in the CMS andATLAS detectors.
We do not quote the exact rate of events in the two experiments, as it is very much
dependent on the acceptance cut and the reconstruction algorithm.

As is mentioned in Section 3.2,J/ψ events can originate from the decay of higher-
energy resonances. This contribution has not been taken in the predictions made so
far, and so we come back to this point now. The non-prompt fraction can be disentan-
gled experimentally by making use of a vertex separation criterion, so that we do not
need to bother ourselves with this contribution. The possibility to identify the feed-
down fromχc states has been investigated by the ATLAS collaboration in the case
of the inclusive production, but this analysis is rather intricate. For this reason, we
briefly comment on this contribution for the case of associated production. Among
the charmoniumP -wave states, only theχc1 and theχc2 have a large probability to
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decay into theJ/ψ through anE1 transition:

Br(χc1 → J/ψγ) = 36%, Br(χc2 → J/ψγ) = 20%. (3.18)

We first consider the color-singlet contribution, with the long-distance matrix element
derived from the Buchmüller-Tye potential [31]:

〈O1(
3PJ )〉χcJ = (2J + 1) × 0.1074 GeV. (3.19)

We have checked that thePT spectrum forpp → χcJcc̄ has a similar shape as the
color-singlet yieldpp → J/ψ + cc̄ above4 GeV, but is suppressed by a factor≈ 1.7

for the caseJ = 1 and a factor≈ 2.5 for the caseJ = 2. Taking into account the
branching ratios in Eq. (3.18), feed-down from color-singletχc states is about≈ 30%

of the direct color-singlet contribution at middle-largePT . At leading order inv, χc
states can also be produced via a3S

[8]
1 intermediate state. In first approximation, the

related feed-down contributes through a rescaling of the spectrum associated with the
direct yield via the3S[8]

1 transition by a factor

∑

J

〈O8

(
3S1

)
〉χcJ

〈O8 (3S1)〉J/ψ
Br(χcJ → γJ/ψ). (3.20)

3.3.2 Identifying the transitions at work

As we mentioned in the previous section, the measurement of thePT spectrum of the
J/ψ in the processpp → cc̄J/ψ would not provide enough information to identify
unambiguously the transition at work. Other observables, with distinct behaviors for
the different transitions, are required to test the universality of the LDME’s.

One such observable is the angular distribution of the muons, or equivalently the polar-
ization of theJ/ψ. Here we consider the polarization parametersλ andν (see section
2.2) for the helicity spin quantization axis. As we can see inFig. 3.21, these param-
eters reveal different features for the various transitions. Whereas theJ/ψ produced
via a color-singlet transition is unpolarized independently of the value of its transverse
momentum, the transverse polarization state dominates thecolor-octet3S1 transition
abovePT = 5 GeV. This feature is to be related to the polarization studies for theα3

s

inclusive color-octetJ/ψ production, which is also rapidly dominated by gluon frag-
mentation at largePT . J/ψ’s produced via a color-octet3PJ transition are strongly
polarized at lowPT , as it can be seen by examining the azimuthal distribution ofthe
muons with respect to theJ/ψ momentum (controlled by theν parameter). A more
clever orientation of the spin-quantization axis could be used to maximize the polar
asymmetry —see e.g. the analysis in [135] for the inclusiveJ/ψ production— which
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Figure 3.21: Polarization parameters forJ/ψ hadroproduction in association with a
charm quark pair, as a function of the transverse momentum oftheJ/ψ (a), and the
pseudo-rapidity of theJ/ψ (b).

would lead to the measurement only of theλ parameter, but we do not perform this
analysis here. We do not display the expected values of the polarization parameters
for the color-octet1S0 transition, as in this case the distribution of the muons in the
J/ψ rest frame is trivially uniform.

