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Faculté des Sciences
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Thèse présentée par Claude Duhr en vue d’obtenir le grade de
Docteur en Sciences.

Composition du Jury:

Promoteur: Pr. Fabio Maltoni UCL
Président: Pr. Denis Favart UCL
Membres du jury: Pr. Ben Craps VUB, Bruxelles

Pr. Vittorio Del Duca INFN, Frascati
Pr. Jean-Marc Gérard UCL
Pr. Jan Govaerts UCL
Pr. David A. Kosower CEA, Saclay

September 2009





Remerciements
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Introduction

In the last forty years high-energy physics has been dominated by the Standard

Model (SM), which describes the strong and electroweak interactions of the

fundamental fermions and vector bosons. These interactions are described

by an SU(3)C × SU(2)L × U(1)Y gauge theory, where the SU(2)L × U(1)Y

symmetry gets spontaneously broken so that the weak gauge bosons and the

fermions acquire a mass.

Despite the great success of the SM, all physicists agree that, even if the last

missing fundamental particle predicted by the SM, the Higgs boson, is dis-

covered, the SM cannot be the final theory as many questions are left unan-

swered. Therefore one of the main challenges, both on the theory and on the

experimental side, is to look for new physics beyond the SM. Due to its great

experimental success and despite the fact that new physics is expected to arise

at the TeV scale, physicists believe that the principles underlying the SM are

correct and that gauge symmetries are among the fundamental symmetries

of Nature. In particular, the theory of strong interactions, Quantum Chro-

modymamics (QCD), is described by an unbroken gauge symmetry based on

the gauge group SU(3)C . The study of gauge symmetries is hence among the

most important tasks in theoretical physics and has a twofold interest. First,

a thorough understanding of gauge theories allows to pursue our efforts to-

wards uncovering of the underlying principles of Nature. The second interest

is purely phenomenological and stems from our need to make predictions for

future collider experiments. In particular, the Large Hadron collider (LHC)
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2 Introduction

starts operating this year at CERN and will search for new physics linked to

the breaking of the electroweak symmetry. Since however the LHC is a proton-

proton collider, the major fraction of events observed will be pure QCD events

and a good understanding of this QCD background to new physics signals thus

requires a thorough understanding of how to make predictions for gauge theory

scattering amplitudes.

During the last decade, significant progress has been made in the computa-

tion of gauge theory scattering amplitudes, both at tree-level and beyond. At

tree-level, the field has got new momentum in 2003 when Witten conjectured a

duality between Yang-Mills theories and a certain type of string theory based

on twistor space [1]. The main outcomes of this conjecture, the BCFW recur-

sion and the MHV rules [2, 3, 4], have led since then not only to new explicit

results for gluon scattering amplitudes for up to eight gluons, but have also

provided a new insight into the internal structure of Yang-Mills tree-level scat-

tering amplitudes by revealing their intrinsically recursive nature. The ideas

inherent to these twistor approaches were soon also applied beyond tree level,

where they have been combined to the pioneering work of Bern Dixon and

Kosower on the unitarity based approaches of the early nineties [5, 6]. This

new way of tackling one-loop amplitudes has led to a revolution in the way we

think (loop) amplitudes should be computed in an efficient way and a large

number of new results have recently been published that were thought impos-

sible just a few years ago. Furthermore, two independent groups implemented

this approach into a numerical code allowing for the first time an automatic

evaluation of one-loop amplitudes and therefore finally bringing within reach

the full automatization of next-to-leading order computations in QCD [7, 8].

Despite the impressive progress that has been made regarding one-loop scat-

tering amplitudes in QCD, not much is known, however, about Yang-Mills

amplitudes at two-loop accuracy and beyond. Progress in this direction has

been made, however, in recent years in the context of planar N = 4 super

Yang-Mills theories (MSYM). The study of this particular gauge theory has a

twofold interest. First, it is known that one can always arrange the computa-

tion of QCD loop amplitudes in a way such as to make the MSYM contribution

manifest, i.e., MSYM amplitudes are a part of the full QCD amplitude and



Introduction 3

so their knowledge reveals part of the full QCD result. Second, since MSYM

is a supersymmetric conformal quantum field theory, it is much simpler than

full QCD and therefore serves as a playground to investigate the properties of

Yang-Mills theories in this simpler framework and the hope is to extend these

properties to the study of QCD amplitudes. One of the most intriguing results

in this context is a conjecture put forward by Bern, Dixon and Smirnov (BDS),

based on the previous work of Anastasiou, Bern, Dixon and Kosower, that an

MSYM gluon amplitude in a so-called maximally helicity violating configura-

tion must fulfill a set of iteration relations which allow to express a generic

!-loop amplitude for an arbitrary number of legs in terms of the one-loop am-

plitude [9, 10]. The BDS ansatz was shown to hold in the case of the two and

three-loop four-point amplitude by direct analytical computation and in the

case of the two-loop five-point amplitudes by a numerical evaluation. How-

ever, it was shown to fail independently by several groups in the finite part of

the two-loop n-point case, with n ≥ 6 [11, 12, 13]. The question whether the

ansatz is just a mirage or whether it is enough to modify the ansatz by some

(yet unknown) function in order to correct it for any number of external legs

is currently the aim of intense research activity.

An aim of this work is to contribute to this challenge of understanding Yang-

Mills theories, both from the theoretical and from the phenomenological point

of view. We concentrate in particular on the computation of gauge theory

scattering amplitudes. In the first part, we investigate tree-level amplitudes

and we give a review of Witten’s twistor techniques in Chapter 2. Those

techniques are defined at the level of the color-stripped amplitudes and need to

be dressed with color when computing full QCD matrix elements. In Chapter 3

we therefore introduce a technique to dress recursive relations for color-ordered

tree-level amplitudes with color and we derive the corresponding color-dressed

recursive relations, showing in this way explicitly that the recursive nature of

gauge theory scattering amplitudes is preserved also for the full QCD matrix

elements, including color [14].

For many phenomenological applications, however, tree-level approximations

to physical observables are insufficient and only orders of magnitude can be

obtained. In such cases it is necessary to include higher-order corrections
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coming from loop amplitudes. QCD computations beyond leading-order ex-

hibit two different types of divergencies which have to be dealt with before

any prediction for a physical quantity can be obtained. On the one hand,

ultraviolet-divergencies appearing when particles with large momenta circulate

inside a loop can be handled by the renormalization procedure. On the other

hand, QCD loop amplitudes are also infrared divergent. The Kinoshita-Lee-

Nauenberg (KLN) theorem implies that the infrared singularities coming from

the real and virtual corrections arising when two or more particles become

soft and / or collinear in phase space cancel out for inclusive enough quanti-

ties (cross sections, decay rates,...) at any order in perturbation theory. In

the second part of this work we therefore investigate the infrared behavior of

gauge theory amplitudes. In Chapter 4 we review how the infrared divergen-

cies coming from the real and virtual corrections are handled using so-called

subtraction schemes before performing any numerical calculation. The subtrac-

tion method relies on the fact that the infrared behavior of QCD amplitudes

is universal and can be described by the so-called splitting amplitudes and soft

factors. A precise knowledge of these universal quantities is thus needed to per-

form higher-order calculations in QCD. Besides the splitting amplitudes and

soft factors, there is another set of objects that describe the infrared behav-

ior of QCD amplitudes. These so-called antenna functions were introduced in

Refs. [15, 16] and describe in a unified way the soft and collinear divergencies

in QCD. In Chapter 5 we present a novel way of introducing tree-level antenna

functions, based on Witten’s twistor techniques [17]. We show how the MHV

formalism provides a natural way of defining antenna functions as a sum over

MHV diagrams, extending in this way the corresponding result by Birthwright

et al. derived for splitting amplitudes [18, 19]. We then apply our technique to

derive for the first time the a full set of tree-level gluon antenna functions up

to N3LO and we present a set of recursive relations for antenna functions and

splitting amplitudes, showing in this way once more that splitting amplitudes

inherit all the properties of the full amplitudes: gauge invariance, symmetry

relations and even a fully recursive formulation.

A general process-independent subtraction scheme at NLO was already in-

troduced more than a decade ago [20]. Its generalization to NNLO and the
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counterterms regularizing the real emissions for up to two unresolved particles,

however, have only been proposed recently [21, 22, 23, 24]. In practise, it is nec-

essary to know also the analytic expressions of these counterterms integrated

over the phase space of the unresolved particles. In this work we address this

problem and explicitly integrate a subset of the real virtual counterterms ap-

pearing in the generic NNLO subtraction scheme. In Chapter 6 we present our

method of performing the integration, which is a generalization of techniques

introduced in the last decade for the computation of (multi-) loop integrals and

we extend this technique to the computation of generalized hypergeometric in-

tegrals which appear in the integrals over the phase space of the unresolved

particles. We illustrate our approach on the example of the soft counterterm,

which can be expressed in terms of Gauss’s hypergeometric function. Details

on the more general integrals are given in Appendix J.

In the third part of this work we analyze the BDS conjecture in MSYM. We

review the ansatz and what is known about its breakdown in Chapter 7. Since

the computation of the two-loop six-point amplitude in Ref. [12] was numerical,

not much is known about the breakdown of the ansatz for n = 6. The question

could be settled by the a direct analytical computation of the two-loop six-point

amplitude, involving the analytic calculation of two-loop hexagon integrals, a

computation which is beyond our technical capabilities for the moment. We

therefore propose to perform the computation not in general kinematics, but

in simplified kinematics, based on the high-energy behavior of gauge theory

amplitudes, where the loop integration might become simpler. In the high-

energy limit, the produced gluons are strongly ordered in rapidity and the

corresponding scattering amplitudes are conjectured to factorize in terms of

universal building blocks, the so-called coefficient functions and Lipatov ver-

tices, similar to the splitting amplitudes and soft factors in the case of the

infrared limits [25]. In Chapter 8 we review the high-energy factorization of

tree-level gluon amplitudes and introduce our notations and conventions. We

then proceed and present a novel way to compute tree-level coefficient functions

and Lipatov vertices. This new approach is based on the MHV formalism and

is a generalization of the methods introduced in Chapter 5 in the context of

antenna functions. We explicitly use this new technique and derive for the first
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time the complete set of tree-level gluon Lipatov vertices for the emission of up

to four gluons. In Chapter 9 we generalize the high-energy factorization beyond

tree-level (in fact we conjecture that it holds true to any number of loops in

the perturbative expansion [26, 27]) and we present explicit examples of how

the universal building blocks can be extracted from MSYM loop amplitudes.

In Chapter 10 we then combine the results of the preceding chapters and ana-

lyze the high-energy behavior of the BDS ansatz. We show in particular that

the BDS ansatz in the euclidean region where all the invariants are negative

is fully consistent with high-energy factorization for any number of loops and

legs. By relaxing the strong rapidity ordering of the final state gluons we can

disguise the limit of simplified kinematics where a discrepancy with the BDS

ansatz should arise. Since this limit involves the explicit computation of the

one and two-loop hexagons (in simplified kinematics), we study in Chapter 11

for the first time the behavior of one-loop MSYM amplitudes to higher orders

in the dimensional regulator ε, a necessary ingredient for the BDS ansatz. In

particular, we compute the one-loop scalar massless pentagon in D = 6 − 2ε

dimensions in the high-energy limit, which appears in the higher order contri-

butions in ε to the five-point MSYM amplitude. We show that the result can

be expressed in terms of generalized hypergeometric functions, whose Laurent

series needs the introduction of a new set of transcendental functions, the so-

called M functions [28]. The knowledge of the scalar massless pentagon allows

us to derive for the first time an analytic expression for the two-loop five-point

amplitude, albeit in simplified kinematics and we finally use this result to ex-

tract the two-loop Lipatov vertex in planar MSYM [29]. Further appendices

including technical details omitted throughout the main text as well as details

on the special functions used throughout this work are also included.

This work is based on the following papers, as well as on conference proceed-

ings [30]:

- C. Duhr, S. Hoeche and F. Maltoni, “Color-dressed recursive relations for

multi-parton amplitudes,” JHEP, vol. 08, p. 062, 2006, [hep-ph/0607057].

- C. Duhr and F. Maltoni, “Antenna functions from MHV rules,” JHEP,

vol. 11, p. 002, 2008, [arXiv:0808.3319].
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- U. Aglietti, V. Del Duca, C. Duhr, G. Somogyi and Z. Trocsanyi, “Ana-

lytic integration of real-virtual counterterms in NNLO jet cross sections

I,” JHEP, vol. 09, p. 107, 2008, [arXiv:0807.0514].

- V. Del Duca, C. Duhr and E.W.N. Glover, “Iterated amplitudes in the

high-energy limit,” JHEP, vol. 12, p. 097, 2008, [arXiv:0809.1822].

- V. Del Duca, C. Duhr, E.W.N. Glover and V.A. Smirnov, “The one-

loop pentagon to higher orders in epsilon,” 2009, submitted to JHEP,

[arXiv:0905.0097].

- V. Del Duca, C. Duhr and E.W.N. Glover, “The five-gluon amplitude in

the high-energy limit,” 2009, submitted to JHEP, [arXiv:0905.0100].

Some of the results in Chapter 8 and Appendix E are original and have not yet

been published.
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Chapter 1
Tree-level scattering amplitudes
in gauge theories

1.1 Feynman rules and diagrams in gauge the-
ories

The theory of strong interactions is a Yang-Mills gauge theory based on the

gauge group SU(3). In the following we give a short review of SU(Nc) gauge

theories in general, having Nf quark flavors in the fundamental representation.

The Lagrangian for an SU(Nc) gauge theory reads

L = −1

4
Tr (FµνF

µν)+ q̄f i /Dqf −mf q̄fqf +
1

2ξ

(

∂µGa
µ

)2
+ c̄a∂µDµca, (1.1)

where qf denotes the quark field with flavor f and mass mf
∗, Ga

µ is the gauge

field (the gluon in the case of QCD) and ca denote the ghost fields. The

covariant derivative Dµ and the field strength tensor Fµν are defined by

Dµ = ∂µ − igT aGa
µ

Fµν =
i

g
[Dµ, Dν ] =

(

∂µGa
ν − ∂νG

a
µ + g

√
2fabcGb

µGc
ν

)

T a,
(1.2)

∗In this work we only consider massless quarks, mf = 0.

11



12 Chapter 1. Tree-level scattering amplitudes in gauge theories

n 2 3 4 5 6 . . .
# diagrams 4 45 510 5040 40320 . . .

Table 1.1: Number of Feynman diagrams contributing to gg → ng at tree level.

where T a denote the generators of the Lie algebra of SU(Nc), with the nor-

malization

Tr
(

T aT b
)

= δab and
[

T a, T b
]

= i
√

2 fabc T c. (1.3)

The Lagrangian in Eq. (1.1) describes all the gauge interactions between the

quarks and the gluons, and all (tree-level) Feynman rules can be derived from

it. The complete set of Feynman rules of an SU(Nc) gauge theory can be found

in Ref. [31]. Feynman rules are at the basis of the computation of Feynman

diagrams, the ‘Queen’ of all techniques to compute scattering amplitudes in

quantum field theory (QFT), which has been one of the most important activi-

ties in theoretical physics over the last fifty years. Although Feynman diagrams

provide a very intuitive approach to the calculation of scattering amplitudes,

their use may become inefficient due the factorial growth in complexity with

the number of external particles (See Table 1.1). The main reason for such

an extremely fast growth stems from the fact that each individual Feynman

diagram is not a gauge-invariant quantity and subsets of diagrams combine to

yield a gauge-invariant result, and gauge-invariant subsets are repeated many

times. On the other hand, it is known that even if the number of diagrams

can be quite large, the gauge-invariant results for QCD amplitudes can very

often be written in a rather simple form, and large cancellations can happen

between the different non gauge invariant contributions. For this reason, new

techniques have been developed over the last fifteen years that allow to take the

gauge-invariant structure into account from the beginning and to avoid in this

way the bad algorithmic behavior of the Feynman diagram expansion. The

first chapter of this work is a short review of these alternatives to Feynman

diagrams.
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1.2 Color decomposition

In this section we review the main ingredients that allow to overcome the prob-

lem of the factorial growth in the number of Feynman diagrams. As already

mentioned, the bad algorithmic behavior of the Feynman diagram-based ap-

proaches comes from organizing the computation in a way that is not compliant

with the underlying gauge symmetry of the theory. The main idea is to keep

all the information separated from the start, i.e. , to factor out the gauge

structure from the kinematical dependence of the amplitude in order to pre-

serve gauge invariance at every step in the computation. The starting point

for this approach is color decomposition, which allows to write any scattering

amplitude as a sum over the different color structures that appear in the am-

plitude, multiplied by a coefficient that contains the kinematical dependence of

the scattering. In the following, we focus on the different color decompositions

for pure gluon amplitudes at tree-level, and we briefly comment at the end of

this section on generalizations to include quarks as well.

Let us consider the tree-level amplitude for the scattering of n gluons with

momenta pi, helicities hi and color quantum numbers ai. This amplitude can

be written as [32]

An

(

{pi, hi, ai}
)

= gn−2
∑

σ∈Sn/Zn

Tr
(

T aσ1 . . . T aσn

)

An

(

σ
(

1h1
)

, . . . ,σ
(

nhn
)

)

,
(1.4)

where the sum runs over all non-cyclic permutations of the gluons. The coeffi-

cients An of the color traces are gauge-invariant quantities called color-ordered

amplitudes† which only depend on the gluon momenta and helicities, but not

on color‡. The color-ordered amplitudes are invariant under crossing symmetry

if all external momenta are taken to be outgoing, which is the convention we

will follow in the rest of this work. Furthermore, they are invariant under a

cyclic permutation of the gluons and they fulfill the reflection identity,

An(n, . . . , 1) = (−1)n An(1, . . . , n). (1.5)

†Also known as partial amplitudes.
‡Note that we follow the convention to label the arguments of the color-ordered amplitudes

only by the gluon indices, i.e. , An(1, . . . , n) has to be understood as An(p1, . . . , pn).
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Finally, there are linear relations among the partial amplitudes, known as the

Kleiss-Kuijf relations, which allow to reduce the number of independent par-

tial amplitudes from (n − 1)! to (n − 3)! [33, 34, 35]. Several ways exist to

compute the partial amplitudes, but we only mention at this point the color-

ordered Feynman rules, extending Feynman diagram-based approaches to color-

ordered amplitudes [32]. In the next chapters we will review several alternative

approaches, both recursive and diagrammatic.

Since the number of partial amplitudes in Eq. (1.4) grows factorially with the

number of external gluons, it is more convenient to express the amplitude in

a basis where we can identify a priori the terms in the color sum that give

a non-zero contribution. In Eq. (1.4) each gluon was labelled by an adjoint

color index ranging from 1 to N2
c − 1. Since Nc ⊗Nc = (N2

c − 1)⊕ 1, we can

alternatively label the gluons by a pair of fundamental and anti-fundamental

color indices (i, ̄). In Ref. [36] it was shown that in this color-basis a tree-level

gluon amplitude can be written as

An

(

{pi, hi, ai}
)

= gn−2
∑

σ∈Sn/Zn

δ
̄σn

iσ1
δ
̄σ1
iσ2

. . . δ
̄σn−1

iσn
An

(

σ
(

1h1
)

, . . . ,σ
(

nhn
)

)

,
(1.6)

where the partial amplitudes are the same as those appearing Eq. (1.4). This

color decomposition, also known as the color-flow decomposition, is well suited

to be used in numerical algorithms, because the color factors in front of the

partial amplitudes all evaluate to either zero or one. Hence, one can identify a

priori the zero color flows and restrict the computation only to partial ampli-

tude with non-zero color flow. Squaring and summing is particularly easy in

the color-flow decomposition, e.g. ,

δ
̄σn

iσ1
δ
̄σ1
iσ2

. . . δ
̄σn−1

iσn

(

δ
̄σn

iσ1
δ
̄σ1
iσ2

. . . δ
̄σn−1

iσn

)†

= δ
̄σn

iσ1
δ
̄σ1
iσ2

. . . δ
̄σn−1

iσn

(

δ
ı̄σ1
jσn

δ
ı̄σ2
jσ1

. . . δ
ı̄σn

jσn−1

)

= Nn
c ,

(1.7)

and for the cross terms between different color flows one gets in a similar way

monomials of the form Nn−m
c , where m is even. This is to be contrasted to the

fundamental color decomposition, where products of traces of color matrices

have to be computed.
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The two color decompositions (1.4) and (1.6) both use the fundamental rep-

resentation of SU(Nc) for the color factors. Since the gluons transform in the

adjoint representation of the gauge group, we can ask for a decomposition of

the amplitude that takes advantage of the adjoint nature of the gauge bosons.

In Ref. [37] it was shown that a pure gluon scattering amplitude can be written

as

An

(

{pi, hi, ai}
)

= gn−2
∑

σ∈Sn−2

(F aσ2 . . . F aσn−1 )a1an

×An

(

1h1 ,σ
(

2h2
)

, . . . ,σ
(

(n− 1)hn−1
)

, nhn

)

,

(1.8)

where (F b)ac = ifabc denote the generators of the fundamental representation

of SU(Nc). Note that in contrast to the decompositions discussed earlier, only

(n− 2)! terms appear in the sum in Eq. (1.8). However, although the number

of color-ordered amplitudes which need to be evaluated is much smaller than in

the fundamental or the color-flow decompositions, the adjoint color basis turns

out to be less efficient because it involves matrix products for the (N2
c − 1)-

dimensional matrices F a.

Let us conclude this section by making some comments on how color decompo-

sition can be extended to quarks. We give the explicit example of a tree-level

amplitude containing a single quark-antiquark pair and an arbitrary number of

gluons. Since quarks transform in the fundamental representation of SU(Nc),

we can immediately write down the amplitude by replacing in Eq. (1.8) the

generators F a by the generators T a of the fundamental representation [32],

An

(

1h1,i
q , 2h2,̄

q̄ , {pi, hi, ai}
)

= gn−2
∑

σ∈Sn−2

(T aσ3 . . . T aσn ) ̄
i An

(

1h1
q , 2h2

q̄ ,σ
(

3h3
)

, . . . ,σ
(

nhn
)

)

.
(1.9)

For amplitudes involving more than one quark pair, we can derive a similar

result, the color factors being products of strings of color matrices.

1.3 Spinor-helicity formalism

In the previous section we showed how the problem of computing an n-point

amplitude can be reduced to the computation of the corresponding (n − 3)!
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independent partial amplitudes. In the rest of this chapter we thus concentrate

on techniques for the computation of partial amplitudes§. Since color-ordered

amplitudes only depend on the gluon momenta and helicities, they can be

easily calculated using the spinor-helicity formalism, based on the fact that

each lightlike momentum p can be decomposed into two spinors,

Paȧ = σµ
aȧ pµ = λa λ̃ȧ, (1.10)

where λ and λ̃ denote two Weyl spinors with opposite chirality. We refer to

λa and λ̃ȧ as the holomorphic and antiholomorphic spinor components of the

momentum p. It is easy to see that if pµ is real, then the matrix Paȧ must

be hermitian, which implies in turn that the holomorphic and antiholomorphic

components must be complex conjugated to each other (up to a sign). We define

spinor products as the antisymmetric contractions of these Weyl spinors, e.g. if

pi and pj denote two massless momenta, then we define

〈ij〉 = εab λ
a
i λ

b
j and [ij] = εȧḃ λ̃

ȧ
i λ̃

ḃ
j . (1.11)

From the antisymmetry of the Levi-Civita tensor it follows immediately that

spinor products are antisymmetric,

〈ij〉 = −〈ji〉 and [ij] = −[ji], (1.12)

and for real momenta the two kinds of spinor products are complex conjugate

to each other (up to a sign). Furthermore, they have a very simple physical

interpretation, because the two spinor products can be identified as the complex

square roots of the two-particle invariants sij = (pi + pj)2 = 2pi · pj,

sij = 〈ij〉 [ji]. (1.13)

Spinor products enjoy many algebraic properties (See for example Ref. [32]).

Let us mention here only the Schouten identity, a relation that will play an

important role in Chapter 5,

〈ij〉〈kl〉 = 〈ik〉〈jl〉+ 〈il〉〈kj〉. (1.14)

§From here on, if there is no ambiguity, we use indifferently the words ‘amplitude’ and
‘partial amplitude’.
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The definitions of the previous paragraph make it possible to express every tree-

level gluon amplitude as a rational function of spinor products. This result is

easily obtained by making the following observation:

1. Any momentum coming from a (color-ordered) vertex and any propagator

can be written in terms of spinor products using Eqs. (1.10) and (1.13).

2. We can find a representation of the polarization vectors for a gluon with

momentum paȧ = λaλ̃ȧ in terms of spinor products [38],

ε−aȧ(p, q) =
√

2
λa µ̃ȧ

〈λ, µ〉 and ε+aȧ(p, q) = −
√

2
µa λ̃ȧ

[λ, µ]
, (1.15)

where qaȧ = µaµ̃ȧ denotes an arbitrary lightlike momentum (but linearly

independent from paȧ).

Eq. (1.15) needs some more explanation. It is easy to check that the vectors ε±aȧ

defined in this way fulfill all the properties of transverse polarization vectors,

ε+(p, q) · ε+(p, q) = ε−(p, q) · ε−(p, q) = 0

ε+(p, q) · ε−(p, q) = −1,

p · ε±(p, q) = 0,
(

ε±(p, q)
)∗

= ε∓(p, q),

(1.16)

and they also fulfill the closure relation

ε+µ (p, q)
(

ε+ν (p, q)
)∗

+ ε−µ (p, q)
(

ε−ν (p, q)
)∗

= −gµν +
pµ qν + pν qµ

p · q . (1.17)

Finally, one can show that the choice of the arbitrary lightlike vector q is

equivalent to a gauge choice, and hence it must cancel for gauge-invariant

quantities. This property can be used as a cross-check in explicit computations.

For some specific helicity configurations a closed form valid for an arbitrary

number of gluons can be derived:

1. At tree-level there is no way to distinguish a pure gluon amplitude in QCD

from the corresponding amplitude in supersymmetric theories. Hence, the

tree-level QCD amplitude must fulfill the same supersymmetric Ward
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identities as in the SUSY case, which imply in turn that all tree-level

amplitudes where the gluons have the same helicity or only one gluon has

a different helicity must vanish [32],

An

(

1±, 2+, . . . , n+) = 0,

An

(

1∓, 2−, . . . , n−) = 0.
(1.18)

2. The first non-zero helicity configurations correspond to exactly two glu-

ons of different helicity. Those maximally helicity violating (MHV) am-

plitudes were first conjectured by Parke and Taylor in Ref. [39] and

later proven recursively by Berends and Giele using their recursive re-

lations [40] (See Section 1.4). They take an extremely simple analytic

form,

An(1+, . . . , i−, . . . , j−, . . . , n+) =
〈ij〉4

〈12〉〈23〉 . . . 〈(n− 1)n〉〈n1〉 . (1.19)

Using parity, we can find the corresponding amplitude for exactly two

positive-helicity gluons¶,

An(1−, . . . , i+, . . . , j+, . . . , n−) = (−1)n [ij]4

[12][23] . . . [(n− 1)n][n1]
. (1.20)

Note that once these formulas are established for pure gluon amplitudes,

we can deduce the corresponding MHV amplitudes for quarks using the

effective tree-level supersymmetry of QCD.

3. Recently, a generic formula for all split-helicity amplitudes of the form

An

(

1−, . . . , i−, (i+1)+, . . . , n+
)

has been derived [41]. Since this formula

will not play any role in this work, we do not comment on this result

further, but only quote it for completeness.

For n = 4 and n = 5 all partial amplitudes are MHV (or MHV) amplitudes.

Starting from n ≥ 6, however, no generic formula valid for arbitrary n can be

given. We classify the new structures in terms of the number n− of negative-

helicity gluons in the amplitude:

1. n− = 2: MHV amplitude.

¶These amplitude are sometimes referred to in the literature as MHV amplitudes.
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2. n− = 3: Next-to-MHV (NMHV) amplitude.

3. n− = 4: Next-to-next-to-MHV (NNMHV) amplitude.

4. etc.

There are several techniques to compute a generic non-MHV amplitude, and

the first part of this work is in fact devoted to these techniques.

1.4 Berends-Giele recursive relations

In this section we discuss a recursive algorithm to compute color-ordered am-

plitudes for a given number of external particles. This algorithm, introduced

by Berends and Giele in Ref. [40], relies on the concept of an n-point off-shell

current J , defined as the sum over all tree-level Feynman graphs with n exter-

nal on-shell legs and a single external off-shell leg. On-shell amplitudes can be

obtained from off-shell currents by putting the off-shell leg on shell,

An+1

(

1, . . . , n, (n + 1)±
)

= lim
P 2

1,n→0
iP 2

1,n ε±µ Jµ(1, . . . , n), (1.21)

where µ denotes the Lorentz index of the off-shell gluon, and where we defined

P1,n = p1 + . . .+ pn. The currents can be built recursively from similar objects

with fewer external legs, and the Berends-Giele (BG) recursive relations for

pure gluon amplitudes read‖

Jµ(1, . . . , n) =
−i

P 2
1,n

[

n−1
∑

i=1

V µνρ
3 (P1,i, Pi+1,n)Jν(1, . . . , i)Jρ(i + 1, . . . , n)

+
n−1
∑

j=i+1

n−2
∑

i=1

V µνρσ
4 Jν(1, . . . , i)Jρ(i + 1, . . . , j)Jσ(j + 1, . . . , n)

]

.

(1.22)

where by convention one defines one-point off-shell currents to correspond to

the polarization vectors of the external gluons, Jµ(i±) = ε±µ (pi, qi), and where

‖In the following we review this recursive approach in the case of pure gluon amplitudes.
The generalization to quarks is then straightforward.
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= +

Figure 1.1: Pictorial representation of the color-ordered BG recursive relations.
Blobs indicate off-shell currents, crosses off-shell lines.

V3 and V4 denote the color-ordered three and four-gluon vertices

V µνρ
3 (P, Q) =

i√
2

(gνρ(P −Q)µ + 2gρµQν − 2gµνP ρ) ,

V µνρσ
4 =

i

2
(2gµρgνσ − gµνgρσ − gµσgνρ) .

(1.23)

A pictorial representation of the BG recursion can be found in Fig. 1.1.

For numerical purposes Eq. (1.22) is not yet in its most optimal form, because

it involves both the three and the four-gluon vertices in the recursion. In order

to reduce the complexity of the algorithm, we decompose the four-gluon vertex

in terms of three-point building blocks. This can be achieved by introducing a

fictious tensor particle which only couples to the gluons [42]. In terms of the

tensor-gluon vertex, the color-ordered four-gluon interaction can be written [14]

V µνρσ
4 = V νµαβ

T iDαβγδ V σργδ
T + V µσαβ

T iDαβγδ V ρνγδ
T , (1.24)

where V µνρσ
T and iDαβγδ denote the tensor-gluon vertex and the tensor prop-

agator summarized in Table 1.2. We also introduce an n-point off-shell tensor

current Jµν as the sum of all Feynman graphs having n external on-shell gluons

and a single off-shell tensor leg. Note that this definition implies that there

is no one-point tensor current. Inserting the decomposition of the four-gluon

vertex into Eq. (1.22), the BG recursive relations immediately become

Jµ(1, 2, . . . , n) =
−i

P 2
1,n

n−1
∑

k=1

{

V µνρ
3 (P1,k, Pk+1,n) Jν(1, . . . , k)Jρ(k + 1, . . . , n)

+ V νµαβ
T Jν(1, . . . , k)Jαβ(k + 1, . . . , n)

+ V µσαβ
T Jαβ(1, . . . , k)Jσ(k + 1, . . . , n)

}

,
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Jαβ(1, . . . , n) = iDαβγδ V ρνγδ
T

n−1
∑

j=1

Jν(1, . . . , j)Jρ(j + 1, . . . , n). (1.25)

The recursive relations for the gluon and tensor currents can be solved simul-

taneously up to the desired order in the number of external legs. Putting the

external leg on-shell, we obtain an explicit representation for a given partial

amplitude. The BG algorithm is known to have a very good algorithmic behav-

ior. However, in order to build the full amplitude, we need to perform the sum

over the color permutations of the external gluons. So, even if the complexity of

the recursion for the partial amplitudes is very good, we end up with a factorial

growth when it comes to summing over colors. This important issue will be

discussed in more detail in Chapter 3 when discussing color-dressed recursive

relations.
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µν ρσ iDµνρσ = − i
2

(

gµρgνσ − gνρgµσ
)

µ ν

ρσ

V µνρσ
T = − g

2

(

gµρgνσ − gνρgµσ
)

Table 1.2: The color-ordered Feynman rules for the fictious tensor particle
appearing in the decomposition of the four gluon vertex. Straight lines indicate
gluons, dashed lines indicate tensors.

(a) = + +

(b) =

Figure 1.2: Berends-Giele recursive relations where the four-gluon vertex has
been decomposed in terms of a fictious tensor particle. Straight lines denote
gluons, dashed lines denote tensors.



Chapter 2
Twistor techniques in gauge
theories

2.1 Introduction

In the previous chapter we introduced the color-ordered Feynman rules and the

BG recursion as two examples of how to compute tree-level partial amplitudes.

Recently, two additional techniques have been developed, known as the MHV

formalism and the BCFW recursion. They are the outcome of a conjecture

by E. Witten of a duality between gauge theories and a certain type of string

theory in twistor space [1]. Although originally formulated in the context of

string theory, the MHV formalism and the BCFW recursion have been proven

rigorously within the framework of gauge quantum field theories, and they

do not need the reference to twistor space any more∗. We follow here this

approach and only present the results within the framework of quantum field

theory, without commenting on the original conjecture to string theory used to

derive them in first place.

Before reviewing these two new approaches in more detail, let us make some

general comments about their common features. The main idea is that on-shell

amplitudes can be built recursively from amplitudes with fewer external legs,

∗The name ‘twistor techniques’ is however still used nowadays to quote those results.

23
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where some of the external legs have to be evaluated in complex momenta.

Loosely speaking, we can see an off-shell real momentum as an on-shell leg

in complex kinematics. In contrast to the Berends-Giele recursive relations

for example, where each current contains by definition an off-shell leg, the

building blocks in this approach are full gauge-invariant amplitudes, enjoying

all the properties inherent to gauge invariance. As a consequence, the ana-

lytic results obtained from the twistor techniques have a much more compact

and simpler analytic structure, because some of the cancellations between non

gauge-invariant pieces are built in from the start. In the next two sections we

give an overview of the BCFW recursion and the MHV formalism, and how to

proof them within the framework of quantum field theory.

2.2 The BCFW recursive relations

The BCFW recursive relations were first conjectured by Britto, Cachazo and

Feng in Ref. [3] and later proven analytically by the same people together with

Witten in Ref. [4]. They state that an on-shell tree-level amplitude can be

built recursively from gluon amplitudes with fewer external legs, where two or

more of the momenta have been shifted into the complex plane. To be more

concrete, the recursion reads

An(1+, 2, . . . , n−)

=
n−2
∑

k=2

Ak+1

(

1̂, 2, . . . , k,−P̂−h
1,k

) 1

P 2
1,k

An−k+1

(

P̂ h
1,k, k + 1, . . . , n̂

)

,
(2.1)

where a sum over the helicities h of the intermediate gluon is implicit, and

where

P̂1,k = P1,k +
P 2

1,k

〈n|P1,k|1]
λnλ̃1,

p̂1 = p1 +
P 2

1,k

〈n|P1,k|1]
λnλ̃1,

p̂n = pn −
P 2

1,k

〈n|P1,k|1]
λnλ̃1,

(2.2)
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and λi and λ̃i denote the spinor components of the momentum pi. In Eq. (2.2)

we introduced the shorthands

〈i|j|k] = 〈ij〉[jk] and 〈n|P1,k|1] = 〈n|1|1] + . . . + 〈n|k|1]. (2.3)

In the following we review the proof of the recursion (2.1), which relies on stan-

dard complex analysis. Let us consider an n-point gluon amplitude An(1, . . . , n)

and let us shift the spinor components of the momenta p1 and pn into the com-

plex plane,

p1 = λ1λ̃1 → p̂1(z) = λ1 (λ̃1 − zλ̃n),

pn = λnλ̃n → p̂n(z) = (λn + zλ1)λ̃n.
(2.4)

It is easy to check that the shifts conserve momentum and on-shellness, p̂1(z)+

p̂n(z) = p1 + pn and p̂1(z)2 = p̂n(z)2 = 0, ∀z ∈ C. After shifting of the

momenta, the amplitude is a function A(z) of the complex parameter z. BCFW

showed that this function has the following properties:

1. A(z) is a meromorphic function of z.

2. A(z) has only simple poles.

3. A(z) vanishes at infinity.

The first point is trivial, it arises naturally from the fact that a color-ordered

amplitude is a rational function of spinor products. The next two points are

more subtle, and we suggest the interested reader should refer to Ref. [4].

To continue, let us consider the following contour integral, where the contour

is taken at infinity in the z-plane. Since A(z) vanishes at infinity, Cauchy’s

theorem implies,

0 =

∮

dz

z
A(z) = A(0) +

∑

p

Resz=zp

A(z)

z
, (2.5)

where the sum runs over all the poles† of A(z). The poles of a tree-level

amplitudes stem from internal propagators going on-shell, P 2 = 0, and since at

†Note that we implicitly assumed that A(z) has no pole in z = 0. This is always true in
general, because for z = 0 the complex function A(z) reduces to the original amplitude.
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tree-level each propagator divides a diagram into two disconnected parts, the

residue of the pole is simply given by the formula

A(1, . . . , n) −→
∑

h

A(1, . . . , Ph)
1

P 2
A(−P−h, . . . , n). (2.6)

Inserting this relation into Eq. (2.5) we find, after some algebra, the recur-

sion (2.1).

The main feature of Eq. (2.1) is that it is an on-shell recursion, i.e. the subam-

plitudes appearing in the recursion are full gauge-invariant on-shell amplitudes.

Note however also on-shell three-point amplitudes appear that in the recursion

that vanish in real kinematics. In complex kinematics, however, these quan-

tities are non zero and have to be taken into account. Also note that, since

there is nothing special about the momenta p1 and pn, we could have made a

different choice in Eq. (2.4) for the shifted momenta. Since the proof is only

based on Cauchy’s theorem, we could repeat the argument and derive a ver-

sion of the BCFW recursion with different shifts, a property that will be used

in the next section when we discuss the MHV formalism. Let us conclude by

mentioning that the proof we presented here is valid for pure gluon amplitudes,

but it is straightforward to extend it to more general cases, such as quarks and

scalars, as well as massive vector bosons and QED processes [43, 44, 45, 46].

In Chapter 3 we will present another generalization of the BCFW recursive

relations, and we will show that the recursion does not only hold for partial

amplitudes, but the recursion stays true at the level of the full scattering am-

plitude, including color.

2.3 The MHV formalism

The MHV formalism is the second outcome of Witten’s duality to twistor

space and consists in a diagrammatic technique, similar to Feynman diagrams,

but where the vertices correspond to the on-shell MHV amplitudes given in

Eq. (1.19) and the propagators are just scalar propagators [2]. When using

MHV amplitudes as vertices, we have to face the problem that Eq. (1.19) needs

to be evaluated for off-shell momenta. Since the factorization of a momentum
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into two opposite-chirality spinors only holds for lightlike momenta, we have

to find a new way to evaluate the spinor products in Eq. (1.19) when off-shell

momenta are involved. We can, however, note that MHV amplitudes have

a quite peculiar structure, because they only depend on holomorphic spinor

products, and it is hence enough to have a prescription to construct a spinor

of the corresponding type. The prescription was given in Ref. [2] and reads:

Rule 2.1. Each off-shell momentum P in an MHV amplitude has to be inter-

preted as Paȧ ηȧ, where ηȧ is an arbitrary massless spinor.

In practise, this means that all spinor products involving an off-shell momentum

P = Pi,j have to be interpreted as

〈kPi,j〉 = 〈k|Pi,j |η] = 〈ki〉[iη] + . . . + 〈kj〉[jη]. (2.7)

Since η is arbitrary, this dependence is unphysical and must cancel out in the

sum over all diagrams. This property can be used as a cross-check in explicit

computations. An important property of the decomposition of an amplitude

into MHV diagrams is that for every diagram there is a relation between the

number n− of negative-helicity gluons in the amplitude, the number p of scalar

propagators and the number v of MHV vertices in the diagram,

p = v − 1 = n− − 2. (2.8)

This relation will be used extensively in Chapter 5 when deriving the infrared

behavior of MHV diagrams. Note that in the trivial case of an MHV amplitude

n− = 2 and Eq. (2.8) implies p = 0, in agreement with our expectation for MHV

amplitudes.

Both in the BCFW recursive relations and in the MHV formalism the basic

building blocks are full on-shell amplitudes connected by scalar propagators

and with off-shell legs being evaluated in complex kinematics. In Ref. [47]

Risager showed that there is in fact a deeper connection between the MHV

formalism and the BCFW recursion. More precisely, Risager showed that the

MHV formalism is a consequence of the BCFW recursive relations for a very

specific choice of the complex shifts. To see this, let us shift all the momenta of

the negative-helicity gluons whereas all other momenta stay real. For example,
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in an NMHV amplitude containing exactly three negative-helicity gluons with

momenta pm1 , pm2 and pm3 , the BCFW shifts considered by Risager are

pm1 = λm1 λ̃m1 → p̂m1(z) = λm1

(

λ̃m1 + z 〈λm2λm3〉 η
)

,

pm2 = λm2 λ̃m2 → p̂m2(z) = λm2

(

λ̃m2 + z 〈λm3λm1〉 η
)

,

pm3 = λm3 λ̃m3 → p̂m3(z) = λm3

(

λ̃m3 + z 〈λm1λm2〉 η
)

,

(2.9)

where η is an arbitrary antiholomorphic spinor, and all other momenta are

evaluated in real kinematics. From the Schouten identity it follows that these

shifts conserve momentum. Computing the contour integral (2.5) and taking

residues, we find

ANMHV
(

. . . , m−
1 , . . . , m−

2 , . . . , m−
3 , . . .

)

=
∑

i,j

A
(

i+, . . . , m̂−
1 , . . . , j, P̂−

i,j

)

× 1

Pi,j
A
(

− P̂+
i,j , (k + 1)+, . . . , m̂−

2 , . . . , m̂−
3 , . . . , (i− 1)+

)

+
(

m1 ↔ m2

)

+
(

m1 ↔ m3

)

.

(2.10)

The right-hand side of Eq. (2.10) expresses an NMHV as a sum of MHV ampli-

tudes connected by scalar propagators. A straightforward computation shows

that the shifts (2.9) reproduce exactly the off-shell continuation (2.7). As a

consequence, every NMHV amplitude can be written as a sum of MHV dia-

grams. We can now repeat this procedure for a generic NnMHV amplitude and

proof recursively that the MHV decomposition holds for arbitrary n.

Many generalizations beyond pure gluon amplitudes exist for the MHV formal-

ism, in particular for scalars and fermions [48, 49, 50]. Furthermore, it was

shown that the MHV formalism is not only convenient for the computation of

full scattering amplitudes, but it has been used to compute splitting amplitudes

for quarks and gluons [19, 18]. In this work we will present two more appli-

cations of the MHV formalism and extend it to the computation of antenna

functions, impact factors and Lipatov vertices.
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2.4 Recursive formulation of the MHV formal-
ism

In the previous section we presented the MHV formalism, which allows to write

any tree-level gluon amplitude as a sum of MHV diagrams. Although this

diagrammatic technique is very simple and intuitive, it may become inefficient

for diagrams with a large number of external legs, because two different graphs

may contain identical subgraphs. As a consequence, identical subgraphs are

evaluated multiple times, which can slow down numerical codes. In order to

improve the efficiency of numerical implementations, a recursive formulation in

terms of currents, similar to the BG recursion, is desirable. In this way, each

current is only computed once, avoiding in this way multiple evaluations of the

same quantity. In this section we present a recursive formulation of the MHV

formalism in terms of currents originally introduced in Ref. [14, 17].

Our goal is to obtain a recursion whose structure is similar to the BG recursive

relations. Let us start by defining an n-point off-shell current Jh(1, . . . , n) as

the sum over all MHV diagrams having n external on-shell legs and a single

off-shell leg with helicity h‡. We refer to such a current as a single-line current.

A specific (n+1)-point amplitude can then be obtained by putting the off-shell

leg on-shell,

An+1

(

1, . . . , (n + 1)h) = lim
P 2

1,n→0
P 2

1,n J−h(1, . . . , n). (2.11)

Looking back to ordinary Feynman rules and the BG recursion, it is easy to

write out a recursion for the single-line current,

Jh(1, . . . , n)

=
1

P 2
1,n

[

n−1
∑

i=1

AMHV
3

(

−P−h
1,n , Ph1

1,k, Ph2
k+1,n

)

Jh1(1, . . . , i)Jh2(i + 1, . . . , n)

(2.12)

‡In the context of the MHV rules, it makes sense to talk about the helicity of an off-shell
particle. Note that, as the off-shell continuation of the spinors involves an arbitrary reference
spinor ηȧ, these currents are not gauge-invariant objects. However, the ηȧ dependence drops
out in the end.
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+
n−2
∑

i=1

n−1
∑

j=i+1

AMHV
4

(

−P−h
1,n , P h1

1,i , P h2
i+1,j , Ph3

j+1,n

)

Jh1(1, . . . , i)

× Jh2(i + 1, . . . , j)Jh3(j + 1, . . . , n) + . . .

]

.

The dots indicate terms with higher-point MHV vertices and a sum over the

helicities (h, h1, h2, . . .) with −h+h1+h2+ . . . = n−4 is implicitly understood.

Although Eq. (2.12) provides a recursion for the single-line current, it suffers

from the fact that for large values of n high-multiplicity MHV vertices enter the

recursion. This problem is similar to the BG recursion, where it was overcome

by decomposing the four-gluon vertex in terms of a fictious tensor particle

and where we arrived in the end at a recursion that only involves three-point

vertices. In the rest of this section we describe how to extend this decomposition

to the MHV formalism.

Since the building blocks of MHV diagrams are MHV amplitudes, let us start

by analyzing how we can decompose a generic n-point MHV amplitude in

terms of effective three-point vertices. It is easy to show that an n-point MHV

amplitude can be written in terms of eikonal factors

An(1+, 2+, . . . , (n− 2)+, (n− 1)−, n−)

=
〈(n− 1)n〉4

〈1 (n− 2)〉〈(n− 2) (n− 1)〉〈(n− 1)n〉〈n1〉

n−2
∏

k=3

Dk−1
1,k ,

(2.13)

where the eikonal factors are defined by Dk
ij = 〈ij〉

〈ik〉〈kj〉 . As a consequence, for

an MHV-type current we can write

J+(1+, 2+, . . . , (n− 2)+, (n− 1)−)

=
1

P 2
1,n−1

〈(n− 1), P1,n−1〉4
〈1, 2〉 . . . 〈(n− 1), P1,n−1〉〈P1,n−1, 1〉

=
1

P 2
1,n−1

〈(n− 1), P1,n−1〉4
〈1, (n− 2)〉〈(n− 2), (n− 1)〉〈(n− 1), P1,n−1〉〈P1,n−1, 1〉

n−2
∏

k=3

Dk−1
1k

=
1

P 2
1,n−1

V4(1, n− 2, n− 1, P1,n−1)
n−2
∏

k=3

Dk−1
1k ,

(2.14)
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n−1

n

2

1

n−2 4 3

Figure 2.1: Decomposition of an MHV-amplitude where the MHV vertex has
been stretched out into a double-line. The cross indicates the off-shell line.

where we define

V4(a, b, c, d) =
〈cd〉4

〈ab〉〈bc〉〈cd〉〈da〉 . (2.15)

In Fig. 2.1, we introduce a graphical representation for Eq. (2.14) in terms

of an internal double-line to which the external gluons may couple. We also

introduce double-line currents Jm
uv(1, . . . , n) defined as the double-line diagram

with an external (off-shell) double-line which the gluons 1 to n are attached

to. The indices u and v refer to the indices of the first particle one encounters

if one follows each line of the double-line into the current, and m refers to the

number of negative-helicity gluons attached to the double-line §. As a double-

line is part of an MHV-amplitude with exactly two negative-helicity particles,

Jm
uv(1, . . . , n) = 0 if m ≥ 3. The double-line currents contributing to the MHV

single-line current J+(1+, . . . , (n − 2)+, (n − 1)−) can be easily constructed

recursively by successively adding eikonals,

J0
1k(1+, . . . , k+)

= Dk−1
1k J0

1(k−1)(1
+, . . . , (k − 1)+),

(2.16)

where we define that all one-point double-line currents are zero, and all two-

point double-line currents are given by J0
uv(1+, 2+) = δ1uδ2v. The MHV single-

line current is then given by

J+(1+, . . . , (n− 2)+, (n− 1)−)

= V4(1, n− 2, n− 1, P1,n)J0
1(n−2)(1

+, . . . , (n− 2)+),
(2.17)

§Up to now these indices are redundant. The double-line currents contributing to an
MHV single-line current of the form J+(1+, . . . , (n − 2)+, (n − 1)−) are all of the form
Jm

uv(1+, . . . , k+)) with u = 1, v = k and m = 0. The meaning of these indices will become
clear when we generalize double-line currents to the MHV formalism.
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2+

1+

J0
12(1

+, 2+) = 1

3+ 2+

1+

J0
13(1

+, 2+, 3+) = D2
13

4+
3+ 2+

1+

J0
14(1

+, 2+, 3+, 4+) = D3
14D

2
13

5−

6−

4+ 3+ 2+

1+

J+(1+, 2+, 3+, 4+, 5−) = V4(1, 4, 5, 6)D3
14D

2
13

Figure 2.2: Construction of A6(1+, 2+, 3+, 4+, 5−, 6−) using the recursion for
the double-line current. A cross indicates an off-shell leg.

and the MHV amplitude can then be obtained by putting the off-shell leg on-

shell. This procedure is illustrated in Fig. 2.2 for the six-point MHV-amplitude

.

Up to now we have only considered a very special class of MHV-amplitudes,

namely those where the two negative-helicity gluons are adjacent in the MHV-

amplitude. We now generalize this procedure to an arbitrary MHV-amplitude

An(1+, . . . , i−, . . . , j−, . . . , n+). The factorization (2.13) stays no longer true

in this case, because an MHV-amplitude only factorizes when a soft positive-

helicity gluon is radiated. A closer look at our recursive procedure reveals that
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we only used this method to construct the denominator of the MHV-amplitude,

whereas the numerator is completely encoded in V4(1, n− 2, n− 1, n). Thus we

can generalize this procedure using the following rules:

1. Each time we add a negative-helicity particle j to a double-line current

containing already m negative-helicity particles, add a δjmi to the double-

line current, where i = 1 if m passes from 0 to 1, and i = 2 if m passes

from 1 to 2.

2. At the last step in the recursion sum over all possible values for m1 and

m2,

Jh(1, . . . , n− 2, n− 1)

=
∑

m1,m2

V4(1, n− 2, n− 1, P1,n; m1, m2)Jm
1(n−2)(1, . . . , n− 2), (2.18)

where we defined

V4(a, b, c, d; m1, m2) =
〈m1, m2〉4

〈ab〉〈bc〉〈cd〉〈da〉 . (2.19)

We have now derived a way to decompose each MHV amplitude completely in

terms of three-point building blocks. Since the vertices in Eq. (2.12) have the

same functional form as an MHV amplitude, we can in the same way decompose

all the vertices in the recursion (2.12) into three-point objects. Before turning

to this task, let us introduce some notations which are useful to write down the

recursion. Each line in a MHV diagram, as well internal as external, can be

uniquely characterized by the momentum Pi1,i2 flowing through the line, i.e. ,

each line can be labelled by a pair of integers I = (i1, i2), with 1 ≤ i1 ≤ i2 ≤ n.

We refer to such a pair I as a multiindex. In particular, external lines can be

characterized by their momentum pi, and we formalize this by associating the

multiindex I = (i, i) to this line. In general, we have

1. To each line with momentum Pi1,i2 we can associate in a unique way a

multiindex I = (i1, i2) with i1 ≤ i2 defined by PI ≡ Pi1,i2 .

2. A line in a MHV diagram with multiindex I = (i1, i2) is an external line

if and only if i1 = i2.
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(a) = +

(b) = +

Figure 2.3: Recursion for the single-line currents (a) and the double-line cur-
rents (b). A cross indicates an off-shell line.

For later convenience, we introduce the following definitions:

- An on-shell particle with momentum pi = Pi,i is labelled by the multiin-

dex

ı̄ ≡ (i, i). (2.20)

- Kronecker-delta:

δI
J = δi1

j1
δi2
j2

. (2.21)

- Ordering relation:

I < J ⇔ i1 ≤ i2 < j1 ≤ j2. (2.22)

Let us now turn to the decomposition of the higher-point vertices in the re-

cursion (2.12). Merging the recursion relations (2.16 - 2.17) and (2.12) and

replacing indices by multiindices, we obtain a system of recursive relations for

the single and double-line currents,

Jm
UV (1, . . . , n) (2.23)

= δu2
v1−1 V h1h2m

TS

(

(1, u2), (v1, n), U, V
)

Jh1(1, . . . , u2)Jh2(v1, . . . , n)

+ (1− δu2
v1−1)

∑

W
w2=v1−1

V m′hm
TT

(

U, W, (v1, n), U, V
)

× Jm′

UW (1, . . . , v1 − 1)Jh(v1, . . . , n), (2.24)
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Jh(1, . . . , n) (2.25)

=
1

P 2
1,n

n−1
∑

k=1

∑

M1,M2

[

V h1h2h
SS ((1, k), (k + 1, n), (1, n);M1, M2)

× Jh1(1, . . . , k)Jh2(k + 1, . . . , n) (2.26)

+
∑

U<V
v2=k

V mh1h
ST (U, V, (k + 1, n), (1, n);M1, M2)

× Jm
UV (1, . . . , k)Jh1(k + 1, . . . , n)

]

, (2.27)

where a sum over all repeated helicity indices is understood. A graphical rep-

resentation of the recursion can be found in Fig. 2.3. The vertices appearing

in the recursion are given in Table 2.1, and the ε-functions appearing in the

recursion keep track of the helicities,

εhm m′(I) =

{

δMm

I , if h = −1, m = m′ + 1, m ≤ 2
0 , otherwise,

εhI hJ
m (I, J) =



























δM1
I δM2

J , if hI = hJ = −1, m = 2,
δM1
I , if hI = −hJ = −1, m = 1,
δM1
J , if hI = −hJ = 1, m = 1,

1 , if hI = hJ = 1, m = 0,
0 , otherwise,

(2.28)

εhI hJ hK (I, J, K) =

{

δM1
X δM2

Y if hX = hY = −1, h1 + h2 + h3 = −1,
0 , otherwise.

Note that the recursion is formally the same as the BG recursion (1.25), the two

recursions differing only by the exact definition of the currents and the vertices.

Let us conclude this section by noticing that the recursive relations (2.23 - 2.25)

cannot only be used to compute tree-level scattering amplitudes, but, modulo

some small modifications that will be discussed in Chapter 5, they are also

useful to study the infrared behavior of an amplitude.
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I J

K

V hIhJhK

SS (I, J, K; M1, M2) = εhK hI hJ (I, J, K)
〈M1M2〉4

〈IJ〉〈JK〉〈KI〉

I J

UV

V hIhJm
TS (I, J, U, V ) = εhI hJ

m (U, V ) δI
Uδ

J
V

U ′V ′ I

UV

V m′hIm
TT (U ′, V ′, J, U, V ) = εhmm′(J)DV ′

UJ δU ′

U δJ
V

UV J

K

V mhJhK

ST (U, V, J, K; M1, M2) = εhJ hK

|2−m|(J, K)
〈M1M2〉4

〈UV 〉〈V J〉〈JK〉〈KU〉

Table 2.1: Vertices appearing in the recursion for the single and double-line
currents. A cross indicates and off-shell leg.



Chapter 3
Color-dressed recursive
relations

3.1 Recursive relations in gauge theories

In the previous chapters we introduced three different recursive relations to

compute tree-level partial amplitudes. Since partial amplitudes are gauge-

invariant quantities, their computation allows to overcome the problems of

the traditional Feynman diagram expansion, where large sums of non gauge-

invariant diagrams have to be performed. At the end of the day however, the

partial amplitudes must be combined into the full physical amplitude using

the color decomposition formulas presented in Section 1.2. Since the sum in

Eq. (1.4) runs over all non-cyclic permutations of the gluons, at least (n− 3)!

different partial amplitudes need to be computed in order to rebuild the full

physical matrix element. The conclusion is that, whatever the algorithmic

complexity of the recursion is, the last step in the computation, the sum over

color permutations, scales factorially with the number of external particles and

so this approach thus naturally leads to factorial algorithms.

The considerations of the previous paragraph show that the recursions pre-

sented in the previous chapters are not fully suitable for implementations into

computer programs. In this chapter we present a general technique to dress

37
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recursive relations for partial amplitudes with color. We show that it is possible

to write down recursive relations valid at the level of the full colored amplitude,

taking color into account from the start and avoiding in this way the problem

of a factorial growth when summing over colors. Although we only illustrate

this technique on the examples of the BG and BCFW, the technique itself is

generic and could be extended to other cases as well. In particular, in Ref. [14]

the color-dressed version of the recursive formulation of the MHV formalism

was derived. Since the color dressing of these recursive relations does not add

anything new to the discussion and follows exactly the same lines as the color

dressing of the BG recursive relations, we do not include its derivation here

but refer the reader to the literature.

3.2 Color-dressed Berends-Giele recursive re-
lations

In this section we show how to dress the BG recursive relations∗ with color.

We start by defining a color-dressed n-point off-shell current by analogy to the

color decomposition (1.6) valid at the level of the full amplitude†,

J µ
IJ̄

(1, 2, . . . , n) =
∑

σ∈Sn

δJ̄
iσ1

δ
̄σ1
iσ2

. . . δ
̄σn

I Jµ(σ1,σ2 . . . ,σn), (3.1)

where (I, J̄) is the color of the off-shell leg. Similarly, a color dressed tensor

off-shell current reads

J µν
IJ̄

(1, 2, . . . , n) =
∑

σ∈Sn

δJ̄
iσ1

δ
̄σ1
iσ2

. . . δ
̄σn

I Jµν(σ1,σ2 . . . ,σn). (3.2)

After inserting the BG recursive relations (1.25) in the color-flow decomposition

of the color-dressed currents, the three gluon vertex part reads

−i

P 2
1,n

∑

σ∈Sn

n−1
∑

k=1

δJ̄
iσ1

δ
̄σ1
iσ2

. . . δ
̄σn

I V µνρ
3

(

Pσ1,σk
, Pσk+1,σn

)

× Jν(σ1, . . . ,σk)Jρ(σk+1, . . . ,σn),

(3.3)

∗We only study here the case where the four-gluon vertex is decomposed by means of a
fictious tensor particle, Eq. (1.25).

†For clarity, we suppress in this chapter the coupling constant in Eqs. (1.6) and (1.8).
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J̄
I J µ

M
N̄

J ρ

L
K̄

H
Ḡ

N
M̄

J̄
I

G
H̄

K
L̄

J ν

Figure 3.1: Diagrammatic representation of the decomposition (3.5) of the color
factor of the three gluon vertex part.

where

Pσ1,σk
= pσ1 + pσ2 + . . . + pσk

,

Pσk+1,σn = pσk+1 + pσk+2 + . . . + pσn .
(3.4)

The color factor appearing in Eq. (3.3) can be decomposed into (See Fig. 3.1)

δJ̄
iσ1

δ
̄σ1
iσ2

. . . δ
̄σn

I = δJ̄
Gδ

H̄
I δḠ

L δK̄
N δM̄

H δL̄
iσ1

. . . δ
̄σk

K δN̄
iσk+1

. . . δ
̄σn

M . (3.5)

In this decomposition, the color factor can be interpreted as follows:

- δJ̄
Gδ

H̄
I is the color structure of the propagator appearing in the Berends-

Giele recursive relations.

- δL̄
iσ1

. . . δ
̄σk

K is the color structure of the subcurrent Jν(σ1, . . . ,σk), where

the off-shell leg ν has color (K, L̄).

- δN̄
iσk+1

. . . δ
̄σn

M is the color structure of the subcurrent Jρ(σk+1, . . . ,σn),

where the off-shell leg ρ has color (M, N̄).

- δḠ
L δ

K̄
N δM̄

H is part of the color structure of a three gluon vertex to which

the off-shell legs µ, ν, ρ with colors (G, H̄), (K, L̄), (M, N̄) are attached.
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At this level, we have to introduce the concept of ordered partitions of a set E

into two independent parts. An ordered partition of a set E into two indepen-

dent parts is a pair (π1,π2) of subsets of E such that π1⊕π2 = E, which means

(π1,π2) 0= (π2,π1). Furthermore, we call (unordered) partition of a set E into

two independent parts a set {π1,π2} of subsets of E such that π1⊕π2 = E and

{π1,π2} = {π2,π1}. These definitions can be easily extended to partitions of

a set E into n > 2 independent parts, for both the ordered and the unordered

case. In the case encountered here, E = {1, 2, . . . , n}, and we denote the set of

all ordered partitions of n consecutive numbers {1, 2, . . . , n} into p independent

parts by OP (n, p), and the set of all (unordered) partitions of n consecutive

numbers {1, 2, . . . , n} into p independent parts by P (n, p).

Using these definitions, the sum over permutations appearing in Eq. (3.3) can

be decomposed as follows: For a given value of k,

- Choose an ordered partition π = (π1,π2) in OP (n, 2) such that #π1 =

k,where #π1 is the number of elements in the set π1.

- Fix the first k elements of the permutation to be in the subset π1.

- Sum over all permutations of the first k elements and over all permuta-

tions of the last n− k elements.

- Sum over all possible choices for the ordered partition π = (π1,π2).

This is equivalent to the replacement

n−1
∑

k=1

∑

σ∈Sn

→
∑

π∈OP (n,2)

∑

σ∈Sk

∑

σ′∈Sn−k

. (3.6)

The three gluon vertex part now reads

δJ̄
Gδ

H̄
I

−i

P 2
1,n

∑

π∈OP (n,2)

∑

σ∈Sk

∑

σ′∈Sn−k

δḠ
L δK̄

N δM̄
H V µνρ

3

(

Pσπ1 ,σ
πk

, Pσ′

πk+1 ,σ′

πn

)

δL̄
iσ

π1
. . . δ

̄σ
πk

K Jν(σπ1 , . . . ,σπk) δN̄
iσ′

πk+1

. . . δ
̄σ′

πn

M Jρ(σ
′
πk+1 , . . . ,σ′

πn),(3.7)

where π1 = {π1,π2 . . . ,πk} and π2 = {πk+1,πk+2, . . . ,πn} . Clearly, Pσπ1 ,σ
πk

and Pσ′

πk+1 ,σ′

πn
only depend on the choice of the ordered partition π = (π1,π2),
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but not on the order of the elements of π1 and π2. We therefore define

Pπ1 = pπ1 + pπ2 + . . . + pπk , (3.8)

Pπ2 = pπk+1 + pπk+2 + . . . + pπn . (3.9)

It is now possible to identify several subcurrents in this expression, namely

JKL̄
ν (π1) =

∑

σ∈Sk

δL̄
iσ

π1
. . . δ

̄σ
πk

K Jν(σπ1 , . . . ,σπk), (3.10)

JMN̄
ρ (π2) =

∑

σ′∈Sn−k

δN̄
iσ′

πk+1

. . . δ
̄σ′

πn

M Jρ(σ
′
πk+1 , . . . ,σ′

πn), (3.11)

so that the three gluon vertex part reads

δJ̄
Gδ

H̄
I

−i

P 2
1,n

∑

π∈OP (n,2)

δḠ
L δ

K̄
N δM̄

H V µνρ
3 (Pπ1 , Pπ2) JKL̄

ν (π1) JMN̄
ρ (π2), (3.12)

In Ref. [36] it was shown that the (color-dressed) three gluon vertex can be

expressed in the color-flow decomposition as‡

Vµνρ
3 (Pπ1 , Pπ2) = δḠ

L δK̄
N δM̄

H V µνρ
3 (Pπ1 , Pπ2)+δḠ

NδM̄
L δK̄

H V µρν
3 (Pπ2 , Pπ1) . (3.13)

So, finally the three gluon vertex part can be written

δJ̄
Gδ

H̄
I

−i

P 2
1,n

∑

π∈P (n,2)

Vµνρ
3 (Pπ1 , Pπ2)JKL̄

ν (π1) JMN̄
ρ (π2). (3.14)

Let us now turn to the tensor-gluon part in the BG recursive relations (1.25).

From Fig. 3.2 it can be seen that for the s-channel appearing in the decomposi-

tion of the four gluon vertex, each tensor-gluon vertex has the same color-flow

structure as a three gluon vertex. The t-channel contribution is similar. There-

fore the tensor-gluon vertex can be written in the color decomposition

Vµναβ
T = δJ̄

i1δ
̄1
i2
δ̄2I V µναβ

T + δJ̄
i2δ

̄2
i1
δ̄1I V νµαβ

T , (3.15)

where (I, J̄) is the color of the tensor particle. As the tensor-gluon vertex part

has the same color-flow structure as the three gluon vertex, the color dressing

‡For clarity, the color indices of the vertex are not written explicitly.
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Figure 3.2: Color-flow structure of the s-channel contribution to the for gluon
vertex.

for the tensor-gluon part is exactly the same as for the pure gluon part, and

the result is

∑

π∈OP (n,2)

{

δḠ
L δK̄

N δM̄
H V µναβ

T JKL̄
ν (π1)J MN̄

αβ (π2)

+ δḠ
L δK̄

N δM̄
H V νµαβ

T JKL̄
αβ (π1)J MN̄

ν (π2)

}

.

(3.16)

As the sum runs over all elements in OP (n, 2), we can exchange in the last

term π1 and π2. The same holds true for the color indices (K, L̄) and (M, N̄).

The tensor part now becomes, using Eq. (3.15),

∑

π∈OP (n,2)

Vµναβ
T J KL̄

ν (π1)J MN̄
αβ (π2). (3.17)

Hence the color-dressed recursive relations with all four-gluon vertices replaced

by tensor particles read

J IJ̄
µ (1, . . . , n)

= Dµν (P1,n)

[

∑

π∈P (n,2)

Vνρσ
3 (Pπ1 , Pπ2) JKL̄

ρ (π1)JMN̄
σ (π2)

+
∑

π∈OP (n,2)

Vµραβ
T J KL̄

ρ (π1)J MN̄
αβ (π2)

]

.

(3.18)

To complete the color dressing of the Berends-Giele recursive relations, we have

to apply the color dressing method introduced above to the recursive relations

for the off-shell tensor-current. Both the color-dressed vertex and the color-

dressed off-shell tensor-current have the same form as in the pure gluon case
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and the recursive relations for the tensor particle have the same structure as

for the three-gluon vertex part in the previous section. Therefore, one can

immediately write down the color-dressed recursive relations for the off-shell

tensor-current

J IJ̄
µν (1, . . . , n) = iDµναβ Vσραβ

T

∑

π∈P (n,2)

JKL̄
ρ (π1)J MN̄

σ (π2). (3.19)

The two recursive relations, Eqs. (3.18) and (3.19), can be solved simultane-

ously to construct color-dressed gluon off-shell currents for arbitrary n. The full

color-dressed scattering amplitude is then recovered by putting the off-shell leg

on-shell. This result is equivalent to the recursion presented in Ref. [40], as well

as to the Dyson-Schwinger algorithm of Ref. [42] and the ALPHA-algorithm

of Ref. [51]. Recently, the color-dressed BG recursion has been implemented

into the matrix element generator COMIX [52]. It should be noticed that

the color-dressed recursive relations have the same form as the color-ordered

Berends-Giele recursive relations, Eq. (1.25), the only difference between the

color-ordered and the color-dressed case being that in the latter we sum over

unordered objects and no permutations need to be taken into account. This is

a general feature which turns out to be common to all color-dressed recursive

relations.

3.3 Color-dressed BCFW recursive relations

In this section, we apply the same method employed to construct the color-

dressed BG recursive relations to the BCFW recursive relations, presented in

Section 2.2. As in the BCFW recursion, Eq. (2.1), we have to choose two refer-

ence gluons, 1 and n, the color-flow decomposition and the color decomposition

in the fundamental representation are not well suited to dress the BCFW re-

cursive relations with color, because they allow us to fix only one of the two

reference gluons. The most natural color decomposition which allows one to fix

both reference gluons is the color decomposition in the adjoint representation,
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Eq. (1.8). Inserting Eq. (2.1) into Eq. (1.8) for the color-ordered part, one finds

An (1, . . . , n)

=
n−2
∑

k=2

∑

σ∈Sn−2

(F aσ2 . . . F aσn−1 )a1an
Ak+1

(

1̂,σ2, . . . ,σk,−P̂−h
1,σk

)

× 1

P 2
1,σk

An−k+1

(

P̂ h
1,σk

,σk+1, . . . ,σn−1, n̂
)

,

(3.20)

where

P1,σk
= p1 + pσ2 + . . . + pσk

. (3.21)

For a given value of k, the sum over permutations appearing in Eq. (3.20)

can be decomposed in a similar way as for the three-gluon vertex part for the

Berends-Giele recursive relations

- Choose an ordered partition π = (π1,π2) of {2, 3, . . . , n − 2, n− 1} such

that #π1 = k − 1.

- Fix the first k − 1 elements of the permutation to be in the subset π1.

- Sum over all permutations of the first k− 1 elements and over all permu-

tations of the last n− k − 1 elements.

- Sum over all possible choices for the ordered partition π = (π1,π2).

This is equivalent to the replacement

n−2
∑

k=2

∑

σ∈Sn−2

→
∑

π∈OP (n−2,2)

∑

σ∈Sk−1

∑

σ′∈Sn−k−1

, (3.22)

where by OP (n−2, 2) we mean the set of all ordered partitions of {2, 3, . . . , n−
1}. Furthermore, for a fixed value of k, the color factor can be written

(F aσ2 . . . F aσn−1 )a1an
= (F aσ2 . . . F aσk )a1x (F aσk+1 . . . F aσn−1 )xan

, (3.23)

where a sum over x = 1, . . . , (N2
c − 1) is understood. Finally, the propagator

clearly only depends on the choice of the ordered partition π = (π1,π2) and
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not on the order of the elements in π1 and π2. If π1 = {π2,π3, . . . ,πk}, we

define

P1,π1 = p1 + pπ2 + pπ3 + . . . + pπk ,

Pπ2,n = −P1,π1 .
(3.24)

At this point it is possible to identify subamplitudes in the expression for An,

namely

∑

σ∈Sk−1

(

F aσ
π2 . . . F aσ

πk
)

a1x
Ak+1

(

1̂,σπ2 , . . . ,σπk ,−P̂−h
1,π1

)

= Ak+1

(

1̂,π1,−P̂−h,x
1,π1

)

,
∑

σ′∈Sn−k−1

(

F
aσ′

πk+1 . . . F
aσ′

πn−1

)

xan

An−k+1

(

−P̂−h
π2,n,σ′

πk+1 , . . . ,σ′
πn−1 , n̂

)

= An−k+1

(

−P̂−h,x
π2,n ,π2, n̂

)

,

(3.25)

where x is the color of the intermediate gluon. Collecting all the pieces, the

color-dressed BCFW recursive relations read

An(1, 2, . . . , n)

=
∑

π∈OP (n−2,2)

Ak+1

(

1̂,π1,−P̂−h,x
1,π1

) 1

P 2
1,π1

An−k+1

(

P̂ h,x
1,π1

,π2, n̂
)

. (3.26)

We see that using the adjoint color basis, we were able to derive new recursive

relations which allow us to construct the full color-dressed scattering amplitude.

Although the proof of these new recursive relations uses the adjoint color basis,

the final result, Eq. (3.26), is independent of the basis choice. Furthermore,

as in the case of the BG recursive relations, we see that the form of the color-

dressed BCFW recursive relations is the same as in the color-ordered case, with

the difference that in Eq. (3.26) the sum goes over all partitions of {2, 3, . . . , n−
1}, i.e. , over unordered objects. This implies that the color-dressed BCFW

recursive relations have the same properties as in the color-ordered case, namely

1. The definition of the off-shell shifts, Eq. (2.2), is independent of the color.

The shifts are exactly the same in the color-ordered and in the color-

dressed case.
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2. As in the color-ordered BCFW recursive relations, the pole structure of

the scattering amplitude is manifest in Eq. (3.26).

3. Similar to the color-ordered case, the subamplitudes in Eq. (3.26) are not

independent, but they are linked via the off-shell shifts.

The result (3.26) obtained for amplitudes containing only gluons can be easily

extended to include a single quark pair. The BCFW recursive relations for

color-ordered amplitudes still hold when a quark pair is included, where either

a quark or a gluon can be chosen as the intermediate particle [45]. If a quark

is chosen for the internal line, no sum over helicities has to be carried out,

because helicity is conserved all along the fermion line. The BCFW recursive

relations then read

An(1h
q , 2, . . . , n−h

q̄ ) =
n−2
∑

k=2

Ak+1

(

1̂h
q , 2, . . . , k,−P̂−h

q̄,1k

)

× 1

P 2
q,1k

An−k+1

(

P̂ h
q,1k, k + 1, . . . , n− 1, n̂−h

q̄

)

,

(3.27)

where h is the helicity of the quark. Both the recursive relations and the

color decomposition (1.9) have the same form as in the case of a pure gluon

amplitude, with the only difference that instead of working in the adjoint rep-

resentation one now has to work in the fundamental representation of SU(Nc).

So the recursive relations derived in the case of pure gluon amplitudes can be

easily extended to include a single qq̄ pair

An(1h
q , 2, . . . , n−h

q̄ )

=
∑

π∈OP (n−2,2)

Ak+1

(

1̂h
q ,π,−P̂−h,x

q̄,1π

) 1

P 2
q,1π

An−k+1

(

P̂ h,x
q,1π , π̄, n̂−h

q̄

)

. (3.28)

The formula is exactly the same as in the pure gluon case, up to two small

differences:

- no helicity sum has to be carried out

- x = 1, . . . , Nc, because quarks carry a fundamental color index.

It is possible to extend this relation to include photons, by simply taking

(T a) ̄
i = δ ̄

i . (3.29)
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From this it follows that a QED amplitude containing a single qq̄ pair and

(n− 2) photons can be written in terms of color-ordered amplitudes as

AQED
n (1q, 2q̄, 3, . . . , n) =

∑

σ∈Sn−2

An(1q, 2q̄,σ3, . . . ,σn). (3.30)

and so the above recursive relations (3.27) still hold true for QED amplitudes.

This particular result has already been pointed out in Ref. [53]. However, as

shown there, for QED processes it is more efficient to take one of the fermions

and one photon as reference particles. In fact, as there is no photon-photon

vertex, all the terms in the recursive relations where both fermions are in the

same subamplitude vanish, which may save a lot of calculation.

3.4 Discussion and conclusion

In the first part of this work we discussed the computation of tree-level scat-

tering amplitudes in SU(Nc) gauge theories, appearing for example in the

computation of multi-jet cross-sections at hadron colliders. We reviewed sev-

eral techniques that bypass the problem of a factorial growth in the number

of Feynman diagrams, a problem inherent to the non-abelian structure of an

SU(Nc) gauge theory. The main idea is to keep the information coming from

the gauge structure separated from the kinematical dependence. This allows

to define gauge-invariant color-ordered amplitudes that have the information

on the gauge symmetry built in. Several powerful techniques have recently

been developed that have lead to new analytic results for multi-leg scattering

amplitudes that were thought inconceivable a decade ago.

We concentrated in particular on several recursive techniques for the compu-

tation of partial amplitudes. First, the almost traditional BG recursion is very

intuitive from the technical point of view and at the basis of many modern

implementations for the automatic generation of matrix elements. Second, we

reviewed the BCFW recursive relations which have been used to derive new

results that enjoy the property of a particularly simple and compact analytic

structure. Finally, we introduced a new recursive approach based on the MHV

formalism. We showed how to obtain an efficient recursive formulation for MHV
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diagrams by introducing a fictious particle that allows one to build higher-point

MHV vertices recursively. The recursion itself is formulated in terms of cur-

rents, and has a structure which is strikingly similar to the well-known BG

recursive relations.

Even though these recursive techniques are powerful tools for the computation

of partial amplitudes, their use can become inefficient when partial amplitudes

are combined with their relative color factors, an operation which naturally

scales factorially. This step is nevertheless unavoidable to make predictions for

physical quantities, and we therefore introduced a new version of the recursions

that take color into account from the start. The main feature of our approach

is that the form of the recursion is left unchanged, the only difference being

that sums run over unordered objects in the color-dressed case. Furthermore,

if the color-ordered recursion followed by color-decomposition leads naturally

to a factorial growth, the new color-dressed approach in general only scales

exponentially with the number of external particles. This result follows imme-

diately from the fact that the number of building blocks entering the recursion

grows with the number of (ordered) partitions, a number which is well known

to scale exponentially.

In Ref. [14, 54] a (numerical) comparison of the various recursions was per-

formed. In particular, in Ref. [14] explicit numerical implementations of the

color-dressed BG, BCFW and MHV recursive relations were confronted. The

result is that, for numerical purposes, the traditional BG recursion has by far

the best algorithmic behavior for a large number of external particles. The

reason why the twistor-inspired results perform worse has several reasons. On

the one hand, the BCFW recursion suffer from its top-down structure, i.e. ,

due the off-shell shifts we have to reevaluate the subamplitudes for different off-

shell continued momenta at each step in the recursion. On the other hand, the

MHV-inspired recursion looses efficiency due to the larger number of different

vertices that appear in the recursion compared to the BG algorithm.

In conclusion, we have shown how it is possible to dress recursive relations for

partial amplitudes with color. The resulting color-dressed recursive relations

can easily be derived by employing an appropriate color decomposition, and
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retain the same very elegant form of their color-ordered counterparts. In this

respect, it is suggestive to speculate that similar colored relations might be de-

rived also for one-loop amplitudes, for which an analogous color decomposition

holds.
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Chapter 4
Infrared singularities in
scattering amplitudes

4.1 Perturbative expansion of physical observ-
ables

In the first part of this work we presented several techniques for the com-

putation of tree-level scattering amplitudes. In quantum theories, however,

approximating a physical observable by a tree-level computation is very often

insufficient and only orders of magnitude can be obtained. Precise predictions

for physical observables then require the inclusion of quantum corrections, i.e. ,

of higher-order terms in the perturbative expansion.

We start by analyzing the perturbative expansion for a two-particle scattering

with colorless initial states (typically e+e− collisions), and we will comment on

hadron colliders at the end of this section. Let On(p1, . . . , pn) be a function of

n momenta representing an observable O. Then the distribution of O is given

by the perturbative expansion

dσ

dO =
∞
∑

n=2

αn
s

∫

dΦn(p1, . . . , pn; Q)
∣

∣Ān+2(p1, . . . , pn; pe− , pe+)
∣

∣

2 On, (4.1)

53
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with On = δ (O −On(p1, . . . , pn)) and
∣

∣Ān+2

∣

∣

2
denotes the squared matrix

element for 2-to-n scattering, summed over final state and averaged over initial

state quantum numbers, and dΦn is the n particle phase space measure for a

total incoming momentum Q = pe− + pe+ ,

dΦn(p1, . . . , pn; Q) = (2π)4 δ(4)

(

Q−
n
∑

k=1

pk

)

n
∏

k=1

1

(2π)3
d3pk

2Ek
. (4.2)

Using the perturbative expansion of the amplitude in the number of loops,

An+2 =
∞
∑

*=0

α*s A
(*)
n+2, (4.3)

we see that the leading-order (LO) approximation to Eq. (4.1) is just given by

the tree-level result∗,

dσLO

dO = α2
s

∫

dΦ2(pq, pq̄; Q)
∣

∣

∣
Ā(0)

4 (pq, pq̄; pe− , pe+)
∣

∣

∣

2
O2. (4.4)

Expanding Eq. (4.1) to next-to-leading order (NLO) we find contributions from

both the virtual one-loop corrections to the process e+e− → qq̄ as well as the

real corrections coming from the emission of an additional gluon in the final

state,

dσNLO

dO = α3
s

∫

dΦ3(pq, pq̄, pg; Q)
∣

∣

∣
Ā(0)

5 (pq, pq̄, pg; pe− , pe+)
∣

∣

∣

2
O3

+ 2α3
s Re

∫

dΦ2(pq, pq̄; Q)A(1)
4 (pq, pq̄; pe− , pe+)A(0)

4 (pq, pq̄; pe− , pe+)∗ O2,

(4.5)

The NLO result is thus expressed as a sum of two terms with a different number

of final-state particles. As a consequence the two phase space integrals must

be performed independently, but it turns out that each of these two terms is

separately divergent:

1. The loop integral in A(1)
4 in general contains infrared singularities.

2. The matrix element A(0)
5 describing the real correction is singular if a

quarks emits a collinear or soft gluon. The amplitude for such an emission

∗In some cases the LO result is already a one-loop process, e.g. Higgs production via gluon
fusion.
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contains a propagator of the form 1/(pq + pg)2 = 1/(2EqEg(1 − cos θ)),

where θ denotes the angle between the quark and the gluon. It is easy

to see that this quantity is divergent if either pg is collinear to pq, θ = 0,

or if the gluon is soft, Eg → 0. As a consequence the three-body phase

space integral in Eq. (4.5) is divergent.

Let us have a closer look at this problem, and let us start with a very spe-

cial observable, namely the total cross section, obtained by setting On = 1

in Eq. (4.1)†. Although the real and virtual corrections are separately di-

vergent, the Kinoshita-Lee-Nauenberg (KLN) theorem implies that the total

cross-section is finite order by order in perturbation theory. In particular, the

NLO correction to the total cross-section must be finite,

σNLO =2α3
s Re

∫

dΦ2(pq, pq̄; Q)A(1)
4 (pq, pq̄; pe− , pe+)A(0)

4 (pq, pq̄; pe− , pe+)∗

+ α3
s

∫

dΦ3(pq, pq̄, pg; Q)
∣

∣

∣
Ā(0)

5 (pq, pq̄, pg; pe− , pe+)
∣

∣

∣

2

=finite.

(4.6)

Let us now turn to more general observables. In this case, the KLN theorem

does not imply that Eq. (4.5) is finite straightaway, because the two terms differ

by the definition of the observable On. In fact, not all physical observables

are well-defined in the sense that their distributions are finite to all orders

in perturbation theory. In order to get a cancellation between the singular

terms in the real and virtual corrections we need a more restrictive class of

observables. We define a collinear and infrared safe observable O by the two

conditions:

1. Collinear safety:

lim
pi‖pj

On+1(p1, . . . , pi, . . . , pj, . . . , pn+1) = On(p1, . . . , pi +pj , . . . , pn+1).

