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Introduction

Hadron colliders like the Large Hadron Collider (LHC) at Q&Rr the Tevatron at
Fermilab probe our understanding of the theory which dbssrihe subnuclear inter-
action. For the past few decades, physicists have beencathdsstribe with increasing
details the fundamental particles that constitute the &hsie and the interactions be-
tween them. This understanding is encapsulated in the &tdridodel of particle
physics, but there are still important gaps in our known&dthe upcoming experi-
mental data from the LHC might produce unexpected resuttsiameil new scenarios
in our understanding of the model of elementary particlesvéler, the correct iden-
tification of any signal of new physics requires a carefukasment of the Standard
Model backgrounds. Given that the vast majority of evengéstare to strong interac-
tions, a deep understanding of the phenomenology of strdagpictions is fundamen-
tal in order to fully exploit the physics potential of modewiliders.

The theory which currently describes the strong interadsdhe result of the assem-
bling of many theoretical ideas and experimental resulte Jearch for such a theory
started half-century ago. In 1963, Gell-Mann, Ne’eman aweig proposed a model
based on symmetry principles which was able to make senseaftaos caused by
the proliferation of new hadrons produced in nuclear expenits([1| 2, 3,4]. In a few
words, they recognised that the known hadrons could be iated¢o some represen-
tations of the special unitar§U (3) group. This lead to the concept g@iarksas the
building block of hadrons. Mesons were expected to be gaatiquark bound states,
while baryons were interpreted as bound states of threekgudrhis "constituent"
quark model still successfully describes most of the qaidi features of the baryon
spectroscopy.

At that time it was not obvious that such a picture of strongriactions could succeed.
The deeply inelastic scattering experiments carried othén60’s, probing the inner
structure of the nucleon with beams of highly energetictedes, represented a rev-
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olution in the conception of the strong force. The astomighiesult was that a much
larger than expected number of electrons was observedjatdaflection angle. Feyn-
man gave a simple phenomenological explanation for thidtrest the small distance
probed by the electrons, the nucleon has to be consideredasa& non—interacting
point—like particles, called partons| [5]. The electron gliynscatters elastically the
collinear components of the proton, each of them carryingetibnz of the nucleon
momentum, such that

Y oz=1 (1)

partons

According to this model, a hadron could be represented bynneédunctions, the
so—called parton densities, representing the probaltiisy a parton of given kind
(or flavor) carries a fraction of the longitudinal momentum of the hadron. In this
simple picture, the observed hadronic cross—section iglgigiven by the convolution
between the parton densities and point-like partonic @estons, which assume free
partons. Therefore all the dynamical effect of strong #téons is contained in the
specific form of the parton densities.

Pretty soon after the formulation of the parton model, thEsgons were then identi-
fied with the quarks introduced by Gell-Mann and Zweig toriptet the spectroscopy
experiments. Partons were assigned spin 1/2 and electigesiof 2/3 and -1/3. This
gave rise of a series of sum rules relating parton densitidgferent hadrons, which
were experimentally satisfied. However, postulating thisterce of “sea“ quarkse.

of short living pairs of quark—antiquark in the nucleon dgrthe collision, was not
sufficient to fulfil the sum rule Eq[{1). It was also necesgargdmit the existence in
the hadron of neutral particles, called gluons, which doimigract with the electron
probes. At the same time, it was recognised that the quarlehse@med to require
a new quantum number for the quarks, the colour. Originaitsoduced to solve a
problem of Fermi statistic for the spin one-half quarks ia &1+ baryon, the colour
provided a natural set of currents to which gluons might é@up

The assembling of the ideas and experimental evidencedanedtabove gave rise
to the formulation of Quantum Chromo-Dynamics (QCD). Idtroed in 1973, QCD
is the renormalisable non—abelian theory based on the @bi§B) containing gluons
and quarks as elementary fields [[6) 'ﬂ.S]I’he corresponding classical Lagrangian
which exhibits explicitly the SU(3) symmetry is given by ti@ng—Mill Lagrangian
Lonss = Vq (i, D" — m),, ¥, — iﬂ GA,GY 2)

flavors

1For more references see Refg [[9,[10, 11] and referencesirther
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Figure 1: Experimental measurements of the universal QCing coupling con-
stanta,(Q): (a) as a function of the scal@; (b) summary of the measurements
converted to an equivalent (M %). The vertical line and shaded band mark indicate
the final world average value from these measurements [12].

whereV, are the quark fields’}f}y is the field strength tensor derived from the gluon
field A4 andD* is the covariant derivative, defined in Appendix A.