The presence of charm mesons in the final state also offer to opportunity to define new
observables that help us in identifying the relative importance of the different transi-
tions. The measurement of the transverse momentum of charm mesons is in general
a delicate operation, especially if they are reconstructedthrough leptonic decay chan-
nels. The direction of flight of the charm mesons is often measured with a much better
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Figure 3.22: Pseudo-rapidity distributions of the charm quarks produced in associa-
tion with aJ/ψ in the LHCb acceptance region.
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accuracy. For this reason, we will stick to observables thatcan be constructed from
only the polar and azimuthal angles of the charm mesons. We assume that the direc-
tion of the charm meson and the direction of the charm quark from which it originates
are the same. Energies of charm quarks are integrated over inthe following prediction,
but we order the two charm quarks inPT : we denote by “c1” the charm quark with the
higher transverse momentum and by “c2” the charm quark with the lower transverse
momentum. We also consider two different regions of the phase space:

• the lowPT and forward region (called region I below)

PT (J/ψ & 1 GeV), 1.6 < η(J/ψ) < 5.3 (3.21)

which is relevant for the LHCb detector,

• the highPT and central region (called region II below )

PT (J/ψ > 10 GeV), |η(J/ψ)| < 2.4 (3.22)

which is relevant for the ATLAS and CMS detectors.

We start with the region I. In Fig. 3.22 we plot the pseudo-rapidity distributions of the
charm quarks in the region of LHCb acceptance. The various transitions have been
rescaled. As expected, the3S

[8]
1 transition is subdominant. The yield associated with

the1S
[8]
0 and3P

[8]
J transitions shows the same linear decrease in pseudo-rapidity, and

so the pseudo-rapidity distributions do not resolve these transitions separately. The
sum of their contributions competes with the color-singletyield, for which the charm-
quark distribution in pseudo-rapidity has a different shape. Whether this difference is
sufficient to measure the relative weight between the singlet and octet contributions is
not clear, as it depends on the resolution in the angles of thereconstructed mesons and
on the way in which the distributions for charm quarks displayed in Fig. 3.22 deviate
from those for charm mesons.

We now turn to region II. We show the angular separation∆R =
√

∆φ2 + ∆η2 be-
tween theJ/ψ and the charm quarks in Fig. 3.23. As expected, the hardest charm
quark is emitted in the opposite direction from theJ/ψ. We note that the decrease
above∆R ≈ 3 is different for the singlet and octet contributions. More significantly,
the mean angular separation between theJ/ψ and the softest charm quark is substan-
tially lower in the case of the color-singlet transition, asis illustrated in the second
distribution of Fig. 3.23. Also, the angular separation between the two charm quarks
in the case of the singlet transition is marginally different from the distribution as-
sociated with the other transitions. We may obtain an intuitive explanation of these
features by looking at the topologies in Fig. 3.19. In the case of the color-singlet tran-
sition, neither the gluon fragmentation channel (diagram b) nor the t-channel gluon
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Figure 3.23: ∆R distributions for the associated production processJ/ψ + cc̄ in
hadron collisions at large transverse momentum.
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exchange (diagram c) contribute. Since in these topologies, both quarks are expected
to be emitted in the recoil direction of theJ/ψ, this explains the trends of the angular
distributions of the charm quarks.
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3.4 J/ψ photoproduction

We now move on toJ/ψ photoproduction at HERA, which has been measured by
both the ZEUS and the H1 collaborations [136, 137].

3.4.1 Tree-level mechanisms

The relevant kinematic variables forJ/ψ photoproductionare the energy of the photon-
proton system (W ) and the fraction of the photon energy carried by theJ/ψ in the
proton rest frame (z),

W =
√

(pγ + pp)2, z =
pψ.pp
pγ .pp

, (3.23)

as well as the transverse momentum of theJ/ψ (PT ). Near the end-point region
z ≈ 1, PT ≈ 0 GeV, J/ψ production is enhanced by diffractive contributions char-
acterized by the exchange of colorless states. These contributions cannot be correctly
accounted for by the NRQCD factorization scheme, and hence they must be excluded
from experimental measurements in order to make a meaningful comparison with pre-
dictions from perturbative QCD. As the diffractive production leads to a steeper slope
for thePT spectrum of theJ/ψ, the cutPT > 1 GeV eliminates most of the diffrac-
tive events. Whether this cut is enough to select a clean sample of inelastic events is
still a subject of experimental investigation[138].