(4.7)

†We omit the flux factor in the present discussion, because it does not add anything new.
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2. Infrared safety:

lim
pi→0

On+1(p1, . . . , pi, . . . , pn+1) = On(p1, . . . , pi−1, pi+1, . . . , pn+1). (4.8)

For a collinear and infrared safe observable, the quantities O2 and O3 in

Eq. (4.5) become equal in the singular regions, and so the cancellation of the

divergences happens in exactly the same way as for the total cross-section.

Note in particular that this implies that the total cross-section is a collinear

and infrared safe observable.

From the previous discussion it is clear that a thorough understanding of the

infrared behavior of scattering amplitudes is needed to perform higher-order

corrections to physical observables. In particular, as the infrared structure of

the real corrections is determined by the radiation of additional partons in the

final state, the divergences cannot be dependent of the underlying hard scat-

tering, but must be universal and independent of the LO process. In the next

section we will review the description of these universal infrared divergences.

Let us conclude this section by briefly commenting on how to generalize the

previous discussion to hadronic initial states. In the case of colorless initial

states we only had to consider radiation coming from the final state particles.

For hadron collisions, however, the initial state particles are in general them-

selves colored particles, so we need to take into account initial state radiation

as well. Let us consider for example a collision of two protons with momenta

P1 and P2 respectively. Since the proton is a non-perturbative bound state of

partons (quarks and gluons), we cannot directly use the wave functions of the

incoming protons in our perturbative computation. Nevertheless, we can model

the collision by assuming a factorized form for the cross section, given as the

convolution of a (perturbative) partonic cross section with a non-perturbative

quantity describing the probability to find a certain parton inside the proton,

σ(p p → X) =
∑

a,b

∫ 1

0
dx1 dx2 fa(x1) fb(x2) σ̂(a b → X), (4.9)

where the sum runs over all species of partons a and b. σ̂(a b → X) is the

partonic cross section, calculable in perturbation theory and describing the

collision of two partons a and b with momenta pa = x1 P1 and pb = x2 P2
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respectively. fa(x1) and fb(x2) are the so-called parton distribution functions

(PDF’s) and represent the probability to find a parton a (b) inside the proton

carrying a fraction x1 (x2) of the proton momentum. The PDF’s reflect the

internal structure of the proton and are non-perturbative quantities that must

be taken from experiment. The partons a and b are in general colored objects,

and so they can radiate additional gluons that can give rise to additional in-

frared singularities. It can be shown that the divergencies due to initial state

radiation can be reabsorbed into the definition of the parton distribution func-

tions (PDF’s), to the price of making the PDF’s scale dependent. This scale,

known as the factorization scale µF describes the scale at which long-distance

(IR) effects are reabsorbed into the PDF’s. As in this work we are only inter-

ested in final state radiation, we do not investigate this direction further, but

we only quote it for completeness.

4.2 Infrared singularities

4.2.1 Infrared factorization

In this section we analyze more closely the infrared singularities associated to

the emission of soft or collinear gluons. In Section 2.2 we mentioned that poles

in a tree-level partial amplitude arise when an intermediate propagator goes

on-shell, and the residue of the pole P 2
1,n → 0 is given by,

Am(1, . . . , m) −→
∑

h

An+1(1, . . . , n,−P−h
n,m)

1

P 2
1,n

Am−n+1(P
h
1,n, n+1, . . . , m).

(4.10)

In the limit where the particles 1, . . . , n are unresolved (i.e. , soft or collinear),

we can identify in the right-hand side of Eq. (4.10) the amplitude for the hard

scattering of (m − n + 1) particles, Am−n+1(P h
1,n, n + 1, . . . , m). The factor

multiplying the hard scattering depends only on the unresolved particles and

is independent of the hard scattering. Hence, close to a singularity for n un-

resolved particles, a partial amplitude factorizes into a product of a universal

singular factor times the matrix element for the hard scattering. This impor-

tant property is known as infrared factorization. We start by analyzing the
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collinear factorization of color-ordered amplitudes arising when two or more

partons become collinear, and we will analyze the soft and soft-collinear di-

vergencies in subsequent sections. Note that we follow here the conventions of

Ref. [25, 55] and study the factorization properties at the level of the color-

stripped amplitudes. Alternatively, we could also study the infrared behavior

of the matrix element squared
∣

∣Ā
∣

∣

2
[56, 57]. In the case of collinear divergences

this approach leads to the factorization of the matrix element into the matrix

element for the hard scattering times the Altarelli-Parisi splitting function,

which also appears as the kernel of the DGLAP equation. For soft divergences,

however, no exact factorization holds at the amplitude squared level because

the soft particles do not completely decouple from the hard partons, but they

remain color-connected to the hard scattering. We therefore restrict ourselves

to the study of the infrared factorization properties at the color-ordered level,

where the amplitude factorizes exactly in all infrared limits. In the rest of this

section we review how these universal factors describing the soft and collinear

emissions can be extracted from tree-level amplitudes, and we briefly comment

at the end on how to generalize these quantities beyond tree-level.

4.2.2 Collinear factorization

Collinear singularities arise when two or more adjacent particles, say 1, . . . , n,

in a color-ordered amplitude become collinear. In this limit, the amplitude

factorizes as

Am(1, . . . , m) ∼
∑

h

Split−h(1, . . . , n)Am−n+1(P
h, n + 1, . . . , m), (4.11)

where P denotes the combined momentum p1 + . . . + pn, i.e. , the collinear di-

rection. Split−h(1, . . . , n) denotes the tree-level splitting amplitude describing

the collinear splitting of a particle with momentum P and helicity h into n par-

ticles with fixed helicity. The factorization property (4.11) implies that in the

region of phase space where the particles 1, . . . , n are collinear, the amplitude

Am(1, . . . , m) can be approximated by the right-hand side of Eq. (4.11). Ex-

plicit results for tree-level color-ordered splitting amplitudes involving quarks

and gluons have been derived in Ref. [25] up to n = 4 from tree-level impact
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factors and in Ref. [19, 18] using the MHV formalism up to n = 4 for quarks

and up to n = 6 for pure gluon splitting amplitudes. Splitting amplitudes

inherit many properties from the full color-ordered amplitudes. In particular

they are gauge-invariant and fulfill the reflection identity

Split−h(n, . . . , 1) = (−1)n+1 Split−h(1, . . . , n). (4.12)

Since splitting amplitudes are universal quantities, they can be computed once

and for all, independently of the underlying hard scattering process. In the

following we describe a simple algorithm to extract splitting amplitudes from

the full scattering amplitude based on a simple power counting. First we restrict

ourselves to the simplest of all cases, m−n+1 = 4, i.e. , the factorization over

the four-point amplitude,

An+3(1, . . . , n, a+, b−h, c−) ∼ Split−h(1, . . . , n)A4(P
h, a+, b−h, c−). (4.13)

Note that due to the supersymmetric Ward identities (1.18), no sum over the

helicities of the intermediate particle has to be carried out. Furthermore, from

Eq. (1.19) it follows that the hard four-point amplitude always has the simple

analytic structure of an MHV amplitude. The splitting amplitudes can then

be extracted using a simple algorithm, based on a simple power counting:

1. If i and j are particles from the collinear set, rescale the corresponding

spinor products according to

〈ij〉 → t 〈ij〉,

[ij]→ t [ij].
(4.14)

2. Expand the amplitude in powers of t,

An+3(1, . . . , n, a+, b−h, c−)

=
1

tn−1
Split−h(1, . . . , n)A4(P

h, a+, b−h, c−) + O
(

1/tn−2
)

.

(4.15)

The splitting amplitude corresponds to the leading term in the expansion,

i.e. , if i is in the collinear set and a is not in the collinear set, then the
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splitting amplitude corresponds to the coefficient of 1/tn−1, with

〈ai〉 →
√

zi〈aP 〉,

[ai]→
√

zi[aP ],
(4.16)

where zi denote the longitudinal momentum fractions‡, pi = zi P .

Let us illustrate this procedure on the simple case of an MHV amplitude,

Eq. (1.19). For h = +1, the scaling (4.14) gives

An+3(1
+, . . . , n+, a+, b−, c−)

=
1

tn−1

〈bc〉4
〈12〉 . . . 〈(n− 1)n〉√zn〈Pa〉〈ab〉 〈bc〉√z1〈cP 〉

=
1

tn−1

1
√

z1zn 〈12〉 . . . 〈(n− 1)n〉 A4(P
+, a+, b−, c−).

(4.17)

From this expression we immediately read off the MHV-type splitting ampli-

tude Split−(1+, . . . , n+),

Split−(1+, . . . , n+) =
1

√
z1zn 〈12〉 . . . 〈(n− 1)n〉 . (4.18)

Repeating the same argument for h = −1 we find a second MHV-type splitting

amplitude,

Split+(1+, . . . , i−, . . . , n+) =
z2

i√
z1zn 〈12〉 . . . 〈(n− 1)n〉 . (4.19)

Similar relations can be derived for MHV-type splitting amplitudes. Note how-

ever that for more general helicity assignments no generic formula for arbitrary

n can be given. In Chapter 5 we will present a recursive algorithm that allows

to compute splitting amplitudes for an arbitrary number of gluons for a given

helicity configuration.

4.2.3 Soft factorization

The factorization of an amplitude in the soft limit is very different from the

collinear one. Let us consider a pure gluon color-ordered amplitude at tree-

level. This amplitude displays an infrared divergence as some of the gluons

‡From momentum conservation it follows immediately that z1 + . . . + zn = 1.
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become soft, i.e. , some of the gluon energies vanish. Two different cases might

occur, the color-connected and the color-disconnected one, that need to be

considered separately [55].

Let us first consider the color-connected case where the soft gluons are all

adjacent in the color-ordered amplitude, say s1, . . . , sn. The amplitude then

factorizes as

Am(1, . . . , a, s1, . . . , sn, b, . . . , m)

∼ Soft(a, s1, . . . , sn, b)Am−n(1, . . . , a, b, . . . , m),
(4.20)

where Soft(a, s1, . . . , sn, b) is a universal function, called soft factor, describing

the emission of n unresolved soft gluons from the hard amplitude. This factor-

ization implies that in the region of phase space where the particles s1, . . . , sn

become soft, the amplitude Am(1, . . . , a, s1, . . . , sn, b, . . . , m) can be approxi-

mated by the right-hand side of Eq. (4.20). The (color-ordered) soft factor

Soft(a, s1, . . . , sn, b) defined in this way depends on the momenta and the he-

licities of the soft particles, and also on the particles a and b color-connected to

the soft set. The soft factors are, however, independent of the helicities of the

particles a and b [32]. Furthermore, it is quite easy to see that the soft factors

again satisfy the reflection identity,

Soft(b, n, . . . , 1, a) = (−1)n Soft(a, 1, . . . , n, b). (4.21)

The color-disconnected case corresponds to the situation where the soft parti-

cles are not all adjacent, but separated by at least one hard gluon. In this case

the factorization is, e.g. for two sets of soft particles,

Am(1, . . . , a, s1, . . . , sn, b, . . . , c, t1, . . . , tl, d . . . , m)

∼ Soft(a, s1, . . . , sn, b) Soft(c, t1, . . . , tl, d)Am−n−l(1, . . . , a, b, . . . , c, d, . . . , m),

(4.22)

i.e. , the color-disconnected soft factors are just products of the corresponding

color-connected soft factors. In the rest of this work we will thus only deal with

the color-connected case.

Similar to the case of splitting amplitudes, soft factors are universal quantities

that can be calculated once and for all. We therefore again restrict the com-
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putation to the simplest of all cases, namely where the hard amplitude is an

MHV amplitude,

An+4

(

a+, 1, . . . , n, b+, c−, d−
)

∼ Soft(a, 1, . . . , m, b)A4

(

a+, b+, c−, d−
)

. (4.23)

Note that as the soft factor is independent of the helicities of the hard particles

a and b, it is unaffected by the helicity assignment in the hard part. The soft

factors can be obtained by a simple power counting algorithm:

1. Rescale all spinor products according to

〈ij〉 → t2 〈ij〉,

〈aj〉 → t 〈aj〉,

[ij] → t2 [ij],

[aj] → t [aj],

sij → t4 sij ,

saj → t2 saj .

(4.24)

2. Expand the amplitude in powers of t,

An+4(a
+, 1, . . . , n, b+, c−, d−)

=
1

t2n
Soft(a, 1, . . . , m, b)A4

(

a+, b+, c−, d−
)

+ O
(

1/t2n−1
)

,

(4.25)

where the dots indicate terms which are less divergent than 1/t2n. The

soft factor then corresponds to the leading term in the expansion.

Let us again illustrate this procedure on an MHV example. Using the scal-

ing (4.24), we find

An+4(a
+, 1+, . . . , n+, b+, c−, d−)

=
1

t2n

〈bc〉4

〈a1〉〈12〉 . . . 〈nb〉〈bc〉〈cd〉〈da〉

=
1

t2n

〈ab〉
〈a1〉 . . . 〈nb〉 A4(a

+, b+, c−, d−).

(4.26)

Hence, the tree-level MHV-type soft factor reads,

Soft(a, 1+, . . . , n+, b) =
〈ab〉

〈a1〉 . . . 〈nb〉 . (4.27)
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Note that we could have derived the same result using a different helicity assign-

ment for the hard particles a, b, c, d. Also note that an MHV amplitude only

exhibits soft divergencies when a positive-helicity gluon becomes soft, because

for a negative-helicity soft gluon the scaling (4.24) only generates subleading

terms in 1/t2n−4. We could have anticipated this result from the fact that in

this case the hard amplitude only contains a single negative-helicity gluon, and

hence vanishes due to Eq. (1.18).

4.2.4 Infrared factorization beyond tree-level

We conclude this section by briefly commenting on how collinear and soft fac-

torization generalizes beyond tree-level. In Ref. [58] it was shown that collinear

factorization holds to all orders in perturbation theory, and in the limit where

two particles becomes collinear, an L-loop amplitude factorizes according to

A(L)
n (1, 2, . . . , n) =

L
∑

*=0

∑

h

Split(*)−h(1, 2)A(L−*)
n−1 (P h, 3, . . . , n). (4.28)

In this formula Split(*)−h denotes the !-loop splitting amplitude, and Split(0)−h cor-

responds to the tree-level splitting amplitudes defined in Section 4.2.2. Splitting

amplitudes are known up to NNLO [6, 59, 60, 61, 62], and in particular, the

NLO splitting amplitudes in dimensional regularization through O(ε0) read

(the result is given in the euclidean region where all invariants are taken to be

negative),

Split(1)+ (1−, 2−) = (Gf + Gn) Split(0)+ (1−, 2−),

Split(1)+ (1±, 2∓) = Gn Split(0)+ (1±, 2∓),

Split(1)+ (1+, 2+) = −Gf 1
√

z1z2

[12]

〈12〉2 ,

(4.29)

where the coefficients Gf and Gn are given by

Gf =
1

48π2

(

1− Nf

Nc

)

z1z2 + O(ε),

Gn = cΓ

[

− 1

ε2
z−ε
1 z−ε

2

(

µ2

−s12

)ε

+ 2 ln z1 ln z2 −
π2

6

]

+ O(ε),

(4.30)
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with

cΓ =
Γ(1 + ε)Γ2(1− ε)

(4π)2−εΓ(1− 2ε)
, (4.31)

and Γ(z) denotes the Euler Γ function,

Γ(z) =

∫ ∞

0
dt tz−1 e−t. (4.32)

Note the appearance of the splitting amplitude Split(1)+ (1+, 2+) which vanishes

at tree-level due to the supersymmetric Ward identities.

Unlike collinear factorization, soft factorization was only shown to hold up to

one-loop accuracy in the perturbative expansion,

A(1)
n (1, 2, . . . , n)

= Soft(1)(1, 2, 3)A(0)
n−1(1, 3, . . . , n) + Soft(0)(1, 2, 3)A(1)

n−1(1, 3, . . . , n),

(4.33)

with

Soft(1)(a, 1, b) = −Soft(0)(a, 1, b) cΓ
1

ε2

(

µ2(−sab)

(−sa1)(−s1b)

)ε
πε

sinπε
, (4.34)

where Soft(1) denotes the one-loop soft factor, and Soft(0) is the tree-level soft

factor defined in Section 4.2.3.

4.3 Subtraction schemes

In Section 4.1 we discussed that the infrared singularities in the real and virtual

corrections contributing to the NLO correction mutually cancel for a collinear

and infrared safe physical observable. Although the full NLO result is finite,

we cannot use Eq. (4.5) directly in numerical computer programs because the

real and virtual phase space integrals have to be performed independently. To

regularize the integrals, we add and subtract an approximate cross-section to

Eq. (4.5) which exactly cancels the divergencies in the real correction [63],

dσNLO

dO =

∫

dσV
2 O2 +

∫

dσR,app
3 O3 +

∫

[

dσR
3 − dσR,app

3

]

O3, (4.35)
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where we defined

dσV
2 = dΦ2 2 ReA(1)

2 A(0)∗
2 and dσR

3 = dΦ3

∣

∣

∣
Ā(0)

3

∣

∣

∣

2
, (4.36)

and dσR,app
3 denotes the approximate cross-section such that

(

dσR
3 − dσR,app

3

)

is finite in every phase space point. If O denotes a collinear and infrared save

observable, the KLN theorem implies that the sum of the first two terms in

Eq. (4.35) is finite as well. We have seen in the previous section that the

infrared behavior of tree-level amplitudes can be described by the universal

splitting amplitudes and soft factors, and so the approximate cross-section can

be constructed completely from these quantities,

dσR,app
3 = dΦ3

∑

r

[

∑

i+=r

1

2
Cir + Sr −

∑

i+=r

SCir

] ∣

∣

∣
Ā(0)

2

∣

∣

∣

2
. (4.37)

The sum runs over all (pairs) of unresolved particles, and Cir and Sr denote

universal collinear and soft counterterms constructed from the splitting ampli-

tudes and soft factors defined in the previous section§. The term SCir accounts

for the overlapping between the soft and collinear regions of phase space and

has to be added in order to avoid double counting of divergent phase space

points.

Eq. (4.37), however, cannot yet serve as an approximate cross section because

the factorization formulas presented in Section 4.2 are only true in the strict

singular limit. To overcome this issue, we perform a change of variable in the

three-body phase space integral,

{pi} = {pq, pq̄, pg}→ {p̃i; pr} = {p̃q, p̃q̄; pr}, (4.38)

such that all particles stay on shell and momentum is conserved, p̃2
i = p2

r = 0

and p̃q + p̃q̄ = pq + pq̄ + pg. An explicit example of such a change of variable

can be found in Ref. [63]. In these new variables the approximate cross-section

reads

dσR,app
3 = [dp1;2] C

(

pr

)

dσB
2 , (4.39)

§Note that in practise the counterterms have a slightly more complicated form because of
color connections between the unresolved and the hard partons. Since in this work we only
want to give a flavor of how to construct a subtraction scheme at NLO, we neglect all color
connections in Eq. (4.37).
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where dσB
2 = dΦ2

∣

∣

∣
Ā(0)

2

∣

∣

∣

2
denotes the Born-level cross-section and C denotes

the counterterm in the new variables,

C({p̃i}, pr) =
∑

r

[

∑

i+=r

1

2
Cir + Sr −

∑

i+=r

SCir

]

∣

∣{p̃i;pr}
(4.40)

and

[dp1;2] = J2

(

{p̃i}, pr; P
) 1

(2π)3
d3pr

2Er
, (4.41)

denotes the phase space measure of the unresolved particle and J2 is the jaco-

bian of the change of variable. Using this representation for the approximate

cross-section, Eq. (4.35) becomes

dσNLO

dO =

∫

[

dσV
2 + dσB

2

∫

[dp1;2] C
]

O2 +

∫

[

dσR
3 − dσB

2 [dp1;2] C
]

O3,

(4.42)

The two phase space integrals in Eq. (4.42) are both finite, and they can be

integrated numerically independently from each other. Note that not only the

counterterm C appears in Eq. (4.42), but also its integral over the phase space

of the unresolved particle. Since this one-particle integral is independent of

the hard matrix element, it can be done analytically once and for all. This

integral is however divergent and needs to be regularized, an issue that will

be addressed in Chapter 6 where we discuss the integration of some real vir-

tual counterterms for an NNLO subtraction scheme. That the counterterms

in Eq. (4.42) are independent of the underlying hard scattering. For this rea-

son, the scheme described above is universal, and does not only apply to the

specific process e+e− → qq̄ at NLO. A generic algorithm for next-to-leading

order subtraction has already been developed a decade ago in Ref. [20], where

also initial state radiation was taken into account. Recently, a generic NNLO

subtraction scheme has been proposed [21, 22, 24]. The construction of a sub-

traction scheme at higher orders is much more complicated than in the NLO

case, because of several overlapping singular regions of phase space. In order to

overcome this problem, a new type of factorization has been proposed, called

antenna factorization, which takes into account the overlapping of the singular

regions from the start.
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4.4 Antenna factorization

In the previous section, we reviewed the basic ideas of an NLO subtraction

scheme. The counterterm used to regulate the soft and collinear divergences

was constructed from the universal factorization properties of gauge theory

amplitudes in the soft and collinear limits, and we pointed out that beyond NLO

this procedure may become cumbersome due to overlapping singular regions

of phase space. In this section we present an alternative way to construct

counterterms for subtractions schemes, not based on the universal soft factors

and splitting amplitudes, but on a more general object, the so-called antenna

function [15, 16, 64].

Let us consider an m-point pure gluon amplitude Am(a, 1, . . . , n, b, . . . , m). The

singular limit for the particles 1, . . . , n is defined as the limit where the particles

1, . . . , n are either collinear to a, collinear to b, or soft. An antenna function for

n unresolved particles is defined as any function Ant(âhâ , b̂hb̂ ← a, 1, . . . , n, b)

that reproduces the correct singular limits. If splitting amplitudes and soft

factors represent the residues of an amplitude, antenna function can be seen,

loosely speaking, as the sum of all residues for n unresolved particles. Note that,

at variance with the splitting amplitudes and the soft factors, this definition

does not lead to unique functions, because two antenna function could contain

all the correct poles but differ by the finite part. Nevertheless, in the singular

regions of phase space the amplitude can be approximated by

Am(a, 1, . . . , n, b, . . . , m)

∼
∑

hâ,hb̂

Ant(âhâ , b̂hb̂ ← a, 1, . . . , n, b)Am−n(â−hâ , b̂−hb̂ , . . . , m), (4.43)

where pâ and pb̂ are the so-called reconstruction functions,

pâ = fâ(a, 1, . . . , n, b),

pb̂ = fb̂(a, 1, . . . , n, b).
(4.44)

The reconstruction functions satisfy the following properties:

1. On-shellness, p2
â = p2

b̂
= 0.

2. Momentum conservation, pâ + pb̂ = pa + p1 + . . . + pn + pb.



68 Chapter 4. Infrared singularities in scattering amplitudes

3. They reduce to the right expressions in the various singular limits, e.g. if

1, . . . , n become collinear to a, then pâ → pa + p1 + . . . + pn and pb̂ → pb.

4. They leave the leading pole unchanged.

The explicit expressions for the reconstruction functions of Ref. [16] are col-

lected in Appendix A. The reconstruction functions play the role of the change

of variables introduced in the previous section. In this sense, antenna functions

have the phase space mapping needed to define a subtraction scheme built in.

As already pointed out, the definition of an antenna function is not strict

enough to uniquely fix its functional form and several definitions can be found in

the literature. In Ref. [16], Kosower presented a way to build antenna functions

based on the BG recursive relations presented in Section 1.4. In Refs. [65, 66,

67], Gehrmann et al. defined antenna functions as ratios between the full and

the hard squared matrix elements and applied their antenna functions to the

computation of the event shapes for e+e− → 3 jets at NNLO. In the next

chapter, we present an alternative definition for antenna functions based on

the MHV formalism, and we study the properties special to this approach.



Chapter 5
Antenna functions from MHV
rules

5.1 Power counting for antenna functions in the
MHV formalism

In Section 2.3 we presented the MHV formalism and the BCFW recursion, two

powerful tools to calculate partial amplitudes. Since the twistor inspired tech-

niques are built around the collinear factorization properties of an amplitude,

one can naturally ask whether they can also be used to compute splitting am-

plitudes and/or soft factors. In Refs. [19, 18], Birthwright et al. derived a rule

to compute splitting amplitudes by means of the MHV formalism and applied

this technique to obtain very compact formulas for several classes of splitting

amplitudes. In the following we extend this rule such that they do not only

describe the collinear behavior of an amplitude, but the full infrared behavior,

i.e. , the antenna functions.

We start by introducing the notion of MHV pole structures of an amplitude.

We know that in the MHV formalism the building blocks are MHV ampli-

tudes, continued off shell using Eq. (2.7) and connected by scalar propagators.

Since MHV amplitudes are purely holomorphic objects, antiholomorphic spinor

69
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products can enter the final expression for the amplitude only in a very limited

way. A first source are the scalar propagators, where antiholomorphic spinor

products enter through the relation sij = 〈ij〉[ji]. There is a second source,

related to the off-shell continued spinor products inherent to the MHV formal-

ism, Eq. (2.7). Since η is arbitrary and the physical result must be independent

of it, all spinor products involving η must cancel in the end. Hence, the only

source of antiholomorphic spinor products are the scalar propagators in the

MHV diagrams. Furthermore, we know that the number of propagators in an

amplitude is linked to the number of negative helicity gluons through Eq. (2.8).

Thus, we conclude that the only place where antiholomorphic spinor products

enter an amplitude for n− negative-helicity gluons (and an arbitrary number of

positive-helicity gluons) are the p = n− − 2 scalar propagators. We formalize

this by saying that the MHV pole structure of an amplitude is of the form

A ∼ 1

[ ]n−

f(〈 〉). (5.1)

Let us now extend this definition to splitting amplitudes. We know that in the

collinear limit, the amplitude must factorize according to Eq. (4.11). Since the

MHV pole structures of the amplitudes are known, it is a trivial exercise to

match the pole structure on both sides of Eq. (4.11) and to extract the MHV

pole structure of splitting amplitudes,

Split− ∼
1

[ ]n−

f(〈 〉),

Split+ ∼
1

[ ]n−−1
f(〈 〉),

(5.2)

where n− is the number of negative-helicity gluons in the collinear set. This

result was first derived in Ref. [19, 18] and has far reaching consequences. To

see this, let us consider the simplest of all cases where we choose the hard

amplitude to be a four-point amplitude, Eq. (4.13). The hard amplitude on

the right-hand side is an MHV amplitude, so the MHV pole structure is trivial,

A4(P
h, a+, b−h, c−) ∼ 1

[ ]0
f(〈 〉), (5.3)

or equivalently, the splitting amplitude must have the same MHV pole struc-

ture as the amplitude on the left-hand side of Eq. (4.13). Since the splitting
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amplitude captures only the leading collinear singularity, we conclude that in

the collinear limit only those MHV diagrams contribute where all scalar prop-

agators go on-shell. In other words, we can refine our algorithm to compute

splitting amplitudes of Section 4.2.2 in such a way that we do not need to

compute the full amplitude on the left-hand side of Eq. (4.13), but it is enough

to consider only a subset of MHV diagrams, namely those where all scalar

propagators go on shell.

After having identified this limited set of MHV diagrams that contribute in the

collinear limit, let us see what the scaling rules (4.16) become in the collinear

limit. It is easy to show that,

〈a Pi,j〉 → 〈a P 〉[P η]
j

∑

α=i

zα,

〈k Pi,j〉 → [P η]
j

∑

α=i

√
zα〈k α〉,

〈Pi,j Pk,l〉 → [P η]2
j

∑

α=i

l
∑

β=k

√
zαzβ〈αβ〉,

(5.4)

where a is a particle which is not in the collinear set, k is in the collinear set,

and Pi,j and Pk,l only contain particles from the collinear set. Introducing the

following notation∗

∆(i, j; k) =
j

∑

α=i

√
zα〈k α〉,

∆(i, j; k, l) =
j

∑

α=i

l
∑

β=k

√
zαzβ〈αβ〉 ,

(5.5)

Eq. (5.4) becomes

〈k Pi,j〉 → [P η]∆(i, j; k),

〈Pi,j Pk,l〉 → [P η]2∆(i, j; k, l).
(5.6)

As already stated in Chapter 2, η is an arbitrary spinor that can be thought

as parametrizing the gauge-dependence of a quantity. As in the collinear limit

the only η dependence is in [Pη], we can neglect these spinor products, i.e. ,

∗These notations differ slightly from those used in Refs. [19, 18].
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we set [Pη] = 1. We can summarize the previous discussion in the following

rule, which was first presented in Ref. [19, 18] and which gives a refinement to

the algorithm to compute splitting amplitudes presented in Section 4.2.2:

Rule 5.1 (Collinear MHV rules).

1. Consider all MHV diagrams contributing to the collinear limit of the (n+

3)-point amplitude An+3

(

1, . . . , n, (n + 1)+, (n + 2)−h, (n + 3)−
)

. This

set is obtained by including the diagrams where all the scalar propaga-

tors go on-shell in the collinear limit, or equivalently, the diagrams where

(n + 1), (n + 2) and (n + 3) are attached to the same MHV vertex.

2. Go to the collinear limit by applying the rules in Eq. (5.4).

3. Divide out the hard four-point amplitude A4

(

P h, (n+1)+, (n+2)−h, (n+

3)−
)

.

In the rest of this section we show how it is possible to extend this procedure

to the extraction of antenna functions. To do so, first one has to find the

MHV diagrams that contribute to a given singular limit, i.e. , the MHV pole

structures of the antenna function, similar to Eq. (5.2), have to be identified.

Let us start with the soft limits in the MHV construction. To be concrete, let

us consider an (n + 4)-point gluon amplitude An+4(a, 1, . . . , n, b, c, d), where

the gluons 1, . . . , n become soft. The amplitude then factorizes according to

Eq. (4.23). The soft factor can be easily calculated using the following re-

sult [57],

Rule 5.2 (Gluon insertion rule).

In the soft limit, only Feynman diagrams where the soft gluons are radiated

from the external legs of the hard amplitude contribute.

The proof of the gluon insertion rule, based on simple power counting argu-

ments, is presented in Appendix B.1.
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Figure 5.1: Possible MHV diagrams where a soft gluon is radiated between the
external legs a and b. The dashed line corresponds to a soft gluon.

Rule 5.2 allows an easy identification of the Feynman diagrams corresponding to

the emission of additional soft gluons. In order to establish the MHV pole struc-

ture of the soft emission, we need to generalize this result to MHV diagrams.

Let us consider an (n+4)-point gluon amplitude An+4(a, 1, . . . , n, b, c, d), where

the gluons 1, . . . , n become soft. Rule 5.2 states that in the soft limit only those

Feynman diagrams contribute where the soft particles are radiated from the

external legs a and b. However, it is easy to see that, given the helicity con-

figuration, only negative-helicity gluons can be radiated from the external legs

in the MHV formalism (a positive-helicity gluon would lead to a three-point

MHV vertex with two positive-helicity gluons). The positive-helicity gluons

must thus be radiated only from the MHV vertex which builds up the hard

amplitude. Note that this is consistent with the gluon insertion rule (cf. the

soft factorization of a pure MHV-amplitude). Similar considerations hold true

for different helicity assignments of the particles a, b, c, d in the hard amplitude.

This leads us to the following new formulation of the gluon insertion rule, valid

for MHV diagrams (See Fig. 5.1),

Rule 5.3 (Gluon insertion rule in the MHV formalism).

In the soft limit, only MHV diagrams where negative-helicity soft gluons are

radiated from the external legs a and b or positive-helicity soft gluons from the

MHV vertex that forms the hard amplitude contribute.

Note that the gluon insertion rule is very restrictive on the possible diagrams

(Fig. 5.1), because it forces the hard gluons c and d to be attached to the same

MHV vertex. Thus only a small number of MHV diagrams contribute in the

soft limit. Furthermore it is easy to see that, similar to Rule 5.1, this class of

diagrams is exactly that where all scalar propagators go on-shell.
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We now turn to the MHV pole structure of soft limits. Consider the situation

where the set {1, . . . , n} contains ns negative-helicity gluons. The set {a, b, c, d}
contains two additional negative-helicity gluons, so that the hard amplitude

A4(a, b, c, d) is an MHV-amplitude. Using Eq. (2.8), we obtain the number of

MHV propagators in the (n+4)-point amplitude, p = (ns +2)−2 = ns. As the

hard four-point amplitude does not contain any MHV propagator, we come to

the conclusion that a soft factor containing ns negative-helicity gluons has the

following MHV pole structure

Soft ∼ 1

[ ]ns
f(〈 〉). (5.7)

Note that this result is in agreement with the MHV-type soft factors derived

in Chapter 4,

Soft(a, 1+, . . . , n+, b) =
〈ab〉

〈a1〉 . . . 〈nb〉 ∼
1

[ ]0
f(〈 〉),

Soft(a, 1−, . . . , n−, b) = (−1)n [ab]

[a1] . . . [nb]
∼ 1

[ ]n
f(〈 〉).

(5.8)

We can extend this result to the case of color-connected soft/collinear limits†.

Let us consider to this effect the amplitude An+3(a, 1, . . . , k, . . . , n, b, c) in the

limit where 1, . . . , k are soft and k + 1, . . . , n are collinear. In this limit the

amplitude can be approximated by [55]

An+3(a, 1, . . . , k, . . . , n, b, c)

∼
∑

h

S(a; 1, . . . , k; k + 1 . . . , n)Split−h(k + 1, . . . , n)A4

(

a, P h, b, c
)

,

(5.9)

where S denotes a universal soft factor. In Ref. [55] it was shown that S
can be obtained by taking the leading soft behavior in the splitting amplitude

Split−h(1, . . . , n), i.e.

Split−h(1, . . . , n) ∼ S(a; 1, . . . , k; k + 1 . . . , n)Split−h(k + 1, . . . , n). (5.10)

We now determine the MHV pole structure by applying the gluon insertion

rule 5.3 to the splitting amplitude Split−h(k+1, . . . , n). From Rule 5.1 we know

†The color-disconnected case is trivial.
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that in the limit where k + 1, . . . , n are collinear, only those MHV diagrams of

An−k+3(a, k + 1, . . . , n, b, c) contribute where a, b, c are attached to the same

MHV vertex. We apply Rule 5.3 to attach additional soft gluons to this set of

diagrams. It is easy to see that, in consistency with Eq. (2.8),

• as soft negative-helicity gluons can only be emitted from the external

lines, we add a new divergent propagator to the diagram each time we

add a soft negative-helicity gluon.

• for the emission of soft positive-helicity gluons, the number of MHV prop-

agators is left unchanged.

Hence, if ns denotes the number of soft negative-helicity gluons in the set

{1, . . . , k}, we add ns new divergent propagators do the diagrams, and so

• if h = +1,

S(a; 1, . . . , k; k + 1 . . . , n) Split−(k + 1, . . . , n)

∼ 1

[ ]ns

1

[ ]n−

∼ 1

[ ]ns+n−

,
(5.11)

• if h = −1,

S(a; 1, . . . , k; k + 1 . . . , n) Split+(k + 1, . . . , n)

∼ 1

[ ]ns

1

[ ]n−−1
∼ 1

[ ](ns+n−)−1
,

(5.12)

where n− is the number of negative-helicity gluons in the collinear set

{k + 1, . . . , n}.

We can now turn to the case of antenna functions. By definition, an antenna

function contains all possible infrared singularities, both soft and collinear. We

analyze the MHV pole structures of the antenna functions, using the fact that

they reproduce the known MHV pole structures in the various soft and collinear

limits.

Let us start with Ant(â−, b̂− ← a, 1, . . . , n, b), and let us consider the MHV

pole structures of the different soft and collinear singularities contained in this
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antenna function. Let n− denote the number of negative helicities in the set

{1, . . . , n} and N− the number of negative helicities in the set {a, 1, . . . , n, b}.
Then we have the following possibilities:

• p1, . . . , pn ‖ pa

In this limit we have pâ → P ≡ pa + p1 + . . . + pn and pb̂ → pb, and

Ant(â−, b̂− ← a, 1, . . . , n, b)

→ Split−(a, 1, . . . , n) ∼ 1

[ ]na
∼ 1

[ ]N−

,
(5.13)

where na is the number of negative helicities in the set {a, 1, . . . , n}, and

na = N−. Note that if pb̂ → pb, then hb = −hb̂ = +1.

• p1, . . . , pn ‖ pb

In this limit we have pâ → pa and pb̂ → P ≡ p1 + . . . + pn + pb, and

Ant(â−, b̂− ← a, 1, . . . , n, b)

→ Split−(1, . . . , n, b) ∼ 1

[ ]nb
∼ 1

[ ]N−

,
(5.14)

where nb is the number of negative helicities in the set {1, . . . , n, b}, and

nb = N−. Since pâ → pa, then ha = −hâ = +1.

• p1, . . . , pn → 0

In this limit we have pâ → pa and pb̂ → pb, and

Ant(â−, b̂− ← a, 1, . . . , n, b)

→ Soft(a, 1, . . . , n, b) ∼ 1

[ ]n−

∼ 1

[ ]N−

,
(5.15)

and n− = N− because if pâ → pa, then ha = −hâ = +1 and if pb̂ → pb,

then hb = −hb̂ = +1.

• p1, . . . , pi−1 ‖ pa and pi, . . . , pj → 0 and pj+1, . . . , pn ‖ pb.

In this limit we have pâ → pa+p1+. . .+pi−1 and pb̂ → pj+1+. . .+pn+pb,

and

Ant(â−, b̂− ← a, 1, . . . , n, b)

→ Split−(a, 1, . . . , i− 1) Split−(j + 1, . . . , n, b)

× S(a, 1, . . . , i− 1; i, . . . , j; j + 1, . . . , n, b)

∼ 1

[ ]na

1

[ ]ns

1

[ ]nb
∼ 1

[ ]N−

,

(5.16)
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where na, ns and nb are the numbers of negative-helicity gluons in the

sets {a, 1, . . . , i − 1}, {i, . . . , j} and {j + 1, . . . , n, b} respectively, and

na + ns + nb = N−.

We are therefore able to conclude that

Ant(â−, b̂− ← a, 1, . . . , n, b) ∼ 1

[ ]N−

f(〈 〉). (5.17)

Similar arguments for the other helicity assignments lead to

Ant(â−, b̂+ ← a, 1, . . . , n, b) ∼ 1

[ ]N−−1
f(〈 〉),

Ant(â+, b̂− ← a, 1, . . . , n, b) ∼ 1

[ ]N−−1
f(〈 〉),

Ant(â+, b̂+ ← a, 1, . . . , n, b) ∼ 1

[ ]N−−2
f(〈 〉).

(5.18)

Eqs. (5.17 - 5.18) are the analogues for antenna functions of Eq. (5.2) for

splitting amplitudes. We now show that, as it was already the case for splitting

amplitudes, the MHV pole structure allows us to identify a priori the set of

MHV diagrams that contributes to the singular limit.

Let us start with Ant(â−, b̂− ← a, 1, . . . , n, b), and consider an (n + 4)-point

amplitude An+4(a, 1, . . . , n, b, c−, d−). In the limit where the particles 1, . . . , n

become singular, the amplitude exhibits the factorization (4.43),

An+4(a, 1, . . . , n, b, c−, d−) ∼ Ant(â−, b̂− ← a, 1, . . . , n, b)A4(â
+, b̂+, c−, d−).

(5.19)

If N− denotes the number of negative-helicity gluons in the set {a, 1, . . . , n, b},
then the number of MHV propagators in the (n + 4)-point amplitude is p =

(N− + 2)− 2 = N−. From Eq. (5.17) we know that the MHV pole structure of

this antenna function is

Ant(â−, b̂− ← a, 1, . . . , n, b) ∼ 1

[ ]N−

f(〈 〉), (5.20)

and thus the MHV diagrams contributing to the antenna function are exactly

those where all scalar propagators go on-shell. Similar conclusions can be drawn

for the other helicity configurations. This brings us to the first important

conclusion that Rule 5.1 can be generalized to antenna functions:
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Rule 5.4. The MHV diagrams that contribute to the singular limit of the

(n + 4)-point amplitude An+4(a, 1, . . . , n, b, c−, d−) are exactly those were all

scalar propagators go on-shell.

5.2 Diagrammatic evaluation of antenna func-
tions

In the previous section we showed that in the MHV formalism the MHV

diagrams which contribute to the singular limit are exactly those where all

scalar propagators go on-shell. This result is an extension of the corresponding

Rule 5.1 for splitting amplitudes. For the antenna functions, however, it is

possible to go one step further. We note that keeping only those MHV dia-

grams where all propagators go on-shell is equivalent to requiring that c and d

must be attached to the same m-point MHV vertex with m ≥ 4. We therefore

formulate the following rule, which provides at the same time a possible new

definition for antenna functions by means of MHV diagrams,

Rule 5.5 (MHV rules for antenna functions).

The antenna function Ant(âhâ , b̂hb̂ ← a, 1, . . . , n, b) can be calculated by evalu-

ating all MHV diagrams contributing to An+4(a, 1, . . . , n, b, âhâ, b̂hb̂) and where

â and b̂ are attached to the same m-point MHV vertex, with m ≥ 4.

This result, which is proven analytically in Appendix B.2, allows to directly

build all antenna functions using the MHV formalism and the related MHV

diagrams. It is possible to identify a priori the MHV diagrams that contribute

to the singular limit, and it is thus not necessary to evaluate all the MHV

diagrams that contribute to the full amplitude An+4(a, 1, . . . , n, b, c, d). This

class of MHV diagrams is uniquely defined by the requirement that all the

MHV propagators must go on-shell in the singular limit, which turns out to be

very similar to Rule 5.1 for splitting amplitudes. The advantage of our result

is, however, that the functional form of the antenna functions is exactly given

by the MHV diagram, whereas in Rule 5.1 one still has to go to the collinear

limit. Antenna functions can hence be represented as a special class of MHV
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diagrams, the class of diagrams being the one defined by Rule 5.5. Let us make

a few comments about the antenna functions obtained from Rule 5.5:

1. The antenna functions may still contain non-divergent pieces, coming

from MHV diagrams that are not divergent in any limit. For example,

let us consider the antenna function Ant(â−, b̂+ ← a−, 1−, 2+, b+). In

Ref. [16] it was shown that this antenna function is zero. Using Rule 5.5

we generate a set of four non-zero MHV diagrams. It is easy to check

however that all four diagrams are finite in all the singular limits we are

interested in.

2. As the antenna functions are built from MHV diagrams, it is easy to see

that the antenna functions obtained from Rule 5.5 will always fulfill the

reflection identity

Ant(âhâ , b̂hb̂ ← a, 1, . . . , n, b) = (−1)nAnt(b̂hb̂ , âhâ ← b, n, . . . , 1, a).

(5.21)

3. The antenna functions are in general dependent of an arbitrary spinor η.

In practise, however, η cannot be chosen among the momenta appearing

inside the antenna functions, because this would be inconsistent with the

assumption that there are no infrared poles in the amplitude coming from

antiholomorphic spinor products of the form [.η], e.g. if we chose η = a,

then [1η] = [1a] could lead to a pole in the limit where these two particles

become collinear, which is not included in the class of diagrams defined

by Rule 5.5.

4. The proof in Appendix B.2 of our result crucially relies on the fact that

〈aâ〉 goes to zero in the singular limit. We were able to show this ex-

plicitly for the reconstruction functions given in Eq. (A.1). However, if

different reconstruction functions are chosen, it should be checked that

this statement still holds true for the new analytic expressions.

In Chapter 2 a recursive formulation of the MHV formalism in terms of single

and double-line currents was introduced. As Rule 5.5 allows us to identify a
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priori the MHV diagrams that contribute to a given singular limit, we can use

this result to write down a recursive algorithm for antenna functions in terms

of the single and double-line currents. As the antenna functions contain all

kinds of collinear and soft singularities, it is straightforward to derive the cor-

responding recursions for splitting amplitudes and soft factors. This algorithm

is discussed in Section 5.4.

5.2.1 General formulas for NMHV antenna functions

In this section we apply Rule 5.5 to derive generic formulas for all MHV

and next-to-MHV (NMHV) type antenna functions. We give explicitly the

results for antenna functions of the form Ant(â−, b̂− ← a, 1, . . . , n, b) and

Ant(â−, b̂+ ← a, 1, . . . , n, b). The remaining antenna functions are related to

the previous ones by parity and reflection identity (5.21).

MHV-type antenna functions The simplest antenna functions are those

obtained from a single MHV vertex. Applying Rule 5.5 we immediately find

Ant(â−, b̂− ← a+, 1+, . . . , n+, b+)

= An+4(a
+, 1+, . . . , n+, b+, â−, b̂−)

=
〈âb̂〉3

〈a1〉〈12〉 . . . 〈nb〉〈bâ〉〈b̂a〉
,

(5.22)

Ant(â−, b̂+ ← a+, 1+, . . . , j−, . . . , n+, b+)

= An+4(a
+, 1+, . . . , j−, . . . , n+, b+, â−, b̂+)

=
〈âj〉4

〈a1〉〈12〉 . . . 〈nb〉〈bâ〉〈âb̂〉〈b̂a〉
.

(5.23)

NMHV-type antenna functions The NMHV-type antenna functions are

derived from MHV diagrams containing exactly one propagator. The MHV

diagrams obtained from Rule 5.5 are shown in Fig. 5.2 and Fig. 5.3. The
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Figure 5.2: MHV diagrams contributing to NMHV-type antenna function
Ant(â−, b̂− ← a+, 1+, . . . , j−, . . . , n+, b+).

generic formulas for NMHV-type antenna functions are

Ant(â−, b̂− ← a+, 1+, . . . , j−, . . . , n+, b+)

=
n
∑

l=j

〈âb̂〉4〈jPa,l〉4

sa,l〈Pa,l(l + 1)〉〈〈(l + 1)b̂〉〉〈b̂Pa,l〉〈Pa,la〉〈〈al〉〉〈lPa,l〉

+
j−1
∑

k=a

〈âb̂〉4〈jPk+1,b〉4

sk+1,b〈Pk+1,bâ〉〈〈âk〉〉〈kPk+1,b〉〈Pk+1,b(k + 1)〉〈〈(k + 1)b〉〉〈bPk+1,b〉

+
j−1
∑

k=a

n
∑

l=j

〈âb̂〉4〈jPk+1,l〉4
sk+1,l〈Pk+1,l(l + 1)〉〈〈(l + 1)k〉〉〈kPk+1,l〉〈Pk+1,l(k + 1)〉

× 1

〈〈(k + 1)l〉〉〈lPk+1,l〉
,

(5.24)

Ant(â−, b̂+ ← a+, 1+, . . . , i−, . . . , j−, . . . , n+, b+)

=
i−1
∑

k=a

〈âPk+1,b〉4〈ij〉4
sk+1,b〈Pk+1,bâ〉〈〈âk〉〉〈kPk+1,b〉〈Pk+1,b(k + 1)〉〈〈(k + 1)b〉〉〈bPk+1,b〉

+
n
∑

l=j

〈âPa,l〉4〈ij〉4

sa,l〈Pa,l(l + 1)〉〈〈(l + 1)b̂〉〉〈b̂Pa,l〉〈Pa,la〉〈〈al〉〉〈lPa,l〉

+
i−1
∑

k=a

n
∑

l=j

〈âPk+1,l〉4〈ij〉4

sk+1,l〈Pk+1,l(l + 1)〉〈〈(l + 1)k〉〉〈kPk+1,l〉〈Pk+1,l(k + 1)〉

× 1

〈〈(k + 1)l〉〉〈lPk+1,l〉
(5.25)
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Figure 5.3: MHV diagrams contributing to the NMHV-type antenna function
Ant(â−, b̂+ ← a+, 1+, . . . , i−, . . . , j−, . . . , n+, b+).

+
j−1
∑

k=i

b
∑

l=j

〈âi〉4〈jPk+1,l〉4
sk+1,l〈Pk+1,l(l + 1)〉〈〈(l + 1)k〉〉〈kPk+1,l〉〈Pk+1,l(k + 1)〉

× 1

〈〈(k + 1)l〉〉〈lPk+1,l〉

+
i−1
∑

k=â

j−1
∑

l=i

〈âj〉4〈iPk+1,l〉4
sk+1,l〈Pk+1,l(l + 1)〉〈〈(l + 1)k〉〉〈kPk+1,l〉〈Pk+1,l(k + 1)〉

× 1

〈〈(k + 1)l〉〉〈lPk+1,l〉
,

where we introduced the notations

si,j = (pi + pi+1 + . . . + pj)
2 and 〈〈ij〉〉 =

j−1
∏

k=i

〈k(k + 1)〉. (5.26)

Note that the above generic formulas for NMHV-type antenna functions (to-

gether with the results for the MHV-type antenna functions) are sufficient to

derive the full set of NNLO and N3LO gluon antenna functions [17]. We checked

explicitly that these antenna functions reproduce the correct infrared limits and

that the limits are numerically independent of η using the Mathematica pack-



5.3. From antenna functions to splitting amplitudes 83

age S@M [68]. Note that our antenna functions have a slightly simpler and more

compact analytic form than those presented in Ref. [16]. This fact might sim-

plify the phase space integration of the counterterms when antenna functions

are used in a subtraction method.

5.3 From antenna functions to splitting ampli-
tudes

In this section we show how the antenna functions obtained from Rule 5.5 can

be used to derive Rule 5.1 for splitting amplitudes presented in the previous

section. Let us start with Split−(a, 1, . . . , n). We know that for the antenna

function Ant(â−, b̂− ← a, 1, . . . , n, b), we have in the limit where 1, . . . , n be-

come collinear to a,

Ant(â−, b̂− ← a, 1, . . . , n, b) −→ Split−(a, 1, . . . , n). (5.27)

Furthermore, we know that the MHV pole structure of the antenna function

built from Rule 5.5 is

Ant(â−, b̂− ← a, 1, . . . , n, b) ∼ 1

[ ]N−

f(〈 〉). (5.28)

In the limit under consideration, we have N− = na because in this limit

pb̂ → kb, and so hb = +1. Thus only those MHV diagrams in Ant(â−, b̂− ←
a, 1, . . . , n, b) contribute where all N− = na MHV propagators go on-shell in

the collinear limit. These diagrams correspond exactly to those where b is at-

tached to the same MHV vertex as â and b̂, which is equivalent to Rule 5.1.

The derivation of the corresponding result for Split+ is similar to the Split−

case, so we do not report its derivation.

Note that unlike antenna functions, the splitting amplitudes are uniquely de-

fined. The arbitrariness in the definition of the antenna function is lost when a

specific collinear limit is taken, because the class of MHV diagrams contributing

to the antenna function can be divided into two different subclasses:
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+ + + + . . .

Figure 5.4: Diagrammatic expansion of the splitting amplitude. The blobs
indicate MHV diagrams with a smaller number of legs.

1. The MHV diagrams where b is attached to the same MHV vertex as â

and b̂: These diagrams are divergent in the collinear limit.‡

2. The MHV diagrams where b is not attached to the same MHV vertex

as â and b̂: These diagrams are not divergent enough and are omitted.

They contribute to the arbitrary piece from the antenna function.

5.3.1 Diagrammatic approach to splitting amplitudes

In the previous section we showed that in the limit where 1, . . . , n become

collinear to a only those MHV diagrams of the antenna contribute where â, b̂

and b are attached to the same MHV vertex. In this section we show how this

result can be interpreted in terms of MHV diagrams, where the vertices are

modified.

The set of diagrams defined by this condition can be easily expanded in terms

of the structure of the collinear poles appearing in the diagram ( i.e. , 1/sa,n,

1/sa,ksk+1,n, etc.). This expansion is shown in Fig. 5.4. We find

Split−h(a, 1, . . . , n)A4(P
h, b, c, d) ∼

∑

partitions

∑

j

Vπ,j

∏

πi

1

sπi

DMHV
j,(πi)

, (5.29)

where the first sum goes over all partitions (including the set {a, 1, . . . , n} itself)

π = (πi) of the set {a, 1, . . . , n}, and the second sum runs over all diagrams

corresponding to this partition. Vπ,j is the MHV vertex which â, b̂ and b are

attached to and sπi denotes the invariant formed out of the momenta which

are in the subset πi. Note that in this way we reproduce the pole structure of

the splitting amplitude: For the partition into one subset, π = {a, 1, . . . , n},
‡Note that these diagrams may still contain subleading pieces.



5.3. From antenna functions to splitting amplitudes 85

the pole is 1/sa,n, for the partition into two subsets, π = {(a, 1, . . . , k), (k +

1, . . . , n)}, the pole is 1/sa,ksk+1,n, and so on.

The diagrams DMHV
j,(πi)

are MHV diagrams. They however still contain pieces

that are subleading in the collinear limit. We show how it is possible to modify

the definition of the MHV vertices such that the diagrams in Eq. (5.29) only

contain the leading collinear pole. Let us consider a specific diagram DMHV
j,(πi)

.

All the vertices in DMHV
j,(πi)

only depend on

- particles from the collinear set a, 1, 2, . . . , n.

- off-shell legs of the form Pk,*, where k and ! are in the collinear set.

Let us first consider the case of a vertex which only depends on off-shell contin-

ued legs. We will give as an example the four-point vertex. The generalization

is straightforward. An example of a four-point MHV-vertex with all legs con-

tinued off-shell is

A4

(

I−, J−, K+, L+
)

=
〈IJ〉4

〈IJ〉〈JK〉〈KL〉〈LI〉 , (5.30)

where we used the multiindex notation introduced in Chapter 2, i.e. , the am-

plitude A4

(

I−, J−, K+, L+
)

has to be understood as A4

(

P−
I , P−

J , P+
K , P+

L

)

.

Applying Eq. (5.6), this vertex gives the following contribution in the collinear

limit

A4

(

I−, J−, K+, L+
)

→ ∆(I, J)4

∆(I, J)∆(J, K)∆(K, L)∆(L, I)
, (5.31)

The ∆-function has been defined in Eq. (5.5), and we again use the multiindex

notation,

∆(I, J) ≡ ∆(i1, i2; j1, j2). (5.32)

We would now like to define the object on the right-hand side of Eq. (5.31)

as an effective MHV vertex in the collinear limit, which splitting amplitudes

could be built up from. The idea rests on the following observations:

1. An on-shell particle with momentum pi can be seen as labelled by the

multiindex ı̄ = (i, i), defined in Eq. (2.20).
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2. The ∆-functions are not independent, but it is easy to see that

∆(̄ı, k) =
√

zi〈ki〉,

∆(̄ı, J) =
√

zi∆(J, i) = −∆(J, ı̄), (5.33)

∆(̄ı, ̄) =
√

zi∆(̄, i) =
√

zizj〈ij〉.

Thus we would like to extend the definition Eq. (5.31) to the case where on-

shell particles are present in the vertex. For example, if the first particle (with

negative helicity) in A4 is on-shell, I = ı̄ = (i, i) and applying Eq. (5.33) we

find,

A4

(

i−, J−, K+, L+
)

= A4

(

ı̄−, J−, K+, L+
)

(5.34)

→ ∆(̄ı, J)4

∆(̄ı, J)∆(J, K)∆(K, L)∆(L, ı̄)

→ zi
−∆(J, i)4

∆(J, i)∆(J, K)∆(K, L)∆(L, i)
.

On the other hand, a direct application of the collinear rules (5.4) leads to

A4

(

i−, J−, K+, L+
)

→ −∆(J, i)4

∆(J, i)∆(J, K)∆(K, L)∆(L, i)
. (5.35)

The difference between Eqs. (5.34) and (5.35) amounts to a factor zi. This can

reabsorbed into the one-point current attached to the vertex, by defining the

“wave function”

J−(i) =
1

zi
, (5.36)

which cancels the factor zi in Eq. (5.34). It is easy to see that for an on-shell

particle with positive helicity the wave function must then be defined as

J+(i) = zi. (5.37)

and finally that Eq. (5.36) and (5.37) can be summarized as

Jh(i) = zh
i . (5.38)

The diagram DMHV
j,(πi)

has however an additional external leg, corresponding to

the incoming momentum Pπi . We define the wave function of this external leg

as

Jh(Pπi) = 1. (5.39)
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We now turn to the vertex Vπ,j in Eq. (5.29). Two cases are to be identified,

corresponding to the value of h in Eq. (5.29).

1. If h = +1, then

Vπ,j =
〈âb̂〉3

〈b̂Pπ1〉〈〈Pπ1Pπk
〉〉〈Pπk

b〉〈bâ〉
, (5.40)

where k denotes the length of the partition. Using the properties of the

reconstruction functions and the definition of the ∆-function, we find

Vπ,j →
1

zπ1zπk

k−1
∏

*=1

1

∆(Pπ#
, Pπ#+1)

, (5.41)

where we defined

zπj ≡
∑

*∈πj

z*. (5.42)

2. If h = −1, then

Vπ,j =
〈Mb̂〉4

〈b̂Pπ1〉〈〈Pπ1Pπk
〉〉〈Pπk

b〉〈bâ〉
, (5.43)

where now M denotes the propagator with negative helicity attached to

Vπ,j . This yields

Vπ,j →
z4

M

zπ1zπk

k−1
∏

*=1

1

∆(Pπ#
, Pπ#+1)

, (5.44)

Putting everything together, we can write down the following diagrammatic

formula for splitting amplitudes:

Split−h(a, 1, . . . , n) =
∑

partitions

∑

j

V(h)
π,j

∏

πi

1

sπi

D(πi)
j , (5.45)

where

V(h)
π,j =

z2(1−h)
M

zπ1zπk

k−1
∏

*=1

1

∆(Pπ#
, Pπ#+1)

. (5.46)

Let us illustrate this formula on the example of the MHV-type splitting ampli-

tudes of Eqs. (4.18 - 4.19). For MHV-type quantities there is only one MHV

diagram, so the sum over partitions is trivial. Using Eq. (5.33) we obtain,
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• for h = +1,

Split−(1+, . . . , n+)

=
1

z1 zn

(

n−1
∏

*=1

1
√

z*z*+1 〈!(! + 1)〉

) (

n
∏

*=1

z*

)

=
1

√
z1zn 〈12〉 . . . 〈(n− 1)n〉 ,

(5.47)

• for h = −1,

Split+(1+, . . . , i−, . . . , n+)

=
z4

i

z1 zn

(

n−1
∏

*=1

1
√

z*z*+1 〈!(! + 1)〉

)







n
∏

*=1
* +=i

z*







1

zi

=
z2

i√
z1zn 〈12〉 . . . 〈(n− 1)n〉 ,

(5.48)

in agreement with the results given in Chapter 4.

5.4 Recursive relations

5.4.1 Recursive relations for antenna functions

In this section we apply the recursive formulation of the MHV formalism in-

troduced in Section 2.4 to the calculation of antenna functions. From Rule 5.5,

we build the antenna function Ant(âhâ , b̂hb̂ ← a, 1, . . . , n, b) by calculating all

MHV diagrams that contribute to An+4

(

a, 1, . . . , n, b, âhâ, b̂hb̂

)

and where â and

b̂ are attached to the same n-point MHV vertex, n ≥ 4. In the language of

the recursive formulation of the MHV formalism this amplitude can be built

recursively using Eq. (2.23 - 2.25), and by putting the off-shell leg on-shell.

The part of this single-line current where â and b̂ are attached to the same

n-point MHV vertex, n ≥ 4, corresponds exactly to those diagrams where â

and b̂ are attached to the same double-line current (See Fig. 5.5). We can then
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â−

b̂−

b

a

Figure 5.5: Contribution of J+(a, 1, . . . , n, b, c−) in the singular limit. The off-
shell leg is denoted by a cross, and the double-line represents the MHV vertex
to which â and b̂ are attached.

write immediately

Ant(âhâ ,b̂hb̂ ← a, 1, . . . , n, b) =
∑

U<V
v2=b

∑

M

V4(U, V, â, b̂; M1, M2) ε
hâ hb̂J

(2+hâ+hb̂)/2
UV (a, 1, . . . , n, b) (5.49)

where

εhâ hb̂ =



















δâ
M1

δb̂
M2

, if hâ = hb̂ = −1,
δâ
M2

, if hâ = −hb̂ = −1,

δb̂
M2

, if hâ = −hb̂ = +1,
1 , if hâ = hb̂ = +1.

(5.50)

Note that we could have used the recursive relations in a different way to

calculate the antenna function:

1. First build the full amplitude An+4(a, 1, . . . , n, b, c, d).

2. Second extract the infrared divergent piece in the limit were 1, . . . , n are

unresolved, i.e. , the antenna function Ant(â, b̂ ← a, 1, . . . , n, b).

The calculation of the full amplitude An+4(a, 1, . . . , n, b, c, d) needs the evalu-

ation of the (n + 3)-point single-line current J(a, 1, . . . , n, b, c), which contains
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â−

b̂−

n

a

b
â−

b̂−

n

a

b

Figure 5.6: The contribution from Ant(â−, b̂− ← a, 1, . . . , n, b) in the limit
k1, . . . , kn ‖ ka. The off-shell leg is denoted by a cross, and the double-line
represents the MHV vertex to which â and b̂ are attached.

(n + 2)-point double-line currents as subcurrents. Eq. (5.49) proves that we

only need to evaluate the (n + 2)-point double-line current JUV (a, 1, . . . , n, b).

This current contains all the information that is needed to build the antenna

functions, i.e. , we do not need to solve the full recursion, but we stop after we

have built the infrared divergent piece.

Having a recursive formula for antenna functions we can go on and derive

recursive relations for splitting amplitudes, by taking the corresponding limits

on Eq. (5.49). The rest of this section will be devoted to this task.

5.4.2 Recursive relations for splitting amplitudes

In this section we derive the recursive relations for splitting amplitudes by tak-

ing the collinear limit of the corresponding recursive relations for the antenna

functions, Eq. (5.49). We already know that in the limit where a, 1, . . . , n are

collinear, only those MHV diagrams contribute where â, b̂ and b are attached

to the same MHV vertex. In terms of the single and double-line currents, this

means that â, b̂ and b must be attached to the same double-line current (See

Fig. 5.6). In addition we can recast the splitting amplitude as a sum over

products of MHV diagrams, where the MHV vertices are replaced by ∆ func-

tions and the external particles have “wave functions” corresponding to the

momentum fraction zi.
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Combining these two observations with the recursive relations for the antenna

functions introduced in the previous section, we are naturally led to a set of

recursive relations for the splitting amplitudes themselves. We find

Split−h(a, 1, . . . , n)

= Jh(a, 1, . . . , n) +
∑

U<V,M
v2=n

V −h
c (U, V, M)J (1−h)/2

UV (a, 1, . . . , n), (5.51)

with V −h
c is similar to the quantity defined in Eq. (5.46),

V −h
c (U, V, M) =

z2(1−h)
M

zU zV ∆(U, V )
. (5.52)

Let us conclude this section with a few comments.

1. The recursive relations state that a splitting amplitude can be written as

a sum of a single and a double-line current. These currents fulfill formally

the same recursive relations as gluon amplitudes and antenna functions,

the vertices however correspond to the MHV vertices in the collinear

limit introduced in Eq. (5.31) and the one-point currents correspond to

the “wave functions” introduced in Section 5.3.1,

Jh(i) = zh
i . (5.53)

2. Once again we could use the recursive relations, Eqs. (2.23 - 2.25), in a

different way to calculate an n-point splitting amplitude:

(a) First calculate the full (n+3)-point amplitude An+3(1, . . . , n, a, b, c).

(b) Then extract the splitting amplitude according to

An+3(1, . . . , n, a, b, c) ∼ Split−h(1, . . . , n)A4(P
h, a, b, c). (5.54)

The calculation of the full amplitude needs the calculation of an (n + 2)-

point single-line current J(1, . . . , n, a, b), which contains the (n+1)-point

double-line current as a subcurrent. On the other hand, Eq. (5.51) tells

us that it is sufficient to evaluate n-point single and double-line currents

to obtain an n-point splitting amplitude.

3. We checked the splitting amplitudes calculated using these recursive re-

lations against the pure gluon splitting amplitudes obtained in Refs. [25,

19]. For all of them we found complete agreement.





Chapter 6
Analytic integration of some
real-virtual counterterms

6.1 A general subtraction scheme at NNLO

In Chapter 4 we presented the basic ideas behind subtraction schemes at next-

to-leading order. Recently a general subtraction scheme at NNLO has been

presented [21, 22, 23, 24]. As we already gave a review of subtraction schemes

at next-to-leading order in Section 4.3, we do not review the NNLO case in

detail, but only highlight its features.

Using the notations of Chapter 4, we can write,

dσNNLO

dO =

∫

dσVV
n On +

∫

dσRV
n+1 On+1 +

∫

dσRR
n+2 On+2, (6.1)

where RR, RV and VV refer to the doubly real (two real emissions), the real-

virtual (one-loop single emission) and the double virtual (two-loop) corrections.

The three terms in this sum are separately divergent. We proceed in exactly

the same way as in the NLO case and we add and subtract approximate cross-

sections in order to get infrared-finite integrals. We work in dimensional regu-

larization, and consider phase space integrals in D = 4− 2ε dimensions. After

93
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having regularized all the integrals, we can write

dσNNLO

dO =

∫

dσNNLO
n +

∫

dσNNLO
n+1 +

∫

dσNNLO
n+2 , (6.2)

with

dσNNLO
n+2 =

{

dσRR
n+2 On+2

− dσRR,app2
n+2 On −

[

dσRR,app1
n+2 On+1 − dσRR,app12

n+2 On

]}

ε=0
,

dσNNLO
n+1 =

{[

dσRV
n+1 +

∫

dσRR,app1
n+2

]

On

−
[

dσRV,app1
n+1 +

(

∫

dσRR,app1
n+2

)app1
]

On

}

ε=0
,

dσNNLO
n =

{

dσVV
n +

∫

[

dσRR,app2
n+2 − dσRR,app12

n+2

]

+

∫

[

dσRV,app1
n+1 +

(

∫

dσRR,app1
n+2

)app1
]}

ε=0
On.

(6.3)

The exact form of the approximate cross-sections in terms of splitting functions

and eikonal factors can be found in Ref. [21, 22]. Let us just mention here

that the counterterm for the doubly real emission is constructed in a similar

way as in the NLO case, i.e. , from the universal eikonal factors and splitting

functions. In the NNLO case however, there are several new possibilities to

emit two unresolved partons in the final state,

• the splitting of one parton into three partons,

• the splitting of two different partons into two partons,

• the emission of two soft partons,

• the emission of a soft parton together with a collinear splitting.

Furthermore, unlike in the NLO case where only a single unresolved gluon

could be emitted, at NNLO we need to take into account the emission of unre-

solved qq̄ pairs. Also note the appearance of iterated counterterms in Eq. (6.2),

i.e. approximate cross-sections for the approximate cross-section. These terms

arise due to strongly ordered infrared limits beyond NLO, e.g. given when one

unresolved particle is much softer than the other. In this limit, the countert-

erms themselves are singular, and hence we have to introduce counterterms for
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the counterterms themselves. Finally, at NNLO we need to take into account

the emission of soft and collinear gluons from the one-loop amplitude. The

counterterms in this case are constructed from the one-loop splitting functions

and soft factors discussed in Section 4.2.4.

Similar to the NLO case, the counterterms cannot be constructed directed

from the universal splitting functions and soft factors, because the infrared

factorization only holds in the strict soft and collinear limits. In Chapter 4 we

argued that this problem can be overcome by performing a change of variables

in the phase space. A main feature of the NNLO subtraction scheme of Ref. [21,

22, 23, 24] is its ‘democratic’ phase space mapping. The phase space mapping

used at NLO in Ref. [20] involves only three of the original momenta {pi},
corresponding to the emitter, the unresolved particle and the spectator color-

connected to the emitted particle and needed to absorb the recoil. This setup

requires two of the three particles - the emitter and the spectator - to be

hard particles. Such a scenario is indeed always satisfied at NLO, but is no

longer true for higher orders in perturbation theory. The phase space mapping

of Ref. [21, 22, 23] therefore redistributes the recoil ‘democratically’ among the

different colored particles in the hard process. Explicit formulas for such a

phase space mapping can be found in Ref. [63].

After having defined a complete set of counterterms, we still need to compute

the integrals of the approximate cross-section over the phase space of the un-

resolved particles. This question will be addressed in the rest of this chapter.

In Section 6.2 we review the soft counterterm as a representative example of

the real-virtual counterterms that appear in this scheme. In Section 6.3 we

introduce our method to compute some classes of real-virtual integrals, which

is a generalization of techniques used for multi-loop integrals in quantum field

theory, and we illustrate this technique on the example of the integrated soft

counterterm. For the more general integrals we refer to Appendix J and the

literature [69].
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6.2 The real-virtual integrals

In this section we briefly review the soft counterterm that appears in the sub-

traction scheme (6.2), and show that it reduces to a set of hypergeometric

integrals after appropriate changes of variables have been performed. The case

of the collinear counterterms is similar, up to technical complications, and we

refer the reader to the literature [21, 22, 23, 24, 69].

Let us start with the phase space mapping (4.38) needed to have exact factor-

ization of the phase space. In the case of the soft counterterm the mapping

reads,

dΦn+1({p}n+1; Q)
Soft−→ dΦn({p̃}n; Q) [dp1;n], (6.4)

and the phase space [dp1;n] of the soft particle can be parametrized as [69],

[dp1;n] = dy (1− y)(n−2)(1−ε)−1 Q2

2π
dΦ2(pr, K; Q) θ(y) θ(1− y), (6.5)

where K denotes a massive timelike vector such that K2 = (1 − y)Q2, and θ

denotes the Heaviside step function. Integrating the one-loop eikonal factor

over the phase space of the unresolved particle then leads to,

CA
1

ε2
πε

sinπε

(4π)2

Sε
(Q2)(1+κ)ε

∫

[dp1;n]

(

sik

sir srk

)1+κε

= CA
1

ε2
πε

sinπε

(4π)2

Sε
(Q2)(1+κ)ε Q2

2π

×
∫ 1

0
dy (1− y)(n−2)(1−ε)−1

∫

dΦ2(pr, K; Q)

(

sik

sir srk

)1+κε

.

(6.6)

where Sε = (4π)ε/Γ(1− ε). Let us make some comments about this expression.

Firstly, Eq. (6.6) explicitly depends on the number n of hard partons. We

can get rid of this dependence by using a slightly modified version of the soft

counterterm, obtained by multiplying the eikonal factor by a term that removes

the dependence on n [23],

(

sik

sir srk

)1+κε

−→ (1− y)d′

0−(n−2)(1−ε)

(

sik

sir srk

)1+κε

, (6.7)

with d′0 = D′
0 + d′1ε, a and b being integers. Note that this change in the

definition of the soft counterterm is harmless, because for d′0|ε=0
≥ 2, it does
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not introduce any new divergencies in Eq. (6.6), i.e. , it only affects the finite

part of the counterterm. Second, the integral over y in Eq. (6.6) extends over

the whole range [0, 1], i.e. , over the whole phase space of the soft particle. For

numerical purposes, it is preferable to restrict the phase space of the unresolved

particle by introducing a cut off y0 ∈]0, 1] in the integration (y0 = 1 corresponds

to subtracting over the full phase space). After these modifications, Eq. (6.6)

takes the form,

CA
1

ε2
πε

sinπε

(4π)2

Sε
(Q2)(1+κ)ε Q2

2π

×
∫ y0

0
dy (1− y)d′

0−1

∫

dΦ2(pr, K; Q)

(

sik

sir srk

)1+κε

.

(6.8)

To evaluate Eq. (6.8), we turn to a reference frame where

Q =
√

s(1, . . .), p̃i = Ẽi(1, . . . , 1), p̃k = Ẽk(1, . . . , sinχ, cosχ), (6.9)

and

pr = Er(1, “angles”, sinϑ sinϕ, sinϑ cosϕ, cosϑ), (6.10)

where the dots indicate vanishing components, and “angles” denote (d − 3)

angular variables trivial to integrate. Introducing the quantity

εr = 2
pr · Q
Q2

= 2
Er√

s
, (6.11)

the two-body phase space in Eq. (6.8) can be parametrized as,

dΦ2(pr, K; Q) =
(Q2)−ε

(4π)2
Sε

Γ(1− ε)2

Γ(1− 2ε)
dεr ε

1−2ε
r δ(y − εr)

× d(cosϑ) d(cosϕ) (sinϑ)−2ε (sinϕ)−1−2ε.

(6.12)

In these variables the eikonal factor takes the form,

sik

sir srk
=

4Yĩk̃,Q

Q2

1− εr

ε2
r

(1−cosϑ)−1 (1−cosχ cosϑ−sinχ sinϑ cosϕ)−1, (6.13)

where we defined

cosχ = 1− 2 Yĩk̃,Q ≡ 1−
2Q2sĩk̃

sĩQsk̃Q

. (6.14)
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Putting everything together, the integral of the soft counterterm reads [69],

J (Yĩk̃,Q; ε, y0, d
′
0;κ) = −(4Yĩk̃,Q)1+κε Γ2(1− ε)

2πΓ(1− 2ε)
Ω(1+κε,1+κε)(cosχ)

×
∫ y0

0
dy y−1−2(1+κ)ε(1− y)d′

0+κε ,

(6.15)

where Ω(i,k)(cosχ) denotes the angular integral

Ω(i,k)(cosχ) =

∫ 1

−1
d(cosϑ) (sinϑ)−2ε

∫ 1

−1
d(cosϕ) (sinϕ)−1−2ε

× (1− cosϑ)−i(1− cosχ cosϑ− sinχ sinϑ cosϕ)−k .

(6.16)

Our final goal is to perform the integration analytically, and to obtain the result

of the integration as a Laurent series in ε. The angular integral Ω(i,k)(cosχ)

was evaluated in Ref. [70], so we can concentrate exclusively on the remain-

ing integral over y. this integral can be identified as Gauss’ hypergeometric

function,
∫ 1

0
dy ya (1−y)b (1−y z)c = B(1+a, 1+b) 2F1(−c, 1+a, 2+a+b; z), (6.17)

where a, b, c and z are complex parameters and where we introduced the Euler

B function,

B(x, y) =
Γ(x)Γ(y)

Γ(x + y)
. (6.18)

Gauss’ hypergeometric function 2F1 can be represented for |z| < 1 by the power

series,

2F1(a, b, c; z) =
∞
∑

n=0

(a)n(b)n

(c)n

zn

n!
, (6.19)

where the Pochhammer symbol (.)n is defined by

(a)n =
Γ(a + n)

Γ(a)
. (6.20)

In terms of Gauss’ hypergeometric function, the complete soft integral (6.15)

can be written as

J (Y, ε; y0, d
′
0;κ) = −Y −(1+κ)ε y−2(1+κ)ε

0

1

(1 + κ)2ε2
Γ2(1− (1 + κ)ε)

Γ(1− 2(1 + κ)ε)

× 2F1(−d′0 − κε,−2(1 + κ)ε, 1− 2(1 + κ)ε, y0)

× 2F1(−(1 + κ)ε,−(1 + κ)ε, 1− ε, 1− Y ) ,

(6.21)
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The original integral J is now completely expressed in terms of Gauss’ hy-

pergeometric function, and it can therefore be expanded into a Laurent series

in ε using standard techniques [71, 72, 73, 74, 75, 76]. These techniques are

however restricted to the special case of Gauss’ hypergeometric function, and

cannot be applied to more general hypergeometric integrals. Such generalized

hypergeometric integrals however appear in the integrated collinear countert-

erms, and we therefore introduce in the next section a new method to tackle

hypergeometric integrals, which is a generalization of techniques disguised for

loop computations in QFT.

6.3 Hypergeometric integrals from integration-
by-parts identities

In the previous sections we showed that after a suitable parametrization of the

phase space, the soft counterterm can be expressed as a combination of a small

set of basis integrals over a hypercube∗. This result is generic and applies to all

the integrated counterterms. The integrands are rational functions in the inte-

gration variables as well as in some external parameters . Furthermore, some

of the denominators have powers which depend on the dimensional regulator ε.

In this section we introduce a general method to compute integrals of this

particular type. Our approach is a generalization of techniques developed in

the last twenty years to compute multi-loop Feynman diagrams [77, 78, 79, 80,

81, 82]. Similar techniques have already been used to compute the integrated

antenna functions appearing the NNLO subtraction scheme of Ref. [65]. To be

more precise, we introduce a method to compute integrals of the form†

F
(

{ni}, {ri}; {zi}; ε
)

=

∫ 1

0
dx1 dx2

∏

j

[Rj (x1, x2; {zi})]−nj−rjε , (6.22)

where ni and ri are integers, and zi is a real parameter. Rj denote rational func-

tions in the variables xi and zi. Since we work in dimensional regularization,
∗In some cases the integration region is not explicitly a hypercube, but we can always

rescale the integration domain such that all integrations are over the range [0, 1].
†Note that the technique itself is a priori not limited to twofold integrals. In practice,

however, we found that for more than two integrations the computations become so heavy
that they were not feasible any more with present techniques.
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our goal is to obtain a series expansion for the function F
(

{ni}, {ri}; {zi}; ε
)

in

the dimensional regulator ε. We can, however, not simply invert the expansion

in ε and the integration, because the rational functions Rj might have poles

in the integration region which make the integral divergent as ε → 0, i.e. ,

the poles in the integrand manifest themselves as poles in ε in the Laurent

expansion of F
(

{ni}, {ri}; {zi}; ε
)

.

In the following we illustrate our method on the simple example of a one-

dimensional integral, namely the integral defining Gauss’ hypergeometric func-

tion, Eq. (6.17). We show how our approach enables us to obtain a Laurent

expansion in ε for hypergeometric functions of the form 2F1(a1 + a2ε, b1 +

b2ε, c1 + c2ε; z), ai, bi and ci being integers. Note that we obtain at the same

time the Laurent expansion of the soft integral (6.21). Detailed results for

the other real-virtual integrals including all the technical details are given in

Appendix J and in Ref. [69].

From Eq. (6.17) it is easy to see that in order to obtain a Laurent expansion

for 2F1(a1 + a2ε, b1 + b2ε, c1 + c2ε; z) we need to be able to compute a class of

basic integrals of the form

f(x, ε; n1, n2, n3) =

∫ 1

0
dµ(t; x, ε) t−n1 (1− t)−n2 (1− xt)−n3 , (6.23)

where ni are integers and the dependence on the dimensional regulator ε was

absorbed into the definition of the ‘integration measure’

dµ(t; x, ε) = dt t−r1ε (1− t)−r2ε (1− xt)−r3ε. (6.24)

In the following we always assume that we work at fixed values for the integers

ri. Note that in the limit ε → 0 the integration measure (6.24) reduces to the

standard Lebesgue measure on [0, 1].

The case n2 = 0. Let us start by analyzing the particular case where n2 =

r2 = 0. In this case the hypergeometric function reduces to an incomplete beta
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function‡,

β(x, ε; n1, n3) = f(x, ε; n1, 0, n3) =

∫ 1

0
dµ(t; x, ε) t−n1 (1− xt)−n3

= x−1+n1+r1ε Bx(1− n1 − r1ε, 1− n3 − r3ε).

(6.25)

The incomplete B function is defined by

Bα(x, y) =

∫ α

0
dt tx−1 (1− t)y−1. (6.26)

Our goal is to reduce the computation to the evaluation of a small set of

so-called master integrals from which all integrals of the form (6.25) can be

reconstructed. We first define the set of independent integral as the set of

integrals for which the integrands are not related by simple algebraic relations.

In the present case the independent integrals correspond exactly to the set of

all integrals of the form β(x, ε; n1, n3) where only one of the ni is non zero

and where n3 ≥ 0. In all other cases, the integrals are linear combinations of

independent integrals, e.g. ,

• if n1 and n3 are simultaneously non zero, we can perform partial frac-

tioning in the integration variable t, e.g. ,

β(x, ε; 1, 1) =

∫ 1

0

dµ(t; x, ε)

t (1− xt)
=

∫ 1

0
dµ(t; x, ε)

(

1

t
+ x

1

(1− xt)

)

= β(x, ε; 1, 0) + xβ(x, ε; 0, 1).

(6.27)

• if n3 < 0, we can expand the integrand,

β(x, ε; 0,−2) =

∫ 1

0
dµ(t; x, ε) (1− xt)2

= β(x, ε; 0, 0)− 2xβ(x, ε;−1, 0) + x2β(x, ε;−2, 0).

(6.28)

The set of independent integrals defined in this way is still not the most mini-

mal one. We can derive further linear relations among the integrals using the

integration-by-parts identities (IBP’s),
∫ 1

0
dt

∂

∂t

(

∫ 1

0
dµ(t; x, ε) t−n1 (1− xt)−n3

)

= dµ(t; x, ε) t−n1 (1− xt)−n3

)
∣

∣

∣

t=1

t=0
.

(6.29)

‡This separation is necessary in order to avoid poles in the intermediate steps coming
from r2 = 0.



102 Chapter 6. Analytic integration of some real-virtual counterterms

It is easy to see that in the right-hand side only the value in t = 1 contributes,

and carrying out the derivative under the integration sign in the left-hand side,

we generate a recurrence relation for the incomplete beta function,

−(n1 + r1ε)β(x, ε; n1 + 1, n3)

− (n3 + r3ε)β(x, ε; n1, n3 + 1) = (1− x)−n3−r3ε.
(6.30)

Eq. (6.30) is a recursion for the set of independent integrals β(x, ε; n1, n3). It

provides an additional set of linear relations between the different integrals.

We can try to solve the recursion in closed form, but in practice we only need

the function β(x, ε; n1, n3) for relatively small values of the integers ni. We

therefore rather generate a finite linear system from Eq. (6.30) and solve for

the functions β(x, ε; n1, n3) up to the desired values for n1 and n3. In practice,

it turns out that this linear system is overconstrained and that all the integrals

can be expressed in terms of a single master integral

β(1)(x, ε) = β(x, ε; 0, 0) =

∫ 1

0
dµ(t; x, ε). (6.31)

All other independent integrals can be obtained recursively from the master

integral by using the solutions of the IBP identities. Let us note that solving

the recursion coming from the IBP identities by solving a finite-sized linear

system is a variant of what is known in the context of loop computations as

the Laporta algorithm.

At this stage we have reduced the problem of computing an integral of the

form (6.25) to the computation of the corresponding master integral β(1)(x, ε).

The master integral itself can be computed as the solution of a linear differential

equation. To see this, let us differentiate β(1)(x, ε) with respect to x. Carrying

out the derivative on the integral representation of the master integral, we find

∂

∂x
β(1)(x, ε) = r3ε β(x, ε;−1, 1) = −r3ε

x

(

β(1)(x, ε) + β(x, ε; 0, 1)
)

, (6.32)

where the last step follows from the reduction to independent integrals. We see

that in the right-hand side of Eq. (6.32) we reproduce the master integral itself,

as well as another function of the same type. We know from the recurrence re-

lation (6.30) (or equivalently from the solution of the finite-sized linear system)

how to express all the incomplete beta functions in terms of the master integral
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β(1), and so the differential equation for the master integral closes under itself.