This theory possesses a humber of important propertieshelhoiv—energy regime
it is strongly—interacting and produces an attractiveddrca quark—antiquark and a
three—quarks system. On the other hand, it predictasiyenptotic freedorfiL3,[14],
according to which the coupling decreases as the energgases, as it is shown in
Fig.[D.

The scale dependence of the coupling constant encoded jh filnection which has
the following perturbative expansion

Bo B 2
J=——11 , X
Blas) . ( + 47Tﬂoaé + O(a3) (3)
wheren; is the number of light active flavors and
33 —2n
o = =5t @)
2(153 - 19
g = XA ng)
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Neglectings; and higher order coefficients, the leading—order solutotife running
of as(Q?) is given by

2 Qs (/L2)
Qg = . 5
@) = T 0@ s @1) ®
Contrarily to what we have in QED, the coefficient of the exgan of thes function
in a non—abelian theory like QCD are negative and this is wietesn, decrease as
the energy increases, EfQ (5).

An important consequence of asymptotic freedom is thanhgti@oss sections are
computable in perturbation theory if a sufficiently high eyyescale is involved in the
computation. This would still not be enough to apply the issef perturbative calcu-
lations on partons to the world of observed hadrons. We ngeather fundamental
ingredients: the concept of infrared safety and the fasation theorem. The former
guarantees the cancellation between the singularitisghgrat the boundary of the
phase space in each perturbative calculation and allowsigadre the long—distance
effects into the perturbative calculations. On the otherdhahe factorisation theo-
rem enables us to write down the hadronic cross—sectionsra®lctions between a
hard part computable in perturbative QCD and a low—energy-perturbative part up
to O (A3cp/@Q?) corrections corresponding to higher—twist operators. fakter is
given by the parton distribution functions (PDFs). Theyrgatrbe derived from first
principles, but are process—independent and their sc@endence is predicted by
perturbative QCD. Therefore we may extract PDFs from thélahla experimental
data and evolve them to the scale of a new experiment for WRIRRs represent a
theoretical input. The kinematic plarie, Q?) with the region which is going to be
explored by the LHC as compared to the region covered by sppieat experiments
from which parton distribution functions are extracted f@wn in Fig.[2. Parton
distributions and their uncertainties are fundamentalisjpf any phenomenological
prediction at the LHC and at the Tevatron. More details orcthinear factorisation
theorem and on the evolution of parton distribution funtsi@re given in Chapters
2 and 5. In the latter a method for a fast computation of théopagvolution and
of the hadronic observables is described in details. Anweeron how PDFs are
extracted from data and on the statistical topics involveglbbal analyses are given
in Chapter 3. In Chapter 4, the approach developed withitNtiEDF collaboration
is explained in all details and the physical results are sgdo The method lead to
several phenomenological analyses which are discusseldaptér 6.

In the real world, three of the six quarks present in Natueelight, while three of
them have a mass which is not negligible with respect to/thep scale at which
the perturbative approach to QCD breaks down. The precifeitéen of the PDFs
and the formulation of the factorisation does depend oniderations about the rela-
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Figure 2: This plot shows the kinematical coverage of the Li@n the centre—
of-mass energy will reach 14 TeV in the plape Q?) compared to the kinematical
coverage of previous colliders.

tive magnitude of the scales involved in the process witpaesto the quark masses
(me, mp, my). This is not a trivial issue because different regimes,etieling on
whether a quark is considered light or heavy, correspondffierent theories and re-
quire a suitable definition of the renormalised quantitiése general framework and
the definition of renormalisation schemes able to deal viith multi-scale problem
are given in the second part of Chapter 2.