Already at tree-level,J/ψ production from the photon-proton interaction can proceed
through different mechanisms. These mechanisms contribute in different phase-space
regions, as we review here. We setmc = 1.5 GeV and chooseµr = µf = 2mc.
For the long-distance matrix elements, we use the same values as in Section 3.3. For
each initiated parton state, we also give the integrated cross sectionσ(PT > 1 GeV).
However one should keep in mind that NRQCD factorization likely holds only for
PT ≫ mQ. So the use of NRQCD factorization probably cannot be justified for the
computation of these total cross sections, which are dominated by the lowPT region.

In thedirect mechanisms, the photon interacts directly with a parton originating from
the proton over distances of order1mc or less. At leading order inv —the relative
velocity in theJ/ψ— the charm-quark pair has to reach a color-singlet state over
short distances, which requires two gluons to connect the charm quark line, in addi-
tion to the photon. The corresponding mechanism is depictedin Fig. 3.24, (a). At
orderαα2

s , there are six Feynman diagrams, related by the permutationof the gauge
bosons. This born-level contribution to the color-singlettransition is finite over the
wholeJ/ψ phase-space, and leads to a rather flat distribution in energy (see Fig. 3.25,
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Figure 3.24: Tree-level contribution toJ/ψ photoproduction.

(a)). At relative-orderv4, J/ψ production can proceed through an intermediate state
1S

[8]
0 or 3P

[8]
J . Each of these states can be reached by attaching a gluon and aphoton

to the charm-quark line. This leads to an order-ααs contribution to the production of
aJ/ψ at zero transverse momentum. Away fromPT = 0, the production involves the
emission of a gluon, which balances the transverse momentumof theJ/ψ. A typical
Feynman diagram for thisαα2

s contribution is illustrated in Fig. 3.24 (b). Since this is
a higher-order contribution, the associated tree-level computation develops an infrared
singularity when the transverse momentum of the final gluon goes to zero. Experimen-
tally, the low-PT region is cut off in order to get rid of the diffractive contributions.
If we apply the same cut in the prediction, then the phase-space integration leads to a
finite contribution. Thez distribution forPT > 1 GeV is displayed in Fig. 3.25, (b).
The peak atz = 1 clearly signals that the perturbation expansion breaks down and
that resummation of soft gluon emission is required [139].

The production can also proceeds via an intermediate state3S
[8]
1 . Such a state can be

reached in the diagram displayed in Fig. 3.24 (a), which leads to az distribution that is

suppressed by the ratio of the long distance matrix elements〈OJ/ψ

(
3S

[8]
1

)
〉/〈OJ/ψ

(
3S

[1]
1

)
〉.

Another possibility comes from the interaction of the photon with a light quark origi-
nating from the proton. This quark-initiated fragmentation contribution is only com-
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transition\initial state γg γu γū γd γd̄
3P 8

1 207 14.2 4.6 12.2 7.7
1S

[8]
0 36.9 2.4 0.8 2.1 1.3

3S
[8]
1 0.1 0.01 0.006 0.003 0.003

Table 3.2: Total cross sectionσ(PT > 1 GeV) in nb for the direct color-octet compo-
nents.d stands for a down or strange quark.W is set to100 GeV.
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Figure 3.25: Tree-level contributions to the cross sectiondifferential inz: (a) color-
singlet direct, (b) color-octet direct, (c) color-singletresolved, (d) color-octet resolved,
(e) direct color-singlet associated production.

petitive at high transverse momentum. The direct color-octet contributions are sum-
marized in Table 3.2.