∂

∂x
β(1) =

r1ε− 1

x
β(1) +

(1− x)−r3ε

x
, (6.33)

The initial condition can easily be obtained by computing explicitly the master

integral for x = 0,

β(1)(x = 0; ε) =

∫ 1

0
dt t−r1ε =

1

1− r1ε
=

∞
∑

k=0

rk
1ε

k . (6.34)

We have now all the ingredients to solve this differential equation. It is easy to

see that the master integral is finite for ε→ 0, and so we can expand it into a

power series in ε,

β(1)(x; ε) =
∞
∑

n=0

β(1)
n (x) εn. (6.35)

Inserting this expansion into the differential equation (6.33), we can solve order

by order in ε for the master integral. In particular, for the constant term we

obtain,

∂

∂x
β(1)

0 = − 1

x
β(1)

0 +
1

x
, (6.36)

The general solution for β(1)
0 is easily obtained,

β(1)
0 (x) =

C

x
+ 1, (6.37)

where C denotes an integration constant. Matching the general solution to the

initial condition at ε = 0, we immediately find

β(1)
0 (x) = 1. (6.38)

We can repeat this procedure order by order up to the desired order in the

expansion of the master integral and obtain a Laurent series representation for

the function β(1)(x; ε).

The case n2 0= 0. Let us now turn to the generic case, n2 0= 0. Since

the technique is exactly the same as the one employed for the computation of

β(x, ε; n1, n3), we will be brief in this case. It is easy to see that the independent
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integrals in the case of the function f(x, ε; n1, n2, n3) are defined in exactly the

same way as for β(x, ε; n1, n3), i.e. , the set of independent integrals corresponds

to the set of functions where only one of the ni’s is non zero and n2, n3 ≥
0. We can now immediately write the integration-by-parts identities for the

independent integrals,

∫ 1

0

∂

∂t

(

dµ(t; x, ε) t−n1 (1− t)−n2 (1− xt)−n3
)

= dµ(t; x, ε) t−n1 (1− t)−n2 (1− xt)−n3

∣

∣

∣

t=1

t=0
= 0.

(6.39)

Note that in this case we find zero in the right-hand side of the IBP’s because

both the factors t and (1 − t) appear in the integrand. Carrying out the

derivative under the integration sign, we find a recursion for the set of functions

f(x, ε; n1, n2, n3),

−(n1 + r1ε) f(x, ε; n1 + 1, n2, n3) + (n2 + r2ε) f(x, ε; n1, n2 + 1, n3)

+ x(n3 + r3ε) f(x, ε; n1, n2, n3 + 1) = 0.
(6.40)

We again use the recursion to generate a finite-sized linear system. Solving this

system, we find that all the functions f(x, ε; n1, n2, n3) can be expressed as a

combination of two master integrals,

f (1)(x, ε) = f(x, ε; 0, 0, 0) and f (2)(x, ε) = f(x, ε; 0, 0, 1). (6.41)

These two integrals are independent and we cannot express the second one in

terms of the first one. We can however still compute the master integrals as

a solution of a system of differential equations. Differentiating each master

integral with respect to x and carrying out the derivative under the integration

sign and reducing everything to master integrals, we find,

∂

∂x
f (1) =

εr3

x
f (2) − εr3

x
f (1),

∂

∂x
f (2) = f (1)

(

−εr1 − εr2 − εr3 + 1

x
+

εr1 + εr2 + εr3 − 1

x− 1

)

+

f (2)

(

−εr2 − ε r3

x− 1
+

εr1 + εr2 + εr3 − 1

x

)

,

(6.42)

with the initial condition,

f (1)(x = 0, ε) = f (2)(x = 0, ε) = B(1− r1ε, 1− r2ε) = 1 + O(ε). (6.43)
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The master integrals are finite for ε→ 0, and so we expand them into a power

series in ε,

f (1)(x, ε) =
∞
∑

n=0

f (1)
n (x) εn and f (2)(x, ε) =

∞
∑

n=0

f (2)
n (x) εn. (6.44)

For the leading term, we find,

∂

∂x
f (1)
0 = 0,

∂

∂x
f (2)
0 = f (1)

(

1

x
+

1

1− x

)

− f (2) 1

x
.

(6.45)

f (1)
0 (x) is a constant with respect to x, and comparing to the initial condi-

tion (6.43) we find

f (1)
0 (x) = 1. (6.46)

Inserting this solution into the equation for f (2)
0 (x), we are left with

∂

∂x
f (2)
0 = −f (2) 1

x
+

1

x
+

1

1− x
. (6.47)

The general solution to this equation is

f (2)
0 (x) =

C − ln(1− x)

x
, (6.48)

and matching with the initial condition (6.43), we find

f (2)
0 (x) = − ln(1− x)

x
. (6.49)

We can repeat this procedure and solve for the higher orders in the power

series (6.44). Since Gauss’ hypergeometric function can be written in terms

of the functions f(x, ε; n1, n2, n3), which are themselves expressible in terms

of the two master integrals f (1) and f (2), we have obtained an algorithm to

expand any function of the form 2F1(a1 + a2ε, b1 + b2ε, c1 + c2ε; z), ai, bi and ci

being integers, into a Laurent series in ε. Let us make some comments about

this procedure:

1. On the one hand, the master integrals f (1) and f (2) are finite as ε→ 0 and

can thus be expanded into a power series in the dimensional regulator.



106 Chapter 6. Analytic integration of some real-virtual counterterms

On the other hand, a generic function f(x, ε; n1, n2, n3) can be written as

a linear combination of the master integral. This combination however is

not necessarily finite as ε→ 0, because the solutions of the linear system

used to express every integral in terms of master integrals may contain

explicit poles in ε.

2. We see that the solution for f (2)
0 (x) involves a logarithm in x. This is a

generic feature, and it turns out that for higher orders in ε the solution

for the master integrals is written in terms of generalized polylogarithms,

and in particular harmonic polylogarithms. A review of these functions

is given in Appendix G.

Let us now return to the real-virtual integrals, and in particular the soft inte-

gral J . In Eq. (6.21) we showed that the integral J can be expressed in terms

of Gauss’ hypergeometric function. The considerations from the previous para-

graphs provided us with an efficient technique to expand Gauss’ hypergeometric

function into a Laurent series in ε. We can thus immediately write out a Lau-

rent series representation for the soft integral J . The results for κ = 0, 1 and

D′
0 = 3 can be found in Ref. [69]. As representative examples, in Fig. 6.1 we

compare the analytic and numeric results for the ε2 coefficient in the expansion

of J (Y, ε; y0, 3 − 3ε;κ) for κ = 0, 1 and y0 = 0.1, 1. The agreement between

the two computations is seen to be excellent for the whole Y -range. We find

a similar agreement for other (lower-order, thus simpler) expansion coefficients

and/or other values of the parameters.

Let us conclude this section by making some comments about how to generalize

this technique to the more general integrated counterterms. In this work, we

consider a particular class of integrated counterterms, namely those that can

be written as twofold integral of the form (6.22) depending on two external

parameters zi. The method employed to compute the ε-expansion of the 2F1

functions remains applicable even in this case, with two small modifications:

1. For a twofold integral we can write out two independent IBP identities,

one for each integration variable, e.g. , in the case where the integrand
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Figure 6.1: Representative results for the J integral. The plots show the
coefficient of the O(ε2) term in J (Y, ε; y0, 3− 3ε;κ) for κ = 0 (left figure) and
κ = 1 (right figure) with y0 = 0.1, 1. The plots are taken from Ref. [69].

vanishes at the border of the integration domain,

∫ 1

0

∫ 1

0
dx1 dx2

∂

∂x1

(

. . .
)

= 0,

∫ 1

0

∫ 1

0
dx1 dx2

∂

∂x2

(

. . .
)

= 0.

(6.50)

2. If the integral depends on two external parameters zi, then the master

integrals fulfill a system of partial differential equations.

For more details on these more general integrals, we refer the reader to Ap-

pendix J as well as Ref. [69].

6.4 Conclusion

In the second part of this work we investigated the infrared behavior of gauge

theory scattering amplitudes. We discussed how collinear and soft singularities

can arise beyond leading order, and how they can be described in a uniform
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way using antenna functions. Antenna functions have the property that they

approximate the singular behavior of the amplitude all over the phase space,

and therefore incorporate by definition the complicated phase space structure

beyond next-to-leading order, facilitating in this way the construction of sub-

traction schemes beyond NLO. In particular, antenna subtraction is at the

basis of the only exclusive NNLO description of three jet production in e+e−

collisions.

In Chapter 5 we presented a new alternative way of defining tree-level antenna

functions by means of the MHV formalism, a definition which holds at any

order in perturbation theory. This method leads to very compact expressions

for the antenna functions, which might simplify the analytic integration over

the phase space of the unresolved particles. It also gives a very natural way of

parametrizing, by means of an antiholomorphic spinor η, the intrinsic arbitrari-

ness of the antenna function outside the singular regions. As an application,

we have shown that it is straightforward to provide explicit expressions for

MHV and NMHV antenna functions at all orders, which are sufficient to build

the full set of gluon antenna functions up to N3LO. We furthermore extended

this approach by combining it to the recursive formulation of the MHV formal-

ism presented in Section 2.4, and derived recursive relations for both antenna

functions and splitting amplitudes. Although the knowledge of these multi-leg

antenna functions might not play a practical role at present for QCD calcula-

tions beyond leading order, their knowledge could be of interest, for instance,

in testing the infrared structure of recently introduced conjectures for gluon

amplitudes at all order in MSYM (See Part III of this work).

No subtraction scheme is complete without an explicit knowledge of the inte-

grated counterterms that appear when combining the approximate cross sec-

tions with the virtual corrections. In Chapter 6 we therefore investigated new

methods to perform the integrals that appear in such a scheme. The techniques

we applied are a generalization of the Laporta algorithm and the master in-

tegral technique developed for (multi-) loop integrals in quantum field theory

over the last decade. We extended this technique to hypergeometric Euler

integrals of the form (6.22), and computed the Laurent expansion in the di-

mensional regularization parameter ε for a class of 27 real-virtual integrals [69].
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The technique however is much more generic, and could also be applied to the

computation of the Laurent expansion of generalized hypergeometric functions

that appear in loop computations (See Part III of this work), provided that

an Euler integral representation is known. Unfortunately, our technique turned

out to be not efficient enough in its present form to cope with all the integrated

counterterms that appear in the subtraction scheme under consideration. For

these classes of integrals, other techniques like for example the Mellin-Barnes

approach turns out to be more efficient [83].





Part III

The BDS ansatz and

high-energy limits
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Chapter 7
The Bern-Dixon-Smirnov ansatz

7.1 The ABDK/BDS ansatz

In the last part of this work we are concerned with the computation of scattering

amplitudes beyond tree-level accuracy. Although most techniques we present

apply to gauge theories in general, we focus in particular on planar N = 4

super Yang-Mills theories (MSYM). The interest in this particular theory is

manifold.

First, it is known that gluon loop amplitudes in QCD can be rearranged in a

way that makes the MSYM contribution explicit, e.g. given at one-loop accu-

racy, [32],

AQCD
n = AN=4

n − 4AN=1
n + Ascalar

n , (7.1)

where AN=4
n denote the one-loop n-point MSYM amplitude. The knowledge

of MSYM amplitudes is thus a first step to the knowledge of QCD amplitudes

needed for predictions at hadron colliders.

The second reason comes from the fact that several conjectures have recently

been made of what MSYM amplitudes for an arbitrary number of legs and loops

should look like. In this chapter we briefly review some of these conjectures,

which are at the core of this part.
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In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an

ansatz for a two-loop MHV amplitude in MSYM for an arbitrary number of

external legs. The ansatz expresses the two-loop amplitude in terms of the

one-loop result,

M (2)
n (ε) =

1

2

(

M (1)
n (ε)

)2
+ f (2)(ε)M (1)

n (2ε) + C(2) + O(ε), (7.2)

where

f (2)(ε) =
ψ(1− ε) + γE

ε
and C(2) = −5

4
ζ4, (7.3)

and M (l)
n denotes the l-loop coefficient, i.e. , the l-loop amplitude rescaled by

the tree-level result,

An = A(0)
n

(

1 +
∞
∑

l=1

al M (l)
n

)

. (7.4)

Since we work in the planar limit, we choose the ’t Hooft coupling as the

expansion parameter,

a =
2 g2 Nc

(4π)2−ε
e−γEε, (7.5)

where γE denotes the Euler-Mascheroni constant, Γ′(1) = −γE. Since the

one-loop amplitude contains infrared poles in 1/ε2, it must be known through

O(ε2) in Eq. (7.2). The origin of the ansatz goes back to the computation

by the same people of the two-loop splitting amplitude in MSYM, which was

shown to satisfy an iteration relation very similar to Eq. (7.2),

r(2)
S (ε) =

1

2

(

r(1)
S (ε)

)2
+ f (2)(ε) r(1)

S (2ε), (7.6)

where r(l)
S denotes the l-loop splitting amplitude, rescaled by the tree-level

result. Indeed, in the collinear limit the one and two-loop n-point MHV am-

plitudes must factorize according to

M (1)
n →M (1)

n−1 + r(1)
S ,

M (2)
n →M (2)

n−1 + M (1)
n−1 r(1)

S + r(2)
S ,

(7.7)

and it is easy to see that the ABDK ansatz (7.2) is the only iteration which is

compatible with both the iteration of the two-loop splitting amplitude, Eq. (7.6)
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and the collinear factorization (7.7). The ansatz was backed up by confronting

the iteration to the analytic computation of two-loop four-point amplitude in

MSYM. In Ref. [84] the ABDK ansatz was shown to hold also in the case of

the five-point amplitude by numerical computation.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM

amplitude [10] and showed that it satisfies an iteration similar to the ABDK

ansatz for the two-loop amplitude,

M (3)
4 (ε) = −1

3

(

M (1)
4 (ε)

)3
+M (1)

4 (ε)M (2)
4 (ε)+f (3)(ε)M (1)

4 (3ε)+C(3) +O(ε),

(7.8)

where

f (3)(ε) =
11

2
ζ4 + ε(6ζ5 + 5ζ2 ζ3) + ε3(c1ζ6 + c2ζ

2
3 ),

C(3) =

(

341

216
+

2

9
c1

)

ζ6 +

(

−17

19
+

2

9
c2

)

ζ2
3 .

(7.9)

The quantities c1 and c2 are expected to be rational numbers, but they cannot

be determined from the computation of the three-loop four-point amplitude,

because they cancel in the final result. BDS then extended the iteration for-

mulæ (7.2) and (7.8) and formulated an ansatz for a generic n-point MHV

amplitude in MSYM. This all-order ansatz reads

Mn(ε) = 1+
∞
∑

l=1

al M (l)
n (ε) = exp

∞
∑

l=0

al

[

f (l)(ε)M (1)
n (lε)+C(l) +E(l)

n (ε)

]

.

(7.10)

The only kinematical dependence in the right-hand side of Eq. (7.10) is in the

one-loop amplitude M (1)
n (lε). The quantities f (l)(ε) and C(l) are universal and

are independent of the kinematics and the number of external particles. f (l)(ε)

is expected to be a polynomial of degree two in ε and C(l) to be a polynomial

of uniform transcendental weight in Riemann ζ values. The values of these

functions for l = 2, 3 are given in Eqs. (7.3) and (7.9). The functions E(l)
n (ε)

are additional O(ε) contributions. It is easy to see that we must have f (1)(ε) =

C(1) = E(1)
n (ε) = 0 in order to reproduce the one-loop result. Expanding the

exponential in Eq. (7.10) and collecting powers of the coupling constant a, the
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BDS ansatz reproduces the two and three-loop iteration formulæ (7.2) and

(7.8).

The BDS ansatz was first shown to fail by Alday and Maldacena in the limit of

a large number of gluons using the ADS/CFT correspondence [11]. This result

was backed up by the computation of the six-edged Wilson loop and using the

conjecture that the n-edged Wilson loop can be related to the MHV amplitudes

in MSYM [85]. The question was settled in Ref. [12] with the explicit numerical

computation of the two-loop six-point amplitude, which confirmed the Wilson

loop result and demonstrated the breakdown of the BDS ansatz for l = 2 and

n = 6 in the finite contribution of the parity-even part. Recently, also the

seven and eight-edged Wilson loops have been computed [13]. Assuming that

the duality between Wilson loops and MSYM scattering amplitudes holds even

beyond n = 6, the conclusion is that the BDS ansatz fails for n = 7 and

8 as well. The breakdown of the ansatz can be quantified by the remainder

function R(2)
n , defined as the difference between the left and right-hand sides

of the ABDK ansatz,

R(2)
n ≡ M (2)

n (ε)− 1

2

(

M (1)
n (ε)

)2 − f (2)(ε)M (1)
n (2ε)− C(2). (7.11)

The previous results can be summarized by the statement that R(2)
n 0= 0 for

n ≥ 6 and R(2)
n is a constant with respect to ε. Since the computation of

Ref. [12] was numerical, we ignore at present the analytic expression of the

remainder function R(2)
6 .

Even though the ABDK/BDS ansatz does not hold beyond five-points, the

study of the Wilson loop duality tells us something more about the BDS ansatz.

The Wilson loops in fact possess a conformal symmetry and it was shown that

a particular solution to the ensuing Ward identities is given by the BDS ansatz.

The general solution of the Ward identities can thus be obtained by adding to

the BDS ansatz an arbitrary function which respects the conformal symmetry,

i.e. , an arbitrary function of conformal cross-ratios. The conclusion is that,

if the duality between Wilson loops and scattering amplitudes holds, then we

must add to the BDS ansatz a yet unknown function of conformal ratios of

Mandelstam invariants.
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In the case of the four and five-point on-shell amplitudes, it was shown that

there are no non-trivial such conformal ratios of invariants and hence the BDS

ansatz provides the full solution for the amplitude. Starting from six points

however, we can form three independent conformal ratios,

u1 =
s12 s45

s345 s456
, u2 =

s23 s56

s234 s456
, u3 =

s34 s61

s234 s345
, (7.12)

and so we can add an arbitrary function of these ratios to the BDS ansatz

without violating the conformal Ward identities.

The conformal Ward identities hence explain why the BDS alone is insufficient

to reproduce the full six-point amplitude, without however fixing the form

of the remainder function. Since the computation of the six-point two-loop

amplitude was purely numerical, no analytic representation for this function

is known. The analytic evaluation of Eq. (7.11) would require the analytic

computation of the one and two-loop hexagon integrals, which is beyond our

technical capabilities for the moment.

If the analytic computation of the six-point two-loop amplitude in general kine-

matics is at present out of reach, one could think of performing the computation

in a simpler kinematic regime where some of the invariants take particular val-

ues, or even vanish. Let us expand a little bit more on this and let us consider

a generic n-point l-loop amplitude. The amplitude depends a priori on n four-

momenta, but Lorentz invariance requires the amplitude to be a function of

invariants si only. In a region of phase space where one of the invariants, say

sk, is much smaller than all the others, sk 4 si, ∀i 0= k, we can expand the

amplitude in the invariant sk,

Mn

(

{si}; ε
)

= Mn

(

sk 4 si; ε
)

+ subleading terms, (7.13)

where Mn denotes the leading term in the expansion. Explicit examples of how

to compute this leading term will be given in subsequent chapters. Let us only

emphasize at this point that in general Mn is easier to compute than the full

amplitude, because of the kinematical constraint that might for example imply

that Mn depends on one scale less compared to the full amplitude. Instead of

computing the full six-point two-loop amplitude, we could thus think of only

computing its leading term in a given limit and extract the analytic expression
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of the remainder function from there. However, as we will see in the following,

not all kinematical limits are suitable for this task.

Let us start by analyzing the simplest kinematical limit, the double collinear

limit. For example, if p1 and p2 are collinear, then their invariant mass tends

to zero, s12 5 0, and so we can repeat the previous analysis and expand the

amplitude in the small parameter s12. In the case of the collinear limit the lead-

ing term in the expansion is just the splitting amplitude, Eq. (4.28). We know

however that the ABDK/BDS ansatz predicts correctly all the two-particle

collinear limits of an amplitude, which implies that the six-point remainder

function must vanish and no information on its functional can be obtained in

this limit.

The two-particle collinear limit is hence too restrictive to provide some infor-

mation on the analytic form of the remainder function. It is however expected

that the remainder function is non zero in the triple collinear limit, because

this limit appears for the first time in the six-point amplitude. This argument

is backed up by the observation that in the triple collinear limit the three con-

formal cross-ratios stay generic and do not become subleading, e.g. in the limit

where p1, p2 and p3 become collinear,

u1 5 O
(

s45

z3(sP4 + sP5) + s45

)

,

u2 5 O
(

s56

z1(sP5 + sP6) + s56

)

,

u3 5 O
(

z1 z3 sP4sP6

[z1(sP5 + sP6) + s56] [z3(sP4 + sP5) + s45]

)

,

(7.14)

where P = p1 + p2 + p3 denotes the collinear direction and zi denote the

momentum fractions. The leading term in the expansion (7.13) in the triple

collinear limit corresponds to the splitting amplitude for one gluon splitting

into three gluons, e.g. , at one and two-loop accuracy,

M (1)
n →M (1)

n−1 + r(1)
1→3,

M (2)
n →M (2)

n−1 + M (1)
n−1 r(1)

1→3 + r(2)
1→3,

(7.15)

where r(l)
1→3 denotes the l-loop splitting amplitude rescaled by the tree-level

result,

Split(l)−h(1, 2, 3) = Split(0)−h(1, 2, 3) r(l)
1→3. (7.16)
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The conclusion is that it is not necessary to compute the full two-loop six-point

amplitude in order to determine the functional form of R(2)
6 , but it would be

enough to have the analytic expression of the two-loop triple collinear splitting

amplitude, a computation which has however never been done so far.

In the rest of this work we extend the previous analysis from collinear limits to

other classes of limits, known as the high-energy limit. In Chapter 8 and 9 we

review the high-energy limit of gauge theory amplitudes, both at tree-level and

beyond. Along the way, we introduce a novel way to perform computations for

tree-level amplitudes in the high-energy limit, based on the MHV formalism.

In Chapter 10 we analyze what the BDS ansatz becomes in the high-energy

limit and we disguise several additional limits where the remainder function is

expected to be non zero.





Chapter 8
The high-energy behavior of
tree-level gluon amplitudes

8.1 The multi-Regge limit

Let us consider an n-point color-ordered tree-level gluon amplitude An(1, . . . , n)

describing the 2-to-(n − 2) scattering (−p1), (−p2) → p3, . . . , pn. We look at

the amplitude in a very specific kinematic regime, also known as multi-Regge

kinematics [86], where the final-state gluons are strongly ordered in rapidity

and have comparable transverse momenta,

y3 6 y4 6 . . .6 yn−1 6 yn and |p3⊥| 5 |p4⊥| 5 . . . 5 |pn−1⊥| 5 |pn⊥|,

(8.1)

where p⊥ = px + ipy denotes the complex transverse momentum. Using light-

cone coordinates∗, the two-particle invariants become, for 3 ≥ i > j ≥ n,

sij = p+
i p−j + p−i p+

j − pi⊥ p∗j⊥ − p∗i⊥ pj⊥

= |pi⊥| |pj⊥| eyi−yj + |pi⊥| |pj⊥| eyj−yi − pi⊥ p∗j⊥ − p∗i⊥ pj⊥.
(8.2)

The last two terms in this relation are O(1), and the first exponential is en-

hanced with respect to the second one. Hence, in multi-Regge kinematics only

∗See Appendix D for a review.
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the first exponential contributes,

sij 5 |pi⊥||pj⊥|eyi−yj . (8.3)

Similarly, one shows that,

s ≡ s12 5 |p3⊥||pn⊥|ey3−yn ,

s2i 5 −|p3⊥||pi⊥|ey3−yi ,

s1i 5 −|pi⊥||pn⊥|eyi−yn .

(8.4)

The kinematics (8.1) imply that the total scattering energy s is much larger

than any other two-particle invariant, which justifies the identification of the

multi-Regge limit with the high-energy limit. If we label the momenta trans-

ferred in the t-channel by

q1 = p1 + pn

qi = qi−1 + pn−i+1, for 2 ≤ i ≤ n− 4

qn−3 = − p2 − p3,

(8.5)

with virtualities ti = q2
i , then it is easy to see that in multi-Regge kinematics

the t-channel momentum flow is determined by the transverse components only,

ti 5 −|qi⊥|2. If we furthermore define si = sn−i,n−i+1, the multi-Regge limit

implies the hierarchy of scales,

s 6 s1, s2, . . . , sn−3 6 −t1, −t2, . . . ,−tn−3 . (8.6)

Eq. (8.6) has the practical advantage that it is formulated in terms of two-

particle invariants rather than rapidities, and it makes the high-energy behavior

of the limit explicit. It does however not uniquely determine the multi-Regge

limit, because we did not impose the constraint that the final state gluons

should have comparable transverse momentum. Furthermore, Eq. (8.6) is a

Lorentz invariant statement, whereas Eq. (8.1) is invariant only under boosts

along the z axis. Let us define the transverse momentum scales

κi = |pn−i⊥|2, for 1 ≤ i ≤ n− 4. (8.7)

In multi-Regge kinematics, κi is of the order of the t-type invariants and can

be expressed in terms of two and three-particle invariants,

κi =
si si+1

sn−i−1,n−i,n−i+1
. (8.8)
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The latter relations are known as the mass-shell conditions for the gluons.

Using Eq. (8.4), we find a relation between the mass-shell conditions in the

multi-Regge limit,

sκ1 . . . κn−4 = s1 . . . sn−3. (8.9)

Eqs. (8.8) and (8.9) combined to the hierarchy of scales (8.6) uniquely define

the multi-Regge limit in terms of multi-particle invariants, a formulation which

will be used extensively in subsequent chapters when studying the high-energy

behavior of gluon amplitudes beyond tree-level.

In the previous paragraph we showed how the multi-Regge limit can be defined

either in terms of rapidities or in terms of particles invariants. In Chapter 1 we

argued that at tree-level it is convenient to work in the spinor-helicity represen-

tation and to express an amplitude as a rational function of spinor products.

Following this logic, we introduce a third equivalent way to define the multi-

Regge limit based on lightcone coordinates, related to the spinor products via

the relation,

〈ij〉 = pi⊥

√

p+
j

p+
i

− pj⊥

√

p+
i

p+
j

. (8.10)

A review of multi-Regge kinematics in lightcone coordinates is given in Ap-

pendix D. It is easy to show that a strong ordering in rapidities is equivalent

to a strong ordering in lightcone coordinates,

p+
3 6 p+

4 6 . . .6 p+
n−1 6 p+

n and p−3 4 p−4 4 . . .4 p−n−1 4 p−n , (8.11)

where p± = p0 ± pz. In multi-Regge kinematics the spinor products are then

written in the approximate form [25],

〈ij〉 5 −pj⊥

√

p+
i

p+
j

, for 3 ≤ i < j ≤ n,

〈2i〉 5 −i pi⊥

√

p+
3

p+
i

, for 3 ≤ i ≤ n,

〈i1〉 5 −i
√

p+
i p−n , for 3 ≤ i ≤ n− 1,

〈12〉 5
√

p+
3 p−n .

(8.12)
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Let us apply these formulas to an MHV amplitude and let us determine its

form in multi-Regge kinematics. We find,

An(1−, 2−, 3+, . . . , n+) =
〈12〉4

〈12〉〈23〉 . . . 〈(n− 1)n〉〈n1〉

5 (p+
3 p−n )2

√

p+
3 p−n (−i)p3⊥ (−p4⊥)

√

p+
3

p+
4

. . . (−pn⊥)

√

p+
n−1

p+
n

(−i)
√

p+
n p−n

5 p+
3 p−n

−1

|p3⊥|2
p∗3⊥ qn−4⊥

p4⊥

−1

|qn−4⊥|2
. . .

−1

|q2⊥|2
q∗2⊥ pn⊥

pn−1⊥

−1

|pn⊥|2
p∗n⊥
pn⊥

.

(8.13)

Using the fact that in multi-Regge kinematics |qi|2 5 −ti and p+
3 p−n 5 s, we

can recast this expression into the form,

An(1−, 2−, 3+, . . . , n+) 5 s
1

tn−3

q∗n−3⊥ qn−4⊥

p4⊥

1

tn−4
. . .

1

t2

q∗2⊥ q1⊥

pn−1⊥

1

t1

p∗n⊥
pn⊥

.

(8.14)

We see that in the multi-Regge limit the amplitude can be written as a product

of terms with the same functional form,

q∗i+1⊥ qi⊥

pi⊥
, (8.15)

connected by t-channel propagators. Even though we only showed this fac-

torization explicitly on the example of an MHV amplitude, it is conjectured

that in the multi-Regge limit the leading behavior of any n-gluon color-ordered

amplitude takes the factorized form [87]

An(1, . . . , n)

= s C(0)(2; 3)
1

tn
V (0)(qn−3; 4; qn−4) . . .

1

t2
V (0)(q2; n− 1; q1)

1

t1
C(0)(1;n).

(8.16)

where we implicitly followed the same convention as for the color-ordered am-

plitudes, i.e. we label the external gluon momenta simply by their indices,

C(0)(2; 3) ≡ C(0)(p2; p3) and V (0)(qn−i+1; i; qn−i) ≡ V (0)(qn−i+1; pi; qn−i).

(8.17)

The factorization is shown schematically in Fig. 8.1. The coefficient functions†

C(0) describe the g∗g → g vertices, where g∗ denotes a reggeized gluon in the

†Also known as impact factors.
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t-channel. They are functions of the momenta and helicities of the external

gluons [87, 86],

C(0)(2−; 3+) = C(0)(2+; 3−)∗ = 1,

C(0)(1−; n+) = C(0)(1+; n−)∗ =
p∗n⊥
pn⊥

,
(8.18)

and all other helicity configurations are subleading. The Lipatov vertex V (0)

describing the emission of a gluon along the t-channel ladder is given by [87,

88, 89],

V (0)(qn−i+1; i
+; qn−i) = V (0)(qn−i+1; i

−; qn−i)
∗ =

q∗n−i+1⊥ qn−i⊥

pi⊥
. (8.19)

Eqs. (8.18) and (8.19) are universal and do not depend on the number of ex-

ternal gluons. They can be used to compute any tree-level amplitude for an

arbitrary number of legs in multi-Regge kinematics. Note that starting from

Eq. (8.1) we can define a whole tower of new limits by successively relaxing

the rapidity ordering and allowing for two or more final-state gluons with com-

parable rapidities. These limits, together with the corresponding factorization

formulas for the amplitudes, are reviewed in the next section.

8.2 Quasi multi-Regge limits

When relaxing the strong rapidity ordering (8.1), we obtain kinematical con-

figurations where two or more gluons have comparable rapidities. We can

thus start from multi-Regge kinematics, and progressively approach the gen-

eral kinematics, where no rapidity ordering is imposed.

Let us start with the situation where we do not impose any rapidity ordering

on the gluons emitted along the ladder,

y3 6 y4 5 . . . 5 yn−1 6 yn and |p3⊥| 5 |p4⊥| 5 . . . 5 |pn−1⊥| 5 |pn⊥|,

(8.20)

or equivalently using lightcone coordinates,

p+
3 6 p+

4 5 . . . 5 p+
n−1 6 p+

n . (8.21)
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p1

p2

pn

p3

qn−3

qn−4

p4

p5

q2

pn−2

q1

pn−1

sn−3

sn−4

s2

s1

κ1

κ2

κn−5

κn−4

...

Figure 8.1: Amplitude in multi-Regge kinematics. The blobs indicate the coeffi-
cient functions (impact factors) and the Lipatov vertices describing the emission
of gluons along the ladder.

Similar to the multi-Regge case, the amplitude is conjectured to factorize,

An(1, . . . , n) = s C(0)(2; 3)
1

t2
V (0)

n−4(q2; 4, . . . , n− 1; q1)
1

t1
C(0)(1;n), (8.22)

where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (8.23)

and ti = q2
i 5 −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (8.22)

are the same as in Eq. (8.18). The functions V (0)
n−4 are the tree-level Lipatov

vertices describing the emission of (n−4) gluons with comparable rapidity along

the ladder. In the special case where all the gluons have the same helicity a

simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n− 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n− 2)(n− 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n− 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n− 1)+; q1

)

]∗
,

(8.24)
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where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (8.25)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (8.19),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (8.26)

The limit we just defined must of course encompass all other limits with a more

stringent rapidity ordering, where we have two clusters of gluons separated by

a large rapidity gap,

y3 6 y4 5 . . . 5 ym 6 ym+1 5 . . . 5 yn−1 6 yn. (8.27)

The amplitude must factorize accordingly into a product of four building blocks,

and as a consequence the Lipatov vertices themselves must factorize,

V (0)
n−4(q2; 4, . . . , n− 1; q1)

= V (0)
m−3(q2; 4, . . . , m; q3)

1

t3
V (0)

n−m−1(q3; m + 1, . . . , n− 1; q1),
(8.28)

where q3 denotes the momentum transferred in the t-channel, q3 = q2−p4−. . .−
pm, and t3 5 −|q3⊥|2. In particular, in the limit of strong rapidity ordering we

recover the multi-Regge factorization formula (8.16). Furthermore, in the limit

where a subset of the gluons, say i, . . . , j, become collinear, the amplitude must

still have the correct collinear behavior, i.e. , the Lipatov vertex must factorize

onto a splitting amplitude for the emission of collinear gluons,

V (0)
n−4(q2; 4, . . . , n− 1; q1)

=
∑

h

V (0)
n+i−j−4(q2; 4, . . . , i− 1, P h, j + 1, . . . , n− 1; q1) Split−h(i, . . . , j),

(8.29)

where P denotes the collinear direction.

The previous analysis naturally lead to the definition of generalized Lipatov

vertices, describing the emission of a cluster of gluons along the t-channel lad-

der. We can define in exactly the same way generalized coefficient functions by

not requiring a rapidity gap at the end of the gluon ladder, e.g. ,

y3 5 y4 5 . . . 5 yn−1 6 yn and |p3⊥| 5 . . . 5 |pn⊥|, (8.30)
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or equivalently in terms of lightcone coordinates,

p+
3 5 p+

4 5 . . . 5 p+
n−1 6 p+

n . (8.31)

In this limit the amplitude factorizes according to

An(1, . . . , n) = s C(0)
n−3(2; 3, . . . , n− 1)

1

t
C(0)(1;n), (8.32)

where t 5 −|q⊥|2 with q = p1 + pn denotes the momentum transferred in the

t-channel, and C(0) was defined in Eq. (8.18). The coefficient functions C(0)
n−3

are the generalizations of the function C(0) and describe the emission of (n−3)

gluons with comparable rapidity at one end of the ladder. In the particular

case where all the emitted gluons have the same helicity, we obtain,

C(0)
n−3

(

2−; 3+, 4+, . . . , (n− 1)+
)

= − q⊥
p3⊥

√

x3

xn−1

1

〈34〉 . . . 〈(n− 2)(n− 1)〉 ,

C(0)
n−3

(

2+; 3−, 4−, . . . , (n− 1)−
)

=
[

C(0)
n−3

(

2−; 3+, 4+, . . . , (n− 1)+
)

]∗
,

(8.33)

and for n = 4 the generalized coefficient functions reduce to the coefficient

function introduced in the previous section,

C(0)
1 (2; 3) = C(0)(2; 3). (8.34)

Similar to the case of the Lipatov vertices, the coefficient functions inherit all

the factorization properties from the full amplitude. In particular, in the limit

of more restrictive kinematics, say y3 5 . . . 5 ym 6 ym+1 5 . . . 5 yn−1, the

coefficient functions must factorize into a coefficient function for the emission

of fewer gluons times a Lipatov vertex,

C(0)
n−3(2; 3, 4, . . . , n−1) = C(0)

m−2(2; 3, 4, . . . , m)
1

t1
V (0)

n−m−1(q1; m+1, . . . , n−1; q),

(8.35)

and t1 = q2
1 5 −|q1⊥|2 with q1 = p2 + p3 + . . . + pm. Note that for m = 3

Eq. (8.35) reduces to Eq. (8.22). Furthermore, if a subset of particles, say

i, . . . , j, becomes collinear, then the coefficient function must factorize onto a

splitting amplitude,

C(0)
n−3(2; 3, 4, . . . , n− 1)

=
∑

h

C(0)
n+1−j−3(2; 3, 4, . . . , i− 1, P h, j + 1, . . . , n− 1) Splith(i, . . . , j),

(8.36)
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where P denotes the collinear direction.

The generalized coefficient functions and Lipatov vertices have been computed

up to C(0)
4 and V (0)

3 in Ref. [25]. The computation was performed by using

the analytic expressions for color-ordered amplitudes for up to seven external

gluons and taking the appropriate limit on the amplitude using the approxi-

mate form of the spinor products of Appendix D. This procedure is similar

to the algorithm to extract splitting amplitudes and soft factors presented in

Chapter 4. In this context, we showed that we can refine this procedure when

working in the MHV formalism where we can take advantage of the fact that

for MHV diagrams the pole structures are explicit. In the next section we

will extend this approach and show that the MHV formalism can not only be

applied to the study of the infrared behavior, but also to extract coefficient

functions and Lipatov vertices.

8.3 Multi-Regge limits and MHV rules

8.3.1 Coefficient functions from MHV rules

In this section we describe how the MHV formalism can be used to extract the

leading behavior of an amplitude in the multi-Regge kinematics. The MHV

formalism provides an efficient way to compute the Lipatov vertices and coeffi-

cient functions by allowing one to identify a priori the set of diagrams that give

a non-vanishing contribution in the multi-Regge limit. It is hence not necessary

to compute the full set of MHV diagrams that contribute to An(1, . . . , n), as it

was done in Ref. [25], but we can reject a priori those diagrams that give only

subleading contributions.

We start by analyzing the quasi multi-Regge limit describing the emission of

(n− 3) gluons at one end of the ladder, Eq. (8.30). The set of MHV diagrams

that contribute to this limit is defined by the following rule:

Rule 8.1. In the quasi multi-Regge limit defined by the rapidity-ordering (8.30)

only those MHV diagrams contribute where p1 and pn are attached to the same

m-point MHV vertex, m ≥ 4.
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The proof of this rule, based on simple powercounting arguments, is given in

Appendix E. Note that this rule is natural, because all diagrams defined in

this way have a t-channel propagator of the form 1/(p1 + pn + . . .)2. The rule

then defines the set of MHV diagrams that contribute in the high-energy limit,

all other diagrams being subleading. Furthermore, this set also has the correct

collinear behavior. Indeed we know from Rule 5.1 that in the limit where the

particles 3, 4, . . . , (n−1) become collinear, only those MHV diagrams contribute

where 1, 2 and n are attached to the same MHV vertex. It is easy to see that

the set of diagrams defined by Rule 8.1 encompasses this set.

Let us make some comment about the role of the arbitrary spinor η in this

context. We know that in the full amplitude the η dependence always cancels

out in the sum over all diagrams. In Rule 8.1, however, we only consider a

subset of MHV diagrams, and so the analytic cancellation of the η-dependent

terms is not obvious. Indeed, we know from the antenna functions studied in

Chapter 5 that this cancellation is not bound to take place if only a subset of

diagrams is considered. Unlike antenna functions, coefficient functions are uni-

versal gauge invariant quantities defined in a unique way, and so a dependence

on the unphysical quantity η is inadmissible. Alternatively, we could expect

the coefficient functions to be analytically dependent on η and only numerically

independent. In the following we show that the η dependence always drops out

analytically in the leading term in the Regge limit.

In terms of lightcone coordinates, the limit of interest in is defined by

p+
3 5 p+

4 5 . . . 5 p+
n−1 6 p+

n , η+. (8.37)

Since η is a constant and no limit is taken on it, we include η in the right-hand

side of Eq. (8.37). We already know from Chapter 2 that the only way η enters

a given MHV diagram is through off-shell continued spinor products of the

form (2.7), i.e. ,

[!η] = η∗⊥

√

p+
*

η+
− p∗*⊥

√

η+

p+
*

. (8.38)
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In the limit (8.37) the second term is suppressed with respect to the first one,

and so we find,

〈kPij〉 5
j

∑

*=i

〈k!〉η∗⊥

√

p+
*

η+
5 η∗⊥

√

η+

√

−p+
2 ∆(k, i, j), (8.39)

where we defined

∆(k, i, j) =
j

∑

*=i

√
x*〈k!〉, (8.40)

with x* defined in Eq. (8.25). From Eq. (8.39) we see that in the high-energy

limit all off-shell continued spinor products are proportional to η∗⊥/
√

η+. Fur-

thermore, it is easy to see that an MHV diagram must contain the same number

of off-shell continued spinor products in the numerator and in the denominator,

and so the overall scale factor η∗⊥/
√

η+ cancels out.

8.3.2 Lipatov vertices from MHV rules

We know from Eq. (8.35) that the coefficient function C(0)
n−3 contains the Li-

patov vertex V (0)
n−4 in the limit where y3 becomes much larger than any of the

yi, 4 ≤ i ≤ (n − 1). Hence, the set of MHV diagrams defined by Rule 8.1

contains at the same time all the MHV diagrams that contribute to V (0)
n−4. Our

rule can thus also be used to extract the generalized Lipatov vertices by taking

the appropriate limit. Furthermore, from the previous discussion it is clear

that the Lipatov vertices are always analytically independent of the arbitrary

spinor η, as they should.

In the following sections we use this approach to derive explicit expressions for

the Lipatov vertices V (0)
k with k ≤ 4 and we give explicit results for independent

vertices, all other ones being related to the independent ones by parity and

reflection identity,

V (0)
k (q1; 1

h1 , . . . , khk ; q2) =
[

V (0)
k (q1; 1

−h1 , . . . , k−hk ; q2)
]∗

V (0)
k (q1; 1

h1 , . . . , khk ; q2) = (−1)k V (0)
k (q2; k

hk , . . . , 1h1 ; q1).
(8.41)
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1−

2−

n

i−
3

1−

2−

n
i−

3

1−

2−

n

i−

3

Figure 8.2: NMHV-type MHV diagrams of An(1−, . . . , i−, . . . , n−) contributing
in the high-energy limit. The dots indicate an arbitrary number of positive-
helicity gluons.

Since we work with the MHV formalism, it is useful to classify the Lipatov

vertices according to the number N of negative-helicity gluons in the vertex:

1. N = 0: MHV-type Lipatov vertices.

All gluons entering the Lipatov vertex have positive helicity. All MHV-

type Lipatov vertices have the same analytic structure given by Eq. (8.24).

2. N = 1: NMHV-type Lipatov vertices.

Only one gluon has negative helicity. The MHV topologies contributing

to this type of Lipatov vertex are shown in Fig. 8.2.

3. N = 2: NNMHV-type Lipatov vertices.

Exactly two gluon have negative helicity. There are 16 MHV topologies

contributing to this type of Lipatov vertex.

4. etc.

In the following sections we present the results for the generalized Lipatov

vertices using our rule. The expressions we obtain are characterized by a much

simpler form than the corresponding expressions of Ref. [25].
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8.3.3 The g∗g∗ → gg Lipatov vertices

There are two independent Lipatov vertices for g∗g∗ → gg, one of them being

of MHV-type. The NMHV-type vertex is given by

V (0)
2 (q1; 1

+, 2−; q2) =

|q1⊥|2 x3/2
1 p3

2⊥
√

x2 〈12〉
(

x2 |p1⊥|2 + x1 |p2⊥|2
)

p1⊥ (p1⊥ + p2⊥)

+
q∗1⊥x3/2

1 (q2⊥ + p2⊥)3

(

q2⊥
√

x1 −
√

x2〈12〉
)

(

x2 |p1⊥|2 + x1 |p1⊥ − q1⊥|2
)

p1⊥

+
q1⊥ q2⊥

√
x1x

3/2
2

(x1 + x2) 〈12〉 (x2p1⊥ + x1 (p1⊥ − q1⊥))

− q∗1⊥q2⊥x3/2
1√

x2 (x1 + x2) (p1⊥ + p2⊥) [12]

(8.42)

We checked that our result numerically agrees with the result of Ref. [25] and

that it has the correct collinear and multi-Regge limits.

8.3.4 The g∗g∗ → ggg Lipatov vertices

There are four independent Lipatov vertices for the emission of three gluons,

one of them being of MHV type, the remaining three being of NMHV type.

We checked numerically that our result agrees with the result in Ref. [25] and

that it has the correct collinear and multi-Regge limits. The three independent
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NMHV-type vertices are given by

V (0)
3 (q1; 1

−, 2+, 3+; q2) =

|q1⊥|2 q2⊥x3/2
2 p3

1⊥

〈12〉p2⊥ (p1⊥ + p2⊥) (−q1⊥ + p1⊥ + p2⊥) p3⊥
√

x1

(

|p2⊥|2 x1 + |p1⊥|2 x2

)

−
q∗1⊥q2⊥

√
x2 (x2 + x3)

3 p3
1⊥

〈23〉 (p1⊥ − q1⊥)
√

x3 ((p1⊥ − q1⊥)x1 + p1⊥x2 + p1⊥ x3)

× 1
√

x1x2〈12〉+ p2⊥ x1 + (p2⊥ − q1⊥)x2 + p2⊥x3

× 1

p∗1⊥ ((p1⊥ − q1⊥) x1 + p1⊥x2 + p1⊥x3)− q∗1⊥ (p1⊥ − q1⊥)x1

+ x2

(

− |q1⊥|2 x3/2
3 p3

1⊥
(q2⊥ − q1⊥) 〈12〉 〈23〉p3⊥

√
x1

× 1
(

|p1⊥|2 x2x3 + x1

(

|p3⊥|2 x2 + |p2⊥|2 x3

))

− q∗1⊥ x2
3p

3
1⊥

〈12〉 (q2⊥ + p3⊥)
√

x1

(

〈23〉√x3 − q2⊥
√

x2

)

× 1
(

|p1⊥|2 x2x3 + x1

(

|q2⊥ + p3⊥|2 x2 + |p2⊥|2 x3

))





+
|q1⊥|2 q2⊥

√
x2

〈23〉 (p1⊥ − q1⊥) p2⊥p∗1⊥
√

x3
− q∗1⊥q2⊥〈12〉 x3/2

2

s12 (p1⊥ + p2⊥)
√

x1
√

x3∆(3; 1, 2)

− q∗1⊥q2⊥ ∆(1; 2, 3)3

s123〈12〉〈23〉 (p1⊥ + p2⊥ + p3⊥) (x1 + x2 + x3) ∆(3; 1, 2)

+
q1⊥q2⊥ x5/2

1

〈12〉〈23〉√x3 (x1 + x2 + x3) ((p1⊥ − q1⊥) x1 + p1⊥x2 + p1⊥x3)
,

(8.43)
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V (0)
3 (q1; 1

+, 2−, 3+; q2) =

− |q1⊥|2 x3/2
1 x3/2

3 p4
2⊥

(q2⊥ − q1⊥) 〈12〉 〈23〉p1⊥p3⊥x2

× 1
(

|p1⊥|2 x2x3 + x1

(

|p3⊥|2 x2 + |p2⊥|2 x3

))

+
q∗1⊥ x3/2

1 x2
3p

4
2⊥

〈12〉p1⊥ (q2⊥ + p3⊥) x2

(

q2⊥
√

x2 − 〈23〉√x3

)

× 1
(

|p1⊥ |2 x2x3 + x1

(

|q2⊥ + p3⊥|2 x2 + |p2⊥|2 x3

))

+
|q1⊥ |2 q2⊥x3/2

1 p3
2⊥

〈12〉 p1⊥ (p1⊥ + p2⊥) (−q1⊥ + p1⊥ + p2⊥) p3⊥
√

x2

× 1
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

+
q1⊥q2⊥

√
x1x2

2

〈12〉 〈23〉√x3 (x1 + x2 + x3) ((p1⊥ − q1⊥) x1 + p1⊥x2 + p1⊥ x3)

− q∗1⊥q2⊥ (p1⊥ − q1⊥)3 x2
1x

5/2
2

〈23〉p1⊥
√

x3 (x2 + x3) ((p1⊥ − q1⊥) x1 + p1⊥x2 + p1⊥x3)

× 1
(√

x1x2〈 12〉+ p2⊥x1 + (p2⊥ − q1⊥) x2 + p2⊥x3

)

× 1

(p∗1⊥ ((p1⊥ − q1 ⊥) x1 + p1⊥x2 + p1⊥x3)− q∗1⊥ (p1⊥ − q1⊥)x1)

+
q∗1⊥ q2⊥〈23〉√x1x

3/2
3

s23p1⊥
√

x2 (x2 + x3)∆(1; 2, 3)

− q∗1⊥q2⊥ 〈12〉x3/2
1

s12 (p1⊥ + p2⊥)
√

x2
√

x3∆(3; 1, 2)

− q∗1⊥ q2⊥∆(2; 3, 1)4

s123〈12〉〈23〉 (p1⊥ + p2⊥ + p3⊥) (x1 + x2 + x3)∆(1; 2, 3)∆(3; 1, 2)
,

(8.44)



136 Chapter 8. The high-energy behavior of tree-level gluon amplitudes

V (0)
3 (q1; 1

+, 2+, 3−; q2) =

−
q∗1⊥q2⊥x2

1
√

x2x
3/2
3 (p1⊥ − q1⊥)3

〈23〉p1⊥ (x2 + x3) ((p1⊥ − q1⊥) x1 + p1⊥x2 + p1⊥x3)

× 1
(√

x1x2〈 12〉+ p2⊥x1 + (p2⊥ − q1⊥) x2 + p2⊥x3

)

× 1

(p∗1⊥ ((p1⊥ − q1 ⊥)x1 + p1⊥x2 + p1⊥x3)− q∗1⊥ (p1⊥ − q1⊥)x1)

− q∗1⊥ q2⊥∆(6; 4, 5)3

s123〈12〉〈23〉 (p1⊥ + p2⊥ + p3⊥) (x1 + x2 + x3)∆(4; 5, 6)
+ x2

×
{

q∗1⊥ (q2⊥ + p3⊥)3 x3/2
1

〈12〉p1 ⊥
(

q2⊥
√

x2 − 〈23〉√x3

)

× 1
[

|p1⊥|2 x2x3 + x1

(

|q2⊥ + p3 ⊥|2 x2 + |p2⊥|2 x3

)]

− |q1⊥|2 p3
3⊥ x3/2

1

(q2⊥ − q1⊥) 〈12〉 〈23〉p1⊥
√

x3

}

× 1
[

|p1⊥|2 x2x3 + x1

(

|p3⊥|2 x2 + |p2⊥|2 x3

)]

+
q1⊥q2⊥

√
x1x

3/2
3

〈12〉〈23〉 (x1 + x2 + x3) ((p1⊥ − q1⊥)x1 + p1⊥x2 + p1⊥ x3)

+
q∗1⊥q2⊥〈23〉√x1 x3/2

2

s23p1⊥
√

x3 (x2 + x3)∆ (4, 5, 6)
,

(8.45)

where ∆(k, i, j) was defined in Eq. (8.40).

8.3.5 The g∗g∗ → gggg Lipatov vertices

There are eight independent g∗g∗ → gggg Lipatov vertices, one of MHV type,

four NMHV and three NNMHV-type vertices. As the analytic expressions are

quite lengthy, they are listed explicitly in Appendix O. Note that unlike for the

Lipatov vertices for the emission of two or three gluons, no analytic results for

the g∗g∗ → gggg Lipatov vertices can be found in the literature. As a cross-

check we checked that our results have the correct collinear and multi-Regge
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factorization properties. The NMHV-type vertices can be written in the form

V (0)
4 (q1; 1

−, 2+, 3+, 4+; q2) =
11
∑

k=1

N (k)(q1; 1−, 2+, 3+, 4+; q2)

D(k)(q1; 1−, 2+, 3+, 4+; q2)
,

V (0)
4 (q1; 1

+, 2−, 3+, 4+; q2) =
12
∑

k=1

N (k)(q1; 1+, 2−, 3+, 4+; q2)

D(k)(q1; 1+, 2−, 3+, 4+; q2)
,

V (0)
4 (q1; 1

+, 2+, 3−, 4+; q2) =
11
∑

k=1

N (k)(q1; 1+, 2+, 3−, 4+; q2)

D(k)(q1; 1+, 2+, 3−, 4+; q2)
,

V (0)
4 (q1; 1

+, 2+, 3+, 4−; q2) =
8

∑

k=1

N (k)(q1; 1+, 2+, 3+, 4−; q2)

D(k)(q1; 1+, 2+, 3+, 4−; q2)
,

(8.46)

where the numerator and denominator functions N (k) and D(k) are combi-

nations of spinor products and lightcone components of the momenta, e.g. ,

N (1)(q1; 1
−, 2+, 3+, 4+; q2) = −q∗1⊥q2⊥p3

1⊥x2x
3/2
3 ,

D(1)(q1; 1
−, 2+, 3+, 4+; q2) = 〈12〉〈23〉 (q1⊥ + p1⊥ + p2⊥) (2q1⊥ + p1⊥ + p2⊥)

p4⊥
√

x1

(

q1⊥q∗1⊥x1 x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

.

The complete set of NMHV numerator and denominator functions is listed

in Appendix O.1. There are only three independent helicity configurations, all

other configurations being related to the independent ones by reflection identity

and parity. The NNMHV-type vertices can be written in the form,

V 4g(q1; 1
−, 2−, 3+, 4+; q2) =

39
∑

k=1

N (k)(q1; 1−, 2−, 3+, 4+; q2)

D(k)(q1; 1−, 2−, 3+, 4+; q2)
,

V 4g(q1; 1
−, 2+, 3−, 4+; q2) =

50
∑

k=1

N (k)(q1; 1−, 2+, 3−, 4+; q2)

D(k)(q1; 1−, 2+, 3−, 4+; q2)
,

V 4g(q1; 1
+, 2−, 3−, 4+; q2) =

43
∑

k=1

N (k)(q1; 1+, 2−, 3−, 4+; q2)

D(k)(q1; 1+, 2−, 3−, 4+; q2)
,

(8.47)

The complete set of NNMHV numerator and denominator functions is listed

in Appendix O.2.





Chapter 9
High-energy factorization
beyond tree-level

9.1 The high-energy prescription

In the previous chapter we introduced the factorization of a tree-level amplitude

in the multi-Regge limit in terms of coefficient functions and Lipatov vertices.

In this chapter we conjecture that high-energy factorization holds true even

beyond tree-level and we introduce our notations and conventions.

The high-energy limit can be characterized by the fact that the s-type invari-

ants are much larger than the t-type invariants, and the perturbative expansion

might therefore contain large logarithms of the form ln(s/t). The virtual ra-

diative corrections to Eq. (8.16) in the leading logarithmic (LL) approximation

are obtained, to all orders in αs, by replacing the propagator of the t-channel

gluon by its reggeized form [86]. That is, by making the replacement

1

ti
→ 1

ti

(si

τ

)α(ti;ε)
, (9.1)

in Eq. (8.16), where α(ti; ε) can be written in dimensional regularization in

D = 4− 2ε dimensions as

α(ti; ε) = g2 cΓ

(

µ2

−ti

)ε

Nc
2

ε
. (9.2)

139
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α(ti; ε) is the Regge trajectory and accounts for the higher order corrections

due to gluon exchange in the ti channel. In Eq. (9.1), the reggeization scale τ

is much smaller than any of the s-type invariants, and it is of the order of the

t-type invariants.

In order to extend the factorization (8.16) beyond tree-level, we need a prescrip-

tion that tells us how to disentangle the higher-order corrections that reggeize

the gluon (9.1) from those to the Lipatov vertex and the coefficient functions,

i.e. , we need a prescription that tells us how to distribute the radiative correc-

tions between the different universal building blocks in a consistent way. We

will give an explicit example of how this prescription works in the next sec-

tion. In Ref. [26, 27] a high-energy prescription at the level of the color-ordered

amplitudes was presented, which was shown to be valid up to three loops for

the color-stripped four-point amplitude. We follow here this prescription, and

we conjecture that in multi-Regge kinematics an n-point color-ordered gluon

amplitude takes the factorized form

An(1, 2, . . . , n) = s C(p2, p3; ε, τ)
1

tn−3

(

−sn−3

τ

)α(tn−3;ε)

× V (qn−3, p4, qn−4; ε, τ) · · ·×
1

t2

(

−s2

τ

)α(t2;ε)

V (q2, pn−1, q1, ; ε, τ)

× 1

t1

(

−s1

τ

)α(t1;ε)

C(p1, pn; ε, τ) .

(9.3)

Eq. (9.3) is explicitly given in the euclidean region where all the invariants

are negative. We will comment on the analytic continuation to the physical

region where all s-type invariants are positive at the end of this chapter. In the

euclidean region the multi-Regge limit is defined by extending the hierarchy of

scales (8.6) to the region where all invariants are negative,

(−s)6 (−s1), . . . , (−sn−3)6 (−t1), . . . , (−tn−3), (9.4)

and the mass-shell conditions for the reggeized gluons now read

(−κi) = −|pi⊥|2 =
(−si) (−si+1)

(−sn−i−1,n−i,n−i+1)
, for 1 ≤ i ≤ n− 4, (9.5)

together with the constraint

(−s) (−κ1) . . . (−κn−4) = (−s1) . . . (−sn−3). (9.6)
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In Eq. (9.3) the Regge trajectory α, the coefficient function C and the Lipatov

vertex V can be expanded into a perturbative series,

α(ti; ε) =
∞
∑

n=1

ḡ2n ᾱ(n)(ti; ε),

C(pi, pj ; ε; τ) = C(0)(pi; pj)

(

1 +
∞
∑

n=1

ḡ2n C̄(n)(tij ; ε, τ)

)

,

V (qj , pn−j, qj+1, ; ε; τ)

= V (0)(qj ; pn−j ; qj+1)

(

1 +
∞
∑

n=1

ḡ2n V̄ (n)(tj+1, tj,κj ; ε, τ)

)

,

(9.7)

with tij = (pi + pj)2 and

ḡ2 = g2 cΓ Nc. (9.8)

The tree-level coefficient function C(0) and Lipatov vertex V (0) have been de-

fined in Chapter 8, and C̄(n) and V̄ (n) denote the n-loop quantities rescaled

by the tree-level quantity. For later convenience we factor out explicitly the

dependence on the renormalization scale µ2,

ᾱ(n)(ti; ε) =

(

µ2

−ti

)nε

α(n)(ti; ε),

C̄(n)(pi, pj; ε, τ) =

(

µ2

−tk

)nε

C(n)(tij ; ε, τ),

V̄ (n)(qj+1, qj ,κj; ε, τ) =

(

µ2

−κj

)nε

V (n)(tj+1, tj ,κj; ε, τ).

(9.9)

Inserting Eqs. (9.7) - (9.9) into Eq. (9.3), we can match the left and right-hand

sides to extract the explicit expressions of the Regge trajectory, the coefficient

function and the Lipatov vertex at a given order in the perturbative expansion

in the rescaled coupling. We illustrate this procedure explicitly on the examples

of the four and five-point MSYM amplitudes in the next section.



142 Chapter 9. High-energy factorization beyond tree-level

9.2 MSYM amplitudes in the high-energy limit

9.2.1 The four-point MSYM amplitude in the high-energy
limit

In this section we analyze the multi-Regge limit of MSYM gluon amplitudes.

The tree-level case was already dealt with in Chapter 8, so we only concentrate

on higher-order contributions in the perturbative expansion. In Section 9.1 we

defined the perturbative expansion of the building blocks in the multi-Regge

limit in terms of the rescaled coupling (9.8) rather than the ’t Hooft coupling,

An(1, . . . , n; ε) = A(0)
n (1, . . . , n)

(

1 +
∞
∑

*=1

ḡ2* m(*)
n (1, . . . , n; ε)

)

, (9.10)

i.e. , we define the quantity m(*)
n such that

a* M (*)
n (1, . . . , n; ε) = ḡ2* m(*)

n (1, . . . , n; ε). (9.11)

A simple calculation shows that we must have,

m(*)
n (1, . . . , n; ε) = 2 G(ε)M (*)

n (1, . . . , n; ε), (9.12)

with

G(ε) =
Γ(1− 2ε) e−γEε

Γ(1 + ε)Γ(1− ε)2
= 1 + O(ε2). (9.13)

Let us now turn to the computation of the multi-Regge building blocks, and

let us start with the four-point one-loop amplitude. The high-energy prescrip-

tion (9.3) reduces to

A4(1, 2, 3, 4; ε) = s C(p2, p3; ε, τ)
1

t

(

−s

τ

)α(t;ε)

C(p1, p4; ε, τ). (9.14)

Expanding Eq. (9.14) to one-loop accuracy, we find

m(1)
4 (1, . . . , n; ε) = 2 C̄(1)(t; ε, τ) + ᾱ(1)(t; ε)L, (9.15)

with L = ln(−s/τ). Our aim is to extract the explicit expressions for the

one-loop coefficient function and Regge trajectory from Eq. (9.15). Since these
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quantities are universal, we can extract them from the four-point amplitude

and reuse them in other computations. The procedure goes as follows: We can

explicitly compute the one-loop four-point amplitude in the left-hand side of

Eq. (9.15) in the high-energy limit, and then match the left and right-hand

sides to extract the coefficient function and the Regge trajectory. The high-

energy prescription introduced in the previous section instructs us how to do

this matching consistently, by assigning the coefficient of the logarithm to the

trajectory, and all the rest to the coefficient function. This consistent matching

is required because otherwise inconsistencies arise when reusing the building

blocks in other computations.

Let us now turn to the explicit computation of the one-loop four-point am-

plitude in the high-energy limit. The one-loop four-point amplitude can be

written in terms of the scalar massless box integral,

m(1)
4 (s, t; ε) = −G(ε)µ2ε st I4−2ε

4 (s, t), (9.16)

where the scalar massless box integral in D dimensions is defined by (See Ap-

pendix K),

ID
4 (s, t) = eγEε

∫

dDk

iπD/2

1

D1 D2 D3 D4
, (9.17)

with

D1 = k2 + i0,

Di =



k +
i−1
∑

j=1

pj





2

+ i0, i = 2, . . . , 4.
(9.18)

Although explicit expression for the massless box integral can be found in the

literature, we illustrate the computation of the leading behavior in the high-

energy limit by starting from the Mellin-Barnes representation of the massless

box integral (See Appendix K)

I4−2ε
4 (s, t) = − 2 rΓ eγEε

Γ(1 + ε)Γ(1− ε)2
(−t)−2−ε

× 1

2πi

∫ +i∞

−i∞
dz Γ(−z)Γ(2 + ε + z)Γ(1 + z)2 Γ(−1− ε− z)2

(s

t

)z+1
,

(9.19)
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with

rΓ =
Γ(1 + ε)Γ(1− ε)2

Γ(1− 2ε)
. (9.20)

Eq. (9.19) is a representation of the scalar massless box integral as a contour

integral in the complex plane. We would like to close the integration contour

at infinity and evaluate the integral using the residue theorem. The poles in

the integrand come from the poles of the Γ function, which has single poles for

negative integer values of the argument. The residues of the poles are given by

the formula,

Resz=−n Γ(z) =
(−1)n

n!
. (9.21)

The integral is however ill-defined, because we need a prescription of how to

deal for example with the pole in z = 0, which lies on the imaginary axis.

We thus need a prescription for how the contour encircles the singularity in

z = 0. It can be shown that the correct prescription is that the contour should

separate the poles in Γ(. . .− z) from those in Γ(. . . + z). After having defined

the contour in an unambiguous way, we can close it to the left at infinity and

take residues. There are two Γ functions whose residues fall inside the contour,

1. Γ(1 + z): poles in z = −1− n, n ∈ N.

2. Γ(2 + ε + z): poles in z = −2− ε− n, n ∈ N.

Summing up all the residues of the Γ functions, we obtain a representation of

the integral as a power series in t/s. Since we are not interested in the full

answer for I4−2ε
4 , but only in the leading term in the limit s 6 t, we only keep

the leading term in the power series expansion, or equivalently, only the residue

corresponding to the leftmost pole, i.e. , in z = −1 [90]. We find,

m(1)
4 (s, t; ε) =

(

µ2

−t

)ε
{

2
[ψ(1 + ε)− 2ψ(−ε)− γE

ε
− 1

ε
ln
−t

τ

]

+
2

ε
L

}

, (9.22)

where ψ denotes the digamma function, ψ(z) = d
dz lnΓ(z). Comparing the

expression of m(1)
4 (s, t; ε) in Eq. (9.22) to Eq. (9.15), we can immediately read
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off the expressions to all order in ε for the one-loop coefficient function and the

Regge trajectory [91, 92],

C(1)(t; ε, τ) =
ψ(1 + ε)− 2ψ(−ε)− γE

ε
− 1

ε
ln
−t

τ

α(1)(t; ε) =
2

ε
.

(9.23)

Before turning to the computation of the one-loop Lipatov vertex, let us quickly

review how to iterate this procedure to extract the two-loop coefficient functions

and Regge trajectory. At two loop accuracy, the high-energy prescription reads

m(2)
4 =

1

2

(

ᾱ(1)(t; ε)
)2

L2 +
(

ᾱ(2)(t; ε) + 2 C̄(1)(t, τ)ᾱ(1)(t; ε)
)

L

+ 2 C̄(2)(t, τ) +
(

C̄(1)(t, τ)
)2

=
1

2

(

m(1)
4

)2
+ ᾱ(2)(t; ε)L + 2 C̄(2)(t, τ) −

(

C̄(1)(t, τ)
)2

.

(9.24)

Using the explicit expressions of the two-loop four-point amplitude in multi-

Regge kinematics as well as the expression of the one-loop quantities (9.22)

and (9.23), we can extract the two-loop Regge trajectory and the coefficient

function. Explicit expressions can be found in Ref. [26].

9.2.2 The five-point MSYM amplitude in the high-energy
limit

Let us now turn to the computation of the one-loop Lipatov vertex, which can

be extracted from the five-point amplitude in the high-energy-limit. For n = 5,

the high-energy prescription (9.3) reduces to,

A5(1, 2, 3, 4, 5; ε) = s C(p2, p3; ε, τ)
1

t2

(

−s2

τ

)α(t2;ε)

× V (q2, p4, q1; ε, τ)
1

t1

(

−s1

τ

)α(t1;ε)

C(p1, p5; ε, τ),

(9.25)

and the mass-shell condition for the gluon emitted along the ladder reads

(−s) (−κ) = (−s1) (−s2). (9.26)
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Expanding Eq. (9.25) to one-loop accuracy, we find

m(1)
5 = ᾱ(1)(t1; ε)L1 + ᾱ(1)(t2; ε)L2 + C̄(1)(t1; ε, τ) + C̄(1)(t2; ε, τ)

+ V̄ (1)(t1, t2,κ; ε, τ) .
(9.27)

where Li = ln(−si/τ) and i = 1, 2. The coefficient functions and Regge trajec-

tories appearing in this expression are the same as in the four-point case. The

five-point one-loop amplitude on the left-hand side can be expressed in terms

of scalar one-mass boxes in D = 4 − 2ε and a massless pentagon integral in

D = 6− 2ε dimensions [84],

m(1)
5 = −1

2
G(ε)

∑

cyclic

s12s23I
1m
4 (1, 2, 3, 45, ε)− εG(ε) ε1234I

6−2ε
5 (ε), (9.28)

with

ε1234 = Tr
(

/p1 /p2 /p3 /p4 γ
5
)

, (9.29)

and the cyclicity is over i = 1, . . . , 5. I1m
4 is the one-mass box in D = 4 − 2ε

dimension, with a massive leg of virtuality s45, and I6−2ε
5 denotes the massless

pentagon integral in D = 6 − 2ε dimensions. Note that I6−2ε
5 is finite for

ε→ 0, and so it only contributes to O(ε) in four dimensions and can therefore

be neglected. A representation to all order in ε of I1m
4 in terms of Gauss’

hypergeometric function was given in Ref. [93],

st I1m
4 (s, t, m2; ε) =

2cΓ
ε2

{

(

t−m2

st

)ε

2F1

(

−ε,−ε, 1− ε; 1 +
s

t−m2

)

+

(

s−m2

st

)ε

2F1

(

−ε,−ε, 1− ε; 1 +
t

s−m2

)

−
(

(t−m2)(s−m2)

−st m2

)ε

2F1

(

−ε,−ε, 1− ε; 1 +
st

(t−m2)(s−m2)

)

}

.

(9.30)

We want to compute the leading behavior of m(1)
5 in the limit defined by the

hierarchy of scales (9.4). This can be achieved by expanding the hypergeometric

functions in Eq. (9.30) in this limit. We give here the explicit example of

I1m
4 (1, 2, 3, 45, ε) = I1m

4 (t2, s, s1; ε). All other cases are obtained in a similar
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way. Expanding the hypergeometric functions to leading order in t/s, we find

2F1

(

−ε,−ε, 1− ε; 1 +
t2

s− s1

)

= Γ(1 + ε)Γ(1− ε) + O
(

t2
s

)

,

2F1

(

−ε,−ε, 1− ε; 1 +
s

t2 − s1

)

= ε

(

s

s1

)ε
[

ln
s1

s
+ γE + ψ(−ε)

]

+ O
(s1

s

)

,

2F1

(

−ε,−ε, 1− ε; 1 +
st2

(s− s1)(t2 − s1)

)

= Γ(1 + ε)Γ(1− ε) + O
(

t2
s1

)

.

(9.31)

Inserting these expression into Eq. (9.30), it is easy to see that the first and

the last term cancel, and we are left with

I1m
4 (1, 2, 3, 45, ε) 5 ε (−t2)

−ε
[

ln
κ

s2
+ γE + ψ(−ε)

]

, (9.32)

where we made explicit use of Eq. (9.26). Repeating this operation for the

other box integral in Eq. (9.28), we find an expression for the five-point one-

loop amplitude in multi-Regge kinematics valid through O(ε0),

m5
(1) =

− 1

ε2

(

µ2

κ

)ε

Γ(1 + ε)Γ(1− ε)

− 2

ε

(

µ2

−t1

)ε
(

γE + ψ(−ε)
)

+
1

ε

(

µ2

−t2

)ε
(

ψ(1 + ε)− 3ψ(−ε)− 2γE

)

+
1

ε2

(

µ2

−t1

)ε

2F1

(

−ε, 1, 1− ε;
t1
t2

)

− 1

ε(1 + ε)

(

µ2

−t2

)ε
t1
t2

2F1

(

1, 1 + ε, 2 + ε;
t1
t2

)

+
1

ε

(

µ2

−t1

)ε

ln
s1

κ
+

1

ε

(

µ2

−t2

)ε

ln
s2

κ

+
1

ε

(

µ2

−t1

)ε

ln
s1

t2 − t1
+

1

ε

(

µ2

−t2

)ε

ln
s2

t2 − t1
+ O(ε).

(9.33)
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Eq. (9.33) is explicitly given in the euclidean region where all invariants are

negative, which implies that Eq. (9.33) is manifestly real. The symmetry of

the multi-Regge limit in t1 and t2 implies that m(1)
5 should have the same

symmetry in multi-Regge kinematics. Eq. (9.33) however apparently breaks

this symmetry, because only the ratio t1/t2 appears. It can be put in a man-

ifestly symmetric form, to the price of introducing spurious imaginary parts

that cancel after combining all the terms.

We can now match this expression to the high-energy prescription (9.27). The

coefficient functions and the Regge trajectories are the same as in the four-

point case, so the only unknown in this relation is the one-loop Lipatov vertex

through O(ε0),

V̄ (1)(t1, t2,κ; ε, τ) =

− 1

ε2
Γ(1 + ε)Γ(1− ε)

+
1

ε

(

κ

t1

)ε (

−ψ(1 + ε)− γE + ln
−t1
τ

)

+
1

ε

(

κ

t2

)ε (

−ψ(1 + ε)− γE + ln
−t2
τ

)

+
1

ε2

(

κ

t1

)ε

2F1

(

ε, 1, 1− ε;
t1
t2

)

− 1

ε (1 + ε)

(

κ

t2

)ε t1
t2

2F1

(

1, 1 + ε, 2 + ε;
t1
t2

)

− 1

ε

[(

κ

t1

)ε

+

(

κ

t2

)ε] (

ln
−κ
τ

+ ln
t1 − t2

τ

)

+ O(ε).

(9.34)

Let us conclude this section by some comments about how this procedure ex-

tends at two loops. At two-loop accuracy, Eq. (9.25) reads

m(2)
5 =

1

2

(

m(1)
5

)2
+ ᾱ(2)(t1; ε)L1 + ᾱ(2)(t2; ε)L2

+ C̄(2)(t1, τ) + V̄ (2)(t1, t2,κ, τ) + C̄(2)(t2, τ)

− 1

2

(

C̄(1)(t1, τ)
)2
− 1

2

(

V̄ (1)(t1, t2,κ, τ)
)2
− 1

2

(

C̄(1)(t2, τ)
)2

(9.35)

In order to extract the two-loop Lipatov vertex from Eq. (9.35), we need to

know analytically the one-loop amplitude to O(ε2) and the two-loop amplitude
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to O(ε0) in multi-Regge kinematics. As already mentioned, the higher-order

terms of the one-loop amplitude gain contributions from the scalar massless

pentagon in D = 6 − 2ε dimensions. We will compute these contributions

explicitly in Chapter 11 to all orders in ε in terms of generalized hypergeometric

functions and in Appendix M as a Taylor series in ε whose coefficients are

combinations of generalized polylogarithms. Furthermore, we show in the next

chapter that an explicit knowledge of the two-loop five-point amplitude is in

fact not necessary for the extraction of the two-loop Lipatov vertex through

O(ε2), but it is enough to have the one-loop vertex to higher orders in ε.

9.3 Quasi multi-Regge limits beyond tree-level

In the previous section we introduced the multi-Regge limit for (multi-) loop

amplitudes via the high-energy prescription which allows to disentangle the

contributions to the different building blocks in the multi-Regge limit. In this

section we briefly comment on how to define quasi multi-Regge limits beyond

tree-level. Not much is known about these limits in the literature, so we will

be brief and concentrate on the explicit examples of the five and six-point

amplitudes.

The simplest quasi multi-Regge limit arises when two gluons with comparable

rapidities are emitted at one end of the ladder,

y3 5 y4 6 y5 and |p3⊥| 5 |p4⊥| 5 |p5⊥|, (9.36)

In this limit we have the hierarchy of scales∗,

(−s)6 (−s1)6 (−s2), (−t1), (−t2), (9.37)

where we used the shorthands t1 = s51, t2 = s23, s1 = s45 and s2 = s34.

Since y3 5 y4, no limit is taken on (−s2), and therefore this invariant can

range anywhere between the t-type invariants and (−s1), where we recover the

multi-Regge limit, Eq. (9.4). Furthermore, the high-energy prescription reads

A5(1, 2, 3, 4, 5) = s C2(p2, p3, p4; ε, τ)
1

t1

(

−s1

τ

)α(t1;ε)

C(p1, p5; ε, τ). (9.38)

∗For more details on the kinematics in this limit we refer to Ref. [27].
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Figure 9.1: The five (a) and six (b) point amplitudes in quasi multi-Regge
kinematics.

A pictorial representation of Eq. (9.38) can be found in Fig. 9.1a. In Eq. (9.38)

a new building block appears, which is the generalization of the coefficient

function defined in Eq. (8.32) beyond tree-level. The Regge trajectory α and

the coefficient function C are the same as in multi-Regge kinematics. C2 has

the perturbative expansion

C2(pi, pj, pk; ε, τ) = C(0)
2 (pi, pj , pk)

(

1+
∞
∑

n=1

ḡ2n C̄(n)
2 (tij , tijk, sij ; ε, τ)

)

, (9.39)

with tij = (pi + pj)2 and tijk = (pi + pj + pk)2. Expanding Eq. (9.38) to one-

loop accuracy, we find the expression of m(1)
5 in quasi multi-Regge kinematics,

m(1)
5 (s, s1, s2, t1, t2) = C̄(1)

2 (t2, t1, s2; ε, τ)+C̄(1)(t1; ε, τ)+ᾱ(1)(t1; ε)L, (9.40)

with L = ln(−s1/τ). Although Eq. (9.40) can in principle be used to extract

the generalized coefficient function C̄(1)
2 , no expression can be found in the

literature. The generalization of Eq. (9.40) to higher loops, as well as to more

general coefficient functions C̄(1)
n is in principle straightforward.

If we go beyond five-point amplitudes, not only new types of coefficient func-

tions appear, but we also encounter new generalized Lipatov vertices for the

emission of several gluons with comparable rapidities along the ladder. Such a

kinematical configuration appears for the first time in the six-point amplitude,

y3 6 y4 5 y5 6 y6 and |p3⊥| 5 |p4⊥| 5 |p5⊥| 5 |p6⊥|. (9.41)



9.4. The analytic continuation to the physical region 151

which is equivalent to the hierarchy of scales [27],

(−s)6 (−s1), (−s2)6 (−t1), (−t2), (−s45), (9.42)

where we defined t1 = s61, t2 = s23, s1 = s56 and s2 = s34. No limit is taken

on the invariant s45, so it can range from the t-type invariants to the s-type

invariants, where we recover the multi-Regge limit of the six-point amplitude.

In this limit, the six-point amplitude can be written in the factorized form

A6(1, 2, 3, 4, 5, 6) = s C(p2, p3; ε, τ)
1

t2

(

−s2

τ

)α(t2;ε)

× V2(q2, p4, p5, q1; ε, τ)
1

t1

(

−s1

τ

)α(t1;ε)

C(p1, p6; ε, τ).

(9.43)

A pictorial representation of Eq. (9.43) can be found in Fig. 9.1b. The quantity

V2 is the generalization of the Lipatov vertex V (0)
2 introduced in Chapter 8.2

beyond tree-level and describes the emission of two gluons along the ladder at

two-loop accuracy. It has the perturbative expansion

V2(qj+1, pj, pj+1, qj ; ε, τ)

= V (0)
2 (q2; p4, p5; q1)

(

1 +
∞
∑

n=1

ḡ2n V̄ (n)
2 (tj+1, tj,j+1, tj ,κj ,κj+1; ε, τ)

)

.

(9.44)

Explicit results for V (1)
2 in the case where the two emitted gluons have the same

helicity can be found in Ref. [94].

9.4 The analytic continuation to the physical re-
gion

The high-energy prescription of Eq. (9.3), is given explicitly in the euclidean

region where all invariants are negative and the amplitude is real. For phys-

ical observables, however, the s-type invariants are positive, while the t-type

invariants remain negative and the amplitude develops a non-zero imaginary

part. We therefore need to analytically continue the s-type invariants to the
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physical region along a half circle through the complex upper half-plane such

that,

ln(−s− iε) = ln |s|− iπ θ(s). (9.45)

This is equivalent to the replacement,

(−s) → e−iπ s, (−si)→ e−iπ si, (−si,j,k) → e−iπ si,j,k. (9.46)

The high-energy prescription (9.3), however, also depends on the transverse

momentum scales κi, which become positive in the physical region. Unlike for

the s-type invariants, the analytic properties of the κi’s are not determined

explicitly by the usual iε prescription, because they are ratios of particle in-

variants. The prescription for the analytic continuation therefore needs to be

inferred from Eqs. (9.5) and (9.46) and is achieved by the replacement [27],

(−κi)→ e−iπ κi, (9.47)

Note that the prescription for the κi’s is similar to the one for the s-type

invariants†. The analytic continuation of Eq. (9.3) to the physical region can

now be derived immediately from the prescriptions (9.46) and (9.47).

Let us know analyze what the coefficient functions and the Lipatov vertices

become in the physical region. Since the coefficient function and the Regge

trajectory only depend on the variables ti, they stay real in the physical region

(up to overall phases in C(0)). The Lipatov vertices, however, explicitly depend

on the transverse scales κi, so they must become complex,

V̄ (tj+1, tj ,κj; ε, τ) =

(

µ2

κ

)nε

V (n)
phys(tj+1, tj ,κj ; ε, τ), (9.48)

with

V (n)
phys(tj+1, tj ,κj ; ε, τ) = eiπnε V (n)(tj+1, tj ,κj ; ε, τ). (9.49)

†Note that if we consider the continuation to a region other than the physical region, the
prescription for the analytic continuation of κi might differ from the usual prescription (9.45).
E.g., in the region where si > 0 while sijk < 0, then Eq. (9.46) combined to Eq. (9.5) implies
the prescription (−κi) → e−2iπ (−κi).



Chapter 10
The BDS ansatz in the
high-energy limit

10.1 The BDS ansatz in multi-Regge kinemat-
ics

In this chapter we study what the BDS ansatz becomes in the high-energy limit.

Our goal is to disguise a limit where the remainder function for the six-point

amplitude gives a non-zero contribution, similar to the triple collinear limit

discussed in Chapter 7. We start by analyzing the multi-Regge limits, and we

comment on quasi multi-Regge limits in the next section.

Using the approximate form of the Mandelstam invariants in multi-Regge kine-

matics given in Appendix D, it is trivial to show that in this limit the conformal

cross-ratios appearing in R(2)
6 all take special values [27, 95, 96]

u1 5 1 , u2 =
t3κ1

t2s2
5 O

(

t

s

)

, u3 =
t1κ2

t2s2
5 O

(

t

s

)

, (10.1)

and they are in fact subleading to the desired accuracy, and so is R(2)
6 . This

result is expected, because in multi-Regge kinematics any amplitude is deter-

mined completely by the coefficient functions, Regge trajectories and Lipatov

vertices. Those quantities have been extracted in Chapter 9 from the four
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and five-point amplitudes where no remainder function contributes. Hence, we

do not expect the building blocks in the high-energy limit to depend on the

remainder function. In the rest of this section we give a formal proof of this

statement, namely we show that the coefficient function and the Lipatov vertex

must fulfill iterations very similar to those fulfilled by the full amplitude and

by the splitting amplitudes. As a consequence we obtain that the BDS ansatz

is fully consistent with multi-Regge factorization.

Before turning to the derivation of this result, let us introduce some conven-

tions. In Chapter 7 we presented the BDS ansatz as the resummed form of the

perturbative expansion in the ’t Hooft coupling. In Chapter 9, however, we

defined the perturbative expansion of the building blocks in the high-energy

limits in terms of the rescaled coupling ḡ2, and we showed that the loop coef-

ficients are related by a simple proportionality factor. We can therefore derive

a modified version of the BDS ansatz with respect to the rescaled coupling ḡ2,

mn(ε) = 1 +
∞
∑

l=1

ḡ2l m(l)
n (ε)

= exp
∞
∑

l=0

ḡ2l 2l Gl(ε)

[

f (l)(ε)
m(1)

n (lε)

2 G(lε)
+ C(l) + E(l)

n (ε)

]

.

(10.2)

In the rest of this chapter, we will always refer to Eq. (10.2) when quoting the

BDS ansatz.