As in perturbative QCD we model the hadron as an object dotesti by massless par-
tons, it is not trivial to perform calculations of procesgatiated by a heavy quark.
The schemes elaborated in literature in order to perforth safculations exploit what
is already well-known about perturbative QCD with light dtsain the initial states
and heavy particles in the final states. In particular, theedwo extreme and comple-
mentary schemes which are generally employed dependirfgeoretative size of the
heavy quark mass with respect to the hard scale of the prdcetse so—called mass-
less scheme the heavy quark is treated as a parton in tha gtitte, while in the oppo-
site massive scheme the heavy quark is treated as a massietepa the final state.
Both schemes present several advantages and disadvaritagesmassless scheme



theoretical calculations at next-to-leading orders aghlyisimplified and logarithmic
corrections associated to the collinear splitting of thaMyequarks are resummed to
all orders. However the calculation might be very inacaiatkinematic regions
where the effect of the non-logarithmic terms are import&n the other hand, the
massive scheme does not resum the logarithmic correctigristbeats correctly the
leading—order kinematics and employs coherently the ntasshold effects. A de-
tailed analysis of their difference is presented in Chaptérhis study leads to a better
understanding of the size of the potentially large loganghiesummed by the DGLAP
equations and allows a systematic estimate of their impact.



Chapter

Perturbative Quantum
Chromo—-Dynamics

In this chapter some essential features of perturbative @€discussed. The collinear
factorisation theorem is introduced by using the deep stielacattering process as a
paradigm. The flavor decomposition and the solution of thd BI& equations are
described in detail. In the second part of the chapter, thaugdsion focuses on the de-
scription of a renormalisation scheme able to deal with thieefheavy quarks masses.
The deriving schemes used to perform calculations invglvieavy quarks are then
reviewed.

1.1 The QCD improved parton model

Quantum Chromo—Dynamics (QCD) is the universally accefitedry of the strong
interactions. The success of the theory has been confirmielmpmparison between
the experimental data collected in the last forty years emgredictions.

Although we cannot see directly the quarks and the gluonseadomvith the other
elementary particles, their presence is unmistakablyaledein high energy interac-
tions as distinctive "jets"i.e. as a bunch of collimated hadrons. In Hig.]1.1 a typical
signature from the annihilation of electrons and positratnthe centre—of-mass en-
ergy of 91 GeV at LEP is shown. The signature can be intergeetdllustrated on the
right—hand side of the same figure: tttlee~ pair annihilates into a quark—antiquark
pair which then "hadronise” into the observed pencil-liées] The same experimental

15
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DELPH Interactive Anal ysis
Run: 26154

Figure 1.1: Typical event inte~ — hadrons with 2—jets in final state at LEP. Clear
evidence fogq creation.

evidence was reached for the existence of gluon. In[Eig. B2jets event irete~
collision is shown. The natural interpretation is drawntoatight of the experimental
trace: the event correspond t@y@y final state with subsequent hadronisation of the
quarks and gluon into hadronic jets. Detailed studies oatigular distribution of the
three jets confirm this picture, the spin of the underlyingifet being consistent with
one. This proves that the gluon is a vector—boson.

Interactive Anal
GV Run: 26154 O

oo B SET

L

Figure 1.2: Typical event inte~ — hadrons with 3—jets in final state at LEP. Clear
evidence fokgg creation.
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The unique feature of the underlying Quantum Field Theorictvmakes the pertur-
bative approach applicable to QCD is the concept of asynedfteedom. The strong
processes computable in perturbation theory are thosehvilmolve a high energy
scale so that the coupling is sufficiently small. Some exampihich will be dis-
cussed in this thesis are: the deep inelastic scatterirg)(@lan electron off a proton,
where the hard scat@? is given by the transferred momentum, and the production of
heavy particles, such as weak bosons, where the hard scieiisby the mass of the
produced particles.

Even though QCD is asymptotically free, the computationrof strong cross sec-
tion does involve non-perturbative contributions, sinte initial and final states are
not the fundamental degrees of freedom of the theory but comg states of quarks
and gluons. An important property of QCD is the factorisatibeorem, which ba-

sically enables us to separate in every process a hard panputable in perturba-
tion theory, from a low energy one, which is process-indejan and can be taken
as a phenomenological input. The latter, given by the Pdbistribution Functions

(PDFs), parametrise our ignorance on the inner structutkeohucleons. More de-
tails on the way in which PDFs are extracted from the exidtiaig and on the related
phenomenological issues are given in the next Chapter.