So far, we have only considered thedirectprocesses, in which the photon directly con-
nects to a parton with a large virtuality. Alternatively, the photon can fragment into a
pair of on-shell collinear light quarks, one of them interacting with the proton. The
splitting γ(p) → q(xp) cannot be described perturbatively and requires the convolu-
tion with a non-pertubative distributionfq/γ(x,Q) [140]. As the collinear quarks orig-
inating from the photon have a certain probability to hadronize into a vector-like light
hadron, which is a source of gluons, one also introduces the distributionfg/γ(x,Q)

which corresponds to the splittingγ(p) → g(xp). These mechanisms are classified
asresolved-photoncontributions, and lead to other processes ofJ/ψ production. At
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transition\initial partons qg q̄g gg gq gq̄ q̄q qq̄
3P 8

1 64.3 64.3 6.3 0.9 0.2 0.08 0.08
1S

[8]
0 12.0 12.0 1.17 0.18 0.04 0.008 0.008

3S
[8]
1 17.5 17.5 0.8 0.2 0.04 0.3 0.3

Table 3.3: Total cross sectionσ(PT > 1 GeV) in nb for the resolved color-octet
components.q stands for a light quarku, d or s. W is set to100 GeV.

leading order inαs, color-singlet resolved production is initiated by two gluons, as
displayed in Fig. 3.24, (c). For color-octet production, the resolved component opens
several new contributions, initiated by quarks or gluons. One important new channel

is color-octet gluon fragmentation,g → cc̄
(

3S
[8]
1

)
, which is displayed in Fig. 3.24,

(d).

Resolved contributions are relevant only in the lowz region, as the fragmentation
of a photon into an energetic parton is very rare. As can be seen in Fig. 3.25, the
resolved color-singlet contribution is negligible forz & 0.2. The resolved color-octet
component gives a more substantial contribution, but is nevertheless significant only
for z . 0.4.

Inelastic contributions toJ/ψ production also include the feed-down from excited
charmonium states, which we do not take into account here. Feed-down from the
ψ(2S) is seen to lead to a15% increase in theJ/ψ cross section [136], whereas
contributions from theχc states are expected to be smaller (≈ 1%).

3.4.2 Color-singlet observables at Next-to-Leading Order
in αs

The cross sectionσ(γp→ J/ψ+X) in the color-singlet model has been computed in
[141] at NLO accuracy inαS . We reproduced this computation by using the method
and the results presented in [91] for the hadro-production case, which also allows us to
keep track of theJ/ψ polarization through the angular correlations of theJ/ψ decay
products,J/ψ → ℓ+ℓ−. We have compared the results of the two calculations for
several inclusive observables, finding very good agreement.

The ZEUS collaboration has published a measurement of the differential cross sec-
tions forJ/ψ photoproduction produced from electron-proton collisions, withEp =
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µr\µf 0.5µ0 µ0 2µ0

2µ0 8.07 9.67 10.6

µ0 9.45 10.2 10.3

0.5µ0 10.6 8.28 5.96

Table 3.4: Scale dependence of the total cross sectionσ(PT > 1GeV ) (expressed in
nb). W is set to100 GeV. Other input parameters are explained in the text.
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Figure 3.26: Differential cross sections with respect toP 2
T (a) and toz (b), compared

with the ZEUS data [136].

820 GeV andEe = 27.5 GeV [136]. In their analysis, they consider the range
50 GeV < W < 180 GeV, and convert electro-production cross sections into photo-
production cross sections by dividing by the photon flux integrated in this range. This
is estimated within the Weizsäcker-Williams approximation: usingQmax = 1 GeV,
they obtainFphoton = 0.0987. For a consistent comparison with this measurement,
our γ − p cross sections are convoluted with the photon flux, using theWeizsäcker-
Williams approximation, and then divided by the integratedflux quoted above.