Let us now derive the exponentiated forms for the coefficient functions and the

Lipatov vertex. Since the BDS ansatz holds true for the four-point amplitude,

we can immediately insert the tree- and one-loop four-gluon amplitudes in

multi-Regge kinematics, Eq. (9.15), into Eq. (10.2), such that

A4 =A(0)
4

(

−s

τ

)

P

∞

l=1 ḡ2l 2l−1 Gl(ε)
G(lε) f(l)(ε) ᾱ(1)(t;lε)

× exp 2
∞
∑

l=1

ḡ2l 2l−1Gl(ε)

(

f (l)(ε)

G(lε)
C̄(1)(t; lε, τ) + C(l) + E(l)

4 (ε)

)

.

(10.3)

Comparing Eq. (10.3) to the general form of the high energy prescription of

Eq. (9.14), we can easily identify the all-orders forms of the Regge trajectory

α(t; ε) =
∞
∑

l=1

ḡ2l 2l−1 Gl(ε)

G(lε)
f (l)(ε) ᾱ(1)(t, lε), (10.4)
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and the coefficient function,

C(pi, pj; ε, τ)

= C(0)(pi; pj) exp
∞
∑

l=1

ḡ2l 2l−1Gl(ε)

(

f (l)(ε)

G(lε)
C̄(1)(t; lε, τ) + C(l) + E(l)

4 (ε)

)

,

(10.5)

where in the last equation t = (pi + pj)2. Note that Eq. (10.4) is in agreement

order by order in the expansion up to O(ε) with the expression of the Regge

trajectory given in Ref. [26],

ᾱ(l)(t; ε) = 2l−1 f (l)(ε) ᾱ(1)(t; lε). (10.6)

The coefficient functions describing the emission of a gluon at one end of the

ladder thus fulfill the same iteration as the full amplitude and the splitting

functions. Expanding the exponential in Eq. (10.5) and collecting the coeffi-

cients of the coupling constant, we obtain in particular the following expression

for the two-loop coefficient function in terms of the one-loop function,

C(2)(t; ε, τ) =
1

2

[

C(1)(t; ε, τ)
]2

+
2 G2(ε)

G(2ε)
f (2)(ε)C(1)(t; 2ε, τ)+2 C(2)+O(ε).

(10.7)

We can now repeat the argument for the five-point amplitude and, by reusing

Eq. (10.4) and Eq. (10.5), extract the corresponding iteration for the Lipatov

vertex,

A5 = C(p2, p3; ε, τ)C(p1, p5; ε, τ)

(

−s1

τ

)α(t1,ε) (−s2

τ

)α(t2,ε)

× V (0)(q2; p5; q1)

× exp
∞
∑

l=1

ḡ2l 2lGl(ε)
( f (l)(ε)

2G(lε)
V̄ (1)(t2, t1,κ1; lε, τ)

+ E(l)
5 (ε)− E(l)

4 (ε)
)

.

(10.8)

Comparing with Eq. (9.25), we find

V (q2, p, q1; ε, τ) = V (0)(q2; p; q1)

× exp
∞
∑

l=1

ḡ2l 2lGl(ε)

(

f (l)(ε)

2G(lε)
V̄ (1)(t2, t1,κ; lε, τ) + E(l)

5 (ε)− E(l)
4 (ε)

)

,
(10.9)
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i.e. , also the Lipatov vertex fulfills an ABDK/BDS-type iteration. As before,

expanding Eq. (10.9) in the rescaled coupling, we find an expression of the

two-loop vertex in terms of the one-loop vertex,

V (2)(t1, t2,κ; ε, τ)

=
1

2

[

V (1)(t1, t2,κ; ε, τ)
]2

+
2 G2(ε)

G(2ε)
f (2)(ε)V (1)(t1, t2,κ; 2ε, τ) + O(ε).

(10.10)

We will use Eq. (10.10) explicitly in Chapter 11 where we compute the two-loop

Lipatov vertex to O(ε0). Note that the iterations (10.7) and (10.10) have an

important consequence. In Chapter 9 we showed that the two-loop coefficient

functions and Lipatov vertices can be extracted from the four and five-point

two-loop amplitudes by matching the left and right-hand sides of Eqs. (9.24

- 9.35). The iteration formulas derived in this section imply that an explicit

knowledge of the two-loop amplitude is not necessary to compute the two-

loop building blocks in multi-Regge kinematics, but it is enough to know the

one-loop building blocks to higher-orders in ε.

We now turn to the generic case. Consider an n-gluon amplitude in multi-Regge

kinematics which satisfies Eq. (9.3). Inserting the exponentiated expressions

for the Regge trajectory Eq. (10.4), the coefficient functions Eq. (10.5) and the

Lipatov vertex Eq. (10.9), we find

An =A(0)
n exp

∞
∑

l=1

ḡ2l 2lGl(ε)

[

f (l)(ε)

2G(lε)

(

C̄(1)(t1; lε, τ) + C̄(1)(tn−3; lε, τ)

+
n−3
∑

k=1

ᾱ(1)(tk; lε) ln

(

−sk

τ

)

+
n−4
∑

k=1

V̄ (1)(tk+1, tk,κk; lε, τ)

)

+ C(l) + E(l)
4 (ε) + (n− 4)

(

E(l)
5 (ε)− E(l)

4 (ε)
)

]

.

(10.11)
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The expression inside the brackets can now be easily identified as the one-loop

amplitude in multi-Regge kinematics,

m(1)
n (lε) = C̄(1)(t1; τ, lε) + C̄(1)(tn−3; τ, lε) +

n−3
∑

k=1

ᾱ(1)(tk, lε) ln

(

−sk

τ

)

+
n−4
∑

k=1

V̄ (1)(tk+1, tk,κk; τ, lε),

(10.12)

and so we recover

An = A(0)
n exp

∞
∑

l=1

ḡ2l 2lGl(ε)

(

f (l)(ε)

2G(lε)
m(1)

n (lε) + C(l) + O(ε)

)

, (10.13)

i.e. mn satisfies the BDS ansatz up to O(ε). As a corollary of Eq. (10.13) we

obtain that in multi-Regge kinematics the remainder function must vanish for

every n.

The previous result has two important consequences:

• Firstly, this result puts a strong constraint on all possible candidate re-

mainder functions, because they must vanish in the multi-Regge limit.

• Secondly, since the remainder function vanishes in multi-Regge kinemat-

ics for an arbitrary number of legs, we conclude that this limit is insuffi-

cient to determine the remainder function, and more general kinematics

are needed. This issue will be addressed in the next section, where we

relax the constraints on the kinematics and determine a limit in which

the six-point remainder function is non zero.

10.2 The BDS ansatz and quasi multi-Regge
kinematics

In the previous section we showed that the multi-Regge limit is inappropriate

to gain some information on the remainder function. We would thus like to

find a limit in which the kinematics are simpler than the general kinematics,

together with a non-vanishing remainder function. In Chapter 7 we argued

that the triple collinear limit has this property. In the following, we argue that
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some quasi multi-Regge limits have a similar property, and could thus be used

to gain some information on the remainder function.

Let us start with the simplest quasi multi-Regge limit, which describes the

emission of one gluon pair with comparable rapidities at one end of the ladder,

y3 5 y4 6 y5 6 y6 and |p3⊥| 5 |p4⊥| 5 |p5⊥| 5 |p6⊥|. (10.14)

This situation was analyzed in Section 9.3 in the five-point case. The gener-

alization to the six-point amplitude is straightforward. Since the coefficient

function C2 in Eq. (9.38) is completely determined by the five-point ampli-

tude, it is easy to repeat the argument of the previous section and to show

that also in this limit the remainder function must vanish for every n. Hence,

even though this limit puts another strong constraint on the form of possible

remainder functions, it is still too restrictive to provide some information on

its functional form.

Let us now discuss the next-to-simplest Regge-type limit, the quasi multi-Regge

limit for the emission of two gluon comparable helicities along the ladder,

y3 6 y4 5 y5 6 y6 and |p3⊥| 5 |p4⊥| 5 |p5⊥| 5 |p6⊥|. (10.15)

This situation was studied in Section 9.3 where we showed that a new type

of Lipatov vertex appears. This limit is genuine to the six-point case, i.e. ,

this kinematic configuration arises for the first time for six external gluons.

Furthermore, in this limit the conformal cross ratios all take generic values [27],

u1 →
s45

(p+
4 + p+

5 )(p−4 + p−5 )
5 O(1) ,

u2 →
|p3⊥|2p+

5 p−6
(|p3⊥ + p4⊥|2 + p+

5 p−4 )(p+
4 + p+

5 )p−6
5 O(1) ,

u3 →
|p6⊥|2p+

3 p−4
p+
3 (p−4 + p−5 )(|p3⊥ + p4⊥|2 + p+

5 p−4 )
5 O(1) .

(10.16)

Since none of the conformal ratios vanishes or approaches one, we conclude

that the six-point remainder function must give a non-zero contribution. This

kinematic regime could therefore provide some information on the violation of

the BDS ansatz, because the remainder function is expected to be non zero.

From the previous discussion it is clear that there is no simpler Regge-type limit



10.2. The BDS ansatz and quasi multi-Regge kinematics 159

with this property and we conclude that this limit is the simplest Regge-type

limit for which the remainder function is not subleading. We can repeat the

analysis of the previous section and derive an iteration formula for the Lipatov

vertex describing the emission of two gluons with comparable rapidities. We

find,

V (2)
2 (t1, t2, t3,κ1,κ2; ε, τ)

=
1

2

[

V (1)(t1, t2, t3,κ1,κ2; ε, τ)
]2

+
2 G2(ε)

G(2ε)
f (2)(ε)V (1)(t1, t2, t3,κ1,κ2; 2ε, τ)

+ R(2)
6 (u1, u2, u3) + O(ε).

(10.17)

Note that since the coefficient functions in Eq. (9.43) are completely deter-

mined by the five-point amplitude, the whole dependence on the remainder

function is captured by the Lipatov vertex V2. The conclusion is that it is

enough to know the analytical form of the Lipatov vertex V2 to extract the re-

mainder function, similar to the case of the triple collinear splitting amplitude

discussed in Chapter 7. Note, however, that the triple collinear limit and the

quasi-multi Regge limit are complementary, because due to the strong rapidity

ordering (10.15) the momenta of the gluons 3 and 4 cannot be collinear, and

hence the two limits describe completely different areas of phase space.

It is clear that every Regge-type limit defined by a rapidity ordering that en-

compasses Eq. (10.15) will also give rise to a non-vanishing remainder function.

We could therefore relax the rapidity ordering even more, and consider the limit

y3 5 y4 5 y5 6 y6 and |p3⊥| 5 |p4⊥| 5 |p5⊥| 5 |p6⊥|, (10.18)

i.e. , the production of three gluons with comparable rapidities at one end of

the ladder. Also in this case the conformal cross ratios take generic values and

the remainder function is expected to be non zero [27]. Indeed, the two-loop



160 Chapter 10. The BDS ansatz in the high-energy limit

iteration formula for the coefficient function C̄(2)
3 reads,

C(2)
3 (t, s34, s45, s345; ε, τ)

=
1

2

[

C(1)
3 (t, s34, s45, s345; ε, τ)

]2

+
2 G2(ε)

G(2ε)
f (2)(ε)C(1)

3 (t, s34, s45, s345; 2ε, τ)

+ 2 C(2) + R(2)
6 (u1, u2, u3) + O(ε).

(10.19)

Similar to case of the Lipatov vertex, the coefficient function C̄3 must capture

the whole dependence on R(2)
6 . Let us conclude this discussion by commenting

on the relation between of the Regge-type limits and the triple collinear limit

discussed in Chapter 7. In the limit where the three gluons emitted at one

end of the ladder are collinear, the coefficient function must factorize into a

splitting amplitude,

C̄(2)
3 → C̄(2) + C̄(1) r(1)

1→3 + r(2)
1→3, (10.20)

where r(l)
1→3 denotes the l-loop triple collinear splitting amplitude defined in

Chapter 7. Hence, the limit for the emission of three gluons at one end of the

gluon ladder does not only encompass the production of two gluons along the

ladder, but at the same time also the triple collinear limit (See Fig. 10.1).

Finally, we thus have three limits at our disposal in which the six-point remain-

der function is expected to be non zero:

1. the triple collinear limit, where three consecutive gluons have collinear

momenta.

2. the quasi multi-Regge limit for the production of two gluon with compa-

rable rapidities along the ladder.

3. the quasi multi-Regge limit for the production of three gluon with com-

parable rapidities, which encompasses the cases 1 and 2.

Although these kinematics are simpler than the general kinematics, they still

require the explicit computation of the one and two-loop hexagons in the corre-

sponding limit (unlike the multi-Regge case, which is completely determined by
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(a)

(b) (c)

Figure 10.1: The three limits where the six-point remainder function is ex-
pected to be non zero: the impact factor for the emission of three gluons (a)
encompasses the Lipatov vertex for the emission of two gluons (b) as well as
the triple collinear splitting amplitude (c).

the four and five-point amplitudes). Unfortunately, not much is known in the

literature about higher-point amplitudes at two-loops or at one-loop beyond

O(ε0)∗. As a first study of the analytic structures that appear in these kind

of computations, we start from the simplest case possible, the five-point one-

loop amplitude to higher orders in ε, albeit in simplified kinematics, namely

the multi-Regge kinematics. This computation will be performed in the next

chapter.

∗Recall that the remainder function is essentially defined as the difference between the
two-loop amplitude and the square of the one-loop amplitude.





Chapter 11
The five-point amplitude in
multi-Regge kinematics

11.1 Introduction

In this chapter we present the computation of the scalar massless pentagon in

D = 6− 2ε dimensions. This integral appears in the higher-order terms in the

Laurent expansion of the five-point MSYM amplitude through Eq. (9.28). Since

the ABDK/BDS iteration for the two-loop amplitude requires the knowledge of

the one-loop amplitude through order ε2, the higher order terms in the Laurent

expansion of the one-loop amplitude allows one to obtain at the same time an

analytic result for the two-loop five-point amplitude.

An analytic computation of the pentagon integral in general kinematics is un-

fortunately beyond our technical capabilities at the moment. We therefore

restrict the computation to a specific limit, namely the multi-Regge kinemat-

ics. The aim of this computation is then twofold:

• First, as we already mentioned, the computation of the pentagon inte-

gral provides us with the first analytic result for the two-loop five-point

amplitude in MSYM, albeit in simplified kinematics.
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• Second, we aim to study for the first time the analytic structure of higher-

point one-loop amplitudes in MSYM beyond O(ε0) and to get new insight

into the mathematical structure of scalar one-loop integrals beyond four

points. In particular, we show that in the case of the pentagon new types

of generalized hypergeometric functions appear, whose Laurent expansion

involves a new set of transcendental functions called M functions.

The computation is performed using two different techniques∗. We first com-

pute the pentagon integral using the negative dimension approach (NDIM),

which expresses a one-loop Feynman integral as a combination of generalized

hypergeometric functions in more than one variable. In Appendix M, we repeat

the computation using the fourfold Mellin-Barnes representation for the scalar

massless pentagon given in Ref. [84], and by transforming one Mellin-Barnes

integral into an Euler integral, we arrive at a representation of the pentagon

integral as a Taylor series in ε whose coefficients can be expressed as combi-

nations of Goncharov’s multiple polylogarithm (See Appendix G for a review).

We also include further appendices containing some technical proofs omitted

throughout this chapter.

11.2 Definitions and conventions

The scalar pentagon integral is defined as,

ID
5 (ν1, ν2, ν3, ν4, ν5; Q

2
i ) = eγEε

∫

dDk

iπD/2

1

Dν1
1 Dν2

2 Dν3
3 Dν4

4 Dν5
5

, (11.1)

where the external momenta ki are lightlike, k2
i = 0, and are incoming so that

∑5
i=1 kµ

i = 0. The external momentum scales are the Mandelstam variables

Q2
i = s12, s23, s34, s45, s15 and we work in the Euclidean region, sij < 0. Let us

introduce the shorthands

s = s12, s1 =s45, s2 = s34,

t1 = s51, t2 = s23.
(11.2)

The hierarchy of scales in multi-Regge kinematics, Eq. (9.4), then implies,

(−s)6 (−s1), (−s2)6 (−t1), (−t2), (11.3)

∗See Appendix K for a review of the different techniques.
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together with the mass-shell condition,

(−κ) (−s) = (−s1) (−s2), (11.4)

where (−κ) = −|p4⊥|2. Since κ is of the order of the t-type invariants, we must

have, and the hierarchy of scales is such that

s1s2 ∼ st1 ∼ st2. (11.5)

Equivalently, we can define the limit by the scaling

s → s, s1 → λ s1, s2 → λ s2, t1 → λ2 t1, t2 → λ2 t2, (11.6)

and expanding in the limit λ→ 0 and keeping only the leading term.

11.3 The pentagon integral from NDIM

11.3.1 General considerations

In this section we derive a representation for the pentagon integral from the

negative dimension technique (NDIM) (See Appendix K for a review). In short,

NDIM is an algorithm that allows one to transform a one-loop integral into a

combination of multiple sums. In the present case, we identify 125 quadruple

series contributing to the massless scalar pentagon in general kinematics. Each

series has the form of a multiple generalized hypergeometric series, e.g. ,

I{n1,n2,n3,n4}

= (−s)ν45−
D
2 (−t2)

ν51−D
2 (−s2)

−ν345+ D
2 (−s1)

ν45−D
2 (−t1)

−ν512+ D
2

× (−1)
D
2 eγEε Γ(ν1)Γ(ν2)Γ(ν3)Γ(ν4)Γ(ν5)

Γ(ν345 − D
2 )Γ(ν451 − D

2 )Γ(ν512 − D
2 )Γ(D

2 − ν45)Γ(D
2 − ν51)

× F

(

D − ν, D
2 − ν45, D

2 − ν51

1 + D
2 − ν345, 1 + D

2 − ν451, 1 + D
2 − ν512

∣

∣

∣

∣

x1, x2, x3, x4

)

.

(11.7)

The arguments of the hypergeometric functions are ratios of scales, e.g.

x1 =
s2

s
, x2 = −s1s2

st2
, x3 =

s1t1
st2

, x4 =
t1
t2

, (11.8)
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and we introduced the definitions ν123 = ν1 + ν2 + ν3, etc. For convenience we

have introduced the shorthand for quadruple sums,

F

(

a, b, c
d, e, f

∣

∣

∣

∣

x1, x2, x3, x4

)

=
∞
∑

n1,n2,n3,n4=0

(a)n1+n2+n3+n4 (b)n1+n2+n3 (c)n2+n3+n4

(d)n1+n2 (e)n2+n3 (f)n3+n4

xn1
1

n1!

xn2
2

n2!

xn3
3

n3!

xn4
4

n4!
.

(11.9)

Let us make a comment about the convergence properties of these multiple se-

ries. It is well-known that for example the Gauss’ hypergeometric series (6.17) is

not an entire function, but it only converges inside the unit disc. It can however

be analytically continued outside the unit disc by using the functional equation

relating the 2F1 functions with arguments x and 1/x, e.g. , for |arg(−z)| < π,

2F1(a, b, c; x) = (−x)−a Γ(c)Γ(b − a)

Γ(b)Γ(c− a)
2F1(a, 1 + a− c, 1 + a− b, 1/x)

+ (−x)−b Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
2F1(b, 1 + b− c, 1 + b− a, 1/x).

(11.10)

In a similar way, the hypergeometric functions (11.9) contributing to the pen-

tagon integral are not necessarily convergent for all values of the arguments xi,

and so we have to make sense of these divergent series. The rule is that in a

given area of phase space only the convergent solutions of NDIM contribute.

In other words, the phase space breaks up into several regions, in each of which

the integral is represented by a different combination of hypergeometric func-

tions of the form given in Eq. (11.7). The different regions of phase space must

be related by analytic continuation, similar to Eq. (11.10). As a rule of thumb,

a hypergeometric series diverges if one of its argument is greater than 1. This

implies for example that the fourfold series (11.9) is divergent in the region

of phase space where x1 < 1, or equivalently in the region where s2 > s. As

a consequence, Eq. (11.7) does only contribute in the Region of phase space

where s2 < s.

Although the hypergeometric functions obtained from NDIM are a represen-

tation of the pentagon integral in arbitrary kinematics, we have to face the

problem that we ignore the analytic properties of the fourfold sums. For this
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reason, we restrict the computation to multi-Regge kinematics, where the hi-

erarchy of scales (11.3) eliminates many of the 125 solutions for the pentagon

integral. The procedure to reducing the number of solutions goes as follows,

1. Any solution containing a summation that contains ratios of a “large”

scale divided by a “small” scale, such as
(

s

s1

)n

, (11.11)

cannot converge and is therefore discarded. This reduces the number of

solutions from 125 to 22.

2. Solutions with a prefactor that are less singular than

1

s1s2
,

1

st1
,

1

st2
, (11.12)

when D = 6 − 2ε and νi = 1 are discarded. This reduces the number of

solutions from 22 to 20.

3. Any sum that contains ratios of a “small” scale divided by a “large” scale

such as
(s1

s

)n
, (11.13)

gives its leading contribution when the summation variable n is zero. This

leads to sums with fewer than four summations. In the example (11.8)

this procedure would remove the dependence on x1 and x3, which are

both subleading in multi-Regge kinematics.

4. The remaining solutions contain only double sums of ratios of the three

scales of Eq. (11.7), defined in Eq. (11.14).

Following the NDIM prescription that in a given region of phase space only the

convergent multiple sums contribute, we can distribute the remaining double

sums among three different of phase space, i.e. , the Euclidean region itself is

divided into three distinct regions. For later convenience let us introduce the

following definitions,

x1 =
st1
s1s2

=
t1
κ

and x2 =
st2
s1s2

=
t2
κ

, (11.14)
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Figure 11.1: The three regions contributing to the scalar massless pentagon in
Euclidean kinematics.

In terms of these quantities the Euclidean region can be divided into three

regions

1. Region I, where
√

x1 +
√

x2 < 1.

2. Region II(a), where −√x1 +
√

x2 > 1.

3. Region II(b), where
√

x1 −
√

x2 > 1.

A graphical representation of these three regions in the (x1, x2) plane can be

found in Fig. 11.1. Note that Region I is symmetric in x1 and x2, whereas

Regions II(a) and II(b) exchange their roles under an exchange of x1 and x2.

It is easy to see that Regions II(a) and II(b) can be furthermore characterized

by

1. Region II(a): (−t1) < (−t2).

2. Region II(b): (−t1) > (−t2).

Note that the region where k4 is soft, s1, s2 → 0, corresponds to x1, x2 → +∞
in the (x1, x2)-plane.
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11.3.2 The solution in Region II

As an example, we list here the solutions of the system of constraints in Region

II(a),

I(IIa)(s, s1, s2, t1, t2) = rΓ eγEε (−κ)−ε

st2
I(IIa)(s, s1, s2, t1, t2), (11.15)

with

I(IIa)(s, s1, s2, t1, t2) =
6

∑

i=1

I(IIa)
i (s, s1, s2, t1, t2), (11.16)

and

I(IIa)
1 (s, s1, s2, t1, t2) = − 1

ε3
y−ε
2 Γ(1− 2ε)Γ(1 + ε)2

× F4

(

1− 2ε, 1− ε, 1− ε, 1− ε;−y1, y2

)

,

I(IIa)
2 (s, s1, s2, t1, t2) =

1

ε3
Γ(1 + ε)Γ(1− ε)F4

(

1, 1− ε, 1− ε, 1 + ε;−y1, y2

)

,

I(IIa)
3 (s, s1, s2, t1, t2) = −Γ(1− 2ε)Γ(−δ)Γ(−ε− δ + 1)Γ(ε + δ)

εΓ(1 + ε)Γ(1− ε)Γ(1− 2ε− δ)

× F 2,1
0,2

(

1− δ 1− ε− δ 1 − − −
− − 1 + ε 1− ε− δ 1− δ − − y1, y2

)

× (−s1)
−δ yε1 y−ε−δ

2 ,

I(IIa)
4 (s, s1, s2, t1, t2) = −Γ(−δ)Γ(1− 2ε)Γ(−ε− δ)Γ(ε + δ)

Γ(1 + ε)Γ(1− ε)Γ(1− 2ε− δ)

× (−s1)
−δ yε+δ

1 y−ε−δ
2 F4

(

1, 1− ε, 1 + ε + δ, 1− ε− δ;−y1, y2

)

,

I(IIa)
5 (s, s1, s2, t1, t2) =

Γ(δ)Γ(1 − 2ε)Γ(−ε− δ)

εΓ(1− ε)Γ(δ + 1)Γ(−2ε− δ + 1)
(−s1)

−δ

× yε1 F 2,1
0,2

(

1 1 + ε 1 − − −
− − 1 + ε 1 + ε + δ 1− δ − − y1, y2

)

,

I(IIa)
6 (s, s1, s2, t1, t2) = −Γ(−δ)Γ(δ + 1)Γ(−ε− δ)2 Γ(ε + δ + 1)Γ(1− 2ε)

Γ(1 − ε)2 Γ(1 + ε)Γ(−2ε− δ + 1)

× (−s1)
−δ yε+δ

1 F4

(

1 + δ, 1 + ε + δ, 1 + ε + δ, 1 + ε + δ;−y1, y2

)

,

(11.17)

where we defined

y1 =
1

x2
=

κ

t2
and y2 =

x1

x2
=

t1
t2

. (11.18)
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The six solutions in Region II(a) can be entirely written in terms of generalized

hypergeometric functions, and more precisely in terms of the so-called Appell

F4 and Kampé de Fériet functions, defined by [97, 98],

F4(a, b, c, d; x1, x2) =
∞
∑

n1=0

(a)n1+n2 (b)n1+n2

(c)n1 (d)n2

xn1
1

n1!

xn2
2

n2!
,

F p,q
p′,q′

(

αi βj γj

α′
k β′

* γ′
*

x1, x2

)

=
∞
∑

n1=0

∞
∑

n2=0

∏

i (αi)n1+n2

∏

j (βj)n1 (γj)n2
∏

k (α′
k)n1+n2

∏

* (β′
*)n1 (γ′

*)n2

xn1
1

n1!

xn2
2

n2!
.

(11.19)

The ‘-’ sign in the Kampé de Fériet functions in Eq. (11.17) indicates that a

given index is absent in the definition of the hypergeometric series, e.g. ,

F 2,1
0,2

(

a b c − − −
− − d e f − x1, x2

)

=
∞
∑

n1=0

∞
∑

n2=0

(a)n1+n2(b)n1+n2(c)n1

(d)n1(e)n2(f)n1

xn1
1

n1!

xn2
2

n2!
.

(11.20)

Let us make a comment about the δ symbol in Eq. (11.17). In Section 11.3.1 we

derived a representation for the pentagon for general powers of the propagators

νi. Some of the coefficients of the hypergeometric functions contain, however,

Γ functions of the form Γ(1− νi), which are divergent in the limit νi → 1. We

regulate this divergence by introducing a small quantity δ such that Γ(1−νi) =

Γ(δ). The pentagon integral must be independent of this regulator, and so the

δ dependence must cancel in the sum over all six contributions. Expanding the

solutions into a Laurent series in δ, and keeping only terms of O(δ0), we find,

I(IIa)
3 + I(IIa)

4

= − 1

ε2
yε1 y−ε

2

{

[

ln y1 + ψ(1− ε)− ψ(−ε)
]

F4

(

1, 1− ε, 1 + ε, 1− ε;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ε 1 − − −
− − 1 + δ 1− ε 1 + ε + δ − − y1, y2

)

|δ=0

}

,

(11.21)
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I(IIa)
5 + I(IIa)

6

=
1

ε2
yε1

{

[

ln y1 + ψ(1 + ε)− ψ(−ε)
]

F4

(

1, 1 + ε, 1 + ε, 1 + ε;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ε 1 − − −
− − 1 + δ 1 + ε 1 + ε + δ − − y1, y2

)

|δ=0

}

,

and we see that these two expression are independent of the regulator δ. The

final result for the massless scalar pentagon in multi-Regge kinematics to all

orders in ε in Region II(a) is then simply given by the sum

I(IIa)(s, s1, s2, t1, t2)

= − 1

ε3
y−ε
2 Γ(1− 2ε)Γ(1 + ε)2 F4

(

1− 2ε, 1− ε, 1− ε, 1− ε;−y1, y2

)

+
1

ε3
Γ(1 + ε)Γ(1− ε)F4

(

1, 1− ε, 1− ε, 1 + ε;−y1, y2

)

− 1

ε2
yε1 y−ε

2

{

[

ln y1 + ψ(1− ε)− ψ(−ε)
]

F4

(

1, 1− ε, 1 + ε, 1− ε;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ε 1 − − −
− − 1 + δ 1− ε 1 + ε + δ − − y1, y2

)

|δ=0

}

+
1

ε2
yε1

{

[

ln y1 + ψ(1 + ε)− ψ(−ε)
]

F4

(

1, 1 + ε, 1 + ε, 1 + ε;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ε 1 − − −
− − 1 + δ 1 + ε 1 + ε + δ − − y1, y2

)

|δ=0

}

.

(11.22)

Note that the only functional dependence of I(IIa) is in the ratio of scales y1

and y2, i.e. , in the transverse momentum scales t1, t2 and κ,

I(IIa)(s, s1, s2, t1, t2) = I(IIa)(κ, t1, t2). (11.23)

The solution in Region II(b) is related to the Region II(a) by analytic contin-

uation according to the prescription t1/t2 → t2/t1, or equivalently y2 → 1/y2.

From the symmetry of the multi-Regge limit in t1 and t2 it is easy to see that

we must have

I(IIb)(κ, t1, t2) =
t2
t1

I(IIa)(κ, t2, t1). (11.24)
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In Appendix L we explicitly show that Eq. (11.22) enjoys this property.

Let us now have a closer look at the special functions in Eq. (11.22). Using

the reduction formulas for the Appell function given in Appendix H, we could

reexpress all the F4 in Eq. (11.22) in terms of Gauss’ hypergeometric function

and the Appell F1 function,

F4

(

1− 2ε, 1− ε,1− ε, 1− ε,
−x

(1− x)(1− y)
,

−y

(1− x)(1− y)

)

=(1− x)1−ε (1− y)1−ε
2F1(1− 2ε, 1− ε, 1− ε; xy)

=
(1− x)1−ε (1− y)1−ε

(1− xy)1−2ε
,

F4

(

1, 1− ε,1 + ε, 1− ε,
−x

(1− x)(1− y)
,

−y

(1− x)(1− y)

)

=(1− x) (1− y)F1(1, 2ε, 1− ε, 1 + ε; xy),

(11.25)

with

F1(a, b, c, d; x1, x2) =
∞
∑

n1=0

∞
∑

n2=0

(a)n1+n2 (b)n1 (c)n2

(d)n1+n2

xn1
1

n1!

xn2
2

n2!
. (11.26)

The Appell F1 function appearing in this reduction can be easily expanded into

a Laurent series in ε using XSummer [76]. Note however that we do not know the

corresponding reduction formulas for the Kampé de Fériet functions appearing

in Eq. (11.22). For this reason, we do not apply the reduction formulas of the

Appell F4 functions, but we proceed and perform the ε expansion directly on the

series representation of the hypergeometric functions appearing in Eq. (11.22).

Since all the hypergeometric functions in Eq. (11.22) are finite for ε = 0, we

can safely expand the Pochhammer symbols into a power series under the

summation sign,

(1 + ε)n = n!
(

1 + εZ1(n) + ε2 Z11(n) + ε3 Z111(n) + O(ε4)
)

,

1

(1 + ε)n
=

1

n!

(

1− εS1(n)− ε2 S11(n)− ε3 S111(n) + O(ε4)
)

,
(11.27)

where S and Z denote nested harmonic sums and Euler-Zagier sums, defined

recursively by [99],

Si(n) = Zi(n) = H(i)
n =

n
∑

k=1

1

ki
,

Si-(n) =
n
∑

k=1

S-(k)

ki
and Zi-(n) =

n
∑

k=1

Z-(k − 1)

ki
.

(11.28)
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The sum of the elements of the index vector9i is called the weight of the nested

sum S-ı(n) or Z-ı(n). The nested harmonic sums and the Euler-Zagier sums

form a shuffle algebra, which allows one to express a product of sums of weight

w1 and w2 respectively as a combination of sums of weight w1 + w2, e.g. ,

Si(n)Sj(n) =
n
∑

k1=1

n
∑

k2=1

1

ki
1k

j
2

=
n
∑

k1=1

1

ki
1

k1
∑

k2=1

1

kj
2

+
n
∑

k2=1

1

kj
2

k2
∑

k1=1

1

ki
1

−
n
∑

k=1

1

ki+j

= Sij(n) + Sji(n)− Si+j(n).

(11.29)

Using the algebra properties of nested sums as well as the algorithm described

in Appendix F, we can express all the Euler-Zagier sums in terms of harmonic

sums. Finally, using the algebra properties of the S-sums, we can reduce all

the products of harmonic sums to linear combinations of the latter. Insert-

ing Eq. (11.27) into the series representation for hypergeometric functions we

obtain the desired ε expansions, e.g. ,

F4(1, 1 + ε, 1 + ε, 1 + ε; x1, x2) = M(0, 0, 0; x1, x2)

+ ε
[

M(0, 0, 1; x1, x2)−M(1, 0, 0; x1, x2)−M(0, 1, 0; x1, x2)
]

+ ε2
[

M((1, 1), 0, 0; x1, x2) + M(0, (1, 1), 0; x1, x2) + M(0, 0, (1, 1);x1, x2)

+ M(1, 1, 0; x1, x2)−M(1, 0, 1; x1, x2)−M(0, 1, 1; x1, x2)

−M(0, 0, 2; x1, x2)
]

+O(ε3).

(11.30)

The M functions appearing in this expansion are transcendental functions

defined by the double series

M(9ı,9,9k; x1, x2) =
∞
∑

n1=0

∞
∑

n2=0

(

n1 + n2

n1

)2

S-ı(n1)S-(n2)S-k(n1 +n2)xn1
1 xn2

2 .

(11.31)

We define the weight of an M function as the sum of the weights of the nested

harmonic sums in the right-hand side of Eq. (11.31). Note that due to the
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appearance of the binomial squared term in Eq. (11.31), we cannot reduce in

general the double sums to known function using the standard techniques. We

can however sum the series in some particular cases where we can relate the

M-function to the expansion of a known hypergeometric function. This issue

is addressed in Appendix I.

Since Eq. (11.22) only involves Appell functions and Kampé de Fériet functions

with indices 1 + ciε, it can be easily expanded in terms of M functions. The

first two orders read,

I(IIa)(κ, t1, t2) = i(IIa)
0 (y1, y2) + ε i(IIa)

1 (y1, y2) + O(ε2), (11.32)

with

i(IIa)
0 (y1, y2) = (−8 ln y1 − 4 ln y2)M

(

0, 0, (1, 1);−y1, y2

)

− 4 ln y2M
(

(1, 1), 0, 0;−y1, y2

)

+ 18M
(

0, 0, (1, 2);−y1, y2

)

+18M
(

0, 0, (2, 1);−y1, y2

)

− 24M
(

0, 0, (1, 1, 1);−y1, y2

)

+8M
(

0, 1, (1, 1);−y1, y2

)

+ 16M
(

1, 0, (1, 1);−y1, y2

)

− 8M
(

(1, 1), 0, 1;−y1, y2

)

+ 8M
(

(1, 1), 1, 0;−y1, y2

)

−M
(

0, 0, 0;−y1, y2

)

(π2 ln y1

3
+

ln2 y1 ln y2

2
+

π2 ln y2

2
− 2ζ3

)

−M
(

0, 0, 1;−y1, y2

)

(

2 ln y1 ln y2 + ln2 y1 +
5π2

3

)

+(6 ln y1 + 3 ln y2)M
(

0, 0, 2;−y1, y2

)

+ 4 ln y1M
(

0, 1, 1;−y1, y2

)

+
(

2 ln y1 ln y2 +
2π2

3

)

M
(

1, 0, 0;−y1, y2

)

− 4 ln y1M
(

1, 1, 0;−y1, y2

)

+(4 ln y1 + 4 ln y2)M
(

1, 0, 1;−y1, y2

)

− 2M
(

2, 1, 0;−y1, y2

)

+ ln y2M
(

2, 0, 0;−y1, y2

)

− 12M
(

0, 0, 3;−y1, y2

)

− 6M
(

0, 1, 2;−y1, y2

)

− 12M
(

1, 0, 2;−y1, y2

)

− 8M
(

1, 1, 1;−y1, y2

)

+ 2M
(

2, 0, 1;−y1, y2

)

+
(

ln2 y1 + π2
)

M
(

0, 1, 0;−y1, y2

)

,

(11.33)

The explicit expression for i(IIa)
1 is given in Ref. [28]. Note that i(IIa)

0 and i(IIa)
1

are of uniform transcendental weight 3 and 4, as expected.
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11.3.3 The solution in Region I

The solutions in Region I read

I(I)(s, s1, s2, t1, t2) = rΓ eγEε (−κ)−ε

s1s2
I(I)(s, s1, s2, t1, t2), (11.34)

with

I(I)(s, s1, s2, t1, t2) =
6

∑

i=1

I(I)
i (s, s1, s2, t1, t2), (11.35)

and

I(I)
1 (s, s1, s2, t1, t2) = − 1

ε3
x−ε

1 x−ε
2 Γ(1 − 2ε)Γ(1 + ε)2

× F4(1− 2ε, 1− ε, 1− ε, 1− ε;−x1,−x2),

I(I)
2 (s, s1, s2, t1, t2) =

1

ε3
Γ(1 + ε)Γ(1− ε)F4(1, 1 + ε, 1 + ε, 1 + ε;−x1,−x2),

I(I)
3 (s, s1, s2, t1, t2) = (−s2)

δ (−s1)
−δ (−t1)

−δ (−t2)
δ x−ε

1

Γ(−δ)Γ(ε + δ)

εΓ(1 + ε)

×
∞
∑

n1=0

∞
∑

n2=0

(1− δ)n2 (−δ)n1−n2 (δ + 1)n2 (1− ε)n2 (−ε)n1−n2

(−ε− δ + 1)n1 n1! n2!

×
(

x1

x2

)n1

(−x2)
n2 ,

I(I)
4 (s, s1, s2, t1, t2) = −(−s)−δ (−s2)

2δ (−t1)
−δ x−ε

1

× Γ(1− 2δ)Γ(δ)Γ(−ε− δ + 1)Γ(δ − ε)Γ(ε + δ)

Γ(1− δ)Γ(δ + 1)Γ(1 + ε)Γ(1− ε)2

× F 3,0
1,2

(

1 1− ε− δ 1− 2δ − −
− − 1− δ 1− ε− δ 1 + ε− δ

− x1,−x2

)

,

I(I)
5 (s, s1, s2, t1, t2) = −(−s)δ (−s1)

−2δ (−t2)
δ x−ε

2

× Γ(−δ)Γ(2δ + 1)Γ(−ε− δ)Γ(ε− δ)Γ(−ε + δ + 1)

Γ(1− δ)Γ(δ + 1)Γ(1 + ε)Γ(1− ε)2

× F 3,0
1,2

(

1 1− ε + δ 1 + 2δ − −
− − 1 + δ 1 + ε + δ 1− ε + δ

− x1,−x2

)

,

(11.36)
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I(I)
6 (s, s1, s2, t1, t2) = − (−s2)

δ (−s1)
−δ x−ε

2

Γ(δ)Γ(−ε− δ)

εΓ(1− ε)

×
∞
∑

n1=0

∞
∑

n2=0

(1− δ)n2(δ)n1−n2(δ + 1)n2(1− ε)n2(ε)n1−n2

(ε + δ + 1)n1n1!n2!

×
(

x1

x2

)n1

(−x2)
n2 .

We again introduce a regulator δ to prevent divergences in the Γ functions in

the coefficients of the hypergeometric function. The cancellation of the spurious

δ-poles is not as straightforward as in Region II(a), due the appearance of a

new type of hypergeometric series besides the Appell and Kampé de Fériet

functions. This new series involves only Pochhammer symbols of the form

(.)n1−n2 , (.)n1 and (.)n2 . In Appendix H we show that it can be reduced to

Kampé de Fériet functions. We find

∞
∑

n1=0

∞
∑

n2=0

(1− δ)n2 (−δ)n1−n2 (δ + 1)n2 (1− ε)n2 (−ε)n1−n2

(−ε− δ + 1)n1 n1! n2!

(

x1

x2

)n1

(−x2)
n2

=
δ ε

1− ε− δ

x1

x2

(11.37)

× F 0,3
2,0

(

− − 1 + δ 1 1− δ 1− δ 1− ε 1− ε
2 2− ε− δ − − − − − − − x1,

x1

x2

)

+ F 3,1
1,2

(

1− δ 1 + δ 1− ε − 1 − −
1 − − − 1 + δ 1− δ − ε 1 + ε

− x1,−x2

)

,

∞
∑

n1=0

∞
∑

n2=0

(1− δ)n2(δ)n1−n2(δ + 1)n2(1− ε)n2(ε)n1−n2

(ε + δ + 1)n1n1!n2!

(

x1

x2

)n1

(−x2)
n2

=
δ ε

1 + ε + δ

x1

x2

× F 0,3
2,0

(

− − 1− δ 1 1 + δ 1 + δ 1− ε 1 + ε
2 2 + ε + δ − − − − − − − x1,

x1

x2

)

+ F 3,1
1,2

(

1− δ 1 + δ 1− ε − 1 − −
1 − − − 1− δ 1 + δ + ε 1− ε

− x1,−x2

)

.

(11.38)
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After inserting these expressions into Eq. (11.36), we expand the solution into

a Laurent series in δ. The poles in δ cancel mutually between I(I)
3 and I(I)

4

and I(I)
5 and I(I)

6 . After some algebra, we find the following expression for the

solution in Region I,

I(I)(s, s1, s2, t1, t2)

= − 1

ε3
x−ε

1 x−ε
2 Γ(1− 2ε)Γ(1 + ε)2 F4(1− 2ε, 1− ε, 1− ε, 1− ε;−x1,−x2)

+
1

ε3
Γ(1− ε)Γ(1 + ε)F4(1, 1 + ε, 1 + ε, 1 + ε;−x1,−x2)

− 1

ε2
x−ε

1

{

[

lnx2 + ψ(1− ε)− ψ(−ε)
]

F4(1, 1− ε, 1− ε, 1 + ε;−x1,−x2)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1− ε + δ − − − 1
− − 1− ε 1 + ε + δ − 1 + δ

− x1,−x2

)

|δ=0

+
ε

1− ε

x1

x2
F 0,3

2,0

(

− − 1 1 1 1 1− ε 1− ε
2 2− ε − − − − − − − x1,

x1

x2

)

}

− 1

ε2
x−ε

2

{

[

lnx2 + ψ(1− ε)− ψ(ε)
]

F4(1, 1− ε, 1 + ε, 1− ε;−x1,−x2)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1− ε + δ − − − 1
− − 1 + ε 1− ε + δ − 1 + δ

− x1,−x2

)

|δ=0

− ε

1 + ε

x1

x2
F 0,3

2,0

(

− − 1 1 1 1 1− ε 1 + ε
2 2 + ε − − − − − − − x1,

x1

x2

)

}

.

(11.39)

Note that the right-hand side of Eq. (11.39) only depends on the dimensionless

quantities x1 and x2, i.e. , on the transverse momentum scales κ, t1 and t2,

I(I)(s, s1, s2, t1, t2) = I(I)(κ, t1, t2). (11.40)

Furthermore, we know that the pentagon in Region I must fulfill the symmetry

relation

I(I)(κ, t1, t2) = I(I)(κ, t2, t1). (11.41)

The solution given in Eq. (11.39) however apparently breaks this symmetry, due

to the appearance of the ratio x1/x2. We show in Appendix L that Eq. (11.39)

indeed has the correct symmetry properties, which becomes explicit only after
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a proper analytic continuation has been performed. We also show that the

solution in Region I, Eq. (11.39), can be obtained from the solution in Region

II(a) by performing analytic continuation according to the prescription y1 →
1/y1.

11.4 The two-loop five-point amplitude

In this section we show how the expression for the scalar massless pentagon

integral can be used to obtain an analytic expression for the two-loop five-point

amplitude, albeit in simplified kinematics. The two-loop five-point MSYM am-

plitude is related to the corresponding one-loop amplitude through the ABDK

ansatz (7.2). Since we know that the ABDK ansatz holds for n = 5, it is

enough to know the one-loop amplitude to O(ε2) to derive the corresponding

two-loop amplitude. The decomposition of the one-loop amplitude to all orders

in ε in terms of scalar box and pentagon integrals was presented in Eq. (9.28).

Let us decompose this relation into parity-even and odd contributions to the

five-point amplitude,

m(1)
5 = m(1)

5e + m(1)
5o , (11.42)

with

m(1)
5e = −1

2
G(ε)

∑

cyclic

s12s23I
1m
4 (1, 2, 3, 45, ε),

m(1)
5o = −εG(ε) ε1234I

6−2ε
5 (ε).

(11.43)

The even-parity contribution corresponds to the one-mass box integrals and was

already given in Eq. (9.33). The pentagon contribution has been computed in

the previous sections. We thus have at our disposal all the pieces needed to

compute m(1)
5 to all orders in ε.

Let us start by analyzing more closely the parity-odd contribution. The Levi-

Civita tensor appearing in the parity-odd part of the five-point amplitude can

be written in the form

ε1234 = s12 s34 − s13 s23 + s14 s23 − 2 〈12〉 [23] 〈34〉 [41]. (11.44)
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Using the approximate form of the spinor products in multi-Regge kinematics,

Eq. (8.12), we obtain,

ε1234 = (−s)
(

p3⊥ p∗4⊥ − p∗3⊥ p4⊥
)

. (11.45)

Furthermore, we know that for the pentagon integral we have to distinguish

several kinematic regions. Using the same notations as in the previous sections,

we obtain the following representation for the parity-odd part of the five-point

amplitude,

m(1,IIa)
5o (s, s1, s1, t1, t2) = − ε

(

p3⊥ p∗4⊥ − p∗3⊥ p4⊥
) (−κ)ε

t2
I(IIa)(t1, t2,κ),

m(1,I)
5o (s, s1, s1, t1, t2) = − ε

(

p3⊥ p∗4⊥ − p∗3⊥ p4⊥
) (−κ)ε

κ
I(I)(t1, t2,κ),

(11.46)

where I(IIa) and I(I) are defined in Eqs. (11.22) and (11.39). The expressions

for (−t2) < (−t1) can be obtained by analytic continuation according to the

prescription t1/t2 → t2/t1. Note that since the pentagon integral is finite

for ε → 0, the parity-odd contribution only starts at O(ε). Combining the

two terms for the parity-even and odd contributions we find immediately the

expression of the one-loop five-point amplitude in multi-Regge kinematics. As

a cross-check, we checked that our result has the correct behavior in the limit

where p4 → 0.

Let us now turn to the two-loop amplitude. Using the ABDK recursion rela-

tions, it is straightforward to derive an expression of the two-loop amplitude as

a function of the one-loop amplitude. Using the decomposition into parity-even

and odd contributions, we obtain,

m(2)
5e (ε) =

1

2

(

m(1)
5e (ε)

)2
+ 2 f (2)(ε)

G(ε)2

G(2ε)
m(1)

5e (2ε) + C(2) + O(ε).

m(2,j)
5o (ε) = m(1)

5e (ε)m(1,j)
5o (ε) + O(ε),

(11.47)

with j = I, IIa. Using the explicit expressions of the parity-even and odd

contributions, we see that the right-hand side of Eq. (11.47) is completely ex-

pressed in terms of known quantities. Hence, Eq. (11.47) evaluates immediately

to the five-point two-loop amplitude in multi-Regge kinematics, which is the

main result of this work. In previous sections, we argued that the parity-odd
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contribution, which equals the contribution from the scalar massless pentagon

integral, is expressed in terms of new transcendental functions not present in

the parity-even contribution. This implies that the two-loop five-point ampli-

tude is expressed in terms of this same new set of special functions, and in

particular we can write out the result completely as a Laurent series in ε whose

coefficients are combinations of M functions and Goncharov polylogarithms.

11.5 The two-loop Lipatov vertex in MSYM

In the previous section we computed the one-loop five-point amplitude in multi-

Regge kinematics to all orders in ε, and we know from Section 9.2 that the

knowledge of the five-point amplitude to all orders in ε enables us to extract

the one-loop Lipatov vertex to same accuracy. Dividing the one-loop vertex

into a parity-even and a parity-odd contribution,

V̄ (1) = V̄ (1)
e + V̄ (1)

o , (11.48)

we obtain the analytic expressions for the vertex by subtracting the contribu-

tions to the coefficient functions and the Regge trajectory from the five-point

amplitude,

V̄ (1)
e (t1, t2,κ; ε, τ)

= m(1)
5e (s, s1, s2, t1, t2)− ᾱ(1)(t1; ε)L1 − ᾱ(1)(t2; ε)L2 − C̄(1)(t1; ε, τ)

− C̄(1)(t2; ε, τ),

V̄ (1,j)
o (t1, t2,κ; ε, τ)

= m(1,j)
5o (s, s1, s2, t1, t2)

= − ε
(

p3⊥ p∗4⊥ − p∗3⊥ p4⊥
) (−κ)ε

t2
I(j)(t1, t1,κ)

(11.49)

with Li = ln(−si/τ). The explicit expression of the parity-even contribution

was already derived in Eq. (9.34). Eq. (9.23) implies that there is no odd-parity

contribution to the coefficient functions and the Regge trajectory, and so the

parity-odd part of the vertex equals the parity-odd part of the amplitude given
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in Eqs. (11.22) and (11.39). We thus have at our disposal all the pieces needed

to derive the one-loop Lipatov vertex to all orders in ε.

Let us now turn to the two-loop case. In Chapter 10 we showed that the BDS

ansatz implies an iteration formula for the two-loop Lipatov vertex, similar

to the iteration for the two-loop amplitude. Decomposing Eq. (10.10) into

parity-even and odd contributions, we can write

V (2)
e (t1, t2,κ; ε, τ)

=
1

2

[

V (1)
e (t1, t2,κ; ε, τ)

]2
+

2 G2(ε)

G(2ε)
f (2)(ε)V (1)

e (t1, t2,κ; 2ε, τ) + O(ε),

V (2,j)
o (t1, t2,κ; ε, τ)

= V (1)
e (t1, t2,κ; ε, τ)V (1,j)

o (t1, t2,κ; ε, τ) + O(ε).

(11.50)

As V (1)
o is O(ε), the parity-odd contribution only contributes starting from

O(ε−1). The right-hand side of Eq. (11.50) is known from Eq. (11.49), and

hence this allows us to obtain the two-loop Lipatov vertex in MSYM. We

know already that the parity-odd contribution to the one-loop vertex can be

expressed in terms of M functions, and hence the parity-odd contribution to

the two-loop vertex can be expressed in terms of using the same set of functions.

11.6 The physical region

Let us conclude this section by analyzing what the two-loop Lipatov vertex

becomes in the physical region where all s-type invariants are positive, obtained

by performing analytic continuation on all s-type invariants according to the

prescription

(−s)→ e−iπ s, (−s1)→ e−iπ s1, (−s2)→ e−iπ s2. (11.51)

The prescription for the transverse scale κ is then fixed by Eq. (11.4) to be

(−κ)→ e−iπ κ. (11.52)

From the previous sections, it is clear the in order to get the expression of

the two-loop vertex in the physical region, it is sufficient to know the analytic
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continuation of the one-loop vertex to O(ε2). In the following we give the

analytic continuation of V̄ (1) to all orders in ε. The analytic continuation of the

parity-even contribution (9.34) is straightforward. In the region (−t2) < (−t1),

we find

V̄ (1)
e,phys(t1, t2,κ; ε, τ) =

− 1

ε2
eiπε Γ(1 + ε)Γ(1− ε)

+
1

ε

(

κ

−t1

)ε (

−ψ(1 + ε)− γE + ln
−t1
τ

)

+
1

ε

(

κ

−t2

)ε (

−ψ(1 + ε)− γE + ln
−t2
τ

)

+
1

ε2

(

κ

−t1

)ε

2F1

(

ε, 1, 1− ε;
t1
t2

)

− 1

ε (1 + ε)

(

κ

−t2

)ε t1
t2

2F1

(

1, 1 + ε, 2 + ε;
t1
t2

)

− 1

ε

[(

κ

−t1

)ε

+

(

κ

−t2

)ε] (

ln
κ

τ
− iπ + ln

t1 − t2
τ

)

.

(11.53)

The analytic continuation of the parity-odd contribution is slightly more com-

plicated, because it requires the analytic continuation of the pentagon integral.

We address this questions for the Regions I and II(a) in the next sections.

11.6.1 Analytic continuation of Region II(a)

In Region II(a) the pentagon integral is expressed in terms of the dimensionless

quantities y1 and y2. The analytic continuation of y1 and y2 follows then

directly from Eq. (11.18) and Eq. (11.52),

(−y1) → e−iπ y1 and y2 → y2. (11.54)

In the physical region, the vertex can then be written as

V̄ (1,IIa)
o,phys (t1, t2,κ; ε, τ) = − ε

(

p3⊥ p∗4⊥− p∗3⊥ p4⊥
) κε

t2
I(IIa)

phys (κ, t1, t2), (11.55)

with

I(IIa)
phys (κ, t1, t2) = eiπε I(IIa)

(

e−iπ (−κ), t1, t2
)

, (11.56)
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and I(IIa) is given in Eq. (11.22) to all orders in ε in terms of Appell and Kampé

de Fériet functions. As we face the problem how of to perform the analytic

continuation of these functions under the prescription (11.54), we argue in

the following that the analytic continuation of the generalized hypergeometric

functions that appear in I(IIa) is trivial, i.e. , the hypergeometric functions

stay real in the physical region.

Indeed all the hypergeometric functions entering I(IIa) can be written as a

nested sum, the inner sum being a one-dimensional hypergeometric function of

2F1 or 3F2 type depending on (−y1). For example, the first term in Eq. (11.22)

can be written as

− 1

ε3
y−ε
2 Γ(1− 2ε)Γ(1 + ε)2 F4

(

1− 2ε, 1− ε, 1− ε, 1− ε;−y1, y2

)

= − 1

ε3
y−ε
2 Γ(1− 2ε)Γ(1 + ε)2

∞
∑

n=0

(1− 2ε)n (1− ε)n

(1− ε)n

yn
2

n!

× 2F1

(

1− 2ε, 1− ε, 1− ε;−y1

)

.

(11.57)

Since we do not perform any analytic continuation in y2, the only way an

imaginary part could arise is when we cross a branch cut during the analytic

continuation in y1. Hence the analytic properties of Eq. (11.57) are determined

by the cuts in the function 2F1

(

1−2ε, 1− ε, 1− ε;−y1

)

. We know that the 2F1

function has a branch cut ranging from 1 to +∞. The convergence criterion

for the F4 function requires |y1| < 1, so we do not cross the branch cut when

continuing y1 along a half circle through the upper half plane, and so we do

not change the Riemann sheet during the analytic continuation. Since the

Euclidean region corresponds to the Riemann sheet where the hypergeometric

function is real for (−y1) < 1, we conclude that the 2F1 function in Eq. (11.57)

is real in the physical region, and so is the Appell function on the left-hand side

of Eq. (11.57). A similar reasoning can be made for all other hypergeometric

functions in Eq. (11.22), and so we can immediately write down the analytic

continuation of Eq. (11.22) to the physical region where all s-type invariants
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are positive,

I(IIa)
phys (κ, t1, t2) =

− 1

ε3
y−ε
2 eiπε Γ(1− 2ε)Γ(1 + ε)2 F4

(

1− 2ε, 1− ε, 1− ε, 1− ε;−y1, y2

)

+
1

ε3
eiπε Γ(1 + ε)Γ(1− ε)F4

(

1, 1− ε, 1− ε, 1 + ε;−y1, y2

)

− 1

ε2
(−y1)

ε y−ε
2

{

× ∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ε 1 − − −
− − 1 + δ 1− ε 1 + ε + δ − − y1, y2

)

|δ=0

+
[

ln(−y1)− iπ + ψ(1− ε)− ψ(−ε)
]

F4

(

1, 1− ε, 1 + ε, 1− ε;−y1, y2

)

}

+
1

ε2
(−y1)

ε

{

× ∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ε 1 − − −
− − 1 + δ 1 + ε 1 + ε + δ − − y1, y2

)

|δ=0

+
[

ln(−y1)− iπ + ψ(1 + ε)− ψ(−ε)
]

F4

(

1, 1 + ε, 1 + ε, 1 + ε;−y1, y2

)

}

.

(11.58)

We checked explicitly that all the poles in ε cancel out when expanding I(IIa)
phys

into a Laurent series in ε. Note that in Eq. (11.58) the same hypergeometric

functions appear as in the Euclidean region, Eq. (11.22). We can therefore eas-

ily expand Eq. (11.58) in ε in exactly the way as we did in the Euclidean region,

and we will obtain a Laurent series whose coefficients are combinations of real

M-functions. The imaginary parts arise order by order in the Laurent series

only through the explicit dependence in iπ in Eq. (11.58). Note that if we had

worked with the expression of the pentagon in terms of Goncharov’s multiple

polylogarithm, Eqs. (M.60) and (M.64), the complicated analytic structure of

these functions would imply many spurious imaginary parts arising from in-

dividual polylogarithms, and all the spurious imaginary parts would need to

cancel out in the final answer. It is therefore more natural to express the re-

sult in the physical region in terms of M functions rather than the Goncharov

polylogarithms.
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11.6.2 Analytic continuation of Region I

In Region I the pentagon is expressed as a function of x1 and x2, whose analytic

continuation follows directly from Eq. (11.14) and Eq. (11.52),

(−x1)→ e+iπ x1 and x2 → e+iπ x2, (11.59)

and the pentagon in Region I can be expressed as

V̄ (1,I)
e,phys(t1, t2,κ; ε, τ) = − ε

(

p3⊥ p∗4⊥ − p∗3⊥ p4⊥
) κε

κ
I(I)

phys(κ, t1, t2), (11.60)

with

I(I)
phys(κ, t1, t2) = eiπε I(I)

(

e−iπ (−κ), t1, t2
)

, (11.61)

and I(I) is given in Eq. (11.39). Using the same argument as in Region II(a),

we see that the hypergeometric functions stay real even in the physical region,

because the convergence of the hypergeometric functions requires |xi| < 1,

i = 1, 2. Alternatively, we could also start from the expression of the pentagon

in the physical Region II(a), Eq. (11.58), and perform the analytic continuation

to Region I following the techniques described in Appendix L. We find that the

two results are consistent. The final expression of the pentagon in the physical

region I is then

I(I)
phys(κ, t1, t2) =

− 1

ε3
e−iπε (−x1)

−ε (−x2)
−ε Γ(1− 2ε)Γ(1 + ε)2

×F4(1− 2ε, 1− ε, 1− ε, 1− ε;−x1,−x2)

+
1

ε3
Γ(1− ε)Γ(1 + ε) eiπε F4(1, 1 + ε, 1 + ε, 1 + ε;−x1,−x2)

− 1

ε2
(−x1)

−ε

{

∂

∂δ
F 2,1

0,2

(

1 + δ 1− ε + δ − − − 1
− − 1− ε 1 + ε + δ − 1 + δ

− x1,−x2

)

|δ=0

(11.62)



186 Chapter 11. The five-point amplitude in multi-Regge kinematics

+
[

ln(−x2) + iπ + ψ(1− ε)− ψ(−ε)
]

F4(1, 1− ε, 1− ε, 1 + ε;−x1,−x2)

+
ε

1− ε

t1
t2

F 0,3
2,0

(

− − 1 1 1 1 1− ε 1− ε
2 2− ε − − − − − − − x1,

x1

x2

)

}

− 1

ε2
(−x2)

−ε

{

× ∂

∂δ
F 2,1

0,2

(

1 + δ 1− ε + δ − − − 1
− − 1 + ε 1− ε + δ − 1 + δ

− x1,−x2

)

|δ=0

+
[

ln(−x2) + iπ + ψ(1− ε)− ψ(ε)
]

F4(1, 1− ε, 1 + ε, 1− ε;−x1,−x2)

− ε

1 + ε

t1
t2

F 0,3
2,0

(

− − 1 1 1 1 1− ε 1 + ε
2 2 + ε − − − − − − − x1,

x1

x2

)

}

.

We checked explicitly that all the poles in ε cancel out when expanding I(I)
phys

into a Laurent series in ε.



Conclusion

Throughout this work we investigated the structure of gauge theory scattering

amplitudes, both at tree-level and beyond. A special attention was brought

to the application of several cutting-edge techniques developed over the last

decade to compute gauge theory scattering amplitudes in an efficient way. The

main goal of this work was to apply these techniques in some concrete cases,

in the double perspective of gaining a deeper understanding of the structure

of gauge theory amplitudes as well as to obtain new results which could have

some phenomenological interest in the future.

A first result has been to show how recursive relations for color-stripped am-

plitudes can be dressed with color, obtaining in this way a new version of the

recursion, valid this time at the level the full amplitude, including color. The

main features of this technique are that the recursive relations keep their func-

tional form, the only difference being in the fact that in the color-dressed case

the recursion runs over non-ordered objects reflecting the Bose symmetry of

the full amplitude. Furthermore, the color-dressed recursions avoid the facto-

rial growth in complexity inherent to dressing color-stripped amplitudes with

color. The color-dressed recursions have by now been successfully applied in

several tree-level matrix element generators [42, 52, 100]. An open question is

in how far the color-dressing technique can be extended beyond tree-level where

a similar color decomposition holds, especially in the context of the recently

proposed automatization of one-loop computations, all operating so far only at

the level of the color-stripped amplitude [7, 8].
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A second result has been the application of the MHV formalism to some open

issues, such as the computation of several universal quantities that describe

the behavior of tree-level amplitudes in some kinematical limits. We started

by studying the infrared limits of gauge theory scattering amplitudes and we

showed how it is possible to extend the work by Birthwright et al. on splitting

functions to more general kinds of infrared limits, described by the antenna

functions. We showed how the MHV formalism provides a natural framework

to define tree-level gluon antenna functions as a sum of MHV diagrams, a result

which allowed us to derive for the first time a complete set of N3LO antenna

functions, describing the soft and collinear emission of up to three gluons at

tree-level. In Chapter 8 we then extended this result to the case of high-energy

limits by deriving a similar rule to compute coefficient functions and Lipatov

vertices in an efficient way by identifying a priori the MHV diagrams that

give a leading contribution in the high-energy limit and we derived for the first

time the complete set of tree-level Lipatov vertices describing the emission of

up to four gluons. Our antenna functions and Lipatov vertices enjoy all the

properties of the MHV approach and in particular, they are characterized by a

much simpler analytic structure than the corresponding results in Ref. [16, 25].

Although these multi-leg antenna functions and Lipatov vertices might not

have a direct phenomenological application, they might however be useful to

check the infrared and multi-Regge behavior in future computations of multi-

leg scattering amplitudes. In the same spirit, it could also be interesting to

investigate how the techniques we introduced in this work in the context of

pure gluon amplitudes can be extended to the case where one or more quark

pairs are present in the amplitude.

A third result of this work was the application and development of new tech-

niques to compute (multi-) loop amplitudes. We applied the Laporta algo-

rithm and the differential equation technique to the computation of a class of

27 real-virtual integrated counterterms for an NNLO subtraction scheme. To

our knowledge this was the first time that such techniques have been applied to

hypergeometric integrals of this particular type. Although successfully applied

to the computation of the twofold Euler integrals which appear in the NNLO

subtraction scheme, our approach turned out to be inefficient for more compli-
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cated real-virtual integrals, due to an extremely fast growth in the complexity

of the algorithm. For these classes of integrals one might think of other tech-

niques, like for example Mellin-Barnes inspired approaches, which were applied

recently to the computation of the remaining real-virtual integrals [83]. The

Mellin-Barnes technique, together with the negative dimension approach, was

applied in this work to the computation of the scalar massless pentagon. In

Chapter 11 we computed for the first time the pentagon integral to all orders

in ε, albeit in simplified kinematics and we found that the result can be ex-

pressed in terms of generalized hypergeometric functions, the so-called Appell

and Kampé de Fériet functions, which can be expanded into a Laurent series

in terms of Goncharov’s multiple polylogarithms. This computation allowed us

to investigate for the first time the mathematical structure of higher-point two-

loop amplitudes and we studied the associated special functions and derived

their main properties (See Appendices).

Recently, an expression for a general n-edged Wilson loop in QCD was pre-

sented [13]. The n-edged Wilson loop is conjectured to be related to the two-

loop n-point scattering amplitude in MSYM and so it can be directly used to

study the breakdown of the ABDK/BDS ansatz for more then five external

legs. In Ref. [13] the Wilson loops are given as multifold Euler integrals, which

remind the similarity between Feynman integrals and hypergeometric functions

pointed out in Ref. [28]. Since the techniques we applied to compute the inte-

grated counterterms and the pentagon integrals are generic and not limited to

this particular class of integrals, one could think of applying these techniques

also to the computation of the Euler integrals appearing in the six-edged Wil-

son loop, a computation which would explicitly reveal the analytical structure

of the BDS remainder function. This is currently under investigation.

The techniques and functions studied in this work might hence have an impact

on how we will try to understand the breakdown of the BDS ansatz in the two-

loop six-point amplitude. Since the computation of this amplitude requires the

knowledge of the one and two-loop hexagons, it is natural to speculate that

the same kind of new mathematical structures we uncovered in the case of the

five-point amplitude will also reappear in more general higher-point integrals

and so the knowledge of these functions and of their properties might play an
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important role in uncovering the source of the BDS ansatz violation and hence

improving our knowledge of gauge theories at higher orders in the perturbative

expansion.
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Appendices
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Appendix A
Reconstruction functions

In this appendix we present the explicit expressions for the reconstruction func-

tions that have been used in Chapter 4 and Chapter 5 to define antenna func-

tions. Apart from a difference in the overall sign conventions they are the same

as in Ref. [16]. They read

pâ =

1

2(K2 − t1...nb)

[

(1 + ρ)K2 + 2R · K̄ +
1

sab
G

(

ka, kb

R, P1,n

)

]

ka

+
1

2(K2 − ta1...n)

[

(1− ρ)K2 + 2R · K̄ +
1

sab
G

(

ka, kb

R, P1,n

)

]

kb

+ R,

pb̂ =

1

2(K2 − t1...nb)

[

(1− ρ)K2 + 2R̃ · K̄ +
1

sab
G

(

ka, kb

R̃, P1,n

)

]

ka

+
1

2(K2 − ta1...n)

[

(1 + ρ)K2 + 2R̃ · K̄ +
1

sab
G

(

ka, kb

R̃, P1,n

)

]

kb

+ R̃,

(A.1)

where t1...nb = (k1 + . . . + kn + kb)2, ta1...n = (ka + k1 + . . . + kn)2 and,

K = ka + k1 + . . . + kn + kb and K̄ = ka − kb −K. (A.2)
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Furthermore

R =
n
∑

j=1

kjrj , R̃ = P1,n −R =
n
∑

j=1

kj(1− rj), (A.3)

and

ρ =











1 +

2G

(

a, R, b
a, R̃, b

)

K2s2
ab

+
∆(a, R, K, b)

(K2)2s2
ab











1
2

. (A.4)

In these formulas, G and ∆ denote Gram determinants,

G

(

p1, . . . , pn

q1, . . . , qn

)

≡ det
(

2 pi · qj

)

,

∆(p1, . . . , pn) ≡ G

(

p1, . . . , pn

p1, . . . , pn

)

.

(A.5)

A suitable choice for the coefficients rj is [16]

rj =
kj · (Pj+1,n + kb)

kj · K
=

tj...nb − t(j+1)...nb

2kj · K
. (A.6)



Appendix B
Proof of Chapter 5

B.1 Gluon insertion rule

In this appendix we give the explicit proof of Rules 5.3 and 5.5 which had been

omitted in Chapter 5. We start with the gluon insertion rule, and comment on

Rule 5.5 in the next section.

The idea behind the gluon insertion rule is to start from the Feynman diagrams

of the hard amplitude and to see where a soft gluon can be radiated from in

such a way that the diagram becomes divergent. There are three places in a

Feynman diagram where an additional soft gluon can be emitted from:

- a three-point vertex,

- an internal line,

- an external line.

Let us examine each case separately, and let us start with the situation where a

soft gluon is emitted from a three-point vertex (See Fig. B.1). It is easy to see

from Fig. B.1a that if a single soft gluon is radiated from a three-point vertex,

there is no propagator going on-shell, and thus there is no divergence at all in

this situation. But if more than one single gluon is emitted, then there may be
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a propagator going on-shell, and thus we can get a divergent diagram for more

than one single soft gluon emitted from the three-point vertex (See Fig. B.1b

and B.1c).

Let us first consider the situation where two soft gluons are emitted from the

three-point vertex shown in Fig. B.1b. In this situation the propagator goes

on-shell, and the rescaling rule, Eq. (4.24), tells us that the propagator behaves

as t−2. However, as a three-point vertex is proportional to the momenta of the

particles, it is easy to see that the second three-point vertex behaves in the soft

limit as t, and thus the diagram shown in Fig. B.1b behaves as t−2 · t = t−1,

and so it is not divergent enough to contribute to the soft factor. Let us turn

to the situation where three soft gluons are emitted from a three-point vertex

(See Fig. B.1c). We get a divergent propagator which behaves as t−2. The

four-point vertex however is not divergent at all, and so the diagram shown in

Fig. B.1c behaves as t−2, and so it is not divergent enough to contribute to the

soft limit.

Finally, we come to the conclusion that diagrams where a soft particle is radi-

ated from a three-point vertex do not contribute in the soft limit.

Let’s turn to the second case, where the soft particle is emitted from an internal

line. Internal lines in a Feynman diagram correspond to off-shell propagators,

i.e. , if p is the momentum carried by the internal line, then p2 0= 0. If a soft

particle with momentum k is radiated from this internal line, then we get a

propagator of the form 1/(p + k)2 = 1/(p2 + 2p · k), which stays finite in the

soft limit where k → 0. So there will be no contribution from diagrams where

the soft gluon is emitted from an internal line.

In the situation where a soft gluon with momentum k is emitted from an ex-

ternal particle with momentum p, we get a propagator 1/(p + k)2 = 1/(2p · k).

In the soft limit, k → 0, this propagator behaves as 1/t, and thus has the right

divergence to contribute to the soft factor.

Finally, we see that only those Feynman diagrams contribute in the soft limit

where the soft gluons are radiated from the external legs of the hard amplitude,

which finishes the proof.
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(a) (b) (c)

Figure B.1: The radiation of a soft gluon from a three-point vertex. Dashed
lines indicate soft gluons. The blob represents any subdiagram contributing to
this amplitude.

B.2 Proof of Rule 5.5

Let us consider a generic (n + 4)-point amplitude An+4(a, 1, . . . , n, b, c, d). We

want to study the limit where 1, . . . , n become singular. We know from Rule 5.4

that the only MHV diagrams that contribute in the singular limit are those

where all scalar propagators go on shell, which in turn implies that c and d

must be attached to the same MHV vertex. Let us consider now a specific

MHV diagram satisfying this condition. Then the MHV vertex with c and d

attached gives a contribution

〈cd〉3

〈Pj,b c〉〈dPa,i〉
, (B.1)

with (i, j) 0= (b, a) because otherwise c and d would be attached to a 3-point

MHV vertex, and i = a and / or j = b if a and b are attached to the same

MHV vertex as c and d. Consider the following Schouten identity, Eq. (1.14),

〈b̂â〉〈ca〉 = 〈b̂a〉〈câ〉+ 〈cb̂〉〈aâ〉 ⇒ 〈ca〉
〈câ〉 =

〈b̂a〉
〈b̂â〉

+
〈cb̂〉〈aâ〉
〈câ〉〈b̂â〉

, (B.2)

where â and b̂ denote the reconstruction functions defined in the Appendix A.

It is manifest that, if 〈aâ〉 goes to zero in the singular limit, then Eq. (B.2)

drastically simplifies. To show this, we go into the frame where pa and pb are

aligned along the same direction. As recalled in Appendix A, the reconstruction

functions can be chosen to be of the form

pâ = Apa + B pb +
n
∑

j=1

pjrj , (B.3)
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where A, B and rj are functions of invariants in the particle momenta, so they

are unaffected by this specific choice of reference frame. As pâ is by definition

lightlike, we can switch to lightcone coordinates. In the specific reference frame

we chose, we get

p+
â = Ap+

a +
n
∑

j=1

p+
j rj ,

p−â = B p−b +
n
∑

j=1

p−j rj , (B.4)

pâ⊥ =
n
∑

j=1

pj⊥rj .

Furthermore it is easy to see that in this frame we can write

pj singular ⇔ pj⊥ → 0, ∀j = 1, . . . , n. (B.5)

The spinor product 〈aâ〉 can now be evaluated in this frame using the lightcone

coordinates [25],

〈aâ〉 = −i

√

−p+
a

p+
â

pâ⊥ = −i

√

−p+
a

Ap+
a +

∑n
j=1 p+

j rj

n
∑

j=1

pj⊥rj . (B.6)

By definition of the reconstruction functions, pâ and pa are collinear in every

singular limit, and so the square root gives just a phase in the singular limit.

Thus, due to Eq. (B.5), 〈aâ〉 goes to zero in the singular limit unless there are

poles in the coefficients rj that could prevent the product rj pj⊥ from going

to zero as pj⊥ → 0. Recalling the analytic expression for the coefficients,

Eq. (A.6), we see that rj may contain a pole if pj · K → 0. As K always

contains the momenta of the two hard particles a and b, pj ·K → 0 if and only

if pj → 0. However, a quick look at Eq. (A.6) shows that rj does not contain

a pole in this limit, so rj does not contain a pole in any limit. This concludes

the proof that 〈aâ〉 goes to zero in the singular limit, and allows us to conclude

that in the singular limit

〈ca〉
〈câ〉 →

〈b̂a〉
〈b̂â〉

. (B.7)

Similar conclusions can of course be drawn for 〈bb̂〉. We can also analyze what

happens to the spinor product 〈Pj,b c〉 in the singular limit.
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- If j = b, then 〈Pj,b c〉 = 〈bc〉, and in the singular limit

〈bc〉 → 〈b̂c〉 〈âb〉
〈âb̂〉

. (B.8)

- If j 0= b, then 〈Pj,b c〉 = 〈bc〉[bη] +
∑n

k=j〈kc〉[kη]. The first term has al-

ready been dealt with in Eq. (B.8). The remaining terms can be rewritten

using Schouten-identity

〈kc〉 = 〈b̂c〉 〈âk〉
〈âb̂〉

+ 〈âc〉 〈kb̂〉
〈âb̂〉

. (B.9)

The second term on the right-hand side, proportional to 〈kb̂〉, does not

contribute in the singular limit. To see this let us first see what happens

in the limit where pj, . . . , p* ‖ pa and p*+1, . . . , pn ‖ pb, with j < ! ≤ b.

Then this MHV diagram would have a non-divergent scalar propagator.

As we are only looking for those diagrams where all scalar propagators

go on-shell, we can neglect this case. So we only need to analyze the

situation where pj, . . . , pn ‖ pb. Using lightcone coordinates, we find,

∀ j ≤ ! ≤ n,

〈!b̂〉 = p*⊥

√

p+
b̂

p+
*

− pb̂⊥

√

p+
*

p+
b̂

. (B.10)

We know already that in the singular limit

p+
b̂
→ 0, pb̂⊥ → 0, p*⊥ → 0, ∀1 ≤ ! ≤ n , (B.11)

and pb̂ is collinear to pb in every singular limit. Let us have a closer look

at the first term. From Eq. (B.11) it follows that in the singular limit

p*⊥, p+
* , p+

b̂
→ 0, where we used the fact that in our specific choice of

reference frame p+
b = 0. Furthermore, all external particles must fulfill

the on-shell condition p+ p− = |p⊥|2, and so

p*⊥
√

p+
*

∼
√

p−* , (B.12)

and p−* 0= 0 if pj ‖ pb. So the first term goes to zero as
√

p+
b̂
. Similar

arguments show that also the second term goes to zero in the singular
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limit, and so we can conclude that 〈kb̂〉 vanishes. Putting everything

together, we obtain

〈Pj,b c〉 → 〈b̂c〉 〈âb〉
〈âb̂〉

[bη] +
n
∑

k=j

〈b̂c〉 〈âk〉
〈âb̂〉

[kη] = 〈b̂c〉 〈âPj,b〉
〈âb̂〉

. (B.13)

Both cases can be summarized as

〈Pj,b c〉 → 〈b̂c〉 〈âPj,b〉
〈âb̂〉

. (B.14)

Similarly one finds

〈dPa,i〉 → 〈dâ〉 〈Pa,i b̂〉
〈âb̂〉

. (B.15)

The contribution from Eq. (B.1) to the singular limit therefore becomes

〈cd〉3
〈Pj,b c〉〈dPa,i〉

→ 〈cd〉3

〈âb̂〉〈b̂c〉〈dâ〉
〈âb̂〉3

〈Pj,b â〉〈b̂ Pa,i〉
. (B.16)

The first factor on the right-hand side of Eq. (B.16) corresponds to the hard

four-point amplitude in Eq. (5.19). The second factor has the same functional

form as the left-hand side, with c and d replaced by â and b̂. This proves

the following result: The antenna function Ant(â−, b̂− ← a, 1, . . . , n, b) can be

calculated by evaluating all MHV diagrams that contribute to the (n + 4)-

point amplitude An+4(a, 1, . . . , n, b, â−, b̂−) and where â and b̂ are attached to

the same m-point MHV vertex, with m ≥ 4.

In the rest of this section we show how this result can be generalized to the

remaining antenna functions. The proof for Ant(â+, b̂+ ← a, 1, . . . , n, b) is

similar to the previous case, and so we do not give it explicitly here.

Let us turn to Ant(â+, b̂− ← a, 1, . . . , n, b) and let us consider the (n+4)-point

amplitude An+4(a, 1, . . . , n, b, c−, d+). From Eq. (4.43) we know that in the

singular limit for the particles 1, . . . , n, the amplitude exhibits the factorization

property

An+4(a, 1, . . . , n, b, c−, d+)

−→
∑

h

Ant(âh, b̂−h ← a, 1, . . . , n, b)A4(â
−h, b̂h, c−, d+). (B.17)
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If N− is the number of negative-helicity gluons in the set {a, 1, . . . , n, b}, then

the number of MHV propagators in the (n + 4)-point amplitude is p = (N− +

1)− 2 = N−− 1. Furthermore, from the considerations in Section 5.1 we know

that the MHV pole structure of this antenna function is

Ant(â+, b̂− ← a, 1, . . . , n, b) ∼ 1

[ ]N−−1
, (B.18)

and thus the MHV diagrams contributing to the antenna function are exactly

those where c and d are attached to the same n-point MHV vertex, with n ≥ 4.

The contribution from the MHV vertex that contains c and d is of the form

〈c Pαβ〉4
〈Pj,b c〉〈cd〉〈dPa,i〉

, (B.19)

where Pαβ denotes the momentum of the second negative helicity leg attached

to this vertex, and α = β for an external leg. We know already that in the

singular limit we have

〈Pj,b c〉 → 〈b̂c〉 〈âPj,b〉
〈âb̂〉

, (B.20)

〈dPa,i〉 → 〈dâ〉 〈Pa,i b̂〉
〈âb̂〉

. (B.21)

Applying the Schouten-identity (B.2), we get for the spinor product in the

numerator

〈c Pαβ〉 =
β
∑

k=α

〈cx〉[kη]

=
β
∑

k=α

(

〈câ〉 〈kb̂〉
〈âb̂〉

+ 〈cb̂〉 〈kâ〉
〈b̂â〉

)

[kη] (B.22)

= 〈câ〉 〈Pαβ b̂〉
〈âb̂〉

+ 〈cb̂〉 〈â Pαβ〉
〈âb̂〉

Inserting Eq. (B.22) into Eq. (B.19), we get five terms:

1. a term proportional to 〈Pαβ b̂〉4.

2. a term proportional to 〈Pαβ â〉4.
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3. three “mixed” terms of the form 〈Pαβ â〉q〈Pαβ b̂〉4−q, q = 1, 2, 3.

We separately analyze the different limits:

- If kα, . . . , kβ ‖ ka, then pâ → P and kj → zjP , ∀α ≤ j ≤ β and so

〈Pαβ â〉 → 0.

- If kα, . . . , kβ ‖ kb, then pb̂ → P and kj → zjP , ∀α ≤ j ≤ β and so

〈Pαβ b̂〉 → 0.

- If kα, . . . , km ‖ ka and km′ , . . . , kβ ‖ kb, α ≤ m < m′ ≤ β, then the

propagator 1/Pαβ
2 is not divergent, and thus diagrams with a propagator

1/Pαβ
2 are not divergent enough to contribute to this limit.

- If kα, . . . , kβ → 0, the situation is more subtle. We show in Appendix C

that in this limit only those diagrams contribute where α = a, and Paβ →
ka. Thus in this limit 〈Pαβ â〉 ∼ 〈aâ〉 → 0.

Finally, we see that in any situation either 〈Pαβ â〉 or 〈Pαβ b̂〉 go the zero,

and thus we can drop the “mixed” terms. So in the singular limit Eq. (B.19)

becomes

〈Pαβ c〉4
〈Pj,b c〉〈cd〉〈dPa,i〉

→ 〈câ〉4

〈âb̂〉〈b̂c〉〈cd〉〈dâ〉
〈Pαβ b̂〉4

〈Pj,b â〉〈âb̂〉〈b̂ Pa,i〉

+
〈cb̂〉4

〈âb̂〉〈b̂c〉〈cd〉〈dâ〉
〈Pαβ â〉4

〈Pj,b â〉〈âb̂〉〈b̂ Pa,i〉
, (B.23)

→ A4(â
−, b̂+, c−, d+)

〈Pαβ b̂〉4

〈Pj,b â〉〈âb̂〉〈b̂ Pa,i〉

+A4(â
+, b̂−, c−, d+)

〈Pαβ â〉4

〈Pj,b â〉〈âb̂〉〈b̂ Pa,i〉
.

We see that the first term contributes to Ant(â+, b̂− ← a, 1, . . . , n, b) and the

second term contributes to Ant(â−, b̂+ ← a, 1, . . . , n, b). Note that again the

second factor in each term has the same functional form as the left-hand side,

so we proved our claim that Ant(âhâ , b̂hb̂ ← a, 1, . . . , n, b) can be calculated by

evaluating all MHV diagrams that contribute to the (n + 4)-point amplitude

An+4(a, 1, . . . , n, b, âhâ, b̂hb̂) and where â and b̂ are attached to the same m-

point MHV vertex, with m ≥ 4.



Appendix C
Recursive relations for soft
factors

In this appendix we discuss how to build recursive relations for soft factors out

of the recursion for antenna functions, Eq. (5.49), in a similar way as we did

for the splitting functions in Section 5.4.2.

Let us start by giving some general considerations about the off-shell contin-

uation that appears in the MHV formalism in the soft limit. In general, a

propagator involving more than two particles can be written as

P 2
i,j =

j
∑

k,l=i
k<l

skl. (C.1)

In particular, if i is a hard particle, say i = a, and all other momenta are soft,

we can write

P 2
a,j =

j
∑

l=s1

sal +
j−1
∑

k=s1

j
∑

l=s2

skl. (C.2)

Using the power counting (4.24), it is easy to see that the second term goes to

zero much faster than the first one, so we have the following behavior in the

soft limit

P 2
a,j ∼

j
∑

l=s1

sal. (C.3)
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Similar arguments hold true for spinor products involving off-shell momenta in

the MHV formalism,

〈k, Pi,j〉 = 〈k|Pi,j |η] =
j

∑

l=i

〈kl〉[lη]. (C.4)

Following exactly the same lines as for the propagators, we can derive the

following rule for off-shell continued spinor products in the soft limit,

Rule C.1 (Off-shell continuation in the soft limit). In the soft limit, each

spinor product of the form 〈k, Pa,j〉 has to be interpreted as

〈k Pa,j〉 → 〈ka〉[aη],

except for k = a, because in this case we have trivially 〈a, Pa,j〉 = 〈a, P1,j〉, and

equivalently for b.

In particular, this implies the following rules for off-shell continued momenta

〈a, Pj,b〉 → 〈ab〉[bη],

〈Pa,j , b〉 → 〈ab〉[aη],

〈Pi,j , Pk,b〉 → 〈Pi,j , b〉[bη], (C.5)

〈Pa,i, Pj,k〉 → 〈a, Pj,k〉[aη],

〈Pa,j , Pk,b〉 → 〈ab〉[a, η][bη].

Let us turn now to the recursive relations. We know that in the limit where

all the particles are soft, we have

Ant(âhâ , b̂hb̂ ← a, 1, . . . , n, b) −→ Soft(a, 1, . . . , n, b). (C.6)

As the soft factor is independent of the helicities of the reference particles a and

b, some antenna functions are not divergent in this limit, but only those are di-

vergent where hâ = −ha and hb̂ = −hb. Taking the soft limit of Eq. (5.49), we

can derive a formula for soft factors in terms of single and double-line currents.

We will show this procedure explicitly for Ant(â−, b̂− ← a+, 1, . . . , n, b+). Ap-

plying the rules given in Chapter 4, it is easy to see that in the soft limit
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+ −+ −+ −+ −
(a) a+

+ −− ++ −+ −
(b) a+

Figure C.1: Diagrams contributing to J+(a+, 1, . . . , k) in the soft limit.

V4(U, V, â, b̂; â, b̂)

→ Vs(a, b, η) =















1 , if U = (a, a), V = (b, b),
1/[aη]2 , if U 0= (a, a), V = (b, b),
1/[bη]2 , if U = (a, a), V 0= (b, b),
1/([aη]2[bη]2) , if U 0= (a, a), V 0= (n, n).

(C.7)

Finally, the contribution from an antenna function to a soft factor is

∑

U<V
v2=b

Vs(a, b, η)J0
UV (a+, 1, . . . , n, b+). (C.8)

However, Eq. (C.8) generates not only diagrams that contribute to the soft

limit, but also subleading diagrams. To see this, consider the diagrams con-

tained in J+(a+, 1, . . . , k) shown in Fig. C.1. Let us start with the situation

where all external lines in Fig. C.1 are on-shell (except the off-shell line (a, k)

indicated with a dot). Using the power counting rules (4.24), it follows that the

denominators of both diagrams shown in Fig. C.1 behave as 1/t2k+4k− , where

k− is the number of negative helicities in the set {1, . . . , k}. We then come to

the following conclusion:

- For diagrams of the form shown in Fig. C.1.a, the numerator behaves as

t4k− , and so these diagrams behave as t4k−/t2k+4k− = 1/t2k, which is

exactly the divergence we want.

- For diagrams of the form shown in Fig. C.1.b, the numerator behaves

as t4k−+8, and so these diagrams behave as t4k−+8/t2k+4k− = 1/t2k−8,

and so these diagrams are not divergent enough to contribute to the soft

factor.
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Up to now we have only considered diagrams in Fig. C.1 where all external lines

are on-shell. Let us turn to the situation where some of these lines may them-

selves be off-shell, i.e. , they correspond to single-line currents Jh(i1, . . . , i2).

First, a simple power counting argument shows that if the particles i1, . . . , i2

are soft,

J+(i1, . . . , i2) ∼ 1/t2(i2−i1+1)−4, J−(i1, . . . , i2) ∼ 1/t2(i2−i1+1). (C.9)

Using this result, it is easy to show that

- Replacing a positive-helicity particle i by a single-line current J+ amounts

to the replacement

1

〈Xi〉〈iY 〉 →
1

〈XI〉〈IY 〉 J+(i1, . . . , i2).

∼ 1/t2 ∼ 1/t4 1/t2(i2−i1+1)−4
(C.10)

So the divergence in 1/t2 of the soft particle i gets replaced by the diver-

gence in 1/t2(i2−i1+1) of the soft particles i1, . . . , i2.

- Replacing a negative-helicity particle i by a single-line current J− amounts

to the replacement

〈Zi〉4
〈Xi〉〈iY 〉 →

〈ZI〉4
〈XI〉〈IY 〉 J−(i1, . . . , i2).

∼ t2 ∼ t4/t2(i2−i1+1)

(C.11)

Furthermore, there must be somewhere in the diagram a 1/t4 factor

knocking the t2 on the left-hand side down to a divergence in 1/t2 for

the soft particle i. On the right-hand side, this same term now kills the

t4 in the numerator, giving the divergence in 1/t2(j2−j1+1) for the soft

particles i1, . . . , i2.

So we come to the conclusion that only the diagrams in J+(a+, 1 . . . , k) of

the form shown in Fig. C.1.a contribute in the soft limit. These diagrams are

exactly those which do not contain any subcurrent of the form J−(a+, 1, . . . , l).

A similar result holds of course for b, i.e. , only those diagrams contribute to

the soft limit which do not contain a subcurrent of the form J−(l, . . . , n, b+).
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Finally we can write

Soft(a, 1, . . . , n, b) =
∑

U<V
v2=b

Vs(a, b, η) J̄0
UV (a+, 1, . . . , n, b+), (C.12)

where J̄0
UV (a+, 1, . . . , n, b+) denotes a double-line current which does not con-

tain any subcurrent of the form J−(a+, 1, . . . , l) or J−(l, . . . , n, b+).

Of course we could have used a different antenna function to extract the soft

factors. In general, we get the result

Soft(a, 1, . . . , n, b) =
∑

U<V
v2=b

Vs(a, b, η) εha hb J̄ (2−ha−hb)/2
UV (aha , 1, . . . , n, bhb),

(C.13)

where J̄0
UV (aha , 1, . . . , n, bhb) is the double-line current which does not contain

any subcurrents of the form J−ha(aha , 1, . . . , l) or J−hb
(l, . . . , n, bhb), and

ε++ = 1, ε+− =
〈aM〉4

〈ab〉4 ,

ε+− =
〈Mb〉4
〈ab〉4 , ε−− =

〈M1M2〉4
〈ab〉4 .

(C.14)

We calculated numerically the soft factors for one, two or three soft particles,

and we checked numerically that these quantities are independent of the ar-

bitrary spinor η as well as of the helicities of the spectator particles a and

b.





Appendix D
Multi-Regge kinematics

D.1 Multi-parton kinematics

We consider the production of n− 2 gluons of momentum pi, with i = 3, ..., n

in the scattering between two partons of momenta p1 and p2
∗.

Using lightcone coordinates p± = p0 ± pz, and complex transverse coordinates

p⊥ = px + ipy, with scalar product 2p · q = p+q− + p−q+ − p⊥q∗⊥ − p∗⊥q⊥, the

4-momenta are,

p2 =
(

p+
2 /2, 0, 0, p+

2 /2
)

=
(

p+
2 , 0; 0, 0

)

,

p1 =
(

p−1 /2, 0, 0,−p−1 /2
)

=
(

0, p−1 ; 0, 0
)

, (D.1)

pi =
(

(p+
i + p−i )/2, Re[pi⊥], Im[pi⊥], (p+

i − p−i )/2
)

=
(

|pi⊥|eyi, |pi⊥|e−yi; |pi⊥| cosφi, |pi⊥| sinφi

)

,

where y is the rapidity. The first notation above is the standard representation

pµ = (p0, px, py, pz), while in the second we have the + and - components on

the left of the semicolon, and on the right the transverse components. In the

following, if not differently stated, pi and pj are always understood to lie in

∗By convention we consider the scattering in the unphysical region where all momenta
are taken as outgoing, and then we analytically continue to the physical region where p0

1 < 0
and p0

2 < 0.
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the range 3 ≤ i, j ≤ n. The mass-shell condition is |pi⊥|2 = p+
i p−i . From the

momentum conservation,

0 =
n
∑

i=3

pi⊥ ,

p+
2 = −

n
∑

i=3

p+
i , (D.2)

p−1 = −
n
∑

i=3

p−i ,

the Mandelstam invariants may be written as,

sij = 2pi · pj = p+
i p−j + p−i p+

j − pi⊥p∗j⊥ − p∗i⊥pj⊥ , (D.3)

so that

s = 2p1 · p2 =
n
∑

i,j=3

p+
i p−j ,

s2i = 2p2 · pi = −
n
∑

j=3

p−i p+
j , (D.4)

s1i = 2p1 · pi = −
n
∑

j=3

p+
i p−j .
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Using the spinor representation of Ref. [25],

ψ+(pi) =













√

p+
i

√

p−i eiφi

0
0













, ψ−(pi) =













0
0

√

p−i e−iφi

−
√

p+
i













,

ψ+(p2) = i











√

−p+
2

0
0
0











, ψ−(p2) = i











0
0
0

−
√

−p+
2











,

ψ+(p1) = −i











0
√

−p−1
0
0











, ψ−(p1) = −i











0
0

√

−p−1
0











.

(D.5)

for the momenta (D.1)†, the spinor products are

〈21〉 = −
√

s ,

〈2i〉 = −i

√

−p+
2

p+
i

pi⊥ , (D.6)

〈i1〉 = i
√

−p−1 p+
i ,

〈ij〉 = pi⊥

√

p+
j

p+
i

− pj⊥

√

p+
i

p+
j

,

†The spinors of the incoming partons must be continued to negative energy after the

complex conjugation, e.g. ψ+(p2) = i

„

q

−p+
2 , 0, 0, 0

«

.
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where we have used the mass-shell condition |pi⊥|2 = p+
i p−i . The spinor prod-

ucts fulfill the usual identities,

〈ij〉 = −〈ji〉

[ij] = − [ji]

〈ij〉∗ = sign(p0
i p

0
j) [ji]

(〈i + |γµ|j+〉)∗ = sign(p0
i p

0
j)〈j + |γµ|i+〉

〈ij〉 [ji] = 2pi · pj = ŝij (D.7)

〈i + |/k|j+〉 = [ik] 〈kj〉

〈i− |/k|j−〉 = 〈ik〉 [kj]

〈ij〉〈kl〉 = 〈ik〉〈jl〉+ 〈il〉〈kj〉

and if
∑n

i=1 pi = 0 then

n
∑

i=1

[ji] 〈ik〉 = 0 . (D.8)

D.2 Multi-Regge kinematics

In the multi-Regge kinematics, we require that the gluons are strongly ordered

in rapidity and have comparable transverse momentum (8.1). This is equivalent

to require a strong ordering of the lightcone coordinates,

p+
3 6 p+

4 · · ·6 p+
n ; p−3 4 p−4 · · ·4 p−n . (D.9)

In the high-energy limit, momentum conservation (D.2) then becomes

0 =
n
∑

i=3

pi⊥ ,

p+
2 = −p+

3 , (D.10)

p−1 = −p−n ,
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where the = sign is understood to mean “equals up to corrections of next-to-

leading accuracy”. The Mandelstam invariants (D.4) are reduced to,

s = 2p1 · p2 = p+
3 p−n ,

s2i = 2p2 · pi = −p+
3 p−i , (D.11)

s1i = 2p1 · pi = −p+
i p−n ,

sij = 2pi · pj = p+
i p−j i < j .

The product of two successive invariants of type sij fixes the mass shell. For

example,

sk−1,ksk,k+1 = p+
k−1p

−
k p+

k p−k+1 = |pk⊥|2p+
k−1p

−
k+1

= |pk⊥|2sk−1,k+1 = |pk⊥|2sk−1,k,k+1 .
(D.12)

Thus,

|pk⊥|2 =
sk−1,ksk,k+1

sk−1,k,k+1
. (D.13)

The spinor products (D.6) are,

〈21〉 = −
√

p+
3 p−n ,

〈2i〉 = −i

√

p+
3

p+
i

pi⊥ , (D.14)

〈i1〉 = i
√

p+
i p−n ,

〈ij〉 = −

√

p+
i

p+
j

pj⊥ for yi > yj .





Appendix E
Proof of the MHV rules for quasi
multi-Regge limits

E.1 Power counting rules for quasi multi-Regge
limits

In this appendix we give the proof of the MHV rules for quasi multi-Regge

limits which state that in the quasi multi-Regge limit defined by

y3 5 y4 5 . . . 5 yn−1 6 yn and |p3⊥| 5 |p4⊥| 5 . . . 5 |pn−1⊥| 5 |pn⊥|, (E.1)

only those MHV diagrams contribute where p1 and pn are attached to an m-

point MHV vertex, m ≥ 4. Since strong ordering in rapidity is equivalent to a

strong ordering in lightcone coordinates, we can define the limit by following

rescaling∗,

p+
i → 1

λ
p+

i , i ∈ {3, 4, . . . , n− 1},

p+
n → p+

n ,

pi⊥ → pi⊥, ∀i.

(E.2)

∗Note that we do not include the lightcone components p− into this power counting,
because they can always be reexpressed in terms of p+ and p⊥ using the on-shell condition
p− p+ = |p⊥|2.
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where λ→ 0. Since in quasi multi-Regge kinematics we have p+
2 5 −p+

3 −p+
4 −

. . .− p+
n−1 and p−1 5 −p−n , we obtain the scaling of the incoming momenta,

p+
2 →

1

λ
p+
2 and p+

1 → p+
1 . (E.3)

Using the lightcone representation of the spinor products, we can derive the

scaling of the spinor product, e.g. if k ∈ {3, 4, . . . , (n− 1)},

〈jk〉 = pj⊥

√

p+
k

p+
j

− pk⊥

√

p+
j

p+
k

∼ 1,

〈1k〉 = −i
√

−p−1 p+
k 5 −i

|pn⊥|
√

p+
n

√

p+
k ∼

1√
λ

,

〈1n〉 = −i
√

−p−1 p+
1 5 −i |pn⊥| ∼ 1,

〈kn〉 = pk⊥

√

p+
n

p+
k

− pn⊥

√

p+
k

p+
n
∼ 1√

λ
.

(E.4)

Applying these rules to the MHV amplitude An(1−, 2−, 3+ . . . , (n − 1)+, n+),

we obtain the leading behavior in quasi multi-Regge kinematics,

An(1−, 2−, 3+ . . . , (n− 1)+, n+) ∼ 1/λ. (E.5)

This result is generic and extends to non-MHV amplitudes. We therefore get

the following simple algorithm to compute the leading behavior of a tree-level

gluon amplitude in quasi multi-Regge kinematics,

Rule E.1.

1. Apply the power counting rule defined by Eq. (E.2) to An(1, . . . , n).

2. The coefficient function C(0)
n−3 is obtained by taking the leading behavior

in λ,

An(1, . . . , n) 5 1

λ
C(0)(2; 3, . . . , n− 1)

s

t
C(0)(1;n) + O(1/

√
λ).

In the following we extend this algorithm to the MHV formalism, where the

amplitude is completely determined by MHV vertices connected by scalar prop-

agators. To this effect, we need to extend the power counting rules introduced

at the beginning of this section to the off-shell continued spinor products (2.7).
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Let us start by analyzing more closely the scalar propagators in a MHV dia-

gram. Since at tree-level every propagator divides a diagram into to distinct

parts, the scalar propagators in every MHV diagram can be divided into two

types,

- p1 and pn lie on the same side with respect to the propagator (Type A).

- p1 and pn lie on different sides (Type B).

Let us start with the propagators of type A. Such a propagator can always be

written as

P 2
i,j = s1n +

j
∑

α=i
α+=n

s1α +
j

∑

α=i
α+=1

snα +
j

∑

α=i
α+=1,n

j
∑

β=j
β +=1,n

sαβ . (E.6)

Using the power counting (E.2), it is easy to see that the first and the last term

in this equation scale as O(λ0). The two remaining terms scale at first sight

as O(λ−1/2). However, using the lightcone representation of the momenta, we

see that the singularities cancel between the two terms,

s1α + snα = p−1 p+
α + p−n p+

α + p+
n p−α + pn⊥p∗α⊥ + p∗n⊥pα⊥

= −
n
∑

β=3

p−β p+
α + p−n p+

α + p+
n p−α + pn⊥p∗α⊥ + p∗n⊥pα⊥

= −
n−1
∑

β=3

p−β p+
α + p+

n p−α + pn⊥p∗α⊥ + p∗n⊥pα⊥,

(E.7)

and all terms in this sum are O(λ0). Furthermore, using the power count-

ing (E.2), it is easy to check that for i, j, k ∈ {3, 4, . . . , n − 1} the off-shell

continued spinors products behave as

〈kPi,j〉 =
j

∑

α=i

〈kα〉[αη] ∼ 1/
√
λ,

〈1Pi,j〉 =
j

∑

α=i

〈1α〉[αη] ∼ 1/λ,

〈nPi,j〉 =
j

∑

α=i

〈nα〉[αη] ∼ 1/λ.

(E.8)
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Let us now turn to propagators of type B. Without loss of generality, we can

assume that such a propagator has the form P 2
1,j , with j ∈ {2, 3, . . . , n − 2},

and it can be written

P 2
1,j =

j
∑

α=2

s1α + 2
j−1
∑

α=2

j
∑

β=α+1

sαβ . (E.9)

The second term is obviously finite whereas the first term scales as O(1/λ),

s1α = p−1 p+
α ∼ 1/λ. (E.10)

Finally, for off-shell continued spinor products involving type B propagators

we find,

〈iP1,j〉 =
j

∑

α=1

〈iα〉[αη] ∼ 1/
√
λ,

〈Pi,jP1,k〉 =
j

∑

α=i

k
∑

β=1

〈αβ〉[βη][αη] ∼ 1/λ,

〈1P1,j〉 = 〈1P2,j〉 ∼ 1/λ,

〈nP1,j〉 = 〈n1〉[1η] + 〈nP2,j〉 ∼ 1/λ.

(E.11)

Eqs. (E.8) and (E.11) show how the power counting (E.2) can be extended to

off-shell continued spinor products. Looking at the scaling (E.2), (E.8), (E.11),

we see that only those spinor products involving p1, pn or Pi,j are divergent

in the limit λ → 0 (except for 〈1n〉). We can therefore formulate the power

counting in the MHV formalism directly in terms of the holomorphic spinor

components,

Rule E.2 (Power counting rules in the MHV formalism).

1. Rescale the spinors |1〉, |n〉 and |Pi,j〉 by 1/
√
λ (except for 〈1n〉).

2. Rescale all propagators type B by λ.

3. The coefficient function C(0)
n−3 is obtained by taking the leading behavior

in λ,

An(1, . . . , n) 5 1

λ
C(0)(2; 3, . . . , n− 1)

s

t
C(0)(1;n) + O(1/

√
λ).
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E.2 Proof of the MHV rules for quasi multi -
Regge limits

In this section we use the power counting defined in Rule E.2 to proof the MHV

rules for quasi multi-Regge limits. We first need to proof the following lemma,

Rule E.3. In the quasi multi-Regge limit, the off-shell MHV currents of Chap-

ter 2 scale as

Jh(i, . . . , j) ∼ λ−h, if i, j ∈ {2, . . . , n− 1}, (E.12)

Jh(i, . . . , n) ∼ λ2−h, if i ∈ {4, . . . , n− 1}. (E.13)

Let us start with Eq. (E.12), and let us apply the power counting of the previous

section to the diagram shown in Fig. E.1, i.e. , a MHV diagram having an off-

shell leg, and all other legs in Fig. E.1 are external on-shell legs (In the following

we refer to a diagram of this type as a chain). We know from Rule E.2 that the

only scaling can arise from propagators of type B or from the spinors |1〉, |n〉 and

|Pk,l〉. Since i, j ∈ {2, 3, 4, . . . , n− 1}, it is easy to see that all the propagators

in the chain are of type A, and the chain does not contain the spinors |1〉,
|n〉. Hence factors of λ can only arise from off-shell continued spinors |Pk,l〉.
Except for Pi,j , all the off-shell continued momenta are connected to exactly

two different MHV vertices, i.e. , they only appear in combinations of the form

〈XPk,l〉4
〈Y Pk,l〉〈Pk,lZ〉

1

P 2
k,l

1

〈Y ′Pk,l〉〈Pk,lZ ′〉 ∼ 1. (E.14)

So the only off-shell continued spinor which can give a contribution is Pi,j , who

appears in the combination,

- If h = −1,

1

P 2
i,j

1

〈Y Pi,j〉〈Pi,jZ〉
∼
√
λ

2
∼ λ. (E.15)

- If h = +1,

1

P 2
i,j

〈XPi,j〉4

〈Y Pi,j〉〈Pi,jZ〉
∼
√
λ

2√
λ
−4
∼ λ−1. (E.16)
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Figure E.1: Definition of a chain. The dotted line is off-shell, all other external
lines are on-shell.

This proofs that every chain respects the scaling given in Eq. (E.12). Since

every MHV current can obviously be obtained by replacing external lines in a

chain by other chains, we can now proof recursively the same results for MHV

currents. Let us start by analyzing what happens if we replace one external

line, say k, in a chain by a chain itself. This amounts to the replacement

- If hk = −1,

〈Xk〉4
〈Y k〉〈kZ〉 →

〈XPk1,k2〉4
〈Y Pk1,k2〉〈Pk1,k2Z〉

J−(k1, . . . , k2) ∼
√
λ
−4√

λ
2
λ ∼ 1.

(E.17)

- If hk = +1,

1

〈Y k〉〈kZ〉 →
1

〈Y Pk1,k2〉〈Pk1,k2Z〉
J+(k1, . . . , k2) ∼

√
λ

2
λ−1 ∼ 1. (E.18)

We see that replacing an external line by a chain does not alter the scaling

behavior, and the result thus follows by induction.

The proof of Eq. (E.13) follows exactly the same lines as for Eq. (E.12), so we

do not repeat it here.

We now turn to the proof of the MHV rules for quasi multi-Regge limits.

We analyze the different MHV diagrams that can contribute to the amplitude

An(1−, 2−, 4, . . . , n− 1, n+) in quasi multi-Regge kinematics. We know that in

this limit a generic amplitude scales as 1/λ. Hence, we need to identify those

MHV diagrams that exhibit this scaling behavior. Let us start by considering

those MHV diagrams where p1 and pn are attached to the same MHV vertex.

Again, replacing a current by an external line does not alter the scaling, and

hence we obtain the scaling of a pure MHV amplitude, 1/λ, and so all the
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diagrams in this class contribute in the quasi multi-Regge limit. However,

some care is needed for the three-point MHV vertex involving p1 and pn. In

that case we obtain,

〈Pn,11〉4
〈Pn,1n〉〈n1〉〈nPn,1〉

J−(2, . . . , n− 1) ∼ λ, (E.19)

i.e. , those diagrams are always subleading in the quasi multi-Regge limit.

Let us now turn to the set of MHV diagrams where p1 and pn are not attached

to the same MHV vertex. Let us focus on the diagrams where p1 and p2 are

attached to the same vertex. The helicity configuration we chose implies than

that all other legs attached to this vertex must have positive helicity, and so

〈12〉3

〈Pk+1,n1〉〈2X〉 J+(k + 1, . . . , n) ∼
√
λ. (E.20)

All other topologies in this class can be treated in a similar way, and it is easy

to show that all those diagrams are subleading, which finishes the proof.





Appendix F
Nested harmonic sums

In this appendix we review the most important properties of the nested har-

monic sums defined in Eq. (11.28). The S and Z sums fulfill an algebra. Let

us illustrate this with a simple example:

Si(n)Sj(n) =
n
∑

k1=1

n
∑

k2=1

1

ki
1k

j
2

=
n
∑

k1=1

1

ki
1

k1
∑

k2=1

1

kj
2

+
n
∑

k2=1

1

kj
2

k2
∑

k1=1

1

ki
1

−
n
∑

k=1

1

ki+j

= Sij(n) + Sji(n)− Si+j(n).

(F.1)

A similar result can be obtained for the Z-sums∗,

Zi(n)Zj(n) = Zij(n) + Zji(n) + Zi+j(n). (F.2)

For sums of higher weight, a recursive application of the above procedure leads

then to the reduction of any product of S or Z sums to a linear combination

of those sums. Furthermore, S and Z sums can be interchanged, e.g.

Z11(n) =
n
∑

k=1

Z1(k − 1)

k
=

n
∑

k=1

1

k

k−1
∑

*=1

1

!
=

n
∑

k=1

1

k

(

−1

k
+

k
∑

*=1

1

!

)

= −
n
∑

k=1

1

k2
+

n
∑

k=1

1

k
S1(k) = −S2(n) + S11(n).

(F.3)

∗Note the sign difference with respect to Eq. (F.1).
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For n →∞, the Euler-Zagier sums converge to multiple zeta values,

lim
n→∞

Zm1...mk
(n) = ζ(mk, . . . , m1). (F.4)

In Ref. [75] Moch et al. introduced generalizations of the S and Z-sums to

make them dependent on some variables,

Si(n; x) = Zi(n; x) =
n
∑

k=1

xk

ki
,

Si-(n; x1, . . . , x*) =
n
∑

k=1

xk
1

ki
S-(k; x2, . . . , xn),

Zi-(n; x1, . . . , x*) =
n
∑

k=1

xk
1

ki
Z-(k − 1; x2, . . . , xn).

(F.5)

Those sums share of course all the properties of the corresponding number

sums introduced in the previous paragraph. In particular, for n → ∞, the Z

sums converge to Goncharov’s multiple polylogarithm,

lim
n→∞

Zm1...mk
(n; x1, . . . , xk) = Limk,...,m1(x1, . . . , xk). (F.6)

These multiple polylogarithms will be reviewed in the Appendix G.



AppendixG
Multiple polylogarithms

G.1 Euler’s and Nielsen’s polylogarithms

Euler’s polylogarithm is defined recursively by

Lin(x) =

∫ x

0

dt

t
Lin−1(t), (G.1)

where one puts by convention Li1(x) = − ln(1− x). Euler’s polylogarithm has

a branch cut over the range [1, +∞[,

Disc Lin(x) = 2πi Lin−1(x), (G.2)

and for |x| ≤ 1 it can be expanded into a power series

Lin(x) =
∞
∑

k=1

xk

kn
. (G.3)

This identity implies that for x = 1 Euler’s polylogarithm takes the special

value Lin(1) = ζn.

Several generalizations of Euler’s polylogarithm can be found in the literature.

In particular, in Ref. [101] Nielsen generalized the integral (G.1) and defined

Sn,p(x) =
(−1)n+p−1

(n− 1)! p!

∫ 1

0

dt

t
lnn−1 t lnp(1− xt), (G.4)
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which for p = 1 reduces to Euler’s polylogarithm, Sn,p(x) = −Lin+1(x). In the

following section we review several other generalizations of Euler’s polyloga-

rithm, both in the perspective of generalizing integrals of the form (G.1) and

of introducing polylogarithms of more than one variable.

G.2 One-dimensional harmonic polylogarithms

Harmonic polylogarithms (HPL’s) have been introduced by Remiddi and Ver-

maseren in Ref. [102]. The HPL’s of weight one, i.e. depending on one index

w = −1, 0, 1, are defined as:

H(−1; x) ≡ ln(1 + x) ; H(0;x) ≡ lnx ; H(1;x) ≡ − ln(1− x) . (G.5)

These functions are then just logarithms of linear functions of x. The HPL’s of

higher weight are defined recursively by the relation

H(a, 9w; x) ≡
∫ x

0
dx′ f(a; x′)H(9w; x′) for a 0= 0 and 9w 0= 90n , (G.6)

i.e. in the case in which not all the indices are zero. The left-most index takes

the values a = −1, 0, 1 and 9w is an n−dimensional vector with components

wi = −1, 0, 1. We call n the weight of the HPL’s , so the above relation allows

one to increase the weight w by one unit. The basis functions f(a; x) are given

by

f(−1; x) ≡ 1

1 + x
; f(0;x) ≡ 1

x
; f(1;x) ≡ 1

1− x
. (G.7)

In the case in which all indices are zero, one defines instead,

H(90n; x) ≡ 1

n!
lnn x . (G.8)

The HPL’s introduced above fulfill many interesting relations, one of the most

important ones being that of generating a shuffle algebra,

H(9w1; x)H(9w2; x) =
∑

-w=-w1--w2

H(9w; x) , (G.9)

where 9w19 9w2 denotes the merging of the two weight vectors 9w1 and 9w2, i.e. all

possible concatenations of 9w1 and 9w2 in which relative orderings of 9w1 and 9w2

are preserved.
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All HPL’s up to weight 3 can be expressed in terms of Euler’s and Nielsen’s

polylogarithms. From weight 4 on, the HPL’s in general define new transcen-

dental functions. However, there are some special cases in which we can reduce

the HPL’s to known polylogarithms,

H(90n, 1; x) = Lin+1(x) and H(90n,91p; x) = Sn,p(x). (G.10)

The HPL’s can be evaluated numerically in a fast and accurate way; there are

various packages available for this purpose [103, 104, 105].

The basis of HPL’s can be extended by adding some new basis functions f(a; x)

for some a ∈ R to the set in Eq. (G.7). It is easy to convince oneself that this

extended set of transcendental functions still forms a shuffle algebra (G.9).

Some special values include

H(9an; x) =
1

n!
lnn

(

1− x

a

)

,

H(90n, a; x) = Lin
(x

a

)

,

H(90n,9ap; x) = (−1)p Sn,p

(x

a

)

.

(G.11)

G.2.1 Reduction algorithms

The shuffle algebra (G.9) can be used to derive several reduction algorithms

for HPL’s with related arguments. The relations obtained in this way in gen-

eral contain several formulas given in the literature and involving Euler’s and

Nielsen’s polylogarithms. In the following we present two algorithms to reduce

HPL’s evaluated in 1− x and 1/x to HPL’s in x.

Let us start with the transformation x → 1/x. If a < 0 and 0 < x < 1, then

for HPL’s of weight one we find immediately

H(a; 1/x) = ln

(

1− 1

xa

)

= − ln(−a)− lnx + ln(1− ax)

= − ln(−a)− ln a + H(1/a; x).

(G.12)

For HPL’s of arbitrary weight, if the rightmost index is non zero∗ we can use

the integral representation (G.6). Performing the change of variable t → 1/t,

∗If the rightmost index is zero, we use the shuffle algebra and go to an irreducible basis,
where H(a, $w;x) is expressed as a combination of HPL’s with non zero rightmost index and
HPL’s of the form (G.8).
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we find,

H(a, 9w; 1/x) =

∫ 1/x

0
dt

H(9w; t)

t− a
= H(a, 9w; 1)−

∫ x

1
dt

H(9w; 1/t)

t(1− at)

= H(a, 9w; 1) +

∫ x

1
dt

[

f(0; t)− f(1/a; t)
]

H(9w; 1/t).

(G.13)

Th first term is just a transcendental number (independent of x). The HPL in

the remaining integral is of lower weight, and hence known recursively. Since

the upper integration limit is x, the integration will yield HPL’s in x. Note

that the transformation x→ 1/x has a fixed point in x = 1. We can hence use

this algorithm to extract the special values of the HPL’s in x = 1.

Let us now turn to the transformation x → 1− x. If a > 1 and 0 < x < 1, for

HPL’s of weight one we immediately get

H(a; 1− x) = ln

(

1− 1− x

a

)

= ln(a− 1)− ln a + ln

(

1− x

1− a

)

= ln(a− 1)− ln a + H(1− a; x).

(G.14)

For HPL’s of arbitrary weight, if the rightmost index is non zero† we can use

the integral representation (G.6). Performing the change of variable t→ 1− t,

we find,

H(a, 9w; 1− x) =

∫ 1−x

0
dt

H(9w; t)

t− a
=

∫ x

1
dt

H(9w; 1− t)

t + a− 1

= −H(1− a, 9w; 1) +

∫ x

1
dt f(1− a; t)H(9w; 1− t).

(G.15)

The first term is a transcendental number, and in the second integral the HPL

in 1− t is known recursively, and hence we can completely reduce the HPL’s in

1 − x. Note that the transformation x → 1 − x has a fixed point in x = 1/2.

We can hence use this algorithm to extract the special values of the HPL’s in

x = 1/2.

†If the rightmost index is zero, we use the shuffle algebra and go to an irreducible basis,
where H(a, $w;x) is expressed as a combination of HPL’s with non zero rightmost index and
HPL’s of the form (G.8).
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G.3 Two-dimensional harmonic polylogarithms

For integrals depending on two arguments, an extension of the HPL’s to func-

tions of two variables proves to be convenient [106]. Since a harmonic poly-

logarithm is basically a repeated integration on one variable, a second inde-

pendent variable is introduced as a parameter entering the basis functions:

f(i; x) → f(i,α; x). We may say that in addition to the discrete index i, we

have now a continuous index α. In Ref. [106] the following basis functions were

originally introduced:

f(bi(α);x) =
1

x− bi(α)
, (G.16)

where

b1(α) = 1− α or b2(α) = −α . (G.17)

Let us remark that the above extension keeps most of the properties of the one-

dimensional HPL’s. In Ref. [69] a new set of basis functions was introduced

that is slightly more complicated than the one above,

f(c1(α);x) =
1

x− c1(α)
f(c2(α);x) =

1

x− c2(α)
, (G.18)

with

c1(α) =
α

α− 1
, c2(α) =

2α

α− 1
. (G.19)

The definition of the two-dimensional harmonic polylogarithms (2dHPL’s )

reads:

H(ci(α), 9w(α);x) ≡
∫ x

0
f(ci(α);x′)H(9w(α);x′) dx′ . (G.20)

In general, the 2dHPL’s have complicated analyticity properties, with imag-

inary parts coming from integrating over the zeroes of the basis functions.

However, for 0 ≤ x ,α ≤ 1, the denominators are never singular and thus the

2dHPL’s are real. The numerical evaluation of our 2dHPL’s can be achieved

by extending the algorithm described and implemented in Ref. [107].
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G.3.1 Special values

For some special values of the arguments, the 2dHPL’s reduce to ordinary

one-dimensional HPL’s. It is easy to see that for α = 0 and α = 1 we have

f(ck(α = 0);x) = f(0;x), lim
α→1

f(ck(α);x) = 0. (G.21)

From this it follows that

H(. . . , ci(α = 0), . . . ; x) = H(. . . , 0, . . . ; x),

lim
α→1

H(. . . , ci(α), . . . ; x) = 0.
(G.22)

Similarly, for x = 1, the 2dHPL’s reduce to combinations of one-dimensional

HPL’s in α. This reduction can be performed using an extension of the algo-

rithm presented in [106]. We first write the 2dHPL’s in x = 1 as the integral

of the derivative with respect to α,

H(9w(α); 1) = H(9w(α = 1); 1) +

∫ α

1
dα′ ∂

∂α′ H(9w(α′); 1). (G.23)

In the case where 9w only contains objects of the type ci, we have H(9w(α =

1);x) = 0. Thus,

H(9w(α); 1) =

∫ α

1
dα′ ∂

∂α′ H(9w(α′); 1). (G.24)

The derivative is then carried out on the integral representation of H(9w(α′); 1),

and integrating back gives the desired reduction of H(9w(α); 1) to ordinary

HPL’s in α, e.g.

H(c1(α); 1) = −H(0;α) ,

H(c2(α); 1) = H(−1;α)−H(0;α)− ln 2.
(G.25)

G.3.2 Interchange of arguments

The basis of 2dHPL’s introduced above selects x as the explicit (integration)

variable and α as a parameter, but an alternative representation involving a

repeated integration over α of (different) basis functions depending on x as an

external parameter is also possible.
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In Ref. [69, 103], an algorithm was presented which allows to express 2dHPL’s

of the form H(9w(a); z) in z = 1 in terms of ordinary HPL’s in a. First write

H(9w(a); 1) as the integral of the derivative,

H(9w(a); 1) = H(9w(a0); 1) +

∫ a

a0

da′ ∂

∂a′ H(9w(a′); 1), (G.26)

where a0 is arbitrary, provided that H(9w(a0); 1) exists. The derivative is now

carried out on the integral representation of H , and then we integrate back.

Since differentiation lowers the weight by one unit and since we know recur-

sively how to reduce all H(9w′(a); 1) with w′ < w, we obtain now the function

H(9w(a); 1) with a being the limit of the last integration.

If we apply this algorithm to the 2dHPL’s defined in Eq. (G.20), then we can

express all the 2dHPL’s in terms of an enlarged set of basis functions,

f(dk(x);α) =
1

α + dk(x)
, (G.27)

where

dk(x) =
x

x− k
. (G.28)

All the properties defined at the beginning of this section can be easily extended

to this new class of denominators. One finds for example:

H(c1(α);x) = H(0;x) − H(0;α) + H(d1(x);α) ,

H(c2(α);x) = H(0;x) − H(0;α) − ln 2 + H(d2(x);α) .
(G.29)

G.4 Goncharov’s multiple polylogarithm

In the previous section we reviewed the harmonic polylogarithms and their two-

dimensional generalization, which arise from iterated integrations in one or two

variables. In this section we will extend this procedure to arbitrary iterated

integration, which leads naturally to the definition of Goncharov’s multiple

polylogarithm. Let us define [108, 109]

Ω(a) =
dt

t− a
, (G.30)
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and iterated integrations by

∫ z

0
Ω(a1) ◦ . . . ◦ Ω(an) =

∫ z

0

dt

t− a1

∫ t

0
Ω(a2) ◦ . . . ◦ Ω(an). (G.31)

We can then define the G and M -functions as

G(a1, . . . , an; z) =

∫ z

0
Ω(a1) ◦ . . . ◦ Ω(an),

M(a1, . . . , an) = G(a1, . . . , an; 1) =

∫ 1

0
Ω(a1) ◦ . . . ◦ Ω(an).

(G.32)

The M -functions are nothing but Goncharov’s multiple polylogarithm, up to a

sign‡,

M(a1, . . . , an) = (−1)k Limk,...,m1(zk, . . . , z1), (G.33)

where k is the number of nonzero elements in (a1, . . . , an).

Iterated integrals form a shuffle algebra, and hence we can immediately write

G(9w1; z)G(9w2; z) =
∑

-w=-w1--w2

G(9w; z),

M(9w1)M(9w2) =
∑

-w=-w1--w2

M(9w).
(G.34)

It is easy to see that in general§

lim
a1→1

M(a1, . . . , an) =∞, (G.35)

or equivalently

lim
z→1

G(1, a2, . . . , an; z) =∞, (G.36)

We can however extract the divergence by choosing an irreducible basis for the

G-functions where the leftmost index is different from 1, except for functions

of the form G(91n; z), e.g.

G(1, 0; z) = G(1; z)G(0; z)−G(0, 1; z). (G.37)

In this basis the singularity structure in z = 1 is explicit.

‡For the meaning of the indices mi and zi, the reader should refer to Ref. [75]. They are
equivalent to the corresponding notation for HPL’s, e.g. H(0, 1; z) = H2(z).

§In some cases the divergence is tamed, e.g. limz→1 ln z ln(1 − z) = 0.
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Since M -functions are nothing but the values in z = 1 of the G functions, and

since G-functions are straightforward generalizations of the HPL’s, the algo-

rithm for interchanging the arguments presented in Section G.3.2 immediately

generalizes to the M -functions, and allows in principle to reduce functions of

the form M(. . . ,λ1, . . .) to HPL’s of the form H(. . . ;λ1), the algorithm being

a straightforward generalization of Eq. (G.26)

M(9w(a)) = M(9w(a0)) +

∫ a

a0

da′ ∂

∂a′ M(9w(a′)), (G.38)

where a0 is arbitrary, provided that M(9w(a0)) exists.





Appendix H
Hypergeometric functions

H.1 The Gauss hypergeometric functions

In this appendix we briefly review the different representations of hypergeo-

metric functions which appear throughout this work. We start with Gauss’

hypergeometric function,

2F1(a, b, c; x) =
∞
∑

n=0

(a)n(b)n

(c)n

xn

n!
, (H.1)

and we comment on hypergeometric functions in two variables in subsequent

sections. We also refer the interested reader to the literature [98, 110, 97].

Eq. (H.1) defines the series representation of the hypergeometric function. The

series is absolutely convergent inside the unit disc |x| < 1. The hypergeometric

function however is defined over the complex plane, so we need to analytically

continue the series (H.1) outside the unit disc according to the prescription

x → 1/x. Furthermore, in physical applications, one often encounters special

cases where the indices a, b and c are of the form α + βε, α,β being integers∗,

and it is desired to have the hypergeometric function in the form of a Laurent

expansion up to a given order in ε. We review in the following several other

∗In some applications, also half-integer values can be found. In the following we restrict
the discussion to integer values.
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representations of the hypergeometric function, sometimes more suitable for

specific problems.

Let us first turn to the Euler integral representation,

2F1(a, b, c; x) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1 (1− t)c−b−1 (1− xt)−a. (H.2)

This identity follows immediately from the fact that for |x| < 1, we can insert

the series expansion of (1− xt)−a in the integrand,

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb−1 (1− t)c−b−1 (1− xt)−a

=
∞
∑

n=0

(a)n

n!
xn Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
dt tb+n−1 (1− t)c−b−1

=
∞
∑

n=0

(a)n

n!
xn Γ(c)

Γ(b)Γ(c− b)

Γ(b + n)Γ(c− b)

Γ(c + n)

= 2F1(a, b, c; x),

(H.3)

and the identity follows by analytic continuation for |x| > 1. Note however that

the Euler integral representation is meaningless if x is real and greater than 1

and a is a positive integer, since in that case the integral (H.2) is divergent. The

Euler integral has the nice property that in the situation where all indices are of

the form α+ βε, the expansion in ε can be easily performed using integration-

by-parts identities and the Laporta algorithm [69] (See Chapter 6). Indeed,

since t and (1− t) vanish at the integration limits, we can write,

∫ 1

0
dt

∂

∂t

(

tb−1 (1− t)c−b−1 (1− xt)−a
)

= 0, (H.4)

and carrying out the derivative on the integrand generates a set of recursive

relations for the hypergeometric function. Using the Laporta algorithm we can

solve the recursion and express every integral of Euler type in terms of a small

set of master integrals. We can write down a set of differential equations for

the master integrals that can be solved order by order in ε in terms of harmonic

polylogarithms (See Appendix G.4 for a review of generalized polylogarithms).

Note that in the case of Gauss’ hypergeometric function this procedure might

look like an overkill, since we could as well expand the Pochhammer symbols in

the series (H.1) and sum the resulting series in terms of nested sums. However,
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for more general hypergeometric functions, this naive approach might lead to

series for which the sum is not necessarily known.

A third way of representing a hypergeometric function is in terms of a Mellin-

Barnes integral,

2F1(a, b, c; x) =
Γ(c)

Γ(a)Γ(b)

∫ +i∞

−i∞
dz Γ(−z)

Γ(a + z)Γ(b + z)

Γ(c + z)
(−x)z , (H.5)

where the contour is chosen according to the usual prescription, i.e. the con-

tour should separate the poles in Γ(−z) from the poles in Γ(. . . + z). The

identity (H.5) follows simply from the fact that for |x| < 1 we can close the

integration contour to the left and sum up the residues of Γ(−z), which imme-

diately results in the series (H.1). The Mellin-Barnes representation is however

much more general, because the integral (H.5) is convergent even for |x| > 1,

in which case it suffices to close the contour to the right. In this sense, the

integral (H.5) really represents the hypergeometric function, because it is valid

in all the regions†. This property gives us at the same time an effective way to

perform the analytic continuation of the hypergeometric function outside the

unit disc. Closing the integration contour to the right and taking residues in

z = −a− n and z = −b− n, n ∈ N, we find

2F1(a, b, c; x) =
Γ(c)Γ(b − a)

Γ(b)Γ(c− a)
(−z)−a

2F1(a, 1 + a− c, 1 + a− b; 1/z)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b

2F1(b, 1 + b− c, 1 + b− a; 1/z),

(H.6)

where we used the formula

Γ(a− n) = (−1)n Γ(a)

(1− a)n
. (H.7)

Finally, let us also mention the Laplace integral representation,

2F1(a, b, c; x) =
Γ(c)

Γ(b)

∫ ∞

0
dt1 dt2 e−t1−t2 tb−1

1 tc−1
2 (1− t1 t2 z)−a, (H.8)

which follows directly from the integral representation of the Γ function,

Γ(z) =

∫ ∞

0
dt e−t tz−1. (H.9)

†In Ref. [111], Appell and Kampé de Fériet propose for this reason to define the hyper-
geometric function through the Mellin-Barnes integral (H.5).
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We do not use this representation explicitly in this work, but we only quote it

for completeness.

H.2 Generalized hypergeometric functions

H.2.1 Appell functions

The Appell functions are defined by the double series,

F1(a, b, c, d; x, y) =
∞
∑

m=0

∞
∑

n=0

(a)m+n (b)m (c)n

(d)m+n

xm

m!

yn

n!
,

F2(a, b, c, d, e; x, y) =
∞
∑

m=0

∞
∑

n=0

(a)m+n (b)m (c)n

(d)m (e)n

xm

m!

yn

n!
,

F3(a, b, c, d, e; x, y) =
∞
∑

m=0

∞
∑

n=0

(a)m (b)n (c)m (d)n

(e)m+n

xm

m!

yn

n!
,

F4(a, b, c, d; x, y) =
∞
∑

m=0

∞
∑

n=0

(a)m+n (b)m+n

(c)m(d)n

xm

m!

yn

n!
.

(H.10)

From the series representation the Mellin-Barnes representation is trivially ob-

tained. For some special values of the indices, the Appell functions reduce to

simpler hypergeometric functions, e.g. ,

F4

(

α,β,α,β;
−x

(1− x)(1− y)
,

−y

(1− x)(1− y)

)

=
(1− x)β(1− y)α

1− xy
,

F4

(

α,β,β,β;
−x

(1− x)(1− y)
,

−y

(1− x)(1− y)

)

= (1− x)α(1− y)α 2F1(α, 1 + α− β,β; xy),

F4

(

α,β,1 + α− β,β;
−x

(1− x)(1− y)
,

−y

(1− x)(1− y)

)

= (1− y)α 2F1

(

α,β, 1 + α− β;−x(1− y)

1− x

)

,

F4

(

α,β,γ,β;
−x

(1− x)(1− y)
,

−y

(1− x)(1− y)

)

= (1− x)α (1− y)α F1(α, γ − β, 1 + α− γ, γ; x, xy).

(H.11)
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The analytic continuation of the Appell F4 function reads

F4(a, b, c, d; x, y) =
Γ(d)Γ(b− a)

Γ(b)Γ(d− a)
(−y)−a F4

(

a, 1 + a− d, c, 1 + a− b;
x

y
,
1

y

)

+
Γ(d)Γ(a− b)

Γ(a)Γ(d− b)
(−y)−b F4

(

1 + b− d, b, c, 1 + b− a;
x

y
,
1

y

)

.

(H.12)

H.2.2 Kampé de Fériet functions

The Kampé de Fériet functions are defined by the series

F p,q
p′,q′

(

αi βj γj

α′
k β′

* γ′
*

x, y

)

=
∞
∑

m=0

∞
∑

n=0

∏

i (αi)m+n
∏

j (βj)m (γj)n
∏

k (α′
k)m+n

∏

* (β′
*)m (γ′

*)n

xm

m!

yn

n!
,

(H.13)

with 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ p′ and 1 ≤ ! ≤ q′, and convergence requires

p + q ≤ p′ + q′ + 1 [111]. The order of a Kampé de Fériet function is defined

by ω = p′ + q′. If p + q = ω + 1, the function is called complete, and all other

cases are obtained as a confluent limiting case of a complete function. From

its definition it is clear that the Kampé de Fériet function enjoys the following

symmetry property,

F p,q
p′,q′

(

αi βj γj

α′
k β′

* γ′
*

x, y

)

= F p,q
p′,q′

(

αi γj βj

α′
k γ′

* β′
*

y, x

)

. (H.14)

The Kampé de Fériet functions encompass the Appell functions for particular

values of the parameters,

F 1,1
1,0

(

a b c
d − − x, y

)

= F1(a, b, c, d; x, y),

F 1,1
0,1

(

a b c
− d e

x, y

)

= F2(a, b, c, d, e; x, y),

F 0,2
1,0

(

− a b c d
e − − − − x, y

)

= F3(a, b, c, d, e; x, y),

F 2,0
0,1

(

a b − −
− − c d

x, y

)

= F4(a, b, c, d; x, y).

(H.15)
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The Kampé de Fériet function involves only Pochhammer symbols of the form

(.)n1+n2 , (.)n1 , (.)n2 . We could alternatively define a series involving Pochham-

mer symbols of the form (.)n1−n2 . Let us consider the double series

F̃ p,q,r
p′,q′,r′

(

ai bj ch

a′
k b′l c′m

x, y

)

=
∞
∑

n1=0

∞
∑

n2=0

∏

i(ai)n1−n2

∏

j(bj)n1

∏

h(ch)n2
∏

k(a′
k)n1−n2

∏

l(b
′
l)n1

∏

m(c′m)n2

xn1

n1!

yn2

n2!
.

(H.16)

Note that this function can appear in the analytic continuation of the Kampé

de Fériet function. In the following we proof that the generalized hypergeo-

metric series F̃ can always be reduced to hypergeometric series involving only

Pochhammer symbols of the form (.)n1+n2 , (.)n1 , (.)n2 . We rewrite the double

sum according to

∞
∑

n1=0

∞
∑

n2=0

=
∞
∑

n1=0

n1
∑

n2=0

+
∞
∑

n1=0

∞
∑

n2=n1

−
∞
∑

n1=n2=0

=
∞
∑

n1=0

n1
∑

n2=0

+
∞
∑

n2=0

n2
∑

n1=0

−
∞
∑

n1=n2=0

.

(H.17)

The double sums are now reshuffled into double sums up to infinity, e.g.

∞
∑

n1=0

n1
∑

n2=0

→
∞
∑

N=0

∞
∑

n2=0

, with n1 = N + n2, (H.18)

and equivalently for
∑∞

n2=0

∑n2

n1=0. In the second sum we then rewrite all

Pochhammer symbols with negative index according to

(a)−n =
(−1)n

(1− a)n
. (H.19)

We then arrive at

F̃ p,q,r
p′,q′,r′

(

ai bj ch

a′
k b′l c′m

x, y

)

=
∞
∑

n1=0

∞
∑

n2=0

∏

i(ai)n1

∏

j(bj)n1+n2

∏

h(ch)n2
∏

k(a′
k)n1

∏

l(b
′
l)n1+n2

∏

m(c′m)n2

(1)n1

(1)n1+n2

xn1

n1!

(xy)n2

n2!

+
∞
∑

n1=0

∞
∑

n2=0

(−1)(p+p′)n2

∏

k(1− a′
k)n2

∏

j(bj)n1

∏

h(ch)n1+n2
∏

i(1− ai)n2

∏

l(b
′
l)n1

∏

m(c′m)n1+n2

× (xy)n1

n1!

yn2

(n1 + n2)!

(H.20)
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−
∞
∑

n=0

∏

j(bj)n
∏

h(ch)n

(1)n
∏

l(b
′
l)n

∏

m(c′m)n

(xy)n

n!
. (H.21)

We see that in Eq. (H.20) only Pochhammer symbols of the form (.)n1+n2 ,

(.)n1 and (.)n2 appear. Note however that this class of functions encompasses a

larger class of functions than the one defined by the Kampé de Fériet function.

The analytic continuation of the Kampé de Fériet function is easily carried out

using its Mellin-Barnes representation. In particular, we use here the following

results, derived from Mellin-Barnes integrals,

F 2,1
0,2

(

a b c − − −
− − d e f − x, y

)

=
Γ(e)Γ(b − a)

Γ(b)Γ(e− a)
(−y)−a F 2,1

0,2

(

a 1 + a− e c − − −
− − d 1 + a− b f − x, y

)

=
Γ(e)Γ(a− b)

Γ(a)Γ(e− b)
(−y)−b F 2,1

0,2

(

1 + b− e b c − − −
− − d 1 + b− a f −

x

y
,
1

y

)

.

(H.22)

F 2,1
0,2

(

a b c − − −
− − d e f − x, y

)

=
Γ(d)Γ(f)Γ(b − a)Γ(c− a)

Γ(b)Γ(c)Γ(d− a)Γ(f − a)
(−x)−a

× F 3,0
1,1

(

a 1 + a− d 1 + a− f − −
− − 1 + a− c 1 + a− b e

1

x
,
y

x

)

+
Γ(d)Γ(f)Γ(a− b)Γ(c− b)

Γ(a)Γ(c)Γ(d − b)Γ(f − b)
(−x)−b

× F 3,0
1,1

(

b 1 + b− d 1 + b− f − −
− − 1 + b− c 1 + b− a e

1

x
,
y

x

)

+
Γ(d)Γ(f)Γ(a− c)Γ(b − c)

Γ(a)Γ(b)Γ(d− c)Γ(f − c)
(−x)−c

× F̃ 2,3,0
0,0,1

(

a− c b− c c 1 + c− d 1 + c− f
− − − − e

y,
1

x

)

,

(H.23)

and the F̃ function can reshuffled into Kampé de Fériet-type series using the

algorithm described in the previous paragraph.





Appendix I
M functions

In this section we apply the techniques combining the Mellin-Barnes and series

representations to study the analytic properties of the M functions that appear

in the ε-expansion of the F4 function, Eq. (11.31). We start by analyzing

some general properties of these new transcendental functions, and study more

specific properties like analytic continuation and reduction to known functions

in subsequent sections. First, it is easy to see that M functions are symmetric,

M(9ı,9,9k; x, y) = M(9,9ı,9k; y, x). (I.1)

Second, when one of the arguments is zero, then this function reduces either

to 0 or to an S-sum at infinity. Indeed, if say y is equal to zero, then only the

term n = 0 in the sum contributes, and since S-i(0) = 0, we get

• If 9 0= 0, then

M(9ı,9,9k; x, 0) =
∞
∑

m=0

(

m

0

)2

xm S-ı(m)S-(0)S-k(m) = 0. (I.2)

• If 9 = 0, then

M(9ı, 0,9k; x, 0) =
∞
∑

m=0

(

m

0

)2

xm S-ı(m)S-k(m) =
∞
∑

m=0

xm S-ı(m)S-k(m).

(I.3)
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The product of nested harmonic sums can now be reduced using their

algebra, and so we get

M(9ı, 0,9k; x, 0) =
∑

*

S(∞; 0,9ı*; x, 1, . . . , 1). (I.4)

where the S-sums are defined recursively in a similar way as the nested

harmonic numbers, [75]

S(N ;9ı; 9x) =
N
∑

k=1

xk
1

ki1
S(k;9ı′; 9x′), (I.5)

and the values of the S-sums for N = ∞ are related to Goncharov’s

multiple polylogarithm.

We now analyze the analytic continuation of some of these functions under

the transformation y → 1/y. Due to the symmetry property (I.1) the analytic

continuation in x follows the same lines. For k ≥ 1 we have,

ψ(1 + n) = −γE + S1(n),

ψ(k)(1 + n) = (−1)k+1 k! (ζk+1 − Sk+1(n)) ,
(I.6)

where ψ(k) denote the polygamma functions

ψ(k)(z) =

(

d

dz

)k+1

lnΓ(z). (I.7)

We can easily relate the function M to Mellin-Barnes integrals of the form

1

(2πi)2

∫ +i∞

−i∞
dz1 dz2 Γ(−z1)Γ(−z2)

Γ(1 + z1 + z2)2

Γ(1 + z1)Γ(1 + z2)

× (−x)z1 (−y)z2 Ψ(z1, z2),

(I.8)

where Ψ(z1, z2) denotes any product of polygamma functions with arguments

1 + z1, 1 + z2 or 1 + z1 + z2. For example we can write

1

(2πi)2

∫ +i∞

−i∞
dz1 dz2 Γ(−z1)Γ(−z2)

Γ(1 + z1 + z2)2

Γ(1 + z1)Γ(1 + z2)
ψ(1 + z1)

× (−x)z1 (−y)z2

= M(1, 0, 0; x, y)− γEM(0, 0, 0; x, y).

(I.9)

It follows then that studying the analytic continuation properties of certain

classes of M-functions is equivalent to study the properties of the Mellin-Barnes
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integral (I.8). If both x and y are smaller than 1, then we close both contours

to the right, and we take residues, and we find the series definition of the

M-functions.

M(0, 0, 0; x, y) = −1

y
M

(

0, 0, 0;
x

y
,
1

y

)

,

M(1, 0, 0; x, y) = −1

y
M

(

1, 0, 0;
x

y
,
1

y

)

,

M(0, 1, 0; x, y) =
2

y
M

(

0, 1, 0;
x

y
,
1

y

)

− 3

y
M

(

0, 0, 1;
x

y
,
1

y

)

+
ln(−y)

y
M

(

0, 0, 0;
x

y
,
1

y

)

,

M(0, 0, 1; x, y) =
1

y
M

(

0, 1, 0;
x

y
,
1

y

)

− 2

y
M

(

0, 0, 1;
x

y
,
1

y

)

+
ln(−y)

y
M

(

0, 0, 0;
x

y
,
1

y

)

.

(I.10)

Note the appearance of ln(−y), which produces an imaginary part for y > 0.

In some cases it is possible to express the M-functions in terms of known

functions. This becomes possible by relating those functions back to simple

cases of the expansion of the Appell F4 function, in which cases we can apply

the reduction formulae (H.11) given in Appendix H. As an example, let us

consider the reduction formulas

F4

(

α,β,α,β;
−x̃

(1− x̃)(1− ỹ)
,

−ỹ

(1− x̃)(1− ỹ)

)

=
(1− x̃)α(1− ỹ)β

1− x̃ỹ
, (I.11)

where x̃ and ỹ are solutions of

x =
−x̃

(1− x̃)(1− ỹ)
, y =

−ỹ

(1− x̃)(1− ỹ)
. (I.12)

Solving this system we arrive at

x̃ =
1

2y

(

x + y − 1 +
√

λ(1, x, y)
)

, ỹ =
1

2x

(

x + y − 1 +
√

λ(1, x, y)
)

.

(I.13)

From this we can immediately read of the M-function of weight 0,

M(0, 0, 0; x, y) = F4(1, 1, 1, 1; x, y) =
(1− x̃)(1− ỹ)

1− x̃ỹ
. (I.14)
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Using Eq. (11.27), we can easily obtain all the M-functions of weight 1, e.g.

M(1, 0, 0; x, y) =
∂

∂ε
F4(1 + ε, 1, 1, 1; x, y)|ε=0

=
∂

∂ε

[

(1− x̃)1+ε(1− ỹ)1+ε
2F1(1 + ε, 1 + ε, 1; x̃ỹ)

]

|ε=0

=
(1− x̃)(1− ỹ)

1− x̃ỹ
(ln(1− x̃) + ln(1− ỹ)− 2 ln(1− x̃ỹ)) .

(I.15)

Similarly one can obtain

M(0, 1, 0; x, y) =
(1− x̃)(1− ỹ)

1− x̃ỹ
(ln(1− x̃)− 2 ln(1− x̃ỹ)) ,

M(0, 0, 1; x, y) =
(1− x̃)(1− ỹ)

1− x̃ỹ
(ln(1− ỹ)− 2 ln(1− x̃ỹ)) .

(I.16)

Note however that starting from weight 2 we cannot obtain a reduction in this

way in all cases, since from Eq. (11.27) we see that by expanding Pochham-

mer symbols in the denominator we only produce S11(n), so we cannot obtain

S2(n) = S11(n) − Z11(n), which needs the contribution from a Pochhammer

symbol in the numerator. This however cannot be achieved by the Appell F4

function, and we have to consider more general functions, like the Kampé de

Fériet functions. In the particular situation however where the M function can

be related to an Appell F4 function, we can sum up the series. For functions

of weight 2 we can sum up all the series except for M(2, 0, 0; x, y) (and the

related function M(0, 2, 0; x, y) = M(2, 0, 0; y, x)).

M
(

(1, 1), 0, 0; x, y
)

=
(1− x̃)(1− ỹ)

1− x̃ỹ)

(

(x̃− 2)Li(x̃ỹ)

2(x̃− 1)
+

x̃ log2(1− ỹ)

4− 4x̃

− log(1− x̃) log(1− ỹ) + log(1− x̃) log(1− x̃ỹ) +
x̃ log(1− ỹ) log(1− x̃ỹ)

x̃− 1

+
log2(1− x̃ỹ)

1− x̃
− 3

4
log2(1− x̃)

)

,

M
(

0, (1, 1), 0; x, y
)

= M
(

(1, 1), 0, 0; y, x
)

,

(I.17)
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M
(

0, 0, (1, 1);x, y
)

=
(1− x̃)(1− ỹ)

1− x̃ỹ)

(

− (x̃ + ỹ − 2)Li(x̃ỹ)

2(x̃− 1)(ỹ − 1)

+
(3− 4x̃) log2(1− ỹ)

4(x̃− 1)
+

(1− x̃ỹ) log2(1− x̃ỹ)

(x̃− 1)(ỹ − 1)
− 3

2
log(1− x̃) log(1− ỹ)

+
(2ỹ − 1) log(1− x̃) log(1− x̃ỹ)

ỹ − 1
+

(2x̃− 1) log(1− ỹ) log(1− x̃ỹ)

x̃− 1

+
(3− 4ỹ) log2(1− x̃)

4(ỹ − 1)

)

,

M
(

1, 1, 0; x, y
)

=
(1− x̃)(1− ỹ)

1− x̃ỹ)

(

2 log2(1− x̃ỹ)− log(1− x̃) log(1− x̃ỹ)

+
3Li(x̃ỹ)

2
+ log(1− ỹ) log(1− x̃ỹ) +

1

2
log(1− x̃) log(1− ỹ)

)

,

M
(

1, 0, 1; x, y
)

=
(1− x̃)(1− ỹ)

1− x̃ỹ)

(

(2x̃− 3)Li(x̃ỹ)

2(x̃− 1)
+

x̃ log2(1− ỹ)

4− 4x̃

− 1

2
log(1− x̃) log(1− ỹ) +

log(1− ỹ) log(1− x̃ỹ)

x̃− 1
− 1

2
log2(1− x̃)

+
(x̃− 2) log2(1− x̃ỹ)

x̃− 1

)

,

M
(

0, 1, 1; x, y
)

= M
(

1, 0, 1; y, x
)

,

M
(

0, 0, 2; x, y
)

=
(1− x̃)(1− ỹ)

1− x̃ỹ)

(

− (x̃ỹ − 1)Li(x̃ỹ)

2(x̃− 1)(ỹ − 1)
+

(4− 5ỹ) log2(1− x̃)

4(ỹ − 1)

+
(4− 5x̃) log2(1− ỹ)

4(x̃− 1)
+

(−2x̃ỹ + x̃ + ỹ) log2(1− x̃ỹ)

(x̃− 1)(ỹ − 1)

+
(3ỹ − 2) log(1− x̃) log(1− x̃ỹ)

ỹ − 1
+

(3x̃− 2) log(1− ỹ) log(1− x̃ỹ)

x̃− 1

− 2 log(1− x̃) log(1− ỹ)

)

.

(I.18)





Appendix J
Real-virtual integrals

In this appendix we give the details on the computation of 26 real virtual

integrals for the NNLO subtraction scheme presented in Chapter 6. We start

with the soft collinear integral,

K(ε; y0, d
′
0;κ) = 2

∫ y0

0
dy

∫ 1

0
dξ y−1−2(1+κ)ε(1− y)d′

0−1ξ−ε

× (1− ξ)−1−(1+κ)ε(1− yξ)1+κε,

(J.1)

and then we turn to the collinear integrals, which have the form

I(x; ε,α0, d0;κ, k, δ, g(±)
I )

= x

∫ α0

0
dαα−1−(1+κ)ε (1− α)2d0−1 [α + (1− α)x]−1−(1+κ)ε

×
∫ 1

0
dv[v (1− v)]−ε

(

α + (1− α)xv

2α + (1− α)x

)k+δε

g(±)
I

(

α + (1− α)xv

2α + (1− α)x

)

,

(J.2)

with κ = 0, 1, k = −1, 0, 1, 2 and δ defined in Table J.1. We will explicitly

evaluate this integral for I = A and I = B in Section J.2.

J.1 The soft-collinear integral K

In this section we calculate analytically the soft-collinear integral defined in

Eq. (J.1) for κ = 0, 1 and d′0 = D′
0 + d′1ε, D′

0 being an integer.

249
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δ Function g(±)
I (z; ε)

0 gA 1

∓1 g(±)
B (1− z)±ε

0 g(±)
C (1− z)±ε

2F1(±ε,±ε, 1 ± ε, z)

±1 g(±)
D 2F1(±ε,±ε, 1 ± ε, 1− z)

Table J.1: The values of δ and g(±)
I (zr) at which Eq. (J.2) needs to be evaluated.

J.1.1 Analytic result for κ = 0

For κ = 0, the integral decouples into a product of two one-dimensional inte-

grals and we get

K(ε;y0, d
′
0; 0) = 2 By0(−2ε, d′0)B(1− ε,−ε)− 2 By0(1− 2ε, d′0)B(2− ε,−ε),

(J.3)

Using the expansion of the incomplete B-function, carried out in Section 6.3,

we can immediately write down the expansion of K for κ = 0. The result for

D′
0 = 3 can be found in Ref. [69].

J.1.2 Analytic result for κ = 1

The integral (J.1) for κ = 1 reads

K(ε; y0, d
′
0; 1) = 2

∫ y0

0
dy

∫ 1

0
dξ y−1−4ε(1−y)d′

0−1ξ−ε(1−ξ)−1−2ε(1−yξ)1+ε.

(J.4)

The analytic solution for this integral cannot be obtained in a straightforward

way, due to the presence of the factor (1− yξ)ε that couples the two integrals.

Therefore, we rewrite the integral in the form

K(ε; y0, d
′
0; 1) = 2 y−4ε

0 K(ε; y0, d
′
1; 1, 1−D′

0, 0, 1,−1), (J.5)
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where

K(ε; y0, d
′
1; n1, n2, n3, n4, n5)

=

∫ 1

0
dy

∫ 1

0
dξ y−n1−4ε(1− y0y)−n2−d′

1εξ−n3−ε(1− ξ)−n4−2ε

× (1− y0yξ)
−n5+ε.

(J.6)

We now calculate the integral K using the Laporta algorithm. The independent

integrals can be obtained by partial fractioning in y and ξ, using the prescrip-

tion that denominators depending on both integration variables are only partial

fractioned in ξ, e.g.

1

ξ(1− y0yξ)
→ 1

ξ
+

y0y

1− y0yξ
,

1

y(1− y0yξ)
→ 1

y(1− y0yξ)
.

(J.7)

When writing down the integration-by-parts identities for the independent in-

tegrals, we have to take into account a surface term coming from the fact that

the denominator in (1− y0y) does not vanish in y = 1,

∫ 1

0
dy

∫ 1

0
dξ

∂

∂ξ

(

y−n1−4ε(1− y0y)−n2−d′

1εξ−n3−ε(1− ξ)−n4−2ε

× (1− y0yξ)
−n5+ε

)

= 0
∫ 1

0
dy

∫ 1

0
dξ

∂

∂y

(

y−n1−4ε(1− y0y)−n2−d′

1εξ−n3−ε(1− ξ)−n4−2ε

× (1− y0yξ)
−n5+ε

)

= (1− y0)
−n3−d′

1ε KS(ε; y0, d
′
1; n3, n4, n5),

(J.8)

with

KS(ε; y0, d
′
1; n3, n4, n5) =

∫ 1

0
dξ ξ−n3−ε(1− ξ)−n4−2ε(1− y0ξ)

−n5+ε. (J.9)

KS is just a hypergeometric function,

KS(ε; y0, d
′
1; n3, n4, n5)

= B(1− n3 − ε, 1− n4 − ε) 2F1(1− n3 − ε, n5 − 2ε, 2− n2 − n4 − 3ε; y0),

(J.10)

and can thus be calculated using the technique presented in Section 6.3.



252 Chapter J. Real-virtual integrals

Knowing the series expansion for the surface term KS, we can solve the IBP

identities for the K integrals, Eq. (J.8). We find the following two master

integrals,

K(1)(ε; y0, d
′
1) = K(ε; y0, d

′
1; 0, 0, 0, 0, 0),

K(2)(ε; y0, d
′
1) = K(ε; y0, d

′
1;−1, 0, 0, 0, 0),

(J.11)

fulfilling the following differential equations,

∂

∂y0
K(1) =

4ε− 1

y0
K(1) +

(1− y0)d1ε

y0
f (1),

∂

∂y0
K(2) = 2

2ε− 1

y0
K(2) +

(1− y0)d1ε

y0
f (1),

(J.12)

where f (1) denotes the master integral of the hypergeometric function calcu-

lated in Section 6.3 and where the initial conditions are given by

K(1)(ε; y0 = 0, d′1) = B(1− 4ε, 1)B(1− ε, 1− 2ε),

K(2)(ε; y0 = 0, d′1) = B(2− 4ε, 1)B(1− ε, 1− 2ε).
(J.13)

Plugging in the series expansion of f (1) and expanding (1− y0)d′

1ε into a power

series in ε, we can solve for the K(1) and K(2) as a power series in ε whose

coefficients are written in terms of HPL’s in y0.

Knowing the series expansions of K(1) and K(2), we can obtain the integral

K(ε; y0, d′0; 1) for any fixed integer D′
0. The result for D′

0 = 3 can be found in

Ref. [69].

J.2 The collinear integrals I

In this section, we calculate the collinear integrals defined in Eq. (J.2) for

gI = gA and gI = gB analytically.
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J.2.1 The A-type collinear integrals for k ≥ 0

The collinear integral for gI = gA requires the evaluation of an integral of the

form

A(x, ε;α0, d0;κ, k) =
1

x
I(x, ε;α0, d0;κ, k, 0, gA)

=

∫ α0

0
dα

∫ 1

0
dv α−1−(1+κ)ε(1− α)2d0−1[α + (1− α)x]−1−(1+κ)ε

× v−ε(1− v)−ε

(

α + (1− α)xv

2α + (1− α)x

)k

,

(J.14)

where k = −1, 0, 1, 2, κ = 0, 1 and d0 = D0 +d1ε with D0 an integer. For k ≥ 0

this two-dimensional integral decouples into the product of two one-dimensional

integrals, out of which one is straightforward,

A(x, ε;α0, d0;κ, k) =
k
∑

j=0

(

k

j

)

xj B(1 + j − ε, 1− ε) (J.15)

×
∫ α0

0
dααk−j−1−(1+κ)ε(1− α)j+2d0−1[α + (1− α)x]−1−(1+κ)ε (J.16)

× [2α + (1− α)x]−k.

We will therefore treat separately the cases k ≥ 0 and k < 0.

For k ≥ 0 the calculation of the A integrals reduces to the calculation of a

one-dimensional integral of the form

A+(x, ε;α0, d1;κ; n1, n2, n3, n4)

=

∫ α0

0
dαα−n1−(1+κ)ε(1− α)−n2+2d1ε[α + (1− α)x]−n3−(1+κ)ε

× [2α + (1− α)x]−n4 ,

(J.17)

ni being integers. The integration-by-parts identities, including a surface term

for the independent integrals, are
∫ α0

0
dα

∂

∂α

(

α−n1−(1+κ)ε(1− α)−n2+2d1ε[α + (1− α)x]−n3−(1+κ)ε

× [2α + (1− α)x]−n4

)

= α−n1−(1+κ)ε
0 (1− α0)

−n2+2d1ε[α0 + (1− α0)x]−n3−(1+κ)ε

× [2α0 + (1− α0)x]−n4 .

(J.18)
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Using the Laporta algorithm we find three master integrals for A+,

A(1)
+ (x, ε;α0, d1;κ) = A+(x, ε;α0, d1;κ; 0, 0, 0, 0) =

∫ α0

0
dµε(α; x),

A(2)
+ (x, ε;α0, d1;κ) = A+(x, ε;α0, d1;κ;−1, 0, 0, 0) =

∫ α0

0
dµε(α; x)α,

A(3)
+ (x, ε;α0, d1;κ) = A+(x, ε;α0, d1;κ; 0, 0, 0, 1) =

∫ α0

0

dµε(α; x)

2α + (1− α)x
.

(J.19)

where

dµε(α, x) = dαα−(1+κ)ε (1− α)2d1ε (α + (1− α) x)−(1+κ)ε,

= dα + ε dα
(

2d1 ln(1− α)− (1 + κ) lnα− (1 + κ) ln(α + x− αx)
)

+ O(ε2),

= dα + ε dα
(

− (1 + κ)H(0;α)− (1 + κ)H(0;x)− 2d1H(1;α)

− (κ + 1)H(d1(x);α)
)

+ O(ε2).

(J.20)

where we used the d-representation of the two-dimensional HPL’s defined in

Section G.3,

H(d1(x);α) = ln

(

1 +
1− x

x
α

)

,

H(d1(x), d1(x);α) =
1

2
ln2

(

1 +
1− x

x
α

)

,

etc.

(J.21)

Notice that all three master integrals are finite for ε = 0. This allows us to

expand the integrand into a power series in ε and integrate order by order in ε,

using the defining property of the HPL’s, Eq. (G.6). We obtain in this way the

series expansion of the master integrals as a power series in ε whose coefficients

are written in terms of the d-representation of the two-dimensional HPL’s .

We can then switch back to the c-representation using the algorithm described

in Section G.3.

Having a representation of the master integrals, we can immediately write down

the solutions for A(x, ε;α0, d0;κ, k) for k ≥ 0 and fixed D0 using Eq. (J.15).

The results for D0 = 3 can be found in Ref. [69].
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J.2.2 The A-type collinear integrals for k = −1

For k = −1, the integral (J.14) does not decouple, so we have to use the Laporta

algorithm to calculate the full two-dimensional integral. However, for k = −1,

we can get rid of the denominator in (2α + (1− α)x) in the integrand. So we

only have to deal with an integral of the form

A−(x, ε;α0, d1;κ; n1, n2, n3, n4, n5, n6) =

=

∫ α0

0
dα

∫ 1

0
dv α−n1−(1+κ)ε(1− α)−n2+2d1ε[α + (1− α)x]−n3−(1+κ)ε

× v−n4−ε(1− v)−n5−ε[α + (1− α)xv]−n6 ,

(J.22)

ni being integers.

We write down the integration-by-parts identities for A− including a surface

term for α,

∫ α0

0
dα

∫ 1

0
dv

∂

∂v

(

α−n1−(1+κ)ε(1− α)−n2+2d1ε[α + (1− α)x]−n3−(1+κ)ε

× v−n4−ε(1− v)−n5−ε[α + (1− α)xv]−n6

)

= 0 ,
∫ α0

0
dα

∫ 1

0
dv

∂

∂α

(

α−n1−(1+κ)ε(1− α)−n2+2d1ε[α + (1− α)x]−n3−(1+κ)ε

× v−n4−ε(1− v)−n5−ε[α + (1− α)xv]−n6

)

= α−n1−(1+κ)ε
0 (1− α0)

−n2+2d1ε[α0 + (1− α0)x]−n3−(1+κ)ε

×A−,S(x, ε;α0, d1; n4, n5, n6) ,

(J.23)

with

A−,S(x, ε;α0, d1; n4, n5, n6) =

∫ 1

0
dv v−n4−ε(1− v)−n5−ε[α0 + (1− α0)xv]−n6

= α−n6
0 B(1− n4 − ε, 1− n5 − ε)

× 2F1

(

1− n4 − ε, n6, 2− n4 − n5 − 2ε;
α0 − 1

α0
x

)

.

(J.24)
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As in the case of K we are going to evaluate this surface term using the La-

porta algorithm, especially to get rid of the strange argument the hyperge-

ometric function depends on and to get an expression for A−,S in terms of

two-dimensional HPL’s in α0 and x.

Evaluation of the surface term A−,S. Because the v integration is over

the whole range [0, 1], we do not have to take into account a surface term in

the integration-by-parts identities for A−,S ,
∫ 1

0
dv

∂

∂v

(

v−n4−ε(1− v)−n5−ε[α0 + (1− α0)xv]−n6
)

= 0. (J.25)

Using the Laporta algorithm we see that A−,S has two master integrals,

A(1)
−,S(x, ε;α0, d1) = A−,S(x, ε;α0, d1; 0, 0, 0),

A(2)
−,S(x, ε;α0, d1) = A−,S(x, ε;α0, d1; 0, 0, 1).

(J.26)

A(i)
−,S(x, ε;α0, d1), i = 1, 2, are functions of the two variables x and α0 defined

on the square [0, 1]× [0, 1], so in principle we should write down a set of partial

differential equations for the evolution of both α0 and x. However, it is easy

to see that in x = 0 we have

A(1)
−,S(x = 0, ε;α0, d1) = B(1− ε, 1− ε),

A(2)
−,S(x = 0, ε;α0, d1) =

1

α0
B(1− ε, 1− ε),

(J.27)

for arbitrary α0. So we are in the special situation where we know the solutions

on the line {x = 0}× [0, 1] and so we only need to consider the evolution for the

x variable. In other words, we consider A(i)
−,S as a function of x only, keeping

α0 as a parameter.

The differential equations for the evolution in the x variable read

∂

∂x
A(1)

−,S = 0,

∂

∂x
A(2)

−,S = A(1)
−,S

(

1− 2ε

α0x
+

(α0 − 1)(2ε− 1)

α0(α0x− x− α0)

)

+ A(2)
−,S

(

2ε− 1

x
− (α0 − 1)ε

α0x− x− α0

)

,

(J.28)

and the initial condition for this system is given by Eq. (J.27). As the system

is already triangular, we can immediately solve for A(1)
−,S and A(2)

−,S . Notice
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in particular that the denominator in (α0 + x − xα0) will give rise to two-

dimensional HPL’s of the form H(c1(α0);x), etc.

Evaluation of A−. Having an expression for the ε-expansion of the surface

term, we can solve the integration-by-parts identities for A−, Eq. (J.23). We

find four master integrals,

A(1)
− (x, ε;α0, d1;κ) = A−(x, ε;α0, d1;κ; 0, 0, 0, 0, 0, 0),

A(2)
− (x, ε;α0, d1;κ) = A−(x, ε;α0, d1;κ;−1, 0, 0, 0, 0, 0),

A(3)
− (x, ε;α0, d1;κ) = A−(x, ε;α0, d1;κ;−1, 0, 0, 0, 0, 1),

A(4)
− (x, ε;α0, d1;κ) = A−(x, ε;α0, d1;κ;−2, 0, 0, 0, 0, 1).

(J.29)

It is easy to see that all of the master integrals are finite for ε = 0.

As in the case of the surface terms, we are only interested in the x evolution,

because the master integrals are known for x = 0 for any value of α0,

A(1)
− (x = 0, ε;α0, d1;κ) = Bα0(1− 2(1 + κ)ε, 1 + 2d1ε)B(1− ε, 1− ε) ,

A(2)
− (x = 0, ε;α0, d1;κ) = Bα0(2− 2(1 + κ)ε, 1 + 2d1ε)B(1− ε, 1− ε) ,

(J.30)

and

A(3)
− (x = 0, ε;α0, d1;κ) = A(1)

− (x = 0, ε;α0, d1;κ) ,

A(4)
− (x = 0, ε;α0, d1;κ) = A(2)

− (x = 0, ε;α0, d1;κ) .
(J.31)

The master integrals A(1)
− and A(2)

− form a subtopology, i.e. the differential

equations for these two master integrals close under themselves:

∂

∂x
A(1)

− =
1− 2(1 + κ)ε

x
A(1)

− − 2(d1ε− (1 + κ)ε + 1)

x
A(2)

−

− (1− α0)1+2d1ε(−xα0 + α0 + x)−(1+κ)εα1−(1+κ)ε
0

x
A(1)

−,S ,

∂

∂x
A(2)

− =
1− (1 + κ)ε

x− 1
A(1)

− +
−2d1ε + (1 + κ)ε− 2

x− 1
A(2)

−

− (1− α0)1+2d1ε(−xα0 + α0 + x)−(1+κ)εα1−(1+κ)ε
0

x− 1
A(1)

−,S .

(J.32)

The two equations can be triangularized by the change of variable

Ã(1)
− = A(1)

− − 2A(2)
− ,

Ã(2)
− = A(2)

− .
(J.33)
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The equations for the subtopology now take the triangularized form

∂

∂x
Ã(1)

− =

(

2ε− 2

x− 1
+

1− 2ε

x

)

Ã(1)
− +

(

4d1 + 2

x− 1
− 2d1 + 2

x

)

ε Ã(2)
−

+ (1− α0)
2d1ε(−xα0 + α0 + x)−εα1−ε

0

(

2− 2α0

x− 1
+

α0 − 1

x

)

A(1)
−,S ,

∂

∂x
Ã(2)

− =
1− ε

x− 1
Ã(1)

− − 2d1 + 1

x− 1
ε Ã(2)

−

+ (1− α0)
2d1εα1−ε

0 (−xα0 + α0 + x)−ε a− 1

x− 1
A(1)

−,S .

(J.34)

The initial condition for Ã(2)
− can be obtained from Eq. (J.30). For Ã(1)

− how-

ever, Eq. (J.30) gives only trivial information. Furthermore, the solution of the

differential equation has in general a pole in x = 1, but it is easy to convince

oneself that Ã(1)
− is finite in x = 1, which serves as the initial condition.

We can now solve for the remaining two master integrals. The differential

equations for A(3)
− and A(4)

− read

∂

∂x
A(3)

− =
1− 2(1 + κ)ε

x
A(3)

− − 2(d1ε− (1 + κ)ε + 1)

x
A(4)

−

− (1− α0)2d1ε(−xα0 + α0 + x)−(1+κ)εα2−(1+κ)ε
0

x
A(2)

−,S ,

∂

∂x
A(4)

− =

(

1− 2ε

x
+

2ε− 1

x− 1

)

A(2)
− − (2 + κ)ε− 2

x− 1
A(3)

−

+

(

2ε− 1

x
− (2d1 + κ)ε)

x− 1

)

A(4)
−

− (1− α0)1+2d1ε(−xα0 + α0 + x)−(1+κ)εα2−(1+κ)ε
0

x− 1
A(2)

−,S .