In our photoproduction analysis, we fix〈OJ/ψ(3S1[1])〉 = 1.16 GeV3 and we use
the CTEQ6M pdf set [125]. As the experimentalPT is not really large, we prefer to
use a fixed scale. In order to estimate the scale uncertainty,we setµ0 = 4mc with
mc = 1.5 GeV, and then vary the factorization and renormalization scales betweenµ0

2

and2µ0 under the condition0.5 < µf
µr

< 2. We note that this range covers the more

physical choiceµr,f =
√

4m2
c + P 2

T . The scale dependence of the total cross section
σ(PT > 1 GeV) is displayed in Table 3.4. In our prediction for the differential cross
sections, we also vary the charm-quark mass in the range1.4 − 1.6 GeV. Scale and
mass uncertainties are combined in quadrature. The resulting distributions inPT and
z are displayed in Fig. 3.26.

For comparison, we also plot the color-singlet prediction at leading order inαS , for
which we use the CTEQ6L1 pdf set. As can be seen from Fig. 3.26,theαS corrections
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increase the differential cross section in the highPT region, where the yield is dom-
inated by the new channels that open up at orderα3

S . Nevertheless, the color-singlet
yield at NLO clearly undershoots the ZEUS data. The plots in Fig. 3.26 differ from the
comparison presented in [136], where rather extreme valuesfor the renormalization
scale were used that have the effect of artificially increasing the normalization. We do
not display here the comparison with theP 2

T andz distributions measured by the H1
collaboration [137] since it shares the same features.

We now turn to the polarization. Experimentally, the polarization of theJ/ψ’s can be
determined by analyzing the angular distribution of the leptons originating from the
decay of theJ/ψ. As we have seen in Section 2.2, it is convenient to decomposethis
angular distribution in terms of the polar and azimuthal anglesθ andφ in theJ/ψ rest
frame:

dσ

dΩdy
∝ 1 + λ(y) cos2 θ + µ(y) sin 2θ cosφ

+
ν(y)

2
sin2 θ cos 2φ (3.24)

wherey stands for a certain (set of) variable(s) (eitherPT or z in the following). If
the polar axis coincides with the spin quantization axis, the parametersλ, µ, ν can be
related to the spin density matrix elements (see Section 2.2).

The spin information that we extract in this way depends on the choice of the quanti-
zation axis. Here, we decide to work in the target frame (ẑ = − pp

|pp| ) as this frame has
been chosen in the recent analysis performed by the ZEUS collaboration.

As we have mentioned above, in our NLO computation theJ/ψ decays into leptons, in
order to extractλ (resp.ν), we have integrated the cross sections overφ (resp.θ) and
extracted the polarization parameters by fitting the resulting distributions. In so doing,
we have used the same cuts as those considered by the ZEUS collaboration:Ep = 920

GeV,Ee = 27.5 GeV,PT > 1 GeV,z > 0.4 and 50 GeV< W < 180 GeV. Notice
that the cutz < 0.9 previously considered for the differential cross sectionshas been
relaxed here. The measurement of the polarization versusPT is therefore subject to a
larger contamination from diffractive contributions.

The NLO predictions of the polarization parameters associated with color-singlet pro-
duction are displayed in Fig. 3.27, together with the LO predictions and the recent
ZEUS measurements [142]. The band comes from the uncertainties associated with
the choice of the scales —varied betweenµ0

2 and2µ0— which appeared to be much
larger then the mass uncertainty. For some specific values ofthe scales (namely
µr = 0.5), theλ andν parameters appear to be unphysical in some bins. This is
due to the fact that, under certain conditions for the scales, our calculation leads to a
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Figure 3.27: Polarization parameters for color-singlet production at leading order and
next-to-leading order inαS , compared with the ZEUS measurement [142].

negative value for the diagonal components of the spin density matrix atPT ≈ 1 GeV,
and hence cannot be trusted anymore in this region.