(J.35)

These equations can be brought into a triangularized form via the change of

variable

Ã(3)
− = A(3)

− −A(4)
− ,

Ã(4)
− = A(4)

− ,
(J.36)
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and Eq. (J.35) now reads

∂

∂x
Ã(3)

− =

(

1− 2ε

x
+

2(ε− 1)

x− 1

)

Ã(3)
− +

(

2(d1 + 1)ε

x− 1
− 2(d1 + 1)ε

x

)

Ã(4)
−

− (1− α0)
1+2d1εα2−ε

0 (−xα0 + α0 + x)−ε

(

1

x
− 1

x− 1

)

A(2)
−,S

+

(

1− 2ε

x− 1
+

2ε− 1

x

)

A(2)
− ,

∂

∂x
Ã(4)

− =
2− 2ε

x− 1
Ã(3)

− +

(

2ε− 1

x
− 2(d1ε + ε)

x− 1

)

Ã(4)
−

+

(

1− 2ε

x
+

2ε− 1

x− 1

)

A(2)
−

− (1− α0)1+2d1ε(−xα0 + α0 + x)−εα2−ε
0

x− 1
A(2)

−,S .

(J.37)

The initial condition for A(3)
− and A(4)

− can again be obtained from Eq. (J.30)

and requiring A(3)
− to be finite in x = 1.

Having the analytic expressions for the master integrals, we can now easily

obtain the solutions for A for k = −1 for a fixed value of D0. The results for

D0 = 3 can be found in Ref. [69].

In Fig. J.1 we compare the analytic and numeric results for the ε2 coefficient

in the expansion of I(x, ε;α0, 3−3ε; 1, k, 0, gA) for k = −1, 2 and α0 = 0.1, 1 as

representative examples. The dependence on α0 is not visible on the plots. The

agreement between the two computations is excellent for the whole x-range.

We find a similar agreement for other (lower-order, thus simpler) expansion

coefficients and/or other values of the parameters.

J.2.3 The B-type collinear integrals

The B-type collinear integrals require the evaluation of an integral of the form

B(x, ε;α0, d0; δ, k) =
1

x
I(x, ε;α0, d0; 1, k, δ, gB)

=

∫ α0

0
dα

∫ 1

0
dv α−1−2ε(1− α)2d0−1 v−ε(1− v)−ε [α + (1− α)x]−1−2ε

× [2α + (1− α)x]−k [α + (1− α)xv]k+δε [α + (1− α)(1− v)x]−δε,
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Figure J.1: Representative results for the A-type integrals. The plots show the
coefficient of the O(ε2) term in I(x, ε;α0, 3 − 3ε; 1, k, 0, gA) for k = −1 (left
figure) and k = 2 (right figure) with α0 = 0.1, 1. The plots are taken from
Ref. [69].

(J.38)

where k = −1, 0, 1, 2, δ = ±1 and d0 = D0 + d1ε (as before D0 is an integer).

Unlike the A-type integrals, the B-type integrals do not decouple for k ≥ 0,

due to the appearance of the ε pieces in the exponents, so we have to consider

the denominators altogether and have to deal with an integral of the form

B(x, ε;α0, d1; δ; n1, n2, n3, n4, n5, n6, n7, n8) =

=

∫ α0

0
dα

∫ 1

0
dv α−n1−2ε(1− α)−n2+2d1 v−n5−ε(1− v)−n6−ε

× [α + (1− α)x]−n3−2ε [2α + (1− α)x]−n4

× [α + (1− α)xv]−n7+δε[α + (1− α)(1− v)x]−n8−δε.

(J.39)
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We use again the Laporta algorithm and write down the integration-by-parts

identities for B,

∫ α0

0
dα

∫ 1

0
dv

∂

∂v

(

α−n1−2ε(1− α)−n2+2d1 v−n5−ε(1− v)−n6−ε

× [α + (1− α)x]−n3−2ε [2α + (1− α)x]−n4

× [α + (1− α)xv]−n7+δε [α + (1− α)(1− v)x]−n8−δε
)

= 0,
∫ α0

0
dα

∫ 1

0
dv

∂

∂α

(

α−n1−2ε(1− α)−n2+2d1 v−n5−ε(1− v)−n6−ε

× [α + (1− α)x]−n3−2ε [2α + (1− α)x]−n4

× [α + (1− α)xv]−n7+δε[α + (1− α)(1− v)x]−n8−δε
)

= α−n1−2ε
0 (1− α0)

−n2+2d1 [α0 + (1− α0)x]−n3−2ε[2α0 + (1− α0)x]−n4

×BS(x, ε;α0, d1; δ, k; n5, n6, n7, n8),

(J.40)

where the surface term is given by

BS(x, ε;α0, d1; δ; n5, n6, n7, n8) =

=

∫ 1

0
dv v−n5−ε(1− v)−n6−ε[α0 + (1− α0)xv]−n7+δε

× [α0 + (1− α0)(1− v)x]−n8−δε.

(J.41)

Evaluation of the surface term BS. The surface term BS is no longer

a hypergeometric function as it was the case for the K and A-type integrals.

It can nevertheless be easily calculated using the Laporta algorithm. The

integration-by-parts identities for BS read

∫ 1

0
dv

∂

∂v

(

v−n5−ε(1− v)−n6−ε[α0 + (1− α0)xv]−n7+δε

× [α0 + (1− α0)(1− v)x]−n8−δε
)

= 0.

(J.42)

We find three master integrals for BS ,

B(1)
S (x, ε;α0, d1; δ) = BS(x, ε;α0, d1; δ; 0, 0, 0, 0),

B(2)
S (x, ε;α0, d1; δ) = BS(x, ε;α0, d1; δ;−1, 0, 0, 0),

B(3)
S (x, ε;α0, d1; δ) = BS(x, ε;α0, d1; δ; 0, 0, 1, 0),

(J.43)
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fulfilling the differential equations

∂

∂x
B(1)

S = B(1)
S

(

−2α0ε2 + 2ε2 + 3α0δε− 3δε− α0 + 1

α0 ((α0 − 1)x− α0) (εδ − 1)

+
2 (εα0 − α0 − ε + 1)

α0 ((α0 − 1)x− 2α0)
+
−2δε2 + 2ε2 − δε + 2ε− 1

α0x(εδ − 1)

)

+ B(2)
S

(

4 (α0 − 1) (ε− 1)

α0 ((α0 − 1)x− α0)
− 4 (α0 − 1) (ε− 1)

α0 ((α0 − 1)x− 2α0)

)

+ B(3)
S

(

(α0 − 1)
(

δε2 − ε2 − ε + 1
)

(xα0 − α0 − x) (εδ − 1)

+
2δε2 − 2ε2 + δε− 2ε + 1

x(εδ − 1)

−
(α0 − 1)

(

2δε2 − 2ε2 + δε− 2ε + 1
)

((α0 − 1)x− α0) (εδ − 1)

)

,

∂

∂x
B(2)

S = −B(1)
S

(−δε + ε− 1)

x
+ B(2)

S

2(ε− 1)

x
−B(3)

S

α0εδ

x
,

∂

∂x
B(3)

S = B(1)
S

(

2δε2 − 2ε2 + δε− 2ε+ 1

α0x(1− εδ)

−
δ
(

2α0ε2 − 2ε2 − 2α0ε− 2α0δε + 2δε + 2ε + 2α0δ − 2δ
)

α0 ((α0 − 1)x− 2α0) (1− εδ)

−
δ
(

−2α0δε2 + 2δε2 + 3α0ε− 3ε− α0δ + δ
)

α0 ((α0 − 1)x− α0) (1− εδ)

)

+ B(2)
S

(

2 (α0 − 1) (ε− 1)(2ε− 2δ)δ

α0 ((α0 − 1)x− 2α0) (1− εδ)

− 2 (α0 − 1) (ε− 1)(2ε− 2δ)δ

α0 ((α0 − 1)x− α0) (1− εδ)

)

+ B(3)
S

(

−2δε2 + 2ε2 − δε + 2ε− 1

x(1− εδ)

−
(α0 − 1)

(

−2δε2 + 2ε2 − δε + 2ε− 1
)

((α0 − 1)x− α0) (1− εδ)

+
(α0 − 1)

(

−δε2 + ε2 + ε− 1
)

(xα0 − α0 − x) (1− εδ)

)

.

(J.44)
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The initial conditions for the differential equations are

B(1)
S (x = 0, ε;α0, d1; δ) = B(1− ε, 1− ε),

B(2)
S (x = 0, ε;α0, d1; δ) = B(2− ε, 1− ε),

B(3)
S (x = 0, ε;α0, d1; δ) =

1

α0
B(1− ε, 1− ε),

(J.45)

The system can be triangularized by the change of variable

B̃(1)
S = B(1)

S − 2B(2)
S , B̃(2)

S = B(2)
S , B̃(3)

S = B(3)
S , (J.46)

and then solved in the usual way.

Evaluation of the B integral. Solving the integration-by-parts identities

for the B integrals, we find nine master integrals

B(1)(x, ε;α0, d1; δ) = B(x, ε;α0, d1; δ; 0, 0, 0, 0, 0, 0, 0, 0),

B(2)(x, ε;α0, d1; δ) = B(x, ε;α0, d1; δ; 0, 0, 0, 0, 0, 0, 0, 1),

B(3)(x, ε;α0, d1; δ) = B(x, ε;α0, d1; δ; 0, 0, 0, 0, 0, 0, 1, 0),

B(4)(x, ε;α0, d1; δ) = B(x, ε;α0, d1; δ; 0, 0, 0, 1, 0, 0, 0, 0),

B(5)(x, ε;α0, d1; δ) = B(x, ε;α0, d1; δ; 0, 0, 1, 0, 0, 0, 0, 0),

B(6)(x, ε;α0, d1; δ) = B(x, ε;α0, d1; δ;−1, 0, 0, 0, 0, 0, 1, 0),

B(7)(x, ε;α0, d1; δ) = B(x, ε;α0, d1; δ; 0, 0, 0, 1, 0, 0, 1, 0),

B(8)(x, ε;α0, d1; δ) = B(x, ε;α0, d1; δ; 0, 0, 1, 0, 0, 0, 1, 0),

B(9)(x, ε;α0, d1; δ) = B(x, ε;α0, d1; δ; 0, 0, 1, 0, 0, 0, 0, 1),

(J.47)

The master integrals B(i), i 0= 4, 7, form a subtopology, i.e. the differential

equations for these master integrals close under themselves. Furthermore the

differential equations for B(1), B(3), B(5) and B(6) have a triangular structure

in ε, i.e. all other master integrals are suppressed by a power of ε. For δ = +1,
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the corresponding differential equations are given by

∂

∂x
B(1) =

2(ε− 1)B(2)
S (α0 − 1)2

(2d1ε− 4 ε + 1)(xα0 − α0 − x)
− 2ε B(1)

x− 1

+

(

4ε2

(2d1ε− 4ε + 1)(x− 1)
− ε(8ε− 1)

(2d1ε− 4 ε + 1)x

)

B(2)

+

(

2ε2

(2d1 ε− 4ε + 1)(x− 1)
− ε(4ε− 1)

(2 d1ε− 4ε + 1)x

)

B(3)+

(

2ε

x− 1
+

2(2ε− 1)ε

(2d1ε− 4ε + 1)x

)

B(5) − 2εB(6)

x

− 2ε2 B(8)

(2d1ε− 4ε+ 1)(x− 1)
− 4ε2 B(9)

(2d1ε− 4ε + 1)(x− 1)

+

(

− 2 ε(α0 − 1)2

(2d1ε− 4ε+ 1)((α0 − 1) x− α0)
+

(α0 − 1)2

(2d1ε− 4ε + 1)(x α0 − α0 − x)
+

2ε(α0 − 1)

(2d1ε− 4ε + 1)x

)

B(1)
S ,

∂

∂x
B(3) = −4εB(3)

x
+

(−2d1ε + 4ε− 1) B(6)

x
+

(α0 − 1)α0B
(3)
S

x
,

∂

∂x
B(5) =

(

−2d1ε + 4ε− 1

x
+

2d1ε− 4ε + 1

x− 1

)

B(1)

+

(

−2d1ε + 4ε− 1

x− 1
− 4 ε

x

)

B(5) +

(

α0 − 1

x
− (α0 − 1)2

(α0 − 1) x− α0

)

B(1)
S ,

∂

∂x
B(6) =

(

1− 2ε

x
+

2ε− 1

x− 1

)

B(1) +

(

8ε2

(2d1ε− 4ε + 1) (x− 1)

− ε

(2d1ε− 4ε+ 1)(x− 2)
− (8ε− 1) ε

(2d1ε− 4ε + 1)x

)

B(2)

+

(

− 2ε

(x − 1)2
+

2d1ε− 5ε+ 1

(2d1ε− 4ε + 1) (x− 2)
−

2(2d1ε2 − 6ε2 + ε)

(2d1ε − 4ε+ 1)(x− 1)
+

ε− 4ε2

(2d1ε− 4ε + 1) x

)

B(3)

+

(

1− 2ε

x− 1
+

4d1ε2 − 12 ε2 − 2d1ε + 8ε− 1

(2d1ε− 4ε + 1)(x− 2)
+

2 ε(2ε− 1)

(2d1ε− 4ε + 1)x

)

B(5)

+

(

− 2ε

x− 1
+
−2d1ε + 4ε− 1

x− 2
− 1

x

)

B(6)
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+

(

2ε

(x− 1)2
− 4(2 d1ε2 − 5ε2 + ε)

(2d1ε− 4ε+ 1) (x− 2)
+

4(2d1ε2 − 5ε2 + ε)

(2d1ε − 4ε + 1)(x− 1)

)

B(8)

+

(

8ε2

(2d1ε− 4 ε + 1)(x− 2)
− 8ε2

(2d1ε− 4ε + 1)(x− 1)

)

B(9)

+

(

4(α0 − 1)3(ε− 1)

(α0 − 2)(2d1ε− 4ε + 1)((α0 − 1)x− α0)
−

4(α0 − 1)2(ε− 1)

(α0 − 2)(2d1ε − 4ε + 1)(x− 2)

)

B(2)
S +

(

− 2(2ε− 1) (α0 − 1)3

(α0 − 2)(2d1ε− 4ε + 1)((α0 − 1)x− α0)
+

2 ε(α0 − 1)

(2d1ε− 4ε + 1)x
+

2(ε α2
0 − α2

0 − εα0 + 2α0 − 1)

(α0 − 2)(2d1ε− 4ε+ 1) (x− 2)

)

B(1)
S +

(α0 − 1)α0B
(3)
S

x− 2
,

(J.48)

whereas for δ = −1, the differential equations are

∂

∂x
B(1) =

2(ε− 1)B(2)
S (α0 − 1)2

(2d1ε− 4ε+ 1)(x α0 − α0 − x)
− 2εB(1)

x− 1

+

(

ε(4ε − 1)

(2d1ε− 4ε + 1)x
− 2ε2

(2d1ε− 4ε + 1)(x− 1)

)

B(2)

+

(

ε(8ε− 1)

(2d1ε− 4 ε + 1)x
− 4ε2

(2d1ε− 4ε+ 1)(x− 1)

)

B(3)

+

(

2ε

x− 1
− 2ε(2ε− 1)

(2d1 ε− 4ε+ 1)x

)

B(5) +
2εB(6)

x

+
4 ε2B(8)

(2d1ε− 4ε+ 1)(x− 1)
+

2ε2 B(9)

(2d1ε− 4ε + 1)(x− 1)

+

(

2ε (α0 − 1)2

(2d1ε− 4ε + 1)((α0 − 1)x− α0)
−

(2ε− 1) (α0 − 1)2

(2d1ε− 4ε + 1)(xα0 − α0 − x)
− 2ε (α0 − 1)

(2d1ε− 4ε+ 1)x

)

B(1)
S ,

(J.49)



266 Chapter J. Real-virtual integrals

∂

∂x
B(3) = −4εB(3)

x
+

(−2d1ε + 4ε− 1) B(6)

x
+

(α0 − 1)α0B
(3)
S

x
,

∂

∂x
B(5) =

(

−2d1ε + 4ε− 1

x
+

2d1ε− 4ε + 1

x− 1

)

B(1)

+

(

−2d1ε + 4ε− 1

x− 1
− 4 ε

x

)

B(5)

+

(

α0 − 1

x
− (α0 − 1)2

(α0 − 1) x− α0

)

B(1)
S ,

∂

∂x
B(6) =

(

1− 2ε

x
+

2ε− 1

x− 1

)

B(1)

+

(

− 4ε2

(2d1ε− 4ε + 1) (x− 1)
+

ε

(2d1ε− 4ε + 1)(x− 2)

+
(4ε− 1) ε

(2d1ε− 4ε+ 1)x

)

B(2)

+

(

− 4ε

(x− 1)2
+

2d1ε− 3ε + 1

(2d1ε− 4ε+ 1) (x− 2)

− 4(2d1ε2 − 2ε2 + ε)

(2d1ε − 4ε + 1)(x− 1)
+

8ε2 − ε

(2d1ε− 4ε+ 1) x

)

B(3)

+

(

1− 2ε

x− 1
+

4d1ε2 − 4ε 2 − 2d1ε + 4ε− 1

(2d1ε− 4ε + 1)(x− 2)
− 2ε (2ε− 1)

(2d1ε− 4ε+ 1)x

)

B(5)

+

(

− 4 ε

x− 1
+
−2d1ε + 4ε− 1

x− 2
+

4ε − 1

x

)

B(6)

+

(

4ε

(x− 1)2
− 8(2d1 ε2 − 3ε2 + ε)

(2d1ε− 4ε + 1)(x− 2)

+
8 (2d1ε2 − 3ε2 + ε)

(2d1ε− 4ε+ 1) (x− 1)

)

B(8)

+

(

4ε2

(2d1ε− 4ε + 1) (x− 1)
− 4ε2

(2d1ε− 4ε + 1)(x− 2)

)

B(9)

(J.50)
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+

(

4(α0 − 1)3(ε− 1)

(α0 − 2)(2d1ε− 4ε + 1)((α0 − 1)x− α0)
−

4(α0 − 1)2(ε− 1)

(α0 − 2)(2d1ε − 4ε + 1)(x− 2)

)

B(2)
S +

(

2(α0 − 1)3

(α0 − 2)(2 d1ε− 4ε + 1)((α0 − 1)x− α0)
− 2ε(α0 − 1)

(2d1 ε− 4ε+ 1)x
+

2(εα2
0 − α2

0 − 3εα0 + 2 α0 + 2ε− 1)

(α0 − 2)(2d1ε− 4ε + 1)(x− 2)

)

B(1)
S +

(α0 − 1)α0B
(3)
S

x− 2
.

The differential equations for B(2), B(8) and B(9) read, for δ = +1,

∂

∂x
B(2) =

(

4ε− 1

x
− 4ε

x− 1

)

B(2) +

(

4ε− 1

x
− 2ε

x− 1

)

B(3) − 2(2ε− 1)B(5)

x

+
(2d1ε− 4ε+ 1) B(6)

x
+

2εB(8)

x− 1
+

4ε B(9)

x− 1
− (α0 − 1)α0B

(3)
S

x
,

∂

∂x
B(8) =

(

2(d1 − 2)ε

x− 1
− 2(d1 − 2)ε

x

)

B(3) +

(

−4ε− 1

x
− 2(d1ε− 2ε )

x− 1

)

B(8)

+

(

α0 − 1

x
− (α0 − 1)2

(α0 − 1)x− α0

)

B(3)
S ,

∂

∂x
B(9) = −2(ε− 1)B(2)

S (α0 − 1)2

ε(x α0 − α0 − x)2
+

(

2(d1 − 2)ε

x− 1
− 2(d1 − 2)ε

x

)

B(2)

+

(

−4ε− 1

x
− 2(d1ε− 2ε )

x− 1

)

B(9) +

(

− 2(α0 − 1)2

α0(x α0 − α0 − x)

+
2(α0 − 1)

α0x
+

2εα2
0 − α2

0 − 4ε α0 + 2α0 + 2ε− 1

ε(xα0 − α0 − x)2

)

B(1)
S

+

(

(α0 − 1)2

(α0 − 1)x− α0
+

1− α0

x

)

B(3)
S ,

(J.51)
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and for δ = −1

∂

∂x
B(2) =

(

− 2ε

x− 1
− 1

x

)

B(2) +

(

8ε − 1

x
− 4ε

x− 1

)

B(3) − 2(2ε− 1) B(5)

x

+
(2d1ε− 4ε+ 1)B(6)

x
+

4ε B(8)

x− 1
+

2εB(9)

x− 1
− (α0 − 1)α0 B(3)

S

x
,

∂

∂x
B(8) =

(

2(d1 − 2)ε

x− 1
− 2(d1 − 2)ε

x

)

B(3) +

(

−4ε− 1

x
− 2(d1ε− 2ε )

x− 1

)

B(8)

+

(

α0 − 1

x
− (α0 − 1)2

(α0 − 1)x− α0

)

B(3)
S ,

∂

∂x
B(9) =

2(ε− 1)B(2)
S (α0 − 1)2

ε(x α0 − α0 − x)2
+

(

2(d1 − 2)ε

x− 1
− 2(d1 − 2)ε

x

)

B(2)+

(

−4ε− 1

x
− 2(d1ε− 2ε )

x− 1

)

B(9) +

(

− 2(α0 − 1)2

α0(x α0 − α0 − x)

+
(α0 − 1)2

ε(xα0 − α0 − x)2
+

2(α0 − 1)

α0x

)

B(1)
S

+

(

(α0 − 1)2

(α0 − 1) x− α0
+

1− α0

x

)

B(3)
S .

(J.52)

Knowing the solutions for the subtopology, we can solve for the remaining two

master integrals B(4) and B(7). They fulfill the following differential equations,

for δ = +1,

∂

∂x
B(4) =

(

−2d1ε + 4ε− 1

2x
+

2d1ε− 4ε + 1

2(x− 2)

)

B(1)

+

(

−2d1ε + 4ε − 1

x− 2
− 4ε

x

)

B(4)

+

(

α0 − 1

2 x
− (α0 − 1)2

2((α0 − 1)x− 2α0)

)

B(1)
S ,

∂

∂x
B(7) =

(

(d1 − 2)ε

x− 2
− (d1 − 2)ε

x

)

B(3) +

(

−4ε− 1

x
− 2(d1ε− 2ε )

x− 2

)

B(7)

+

(

α0 − 1

2x
− (α0 − 1)2

2 ((α0 − 1)x− 2α0)

)

B(3)
S ,

(J.53)
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whereas for δ = −1 the differential equations read

∂

∂x
B(4) =

(

−2d1ε + 4ε− 1

2x
+

2d1ε− 4ε + 1

2(x− 2)

)

B(1)

+

(

−2d1ε + 4ε − 1

x− 2
− 4ε

x

)

B(4)

+

(

α0 − 1

2 x
− (α0 − 1)2

2((α0 − 1)x− 2α0)

)

B(1)
S ,

(J.54)

∂

∂x
B(7) =

(

(d1 − 2)ε

x− 2
− (d1 − 2)ε

x

)

B(3) +

(

−4ε− 1

x
− 2(d1ε− 2ε )

x− 2

)

B(7)

+

(

α0 − 1

2x
− (α0 − 1)2

2 ((α0 − 1)x− 2α0)

)

B(3)
S .

The initial conditions are the following. At x = 0, we have

B(1)(x = 0, ε;α0, d1; δ)

= B(6)(x = 0, ε;α0, d1; δ) = Bα0(1− 4ε, 1 + 2d1ε)B(1− ε, 1− ε).
(J.55)

At x = 1, we have

B(5)(x = 1, ε;α0, d1; δ) = B(1)(x = 1, ε;α0, d1; δ),

B(8)(x = 1, ε;α0, d1; δ) = B(2)(x = 1, ε;α0, d1; δ),

B(9)(x = 1, ε;α0, d1; δ) = B(3)(x = 1, ε;α0, d1; δ).

(J.56)

At x = 2, we have

B(4)(x = 2, ε;α0, d1; δ) =
1

2
B(1)(x = 2, ε;α0, d1; δ),

B(7)(x = 2, ε;α0, d1; δ) =
1

2
B(3)(x = 2, ε;α0, d1; δ).

(J.57)

It is easy to check that B(1) is finite at x = 0 and x = 2. The integration

constants of B(2) and B(3) can then be fixed in an implicit way by requiring

the residues of the general solution for B(1) to vanish at x = 0 and x = 2.

Having the analytic expression for the master integrals, we can calculate the

B-type integrals for a fixed integer value of D0. The results for D0 = 3 can be

found in Ref. [69].

In Fig. J.2 we show some representative results of comparing the analytic and

numeric computations for the ε2 coefficient in the expansion of I(x, ε;α0, 3 −
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Figure J.2: Representative results for the B-type integrals. The plots show the
coefficient of the O(ε2) term in I(x, ε;α0, 3 − 3ε; 1, k, 1, gB−

) for k = −1 (left
figure) and k = 2 (right figure) with α0 = 0.1, 1. The plots are taken from
Ref. [69].

3ε; 1, k, 1, gB−
) for k = −1, 2 and α0 = 0.1, 1. The dependence on α0 is not

visible on the plots. The two sets of results are in excellent agreement for

the whole x-range. For other (lower-order, thus simpler) expansion coefficients

and/or other values of the parameters, we find similar agreement.

J.3 The iterated integrals

J.3.1 The soft J∗I integrals

In this section we calculate some of the iterated integrals that appear in the

doubly-approximate cross-section. The iterated soft integrals arise from a con-

volution of a soft and a collinear integral. they have the form [69],

J∗I(Y, ε; y0, d
′
0,α0, d0; k) = −Y B(−ε,−ε) 2F1(1, 1, 1− ε; 1− Y )

×
∫ y0

0
dy y−1−2ε(1− y)d′

0 I(y; ε,α0, d0; 0, k, 0, gA).
(J.58)
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The hypergeometric function can be easily evaluated using the technique de-

scribed in Section 6.3. The evaluation of the y integral order by order in ε is a

little bit more cumbersome because the integrand has two kinds of singularities,

1. The pole in y = 0.

2. The integral I is order by order logarithmically divergent for y ∼ 0.

The pole in y = 0 can easily be factorized by performing the integration by

parts in y. The logarithmic singularities in I however are more subtle. We

have to resum all these singularities before expanding the integral. We find

that we can write

I(y; ε,α0, d0; 0, k, 0, gA) = y−2ε I(y; ε,α0, d0; 0, k, 0, gA), (J.59)

where I is a function that is order by order finite in y = 0. Eq. (J.58) can now

be written as

J∗I(Y, ε; y0, d
′
0,α0, d0; k) = −Y B(−ε,−ε) 2F1(1, 1, 1− ε; 1− Y )

×
{

− 1

4ε
y−4ε
0 (1− y0)

d′

0 I(y0; ε,α0, d0; 0, k, 0, gA)

+
1

4ε

∫ y0

0
dy y−4ε ∂

∂y

[

(1− y)d′

0 I(y; ε,α0, d0; 0, k, 0, gA)
]

}

.

(J.60)

As I does not have logarithmic divergences, the derivative does not produce

any poles and so the integral is uniformly convergent. We can thus just expand

the integrand into a power series in ε and integrate order by order, using the

definition of the HPL’s ∗, Eq. (G.6). As representative examples, in Fig. J.3 we

compare the analytic and numeric results for the ε0 coefficient in the expansion

of J∗I(Y, ε; y0, 3 − 3ε,α0, 3 − 3ε; k) for k = −1, 2 and y0 = α0 = 0.1, 1. The

two computations agree very well over the whole Y -range. Other (lower-order,

thus simpler) expansion coefficients and/or other values of the parameters show

similar agreement. The results for D0 = D′
0 = 3 can be found in Ref. [69].

∗Notice that the rational part of I gives a non-vanishing contribution to the lower inte-
gration limit that has to be subtracted.
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Figure J.3: Representative results for the J∗I integrals. The plots show the
coefficient of the O(ε0) term in J∗I(Y, ε; y0, 3−3ε,α0, 3−3ε; k) for k = −1 (left
figure) and k = 2 (right figure) with y0 = α0 = 0.1, 1. The plots are taken from
Ref. [69].

J.3.2 The soft-collinear K∗I integrals

The iterated soft-collinear integrals arise from a convolution of a soft-collinear

and a collinear integral. they have the form [69],

K∗I(ε; y0, d
′
0,α0, d0; k) =

2 B(1− ε,−ε)
∫ y0

0
dy y−1−4ε(1− y)d′

0 I(y; ε,α0, d0; 0, k, 0, gA)

+ 2 B(1− ε, 1− ε)

∫ y0

0
dy y−4ε(1− y)d′

0−1 I(y; ε,α0, d0; 0, k, 0, gA),

(J.61)

where I was defined in Eq. (J.59). The first integral is exactly the same as

in Section J.3.1. The second integral is uniformly convergent, so we can just

expand under the integration sign and integrate order by order. The results

for D0 = D′
0 = 3 can be found in Ref. [69].



Appendix K
Scalar one-loop integrals

K.1 Basic definitions and conventions

In this appendix we give a review of scalar one-loop Feynman integral, and

the basic notations and conventions we used throughout this work. A scalar

on-loop integral in D dimensions is defined by

ID
n

(

{νi}; {Q2
i}; {Mi}

)

= eγEε

∫

dDk

iπD/2

n
∏

i=1

1

Dνi

i

, (K.1)

where the external momenta ki are incoming such that
∑n

i=1 ki = 0 and the

propagators have the form

D1 = k2 −M2
1 + i0,

Di =



k +
i−1
∑

j=1

kj





2

−M2
i + i0, i = 2, . . . , n.

(K.2)

Note that, although everything we say in this chapter is true in general, we

are particularly interested in this work in the case where all internal masses

are zero, M2
i = 0. The integral (K.1) is in general divergent if D is a pos-

itive integer, and we therefore need to regularize the integral. We work in

dimensional regularization, i.e. , we evaluate Eq. (K.1) for non-integer values

of D = D0 − 2ε, where D0 is an integer. We now have to face the problem

273
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of how to define the integration in a non-integer dimensional space. Such an

integration can be defined consistently by considering an infinite dimensional

vector space V endowed with a non-degenerate bilinear form (e.g. Minkowski

or euclidean metric) [112]. Let us consider now the space of covariant functions

over V , i.e. , the space of functions of the form f(k2, k · p1, . . . , k · pn) ≡ f(k),

where k, qi ∈ V . For any complex D, the integration (K.1) can now be intro-

duced as a linear functional on this space of covariant functions,

f →
∫

dDk f(k2, k · p1, . . . , k · pn) ≡
∫

dDk f(k). (K.3)

fulfilling the following four axioms:

1. Linearity:
∫

dDk
(

a f(k) + b g(k)
)

= a

∫

dDk f(k) + b

∫

dDk g(k). (K.4)

2. Translational invariance:
∫

dDk f(k + p) =

∫

dDk f(k). (K.5)

3. Scaling:
∫

dDk f(a · k) = a−D

∫

dDk f(k). (K.6)

4. Normalization∗:
∫

dDk e−k2

= πD/2. (K.7)

These four axioms uniquely fix the integral of the function f(k) = e−a k2+k·p,
∫

dDk e−ak2+k·p = ep2/4a

∫

dDk e−a(k−p/2a)2

= a−D/2ep2/4a

∫

dDk e−k2

=
(π

a

)D/2
ep2/4a.

(K.8)

The integral of a generic function f(k) can then be computed by taking linear

combinations of derivatives of the generating function e−a k2+b k·p, e.g. ,

k2 + λ(k · p) =
(

− ∂

∂a
+ λ

∂

∂b

)

e−a k2+b k·p
∣

∣a=b=0
. (K.9)

∗We choose the normalization such that it agrees with the usual Gaussian integral in RD,
where D is a positive integer.
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The axiomatic approach we just presented uniquely defines the scalar Feynman

integrals (K.1). They can often be expressed in terms of (generalized) hyper-

geometric functions. In Appendix H we showed that different representations

of hypergeometric functions are useful to derive different properties. In the

following we argue that the different parametrizations used to evaluate Feyn-

man integrals, Schwinger and Feynman parameters, series and Mellin-Barnes

representations, are the equivalents to the four representations of the represen-

tations of the hypergeometric function, and switching from one parametrization

to another might allow one to obtain valuable information about the Feynman

integral. I

K.2 The Feynman parametrization

The Feynman parametrization is based on the identity

n
∏

i=1

1

Dνi

i

=
Γ(ν)

Γ(ν1) . . .Γ(νn)

n
∏

i=1

∫ 1

0
dxi xνi−1

i

δ(1− x1 . . .− xn)

(x1D1 + . . . + xnDn)ν
, (K.10)

with ν =
∑n

i=1 νi. Inserting this relation into Eq. (K.1), we obtain the following

representation for the Feynman integral,

ID
n

(

{νi}; {Q2
i }; {Mi}

)

= Γ(ν)

∫

Dx

∫

dDk

iπD/2

1

(k2 − 2Q · k + J )ν
, (K.11)

where we introduced the shorthand
∫

Dx = eγEε
n
∏

i=1

∫ 1

0
dxi

xνi−1
i

Γ(νi)
δ

(

1−
n
∑

i=1

xi

)

. (K.12)

The coefficients Q and J are given by

Q = −
n
∑

i=2

xi

i−1
∑

j=1

kj ,

J =
n
∑

i=1

xi





i−1
∑

j=1

kj





2

−
n
∑

i=1

xi M2
i .

(K.13)

Performing the loop integration, we can reduce the Feynman integral to

ID
n

(

{νi}; {Q2
i}; {Mi}

)

= (−1)ν Γ(ν −D/2)

∫

Dx
1

F ν−D/2
, (K.14)
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where the F -polynomial is defined by

F = Q2 − J . (K.15)

We have reduced the Feynman integral to an integral of a rational function over

the unit cube in n dimensions. Note the formal equivalence of Eq. (K.14) with

the Euler integral representation of the hypergeometric function, Eq. (H.2).

K.3 Wick rotation and analytic continuation to
the Euclidean region

The integral (K.1) is explicitly defined in Minkowski space, and from Eq. (K.11)

is clear that a Feynman integral can always be written in the form

ID
n

(

{νi}; {Q2
i}; {Mi}

)

=

∫

dDk f(k2). (K.16)

Separating the integration of the time component from the spatial components,

we can write, with dDk = dk0 dD−1k,

ID
n

(

{νi}; {Q2
i}; {Mi}

)

=

∫ +∞

−∞
dk0

∫

dD−1k f
(

k2
0 − 9k2). (K.17)

We now consider the contour shown in Fig. K.1 in the complex k0-plane. If we

send the contour to infinity, we find the relation

∫ +∞

−∞
dk0 f

(

k2
0−9k2) =

∫ −i∞

+i∞
dk0 f

(

k2
0−9k2) = i

∫ +∞

−∞
dkE0 f

(

−k2
E), (K.18)

where we defined kE = (ik0,9k). This operation, known as the Wick rotation,

transforms the integral into

ID
n

(

{νi}; {Q2
i}; {Mi}

)

= i

∫

dDkE f
(

− k2
E). (K.19)

Eq. (K.19) can now be interpreted as an integral in the Euclidean vector space

spanned by kE .
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Figure K.1: The integration contour in the k0-plane used in the Wick rotation.

K.4 The Schwinger parametrization

The Schwinger parametrization† is based on the identity

1

Dνi

i

=
(−1)νi

Γ(νi)

∫ ∞

0
dαi α

νi−1
i eαi Di , (K.20)

Note that we explicitly derived Eq. (K.20) in Euclidean space, where we used

the fact that in the Euclidean region Di < 0 in order to get a convergent

integral. The corresponding relation in Minkowski space is similar, up to some

factors of i in the exponent. Inserting Eq. (K.20) into the loop integral (K.1),

we obtain,

ID
n

(

{νi}; {Q2
i}; {Mi}

)

=

∫

Dα

∫

dDk

iπD/2
exp

(

n
∑

i=1

αi Di

)

, (K.21)

where we introduced the shorthand

∫

Dα = eγEε
n
∏

i=1

(−1)νi

Γ(νi)

∫ ∞

0
dαi α

νi−1
i , (K.22)

and performing the Gaussian integral in Eq. (K.21) leads to

ID
n

(

{νi}; {Q2
i}; {Mi}

)

=

∫

Dα
1

PD/2
exp(Q/P) exp(−M). (K.23)

†Also known as α parametrization.
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The quantities P , Q and M are polynomials in the Schwinger parameters αi,

the internal masses M2
i and the momentum scales Q2

i ,

P =
n
∑

i=1

αi,

Q =
n−1
∑

i=1

n
∑

j=i+1

αiαj

(

j−1
∑

l=i

kl

)2

,

M =
n
∑

i=1

αi M2
i .

(K.24)

Note that the polynomials can directly be read off from the Feynman diagram

in terms of trees and two-trees [90, 113, 114, 115].

The Schwinger parametrization is the starting point of the NDIM method,

which we describe in the next section. Note however at this point the for-

mal similarity between the Schwinger parametrization (K.24) and the Laplace

integral representation of the hypergeometric function, Eq. (H.8).

K.5 The Negative Dimension approach

The crucial point in the NDIM approach is that the Gaussian integral (K.21)

is an analytic function of the space-time dimension. Hence it is possible to

consider D < 0 and to make the definition [116, 117]

∫

dDk

iπD/2
(k2)n = n! δn+ D

2 , 0 (K.25)

for positive values of n.

For the one-loop integrals we are interested in here, we view Eqs. (K.21)

and (K.23) as existing in negative dimensions. Making the same series ex-

pansion of the exponential as above, Eq. (K.21) becomes

ID
n

(

{νi}; {Q2
i}; {Mi}

)

=

∫

Dα
∞
∑

n1,...,nn=0

∫

dDk

iπD/2

n
∏

i=1

(xiDi)ni

ni!

=

∫

Dα
∞
∑

n1,...,nn=0

ID
n

(

− n1, . . . ,−nn; {Q2
i }, {M2

i }
)

n
∏

i=1

xni

i

ni!
,

(K.26)
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where the ni are positive integers. The target loop integral is an infinite sum

of (integrals over the Schwinger parameters of) loop integrals with negative

powers of the propagators.

Likewise, we expand the exponentials in Eq. (K.23)

ID
n

(

{νi}; {Q2
i}; {Mi}

)

=

∫

Dα
∞
∑

n=0

QnP−n−D
2

n!

∞
∑

m=0

(−M)m

m!
, (K.27)

and introduce the integers q1, . . . , qq, p1, . . . , pn and m1, . . . , mn to make multi-

nomial expansions of Q, P and M respectively

Qn =
∞
∑

q1,...,qq=0

Qq1
1

q1!
. . .

Qqq
q

qq!
(q1 + . . . + qq)!,

P−n−D
2 =

∞
∑

p1,...,pn=0

αp1
1

p1!
. . .

αpn
n

pn!
(p1 + . . . + pn)!, (K.28)

(−M)m =
∞
∑

m1,...,mn=0

(−α1M2
1 )m1

m1!
. . .

(−αnM2
n)mn

mn!
(m1 + . . . + mn)!,

subject to the constraints

q
∑

i=1

qi = n,

n
∑

i=1

pi = −n− D

2
,

n
∑

i=1

mi = m,

p1 + . . . + pn + q1 + . . . + qq = −D

2
. (K.29)

Altogether, Eqs. (K.27) and (K.28) give

ID
n

(

{νi}; {Q2
i}; {Mi}

)

=

∫

Dα
∞
∑

p1,...,pn=0
q1,...,qq=0

m1,...,mn=0

Qq1
1 . . .Qqq

q

q1! . . . qq!

× αp1
1 . . .αpn

n

p1! . . . pn!

(−α1M2
1 )m1

m1!
. . .

(−αnM2
n)mn

mn!
(p1 + . . . + pn)!,

(K.30)

with the constraints expressed by Eq. (K.29).
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We recall that each of the Qi is a bilinear in the Schwinger parameters, so

that the target loop integral is now an infinite sum of powers of the scales of

the process (with each of the M2
i and the Q2

i raised to a different summation

variable) integrated over the Schwinger parameters.

Equations (K.26) and (K.30) are two different expressions for the same quan-

tity: ID
n . Matching up powers of the Schwinger parameters, we obtain an

expression for the loop integral with negative powers of the propagators in

negative dimensions

ID
n

(

{νi}; {Q2
i }; {Mi}

)

≡ eγEε
∞
∑

p1,...,pn=0
q1,...,qq=0

m1,...,mn=0

(Q2
1)

q1 . . . (Q2
q)

qq (−M2
1 )m1 . . . (−M2

n)mn

×
(

n
∏

i=1

Γ(1− νi)

Γ(1 + mi)Γ(1 + pi)

)(

q
∏

i=1

1

Γ(1 + qi)

)

Γ

(

1 +
n
∑

k=1

pk

)

,

(K.31)

subject to the constraints Eq. (K.29). This is the main result of the negative

dimension approach. The loop integral is written directly as an infinite sum.

Given that Q can be read off directly from the Feynman graph, so can the

precise form of Eq. (K.31) as well as the system of constraints. Of course,

strictly speaking we have assumed that both νi and D/2 are negative integers

and we must be careful in interpreting this result in the physically interesting

domain where the νi and D are all positive. Furthermore, of the many possible

solutions, only those that converge in the appropriate kinematic region should

be retained.

K.6 The Mellin-Barnes representation

The Mellin-Barnes techniques rely on the following identity,

1

(A + B)λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞
dz Γ(−z)Γ(λ+ z)

Bz

Aλ+z
. (K.32)

The contour in Eq. (K.32) is chosen in the standard way, i.e. it should separate

the poles in Γ(−z) from the poles in Γ(λ+ z). We can apply Eq. (K.32) to the

F -polynomial in Eq. (K.14), and break it up into monomials in the Feynman
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parameters xi. The integration over the Feynman parameters can now be easily

performed in terms of Γ functions,

∫ 1

0

n
∏

i=1

dxi xai−1
i δ(1− x1 . . .− xn) =

Γ(a1) . . .Γ(an)

Γ(a1 + . . . + an)
. (K.33)

In this way we have eliminated all the Feynman parameter integrals in terms

of Mellin-Barnes integrals, and we obtain a representation equivalent to the

Mellin-Barnes representation of the hypergeometric function, Eq. (H.5).





Appendix L
Analytic continuation of the
scalar massless pentagon

L.1 Analytic continuation from Region II(a) to
Region II(b)

In this section we explicitly perform the analytic continuation in t1/t2 → t2/t1

(or equivalently y2 → 1/y2) of the solution (11.22) valid in Region II(a) to

Region II(b), and we proof in this way explicitly the relation (11.24). Let us

start with the first term in Eq. (11.22). Using Eq. (H.12), we find

I(IIb)
1 (s, s1, s2, t1, t2)

=
1

ε3
(−1)2ε Γ(1− 2ε)Γ(1 + ε)2 yε−1

2 F4

(

1− 2ε, 1− ε, 1− ε, 1− ε;−y1

y2
,

1

y2

)

.

(L.1)

Similarly, the second term becomes,

I(IIb)
2 (s, s1, s2, t1, t2)

= − 2

ε3
(−1)ε Γ(1− 2ε)Γ(1 + ε)2 cos(πε) yε−1

2

× F4

(

1− 2ε, 1− ε, 1− ε, 1− ε;−y1

y2
,

1

y2

)

+
1

ε3
Γ(1 + ε)Γ(1− ε) y−1

2 F4

(

1, 1− ε, 1− ε, 1 + ε;−y1

y2
,

1

y2

)

.

(L.2)

283
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Combining the two results, and using the identity

(−1)2ε − 2 (−1)ε cos(πε) = −1 (L.3)

yields

I(IIb)
1 (s, s1, s2, t1, t2) + I(IIb)

2 (s, s1, s2, t1, t2)

=
t2
t1

(

I(IIa)
1 (s, s2, s1, t2, t1) + I(IIa)

2 (s, s2, s1, t2, t1)
)

.
(L.4)

The third term becomes

I(IIb)
3 (s, s1, s2, t1, t2) + I(IIb)

4 (s, s1, s2, t1, t2)

=
t2
t1

{

1

ε2
yε1 y−ε

2

[

ln y1 − ln y2 − iπ
]

F4

(

1, 1 + ε, 1 + ε, 1 + ε;−y1

y2
,

1

y2

)

− 1

ε3
yε1 (−1)ε Γ(1 + ε)Γ(1− ε)F4

(

1, 1− ε, 1 + ε, 1− ε;−y1

y2
,

1

y2

)

+
1

ε2
yε1 y−ε

2

× ∂

∂δ
F

(

1 + δ 1 + δ + ε 1 − − −
− − 1 + δ 1 + ε 1 + δ + ε − − y1

y2
,

1

y2

)

|δ=0

}

.

(L.5)

Similarly,

I(IIb)
5 (s, s1, s2, t1, t2) + I(IIb)

6 (s, s1, s2, t1, t2)

=
t2
t1

{

1

ε2
yε1

[

ln
y2

y1
+ ψ(−ε)− ψ(ε) + iπ

]

F4

(

1, 1− ε, 1 + ε, 1− ε;−y1

y2
,

1

y2

)

− 1

ε3
yε1 (−1)−ε y−ε

2 Γ(1 + ε)Γ(1− ε)F4

(

1, 1 + ε, 1 + ε, 1 + ε;−y1

y2
,

1

y2

)

− 1

ε2
yε1

× ∂

∂δ
F

(

1 + δ 1 + δ − ε 1 − − −
− − 1 + δ 1− ε 1 + δ + ε − − y1

y2
,

1

y2

)

|δ=0

}

.

(L.6)

The Kampé de Fériet function have already the correct form. Combining the

remaining Appell functions, and using the fact that lny2 − ln y1 = − ln s1s2
st1

and

−iπ +
1

ε
(−1)ε Γ(1− ε)Γ(1 + ε) = ψ(1− ε)− ψ(ε), (L.7)
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we find the desired result

I(IIb)
ND (κ, t1, t2) =

t2
t1

I(IIa)
ND (κ, t2, t1). (L.8)

L.2 Symmetry properties in Region I

In this section we proof that the solution I(I)
ND has the correct symmetry prop-

erties under the exchange of the dimensionless quantities x1 and x2,

I(I)
ND(κ, t1, t2) = I(I)

ND(κ, t1, t2). (L.9)

The expression (11.36) apparently violates this relation, due to the explicit

appearance of the argument x1/x2 in the hypergeometric functions. In the

following we show that if we perform the analytic continuation of one of the

hypergeometric functions according to the prescription x1/x2 → x2/x1, then

the resulting expression is manifestly symmetric.

Since I(I)
1 and I(I)

2 are obviously symmetric, we focus here only on the remaining

terms. Using the Mellin-Barnes representation of the Kampé de Fériet function,

we find that

ε

1− ε
F 0,3

2,0

(

− − 1 1 1 1 1− ε 1− ε
2 2− ε − − − − − − − x1,

x1

x2

)

= (−1)ε εΓ(ε)Γ(−ε) t−ε+1
2 tε−1

1 F4(1, 1− ε, 1 + ε, 1− ε;−x1,−x2)

− ε

1 + ε

t22
t21

F 0,3
2,0

(

− − 1 1 1 1 1− ε 1 + ε
2 2 + ε − − − − − − − x2,

x2

x1

)

+
t1
t1

[

ln
t1
t2
− iπ − ψ(1− ε)− ψ(−ε)

]

F4(1, 1− ε, 1− ε, 1 + ε;−x1, x2)+

∂

∂δ
F 2,1

0,2

(

1 1− ε 1 1 − −
− − 1 + δ 1− δ 1− ε + δ 1 + ε− δ

− x1,−x2

)

|δ=0

.

(L.10)

We already see in this expression that the terms involving F 0,3
2,0 exchange their

roles under the transformation t1 → t2. Let us now show that the same

hold true for the remaining terms, and let us concentrate on the terms in
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Eq. (11.39) having a coefficient involving (−t1)−ε. The terms involving deriva-

tives of Kampé de Fériet functions become

∂

∂δ
F 2,1

0,2

(

1 1− ε 1 1 − −
− − 1 + δ 1− δ 1− ε + δ 1 + ε− δ

− x1,−x2

)

|δ=0

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ε − 1 − −
− − − 1 + δ 1− ε 1 + ε + δ

− x1,−x2

)

|δ=0

=
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ε 1 − − −
− − 1 + δ − 1− ε + δ 1 + ε

− x1,−x2

)

|δ=0

,

(L.11)

where we used the fact that for any function f

∂

∂δ

(

f(δ) + f(−δ)
)

|δ=0
= 0. (L.12)

The resulting function is now symmetric to the corresponding one with coef-

ficient (−t2)−ε. Finally for the terms involving an Appell F4 function we find

[

lnx1 − iπ
]

F4(1, 1− ε, 1− ε, 1 + ε;−x1,−x2)

=
[

lnx1 −
1

ε
+ ψ(−ε)− ψ(ε) + (−1)ε εΓ(−ε)Γ(ε)

]

× F4(1, 1− ε, 1− ε, 1 + ε;−x1,−x2),

(L.13)

where the last step follows from Eq. (L.7). This term is symmetric to the

corresponding one with coefficient (−t2)−ε after the latter has been combined

with the first term in Eq. (L.10), and this finishes the proof that Eq. (11.39) is

indeed symmetric under the transformation (t1 ↔ t2, s1 ↔ s2).

L.3 Analytic continuation from Region II(a) to
Region I

In this section we show how the solution in Region I, Eq. (11.36) can be obtained

by performing analytic continuation from Region II(a), Eq. (11.22), according

to the prescription y1 → 1/y1.
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Let us start with I(IIa)
1 and I(IIa)

2 . Using the analytic continuation formulas

for the Appell F4 function, Eq. (H.12), we find

I(IIa)
1 (s, s1, s2, t1, t2)

= − 1

ε3
x−ε

1 x1−ε
2 Γ(1 − 2ε)Γ(1 + ε)2 F4(1− 2ε, 1− ε, 1− ε, 1− ε;−x1,−x2)

= I(I)
1 (s, s1, s2, t1, t2)∣

∣y1→1/y1
,

I(IIa)
2 (s, s1, s2, t1, t2)

=
1

ε3
x2 Γ(1 + ε)Γ(1− ε)F4(1, 1 + ε, 1 + ε, 1 + ε;−x1,−x2)

= I(I)
2 (s, s1, s2, t1, t2)∣

∣y1→1/y1
.

(L.14)

Performing the analytic continuation for I(IIa)
3 + I(IIa)

4 and collecting all the

terms we find,

− 1

ε(1− ε)
x−ε

1 x2
t1
t2

× F 0,3
2,0

(

− − 1 1 1 1 1− ε 1− ε
2 2− ε − − − − − − − x1,

x1

x2

)

− 1

ε2
x−ε

1 x2

[

lnx2 + ψ(1− ε)− ψ(−ε)
]

F4(1, 1− ε, 1− ε, 1 + ε;−x1,−x2)

− 1

ε2
x−ε

1 x2

× ∂

∂δ
F 2,1

0,2

(

1 + δ 1− ε + δ − 1 − −
− − − 1 + δ 1− ε 1 + ε + δ

− x1,−x2

)

|δ=0

.

(L.15)

Comparing with Eq. (11.39), we see that we find the correct terms. The analytic

continuation of I(IIa)
5 + I(IIa)

6 follows similar lines. We immediately find the

remaining terms in Eq. (11.39).





AppendixM
The pentagon integral from
Mellin-Barnes integrals

In this appendix we compute the scalar massless pentagon as a Laurent series

in ε using Mellin-Barnes integral techniques. In Ref. [118] a Mellin-Barnes

representation for the pentagon was given,

ID
5 (ν1,ν2, ν3, ν4, ν5; Q

2
i ) =

(−1)Nν eγEε

Γ (D −Nν)

× 1

(2πi)4

∫ +i∞

−i∞

4
∏

i=1

dzi Γ(−zi)

× (−s)
D
2 −Nν

(s1

s

)z4
(s2

s

)z1
(

t1
s

)z2
(

t2
s

)z3

× Γ (ν5 + z1 + z2)Γ

(

D

2
−Nν + ν1 − z1 − z2 − z3

)

Γ (ν2 + z2 + z3)

× Γ

(

D

2
−Nν + ν3 − z2 − z3 − z4

)

Γ (ν4 + z3 + z4)

× Γ

(

−D

2
+ Nν + z1 + z2 + z3 + z4

)

,

(M.1)
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where Nν =
∑

νi. In particular, if we put νi = 1 and D = 6− 2ε, then we get

ID
5 (1,1, 1, 1, 1; Q2

i ) =
− eγEε (−s)−2−ε

Γ(1− 2ε)

× 1

(2πi)4

∫ +i∞

−i∞

4
∏

i=1

dzi Γ(−zi)
(s1

s

)z4
(s2

s

)z1
(

t1
s

)z2
(

t2
s

)z3

× Γ (z1 + z2 + 1)Γ (−ε− z1 − z2 − z3 − 1)Γ (z2 + z3 + 1)

× Γ (−ε− z2 − z3 − z4 − 1)Γ (z3 + z4 + 1)Γ (ε + z1 + z2 + z3 + z4 + 2) .

(M.2)

In the following we extract the leading behavior of this integral in the limit de-

fined by the scaling (11.6), and we show that this leading behavior is described

in all the regions by a twofold Mellin-Barnes integral, which can be evaluated

in terms of multiple polylogarithms.

M.1 Evaluation of the Mellin-Barnes integral in
Region I

Performing this rescaling (11.6) in the Mellin-Barnes representation (M.2) and

after the change of variable z4 = z − z1 − z2 − z3, we find

ID
5 (1,1, 1, 1, 1; Q2

i ) =
− eγEε (−s)−ε−2

Γ(1− 2ε)

1

(2πi)4

∫ +i∞

−i∞
dz dz1 dz2 dz3

×
(s1

s

)z−z1−z2−z3
(s2

s

)z1−z2−z3
(

t1
s

)z2
(

t2
s

)z3

λz

× Γ (−ε− z1 − 1)Γ (−ε− z + z1 − 1)Γ (z − z1 − z2 + 1)Γ (−z2)

× Γ (ε + z − z2 − z3 + 2)Γ (−z3)Γ (z2 + z3 + 1)

× Γ (−z1 + z2 + z3)Γ (−z + z1 + z2 + z3)Γ (z1 − z3 + 1) .

(M.3)

To obtain the leading behavior in our limit λ → 0 let us follow the strategy

formulated, e.g., in Chap. 4 of [113, 90]. We close the contours to the right, and

we think of the integration over z as the last one, and we analyze how poles in

Γ(. . . − z) with leading behavior λ−2 might arise. There is only one possibil-

ity, coming from the product Γ (−ε− z + z1 − 1)Γ (−ε− z1 − 1). Taking the

residues at z1 = −1− ε + n1, n1 ∈ N, we find

λzΓ (−ε− z + z1 − 1)→ λzΓ (−2ε− 2− z + n1) . (M.4)
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If we now take the residues at z = −2− 2ε + n1 + n2, n2 ∈ N, we find

λzΓ (−2ε− 2− z + n1) → λ−2−2ε+n1+n2 . (M.5)

Since we are only interested in the leading behavior in λ−2, we only keep the

terms in n1 = n2 = 0. Hence, we find a twofold Mellin-Barnes representation

for the pentagon in multi-Regge kinematics,

ID
5 (1,1, 1, 1, 1; Q2

i ) = rΓ eγEε (−κ)−ε

s1s2
I(I)(κ, t1, t2) (M.6)

with

I(I)(κ, t1, t2) =
−1

Γ(1 + ε)Γ(1− ε)2
1

(2πi)2

∫ +i∞

−i∞
dz1 dz2 xz1

1 xz2
2

× Γ (−ε− z1)Γ (−z1)

Γ (−ε− z2)

× Γ (−ε− z1 − z2) Γ (−z2)Γ (z1 + z2 + 1)Γ (ε + z1 + z2 + 1)2 ,

(M.7)

where x1 and x2 are defined in Eq. (11.14). The contours are taken following

the usual Mellin-Barnes prescription, i.e. , the contour should separate the

poles in Γ(. . . + zi) from the poles in Γ(. . . − zi). Note that this expression is

symmetric in x1 and x2, as expected in Region I. We checked that if we close

the integration contours to the right, and take residues, we reproduce exactly

the expression of the pentagon obtained from NDIM, Eq. (11.39).

We evaluate the Mellin-Barnes representation (M.6) and we derive an Euler

integral representation for the pentagon in multi-Regge kinematics. Let us

concentrate only on the Mellin-Barnes integral. We start with the change of

variable z2 = z − z1 and we find

I(I)(κ, t1, t2) =
−1

Γ(1 + ε)Γ(1− ε)2
1

(2πi)2

∫ +i∞

−i∞
dz1 dz xz1

1 xz−z1
2

× Γ(ε + z + 1)2 Γ (−ε− z1) Γ (−z1)Γ (z1 − z)Γ (−ε− z + z1)

× Γ(−ε− z)Γ(z + 1)

(M.8)
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We now replace the Mellin-Barnes integral over z1 by an Euler integral by using

the transformation formula,

1

2πi

∫ +i∞

−i∞
dz1 Γ(−z1)Γ(c− z1)Γ(b + z1)Γ(a + z1)Xz1

= Γ(a)Γ(b + c)

∫ 1

0
dv vb−1 (1− v)a+c−1 (1− (1−X)v)−a,

(M.9)

and we find

I(I)(κ, t1, t2) =
−1

Γ(1 + ε)Γ(1− ε)2
1

2πi

∫ +i∞

−i∞
dz

∫ 1

0
dv xz

2 (1− v)−2ε−z−1

× v−z−1

(

1− v

(

1− x1

x2

))ε+z

Γ(−ε− z)3Γ(z + 1)Γ(ε + z + 1)2.

(M.10)

To continue, we exchange the Euler and the Mellin-Barnes integration. Note

that we must be careful when doing this, because some of the poles in z could

be generated by the Euler integration. We checked numerically that in the

present case the exchange of the two integrations is allowed and produces the

same answer. We now close the z-contour to the right and take residues at

z = n− ε, n ∈ N.

I(I)(κ, t1, t2) = − x−ε
2

2Γ(1 + ε)Γ(1− ε)

∫ 1

0
dv

∞
∑

n=0

(1− ε)n

n!
(−x2)

n

× vε−1−n (1− v)−ε−1−n
(

1− v
(

1− x1

x2

))n

×
{

ln2(1− v) + ln2 v + ln2

(

1− v

(

1− x1

x2

))

+ ln2 x2 + ψ(n + 1)2

+ π2 + 2 ln(1− v) ln v − 2 ln(1− v) ln

(

1− v

(

1− x1

x2

))

− 2 ln v ln

(

1− v

(

1− x1

x2

))

− 2 ln(1− v) ln x2 − 2 ln v lnx2

+ 2 ln

(

1− v

(

1− x1

x2

))

lnx2 + 2 ln(1− v)ψ(n + 1)

− 2 ln

(

1− v

(

1− x1

x2

))

ψ(n + 1)− 2 lnx2 ψ(n + 1)

(M.11)
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+ ψ(−ε + n + 1)2 + 2 ln v ψ(n + 1)− 2 ln(1− v)ψ(−ε + n + 1)

− 2 ln v ψ(−ε + n + 1) + 2 ln

(

1− v

(

1− x1

x2

))

ψ(−ε + n + 1)

+ 2 lnx2 ψ(−ε + n + 1)− 2ψ(n + 1)ψ(−ε+ n + 1)− ψ(1)(n + 1)

+ ψ(1)(−ε + n + 1)

}

.

To continue, we perform the ε-expansion under the integration sign∗

I(I)(κ, t1, t2) = I(I)
0 (x1, x2) + ε I(I)

1 (x1, x2) + O(ε2). (M.12)

We find

I(I)
0 (x1, x2) =

∫ 1

0
dv

i(0)(x1, x2, v)

v2 − x1v + x2v − v − x2
, (M.13)

and

I(I)
1 (x1, x2) =

∫ 1

0
dv

i(1)(x1, x2, v)

v2 + (−x1 + x2 − 1)v − x2
. (M.14)

where i(0) and i(1) are functions depending on (poly)logarithms of weight 2

and 3 respectively in x1, x2 and v (Since the expressions are quite long and

do not add anything new to the discussion, we prefer to show them in Sec-

tion M.3). Note that this implies that I(I)
0 (x1, x2) and I(I)

1 (x1, x2) will have

uniform weight 3 and 4 respectively, as expected. Furthermore note that the

poles in v = 0 and v = 1 have cancelled out. However, we still need to be care-

ful with the quadratic polynomial in the denominator of the integrand, since

it might vanish in the integration region. We analyze this situation in the rest

of this section.

We know already that the phase space boundaries in Region I require

√
x1 +

√
x2 < 1. (M.15)

This subspace of the square [0, 1]× [0, 1] is at the same time the domain of the

integral I(x1, x2; ε). We can divide this domain further into

∗Note that we must be careful when we do this, since the integrals might contain poles
coming from the terms 1/v(1 − v). As we will see in the following however these poles are
spurious and cancel out.
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1. Region I(a): x1 < x2.

2. Region I(b): x2 < x1.

We now turn to the quadratic denominator in Eqs. (M.13) and (M.14). The

roots of this quadratic polynomial are

λ1 ≡ λ1(x1, x2) =
1

2

(

1 + x1 − x2 −
√

λK

)

,

λ2 ≡ λ1(x1, x2) =
1

2

(

1 + x1 − x2 +
√

λK

)

,
(M.16)

where λK denotes the Källen function

λK ≡ λK(x1, x2) = λ(x1, x2,−1) = 1+x2
1 +x2

2 +2x1 +2x2−2x1x2. (M.17)

First, let us note that λK(x1, x2) > 0, ∀ (x1, x2) ∈ [0, 1]× [0, 1], and hence the

square root in Eq. (M.16) is well defined in the Region I. Second, it is easy to

show that on the square [0, 1]× [0, 1] we have,

−1 < λ1(x1, x2) < 0 and 1 < λ2(x1, x2) < 2. (M.18)

For later convenience, let us note at this point the following useful identities

λ1λ2 = −x2,

λ1 + λ2 = 1 + x1 − x2,

λ1 − λ2 = −
√

λK ,
(

1− 1

λ1

)(

1− 1

λ2

)

=
x1

x2
.

(M.19)

From Eq. (M.18) it follows now immediately that the quadratic denominators

in Eqs. (M.13) and (M.14) do not vanish in the whole integration range [0, 1],

and hence all the integrals in Eqs. (M.13) and (M.14) are convergent. Using

partial fractioning and the relations (M.19) we can write

I(I)
0 (x1, x2)

=
1√
λK

∫ 1

0
dv

i(0)(x1, x2, v)

v − λ2
− 1√

λK

∫ 1

0
dv

i(0)(x1, x2, v)

v − λ1
,

(M.20)

and

I(I)
1 (x1, x2)

=
1√
λK

∫ 1

0
dv

i(1)(x1, x2, v)

v − λ2
− 1√

λK

∫ 1

0
dv

i(1)(x1, x2, v)

v − λ1
.

(M.21)
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Let us introduce at this point the function

λ3 ≡ λ3(x1, x2) =
x2

x2 − x1
=

λ1λ2

λ1 + λ2 − 1
. (M.22)

This function appears in i(0) and i(1) through the logarithm

ln

(

1− v

(

1− x1

x2

))

= ln

(

1− v

λ3

)

=

∫ v

0

dt

t− λ3
. (M.23)

It is easy to see that this logarithm is well defined in Region I, since

1. In Region I(a), x1 < x2, and hence λ3 > 1.

2. In Region I(b), x2 < x1, and hence λ3 < 0.

Note however that λ3 diverges on the diagonal x1 = x2. This is not a contra-

diction since

lim
x2→x1

∫ v

0

dt

t− λ3(x1, x2)
= lim

λ3→∞

∫ v

0

dt

t− λ3
= 0, (M.24)

in agreement with

lim
x2→x1

ln

(

1− v

(

1− x1

x2

))

= 0. (M.25)

We now evaluate the integrals I(I)
0 and I(I)

1 explicitly. To this effect, let us

introduce some generalized multiple polylogarithms defined by

G(a, 9w; z) =

∫ z

0
dt f(a, t)G(9w; t), (M.26)

where

f(a, t) =
1

t− a
. (M.27)

If all indices are zero we define

G(90n; z) =

∫ z

1

dt

t
G(90n−1; t) =

1

n!
lnn z. (M.28)

In particular cases the G-functions reduce to ordinary logarithms and polylog-

arithms,

G(9an; z) =
1

n!
lnn

(

1− z

a

)

, G(90n−1, a; z) = −Lin
(z

a

)

. (M.29)
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Note that these definitions are straightforward generalizations of the harmonic

polylogarithms, and hence these functions inherit all the properties of the

HPL’s. In particular they fulfill a shuffle algebra

G(9w1; z)G(9w2; z) =
∑

-w=-w1--w2

G(9w; z). (M.30)

If the weight vector 9w has a parametric dependence on a second variable, then

we obtain multidimensional harmonic polylogarithms. Finally, let us introduce

the following other set of functions, which will be useful to write down the

answer for the pentagon

M(9w) ≡ G(9w; 1). (M.31)

The M -functions defined in this way are in fact Goncharov’s multiple poly-

logarithm (up to a sign) [108, 109]. For a more detailed discussions of these

functions, and their relations to Goncharov’s multiple polylogarithm, see Ap-

pendix G.4. It is clear from the definition that these functions form a shuffle

algebra

M(9w1)M(9w2) =
∑

-w=-w1--w2

M(9w). (M.32)

Using these functions we can easily integrate I(I)
0 and I(I)

1 . We illustrate this

procedure explicitly for the integral
∫ 1

0

dv

v − λ1
ln

(

v

(

x1

x2
− 1

)

+ 1

)

ln(1− v). (M.33)

First we can express all logarithms in terms of the G-functions we defined:

ln

(

v

(

x1

x2
− 1

)

+ 1

)

ln(1− v) = ln

(

1− v

λ3

)

ln(1− v)

= G(λ3; v)G(1; v)

= G(λ3, 1; v) + G(1,λ3; v).

(M.34)

Then we get
∫ 1

0

dv

v − λ1
ln

(

v

(

x1

x2
− 1

)

+ 1

)

ln(1− v)

=

∫ 1

0
dv

G(λ3, 1; v)

v − λ1
+

∫ 1

0
dv

G(1,λ3; v)

v − λ1

= G(λ1,λ3, 1; 1) + G(λ1, 1,λ3; 1)

= M(λ1,λ3, 1) + M(λ1, 1,λ3).

(M.35)
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All other integrals can be performed in exactly the same way, and we can hence

express I(I)
0 as a combination of M -functions. We find

I(I)
0 (x1, x2) =

(M.36)

1√
λK

{

(

1
2 ln2 x2 + π2

2

)

M
(

λ1

)

+
(

− 1
2 ln2 x2 − π2

2

)

M
(

λ2

)

− lnx2M
(

λ1, 0
)

−

lnx2M
(

λ1, 1
)

+ lnx2M
(

λ1,λ3

)

+ lnx2M
(

λ2, 0
)

+ lnx2M
(

λ2, 1
)

−
lnx2M

(

λ2,λ3

)

+ M
(

λ1, 0, 0
)

+ M
(

λ1, 0, 1
)

−M
(

λ1, 0,λ3

)

+ M
(

λ1, 1, 0
)

+

M
(

λ1, 1, 1
)

−M
(

λ1, 1,λ3

)

−M
(

λ1,λ3, 0
)

−M
(

λ1,λ3, 1
)

+ M
(

λ1,λ3,λ3

)

−
M

(

λ2, 0, 0
)

−M
(

λ2, 0, 1
)

+ M
(

λ2, 0,λ3

)

−M
(

λ2, 1, 0
)

−M
(

λ2, 1, 1
)

+

M
(

λ2, 1,λ3

)

+ M
(

λ2,λ3, 0
)

+ M
(

λ2,λ3, 1
)

−M
(

λ2,λ3,λ3

)

}

.

Note that this expression is of uniform weight 3, as expected.

The integration of I(I)
1 can be done in a similar way as for I(I)

0 . However, there

is a slight complication. The function i(1) contains polylogarithms of the form

Lin

(

v(x1 − x2) + x2

v(v − 1)

)

. (M.37)

In order to perform the integration in terms of G-functions, we have to express

these functions in terms of objects of the form G(. . . ; v). In Appendix N.1 we

show that the following identities hold:

Li2
(

v(x1−x2)+x2

v(v−1)

)

=

(M.38)

− 1
2 ln2 x1 + lnx2 lnx1 − ln2 x2 −G(0, 0; v)−G(0, 1; v) + G (0,λ1; v) +

G (0,λ2; v)−G(1, 0; v)−G(1, 1; v) + G (1,λ1; v) + G (1,λ2; v) + G (λ3, 0; v) +

G (λ3, 1; v)−G (λ3,λ1; v)−G (λ3,λ2; v) + G(0; v) ln x2 + G(1; v) lnx2 −
G (λ3; v) lnx2 −M (0,λ1)−M (0,λ2) + M (λ1, 1) + M (λ2, 1)−M (λ3, 0)−
M (λ3, 1) + M (λ3,λ1) + M (λ3,λ2)− π2

6 .
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Li3
(

v(x1−x2)+x2

v(v−1)

)

=

(M.39)

−
(

1
6 ln3 x1 − 1

2G(0; v) ln2 x1 − 1
2G(1; v) ln2 x1 + 1

2G (λ3; v) ln2 x1 −

1
2M (λ3) ln2 x1 + G(0; v) lnx2 lnx1 + G(1; v) lnx2 lnx1 −G (λ3; v) lnx2 lnx1 +

lnx2M (λ3) lnx1 + 1
6π

2 lnx1 −G(0; v) ln2 x2 −G(1; v) ln2 x2 +

G (λ3; v) ln2 x2 − 1
6π

2G(0; v)− 1
6π

2G(1; v) + 1
6π

2G (λ3; v)−G(0, 0, 0; v)−
G(0, 0, 1; v) + G (0, 0,λ1; v) + G (0, 0,λ2; v)−G(0, 1, 0; v)−G(0, 1, 1; v) +

G (0, 1,λ1; v) + G (0, 1,λ2; v) + G (0,λ3, 0; v) + G (0,λ3, 1; v)−G (0,λ3,λ1; v)−
G (0,λ3,λ2; v)−G(1, 0, 0; v)−G(1, 0, 1; v) + G (1, 0,λ1; v) + G (1, 0,λ2; v)−
G(1, 1, 0; v)−G(1, 1, 1; v) + G (1, 1,λ1; v) + G (1, 1,λ2; v) + G (1,λ3, 0; v) +

G (1,λ3, 1; v)−G (1,λ3,λ1; v)−G (1,λ3,λ2; v)+G (λ3, 0, 0; v)+G (λ3, 0, 1; v)−
G (λ3, 0,λ1; v)−G (λ3, 0,λ2; v)+G (λ3, 1, 0; v)+G (λ3, 1, 1; v)−G (λ3, 1,λ1; v)−
G (λ3, 1,λ2; v)−G (λ3,λ3, 0; v)−G (λ3,λ3, 1; v) + G (λ3,λ3,λ1; v) +

G (λ3,λ3,λ2; v) + G(0, 0; v) lnx2 + G(0, 1; v) lnx2 −G (0,λ3; v) lnx2 +

G(1, 0; v) lnx2 + G(1, 1; v) lnx2 −G (1,λ3; v) lnx2 −G (λ3, 0; v) lnx2 −
G (λ3, 1; v) lnx2 + G (λ3,λ3; v) lnx2 − ln2 x2M (λ3)− 1

6π
2M (λ3)−

G(0; v)M (0,λ1)−G(1; v)M (0,λ1) + G (λ3; v)M (0,λ1)−M (λ3)M (0,λ1)−
G(0; v)M (0,λ2)−G(1; v)M (0,λ2) + G (λ3; v)M (0,λ2)−M (λ3)M (0,λ2) +

lnx2M (0,λ3) + G(0; v)M (λ1, 1) + G(1; v)M (λ1, 1)−G (λ3; v) M (λ1, 1) +

M (λ3) M (λ1, 1) + G(0; v)M (λ2, 1) + G(1; v)M (λ2, 1)−G (λ3; v)M (λ2, 1) +

M (λ3) M (λ2, 1)−G(0; v)M (λ3, 0)−G(1; v)M (λ3, 0) + G (λ3; v)M (λ3, 0) +

lnx2M (λ3, 0)−M (λ3)M (λ3, 0)−G(0; v)M (λ3, 1)−G(1; v)M (λ3, 1) +

G (λ3; v)M (λ3, 1)−M (λ3)M (λ3, 1)+G(0; v)M (λ3,λ1)+G(1; v)M (λ3,λ1)−
G (λ3; v)M (λ3,λ1) + M (λ3) M (λ3,λ1) + G(0; v)M (λ3,λ2) +

G(1; v)M (λ3,λ2)−G (λ3; v)M (λ3,λ2)+M (λ3)M (λ3,λ2)− lnx2M (λ3,λ3)−
M (0, 0,λ1)−M (0, 0,λ2) + M (0,λ1, 1) + M (0,λ2, 1)−M (0,λ3, 0)−
M (0,λ3, 1) + M (0,λ3,λ1) + M (0,λ3,λ2)−M (λ1, 1, 1)−M (λ2, 1, 1)−
M (λ3, 0, 0) + M (λ3, 0,λ1) + M (λ3, 0,λ2) + M (λ3, 1, 1)−M (λ3,λ1, 1)−

M (λ3,λ2, 1)+M (λ3,λ3, 0)+ M (λ3,λ3, 1)−M (λ3,λ3,λ1)−M (λ3,λ3,λ2)

)

.
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Using these identities we can express i(1) completely in terms of G and M -

functions, and perform the integration in exactly the same way as for I(I)
0 .

The result is

I(I)
1 (x1, x2) =

(M.40)

1√
λK

{

(

ln2 x2 + π2

6

)

M
(

λ1, 0
)

− 5
6π

2M
(

λ1, 1
)

+
(

1
2 ln2 x2 + π2

2

)

M
(

λ1,λ1

)

+

(

1
2 ln2 x2+ π2

2

)

M
(

λ1,λ2

)

+
(

− 1
2 ln2 x1 +lnx2 lnx1 −2 ln2 x2− π2

3

)

M
(

λ1,λ3

)

+
(

− ln2 x2 − π2

6

)

M
(

λ2, 0
)

+ 5
6π

2M
(

λ2, 1
)

+
(

− 1
2 ln2 x2 − π2

2

)

M
(

λ2,λ1

)

+
(

− 1
2 ln2 x2− π2

2

)

M
(

λ2,λ2

)

+
(

1
2 ln2 x1 −lnx2 lnx1 +2 ln2 x2+ π2

3

)

M
(

λ2,λ3

)

+
(

− 1
2 ln2 x1 + lnx2 lnx1 − ln2 x2 − π2

6

)

M
(

λ3,λ1

)

+
(

1
2 ln2 x1 − lnx2 lnx1 + ln2 x2 + π2

6

)

M
(

λ3,λ2

)

− 2 lnx2M
(

0,λ1,λ1

)

+

lnx2M
(

0,λ1,λ3

)

+ 2 lnx2M
(

0,λ2,λ2

)

− lnx2M
(

0,λ2,λ3

)

+

lnx2M
(

0,λ3,λ1

)

− lnx2M
(

0,λ3,λ2

)

−2 lnx2M
(

λ1, 0, 0
)

− lnx2M
(

λ1, 0,λ1

)

−
lnx2M

(

λ1, 0,λ2

)

+ 2 lnx2M
(

λ1, 0,λ3

)

+ 2 lnx2M
(

λ1, 1, 1
)

+

lnx2M
(

λ1, 1,λ1

)

− lnx2M
(

λ1, 1,λ2

)

− lnx2M
(

λ1, 1,λ3

)

− lnx2M
(

λ1,λ1, 0
)

+

lnx2M
(

λ1,λ1, 1
)

+lnx2M
(

λ1,λ1,λ3

)

− lnx2M
(

λ1,λ2, 0
)

− lnx2M
(

λ1,λ2, 1
)

+

lnx2M
(

λ1,λ2,λ3

)

+ 2 lnx2M
(

λ1,λ3, 0
)

− lnx2M
(

λ1,λ3, 1
)

+

lnx2M
(

λ1,λ3,λ1

)

+ lnx2M
(

λ1,λ3,λ2

)

− 2 lnx2M
(

λ1,λ3,λ3

)

+

2 lnx2M
(

λ2, 0, 0
)

+lnx2M
(

λ2, 0,λ1

)

+lnx2M
(

λ2, 0,λ2

)

−2 lnx2M
(

λ2, 0,λ3

)

−
2 lnx2M

(

λ2, 1, 1
)

+lnx2M
(

λ2, 1,λ1

)

− lnx2M
(

λ2, 1,λ2

)

+lnx2M
(

λ2, 1,λ3

)

+

lnx2M
(

λ2,λ1, 0
)

+lnx2M
(

λ2,λ1, 1
)

− lnx2M
(

λ2,λ1,λ3

)

+lnx2M
(

λ2,λ2, 0
)

−
lnx2M

(

λ2,λ2, 1
)

− lnx2M
(

λ2,λ2,λ3

)

− 2 lnx2M
(

λ2,λ3, 0
)

+

lnx2M
(

λ2,λ3, 1
)

− lnx2M
(

λ2,λ3,λ1

)

− lnx2M
(

λ2,λ3,λ2

)

+

2 lnx2M
(

λ2,λ3,λ3

)

− lnx2M
(

λ3, 1,λ1

)

+ lnx2M
(

λ3, 1,λ2

)

−
lnx2M

(

λ3,λ1, 1
)

+ 2 lnx2M
(

λ3,λ1,λ1

)

− lnx2M
(

λ3,λ1,λ3

)

+

lnx2M
(

λ3,λ2, 1
)

− 2 lnx2M
(

λ3,λ2,λ2

)

+ lnx2M
(

λ3,λ2,λ3

)

−
lnx2M

(

λ3,λ3,λ1

)

+ lnx2M
(

λ3,λ3,λ2

)

− 2M
(

0, 0,λ1,λ1

)

+ 2M
(

0, 0,λ2,λ2

)

−
M

(

0,λ1, 0,λ1

)

−M
(

0,λ1, 0,λ2

)

+ M
(

0,λ1, 1,λ1

)

−M
(

0,λ1, 1,λ2

)

+

2M
(

0,λ1,λ1, 1
)

− 2M
(

0,λ1,λ1,λ3

)

−M
(

0,λ1,λ3, 0
)

−M
(

0,λ1,λ3, 1
)

−
M

(

0,λ1,λ3,λ1

)

+ M
(

0,λ1,λ3,λ2

)

+ M
(

0,λ2, 0,λ1

)

+ M
(

0,λ2, 0,λ2

)

+
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M
(

0,λ2, 1,λ1

)

−M
(

0,λ2, 1,λ2

)

− 2M
(

0,λ2,λ2, 1
)

+ 2M
(

0,λ2,λ2,λ3

)

+

M
(

0,λ2,λ3, 0
)

+ M
(

0,λ2,λ3, 1
)

−M
(

0,λ2,λ3,λ1

)

+ M
(

0,λ2,λ3,λ2

)

−
M

(

0,λ3, 0,λ1

)

+ M
(

0,λ3, 0,λ2

)

−M
(

0,λ3, 1,λ1

)

+ M
(

0,λ3, 1,λ2

)

−
M

(

0,λ3,λ1, 0
)

−M
(

0,λ3,λ1, 1
)

+ M
(

0,λ3,λ2, 0
)

+ M
(

0,λ3,λ2, 1
)

+

2M
(

λ1, 0, 0, 0
)

−M
(

λ1, 0, 0,λ1

)

−M
(

λ1, 0, 0,λ2

)

−M
(

λ1, 0, 0,λ3

)

−
2M

(

λ1, 0, 1, 1
)

+ M
(

λ1, 0, 1,λ3

)

+ M
(

λ1, 0,λ1, 1
)

−M
(

λ1, 0,λ1,λ3

)

+

M
(

λ1, 0,λ2, 1
)

−M
(

λ1, 0,λ2,λ3

)

− 2M
(

λ1, 0,λ3, 0
)

− 2M
(

λ1, 1, 0, 1
)

+

M
(

λ1, 1, 0,λ3

)

− 2M
(

λ1, 1, 1, 0
)

− 4M
(

λ1, 1, 1, 1
)

−M
(

λ1, 1, 1,λ1

)

+

M
(

λ1, 1, 1,λ2

)

+ 3M
(

λ1, 1, 1,λ3

)

−M
(

λ1, 1,λ1, 1
)

+ M
(

λ1, 1,λ1,λ3

)

+

M
(

λ1, 1,λ2, 1
)

−M
(

λ1, 1,λ2,λ3

)

+ M
(

λ1, 1,λ3, 0
)

+ 3M
(

λ1, 1,λ3, 1
)

+

M
(

λ1, 1,λ3,λ1

)

−M
(

λ1, 1,λ3,λ2

)

− 2M
(

λ1, 1,λ3,λ3

)

+ M
(

λ1,λ1, 0, 0
)

+

M
(

λ1,λ1, 0, 1
)

−M
(

λ1,λ1, 0,λ3

)

+ M
(

λ1,λ1, 1, 0
)

−M
(

λ1,λ1, 1, 1
)

+

M
(

λ1,λ1, 1,λ3

)

−M
(

λ1,λ1,λ3, 0
)

+ M
(

λ1,λ1,λ3, 1
)

+ M
(

λ1,λ1,λ3,λ3

)

+

M
(

λ1,λ2, 0, 0
)

+ M
(

λ1,λ2, 0, 1
)

−M
(

λ1,λ2, 0,λ3

)

+ M
(

λ1,λ2, 1, 0
)

+

M
(

λ1,λ2, 1, 1
)

−M
(

λ1,λ2, 1,λ3

)

−M
(

λ1,λ2,λ3, 0
)

−M
(

λ1,λ2,λ3, 1
)

+

M
(

λ1,λ2,λ3,λ3

)

− 3M
(

λ1,λ3, 0, 0
)

+ 3M
(

λ1,λ3, 1, 1
)

+ M
(

λ1,λ3, 1,λ1

)

−
M

(

λ1,λ3, 1,λ2

)

− 2M
(

λ1,λ3, 1,λ3

)

+ M
(

λ1,λ3,λ1, 1
)

+ M
(

λ1,λ3,λ1,λ3

)

−
M

(

λ1,λ3,λ2, 1
)

+ M
(

λ1,λ3,λ2,λ3

)

− 2M
(

λ1,λ3,λ3, 1
)

+ M
(

λ1,λ3,λ3,λ1

)

+

M
(

λ1,λ3,λ3,λ2

)

− 2M
(

λ2, 0, 0, 0
)

+ M
(

λ2, 0, 0,λ1

)

+ M
(

λ2, 0, 0,λ2

)

+

M
(

λ2, 0, 0,λ3

)

+ 2M
(

λ2, 0, 1, 1
)

−M
(

λ2, 0, 1,λ3

)

−M
(

λ2, 0,λ1, 1
)

+

M
(

λ2, 0,λ1,λ3

)

−M
(

λ2, 0,λ2, 1
)

+ M
(

λ2, 0,λ2,λ3

)

+ 2M
(

λ2, 0,λ3, 0
)

+

2M
(

λ2, 1, 0, 1
)

−M
(

λ2, 1, 0,λ3

)

+ 2M
(

λ2, 1, 1, 0
)

+ 4M
(

λ2, 1, 1, 1
)

−
M

(

λ2, 1, 1,λ1

)

+ M
(

λ2, 1, 1,λ2

)

− 3M
(

λ2, 1, 1,λ3

)

−M
(

λ2, 1,λ1, 1
)

+

M
(

λ2, 1,λ1,λ3

)

+ M
(

λ2, 1,λ2, 1
)

−M
(

λ2, 1,λ2,λ3

)

−M
(

λ2, 1,λ3, 0
)

−
3M

(

λ2, 1,λ3, 1
)

+ M
(

λ2, 1,λ3,λ1

)

−M
(

λ2, 1,λ3,λ2

)

+ 2M
(

λ2, 1,λ3,λ3

)

−
M

(

λ2,λ1, 0, 0
)

−M
(

λ2,λ1, 0, 1
)

+ M
(

λ2,λ1, 0,λ3

)

−M
(

λ2,λ1, 1, 0
)

−
M

(

λ2,λ1, 1, 1
)

+ M
(

λ2,λ1, 1,λ3

)

+ M
(

λ2,λ1,λ3, 0
)

+ M
(

λ2,λ1,λ3, 1
)

−
M

(

λ2,λ1,λ3,λ3

)

−M
(

λ2,λ2, 0, 0
)

−M
(

λ2,λ2, 0, 1
)

+ M
(

λ2,λ2, 0,λ3

)

−
M

(

λ2,λ2, 1, 0
)

+ M
(

λ2,λ2, 1, 1
)

−M
(

λ2,λ2, 1,λ3

)

+ M
(

λ2,λ2,λ3, 0
)

−
M

(

λ2,λ2,λ3, 1
)

−M
(

λ2,λ2,λ3,λ3

)

+ 3M
(

λ2,λ3, 0, 0
)

− 3M
(

λ2,λ3, 1, 1
)

+

M
(

λ2,λ3, 1,λ1

)

−M
(

λ2,λ3, 1,λ2

)

+ 2M
(

λ2,λ3, 1,λ3

)

+ M
(

λ2,λ3,λ1, 1
)

−
M

(

λ2,λ3,λ1,λ3

)

−M
(

λ2,λ3,λ2, 1
)

−M
(

λ2,λ3,λ2,λ3

)

+ 2M
(

λ2,λ3,λ3, 1
)

−
M

(

λ2,λ3,λ3,λ1

)

−M
(

λ2,λ3,λ3,λ2

)

−M
(

λ3, 0, 0,λ1

)

+ M
(

λ3, 0, 0,λ2

)

−
M

(

λ3, 0,λ1, 0
)

−M
(

λ3, 0,λ1,λ3

)

+ M
(

λ3, 0,λ2, 0
)

+ M
(

λ3, 0,λ2,λ3

)

−
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M
(

λ3, 0,λ3,λ1

)

+ M
(

λ3, 0,λ3,λ2

)

+ M
(

λ3, 1, 1,λ1

)

−M
(

λ3, 1, 1,λ2

)

+

M
(

λ3, 1,λ1, 1
)

−M
(

λ3, 1,λ1,λ3

)

−M
(

λ3, 1,λ2, 1
)

+ M
(

λ3, 1,λ2,λ3

)

−
M

(

λ3, 1,λ3,λ1

)

+ M
(

λ3, 1,λ3,λ2

)

−M
(

λ3,λ1, 0, 0
)

−M
(

λ3,λ1, 0,λ3

)

+

M
(

λ3,λ1, 1, 1
)

−M
(

λ3,λ1, 1,λ3

)

+ 2M
(

λ3,λ1,λ1,λ3

)

−M
(

λ3,λ1,λ3, 0
)

−
M

(

λ3,λ1,λ3, 1
)

+ 2M
(

λ3,λ1,λ3,λ1

)

+ M
(

λ3,λ2, 0, 0
)

+ M
(

λ3,λ2, 0,λ3

)

−
M

(

λ3,λ2, 1, 1
)

+ M
(

λ3,λ2, 1,λ3

)

− 2M
(

λ3,λ2,λ2,λ3

)

+ M
(

λ3,λ2,λ3, 0
)

+

M
(

λ3,λ2,λ3, 1
)

− 2M
(

λ3,λ2,λ3,λ2

)

−M
(

λ3,λ3, 0,λ1

)

+ M
(

λ3,λ3, 0,λ2

)

−
M

(

λ3,λ3, 1,λ1

)

+ M
(

λ3,λ3, 1,λ2

)

−M
(

λ3,λ3,λ1, 0
)

−M
(

λ3,λ3,λ1, 1
)

+

2M
(

λ3,λ3,λ1,λ1

)

+ M
(

λ3,λ3,λ2, 0
)

+ M
(

λ3,λ3,λ2, 1
)

− 2M
(

λ3,λ3,λ2,λ2

)

+

M
(

λ2

)

(

− 1
6 ln3 x1 + 1

2 lnx2 ln2 x1 − ln2 x2 lnx1 − 1
6π

2 lnx1 + ln3 x2 +

1
3π

2 lnx2 − ζ3
)

+ M
(

λ1

)

(

1
6 ln3 x1 − 1

2 lnx2 ln2 x1 + ln2 x2 lnx1 + 1
6π

2 lnx1 −

ln3 x2 − 1
3π

2 lnx2 + ζ3
)

}

.

Note that I(I)
1 is of uniform weight 4, as expected.

M.2 Evaluation of the Mellin-Barnes integral in
Region II

In this section we evaluate the pentagon in Region II. Since the Regions II(a)

and II(b) are related simply by x1 ↔ x2, we only concentrate on Region II(a).

The procedure is very similar to Region I, i.e. we start by deriving a twofold

Mellin-Barnes representation for the pentagon in this region, which we then

reduce to an Euler-type integral, and finally we express the result in terms of

Goncharov’s multiple polylogarithms. Performing this rescaling (11.6) in the

Mellin-Barnes representation (M.2) and after the change of variable

z3 → z′ − z1 − z2,

z4 → −z − 2z′ + z1,
(M.41)
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we find

ID
5 (1, 1, 1, 1, 1; Q2

i ) =
− eγEε (−s)−ε−2

Γ(1− 2ε)

1

(2πi)4

∫ +i∞

−i∞
dz dz′ dz1 dz2

×
(s1

s

)−z−2z′+z1
(s2

s

)z1
(

t1
s

)z2
(

t2
s

)−z1−z2+z′

λ−z

× Γ (−z1)Γ (−z2)Γ (z1 + z2 + 1)Γ (−ε− z′ − 1)Γ (ε− z + z1 − z′ + 2)

× Γ (−z − z2 − z′ + 1)Γ (z1 + z2 − z′)Γ (−ε+ z + z′ − 1)Γ (−z1 + z′ + 1)

× Γ (z + z1 + 2z2 + 2 (−z1 − z2 + z′)) .

(M.42)

We think of the integration over z as the last one, and we analyze how poles

in Γ(. . . + z) with leading behavior λ−2 might arise. There is only one possi-

bility, coming from the product Γ (−ε− z′ − 1)Γ (−ε + z + z′ − 1). Taking the

residues at z′ = −1− ε + n′, n′ ∈ N, we find

λ−zΓ (−ε + z + z′ − 1)→ λ−zΓ (−2ε− 2 + z + n′) . (M.43)

Taking the residues at z = 2 + 2ε− n− v′, n ∈ N, we find

λzΓ (−2ε− 2 + z + n′) → λ−2−2ε+n+n′

. (M.44)

Since we are only interested in the leading behavior in λ−2, we only keep the

terms in n = n′ = 0. Hence, we find a twofold Mellin-Barnes representation

for the pentagon in multi-Regge kinematics,

ID
5 (1,1, 1, 1, 1; Q2

i ) = rΓ eγEε (−κ)−ε

st2
I(IIa)(κ, t1, t2) (M.45)

with

I(IIa)(κ, t1, t2) =
−yε1

Γ(1 + ε)Γ(1− ε)2
1

(2πi)2

∫ +i∞

−i∞
dz1 dz2 yz1

1 yz2
2

× Γ (−ε− z1)Γ (−z1)
2 Γ (z1 + 1)Γ (−ε− z2)Γ (−z2)

× Γ (z1 + z2 + 1)Γ (ε + z1 + z2 + 1) ,

(M.46)

where y1 and y2 are defined in Eq. (11.18). The contours are taken following

the usual Mellin-Barnes prescription, i.e. , the contour should separate the

poles in Γ(. . . + zi) from the poles in Γ(. . .− zi). We checked that if we close
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the integration contours to the right, and take residues, we reproduce exactly

the expression of the pentagon obtained from NDIM, Eq. (11.22).

We now evaluate the Mellin-Barnes representation (M.45) and we derive an

Euler integral representation for the pentagon in multi-Regge kinematics. Let

us concentrate only on the Mellin-Barnes integral. We can now use the iden-

tity (M.9), and we checked again numerically that we can exchange the Euler

and the Mellin-Barnes integration. We find

I(IIa)(κ, t1, t2) =
−yε1

Γ(1 + ε)Γ(1− ε)2
1

2πi

∫ 1

0
dv

∫ +i∞

−i∞
dz1 (1− v)z1−εvε+z1

× yz1
1 (1− v (1− y2))

−z1−1 Γ (−ε− z1)Γ (−z1)
2 Γ (z1 + 1)3 .

(M.47)

Finally, we close the z1-contour to the right and take residues at z1 = n1 −
ε, n1 ∈ N. As in the case of I(I), we can sum up the series of residues and

expand the integrand in a power series in ε,

I(IIa)(κ, t1, t2) = I(IIa)
0 (y1, y2) + ε I(IIa)

1 (y1, y2) + O(ε2). (M.48)

We find

I(IIa)
0 (y1, y2) =

∫ 1

0
dv

j(0)(y1, y2, v)

(y1v2 − y1v − y2v + v − 1)
, (M.49)

and

I(IIa)
1 (y1, y2) =

∫ 1

0
dv

j(1)(y1, y2, v)

(y1v2 − y1v − y2v + v − 1)
. (M.50)

where j(0) and j(1) are functions depending on (poly)logarithms of weight 2 and

3 respectively in y1, y2 and v (See Section M.4). Note that this implies that

I(IIa)
0 (y1, y2) and I(IIa)

1 (y1, y2) will have uniform weight 3 and 4 respectively,

as expected. Furthermore note that the poles in v = 0 and v = 1 have cancelled

out. We need however still to be careful with the quadratic polynomial in the

denominator of the integrand, since it might vanish in the integration region.

We will analyze this situation in the rest of this section.

We know already that the phase space boundaries in Region II(a) require

−
√

x1 +
√

x2 > 1. (M.51)
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Since this implies x2 > 1 and x2 > x1, we get from Eq. (11.18) that 0 < y1, y2 <

1. We now turn to the quadratic denominator in Eqs. (M.49) and (M.50). The

roots of this quadratic polynomial are

λ′
1 ≡ λ′

1(y1, y2) =
1

2y1

(

−1 + y1 + y2 −
√

λ′
K

)

,

λ′
2 ≡ λ′

1(y1, y2) =
1

2y1

(

−1 + y1 + y2 +
√

λ′
K

)

,

(M.52)

where λ′
K denotes the Källen function

λ′
K ≡ λ′

K(y1, y2) = λ(−y1, y2, 1) = 1+ y2
1 + y2

2 + 2y1− 2y2 + 2y1y2. (M.53)

First, let us note that λ′
K(y1, y2) > 0 everywhere in Region II(a), and hence

the square root in Eq. (M.52) is well-defined. Second, it is easy to show that

we have,

−1 < λ′
1(y1, y2) < 0 and 1 < λ′

2(y1, y2) < 2. (M.54)

For later convenience, let us note at this point the following useful identities

λ′
1λ

′
2 =

−1

y2
,

λ′
1 + λ′

2 =
−1 + y1 − y2

y1
,

λ′
1 − λ′

2 = −
√

λ′
K

y1
,

(

1− 1

λ′
1

)(

1− 1

λ′
2

)

= y2.

(M.55)

From Eq. (M.54) it follows now immediately that the quadratic denominators

in Eqs. (M.49) and (M.50) do not vanish in the whole integration v ∈ [0, 1],

and hence all the integrals in Eqs. (M.49) and (M.50) are convergent. Using

partial fractioning and the relations (M.55) we can write

I(IIa)
0 (y1, y2)

=
−1

√

λ′
K

∫ 1

0
dv

j(0)(y1, y2, v)

v − λ2
+

1
√

λ′
K

∫ 1

0
dv

j(0)(y1, y2, v)

v − λ1
,

(M.56)

and

I(IIa)
1 (y1, y2)

=
−1

√

λ′
K

∫ 1

0
dv

j(1)(y1, y2, v)

v − λ2
+

1
√

λ′
K

∫ 1

0
dv

j(1)(y1, y2, v)

v − λ1
.

(M.57)
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Let us conclude this section by introducing the function

λ′
3 ≡ λ′

3(y1, y2) =
1

1− y2
=

1

1− t1/t2
= λ3. (M.58)

This function appears in j(0) and j(1) through the logarithm

ln (1− v (1− y2)) = ln

(

1− v

λ′
3

)

=

∫ v

0

dt

t− λ′
3

. (M.59)

We now evaluate the integrals I(IIa)
0 and I(IIa)

1 explicitly. For I(IIa)
0 , we find

I(IIa)
0 (y1, y2) =

(M.60)

1√
λ′

K

{

(

− 1
2 ln2 y1 − π2

2

)

M
(

λ′
1

)

+
(

1
2 ln2 y1 + π2

2

)

M
(

λ′
2

)

− ln y1 M
(

λ′
1, 0

)

−

ln y1 M
(

λ′
1, 1

)

+ ln y1 M
(

λ′
1,λ

′
3

)

+ ln y1 M
(

λ′
2, 0

)

+ ln y1 M
(

λ′
2, 1

)

−
ln y1 M

(

λ′
2,λ

′
3

)

−M
(

λ′
1, 0, 0

)

−M
(

λ′
1, 0, 1

)

+ M
(

λ′
1, 0,λ′

3

)

−M
(

λ′
1, 1, 0

)

−
M

(

λ′
1, 1, 1

)

+ M
(

λ′
1, 1,λ′

3

)

+ M
(

λ′
1,λ

′
3, 0

)

+ M
(

λ′
1,λ

′
3, 1

)

−M
(

λ′
1,λ

′
3,λ

′
3

)

+

M
(

λ′
2, 0, 0

)

+ M
(

λ′
2, 0, 1

)

−M
(

λ′
2, 0,λ′

3

)

+ M
(

λ′
2, 1, 0

)

+ M
(

λ′
2, 1, 1

)

−

M
(

λ′
2, 1,λ′

3

)

−M
(

λ′
2,λ

′
3, 0

)

−M
(

λ′
2,λ

′
3, 1

)

+ M
(

λ′
2,λ

′
3,λ

′
3

)

}

.

Note that this expression is of uniform weight 3, as expected.

The integration of I(IIa)
1 can be done in a similar way as for I(IIa)

0 . However,

there is again a slight complication. The function j(1) contains polylogarithms

of the form

Lin

(

y2v − v + 1

v(v − 1)y1

)

. (M.61)

In order to perform the integration in terms of G-functions, we have to express

these functions in terms of objects of the form G(. . . ; v). In Appendix N.2 we

show that the following identities hold:

Li2
(

y2v−v+1
v(v−1)y1

)

=

(M.62)
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− 1
2 ln2

(

y2

y1

)

−G(0, 0; v)−G(0, 1; v)−G (0,λ′
1; 1) + G (0,λ′

1; v)−G (0,λ′
2; 1) +

G (0,λ′
2; v)−G(1, 0; v)−G(1, 1; v) + G (1,λ′

1; v) + G (1,λ′
2; v) + G (λ′

1, 1; 1) +

G (λ′
2, 1; 1)−G (λ′

3, 0; 1) + G (λ′
3, 0; v)−G (λ′

3, 1; 1) + G (λ′
3, 1; v) +

G (λ′
3,λ

′
1; 1)−G (λ′

3,λ
′
1; v) + G (λ′

3,λ
′
2; 1)−G (λ′

3,λ
′
2; v)−G(0; v) ln y1 −

G(1; v) ln y1 + G (λ′
3; v) ln y1 − ln y1 ln y2 − π2

6 .

Li3
(

y2v−v+1
v(v−1)y1

)

=

(M.63)
1
6 ln3

(

y2

y1

)

− 1
2G(0; v) ln2

(

y2

y1

)

− 1
2G(1; v) ln2

(

y2

y1

)

− 1
2G (λ′

3; 1) ln2
(

y2

y1

)

+

1
2G (λ′

3; v) ln2
(

y2

y1

)

+ 1
6π

2 ln
(

y2

y1

)

− 1
6π

2G(0; v)− 1
6π

2G(1; v)− 1
6π

2G (λ′
3; 1) +

1
6π

2G (λ′
3; v)−G(0; v)G (0,λ′

1; 1)−G(1; v)G (0,λ′
1; 1)−G (λ′

3; 1)G (0,λ′
1; 1) +

G (λ′
3; v)G (0,λ′

1; 1)−G(0; v)G (0,λ′
2; 1)−G(1; v)G (0,λ′

2; 1)−
G (λ′

3; 1)G (0,λ′
2; 1) + G (λ′

3; v) G (0,λ′
2; 1) + G(0; v)G (λ′

1, 1; 1) +

G(1; v)G (λ′
1, 1; 1) + G (λ′

3; 1)G (λ′
1, 1; 1)−G (λ′

3; v) G (λ′
1, 1; 1) +

G(0; v)G (λ′
2, 1; 1) + G(1; v)G (λ′

2, 1; 1) + G (λ′
3; 1)G (λ′

2, 1; 1)−
G (λ′

3; v)G (λ′
2, 1; 1)−G(0; v)G (λ′

3, 0; 1)−G(1; v)G (λ′
3, 0; 1)−

G (λ′
3; 1)G (λ′

3, 0; 1) + G (λ′
3; v) G (λ′

3, 0; 1)−G(0; v)G (λ′
3, 1; 1)−

G(1; v)G (λ′
3, 1; 1)−G (λ′

3; 1)G (λ′
3, 1; 1) + G (λ′

3; v) G (λ′
3, 1; 1) +

G(0; v)G (λ′
3,λ

′
1; 1) + G(1; v)G (λ′

3,λ
′
1; 1) + G (λ′

3; 1)G (λ′
3,λ

′
1; 1)−

G (λ′
3; v)G (λ′

3,λ
′
1; 1) + G(0; v)G (λ′

3,λ
′
2; 1) + G(1; v)G (λ′

3,λ
′
2; 1) +

G (λ′
3; 1)G (λ′

3,λ
′
2; 1)−G (λ′

3; v) G (λ′
3,λ

′
2; 1) + G(0, 0, 0, 1)−G(0, 0, 0; v)−

G(0, 0, 1; v)−G (0, 0,λ′
1; 1) + G (0, 0,λ′

1; v)−G (0, 0,λ′
2; 1) + G (0, 0,λ′

2; v)−
G(0, 1, 0; v)−G(0, 1, 1; v) + G (0, 1,λ′

1; v) + G (0, 1,λ′
2; v) + G (0,λ′

1, 1; 1) +

G (0,λ′
2, 1; 1)−G (0,λ′

3, 0; 1) + G (0,λ′
3, 0; v)−G (0,λ′

3, 1; 1) + G (0,λ′
3, 1; v) +

G (0,λ′
3,λ

′
1; 1)−G (0,λ′

3,λ
′
1; v) + G (0,λ′

3,λ
′
2; 1)−G (0,λ′

3,λ
′
2; v)−

G(1, 0, 0; v)−G(1, 0, 1; v) + G (1, 0,λ′
1; v) + G (1, 0,λ′

2; v)−G(1, 1, 0; v)−
G(1, 1, 1; v) + G (1, 1,λ′

1; v) + G (1, 1,λ′
2; v) + G (1,λ′

3, 0; v) + G (1,λ′
3, 1; v)−

G (1,λ′
3,λ

′
1; v)−G (1,λ′

3,λ
′
2; v)−G (λ′

1, 1, 1; 1)−G (λ′
2, 1, 1; 1)−G (λ′

3, 0, 0; 1)+

G (λ′
3, 0, 0; v) + G (λ′

3, 0, 1; v) + G (λ′
3, 0,λ′

1; 1)−G (λ′
3, 0,λ′

1; v) +

G (λ′
3, 0,λ′

2; 1)−G (λ′
3, 0,λ′

2; v)+G (λ′
3, 1, 0; v)+G (λ′

3, 1, 1; 1)+G (λ′
3, 1, 1; v)−

G (λ′
3, 1,λ′

1; v)−G (λ′
3, 1,λ′

2; v)−G (λ′
3,λ

′
1, 1; 1)−G (λ′

3,λ
′
2, 1; 1) +

G (λ′
3,λ

′
3, 0; 1)−G (λ′

3,λ
′
3, 0; v) + G (λ′

3,λ
′
3, 1; 1)−G (λ′

3,λ
′
3, 1; v)−

G (λ′
3,λ

′
3,λ

′
1; 1) + G (λ′

3,λ
′
3,λ

′
1; v)−G (λ′

3,λ
′
3,λ

′
2; 1) + G (λ′

3,λ
′
3,λ

′
2; v) +
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G(0, 0, 1) ln (y1)−G(0, 0; v) ln (y1)−G(0, 1; v) ln (y1)−G (0,λ′
3; 1) ln (y1) +

G (0,λ′
3; v) ln (y1)−G(1, 0; v) ln (y1)−G(1, 1; v) ln (y1) + G (1,λ′

3; v) ln (y1)−
G (λ′

3, 0; 1) ln (y1) + G (λ′
3, 0; v) ln (y1) + G (λ′

3, 1; v) ln (y1) +

G (λ′
3,λ

′
3; 1) ln (y1)−G (λ′

3,λ
′
3; v) ln (y1)−G(0; v) ln (y1) ln (y2)−

G(1; v) ln (y1) ln (y2)−G (λ′
3; 1) ln (y1) ln (y2) + G (λ′

3; v) ln (y1) ln (y2) .

Using these identities we can express j(1) completely in terms of G and M -

functions, and perform the integration in exactly the same way as for I(IIa)
0 .

The result is

I(IIa)
1 (y1, y2) =

(M.64)

1√
λ′

K

{

(

−2 ln2 y1 − ln2 y2− π2

2

)

M
(

λ′
1, 0

)

+
(

− ln2 y1 − ln2 y2 + π2

2

)

M
(

λ′
1, 1

)

+

(

− 1
2 ln2 y1 − π2

2

)

M
(

λ′
1,λ

′
1

)

+
(

− 1
2 ln2 y1 − π2

2

)

M
(

λ′
1,λ

′
2

)

+
(

3
2 ln2 y1 + 1

2 ln2 y2 + π2

3

)

M
(

λ′
1,λ

′
3

)

+
(

2 ln2 y1 + ln2 y2 + π2

2

)

M
(

λ′
2, 0

)

+
(

ln2 y1 + ln2 y2 − π2

2

)

M
(

λ′
2, 1

)

+
(

1
2 ln2 y1 + π2

2

)

M
(

λ′
2,λ

′
1

)

+
(

1
2 ln2 y1 +

π2

2

)

M
(

λ′
2,λ

′
2

)

+
(

− 3
2 ln2 y1 − 1

2 ln2 y2 − π2

3

)

M
(

λ′
2,λ

′
3

)

+
(

− 1
2 ln2 y1 −

1
2 ln2 y2 − π2

6

)

M
(

λ′
3,λ

′
1

)

+
(

1
2 ln2 y1 + 1

2 ln2 y2 + π2

6

)

M
(

λ′
3,λ

′
2

)

−2 ln y1 M
(

0,λ′
1,λ

′
1

)

− ln y1 M
(

0,λ′
1,λ

′
3

)

+

2 ln y1 M
(

0,λ′
2,λ

′
2

)

+ln y1 M
(

0,λ′
2,λ

′
3

)

−ln y1 M
(

0,λ′
3,λ

′
1

)

+ln y1 M
(

0,λ′
3,λ

′
2

)

−
4 ln y1 M

(

λ′
1, 0, 0

)

−2 ln y1 M
(

λ′
1, 0, 1

)

−ln y1 M
(

λ′
1, 0,λ′

1

)

−ln y1 M
(

λ′
1, 0,λ′

2

)

+

2 ln y1 M
(

λ′
1, 0,λ′

3

)

−2 ln y1 M
(

λ′
1, 1, 0

)

+ln y1 M
(

λ′
1, 1,λ′

1

)

−ln y1 M
(

λ′
1, 1,λ′

2

)

+

ln y1 M
(

λ′
1, 1,λ′

3

)

−ln y1 M
(

λ′
1,λ

′
1, 0

)

+ln y1 M
(

λ′
1,λ

′
1, 1

)

+ln y1 M
(

λ′
1,λ

′
1,λ

′
3

)

−
ln y1 M

(

λ′
1,λ

′
2, 0

)

− ln y1 M
(

λ′
1,λ

′
2, 1

)

+ ln y1 M
(

λ′
1,λ

′
2,λ

′
3

)

+

2 ln y1 M
(

λ′
1,λ

′
3, 0

)

+ ln y1 M
(

λ′
1,λ

′
3, 1

)

+ ln y1 M
(

λ′
1,λ

′
3,λ

′
1

)

+

ln y1 M
(

λ′
1,λ

′
3,λ

′
2

)

− 2 ln y1 M
(

λ′
1,λ

′
3,λ

′
3

)

+ 4 ln y1 M
(

λ′
2, 0, 0

)

+

2 ln y1 M
(

λ′
2, 0, 1

)

+ln y1 M
(

λ′
2, 0,λ′

1

)

+ln y1 M
(

λ′
2, 0,λ′

2

)

−2 ln y1 M
(

λ′
2, 0,λ′

3

)

+

2 ln y1 M
(

λ′
2, 1, 0

)

+ln y1 M
(

λ′
2, 1,λ′

1

)

− ln y1 M
(

λ′
2, 1,λ′

2

)

− ln y1 M
(

λ′
2, 1,λ′

3

)

+

ln y1 M
(

λ′
2,λ

′
1, 0

)

+ln y1 M
(

λ′
2,λ

′
1, 1

)

−ln y1 M
(

λ′
2,λ

′
1,λ

′
3

)

+ln y1 M
(

λ′
2,λ

′
2, 0

)

−
ln y1 M

(

λ′
2,λ

′
2, 1

)

− ln y1 M
(

λ′
2,λ

′
2,λ

′
3

)

− 2 ln y1 M
(

λ′
2,λ

′
3, 0

)

−
ln y1 M

(

λ′
2,λ

′
3, 1

)

− ln y1 M
(

λ′
2,λ

′
3,λ

′
1

)

− ln y1 M
(

λ′
2,λ

′
3,λ

′
2

)

+
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2 ln y1 M
(

λ′
2,λ

′
3,λ

′
3

)

− 2 ln y1 M
(

λ′
3, 0,λ′

1

)

+ 2 ln y1 M
(

λ′
3, 0,λ′

2

)

−
ln y1 M

(

λ′
3, 1,λ′

1

)

+ ln y1 M
(

λ′
3, 1,λ′

2

)

− 2 ln y1 M
(

λ′
3,λ

′
1, 0

)

−
ln y1 M

(

λ′
3,λ

′
1, 1

)

+ 2 ln y1 M
(

λ′
3,λ

′
1,λ

′
1

)

+ ln y1 M
(

λ′
3,λ

′
1,λ

′
3

)

+

2 ln y1 M
(

λ′
3,λ

′
2, 0

)

+ ln y1 M
(

λ′
3,λ

′
2, 1

)

− 2 ln y1 M
(

λ′
3,λ

′
2,λ

′
2

)

−
ln y1 M

(

λ′
3,λ

′
2,λ

′
3

)

+ ln y1 M
(

λ′
3,λ

′
3,λ

′
1

)

− ln y1 M
(

λ′
3,λ

′
3,λ

′
2

)

−
2M

(

0, 0,λ′
1,λ

′
1

)

+ 2M
(

0, 0,λ′
2,λ

′
2

)

− 3M
(

0,λ′
1, 0,λ′

1

)

− 3M
(

0,λ′
1, 0,λ′

2

)

−
M

(

0,λ′
1, 1,λ′

1

)

− 3M
(

0,λ′
1, 1,λ′

2

)

− 4M
(

0,λ′
1,λ

′
1, 0

)

− 2M
(

0,λ′
1,λ

′
1, 1

)

+

2M
(

0,λ′
1,λ

′
1,λ

′
3

)

−M
(

0,λ′
1,λ

′
3, 0

)

−M
(

0,λ′
1,λ

′
3, 1

)

+ M
(

0,λ′
1,λ

′
3,λ

′
1

)

+

3M
(

0,λ′
1,λ

′
3,λ

′
2

)

+ 3M
(

0,λ′
2, 0,λ′

1

)

+ 3M
(

0,λ′
2, 0,λ′

2

)

+ 3M
(

0,λ′
2, 1,λ′

1

)

+

M
(

0,λ′
2, 1,λ′

2

)

+ 4M
(

0,λ′
2,λ

′
2, 0

)

+ 2M
(

0,λ′
2,λ

′
2, 1

)

− 2M
(

0,λ′
2,λ

′
2,λ

′
3

)

+

M
(

0,λ′
2,λ

′
3, 0

)

+ M
(

0,λ′
2,λ

′
3, 1

)

− 3M
(

0,λ′
2,λ

′
3,λ

′
1

)

−M
(

0,λ′
2,λ

′
3,λ

′
2

)

−
M

(

0,λ′
3, 0,λ′

1

)

+ M
(

0,λ′
3, 0,λ′

2

)

−M
(

0,λ′
3, 1,λ′

1

)

+ M
(

0,λ′
3, 1,λ′

2

)

−
M

(

0,λ′
3,λ

′
1, 0

)

−M
(

0,λ′
3,λ

′
1, 1

)

+ M
(

0,λ′
3,λ

′
2, 0

)

+ M
(

0,λ′
3,λ

′
2, 1

)

−
4M

(

λ′
1, 0, 0, 0

)

− 2M
(

λ′
1, 0, 0, 1

)

− 3M
(

λ′
1, 0, 0,λ′

1

)

− 3M
(

λ′
1, 0, 0,λ′

2

)

+

M
(

λ′
1, 0, 0,λ′

3

)

− 2M
(

λ′
1, 0, 1, 0

)

−M
(

λ′
1, 0, 1,λ′

3

)

− 2M
(

λ′
1, 0,λ′

1, 0
)

+

M
(

λ′
1, 0,λ′

1, 1
)

+ M
(

λ′
1, 0,λ′

1,λ
′
3

)

− 2M
(

λ′
1, 0,λ′

2, 0
)

+ M
(

λ′
1, 0,λ′

2, 1
)

+

M
(

λ′
1, 0,λ′

2,λ
′
3

)

− 2M
(

λ′
1, 0,λ′

3, 1
)

+ 2M
(

λ′
1, 0,λ′

3,λ
′
1

)

+ 2M
(

λ′
1, 0,λ′

3,λ
′
2

)

−
2M

(

λ′
1, 1, 0, 0

)

−M
(

λ′
1, 1, 0,λ′

3

)

+ 2M
(

λ′
1, 1, 1, 1

)

+ M
(

λ′
1, 1, 1,λ′

1

)

+

3M
(

λ′
1, 1, 1,λ′

2

)

− 3M
(

λ′
1, 1, 1,λ′

3

)

+ 2M
(

λ′
1, 1,λ′

1, 0
)

+ 3M
(

λ′
1, 1,λ′

1, 1
)

−
M

(

λ′
1, 1,λ′

1,λ
′
3

)

− 2M
(

λ′
1, 1,λ′

2, 0
)

+ M
(

λ′
1, 1,λ′

2, 1
)

+ M
(

λ′
1, 1,λ′

2,λ
′
3

)

−
M

(

λ′
1, 1,λ′

3, 0
)

− 3M
(

λ′
1, 1,λ′

3, 1
)

+ M
(

λ′
1, 1,λ′

3,λ
′
1

)

−M
(

λ′
1, 1,λ′

3,λ
′
2

)

+

2M
(

λ′
1, 1,λ′

3,λ
′
3

)

−M
(

λ′
1,λ

′
1, 0, 0

)

+ 3M
(

λ′
1,λ

′
1, 0, 1

)

+ M
(

λ′
1,λ

′
1, 0,λ′

3

)

+

3M
(

λ′
1,λ

′
1, 1, 0

)

+ 5M
(

λ′
1,λ

′
1, 1, 1

)

−M
(

λ′
1,λ

′
1, 1,λ′

3

)

+ M
(

λ′
1,λ

′
1,λ

′
3, 0

)

−
M

(

λ′
1,λ

′
1,λ

′
3, 1

)

−M
(

λ′
1,λ

′
1,λ

′
3,λ

′
3

)

−M
(

λ′
1,λ

′
2, 0, 0

)

−M
(

λ′
1,λ

′
2, 0, 1

)

+

M
(

λ′
1,λ

′
2, 0,λ′

3

)

−M
(

λ′
1,λ

′
2, 1, 0

)

−M
(

λ′
1,λ

′
2, 1, 1

)

+ M
(

λ′
1,λ

′
2, 1,λ′

3

)

+

M
(

λ′
1,λ

′
2,λ

′
3, 0

)

+ M
(

λ′
1,λ

′
2,λ

′
3, 1

)

−M
(

λ′
1,λ

′
2,λ

′
3,λ

′
3

)

−M
(

λ′
1,λ

′
3, 0, 0

)

−
2M

(

λ′
1,λ

′
3, 0, 1

)

+ 2M
(

λ′
1,λ

′
3, 0,λ′

1

)

+ 2M
(

λ′
1,λ

′
3, 0,λ′

2

)

− 2M
(

λ′
1,λ

′
3, 1, 0

)

−
3M

(

λ′
1,λ

′
3, 1, 1

)

+ M
(

λ′
1,λ

′
3, 1,λ′

1

)

−M
(

λ′
1,λ

′
3, 1,λ′

2

)

+ 2M
(

λ′
1,λ

′
3, 1,λ′

3

)

+

2M
(

λ′
1,λ

′
3,λ

′
1, 0

)

+ M
(

λ′
1,λ

′
3,λ

′
1, 1

)

−M
(

λ′
1,λ

′
3,λ

′
1,λ

′
3

)

+ 2M
(

λ′
1,λ

′
3,λ

′
2, 0

)

−
M

(

λ′
1,λ

′
3,λ

′
2, 1

)

−M
(

λ′
1,λ

′
3,λ

′
2,λ

′
3

)

+ 2M
(

λ′
1,λ

′
3,λ

′
3, 1

)

−M
(

λ′
1,λ

′
3,λ

′
3,λ

′
1

)

−
M

(

λ′
1,λ

′
3,λ

′
3,λ

′
2

)

+ 4M
(

λ′
2, 0, 0, 0

)

+ 2M
(

λ′
2, 0, 0, 1

)

+ 3M
(

λ′
2, 0, 0,λ′

1

)

+

3M
(

λ′
2, 0, 0,λ′

2

)

−M
(

λ′
2, 0, 0,λ′

3

)

+ 2M
(

λ′
2, 0, 1, 0

)

+ M
(

λ′
2, 0, 1,λ′

3

)

+

2M
(

λ′
2, 0,λ′

1, 0
)

−M
(

λ′
2, 0,λ′

1, 1
)

−M
(

λ′
2, 0,λ′

1,λ
′
3

)

+ 2M
(

λ′
2, 0,λ′

2, 0
)

−
M

(

λ′
2, 0,λ′

2, 1
)

−M
(

λ′
2, 0,λ′

2,λ
′
3

)

+ 2M
(

λ′
2, 0,λ′

3, 1
)

− 2M
(

λ′
2, 0,λ′

3,λ
′
1

)

−
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2M
(

λ′
2, 0,λ′

3,λ
′
2

)

+ 2M
(

λ′
2, 1, 0, 0

)

+ M
(

λ′
2, 1, 0,λ′

3

)

− 2M
(

λ′
2, 1, 1, 1

)

−
3M

(

λ′
2, 1, 1,λ′

1

)

−M
(

λ′
2, 1, 1,λ′

2

)

+ 3M
(

λ′
2, 1, 1,λ′

3

)

+ 2M
(

λ′
2, 1,λ′

1, 0
)

−
M

(

λ′
2, 1,λ′

1, 1
)

−M
(

λ′
2, 1,λ′

1,λ
′
3

)

− 2M
(

λ′
2, 1,λ′

2, 0
)

− 3M
(

λ′
2, 1,λ′

2, 1
)

+

M
(

λ′
2, 1,λ′

2,λ
′
3

)

+ M
(

λ′
2, 1,λ′

3, 0
)

+ 3M
(

λ′
2, 1,λ′

3, 1
)

+ M
(

λ′
2, 1,λ′

3,λ
′
1

)

−
M

(

λ′
2, 1,λ′

3,λ
′
2

)

− 2M
(

λ′
2, 1,λ′

3,λ
′
3

)

+ M
(

λ′
2,λ

′
1, 0, 0

)

+ M
(

λ′
2,λ

′
1, 0, 1

)

−
M

(

λ′
2,λ

′
1, 0,λ′

3

)

+ M
(

λ′
2,λ

′
1, 1, 0

)

+ M
(

λ′
2,λ

′
1, 1, 1

)

−M
(

λ′
2,λ

′
1, 1,λ′

3

)

−
M

(

λ′
2,λ

′
1,λ

′
3, 0

)

−M
(

λ′
2,λ

′
1,λ

′
3, 1

)

+ M
(

λ′
2,λ

′
1,λ

′
3,λ

′
3

)

+ M
(

λ′
2,λ

′
2, 0, 0

)

−
3M

(

λ′
2,λ

′
2, 0, 1

)

−M
(

λ′
2,λ

′
2, 0,λ′

3

)

− 3M
(

λ′
2,λ

′
2, 1, 0

)

− 5M
(

λ′
2,λ

′
2, 1, 1

)

+

M
(

λ′
2,λ

′
2, 1,λ′

3

)

−M
(

λ′
2,λ

′
2,λ

′
3, 0

)

+ M
(

λ′
2,λ

′
2,λ

′
3, 1

)

+ M
(

λ′
2,λ

′
2,λ

′
3,λ

′
3

)

+

M
(

λ′
2,λ

′
3, 0, 0

)

+ 2M
(

λ′
2,λ

′
3, 0, 1

)

− 2M
(

λ′
2,λ

′
3, 0,λ′

1

)

− 2M
(

λ′
2,λ

′
3, 0,λ′

2

)

+

2M
(

λ′
2,λ

′
3, 1, 0

)

+ 3M
(

λ′
2,λ

′
3, 1, 1

)

+ M
(

λ′
2,λ

′
3, 1,λ′

1

)

−M
(

λ′
2,λ

′
3, 1,λ′

2

)

−
2M

(

λ′
2,λ

′
3, 1,λ′

3

)

− 2M
(

λ′
2,λ

′
3,λ

′
1, 0

)

+ M
(

λ′
2,λ

′
3,λ

′
1, 1

)

+ M
(

λ′
2,λ

′
3,λ

′
1,λ

′
3

)

−
2M

(

λ′
2,λ

′
3,λ

′
2, 0

)

−M
(

λ′
2,λ

′
3,λ

′
2, 1

)

+ M
(

λ′
2,λ

′
3,λ

′
2,λ

′
3

)

− 2M
(

λ′
2,λ

′
3,λ

′
3, 1

)

+

M
(

λ′
2,λ

′
3,λ

′
3,λ

′
1

)

+ M
(

λ′
2,λ

′
3,λ

′
3,λ

′
2

)

−M
(

λ′
3, 0, 0,λ′

1

)

+ M
(

λ′
3, 0, 0,λ′

2

)

−
3M

(

λ′
3, 0,λ′

1, 0
)

− 2M
(

λ′
3, 0,λ′

1, 1
)

+ M
(

λ′
3, 0,λ′

1,λ
′
3

)

+ 3M
(

λ′
3, 0,λ′

2, 0
)

+

2M
(

λ′
3, 0,λ′

2, 1
)

−M
(

λ′
3, 0,λ′

2,λ
′
3

)

−M
(

λ′
3, 0,λ′

3,λ
′
1

)

+ M
(

λ′
3, 0,λ′

3,λ
′
2

)

+

M
(

λ′
3, 1, 1,λ′

1

)

−M
(

λ′
3, 1, 1,λ′

2

)

− 2M
(

λ′
3, 1,λ′

1, 0
)

−M
(

λ′
3, 1,λ′

1, 1
)

+

M
(

λ′
3, 1,λ′

1,λ
′
3

)

+ 2M
(

λ′
3, 1,λ′

2, 0
)

+ M
(

λ′
3, 1,λ′

2, 1
)

−M
(

λ′
3, 1,λ′

2,λ
′
3

)

−
M

(

λ′
3, 1,λ′

3,λ
′
1

)

+ M
(

λ′
3, 1,λ′

3,λ
′
2

)

− 5M
(

λ′
3,λ

′
1, 0, 0

)

− 4M
(

λ′
3,λ

′
1, 0, 1

)

+

2M
(

λ′
3,λ

′
1, 0,λ′

1

)

+ 2M
(

λ′
3,λ

′
1, 0,λ′

2

)

+ M
(

λ′
3,λ

′
1, 0,λ′

3

)

− 4M
(

λ′
3,λ

′
1, 1, 0

)

−
3M

(

λ′
3,λ

′
1, 1, 1

)

+ 2M
(

λ′
3,λ

′
1, 1,λ′

1

)

+ 2M
(

λ′
3,λ

′
1, 1,λ′

2

)

+ M
(

λ′
3,λ

′
1, 1,λ′

3

)

+

4M
(

λ′
3,λ

′
1,λ

′
1, 0

)

+ 4M
(

λ′
3,λ

′
1,λ

′
1, 1

)

− 2M
(

λ′
3,λ

′
1,λ

′
1,λ

′
3

)

+ M
(

λ′
3,λ

′
1,λ

′
3, 0

)

+

M
(

λ′
3,λ

′
1,λ

′
3, 1

)

− 2M
(

λ′
3,λ

′
1,λ

′
3,λ

′
2

)

+ 5M
(

λ′
3,λ

′
2, 0, 0

)

+ 4M
(

λ′
3,λ

′
2, 0, 1

)

−
2M

(

λ′
3,λ

′
2, 0,λ′

1

)

− 2M
(

λ′
3,λ

′
2, 0,λ′

2

)

−M
(

λ′
3,λ

′
2, 0,λ′

3

)

+ 4M
(

λ′
3,λ

′
2, 1, 0

)

+

3M
(

λ′
3,λ

′
2, 1, 1

)

− 2M
(

λ′
3,λ

′
2, 1,λ′

1

)

− 2M
(

λ′
3,λ

′
2, 1,λ′

2

)

−M
(

λ′
3,λ

′
2, 1,λ′

3

)

−
4M

(

λ′
3,λ

′
2,λ

′
2, 0

)

− 4M
(

λ′
3,λ

′
2,λ

′
2, 1

)

+ 2M
(

λ′
3,λ

′
2,λ

′
2,λ

′
3

)

−M
(

λ′
3,λ

′
2,λ

′
3, 0

)

−
M

(

λ′
3,λ

′
2,λ

′
3, 1

)

+ 2M
(

λ′
3,λ

′
2,λ

′
3,λ

′
1

)

−M
(

λ′
3,λ

′
3, 0,λ′

1

)

+ M
(

λ′
3,λ

′
3, 0,λ′

2

)

−
M

(

λ′
3,λ

′
3, 1,λ′

1

)

+ M
(

λ′
3,λ

′
3, 1,λ′

2

)

−M
(

λ′
3,λ

′
3,λ

′
1, 0

)

−M
(

λ′
3,λ

′
3,λ

′
1, 1

)

+

2M
(

λ′
3,λ

′
3,λ

′
1,λ

′
1

)

+ M
(

λ′
3,λ

′
3,λ

′
2, 0

)

+ M
(

λ′
3,λ

′
3,λ

′
2, 1

)

− 2M
(

λ′
3,λ

′
3,λ

′
2,λ

′
2

)

+

M
(

λ′
1

)

(

− 2
3 ln3 y1 + 1

2 ln y2 ln2 y1 − ln2 y2 ln y1 − 1
2π

2 ln y1 + 1
6 ln3 y2 +

1
6π

2 ln y2 − ζ3
)

+ M
(

λ′
2

)

(

2
3 ln3 y1 − 1

2 ln y2 ln2 y1 + ln2 y2 ln y1 + 1
2π

2 ln y1 −

1
6 ln3 y2 − 1

6π
2 ln y2 + ζ3

)

}

.
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Note that I(IIa)
1 is of uniform weight 4, as expected.

M.3 The analytic expressions of the functions
i(0) and i(1)

In this appendix we present the analytic expressions of the functions i(0) and

i(1) that enter the integrals (M.13) and (M.14).

i(0)(x1, x2) =

(M.65)

− 1
2 ln2

(

1− v
(

1− x1
x2

))

+ ln(1− v) ln
(

1− v
(

1− x1
x2

))

+

ln(1− v) ln x2 + ln v ln
(

1− v
(

1− x1
x2

))

+ ln v lnx2 − lnx2 ln
(

1− v
(

1−
x1
x2

))

− 1
2 ln2(1− v)− ln2 v

2 − ln v ln(1− v)− 1
2 ln2 x2 − π2

2 .

i(1)(x1, x2) =

(M.66)

Li3
(

vx1−vx2+x2
(v−1)v

)

+ ln(1− v)Li2
(

vx1−vx2+x2
(v−1)v

)

+ ln vLi2
(

vx1−vx2+x2
(v−1)v

)

−

Li2
(

vx1−vx2+x2
(v−1)v

)

ln
(

1− v
(

1− x1
x2

))

− lnx2Li2
(

vx1−vx2+x2
(v−1)v

)

−
1
2 ln2(1−v) ln

(

−v2+vx1−vx2+v+x2

)

− 1
2 ln2 v ln

(

−v2+vx1−vx2+v+x2

)

−
1
2 ln2

(

1− v
(

1− x1
x2

))

ln
(

− v2 + vx1 − vx2 + v + x2

)

−
1
2 ln2 x2 ln

(

−v2+vx1−vx2+v+x2

)

−ln v ln(1−v) ln
(

−v2+vx1−vx2+v+x2

)

+

ln(1− v) ln
(

1− v
(

1− x1
x2

))

ln
(

− v2 + vx1 − vx2 + v + x2

)

+

ln(1− v) ln x2 ln
(

− v2 + vx1 − vx2 + v + x2

)

+

ln v ln
(

1− v
(

1− x1
x2

))

ln
(

− v2 + vx1 − vx2 + v + x2

)

+

ln v lnx2 ln
(

− v2 + vx1 − vx2 + v + x2

)

−

lnx2 ln
(

1− v
(

1− x1
x2

))

ln
(

− v2 + vx1 − vx2 + v + x2

)

−
π2

2 ln
(

− v2 + vx1 − vx2 + v + x2

)

− 2 ln2(1− v) ln
(

1− v
(

1− x1
x2

))

−
3
2 ln2(1− v) lnx2 + ln(1− v) ln2

(

1− v
(

1− x1
x2

))

− ln v ln2 x2 + ln2 x2 ln
(

1−

v
(

1− x1
x2

))

+ 1
2 ln2 v lnx2 + 1

2 lnx2 ln2
(

1− v
(

1− x1
x2

))

− 2 ln v ln(1−
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v) ln
(

1− v
(

1− x1
x2

))

− ln v ln(1− v) lnx2 + ln(1− v) lnx2 ln
(

1− v
(

1−
x1
x2

))

+ 1
6π

2 ln
(

1− v
(

1− x1
x2

))

− ln v lnx2 ln
(

1− v
(

1− x1
x2

))

+

ln3(1− v) + 2 ln v ln2(1− v) + ln2 v ln(1− v) + 5
6π

2 ln(1− v)− 1
6π

2 ln v +
1
2 ln3 x2 + 2

3π
2 lnx2 − ζ3.

M.4 The analytic expressions of the functions
j(0) and j(1)

In this appendix we present the analytic expressions of the functions j(0) and

j(1) that enter the integrals (M.49) and (M.50).

j(0)(y1, y2) =

(M.67)
1
2 ln2

(

v
(

y2−1
)

+1
)

+ln(1−v) ln y1 − ln(1−v) ln
(

v
(

y2−1
)

+1
)

+ln v ln y1−

ln v ln
(

v
(

y2 − 1
)

+ 1
)

− ln y1 ln
(

v
(

y2 − 1
)

+ 1
)

+ 1
2 ln2(1− v) + ln2 v

2 +

ln v ln(1− v) + 1
2 ln2 y1 + π2

2 .

j(1)(y1, y2) =

(M.68)

−Li3
(

v(y2−1)+1
(v−1)vy1

)

− ln(1− v)Li2
(

v(y2−1)+1
(v−1)vy1

)

− ln vLi2
(

v(y2−1)+1
(v−1)vy1

)

−

ln y1 Li2
(

v(y2−1)+1
(v−1)vy1

)

+ Li2
(

v(y2−1)+1
(v−1)vy1

)

ln
(

v(y2 − 1) + 1
)

+ 1
2 ln2(1− v) ln

(

−

v2y1+v(y1+y2−1)+1
)

+ 1
2 ln2 v ln

(

−v2y1+v(y1+y2−1)+1
)

+ 1
2 ln2 y1 ln

(

−

v2y1+v(y1+y2−1)+1
)

+ 1
2 ln2

(

v(y2−1)+1
)

ln
(

−v2y1+v(y1+y2−1)+1
)

+

ln v ln(1− v) ln
(

− v2y1 + v(y1 + y2 − 1) + 1
)

+

ln(1− v) ln y1 ln
(

− v2y1 + v(y1 + y2 − 1) + 1
)

−

ln(1− v) ln
(

v(y2 − 1) + 1
)

ln
(

− v2y1 + v(y1 + y2 − 1) + 1
)

+

ln v ln y1 ln
(

− v2y1 + v(y1 + y2 − 1) + 1
)

−

ln v ln
(

v(y2 − 1) + 1
)

ln
(

− v2y1 + v(y1 + y2 − 1) + 1
)

−

ln y1 ln
(

v(y2 − 1) + 1
)

ln
(

− v2y1 + v(y1 + y2 − 1) + 1
)

+

1
2π

2 ln
(

− v2y1 + v(y1 + y2−1)+1
)

−2 ln2(1− v) ln y1 +2 ln2(1− v) ln
(

v(y2−

1)+ 1
)

− ln(1− v) ln2 y1 − ln(1− v) ln2
(

v(y2− 1)+ 1
)

− 2 ln v ln(1− v) ln y1 +
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2 ln v ln(1− v) ln
(

v(y2 − 1) + 1
)

+ 2 ln(1− v) ln y1 ln
(

v(y2 − 1) + 1
)

−
1
6π

2 ln
(

v(y2 − 1) + 1
)

− ln3(1− v)− 2 ln v ln2(1− v)− ln2 v ln(1− v)−
5
6π

2 ln(1− v) + 1
6π

2 ln v + 1
6π

2 ln y1 + ζ3.



Appendix N
Reduction of the polylogarithms
in terms of G-functions

N.1 Reduction of Lin in Region I

In this section we proof the reduction formulae of polylogarithms of the form

Lin
(

1
a(x1,x2,v)

)

to G-functions, where a(x1, x2, v) = v(v−1)
v(x1−x2)+x2

. We can see

this polylogarithm as a Goncharov multiple polylogarithm

Lin

(

1

a(x1, x2, v)

)

= −M
(

90n−1, a(x1, x2, v)
)

= −
∫ 1

0

(

dt

t

)n−1

◦ Ω (a(x1, x2, v)) .

(N.1)

We can now extract the dependence on the variable v using the reduction

algorithm presented in Appendix G.4,

M
(

90n−1, a(x1, x2, v)
)

= −Lin

(

1

a(x1, x2, v0)

)

+

∫ v

v0

dv

∫ 1

0

(

dt

t

)n−1

◦ ∂

∂v′
Ω (a(x1, x2, v

′)) ,

(N.2)

and integrating back we find the expression of M
(

90n−1, a(x1, x2, v)
)

in terms

of G-functions of the form G(. . . , v). However, we still need to face the problem

313
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of how to choose the value for v0. The ‘best’ choice is of course v0 = 1, since

we know that at this point the G-functions collapse to M -functions, i.e. Gon-

charov’s multiple polylogarithm ∗ . However, it is easy to see that

lim
v→1

Lin

(

1

a(x1, x2, v)

)

=∞. (N.3)

We therefore choose v0 = 1− ε, and we compute

M
(

90n−1, a(x1, x2, v)
)

= lim
ε→0+

{

− Lin

(

1

a(x1, x2, 1− ε)

)

−
∫ 1−ε

0
dv

∫ 1

0

(

dt

t

)n−1

◦ ∂

∂v′
Ω (a(x1, x2, v

′))

}

+

∫ v

0
dv

∫ 1

0

(

dt

t

)n−1

◦ ∂

∂v′
Ω (a(x1, x2, v

′)) .

(N.4)

We will show in the following that in the cases n ≤ 3 this limit is well-defined.

N.1.1 Reduction of Li1

For n = 1, we do not need the machinery of the reduction algorithm, but the

reduction can be performed in a straightforward way:

Li1

(

1

a(x1, x2, v)

)

= − ln

(

1− v(x1 − x2) + x2

v(v − 1)

)

= ln v + ln(1− v)− ln (v(1− v) + v(x1 − x2) + x2)

= ln v + ln(1− v)− ln (−(λ1 − v)(λ2 − v))

= ln v + ln(1− v)− ln (−λ1λ2)− ln

(

1− v

λ1

)

− ln

(

1− v

λ2

)

=G(0; v) + G(1; v)− lnx2 −G(λ1; v)−G(λ2; v),

(N.5)

where the last step follows from Eq. (M.19).

∗We could of course choose another value, e.g. v0 = 1/2, but then we need to face the
problem how to obtain the values G(. . . ; 1/2).
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N.1.2 Reduction of Li2

For n = 2, let us start by evaluating the second integral in Eq. (N.4). The last

integral over v involves Li1
(

1
a(x1,x2,v)

)

, which we know recursively from the

previous paragraph. We immediately find

∫ v

0
dv

∫ 1

0

dt

t
◦ ∂

∂v′
Ω (a(x1, x2, v

′))

= G(0, 0; v) + G(0, 1; v)−G (0,λ1; v)−G (0,λ2; v) + G(1, 0; v) + G(1, 1; v)

−G (1,λ1; v)−G (1,λ2; v)−G (λ3, 0; v)−G (λ3, 1; v) + G (λ3,λ1; v)

+ G (λ3,λ2; v)−G(0; v) ln x2 −G(1; v) lnx2 + G (λ3; v) lnx2.

(N.6)

We now turn to the limit. The integral is obtained immediately by putting

v = 1 − ε in the previous expression. As we are interested in the singular

behavior around v = 1, we switch to the irreducible basis where this singular

behavior is explicit (See Appendix G.4). Furthermore, since ε is small, we can

write

−Li2

(

1

a(x1, x2, 1− ε)

)

=
1

2
ln2 ε− lnx1 ln ε +

1

2
ln2 x1 +

π2

6
+ O(ε)

= G(1, 1; 1− ε)− lnx1G(1; 1− ε) +
1

2
ln2 x1 +

π2

6
+ O(ε).

(N.7)

We now find

lim
ε→0+

{

− Li2

(

1

a(x1, x2, 1− ε)

)

−
∫ 1−ε

0
dv

∫ 1

0

dt

t
◦ ∂

∂v′
Ω (a(x1, x2, v

′))

}

= lim
ε→0+

{

G(1, 1; 1− ε)− lnx1G(1; 1− ε)−G(1, 1; 1− ε)

−G(1; 1− ε) [ln (1− λ1)− ln (−λ1) + ln (λ2 − 1)− lnλ2 + lnx2]

}

+ (finite)

= (finite),

(N.8)

where the last step follows from (1− 1/λ1)(1− 1/λ2) = x1/x2.
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N.1.3 Reduction of Li3

For n = 3, let us start by evaluating the second integral. The last integral

over v involves Li2
(

1
a(x1,x2,v)

)

, which we know recursively from the previous

paragraph. We immediately find

∫ v
0 dv

∫ 1
0

(

dt
t

)2 ◦ ∂
∂v′ Ω (a(x1, x2, v′)) =

(N.9)

− 1
2G(0; v) ln2 x1 − 1

2G(1; v) ln2 x1 + 1
2G (λ3; v) ln2 x1 + G(0; v) ln (x2) lnx1 +

G(1; v) ln (x2) lnx1 −G (λ3; v) ln (x2) lnx1 −G(0; v) ln2 x2 −G(1; v) ln2 x2 +

G (λ3; v) ln2 x2− 1
6π

2G(0; v)− 1
6π

2G(1; v)+ 1
6π

2G (λ3; v)−G(0; v)G (0,λ1; 1)−
G(1; v)G (0,λ1; 1) + G (λ3; v)G (0,λ1; 1)−G(0; v)G (0,λ2; 1)−
G(1; v)G (0,λ2; 1) + G (λ3; v)G (0,λ2; 1) + G(0; v)G (λ1, 1; 1) +

G(1; v)G (λ1, 1; 1)−G (λ3; v)G (λ1, 1; 1) + G(0; v)G (λ2, 1; 1) +

G(1; v)G (λ2, 1; 1)−G (λ3; v)G (λ2, 1; 1)−G(0; v)G (λ3, 0; 1)−
G(1; v)G (λ3, 0; 1) + G (λ3; v)G (λ3, 0; 1)−G(0; v)G (λ3, 1; 1)−
G(1; v)G (λ3, 1, 1) + G (λ3; v)G (λ3, 1; 1) + G(0; v)G (λ3,λ1; 1) +

G(1; v)G (λ3,λ1; 1)−G (λ3; v) G (λ3,λ1; 1) + G(0; v)G (λ3,λ2; 1) +

G(1; v)G (λ3,λ2; 1)−G (λ3; v) G (λ3,λ2; 1)−G(0, 0, 0; v)−G(0, 0, 1; v) +

G (0, 0,λ1; v) + G (0, 0,λ2; v)−G(0, 1, 0; v)−G(0, 1, 1; v) + G (0, 1,λ1; v) +

G (0, 1,λ2; v) + G (0,λ3, 0; v) + G (0,λ3, 1; v)−G (0,λ3,λ1; v)−
G (0,λ3,λ2; v)−G(1, 0, 0; v)−G(1, 0, 1; v) + G (1, 0,λ1; v) + G (1, 0,λ2; v)−
G(1, 1, 0; v)−G(1, 1, 1; v) + G (1, 1,λ1; v) + G (1, 1,λ2; v) + G (1,λ3, 0; v) +

G (1,λ3, 1; v)−G (1,λ3,λ1; v)−G (1,λ3,λ2; v) + G (λ3, 0, 0; v) +

G (λ3, 0, 1; v)−G (λ3, 0,λ1; v)−G (λ3, 0,λ2; v) + G (λ3, 1, 0; v) +

G (λ3, 1, 1; v)−G (λ3, 1,λ1; v)−G (λ3, 1,λ2; v)−G (λ3,λ3, 0; v)−
G (λ3,λ3, 1; v) + G (λ3,λ3,λ1; v) + G (λ3,λ3,λ2; v) + G(0, 0; v) lnx2 +

G(0, 1; v) lnx2 −G (0,λ3; v) lnx2 + G(1, 0; v) lnx2 + G(1, 1; v) lnx2 −
G (1,λ3; v) lnx2 −G (λ3, 0; v) lnx2 −G (λ3, 1; v) lnx2 + G (λ3,λ3; v) lnx2.

We now turn to the limit. The integral is obtained immediately by putting

v = 1 − ε in the previous expression. As we are interested in the singular

behavior around v = 1, we switch to the irreducible basis where this singular
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behavior is explicit. Furthermore, since ε is small, we can write

−Li2

(

1

a(x1, x2, 1− ε)

)

= −1

6
ln3 ε +

1

2
lnx1 ln2 ε− 1

2
ln2 x1 ln ε− 1

6
π2 ln ε

+
1

6
ln3 x1 +

1

6
π2 lnx1

=
1

6
ln3 x1 −

1

2
G(1; 1− ε) ln2 x1 + G(1, 1; 1− ε) lnx1

+
1

6
π2 lnx1 −

1

6
π2G(1; 1− ε)−G(1, 1, 1; 1− ε).

(N.10)

We now find

lim
ε→0+

{

− Li3

(

1

a(x1, x2, 1− ε)

)

−
∫ 1−ε

0
dv

∫ 1

0

(

dt

t

)2

◦ ∂

∂v′
Ω (a(x1, x2, v

′))

}

= lim
ε→0+

{

1

6
ln3 x1 −

1

2
G(1; 1− ε) ln2 x1 + G(1, 1; 1− ε) lnx1 +

1

6
π2 lnx1

− 1

6
π2G(1; 1− ε)−G(1, 1, 1; 1− ε) + G(1, 1, 1; 1− ε)

+ G(1, 1; 1− ε) [−G (λ1; 1− ε)−G (λ2; 1− ε)− lnx2]

+ G(1; 1− ε)
[1

6

(

3 ln2 x1 − 6 lnx2 lnx1 + 6 ln2 x2 + π2
)

+ G (λ3; 1− ε) lnx2

]

}

+ (finite)

= (finite),

(N.11)

where the last step follows from Eq. (M.19), as well as

G(λ1; 1) = ln

(

1− 1

λ1

)

,

G(λ2; 1) = ln

(

1− 1

λ2

)

,

G(λ2; 1) = ln

(

1− 1

λ2

)

.

(N.12)
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N.2 Reduction of Lin in Region II

In this section we proof the reduction formulae of polylogarithms of the form

Lin
(

1
a(y1,y2,v)

)

to G-functions, where a(x1, x2, v) = v(v−1)y1

y2v−v+1 . Since most of

the discussion is exactly the same as in Appendix N.1, we will be brief on

this. We can start by writing down an equation similar to Eq. (N.4). We then

reduce the function Li1 in a straightforward way, and continue in a bootstrap

to reduce Li2 and Li3. Particular care is again needed when evaluating the

limit that appears in Eq. (N.4). Let us illustrate the cancellation of the poles.

For n = 2, 3 we can write

−Li2

(

1

a(y1, y2, 1− ε)

)

=
1

2
ln2 ε− ln

(

y2

y1

)

ln ε +
1

2
ln2

(

y2

y1

)

+
π2

6
+ O(ε)

=
1

2
ln2

(

y2

y1

)

−G(1; 1− ε) ln

(

y2

y1

)

+ G(1, 1; 1− ε) +
π2

6
+ O(ε).

(N.13)

−Li3

(

1

a(y1, y2, 1− ε)

)

=
1

6
ln3

(

y2

y1

)

− 1

2
ln ε ln2

(

y2

y1

)

+
1

2
ln2 ε ln

(

y2

y1

)

+
1

6
π2 ln

(

y2

y1

)

− ln3 ε

6
− 1

6
π2 ln ε + O(ε)

=
1

6
ln3

(

y2

y1

)

− 1

2
G(1; 1− ε) ln2

(

y2

y1

)

+ G(1, 1; 1− ε) ln

(

y2

y1

)

+
1

6
π2 ln

(

y2

y1

)

− 1

6
π2G(1; 1− ε)−G(1, 1, 1; 1− ε) + O(ε).

(N.14)

Inserting these expressions into the limits that appear in Eq. (N.4), one can

easily show that the limit is finite.



AppendixO
Results for tree-level Lipatov
vertices

O.1 NMHV-type vertices

O.1.1 Result for V (0)(q1; 1−, 2+, 3+, 4+; q2)

N (1)(q1; 1
−, 2+, 3+, 4+; q2) = −q∗1⊥q2⊥p3

1⊥x2x
3/2
3 ,

D(1)(q1; 1
−, 2+, 3+, 4+; q2) = 〈12〉〈23〉 (q1⊥ + p1⊥ + p2⊥) (2q1⊥ + p1⊥ + p2⊥)

p4⊥
√

x1

(

q1⊥q∗1⊥x1 x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

,

N (2)(q1; 1
−, 2+, 3+, 4+; q2) = −|q1⊥|2q2⊥

√
x2,

D(2)(q1; 1
−, 2+, 3+, 4+; q2) = 〈23〉〈34〉 (q1⊥ + p1⊥) p2⊥p∗1⊥

√
x4,

N (3)(q1; 1
−, 2+, 3+, 4+; q2) = −q∗1⊥q2⊥p3

1⊥x3/2
2

√
x3,

D(3)(q1; 1
−, 2+, 3+, 4+; q2) = 〈12〉〈34〉p2⊥ (p1⊥ + p2⊥) (q1⊥ + p1⊥ + p2⊥)

√
x1

(

|p2⊥|2 x1 + |p1⊥|2 x2

)√
x4,

319
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N (4)(q1; 1
−, 2+, 3+, 4+; q2) = |q1⊥|2q2⊥p3

1⊥x2x3x
3/2
4 ,

D(4)(q1; 1
−, 2+, 3+, 4+; q2) = 〈12〉〈23〉〈34〉p4⊥ (q1⊥ + p1⊥ + p2⊥ + p4⊥)

(2q1 ⊥ + p1⊥ + p2⊥ + p4⊥)
√

x1
(

|p4⊥|2 x1x2x3 +
(

q1⊥q∗1⊥ x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

,

N (5)(q1; 1
−, 2+, 3+, 4+; q2) = q1⊥q2⊥x5/2

1 ,

D(5)(q1; 1
−, 2+, 3+, 4+; q2) = 〈12〉〈23〉〈34〉

√
x4 x1234 (q1⊥x1 + p1⊥x1234) ,

N (6)(q1; 1
−, 2+, 3+, 4+; q2) = −q∗1⊥q2⊥p3

1⊥
√

x2 (x2 + x3 + x4)
3 ,

D(6)(q1; 1
−, 2+, 3+, 4+; q2) = 〈23〉〈34〉 (q1⊥ + p1⊥)

√
x4 (q1⊥x1 + p1⊥x1234)

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥ x1234) (q1⊥ (q∗1⊥ + p∗1⊥)x1

+p1⊥ (q∗1⊥x1 + p∗1⊥x1234)) ,

N (7)(q1; 1
−, 2+, 3+, 4+; q2) = q∗1⊥q2⊥x3/2

2 ,

D(7)(q1; 1
−, 2+, 3+, 4+; q2) = 〈34〉 (p1⊥ + p2⊥) [12]

√
x1
√

x4∆(3, 1, 2),

N (8)(q1; 1
−, 2+, 3+, 4+; q2) = −q∗1⊥q2⊥p3

1⊥x3/2
2

√
x3 (x3 + x4)

3 ,

D(8)(q1; 1
−, 2+, 3+, 4+; q2) = 〈12〉〈34〉 (q1⊥ + p1⊥ + p2⊥)

√
x1
√

x4

(
√

x1x2 〈12〉+ q1⊥x2 + p2⊥x1234)
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥ x1 + |p1⊥|2

x4 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥) x1 + 〈12〉[12]x1 + |p1⊥|2 x2 + |p1⊥|2 x3

)

+p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)) (q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,

N (9)(q1; 1
−, 2+, 3+, 4+; q2) = q∗1⊥q2⊥∆(1, 2, 3)3,

D(9)(q1; 1
−, 2+, 3+, 4+; q2) = s123〈12〉〈23〉 (q1⊥ + p1⊥ + p2⊥)

√
x4

∆(3, 1, 2)∆ (4, 1, 3),
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N (10)(q1; 1
−, 2+, 3+, 4+; q2) = −q∗1⊥q2⊥p3

1⊥x2x
3/2
3 x3

4,

D(10)(q1; 1
−, 2+, 3+, 4+; q2) = 〈12〉〈23〉 (2q1⊥ + p1⊥ + p2⊥)

√
x1

(
√

x4 (
√

x4q1 ⊥ − 〈41〉
√

x1 − 〈42〉
√

x2 − 〈43〉
√

x3) + p4⊥x1234)

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3

+q∗1⊥ (3x3 + x1234)) + x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)

+x2 (p1⊥ (q∗1⊥x1 + p∗1⊥ x1234)− s123x1))) (q1⊥ (x3 + x1234)

−
√

x3∆(3, 1, 2)) ,

N (11)(q1; 1
−, 2+, 3+, 4+; q2) = q∗1⊥q2⊥∆(1, 2, 3)3,

D(11)(q1; 1
−, 2+, 3+, 4+; q2) = s123〈12〉〈23〉 (q1⊥ + p1⊥ + p2⊥)

√
x4

∆(3, 1, 2)∆ (4, 1, 3).

O.1.2 Result for V (0)(q1; 1+, 2−, 3+, 4+; q2)

N (1)(q1; 1
+, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥p4

2⊥x3/2
1 x3/2

3 ,

D(1)(q1; 1
+, 2−, 3+, 4+; q2) = (q1⊥ + p1⊥ + p2⊥) (2q1⊥ + p1⊥ + p2⊥ ) p4⊥x2

〈12〉〈23〉p1⊥

(

q1⊥q∗1⊥x1 x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

,

N (2)(q1; 1
+, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥p3

2⊥x3/2
1

√
x3,

D(2)(q1; 1
+, 2−, 3+, 4+; q2) = 〈12〉〈34〉p1⊥ (p1⊥ + p2⊥) (q1⊥ + p1⊥ + p2⊥)

√
x2

(

|p2⊥|2 x1 + |p1⊥|2 x2

)√
x4,

N (3)(q1; 1
+, 2−, 3+, 4+; q2) = q1⊥q∗1⊥q2⊥p4

2⊥x3/2
1 x3 x3/2

4 ,

D(3)(q1; 1
+, 2−, 3+, 4+; q2) = 〈12〉〈23〉〈34〉p1⊥ p4⊥ (q1⊥ + p1⊥ + p2⊥ + p4⊥)

(2q1⊥ + p1⊥ + p2⊥ + p4⊥)x2

(

|p4⊥|2 x1x2x3 + (q1⊥q∗1⊥ x1x2

+
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

,
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N (4)(q1; 1
+, 2−, 3+, 4+; q2) = q1⊥q2⊥

√
x1x

2
2

D(4)(q1; 1
+, 2−, 3+, 4+; q2) = 〈12〉〈23〉〈34〉√x4 x1234 (q1⊥x1 + p1⊥x1234) ,

N (5)(q1; 1
+, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥ (q1⊥ + p1⊥)3 x2

1 x5/2
2 ,

D(5)(q1; 1
+, 2−, 3+, 4+; q2) = 〈23〉〈34〉p1⊥

√
x4 (x2 + x3 + x4)

(q1⊥x1 + p1⊥x1234) (
√

x1x2〈12〉+ q1⊥x2 + p2⊥ x1234)

(q1⊥ (q∗1⊥ + p∗1⊥) x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234)) ,

N (6)(q1; 1
+, 2−, 3+, 4+; q2) = q∗1⊥q2⊥x3/2

1 ,

D(6)(q1; 1
+, 2−, 3+, 4+; q2) = 〈34〉 (p1⊥ + p2⊥) [12]

√
x2
√

x4∆(3, 1, 2),

N (7)(q1; 1
+, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥p4

2⊥x3/2
1

√
x3 (x3 + x4)

3 ,

D(7)(q1; 1
+, 2−, 3+, 4+; q2) = 〈12〉〈34〉p1⊥ (q1⊥ + p1⊥ + p2⊥)

√
x2
√

x4

(
√

x1 x2〈12〉+ q1⊥x2 + p2⊥x1234)
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥ x1 + |p1⊥|2

x4 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥) x1 + 〈12〉[12]x1 + |p1⊥|2 x2 + |p1⊥|2 x3

)

+p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)) (q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,

N (8)(q1; 1
+, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥p4

2⊥x3/2
1 x3/2

3 x3
4

D(8)(q1; 1
+, 2−, 3+, 4+; q2) = 〈12〉〈23〉p1⊥ (2q1⊥ + p1⊥ + p2⊥)x2

(
√

x4 (
√

x4 q1⊥ − 〈41〉√x1 − 〈42〉 √x2 − 〈43〉√x3) + p4⊥x1234)

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (x1 + x2 + 4x3 + x4))+

x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥ x1234)− s123x1)))

(q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,

N (9)(q1; 1
+, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥∆(2, 1, 4)4

D(9)(q1; 1
+, 2−, 3+, 4+; q2) = s1234〈12〉〈23〉〈34〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥)x1234

∆(1, 2, 4)∆(4, 1, 3),
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N (10)(q1; 1
+, 2−, 3+, 4+; q2) = q∗1⊥q2⊥∆(2, 1, 3)4,

D(10)(q1; 1
+, 2−, 3+, 4+; q2) = s123〈12〉〈23〉 (q1⊥ + p1⊥ + p2⊥)

√
x4

∆(1, 2, 3)∆ (3, 1, 2)∆(4, 1, 3),

N (11)(q1; 1
+, 2−, 3+, 4+; q2) = q∗1⊥q2⊥

√
x1x

3/2
3 ,

D(11)(q1; 1
+, 2−, 3+, 4+; q2) = p1⊥[23]

√
x2
√

x4∆(1, 2, 3)∆(4, 2, 3),

N (12)(q1; 1
+, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥

√
x1∆(2, 3, 4)3,

D(12)(q1; 1
+, 2−, 3+, 4+; q2) = s234〈23〉〈34〉p1⊥ (x2 + x3 + x4)

∆(1, 2, 4)∆(4, 2, 3).

O.1.3 Result for V (0)(q1; 1+, 2+, 3−, 4+; q2)

N (1)(q1; 1
+, 2+, 3−, 4+; q2) = −q4

1⊥q∗1⊥q2⊥x3/2
1 x2,

D(1)(q1; 1
+, 2+, 3−, 4+; q2) = 〈12〉〈23〉p1⊥p4⊥ (q2⊥ + p4⊥) (q1⊥ + q2⊥ + p4⊥)

√
x3

(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

,

N (2)(q1; 1
+, 2+, 3−, 4+; q2) = q5

1⊥q∗1⊥
√

x1x4,

D(2)(q1; 1
+, 2+, 3−, 4+; q2) = (q1⊥ + q2⊥) 〈12〉〈23〉〈34〉p1⊥p4⊥x2

3
(

|q1⊥|2

x3
+

|p1⊥|2

x1
+

|p2⊥|2

x2
+

|p4⊥|2

x4

)

,

N (3)(q1; 1
+, 2+, 3−, 4+; q2) = q4

1⊥q∗1⊥x3/2
1 x2x

2
4,

D(3)(q1; 1
+, 2+, 3−, 4+; q2) = 〈12〉〈23〉p1⊥ (q2⊥ + p4⊥)x3

(q2⊥
√

x3 − 〈34〉
√

x4) (q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234))

+x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥ x1234)

+x2 (p1⊥ (q∗1⊥x1 + p∗1⊥ x1234)− s123x1))) ,
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N (4)(q1; 1
+, 2+, 3−, 4+; q2) = q2⊥ (q1⊥ + q2⊥ + p1⊥ + p2⊥ + p4⊥ )2 x2

3,

D(4)(q1; 1
+, 2+, 3−, 4+; q2) = q1⊥〈12〉〈23〉〈34〉

√
x4x1234

(∆(1, 2, 4)− q2⊥
√

x1) ,

N (5)(q1; 1
+, 2+, 3−, 4+; q2) = −q∗1⊥q2⊥

√
x1x

3/2
4 ,

D(5)(q1; 1
+, 2+, 3−, 4+; q2) = 〈12〉p1⊥[34]

√
x3 (x3 + x4) ∆(2, 3, 4),

N (6)(q1; 1
+, 2+, 3−, 4+; q2) = q∗1⊥q2⊥ (q1⊥ + q2⊥ + p4⊥)3 x3/2

1 x2x
2
3,

D(6)(q1; 1
+, 2+, 3−, 4+; q2) = 〈12〉〈34〉p1⊥ (〈34〉

√
x4 − q2⊥

√
x3)

√
x4

(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1 + 〈12〉[12] x1

+ |p1⊥|2 x2 + |p1⊥|2 x3 + |p1⊥|2 x4

)

+ p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)
)

(∆(2, 3, 4)− q2⊥
√

x2) (x3 + x4) ,

N (7)(q1; 1
+, 2+, 3−, 4+; q2) = q∗1⊥q2⊥ (q1⊥ + q2⊥ + p2⊥ + p4⊥)3 x3/2

1 x2
3,

D(7)(q1; 1
+, 2+, 3−, 4+; q2) = 〈23〉〈34〉p1⊥

√
x4 (x2 + x3 + x4)

(q1⊥ (q∗1⊥ + p∗1⊥ )x1 + p1⊥ (q∗1⊥x1 + p∗1⊥ x1234)) (∆(1, 2, 4)− q2⊥
√

x1)

(∆(2, 3, 4)− q2⊥
√

x2) ,

N (8)(q1; 1
+, 2+, 3−, 4+; q2) = q∗1⊥q2⊥∆(3, 1, 2)3,

D(8)(q1; 1
+, 2+, 3−, 4+; q2) = s123〈12〉〈23〉 (q1⊥ + p1⊥ + p2⊥)

√
x4

∆(1, 2, 3)∆ (4, 1, 3),

N (9)(q1; 1
+, 2+, 3−, 4+; q2) = −q∗1⊥q2⊥∆(3, 1, 4)4,

D(9)(q1; 1
+, 2+, 3−, 4+; q2) = s1234〈12〉〈23〉〈34〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥)

x1234∆(1, 2, 4)∆(4, 1, 3),

N (10)(q1; 1
+, 2+, 3−, 4+; q2) = q∗1⊥q2⊥

√
x1x

3/2
2 ,

D(10)(q1; 1
+, 2+, 3−, 4+; q2) = p1⊥[23]

√
x3
√

x4∆(1, 2, 3)∆(4, 2, 3)
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N (11)(q1; 1
+, 2+, 3−, 4+; q2) = −q∗1⊥q2⊥

√
x1∆(3, 2, 4)4,

D(11)(q1; 1
+, 2+, 3−, 4+; q2) = s234〈23〉〈34〉p1⊥ (x2 + x3 + x4)∆(1, 2, 4)

∆(2, 3, 4)∆(4, 2, 3).