QCD corrections to color-singlet production have a strong impact on the polarization
prediction. The most spectacular effect comes from the behavior of theλ parameter at
large transverse momentum, for which the prediction is rather stable under the varia-
tion of the scales. At leading order inαS , the color-singlet transition gives a transverse
polarization for theJ/ψ at largePT . Including QCD corrections, we see that theλ pa-
rameter decreases rapidly and has a large negative value abovePT = 4− 5 GeV. This
situation is similar to what happens in hadro-production, where theJ/ψ produced via
a color-singlet transition is longitudinal at large transverse momentum. Such a correc-
tion for theλ parameter at moderate and highPT , as well as the decrease atz ≈ 0.8,
is not supported by the data from the ZEUS collaboration, suggesting the presence of
other mechanisms forJ/ψ production. In the lowz region, the scale uncertainty is too
large to draw any conclusion. QCD corrections to color-singlet production also affect
the value of theν parameter, which goes closer to the experimental data in comparison
with the prediction at leading order.

Discussion

For several years, it has been believed that the color-singlet contribution alone explains
measurements ofJ/ψ photoproduction cross sections. However, as we have shown in
the previous section, even when we take into account the order-αS corrections, color-
singlet production alone does not describe all features of the data collected at HERA.
With a natural choice for the renormalization scale, the predicted rate is smaller than
the data, even though the shapes of the differential distributions are well described.
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Figure 3.28: Distribution of the polarization parameters for color-singlet production
at leading order and next-to-leading order inαS , as a function ofz for the regions
PT > 2 GeV andPT > 3 GeV.

Moreover, the recent measurement of theJ/ψ polarization by the ZEUS collaboration
as a function of thePT shows a very different trend than the theoretical predictions.
As we have already stressed, the NLO prediction of the polarization parameters is
not well behaved in the regionPT ≈ 1 GeV, as some of the diagonal entries of the
spin density matrix become negative in this region. As is illustrated in Fig. 3.28, the
scale uncertainty is substantially reduced by imposing a more stringent cutPT > 2

GeV or evenPT > 3. The corresponding ZEUS data points for theλ parameter are
systematically higher than the color-singlet prediction,the discrepancy being of the
order of oneσ.

New channels appearing at NNLO inαS (including fragmentation processes) may in-
crease the differential cross section, as we have pointed out in the hadroproduction
case. Although the kinematics differ in photoproduction, such contributions could
give an enhancement at large transverse momentum (PT > 5 GeV). However, no reli-
able estimate of NNLO contributions in thePT region accessible at HERA is presently
available.

The current discrepancies could possibly be solved by invoking color-octet transi-
tions, i.e. contributions from the intermediate states1S

[8]
0 and3P

[8]
J . Unfortunately,

any phenomenological analysis of the impact of these contributions on differential
cross sections and polarization observables is limited by the omission of higher-order
corrections that are currently unknown. A completeα3

S computation, particularly for
the prediction of the polarization of theJ/ψ produced via aP−wave color-octet state,
would be welcome in order to shed further light on the mechanisms at work in photo-
production.
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Conclusion

In this thesis, we have presented several new results for quarkonium production in
e+e− annihilation at B-factories, in hadron collisions at the Tevatron and the LHC
colliders, and in photoproduction at HERA. They can be schematically summarized
as follows:

• We have analysed the relativistic correction toJ/ψ production through a color-
singlet transition ine+e− annihilation. After having cross-checked the compu-
tation of thev2 correction to the exclusive production processe+e− → J/ψ+ηc
we have presented an original result for the completev2 correction toe+e− →
J/ψ + cc̄, including the relativistic expansion of the phase-space,and found
that the overal correction is small. We also showed that corrections to the wave
function of higher order inv are small, and can be safely neglected. We argued
that analogous corrections toe+e− → J/ψgg are also small. The inclusive
color-singletJ/ψ yield in e+e− annihilation is therefore largely dominated by
the leading term in thev expansion.