O.1.4 Result for V (0)(q1; 1+, 2+, 3+, 4−; q2)

N (1)(q1; 1
+, 2+, 3+, 4−; q2) = |q1⊥|2 p3

4⊥
√

x1,

D(1)(q1; 1
+, 2+, 3+, 4−; q2) = (q1⊥ + q2⊥) 〈12〉〈23〉〈34〉p1⊥

(

q1⊥q∗1⊥
x3

+
|p1⊥|2

x1
+

|p2⊥ |2

x2
+

|p4⊥|2

x4

)

x3/2
4 ,

N (2)(q1; 1
+, 2+, 3+, 4−; q2) = q∗1⊥ (q2⊥ + p4⊥)3 x3/2

1 x2x3,

D(2)(q1; 1
+, 2+, 3+, 4−; q2) = 〈12〉〈23〉p1⊥ (q2⊥

√
x3 − 〈34〉√x4)

(q1⊥x1 x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (x1 + x2 + 4x3 + x4))

+x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)

−s123x1))) ,

N (3)(q1; 1
+, 2+, 3+, 4−; q2) = q2⊥ (q1⊥ + q2⊥ + p1⊥ + p2⊥ + p4⊥ )2 x3/2

4 ,

D(3)(q1; 1
+, 2+, 3+, 4−; q2) = q1⊥〈12〉〈23〉〈34〉 x1234 (∆(1, 2, 4)− q2⊥

√
x1) ,

N (4)(q1; 1
+, 2+, 3+, 4−; q2) = −q∗1⊥q2⊥

√
x1x

3/2
3 ,

D(4)(q1; 1
+, 2+, 3+, 4−; q2) = 〈12〉p1⊥[34]

√
x4 (x3 + x4) ∆(2, 3, 4),

N (5)(q1; 1
+, 2+, 3+, 4−; q2) = q∗1⊥q2⊥ (q1⊥ + q2⊥ + p4⊥)3 x3/2

1 x2x
3/2
4 ,

D(5)(q1; 1
+, 2+, 3+, 4−; q2) = 〈12〉〈34〉p1⊥ (〈34〉

√
x4 − q2⊥

√
x3) (x3 + x4)

(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥ x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥) x1 + 〈12〉[12]x1

+ |p1⊥|2 x2 + |p1⊥|2 x3 + |p1⊥|2 x4

)

+ p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)
)

(∆(2, 3, 4)− q2⊥
√

x2) ,
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N (6)(q1; 1
+, 2+, 3+, 4−; q2) = q∗1⊥q2⊥ (q1⊥ + q2⊥ + p2⊥ + p4⊥)3 x3/2

1 x3/2
4 ,

D(6)(q1; 1
+, 2+, 3+, 4−; q2) = 〈23〉〈34〉p1⊥ (x2 + x3 + x4) (q1⊥ (q∗1⊥ + p∗1⊥) x1

+p1⊥ (q∗1⊥x1 + p∗1⊥x1234)) (∆(1, 2, 4)− q2⊥
√

x1) (∆ (2, 3, 4)− q2⊥
√

x2) ,

N (7)(q1; 1
+, 2+, 3+, 4−; q2) = −q∗1⊥q2⊥∆(4, 1, 3)3,

D(7)(q1; 1
+, 2+, 3+, 4−; q2) = s1234〈12〉〈23〉〈34〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥)

x1234 ∆(1, 2, 4),

N (8)(q1; 1
+, 2+, 3+, 4−; q2) = −q∗1⊥q2⊥

√
x1∆(4, 2, 3)3,

D(8)(q1; 1
+, 2+, 3+, 4−; q2) = s234〈23〉〈34〉p1⊥ (x2 + x3 + x4)

∆(1, 2, 4)∆(2, 3, 4).
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O.2 NNMHV-type vertices

O.2.1 Result for V (0)(q1; 1−, 2−, 3+, 4+; q2)

N (1)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥p3

2⊥x1x
3/2
3 ,

D(1)(q1; 1
−, 2−, 3+, 4+; q2) = 〈23〉 (q1⊥ + p2⊥) (2q1⊥ + p1⊥ + p2⊥) p4⊥p∗1⊥

√
x2

(

|q1⊥|2 x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

,

N (2)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥p2⊥x1

√
x3,

D(2)(q1; 1
−, 2−, 3+, 4+; q2) = 〈34〉 (q1⊥ + p1⊥ + p2⊥) p∗1⊥

(

|p2⊥|2 x1 + |p1⊥|2 x2

)√
x4,

N (3)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥ (p1⊥ + p2⊥)

√
x1x2x3,

D(3)(q1; 1
−, 2−, 3+, 4+; q2) = 〈34〉 (q1⊥ + p1⊥ + p2⊥) [12]

(

|p2⊥|2 x1 + |p1⊥|2 x2

)√
x4,

N (4)(q1; 1
−, 2−, 3+, 4+; q2) = − |q1⊥|2 q2⊥p3

2⊥x1x3x
3/2
4 ,

D(4)(q1; 1
−, 2−, 3+, 4+; q2) = 〈23〉〈34〉p4⊥ (q1⊥ + p2⊥ + p4⊥)

√
x2

(

|p4⊥|2 x1x2x3 +
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

(2q1⊥ + p1⊥ + p2⊥ + p4⊥) p∗1⊥

N (5)(q1; 1
−, 2−, 3+, 4+; q2) = − |q1⊥|2 q2⊥ (q1⊥ + p1⊥)x1x

5/2
2 ,

D(5)(q1; 1
−, 2−, 3+, 4+; q2) = 〈23〉〈34〉p∗1⊥

√
x4 (x2 + x3 + x4)

(q1⊥ (q∗1⊥ + p∗1⊥)x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234))

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234) ,
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N (6)(q1; 1
−, 2−, 3+, 4+; q2) = −q1⊥q2⊥x5/2

2 (q1⊥x1 + p1⊥x1234) ,

D(6)(q1; 1
−, 2−, 3+, 4+; q2) = 〈23〉〈34〉

√
x4 (x2 + x3 + x4)

(q1⊥ (q∗1⊥ + p∗1⊥)x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234))

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234) ,

N (7)(q1; 1
−, 2−, 3+, 4+; q2) = |q1⊥|2 q2⊥p3

1⊥
√

x2x
5/2
3 ,

D(7)(q1; 1
−, 2−, 3+, 4+; q2) = (q1⊥ + p2⊥) (q1⊥ + p1⊥ + p2⊥)

(2q1⊥ + p1⊥ + p2⊥)
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

∆(1, 2, 3)p4⊥[23]
√

x1,

N (8)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥p3

1⊥
√

x2x
5/2
3 x3

4,

D(8)(q1; 1
−, 2−, 3+, 4+; q2) = (2q1⊥ + p1⊥ + p2⊥) [23]

√
x1 (

√
x4 (

√
x4q1⊥

−〈41〉√x1 − 〈42〉√x2 − 〈43〉√x3) + p4⊥x1234)

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234))

+x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)

−s123x1)))∆(1, 2, 3) (q1⊥ (x1 + 2x2 + 2x3 + x4) + p2⊥x1234

+
√

x1∆(1, 2, 3)) ,

N (9)(q1; 1
−, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥ (p1⊥ + p2⊥)3

√
x1x2x

3/2
3 ,

D(9)(q1; 1
−, 2−, 3+, 4+; q2) =

(

2q2
1⊥ + 3 (p1⊥ + p2⊥) q1⊥ + (p1⊥ + p2⊥)2

)

(

|q1⊥|2 x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

∆(3, 1, 2)p4⊥[12],

N (10)(q1; 1
−, 2−, 3+, 4+; q2) = |q1⊥|2 q2⊥ (p1⊥ + p2⊥)3

√
x1x2x3x

3/2
4 ,

D(10)(q1; 1
−, 2−, 3+, 4+; q2) = 〈34〉p4⊥[12]∆(3, 1, 2)

(

2q2
1⊥ + 3 (p1⊥ + p2⊥ + p4⊥) q1⊥ + (p1⊥ + p2⊥ + p4⊥)2

)

(

|p4⊥|2 x1x2x3 +
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

,
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N (11)(q1; 1
−, 2−, 3+, 4+; q2) = q1⊥q2⊥ (x1 + x2)

4 ,

D(11)(q1; 1
−, 2−, 3+, 4+; q2) = 〈34〉[12]

√
x1
√

x2
√

x4x1234

(q1⊥ (x1 + x2) + (p1⊥ + p2⊥)x1234)∆(3, 1, 2),

N (12)(q1; 1
−, 2−, 3+, 4+; q2) = |q1⊥|2 q2⊥〈12〉3 (q1⊥ + p1⊥ + p2⊥)x1x2x3,

D(12)(q1; 1
−, 2−, 3+, 4+; q2) = s123〈23〉 (2q1⊥ + p1⊥ + p2⊥) p4⊥

(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

∆(1, 2, 3)∆(3, 1, 2),

N (13)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥〈12〉3 (q1⊥ + p1⊥ + p2⊥)3 x1x2x3x

3
4,

D(13)(q1; 1
−, 2−, 3+, 4+; q2) = s123〈23〉 (2q1⊥ + p1⊥ + p2⊥)

(
√

x4 (
√

x4q1⊥ − 〈41〉√x1 − 〈42〉√x2 − 〈43〉√x3) + p4⊥x1234)

((p1⊥ + p2⊥)x1234 + q1⊥ (x1 + x2 + x3 + x1234))

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234))

+x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)

+x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))∆(1, 2, 3)∆(3, 1, 2),

N (14)(q1; 1
−, 2−, 3+, 4+; q2) = −q1⊥q2⊥〈12〉3x3/2

1 x3/2
2

√
x3 (x3 + x4)

3 ,

D(14)(q1; 1
−, 2−, 3+, 4+; q2) = 〈34〉√x4 (q1⊥x1 + p1⊥x1234)

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234)

(q1⊥ (x1 + x2) + (p1⊥ + p2⊥)x1234)
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1

+〈12〉[12]x1 + |p1⊥|2 x2 + |p1⊥|2 x3 + |p1⊥|2 x4

)

+ p2⊥x1 (q∗1⊥x2

+p∗2⊥x1234))

(q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,
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N (15)(q1; 1
−, 2−, 3+, 4+; q2) = |q1⊥|2 q2⊥p3

2⊥x1x
3/2
3 x3

4,

D(15)(q1; 1
−, 2−, 3+, 4+; q2) = 〈23〉 (q1⊥ + p1⊥) (2q1⊥ + p1⊥ + p2⊥) p∗1⊥

√
x2 (

√
x4 (

√
x4q1⊥ − 〈41〉

√
x1 − 〈42〉

√
x2 − 〈43〉

√
x3) + p4⊥x1234)

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234)) + x3 (p2⊥x1

(q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

(q1⊥ (x1 + x2 + 2x3 + x4)
√

x3∆(3, 1, 2)) ,

N (16)(q1; 1
−, 2−, 3+, 4+; q2) = −q1⊥q2⊥〈12〉3x3/2

1 x2x
3/2
3 x3

4,

D(16)(q1; 1
−, 2−, 3+, 4+; q2) = 〈23〉 (q1⊥x1 + p1⊥x1234)

(
√

x4 (
√

x4q1⊥ − 〈41〉
√

x1 − 〈42〉
√

x2 − 〈43〉
√

x3) + p4⊥x1234)

((p1⊥ + p2⊥)x1234 + q1⊥ (x1 + x2 + x3 + x1234))

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234)) + x3 (p2⊥x1

(q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

(q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,

N (17)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥p3

1⊥x1x
3/2
3 x3

4

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234)
3 ,

D(17)(q1; 1
−, 2−, 3+, 4+; q2) = 〈23〉 (q1⊥ + p1⊥)

√
x2 (q1⊥x1 + p1⊥x1234)

(
√

x4 (
√

x4q1⊥ − 〈41〉√x1 − 〈42〉√x2 − 〈43〉√x3) + p4⊥x1234)

(q1⊥ (q∗1⊥ + p∗1⊥) x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234))

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234))

+x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)

+x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

(q1⊥ (x1 + 2x2 + 2x3 + x4) + p2⊥x1234 +
√

x1∆(1, 2, 3))

(q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,
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N (18)(q1; 1
−, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥ (p1⊥ + p2⊥)3

√
x1x2x

3/2
3 x3

4,

D(18)(q1; 1
−, 2−, 3+, 4+; q2) = (2q1⊥ + p1⊥ + p2⊥) [12]

(
√

x4 (
√

x4q1⊥ − 〈41〉
√

x1 − 〈42〉
√

x2 − 〈43〉
√

x3) + p4⊥x1234)

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234)) +

x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

(q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2))∆(3, 1, 2),

N (19)(q1; 1
−, 2−, 3+, 4+; q2) = |q1⊥|2 q2⊥p3

2⊥x1
√

x3 (x3 + x4)
3 ,

D(19)(q1; 1
−, 2−, 3+, 4+; q2) = 〈34〉 (q1⊥ + p1⊥) (q1⊥ + p1⊥ + p2⊥) p∗1⊥

√
x4

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234)
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1

+〈12〉[12]x1 + |p1⊥|2 x2 + |p1⊥|2 x3 + |p1⊥|2 x4

)

+ p2⊥x1

(q∗1⊥x2 + p∗2⊥x1234)) (q1⊥ (x3 + x1234)−
√

x3∆(3, 1, 2)) ,

N (20)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥ (p1⊥ + p2⊥)3

√
x1x2x3 (x3 + x4)

3 ,

D(20)(q1; 1
−, 2−, 3+, 4+; q2) = 〈34〉 (q1⊥ + p1⊥ + p2⊥) [12]

√
x4 (q1⊥ (x1 + x2)

+ (p1⊥ + p2⊥)x1234) (q1⊥ (x3 + x1234)−
√

x3∆(3, 1, 2))
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1

+〈12〉[12]x1 + |p1⊥|2 x2 + |p1⊥|2 x3 + |p1⊥|2 x4

)

+p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)) ,

N (21)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥x3/2

3 ∆(1, 2, 3),

D(21)(q1; 1
−, 2−, 3+, 4+; q2) = s123 (q1⊥ + p1⊥ + p2⊥) [23]

√
x1
√

x2
√

x4∆(4, 1, 3),
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N (22)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥p3

1⊥x1
√

x3 (x3 + x4)
3

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234) ,

D(22)(q1; 1
−, 2−, 3+, 4+; q2) = 〈34〉 (q1⊥ + p1⊥)

√
x4 (q1⊥x1 + p1⊥x1234)

(q1⊥ (q∗1⊥ + p∗1⊥)x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234))
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥) x1

+〈12〉[12]x1 + |p1⊥|2 x2 + |p1⊥|2 x3 + |p1⊥|2 x4

)

+p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234))

(q1⊥ (x3 + x1234)−
√

x3∆(3, 1, 2)) ,

N (23)(q1; 1
−, 2−, 3+, 4+; q2) = − |q1⊥|2 q2⊥〈12〉3 (q1⊥ + p1⊥ + p2⊥ + p4⊥)

x1x2x3x4,

D(23)(q1; 1
−, 2−, 3+, 4+; q2) = s1234〈23〉〈34〉 (2q1⊥ + p1⊥ + p2⊥ + p4⊥)

(

|p4⊥|2 x1x2x3

+
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

∆(1, 2, 4)∆(4, 1, 3),

N (24)(q1; 1
−, 2−, 3+, 4+; q2) = −q1⊥q2⊥〈12〉3x1234,

D(24)(q1; 1
−, 2−, 3+, 4+; q2) = s1234〈23〉〈34〉 (2q1⊥ + p1⊥ + p2⊥ + p4⊥)

∆(1, 2, 4)∆(4, 1, 3),

N (25)(q1; 1
−, 2−, 3+, 4+; q2) = |q1⊥|2 q2⊥〈12〉3 (q1⊥ + p1⊥ + p2⊥)3 x1x2x3x

3/2
4 ,

D(25)(q1; 1
−, 2−, 3+, 4+; q2) = s123〈23〉p4⊥

(

2q2
1⊥ + 3 (p1⊥ + p2⊥ + p4⊥) q1⊥

+ (p1⊥ + p2⊥ + p4⊥)2
)(

|p4⊥|2 x1x2x3 + (q1⊥q∗1⊥x1x2

+
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

∆(1, 2, 3)∆(3, 1, 2)∆(4, 1, 3),
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N (26)(q1; 1
−, 2−, 3+, 4+; q2) = q1⊥q2⊥〈12〉3 (x1 + x2 + x3)

4 ,

D(26)(q1; 1
−, 2−, 3+, 4+; q2) = s123〈23〉

√
x4x1234

((p1⊥ + p2⊥)x1234 + q1⊥ (x1 + x2 + x3 + x1234))

∆(1, 2, 3)∆(3, 1, 2)∆(4, 1, 3),

N (27)(q1; 1
−, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥x3/2

3 ∆(3, 1, 2),

D(27)(q1; 1
−, 2−, 3+, 4+; q2) = s123 (q1⊥ + p1⊥ + p2⊥) [12]

√
x1
√

x2
√

x4∆(4, 1, 3),

N (28)(q1; 1
−, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥ (

√
x1x3〈13〉 − √x4∆(4, 1, 2)

+〈23〉√x2x3)
3 ,

D(28)(q1; 1
−, 2−, 3+, 4+; q2) = s1234〈34〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥) [12]

√
x1
√

x2x1234∆(3, 1, 2)∆(4, 1, 3),

N (29)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥〈12〉3x3/2

4 ∆(4, 1, 3),

D(29)(q1; 1
−, 2−, 3+, 4+; q2) = s123s1234〈23〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥)x1234

∆(1, 2, 3)∆(3, 1, 2),

N (30)(q1; 1
−, 2−, 3+, 4+; q2) = − |q1⊥|2 q2⊥x3/2

3 ,

D(30)(q1; 1
−, 2−, 3+, 4+; q2) = (q1⊥ + p1⊥) (q1⊥ + p2⊥) p∗1⊥[23]

√
x2
√

x4∆(4, 2, 3),
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N (31)(q1; 1
−, 2−, 3+, 4+; q2) = |q1⊥|2 q2⊥p3

1⊥
√

x2x
5/2
3 x3/2

4 ,

D(31)(q1; 1
−, 2−, 3+, 4+; q2) = p4⊥

(

2q2
1⊥ + 3 (p1⊥ + p2⊥ + p4⊥) q1⊥

+ (p1⊥ + p2⊥ + p4⊥)2
)

[23]
√

x1

(

|p4⊥|2 x1x2x3 + (q1⊥q∗1⊥x1x2

+
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

∆(1, 2, 3)∆(4, 2, 3),

N (32)(q1; 1
−, 2−, 3+, 4+; q2) = q1⊥q2⊥x5/2

1 x3/2
3 ,

D(32)(q1; 1
−, 2−, 3+, 4+; q2) = [23]

√
x2
√

x4x1234 (q1⊥x1 + p1⊥x1234)

∆(1, 2, 3)∆(4, 2, 3),

N (33)(q1; 1
−, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥p3

1⊥x3/2
3 (x2 + x3 + x4)

3 ,

D(33)(q1; 1
−, 2−, 3+, 4+; q2) = (q1⊥ + p1⊥) [23]

√
x2
√

x4 (q1⊥x1 + p1⊥x1234)

(q1⊥ (q∗1⊥ + p∗1⊥)x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234)) (q1⊥ (x1234 + x2 + x3)

+p2⊥x1234 +
√

x1∆(1, 2, 3))∆(4, 2, 3),

N (34)(q1; 1
−, 2−, 3+, 4+; q2) = |q1⊥|2 q2⊥∆(2, 3, 4)3,

D(34)(q1; 1
−, 2−, 3+, 4+; q2) = s234〈23〉〈34〉 (q1⊥ + p1⊥) (q1⊥ + p2⊥ + p4⊥) p∗1⊥

(x2 + x3 + x4)∆(4, 2, 3),

N (35)(q1; 1
−, 2−, 3+, 4+; q2) = q∗1⊥q2⊥p3

1⊥ (x2 + x3 + x4)
2 ∆(2, 3, 4)3,

D(35)(q1; 1
−, 2−, 3+, 4+; q2) = s234〈23〉〈34〉 (q1⊥ + p1⊥) (q1⊥x1 + p1⊥x1234)

(
√

x1x2〈12〉+ p4⊥x1 + p4⊥x2 + p4⊥x3 + p4⊥x4

+q1⊥ (x1 + 2 (x2 + x3 + x4))

+p2⊥x1234 + 〈13〉
√

x1x3 + 〈14〉
√

x1x4) (q1⊥ (q∗1⊥ + p∗1⊥)x1

+p1⊥ (q∗1⊥x1 + p∗1⊥x1234))∆(4, 2, 3),
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N (36)(q1; 1
−, 2−, 3+, 4+; q2) = − |q1⊥|2 q2⊥p3

1⊥x2x3x4∆(2, 3, 4)3,

D(36)(q1; 1
−, 2−, 3+, 4+; q2) = s234〈23〉〈34〉 (q1⊥ + p2⊥ + p4⊥)

(

2q2
1⊥ + 3 (p1⊥ + p2⊥ + p4⊥) q1⊥ + (p1⊥ + p2⊥ + p4⊥)2

)

√
x1

(

|p4⊥|2 x1x2x3 +
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

∆(1, 2, 4)∆(4, 2, 3),

N (37)(q1; 1
−, 2−, 3+, 4+; q2) = −q1⊥q2⊥x5/2

1 ∆(2, 3, 4)3,

D(37)(q1; 1
−, 2−, 3+, 4+; q2) = s234〈23〉〈34〉 (x2 + x3 + x4)x1234

(q1⊥x1 + p1⊥x1234)∆(1, 2, 4)∆(4, 2, 3),

N (38)(q1; 1
−, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥∆(1, 2, 4)∆(2, 3, 4)3,

D(38)(q1; 1
−, 2−, 3+, 4+; q2) = s1234s234〈23〉〈34〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥)

√
x1x1234∆(4, 2, 3),

N (39)(q1; 1
−, 2−, 3+, 4+; q2) = −q∗1⊥q2⊥x3/2

3 ∆(1, 2, 4)3,

D(39)(q1; 1
−, 2−, 3+, 4+; q2) = s1234 (q1⊥ + p1⊥ + p2⊥ + p4⊥) [23]

√
x2x1234

∆(1, 2, 3)∆(4, 1, 3)∆(4, 2, 3).
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O.2.2 Result for V (0)(q1; 1−, 2+, 3−, 4+; q2)

N (1)(q1; 1
−, 2+, 3−, 4+; q2) = q2

1⊥q∗1⊥q2⊥p3
1⊥
√

x1x
5/2
2 ,

D(1)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉p2⊥ (p1⊥ + p2⊥) (2q1⊥ + p1⊥ + p2⊥) p4⊥

(

|p2⊥|2 x1 + |p1⊥|2 x2

)(

|q1⊥|2 x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

,

N (2)(q1; 1
−, 2+, 3−, 4+; q2) = q4

1⊥q∗1⊥q2⊥x1x
3/2
2 ,

D(2)(q1; 1
−, 2+, 3−, 4+; q2) = 〈23〉p2⊥ (q1⊥ + p2⊥) (2q1⊥ + p1⊥ + p2⊥)

p4⊥p∗1⊥
√

x3

(

|q1⊥|2 x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

,

N (3)(q1; 1
−, 2+, 3−, 4+; q2) = |q1⊥|2 q2⊥p3

1⊥x3/2
2 x3/2

4 ,

D(3)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉p2⊥ (p1⊥ + p2⊥) (q1⊥ + p1⊥ + p2⊥)

(q1⊥ + p4⊥) [34]
√

x1

(

|p2⊥|2 x1 + |p1⊥|2 x2

)√
x3 (x3 + x4) ,

N (4)(q1; 1
−, 2+, 3−, 4+; q2) = −q5

1⊥q∗1⊥q2⊥x1x
3/2
2 x3/2

4 ,

D(4)(q1; 1
−, 2+, 3−, 4+; q2) = 〈23〉〈34〉p2⊥p4⊥ (q1⊥ + p2⊥ + p4⊥)

(2q1⊥ + p1⊥ + p2⊥ + p4⊥) p∗1⊥x3
(

|p4⊥|2 x1x2x3 +
(

|q1⊥|2 x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

,

N (5)(q1; 1
−, 2+, 3−, 4+; q2) = −q4

1⊥q∗1⊥q2⊥p3
1⊥
√

x1x
5/2
2 x3/2

4 ,

D(5)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉〈34〉p2⊥ (p1⊥ + p2⊥) p4⊥ (q1⊥ + p4⊥)

(2q1⊥ + p1⊥ + p2⊥ + p4⊥)
(

|p2⊥|2 x1 + |p1⊥|2 x2

)√
x3

(

|p4⊥|2 x1x2x3 +
(

|q1⊥|2 x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

,

N (6)(q1; 1
−, 2+, 3−, 4+; q2) = − |q1⊥|2 q2⊥ (q1⊥ + p1⊥)x1

√
x2x

2
3,

D(6)(q1; 1
−, 2+, 3−, 4+; q2) = 〈23〉〈34〉p∗1⊥

√
x4 (x2 + x3 + x4)

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234)

(q1⊥ (q∗1⊥ + p∗1⊥)x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234)) ,
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N (7)(q1; 1
−, 2+, 3−, 4+; q2) = −q1⊥q2⊥

√
x2x

2
3 (q1⊥x1 + p1⊥x1234) ,

D(7)(q1; 1
−, 2+, 3−, 4+; q2) = (x2 + x3 + x4) (

√
x1x2〈12〉+ q1⊥x2 + p2⊥x1234)

〈23〉〈34〉
√

x4 (q1⊥ (q∗1⊥ + p∗1⊥)x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234)) ,

N (8)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥p3

1⊥x3/2
2 x3/2

4 (x3 + x4)
2 ,

D(8)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉 (q1⊥ + p1⊥ + p2⊥) [34]

√
x1
√

x3

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234) (
√

x1x3〈13〉+ q1⊥ (x1234 + x3 + x4)

+p4⊥x1234 + 〈23〉
√

x2x3 + 〈14〉
√

x1x4 + 〈24〉
√

x2x4)
(

x2

(

|p1⊥|2 x1234 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1 + 〈12〉[12]x1

)

+p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)) ,

N (9)(q1; 1
−, 2+, 3−, 4+; q2) = |q1⊥|2 q2⊥p3

1⊥x5/2
2

√
x3,

D(9)(q1; 1
−, 2+, 3−, 4+; q2) = (q1⊥ + p2⊥) (q1⊥ + p1⊥ + p2⊥) p4⊥[23]

√
x1

(2q1⊥ + p1⊥ + p2⊥)
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

∆(1, 2, 3),

N (10)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥p3

1⊥x5/2
2

√
x3x

3
4,

D(10)(q1; 1
−, 2+, 3−, 4+; q2) = (2q1⊥ + p1⊥ + p2⊥) [23]

√
x1

(
√

x4 (
√

x4q1⊥ − 〈41〉
√

x1 − 〈42〉
√

x2 − 〈43〉
√

x3) + p4⊥x1234)

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥) x3 + q∗1⊥ (3x3 + x1234))+

x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

(q1⊥ (x1 + 2x2 + 2x3 + x4) + p2⊥x1234 +
√

x1∆(1, 2, 3))

∆(1, 2, 3),

N (11)(q1; 1
−, 2+, 3−, 4+; q2) = |q1⊥|2 q2⊥

√
x2x

3/2
4 ,

D(11)(q1; 1
−, 2+, 3−, 4+; q2) = (q1⊥ + p1⊥) p2⊥p∗1⊥[34]

√
x3 (x3 + x4)

∆(2, 3, 4),
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N (12)(q1; 1
−, 2+, 3−, 4+; q2) = − |q1⊥|2 q2⊥p3

1⊥x2
√

x3x
5/2
4 ,

D(12)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉 (q1⊥ + p4⊥) (q1⊥ + p1⊥ + p2⊥ + p4⊥)

(2q1⊥ + p1⊥ + p2⊥ + p4⊥) [34]
√

x1∆(2, 3, 4)
(

|p4⊥|2 x1x2x3 +
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

,

N (13)(q1; 1
−, 2+, 3−, 4+; q2) = −q1⊥q2⊥x5/2

1 x3/2
4 ,

D(13)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉[34]

√
x3 (x3 + x4)x1234

(q1⊥x1 + p1⊥x1234)∆(2, 3, 4),

N (14)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥p3

1⊥
√

x2x
3/2
4 (x2 + x3 + x4)

3 ,

D(14)(q1; 1
−, 2+, 3−, 4+; q2) = (q1⊥ + p1⊥) [34]

√
x3 (x3 + x4)

(q1⊥x1 + p1⊥x1234)∆(2, 3, 4)

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234)

(q1⊥ (q∗1⊥ + p∗1⊥) x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234)) ,

N (15)(q1; 1
−, 2+, 3−, 4+; q2) = −q4

1⊥q∗1⊥q2⊥
√

x1x
5/2
2 ,

D(15)(q1; 1
−, 2+, 3−, 4+; q2) = (p1⊥ + p2⊥) p4⊥[12]∆(3, 1, 2)

(

2q2
1⊥ + 3 (p1⊥ + p2⊥) q1⊥ + (p1⊥ + p2⊥)2

)

√
x3

(

|q1⊥|2 x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

,

N (16)(q1; 1
−, 2+, 3−, 4+; q2) = q5

1⊥q∗1⊥q2⊥
√

x1x
5/2
2 x3/2

4 ,

D(16)(q1; 1
−, 2+, 3−, 4+; q2) = 〈34〉 (p1⊥ + p2⊥) p4⊥[12]x3∆(3, 1, 2)

(

2q2
1⊥ + 3 (p1⊥ + p2⊥ + p4⊥) q1⊥ + (p1⊥ + p2⊥ + p4⊥)2

)

(

|p4⊥|2 x1x2x3 +
(

|q1⊥|2 x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

,

N (17)(q1; 1
−, 2+, 3−, 4+; q2) = q1⊥q2⊥x3/2

2 x2
3,

D(17)(q1; 1
−, 2+, 3−, 4+; q2) = 〈34〉[12]

√
x1
√

x4x1234∆(3, 1, 2)

(q1⊥ (x1 + x2) + (p1⊥ + p2⊥)x1234) ,
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N (18)(q1; 1
−, 2+, 3−, 4+; q2) = |q1⊥|2 q2⊥〈13〉4 (q1⊥ + p1⊥ + p2⊥)x1x2x3,

D(18)(q1; 1
−, 2+, 3−, 4+; q2) = s123〈12〉〈23〉∆(1, 2, 3)∆(3, 1, 2)

(2q1⊥ + p1⊥ + p2⊥) p4⊥

(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

,

N (19)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥〈13〉4 (q1⊥ + p1⊥ + p2⊥)3 x1x2x3x

3
4,

D(19)(q1; 1
−, 2+, 3−, 4+; q2) = s123〈12〉〈23〉 (2q1⊥ + p1⊥ + p2⊥)

(
√

x4 (
√

x4q1⊥ − 〈41〉√x1 − 〈42〉√x2 − 〈43〉√x3) + p4⊥x1234)

((p1⊥ + p2⊥)x1234 + q1⊥ (x1 + x2 + x3 + x1234))

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥) x3 + q∗1⊥ (3x3 + x1234)) + x3 (p2⊥

x1 (q∗1⊥x2 + p∗2⊥x1234)+

x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))∆(1, 2, 3)∆(3, 1, 2),

N (20)(q1; 1
−, 2+, 3−, 4+; q2) = q4

1⊥q∗1⊥q2⊥p3
1⊥
√

x1x
5/2
2 x3

4,

D(20)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉p2⊥ (p1⊥ + p2⊥)

(

|p2⊥|2 x1 + |p1⊥|2 x2

)

(

2q2
1⊥ + 3 (p1⊥ + p2⊥) q1⊥ + (p1⊥ + p2⊥)2

)

(
√

x4 (
√

x4q1⊥ − 〈41〉
√

x1 − 〈42〉
√

x2 − 〈43〉
√

x3) + p4⊥x1234)

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥) x3 + q∗1⊥ (3x3 + x1234)) + x3 (p2⊥x1 (q∗1⊥x2

+p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

(q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,

N (21)(q1; 1
−, 2+, 3−, 4+; q2) = q5

1⊥q∗1⊥q2⊥x1x
3/2
2 x3

4,

D(21)(q1; 1
−, 2+, 3−, 4+; q2) = 〈23〉 (q1⊥ + p1⊥) p2⊥ (2q1⊥ + p1⊥ + p2⊥) p∗1⊥

√
x3 (

√
x4 (

√
x4q1⊥ − 〈41〉

√
x1 − 〈42〉

√
x2 − 〈43〉

√
x3) + p4⊥x1234)

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥) x3 + q∗1⊥ (3x3 + x1234)) + x3 (p2⊥x1

(q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

(q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,
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N (22)(q1; 1
−, 2+, 3−, 4+; q2) = −q1⊥q2⊥〈13〉4x3/2

1 x2x
3/2
3 x3

4,

D(22)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉〈23〉 (q1⊥x1 + p1⊥x1234)

(
√

x4 (
√

x4q1⊥ − 〈41〉
√

x1 − 〈42〉
√

x2 − 〈43〉
√

x3) + p4⊥x1234)

((p1⊥ + p2⊥)x1234 + q1⊥ (x1 + x2 + x3 + x1234))

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234)) + x3

(p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

(q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,

N (23)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥p3

1⊥x1x
3/2
2 x3

4

(
√

x1x3〈13〉+ q1⊥ (x1 + x2 + 2x3 + x4))
4 ,

D(23)(q1; 1
−, 2+, 3−, 4+; q2) = 〈23〉 (q1⊥ + p1⊥)

√
x3 (q1⊥x1 + p1⊥x1234)

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234)

(
√

x4 (
√

x4q1⊥ − 〈41〉√x1 − 〈42〉√x2 − 〈43〉√x3) + p4⊥x1234)

(q1⊥ (q∗1⊥ + p∗1⊥)x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234))

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234)) +

x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

(q1⊥ (x1 + 2x2 + 2x3 + x4) + p2⊥x1234 +
√

x1∆(1, 2, 3))

(q1⊥ (x1234 + x3)−
√

x3∆(3, 1, 2)) ,

N (24)(q1; 1
−, 2+, 3−, 4+; q2) = −q4

1⊥q∗1⊥q2⊥
√

x1x
5/2
2 x3

4,

D(24)(q1; 1
−, 2+, 3−, 4+; q2) = (p1⊥ + p2⊥) (2q1⊥ + p1⊥ + p2⊥) [12]

√
x3

(
√

x4 (
√

x4q1⊥ − 〈41〉
√

x1 − 〈42〉
√

x2 − 〈43〉
√

x3) + p4⊥x1234)

(q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3 + x1234)) +

x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)− s123x1)))

∆(3, 1, 2) (q1⊥ (x1 + x2 + 2x3 + x4)−
√

x3∆(3, 1, 2)) ,
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N (25)(q1; 1
−, 2+, 3−, 4+; q2) = − |q1⊥|2 q2⊥p3

1⊥ (q1⊥ + p1⊥ + p2⊥)
√

x1x
5/2
2 x5/2

3 ,

D(25)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉〈34〉p2⊥ (p1⊥ + p2⊥)

√
x4 (x3 + x4)

(

|p2⊥|2 x1 + |p1⊥|2 x2

)

(q1⊥ (x3 + x1234)−
√

x3∆(3, 1, 2))
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1 + 〈12〉[12]x1+

|p1⊥|2 x2 + |p1⊥|2 x3 + |p1⊥|2 x4

)

+ p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)
)

,

N (26)(q1; 1
−, 2+, 3−, 4+; q2) = |q1⊥|2 q2⊥ (q1⊥ + p1⊥ + p2⊥)3 x1x

2
2x

5/2
3 ,

D(26)(q1; 1
−, 2+, 3−, 4+; q2) = 〈34〉 (q1⊥ + p1⊥) p2⊥p∗1⊥

√
x4 (x3 + x4)

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234) (q1⊥ (x3 + x1234)−
√

x3∆(3, 1, 2))
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1

+〈12〉[12]x1 + |p1⊥|2 x2 + |p1⊥|2 x3 + |p1⊥|2 x4

)

+p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)) ,

N (27)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥ (q1⊥ + p1⊥ + p2⊥)3

√
x1x

5/2
2 x5/2

3 ,

D(27)(q1; 1
−, 2+, 3−, 4+; q2) = 〈34〉 (p1⊥ + p2⊥) [12]

√
x4 (x3 + x4)

(q1⊥ (x1 + x2) + (p1⊥ + p2⊥) x1234) (q1⊥ (x3 + x1234)−
√

x3∆(3, 1, 2))
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1+

〈12〉[12]x1 + |p1⊥|2 x2 + |p1⊥|2 x3 + |p1⊥|2 x4

)

+p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)) ,

N (28)(q1; 1
−, 2+, 3−, 4+; q2) = −q1⊥q2⊥x3/2

2 x5/2
3

(−
√

x1x2〈12〉+ q1⊥x1 + p1⊥x1234)
4 ,

D(28)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉〈34〉

√
x1
√

x4 (x3 + x4) (q1⊥x1 + p1⊥x1234)

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234) (q1⊥ (x1 + x2) + (p1⊥ + p2⊥)x1234)
(

x2

(

|p1⊥|2 x1234 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1 + 〈12〉[12]x1

)

+p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)) (q1⊥ (x3 + x1234)−
√

x3∆(3, 1, 2)) ,



342 Chapter O. Results for tree-level Lipatov vertices

N (29)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥p3

1⊥x1x
2
2x

5/2
3

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234) ,

D(29)(q1; 1
−, 2+, 3−, 4+; q2) = 〈34〉 (q1⊥ + p1⊥)

√
x4 (x3 + x4)

(q1⊥x1 + p1⊥x1234) (q1⊥ (q∗1⊥ + p∗1⊥) x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234))
(

x2

(

|p1⊥|2 x1234 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1 + 〈12〉[12]x1

)

+p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234)) (q1⊥ (x3 + x1234)−
√

x3∆(3, 1, 2)) ,

N (30)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥p3

1⊥
√

x1x
5/2
2 x3

4

(q1⊥ (x3 + x1234)−
√

x3∆(3, 1, 2)) ,

D(30)(q1; 1
−, 2+, 3−, 4+; q2) = 〈12〉 (q1⊥ + p1⊥ + p2⊥)

(
√

x1x2〈12〉+ q1⊥x2 + p2⊥x1234)

(
√

x4 (
√

x4q1⊥ − 〈41〉√x1 − 〈42〉√x2 − 〈43〉√x3) + p4⊥x1234)
(

x2

(

|p1⊥|2 x1 + q∗1⊥p1⊥x1 + q1⊥ (q∗1⊥ + p∗1⊥ + p∗2⊥)x1 + 〈12〉[12]x1

)

+

p2⊥x1234 (q∗1⊥x2 + p∗2⊥x1234)) (q1⊥x1x2 ((p∗1⊥ + p∗2⊥)x3 + q∗1⊥ (3x3+

x1234)) + x3 (p2⊥x1 (q∗1⊥x2 + p∗2⊥x1234) + x2 (p1⊥ (q∗1⊥x1 + p∗1⊥x1234)

−s123x1))) ,

N (31)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥x3/2

2 x3/2
4 ,

D(31)(q1; 1
−, 2+, 3−, 4+; q2) = (p1⊥ + p2⊥) [12][34]

√
x1
√

x3 (x3 + x4)

(
√

x1x3〈13〉 − √x4∆(4, 1, 2) + 〈23〉√x2x3) ,

N (32)(q1; 1
−, 2+, 3−, 4+; q2) = −q∗1⊥q2⊥x3/2

4 ∆(1, 2, 4)3,

D(32)(q1; 1
−, 2+, 3−, 4+; q2) = s1234〈12〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥) [34]

√
x3

x1234∆(2, 3, 4) (
√

x1x3〈13〉 − √x4∆(4, 1, 2) + 〈23〉√x2x3) ,

N (33)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥x3/2

2 ∆(1, 2, 3),

D(33)(q1; 1
−, 2+, 3−, 4+; q2) = s123 (q1⊥ + p1⊥ + p2⊥) [23]

√
x1
√

x3
√

x4∆(4, 1, 3),
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N (34)(q1; 1
−, 2+, 3−, 4+; q2) = − |q1⊥|2 q2⊥〈13〉4 (q1⊥ + p1⊥ + p2⊥ + p4⊥)

x1x2x3x4,

D(34)(q1; 1
−, 2+, 3−, 4+; q2) = s1234〈12〉〈23〉〈34〉 (2q1⊥ + p1⊥ + p2⊥ + p4⊥)

(

|p4⊥|2 x1x2x3 +
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

∆(1, 2, 4)∆(4, 1, 3),

N (35)(q1; 1
−, 2+, 3−, 4+; q2) = −q1⊥q2⊥〈13〉4x1234,

D(35)(q1; 1
−, 2+, 3−, 4+; q2) = s1234〈12〉〈23〉〈34〉 (2q1⊥ + p1⊥ + p2⊥ + p4⊥)

∆(1, 2, 4)∆(4, 1, 3),

N (36)(q1; 1
−, 2+, 3−, 4+; q2) = |q1⊥|2 q2⊥〈13〉4 (q1⊥ + p1⊥ + p2⊥)3 x1x2x3x

3/2
4 ,

D(36)(q1; 1
−, 2+, 3−, 4+; q2) = s123〈12〉〈23〉p4⊥∆(1, 2, 3)∆(3, 1, 2)∆(4, 1, 3)

(

2q2
1⊥ + 3 (p1⊥ + p2⊥ + p4⊥) q1⊥ + (p1⊥ + p2⊥ + p4⊥)2

)

(

|p4⊥|2 x1x2x3 +
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

,

N (37)(q1; 1
−, 2+, 3−, 4+; q2) = q1⊥q2⊥〈13〉4 (x1 + x2 + x3)

4 ,

D(37)(q1; 1
−, 2+, 3−, 4+; q2) = s123〈12〉〈23〉

√
x4x1234 ((p1⊥ + p2⊥)x1234+

q1⊥ (x1 + x2 + x3 + x1234))∆(1, 2, 3)∆(3, 1, 2)∆(4, 1, 3),

N (38)(q1; 1
−, 2+, 3−, 4+; q2) = −q∗1⊥q2⊥x3/2

2 ∆(3, 1, 2),

D(38)(q1; 1
−, 2+, 3−, 4+; q2) = s123 (q1⊥ + p1⊥ + p2⊥) [12]

√
x1
√

x3
√

x4∆(4, 1, 3),

N (39)(q1; 1
−, 2+, 3−, 4+; q2) = −q∗1⊥q2⊥x3/2

2 ∆(3, 1, 4)4,

D(39)(q1; 1
−, 2+, 3−, 4+; q2) = s1234〈34〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥) [12]

√
x1x1234

(
√

x1x3〈13〉 − √x4∆(4, 1, 2) + 〈23〉√x2x3)∆(3, 1, 2)∆(4, 1, 3),
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N (40)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥〈13〉4x3/2

4 ∆(4, 1, 3),

D(40)(q1; 1
−, 2+, 3−, 4+; q2) = s123s1234〈12〉〈23〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥)x1234

∆(1, 2, 3)∆(3, 1, 2),

N (41)(q1; 1
−, 2+, 3−, 4+; q2) = − |q1⊥|2 q2⊥x3/2

2 ,

D(41)(q1; 1
−, 2+, 3−, 4+; q2) = (q1⊥ + p1⊥) (q1⊥ + p2⊥) p∗1⊥[23]

√
x3
√

x4∆(4, 2, 3),

N (42)(q1; 1
−, 2+, 3−, 4+; q2) = |q1⊥|2 q2⊥p3

1⊥x5/2
2

√
x3x

3/2
4 ,

D(42)(q1; 1
−, 2+, 3−, 4+; q2) = p4⊥[23]

√
x1∆(1, 2, 3)∆(4, 2, 3)

(

2q2
1⊥ + 3 (p1⊥ + p2⊥ + p4⊥) q1⊥ + (p1⊥ + p2⊥ + p4⊥)2

)

(

|p4⊥|2 x1x2x3 +
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

,

N (43)(q1; 1
−, 2+, 3−, 4+; q2) = q1⊥q2⊥x5/2

1 x3/2
2 ,

D(43)(q1; 1
−, 2+, 3−, 4+; q2) = [23]

√
x3
√

x4x1234 (q1⊥x1 + p1⊥x1234)

∆(1, 2, 3)∆(4, 2, 3),

N (44)(q1; 1
−, 2+, 3−, 4+; q2) = −q∗1⊥q2⊥p3

1⊥x3/2
2 (x2 + x3 + x4)

3 ,

D(44)(q1; 1
−, 2+, 3−, 4+; q2) = (q1⊥ + p1⊥) [23]

√
x3
√

x4 (q1⊥x1 + p1⊥x1234)

(q1⊥ (q∗1⊥ + p∗1⊥) x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234))

(q1⊥ (x1 + 2x2 + 2x3 + x4) + p2⊥x1234 +
√

x1∆(1, 2, 3))∆(4, 2, 3),

N (45)(q1; 1
−, 2+, 3−, 4+; q2) = |q1⊥|2 q2⊥∆(3, 2, 4)4,

D(45)(q1; 1
−, 2+, 3−, 4+; q2) = s234〈23〉〈34〉 (q1⊥ + p1⊥) (q1⊥ + p2⊥ + p4⊥)

p∗1⊥ (x2 + x3 + x4)∆(2, 3, 4)∆(4, 2, 3),
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N (46)(q1; 1
−, 2+, 3−, 4+; q2) = q∗1⊥q2⊥p3

1⊥ (x2 + x3 + x4)
2 ∆(3, 2, 4)4,

D(46)(q1; 1
−, 2+, 3−, 4+; q2) = s234〈23〉〈34〉 (q1⊥ + p1⊥)∆(2, 3, 4)∆(4, 2, 3)

(
√

x1x2〈12〉+ q1⊥x1 + p2⊥x1 + p4⊥x1 + 2q1⊥x2 + p2⊥x2 + p4⊥x2

+2q1⊥x3 + p2⊥x3 + p4⊥x3 + 2q1⊥x4 + p2⊥x4 + p4⊥x4 + 〈13〉
√

x1x3

+〈14〉
√

x1x4) (q1⊥x1 + p1⊥x1234)

(q1⊥ (q∗1⊥ + p∗1⊥)x1 + p1⊥ (q∗1⊥x1 + p∗1⊥x1234)) ,

N (47)(q1; 1
−, 2+, 3−, 4+; q2) = − |q1⊥|2 q2⊥p3

1⊥x2x3x4∆(3, 2, 4)4,

D(47)(q1; 1
−, 2+, 3−, 4+; q2) = s234〈23〉〈34〉 (q1⊥ + p2⊥ + p4⊥)

√
x1

(

2q2
1⊥ + 3 (p1⊥ + p2⊥ + p4⊥) q1⊥ + (p1⊥ + p2⊥ + p4⊥)2

)

(

|p4⊥|2 x1x2x3 +
(

q1⊥q∗1⊥x1x2 +
(

|p2⊥|2 x1 + |p1⊥|2 x2

)

x3

)

x4

)

∆(1, 2, 4)∆(2, 3, 4)∆(4, 2, 3),

N (48)(q1; 1
−, 2+, 3−, 4+; q2) = −q1⊥q2⊥x5/2

1 ∆(3, 2, 4)4,

D(48)(q1; 1
−, 2+, 3−, 4+; q2) = s234〈23〉〈34〉 (x2 + x3 + x4)x1234

(q1⊥x1 + p1⊥x1234)∆(1, 2, 4)∆(2, 3, 4)∆(4, 2, 3),

N (49)(q1; 1
−, 2+, 3−, 4+; q2) = −q∗1⊥q2⊥∆(1, 2, 4)∆(3, 2, 4)4,

D(49)(q1; 1
−, 2+, 3−, 4+; q2) = s1234s234〈23〉〈34〉 (q1⊥ + p1⊥ + p2⊥ + p4⊥)

√
x1x1234∆(2, 3, 4)∆(4, 2, 3),

N (50)(q1; 1
−, 2+, 3−, 4+; q2) = −q∗1⊥q2⊥x3/2

2 ∆(1, 2, 4)3,

D(50)(q1; 1
−, 2+, 3−, 4+; q2) = s1234 (q1⊥ + p1⊥ + p2⊥ + p4⊥) [23]

√
x3

x1234∆(1, 2, 3)∆(4, 1, 3)∆(4, 2, 3).
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O.2.3 Result for V (0)(q1; 1+, 2−, 3−, 4+; q2)

N (1)(q1; 1
+, 2−, 3−, 4+; q2) = x5/2

1

√
x2q

2
1⊥p3

2⊥q2⊥q∗1⊥,

D(1)(q1; 1
+, 2−, 3−, 4+; q2) = 〈12〉p1⊥p4⊥ (p1⊥ + p2⊥) (p1⊥ + 2q1⊥ + p2⊥)

(x2p1⊥p∗1⊥ + x1p2⊥p∗2⊥) (x3x2p1⊥p∗1⊥ + x1x2q1⊥q∗1⊥ + x1x3p2⊥p∗2⊥) ,

N (2)(q1; 1
+, 2−, 3−, 4+; q2) = x5/2

1

√
x2q

4
1⊥q2⊥q∗1⊥,

D(2)(q1; 1
+, 2−, 3−, 4+; q2) = [12]

√
x3p4⊥ (p1⊥ + p2⊥) (

√
x1〈13〉+

√
x2〈23〉)

(p1⊥ + q1⊥ + p2⊥) (p1⊥ + 2q1⊥ + p2⊥)

(x3x2p1⊥p∗1⊥ + x1x2q1⊥q∗1⊥ + x1x3p2⊥p∗2⊥) ,

N (3)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1

√
x2
√

x3q1⊥q2⊥q∗1⊥ (q1⊥ + p2⊥)3 ,

D(3)(q1; 1
+, 2−, 3−, 4+; q2) = [23]p1⊥p4⊥ (

√
x2〈12〉+

√
x3〈13〉)

(p1⊥ + q1⊥ + p2⊥) (p1⊥ + 2q1⊥ + p2⊥)

(x3x2p1⊥p∗1⊥ + x1x2q1⊥q∗1⊥ + x1x3p2⊥p∗2⊥) ,

N (4)(q1; 1
+, 2−, 3−, 4+; q2) = x1x2x3〈23〉3 (−q1⊥) q2⊥q∗1⊥ (p1⊥ + q1⊥ + p2⊥) ,

D(4)(q1; 1
+, 2−, 3−, 4+; q2) = s123〈12〉p4⊥ (

√
x2〈12〉+√x3〈13〉)

(
√

x1〈13〉+
√

x2〈23〉) (p1⊥ + 2q1⊥ + p2⊥)

(x3x2p1⊥p∗1⊥ + x1x2q1⊥q∗1⊥ + x1x3p2⊥p∗2⊥) ,

N (5)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 q2⊥ (
√

x1〈13〉+√x2〈23〉) (−q∗1⊥) ,

D(5)(q1; 1
+, 2−, 3−, 4+; q2) = [12]s123

√
x2
√

x3
√

x4 (p1⊥ + q1⊥ + p2⊥)

(
√

x1〈14〉+
√

x2〈24〉+
√

x3〈34〉) ,

N (6)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 q2⊥ (
√

x2〈12〉+√x3〈13〉) (−q∗1⊥) ,

D(6)(q1; 1
+, 2−, 3−, 4+; q2) = [23]s123

√
x2
√

x3
√

x4 (p1⊥ + q1⊥ + p2⊥)

(
√

x1〈14〉+
√

x2〈24〉+
√

x3〈34〉) ,
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N (7)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 x3/2
4 q1⊥p3

2⊥q2⊥q∗1⊥,

D(7)(q1; 1
+, 2−, 3−, 4+; q2) = [34]

√
x2
√

x3 (x3 + x4) 〈12〉p1⊥ (p1⊥ + p2⊥)

(p1⊥ + q1⊥ + p2⊥) (q1⊥ + p4⊥) (x2p1⊥p∗1⊥ + x1p2⊥p∗2⊥) ,

N (8)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 x3/2
4 q2⊥q∗1⊥,

D(8)(q1; 1
+, 2−, 3−, 4+; q2) = [12][34]

√
x2
√

x3 (x3 + x4) (p1⊥ + p2⊥)

(
√

x1
√

x3〈13〉+
√

x1
√

x4〈14〉+
√

x2
√

x3〈23〉+
√

x2
√

x4〈24〉) ,

N (9)(q1; 1
+, 2−, 3−, 4+; q2) =

√
x1x

3/2
4 q2⊥ (

√
x2〈24〉+√x3〈34〉) (−q∗1⊥) ,

D(9)(q1; 1
+, 2−, 3−, 4+; q2) = [23]s234

√
x2
√

x3 (x2 + x3 + x4) p1⊥

(
√

x2〈12〉+
√

x3〈13〉+
√

x4〈14〉) ,

N (10)(q1; 1
+, 2−, 3−, 4+; q2) =

√
x1x

3/2
4 q2⊥ (

√
x3〈23〉+√x4〈24〉) (−q∗1⊥) ,

D(10)(q1; 1
+, 2−, 3−, 4+; q2) = [34]s234

√
x2
√

x3 (x2 + x3 + x4) p1⊥

(
√

x2〈12〉+
√

x3〈13〉+
√

x4〈14〉) ,

N (11)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 〈23〉3q2⊥q∗1⊥

(
√

x2〈12〉+
√

x3〈13〉+
√

x4〈14〉) ,

D(11)(q1; 1
+, 2−, 3−, 4+; q2) = s1234s234x1234〈34〉

(
√

x3〈23〉+√x4〈24〉) (
√

x2〈24〉+√x3〈34〉) (p1⊥ + q1⊥ + p2⊥ + p4⊥) ,

N (12)(q1; 1
+, 2−, 3−, 4+; q2) = (

√
x1〈13〉+

√
x2〈23〉 −

√
x4〈34〉)4

x3/2
1 q2⊥ (−q∗1⊥) ,

D(12)(q1; 1
+, 2−, 3−, 4+; q2) = [12]s1234

√
x2x1234〈34〉

(
√

x1〈14〉+√x2〈24〉+√x3〈34〉) (p1⊥ + q1⊥ + p2⊥ + p4⊥)

(x1
√

x4〈13〉〈14〉+ 2
√

x1
√

x2
√

x3〈13〉〈23〉+
√

x1
√

x2
√

x4〈13〉〈24〉+

x1
√

x3〈13〉2 +
√

x1
√

x2
√

x4〈14〉〈23〉+ x2
√

x4〈23〉〈24〉+ x2
√

x3〈23〉2
)

,
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N (13)(q1; 1
+, 2−, 3−, 4+; q2) = q2⊥ (−q∗1⊥) (−√x1

√
x2〈12〉 − √x1

√
x3〈13〉

+
√

x2
√

x4〈24〉+√x3
√

x4〈34〉)4 ,

D(13)(q1; 1
+, 2−, 3−, 4+; q2) = [23]s1234

√
x2
√

x3x1234 (
√

x2〈24〉+
√

x3〈34〉)
(

2
√

x2
√

x3〈12〉〈13〉+
√

x2
√

x4〈12〉〈14〉+ x2〈12〉2 +
√

x3
√

x4〈13〉〈14〉

+x3〈13〉2
)

(
√

x1〈14〉+
√

x2〈24〉+√x3〈34〉) (p1⊥ + q1⊥ + p2⊥ + p4⊥) ,

N (14)(q1; 1
+, 2−, 3−, 4+; q2) = (

√
x1〈14〉+

√
x2〈24〉+

√
x3〈34〉)

x3/2
4 〈23〉3q2⊥q∗1⊥,

D(14)(q1; 1
+, 2−, 3−, 4+; q2) = s123s1234x1234〈12〉 (√x2〈12〉+√x3〈13〉)

(
√

x1〈13〉+√x2〈23〉) (p1⊥ + q1⊥ + p2⊥ + p4⊥) ,

N (15)(q1; 1
+, 2−, 3−, 4+; q2) = (−

√
x1〈12〉+

√
x3〈23〉+

√
x4〈24〉)4

x3/2
4 q2⊥ (−q∗1⊥) ,

D(15)(q1; 1
+, 2−, 3−, 4+; q2) = [34]s1234

√
x3x1234〈12〉 (√x3〈23〉+√x4〈24〉)

(
√

x2〈12〉+
√

x3〈13〉+
√

x4〈14〉) (p1⊥ + q1⊥ + p2⊥ + p4⊥)

(
√

x1
√

x3〈13〉+
√

x1
√

x4〈14〉+
√

x2
√

x3〈23〉+
√

x2
√

x4〈24〉) ,

N (16)(q1; 1
+, 2−, 3−, 4+; q2) = x1234〈23〉3q1⊥q2⊥,

D(16)(q1; 1
+, 2−, 3−, 4+; q2) = s1234〈12〉〈34〉 (

√
x2〈12〉+

√
x3〈13〉+

√
x4〈14〉)

(
√

x1〈14〉+
√

x2〈24〉+
√

x3〈34〉) (p1⊥ + 2q1⊥ + p2⊥ + p4⊥) ,

N (17)(q1; 1
+, 2−, 3−, 4+; q2) =

√
x1 (x2 + x3)

4 (−q1⊥) q2⊥,

D(17)(q1; 1
+, 2−, 3−, 4+; q2) = [23]

√
x2
√

x3
√

x4x1234 (
√

x2〈12〉+
√

x3〈13〉)

(
√

x2〈24〉+
√

x3〈34〉) (x1p1⊥ + x2p1⊥ + x3p1⊥ + x4p1⊥ + x1q1⊥) ,

N (18)(q1; 1
+, 2−, 3−, 4+; q2) =

√
x1x

2
2x

3/2
4 (−q1⊥) q2⊥,

D(18)(q1; 1
+, 2−, 3−, 4+; q2) = [34]

√
x3 (x3 + x4) (

√
x3〈23〉+

√
x4〈24〉)

x1234〈12〉 (x1p1⊥ + x2p1⊥ + x3p1⊥ + x4p1⊥ + x1q1⊥) ,
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N (19)(q1; 1
+, 2−, 3−, 4+; q2) =

√
x1 (x2 + x3 + x4)

3 〈23〉3q1⊥q2⊥,

D(19)(q1; 1
+, 2−, 3−, 4+; q2) = s234x1234〈34〉 (

√
x3〈23〉+

√
x4〈24〉)

(
√

x2〈24〉+√x3〈34〉) (x1p1⊥ + x2p1⊥ + x3p1⊥ + x4p1⊥ + x1q1⊥)

(
√

x2〈12〉+
√

x3〈13〉+
√

x4〈14〉) ,

N (20)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 x2
3 (−q1⊥) q2⊥,

D(20)(q1; 1
+, 2−, 3−, 4+; q2) = [12]

√
x2
√

x4x1234〈34〉 (√x1〈13〉+√x2〈23〉)

(x1234p1⊥ + x1q1⊥ + x2q1⊥ + x1234p2⊥) ,

N (21)(q1; 1
+, 2−, 3−, 4+; q2) = (x1 + x2 + x3)

4 〈23〉3q1⊥q2⊥,

D(21)(q1; 1
+, 2−, 3−, 4+; q2) = s123

√
x4x1234〈12〉 (√x2〈12〉+√x3〈13〉)

(
√

x1〈13〉+
√

x2〈23〉) (
√

x1〈14〉+
√

x2〈24〉+
√

x3〈34〉) (x1234p1⊥

+2x1q1⊥ + 2x2q1⊥ + 2x3q1⊥ + x4q1⊥ + x1234p2⊥) ,

N (22)(q1; 1
+, 2−, 3−, 4+; q2) = x2

1x
5/2
2 x3/2

4 q2⊥ (p1⊥ + q1⊥)3 q∗1⊥,

D(22)(q1; 1
+, 2−, 3−, 4+; q2) = [34]

√
x3 (x3 + x4) (x2 + x3 + x4) p1⊥

(
√

x3〈23〉+
√

x4〈24〉) (x1234p1⊥ + x1q1⊥) (x1p1⊥q∗1⊥ + x1q1⊥p∗1⊥

+x1p1⊥p∗1⊥ + x2p1⊥p∗1⊥ + x3p1⊥p∗1⊥ + x4p1⊥p∗1⊥ + x1q1⊥q∗1⊥)

(x2q1⊥ + x1p2⊥ + x2p2⊥ + x3p2⊥ + x4p2⊥ +
√

x1
√

x2〈12〉) ,

N (23)(q1; 1
+, 2−, 3−, 4+; q2) = x2

1 (x2 + x3)
4 q2⊥ (p1⊥ + q1⊥)3 q∗1⊥,

D(23)(q1; 1
+, 2−, 3−, 4+; q2) = [23]

√
x2
√

x3
√

x4 (x2 + x3 + x4) p1⊥

(
√

x2〈24〉+√x3〈34〉) (x1234p1⊥ + x1q1⊥) (x1p1⊥q∗1⊥ + x1q1⊥p∗1⊥

+x1p1⊥p∗1⊥ + x2p1⊥p∗1⊥ + x3p1⊥p∗1⊥ + x4p1⊥p∗1⊥ + x1q1⊥q∗1⊥)

(x1q1⊥ + 2x2q1⊥ + 2x3q1⊥ + x4q1⊥ + x1p2⊥ + x2p2⊥+

x3p2⊥ + x4p2⊥ +
√

x1
√

x2〈12〉+√x1
√

x3〈13〉) ,
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N (24)(q1; 1
+, 2−, 3−, 4+; q2) = x2

1 (x2 + x3 + x4)
2 〈23〉3q2⊥

(p1⊥ + q1⊥)3 (−q∗1⊥) ,

D(24)(q1; 1
+, 2−, 3−, 4+; q2) = s234〈34〉p1⊥ (

√
x3〈23〉+√x4〈24〉)

(
√

x2〈24〉+
√

x3〈34〉) (x1p1⊥ + x2p1⊥ + x3p1⊥ + x4p1⊥ + x1q1⊥)

(x1p1⊥q∗1⊥ + x1q1⊥p∗1⊥ + x1p1⊥p∗1⊥ + x2p1⊥p∗1⊥ + x3p1⊥p∗1⊥

+x4p1⊥p∗1⊥ + x1q1⊥q∗1⊥) (x1q1⊥ + 2x2q1⊥ + 2x3q1⊥ + 2x4q1⊥ + x1p2⊥

+x2p2⊥ + x3p2⊥ + x4p2⊥ + x1p4⊥ + x2p4⊥ + x3p4⊥

+x4p4⊥ +
√

x1
√

x2〈12〉+
√

x1
√

x3〈13〉+
√

x1
√

x4〈14〉) ,

N (25)(q1; 1
+, 2−, 3−, 4+; q2) = x5/2

1

√
x2x

5/2
3 (−q1⊥) p3

2⊥q2⊥q∗1⊥

(p1⊥ + q1⊥ + p2⊥) ,

D(25)(q1; 1
+, 2−, 3−, 4+; q2) =

√
x4 (x3 + x4) 〈12〉〈34〉p1⊥ (p1⊥ + p2⊥)

(x1q1⊥ + x2q1⊥ + 2x3q1⊥ + x4q1⊥ +
√

x1
√

x3〈13〉+
√

x2
√

x3〈23〉)

(x2p1⊥p∗1⊥ + x1p2⊥p∗2⊥) (x2x1p2⊥q∗1⊥ + x2x1p1⊥q∗1⊥ + x2x1q1⊥p∗1⊥

+x2x1p1⊥p∗1⊥ + x2
2p1⊥p∗1⊥ + x2x3p1⊥p∗1⊥ + x2x4p1⊥p∗1⊥ + x2x1q1⊥q∗1⊥

+x2x1q1⊥p∗2⊥ + x2
1p2⊥p∗2⊥ + x2x1p2⊥p∗2⊥ + x3x1p2⊥p∗2⊥+

x4x1p2⊥p∗2⊥ + [12]x2x1〈12〉) ,

N (26)(q1; 1
+, 2−, 3−, 4+; q2) = x5/2

1

√
x2x

5/2
3 q2⊥q∗1⊥ (p1⊥ + q1⊥ + p2⊥)3 ,

D(26)(q1; 1
+, 2−, 3−, 4+; q2) = [12]

√
x4 (x3 + x4) 〈34〉 (p1⊥ + p2⊥)

(x1234p1⊥ + x1q1⊥ + x2q1⊥ + x1234p2⊥)

(x1q1⊥ + x2q1⊥ + 2x3q1⊥ + x4q1⊥ +
√

x1
√

x3〈13〉+√x2
√

x3〈23〉)
(

x2x1p2⊥q∗1⊥ + x2x1p1⊥q∗1⊥ + x2x1q1⊥p∗1⊥ + x2x1p1⊥p∗1⊥ + x2
2p1⊥p∗1⊥

+x2x3p1⊥p∗1⊥ + x2x4p1⊥p∗1⊥ + x2x1q1⊥q∗1⊥ + x2x1q1⊥p∗2⊥ + x2
1p2⊥p∗2⊥

+x2x1p2⊥p∗2⊥ + x3x1p2⊥p∗2⊥x4x1p2⊥p∗2⊥ + [12]x2x1〈12〉) ,
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N (27)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 x5/2
3 (−q1⊥) q2⊥

(x2q1⊥ + x1p2⊥ + x2p2⊥ + x3p2⊥ + x4p2⊥ +
√

x1
√

x2〈12〉)3 ,

D(27)(q1; 1
+, 2−, 3−, 4+; q2) =

√
x2
√

x4 (x3 + x4) 〈12〉〈34〉 (x1234p1⊥ + x1q1⊥)

(x1234p1⊥ + x1q1⊥ + x2q1⊥ + x1234p2⊥)

(x1q1⊥ + x2q1⊥ + 2x3q1⊥ + x4q1⊥ +
√

x1
√

x3〈13〉+√x2
√

x3〈23〉)
(

x2x1p2⊥q∗1⊥ + x2x1p1⊥q∗1⊥ + x2x1q1⊥p∗1⊥ + x2x1p1⊥p∗1⊥ + x2
2p1⊥p∗1⊥

+x2x3p1⊥p∗1⊥ + x2x4p1⊥p∗1⊥ + x2x1q1⊥q∗1⊥ + x2x1q1⊥p∗2⊥ + x2
1p2⊥p∗2⊥

+x2x1p2⊥p∗2⊥ + x3x1p2⊥p∗2⊥x4x1p2⊥p∗2⊥ + [12]x2x1〈12〉) ,

N (28)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 x3/2
4 (x3 + x4)

2 p4
2⊥q2⊥q∗1⊥,

D(28)(q1; 1
+, 2−, 3−, 4+; q2) = [34]

√
x2
√

x3〈12〉p1⊥ (p1⊥ + q1⊥ + p2⊥)

(x2q1⊥ + x1234p2⊥ +
√

x1
√

x2〈12〉)

(x1234q1⊥ + x3q1⊥ + x4q1⊥ + x1p4⊥ + x2p4⊥ + x3p4⊥ + x4p4⊥

+
√

x1
√

x3〈13〉+
√

x1
√

x4〈14〉+
√

x2
√

x3〈23〉+
√

x2
√

x4〈24〉)
(

x2x1p2⊥q∗1⊥ + x2x1p1⊥q∗1⊥ + x2x1q1⊥p∗1⊥ + x2x1p1⊥p∗1⊥ + x2
2p1⊥p∗1⊥

+x2x3p1⊥p∗1⊥ + x2x4p1⊥p∗1⊥ + x2x1q1⊥q∗1⊥ + x2x1q1⊥p∗2⊥ + x2
1p2⊥p∗2⊥

+x2x1p2⊥p∗2⊥ + x3x1p2⊥p∗2⊥ + x4x1p2⊥p∗2⊥ + [12]x2x1〈12〉) ,

N (29)(q1; 1
+, 2−, 3−, 4+; q2) = x3

1x
5/2
3 q2⊥ (p1⊥ + q1⊥)3 q∗1⊥

(x2q1⊥ + x1p2⊥ + x2p2⊥ + x3p2⊥ + x4p2⊥ +
√

x1
√

x2〈12〉) ,

D(29)(q1; 1
+, 2−, 3−, 4+; q2) =

√
x4 (x3 + x4) 〈34〉p1⊥ (x1234p1⊥ + x1q1⊥)

(x1q1⊥ + x2q1⊥ + 2x3q1⊥ + x4q1⊥ +
√

x1
√

x3〈13〉+
√

x2
√

x3〈23〉)
(

x1p1⊥q∗1⊥ + x1q1⊥p∗1⊥ + x1p1⊥p∗1⊥ + x2p1⊥p∗1⊥ + x3p1⊥p∗1⊥ + x4|p1⊥|2

+x1q1⊥q∗1⊥) (x2x1p2⊥q∗1⊥ + x2x1p1⊥q∗1⊥ + x2x1q1⊥p∗1⊥ + x2x1p1⊥p∗1⊥

+x2
2p1⊥p∗1⊥ + x2x3p1⊥p∗1⊥ + x2x4p1⊥p∗1⊥ + x2x1q1⊥q∗1⊥+

x2x1q1⊥p∗2⊥ + x2
1p2⊥p∗2⊥ + x2x1p2⊥p∗2⊥ + x3x1p2⊥p∗2⊥ + x4x1p2⊥p∗2⊥

+[12]x2x1〈12〉) ,
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N (30)(q1; 1
+, 2−, 3−, 4+; q2) = x1x2x3x

3
4〈23〉3q2⊥q∗1⊥ (p1⊥ + q1⊥ + p2⊥)3 ,

D(30)(q1; 1
+, 2−, 3−, 4+; q2) = s123〈12〉 (

√
x2〈12〉+

√
x3〈13〉)

(
√

x1〈13〉+√x2〈23〉) (p1⊥ + 2q1⊥ + p2⊥)

(x1p1⊥ + x2p1⊥ + x3p1⊥ + x4p1⊥ + 2x1q1⊥ + 2x2q1⊥ + 2x3q1⊥ + x4q1⊥

+x1p2⊥ + x2p2⊥ + x3p2⊥ + x4p2⊥) (x4q1⊥ + x1p4⊥ + x2p4⊥ + x3p4⊥

+x4p4⊥ +
√

x1
√

x4〈14〉+
√

x2
√

x4〈24〉+
√

x3
√

x4〈34〉)

(−x2x3x1p2⊥q∗1⊥ − x2x3x1p1⊥q∗1⊥ − x2x3x1q1⊥p∗1⊥ − x2x3x1p1⊥p∗1⊥

−x2x
2
3p1⊥p∗1⊥ − x2

2x3p1⊥p∗1⊥ − x2x3x4p1⊥p∗1⊥ + x2x
2
1 (−q1⊥) q∗1⊥−

x2
2x1q1⊥q∗1⊥ − 4x2x3x1q1⊥q∗1⊥ − x2x4x1q1⊥q∗1⊥ − x2x3x1q1⊥p∗2⊥

−x3x
2
1p2⊥p∗2⊥ − x2

3x1p2⊥p∗2⊥ − x2x3x1p2⊥p∗2⊥ − x3x4x1p2⊥p∗2⊥

+s123x2x3x1) ,

N (31)(q1; 1
+, 2−, 3−, 4+; q2) = x1x2x3x4〈23〉3q1⊥q2⊥q∗1⊥

(p1⊥ + q1⊥ + p2⊥ + p4⊥) ,

D(31)(q1; 1
+, 2−, 3−, 4+; q2) = s1234〈12〉〈34〉 (√x2〈12〉+√x3〈13〉+√x4〈14〉)

(
√

x1〈14〉+
√

x2〈24〉+
√

x3〈34〉) (p1⊥ + 2q1⊥ + p2⊥ + p4⊥)

(x2x4x3p1⊥p∗1⊥ + x1x2x4q1⊥q∗1⊥ + x1x4x3p2⊥p∗2⊥ + x1x2x3p4⊥p∗4⊥) ,

N (32)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 x2x3x4〈23〉3q1⊥q2⊥q∗1⊥ (q1⊥ + p2⊥ + p4⊥)3 ,

D(32)(q1; 1
+, 2−, 3−, 4+; q2) = s234〈34〉p1⊥ (

√
x3〈23〉+

√
x4〈24〉)

(
√

x2〈24〉+
√

x3〈34〉) (
√

x2〈12〉+
√

x3〈13〉+
√

x4〈14〉)

(p1⊥ + q1⊥ + p2⊥ + p4⊥) (p1⊥ + 2q1⊥ + p2⊥ + p4⊥)

(x2x4x3p1⊥p∗1⊥ + x1x2x4q1⊥q∗1⊥ + x1x4x3p2⊥p∗2⊥ + x1x2x3p4⊥p∗4⊥) ,

N (33)(q1; 1
+, 2−, 3−, 4+; q2) = x5/2

1

√
x2x

3/2
4

(

−q5
1⊥

)

q2⊥q∗1⊥,

D(33)(q1; 1
+, 2−, 3−, 4+; q2) = [12]x3〈34〉p4⊥ (p1⊥ + p2⊥) (

√
x1〈13〉+√x2〈23〉)

(p1⊥ + q1⊥ + p2⊥ + p4⊥) (p1⊥ + 2q1⊥ + p2⊥ + p4⊥) (x2x4x3p1⊥p∗1⊥

+x1x2x4q1⊥q∗1⊥ + x1x4x3p2⊥p∗2⊥ + x1x2x3p4⊥p∗4⊥) ,
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N (34)(q1; 1
+, 2−, 3−, 4+; q2) = x5/2

1

√
x2x

3/2
4

(

−q4
1⊥

)

p3
2⊥q2⊥q∗1⊥,

D(34)(q1; 1
+, 2−, 3−, 4+; q2) =

√
x3〈12〉〈34〉p1⊥p4⊥ (p1⊥ + p2⊥) (q1⊥ + p4⊥)

(p1⊥ + 2q1⊥ + p2⊥ + p4⊥) (x2p1⊥p∗1⊥ + x1p2⊥p∗2⊥)

(x2x4x3p1⊥p∗1⊥ + x1x2x4q1⊥q∗1⊥ + x1x4x3p2⊥p∗2⊥ + x1x2x3p4⊥p∗4⊥) ,

N (35)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1

√
x2
√

x3x
3/2
4 (−q1⊥) q2⊥q∗1⊥ (q1⊥ + p2⊥)4 ,

D(35)(q1; 1
+, 2−, 3−, 4+; q2) = [23]p1⊥p4⊥ (

√
x2〈12〉+

√
x3〈13〉)

(
√

x2〈24〉+
√

x3〈34〉) (p1⊥ + q1⊥ + p2⊥ + p4⊥)

(p1⊥ + 2q1⊥ + p2⊥ + p4⊥) (x2x4x3p1⊥p∗1⊥ + x1x2x4q1⊥q∗1⊥+

x1x4x3p2⊥p∗2⊥ + x1x2x3p4⊥p∗4⊥) ,

N (36)(q1; 1
+, 2−, 3−, 4+; q2) = x1x2x3x

3/2
4 〈23〉3q1⊥q2⊥q∗1⊥ (p1⊥ + q1⊥ + p2⊥)3 ,

D(36)(q1; 1
+, 2−, 3−, 4+; q2) = s123〈12〉p4⊥ (

√
x2〈12〉+√x3〈13〉)

(
√

x1〈13〉+
√

x2〈23〉) (
√

x1〈14〉+
√

x2〈24〉+
√

x3〈34〉)

(p1⊥ + q1⊥ + p2⊥ + p4⊥) (p1⊥ + 2q1⊥ + p2⊥ + p4⊥)

(x2x4x3p1⊥p∗1⊥ + x1x2x4q1⊥q∗1⊥ + x1x4x3p2⊥p∗2⊥ + x1x2x3p4⊥p∗4⊥) ,

N (37)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1

√
x3x

5/2
4 (−q1⊥) p4

2⊥q2⊥q∗1⊥,

D(37)(q1; 1
+, 2−, 3−, 4+; q2) = [34]x2〈12〉p1⊥ (

√
x3〈23〉+

√
x4〈24〉) (q1⊥ + p4⊥)

(p1⊥ + q1⊥ + p2⊥ + p4⊥) (p1⊥ + 2q1⊥ + p2⊥ + p4⊥)

(x2x4x3p1⊥p∗1⊥ + x1x2x4q1⊥q∗1⊥ + x1x4x3p2⊥p∗2⊥ + x1x2x3p4⊥p∗4⊥) ,
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N (38)(q1; 1
+, 2−, 3−, 4+; q2) = x5/2

1

√
x2x

3
4q

4
1⊥p3

2⊥q2⊥q∗1⊥,

D(38)(q1; 1
+, 2−, 3−, 4+; q2) = 〈12〉p1⊥ (p1⊥ + p2⊥) (p1⊥ + q1⊥ + p2⊥)

(p1⊥ + 2q1⊥ + p2⊥) (x1q1⊥ + x2q1⊥ + 2x3q1⊥ + x4q1⊥ +
√

x1
√

x3〈13〉

+
√

x2
√

x3〈23〉) (x2p1⊥p∗1⊥ + x1p2⊥p∗2⊥) (x4q1⊥ + x1p4⊥

+x2p4⊥ + x3p4⊥ + x4p4⊥ +
√

x1
√

x4〈14〉+
√

x2
√

x4〈24〉

+
√

x3
√

x4〈34〉) (x2x3x1p2⊥q∗1⊥ + x2x3x1p1⊥q∗1⊥ + x2x3x1q1⊥p∗1⊥

+x2x3x1p1⊥p∗1⊥ + x2x
2
3p1⊥p∗1⊥ + x2

2x3p1⊥p∗1⊥ + x2x3x4p1⊥p∗1⊥

+x2x
2
1q1⊥q∗1⊥ + x2

2x1q1⊥q∗1⊥ + 4x2x3x1q1⊥q∗1⊥ + x2x4x1q1⊥q∗1⊥+

x2x3x1q1⊥p∗2⊥ + x3x
2
1p2⊥p∗2⊥ + x2

3x1p2⊥p∗2⊥ + x2x3x1p2⊥p∗2⊥

+x3x4x1p2⊥p∗2⊥ − s123x2x3x1) ,

N (39)(q1; 1
+, 2−, 3−, 4+; q2) = x5/2

1

√
x2x

3
4q

4
1⊥q2⊥q∗1⊥,

D(39)(q1; 1
+, 2−, 3−, 4+; q2) = [12]

√
x3 (p1⊥ + p2⊥) (

√
x1〈13〉+√x2〈23〉)

(p1⊥ + 2q1⊥ + p2⊥) (x1q1⊥ + x2q1⊥ + 2x3q1⊥ + x4q1⊥ +
√

x1
√

x3〈13〉+
√

x2
√

x3〈23〉) (x4q1⊥ + x1p4⊥ + x2p4⊥ + x3p4⊥ + x4p4⊥ +
√

x1
√

x4〈14〉

+
√

x2
√

x4〈24〉+√x3
√

x4〈34〉) (x2x3x1p2⊥q∗1⊥ + x2x3x1p1⊥q∗1⊥+

x2x3x1q1⊥p∗1⊥ + x2x3x1p1⊥p∗1⊥ + x2x
2
3p1⊥p∗1⊥ + x2

2x3p1⊥p∗1⊥

+x2x3x4p1⊥p∗1⊥ + x2x
2
1q1⊥q∗1⊥ + x2

2x1q1⊥q∗1⊥ + 4x2x3x1q1⊥q∗1⊥

+x2x4x1q1⊥q∗1⊥ + x2x3x1q1⊥p∗2⊥ + x3x
2
1p2⊥p∗2⊥ + x2

3x1p2⊥p∗2⊥+

x2x3x1p2⊥p∗2⊥ + x3x4x1p2⊥p∗2⊥ − s123x2x3x1) ,
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N (40)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1

√
x2
√

x3x
3
4q2⊥q∗1⊥ (q1⊥ + p2⊥)4 ,

D(40)(q1; 1
+, 2−, 3−, 4+; q2) = [23]p1⊥ (

√
x2〈12〉+

√
x3〈13〉)

(p1⊥ + 2q1⊥ + p2⊥) (x1q1⊥ + 2x2q1⊥ + 2x3q1⊥ + x4q1⊥ + x1234p2⊥

+
√

x1
√

x2〈12〉+
√

x1
√

x3〈13〉) (x4q1⊥ + x1p4⊥ + x2p4⊥ + x3p4⊥

+x4p4⊥ +
√

x1
√

x4〈14〉+√x2
√

x4〈24〉+√x3
√

x4〈34〉)

(x2x3x1p2⊥q∗1⊥ + x2x3x1p1⊥q∗1⊥ + x2x3x1q1⊥p∗1⊥ + x2x3x1p1⊥p∗1⊥+

x2x
2
3p1⊥p∗1⊥ + x2

2x3p1⊥p∗1⊥ + x2x3x4p1⊥p∗1⊥ + x2x
2
1q1⊥q∗1⊥ + x2

2x1|q1⊥|2

+4x2x3x1q1⊥q∗1⊥ + x2x4x1q1⊥q∗1⊥ + x2x3x1q1⊥p∗2⊥ + x3x
2
1p2⊥p∗2⊥

+x2
3x1p2⊥p∗2⊥ + x2x3x1p2⊥p∗2⊥ + x3x4x1p2⊥p∗2⊥ − s123x2x3x1

)

,

N (41)(q1; 1
+, 2−, 3−, 4+; q2) = x3/2

1 x2x
3/2
3 x3

4〈23〉3 (−q1⊥) q2⊥,

D(41)(q1; 1
+, 2−, 3−, 4+; q2) = 〈12〉 (x1p1⊥ + x2p1⊥ + x3p1⊥ + x4p1⊥ + x1q1⊥)

(x1234p1⊥ + 2x1q1⊥ + 2x2q1⊥ + 2x3q1⊥ + x4q1⊥ + x1234p2⊥)

(x1q1⊥ + x2q1⊥ + 2x3q1⊥ + x4q1⊥ +
√

x1
√

x3〈13〉+
√

x2
√

x3〈23〉)

(x4q1⊥ + x1234p4⊥ +
√

x1
√

x4〈14〉+
√

x2
√

x4〈24〉+
√

x3
√

x4〈34〉)

(x2x3x1p2⊥q∗1⊥ + x2x3x1p1⊥q∗1⊥ + x2x3x1q1⊥p∗1⊥ + x2x3x1p1⊥p∗1⊥

+x2x
2
3p1⊥p∗1⊥ + x2

2x3p1⊥p∗1⊥ + x2x3x4p1⊥p∗1⊥ + x2x
2
1q1⊥q∗1⊥

+x2
2x1q1⊥q∗1⊥ + 4x2x3x1q1⊥q∗1⊥ + x2x4x1q1⊥q∗1⊥ + x2x3x1q1⊥p∗2⊥

+x3x
2
1p2⊥p∗2⊥ + x2

3x1p2⊥p∗2⊥ + x2x3x1p2⊥p∗2⊥ + x3x4x1p2⊥p∗2⊥

−s123x2x3x1) ,
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N (42)(q1; 1
+, 2−, 3−, 4+; q2) = x3

1x
3/2
2 x3/2

3 x3
4〈23〉3q2⊥ (p1⊥ + q1⊥)3 q∗1⊥,

D(42)(q1; 1
+, 2−, 3−, 4+; q2) = p1⊥ (x1p1⊥ + x2p1⊥ + x3p1⊥ + x4p1⊥ + x1q1⊥)

(x1q1⊥ + x2q1⊥ + 2x3q1⊥ + x4q1⊥ +
√

x1
√

x3〈13〉+
√

x2
√

x3〈23〉)
(

x1p1⊥q∗1⊥ + x1q1⊥p∗1⊥ + x1p1⊥p∗1⊥ + x2p1⊥p∗1⊥ + x3p1⊥p∗1⊥ + x4|p1⊥|2

+x1q1⊥q∗1⊥) (x2q1⊥ + x1p2⊥ + x2p2⊥ + x3p2⊥ + x4p2⊥ +
√

x1
√

x2〈12〉)

(x1q1⊥ + 2x2q1⊥ + 2x3q1⊥ + x4q1⊥ + x1234p2⊥+
√

x1
√

x2〈12〉+
√

x1
√

x3〈13〉) (x4q1⊥ + x1234p4⊥ +
√

x1
√

x4〈14〉

+
√

x2
√

x4〈24〉+
√

x3
√

x4〈34〉) (x2x3x1p2⊥q∗1⊥ + x2x3x1p1⊥q∗1⊥

+x2x3x1q1⊥p∗1⊥ + x2x3x1p1⊥p∗1⊥ + x2x
2
3p1⊥p∗1⊥ + x2

2x3p1⊥p∗1⊥

+x2x3x4p1⊥p∗1⊥ + x2x
2
1q1⊥q∗1⊥ + x2

2x1q1⊥q∗1⊥ + 4x2x3x1q1⊥q∗1⊥

+x2x4x1q1⊥q∗1⊥ + x2x3x1q1⊥p∗2⊥ + x3x
2
1p2⊥p∗2⊥ + x2

3x1p2⊥p∗2⊥+

x2x3x1p2⊥p∗2⊥ + x3x4x1p2⊥p∗2⊥ − s123x2x3x1) ,

N (43)(q1; 1
+, 2−, 3−, 4+; q2) = x5/2

1

√
x2x

3
4p

4
2⊥q2⊥q∗1⊥

(x1q1⊥ + x2q1⊥ + 2x3q1⊥ + x4q1⊥ +
√

x1
√

x3〈13〉+
√

x2
√

x3〈23〉) ,

D(43)(q1; 1
+, 2−, 3−, 4+; q2) = 〈12〉p1⊥ (p1⊥ + q1⊥ + p2⊥) (x2q1⊥ + x1234p2⊥

+
√

x1
√

x2〈12〉) (x4q1⊥ + x1p4⊥ + x2p4⊥ + x3p4⊥ + x4p4⊥

+
√

x1
√

x4〈14〉+
√

x2
√

x4〈24〉+
√

x3
√

x4〈34〉)

(x2x3x1p2⊥q∗1⊥ + x2x3x1p1⊥q∗1⊥ + x2x3x1q1⊥p∗1⊥ + x2x3x1p1⊥p∗1⊥

+x2x
2
3p1⊥p∗1⊥ + x2

2x3p1⊥p∗1⊥ + x2x3x4p1⊥p∗1⊥ + x2x
2
1q1⊥q∗1⊥

+x2
2x1q1⊥q∗1⊥ + 4x2x3x1q1⊥q∗1⊥ + x2x4x1q1⊥q∗1⊥ + x2x3x1q1⊥p∗2⊥

+x3x
2
1p2⊥p∗2⊥ + x2

3x1p2⊥p∗2⊥ + x2x3x1p2⊥p∗2⊥ + x3x4x1p2⊥p∗2⊥

−s123x2x3x1) (x2x1p2⊥q∗1⊥ + x2x1p1⊥q∗1⊥ + x2x1q1⊥p∗1⊥

+x2x1p1⊥p∗1⊥ + x2
2p1⊥p∗1⊥ + x2x3p1⊥p∗1⊥ + x2x4p1⊥p∗1⊥

+x2x1q1⊥q∗1⊥ + x2x1q1⊥p∗2⊥ + x2
1p2⊥p∗2⊥ + x2x1p2⊥p∗2⊥

+x3x1p2⊥p∗2⊥ + x4x1p2⊥p∗2⊥ + [12]x2x1〈12〉) ,
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