• We have combined our results for the real polarized quarkonium amplitudes
with the external computation of the one-loop amplitude forgg → cc̄(3S

[1]
1 )+g

or gγ → cc̄(3S
[1]
1 ) + g [91], to derive at NLO accuracy the polarization of the

J/ψ produced via a color-singlet transition in photon-proton and hadron-hadron
collisions. In the later case, we also gave the corresponding results for theΥ.
We showed that radiative corrections change dramatically the prediction for the
polarization.

• Starting from previous observations that new important topologies for the color-
singlet hadroproduction of spin-triplet S-wave states arise at orderα5

s —such
as the gluon fragmentation channel or the t-channel gluon exchange, which is
approximated in thekt factorization approach—, we estimated the impact of the

103
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channelspp → QQ̄(3S
[1]
1 ) + 3 light partons. In the case of theΥ, we argued

that such channels can fill the gap between the color-singletyield and the data
collected by the CDF collaboration.

• We have presented the computation of theα5
s s-channel cut contributions to

inclusiveJ/ψ hadroproduction via a color-singlet transition. Whereas previ-
ous phenomenological models [129, 131] have a number of freeparameters and
hence suffer from a large theoretical uncertainties, such contributions arise nat-
urally at orderα5

s in the framework of NRQCD, without the introduction of any
additional parameter.

• We have studied the hadroproduction of aJ/ψ in association with a charm-
quark pair. We have presented several observables that can be used to scrutinize
the factorization principle of NRQCD, which is expected to break down for this
signature at NNLO [50, 51].

Beside these specific calculations, we have presented an innovative approach in quarko-
nium production by suggesting to extend the set of observables analysed so far. In
particular, one can gain some insights on the mechanisms at work by analysing not
only the distribution of events with respect to the quarkonium energy or direction,
but also the kinematics of the other particles in the events.This direction opens the
door to many new and potentially interesting analyses that can be stimulated by Monte
Carlo techniques. With this in mind, we have presented a quarkonium Monte Carlo
generator, aimed at producing parton-level events in the NRQCD framework, for any
phenomenologically relevant transition, at tree-level. The code can be interfaced with
a program that takes care of the parton showering and the hadronization2. The hadron-
level events can then be passed though an experiment-dependent code for the simula-
tion of the detector. This automated generation of events upto the detector level can
be used to simulate experimental analyses aimed at investigating the phenomenologi-
cal pertinence of new theoretical ideas. Let us recall a few interesting features of the
tool:

• we keep track of all spin correlation effects (see Sections 2.1.2, 2.2),

• we keep track of the heavy-quark mass effects, and hence takeinto account
potentially large corrections that are ignored in the fragmentation approximation
(see Section 2.3),

• our algorithm is general enough to handle the production ofBc mesons (see
Section 2.1.4),

• quarkonium production beyond the standard model can readily be implemented.

2In our code we set up the interface with Pythia.
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The events can be generated via a user-friendly web interface, accessible to all users,
that parallelizes the jobs and run them on a cluster.

In the near future, we plan to extend the interface between our matrix-element based
generator and a given parton shower algorithm to describe all multi-jet configura-
tions at leading order. This approach has already been developed for other processes
by making use of thematchingproceedure [143, 144, 145, 146]: hard radiations are
described by the matrix element, whereas soft radiations are generated by the parton-
shower generator in such a way as to avoid the double countingof a given configu-
ration. The predictions derived from this method are found to be in agreement with
the data [147]. The matching procedure appears to be particularly relevant for inclu-
sive hadroproduction of theJ/ψ or theΥ via the color-singlet transition, given the
importance of higher jet multiplicities (see Section 3.2.1). Further studies in this di-
rection could improve the prediction for inclusiveJ/ψ or Υ production and decrease
the theoretical uncertainties.
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