The possibility of separating long and short distance &frgely explains the suc-
cess of the parton model, a predecessor of QCD, introducégyzyman and Bjorken
in the late Sixties [15]-[16]. It began as a quasi—classitadlel for DIS, based upon
the idea that the hadron can be described as a bunch of eollinéependent par-
tons, carrying a fraction of the total longitudinal momentaf the hadron, off which
a lepton can scatter via the exchange of a vector boson. Noysabe parton model
is understood as the lowest order approximation of a peativd QCD calculation.
To maintain the separation between long and short distaffieet®in the presence
of QCD corrections, one is obliged to make PDFs scale depgntheat is, functions
of bothz and Q2. The dependence of PDFs G}¥ has been confirmed and accu-
rately measured by experiments, especially by the largeuatraf data collected at
the HERA collider [1¥]. The dependence of PDFs on the scatebeaunderstood
pictorially with the idea that the parton carries withinutrther daughter—partons and
that these are revealed when the energy of the probing ieasom is increased. For-
tunately the scale dependence is predicted by perturb@@® and it is governed by
the DGLAP equations. The latter allow one to deduce PDFs atemgcale from a
set of PDFs extracted at any other given scale.

In the following sub—sections we first provide the Leadingd€ picture of QCD
through the parton model description of Deep-Inelastidt&dag. From there we
give a heuristic development of the NLO perturbative QCDOrections to DIS and we
use it to discuss collinear factorisation. After that weueon the DGLAP evolution
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equations by providing details on their solution. This iideed by a discussion
on how these equations resum large logarithmic enhanceneat cross section at
all orders in perturbative QCD. Finally, we show how the ¢aigation formalism is

applied to the vector production process in hadron—hadsbisions.

1.1.1 Deep Inelastic Scattering

Lepton—hadron scattering is the traditional method fobprg the structure of hadrons
and the first testing ground of perturbative QCDI[11] as welhaving established the
first evidence of partons. It consists in the scattering afjatenergy charged lepton
off a hadron target as shown in Fig. 11.3:

I(k) + h(P) — U'(K') + X (Px).
At the leading order, it is the manifestation of the partanib—process:
1(k) + q(2P) — U'(K') +4'(p"),

where the quark carries a fractiorr of the momentum of the incoming hadron. A
basic classification of the events is based on the natureedfahon exchanged by the
initial lepton and quark. In neutral current evehts I’ and the boson exchanged is
either a photon or &. In charged current events, characterised by ¢, 1, 7 and

I = ve,v,, v, OF Vice versa, av+ boson is exchanged. If the initial lepton is a
neutrino, only weak interactions occur, making this claSmeasurements a useful
probe to disentangle the contributions from quarks and-go#irks.

Figure 1.3: Schematic representation of deep—inelastioyeldl lepton—nucleon scat-
tering.
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If we label the momentum of the exchanged bosoghy= k# — k'#, neglecting the
relatively small lepton masses, the standard kinematiebks are defined by

Q* = —¢*=—(k—k)*=+2EE)(1—cosb)
v = (P-q)/My=(E — Ey), 1.1)

where the energies refer to the target rest frame fhd is the target mass. The
scaleQ? characterises the resolving power of the probe, whilepresents the energy
transferred to the target hadron. Two other Lorentz—ilawds, often used to define
the DIS kinematics, are the Bjorken—variablg and inelasticityy, which take values
between 0 and 1

2
rB = Q
QMNV
qP El*El’
= —=—— 1.2
Yy v P E, (1.2)

Once the energy of the lepton—nucleon centre—of—myaissset, only two variables
out of z 5, y andQ? are independent of each others, being
_ 2 __ Q2 2
S=(P+k)=—"—+ My. (1.3)
rBY
The matrix element of the hadronic process may be writteeiims of the leptonic
and hadronic currents as

2
MU= UX) = (LD v = any (X172 1B). (1.4)
1%

where My, is the mass of the exchanged vector bos#and 7" are respectively
the conserved leptonic and hadronic curregis, is the coupling between the hadron
and the vector boson angh, = ki (V3 + A7) is the electroweak coupling, whose
expression is shown in Talle 1.1 for each type of vector bosdsp notice that the
propagator in Eq[{114) is implicitly defined in the Feynmauge. Eq.[{(1]4) suggests
that the inclusive lepton—hadron scattering cross sectiap be written in terms of
two tensord.,,,, andH"" as

1 (qvanv)? 3K

doh) = Ly HM (47) ————
7 A(k-P)(Q2 + M2)2 ™+ A7) S B 2

(1.5)
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Bosons kv Viv Ay
¥ € 1 0

Z 1/(2sin by cosbyw) | IL — 2¢ sin? Oy -14
W+ Vi /(2v/2 sin Oy ) 1 -1

Table 1.1: Coupling of fermions to the weak bosons. Hegris the electric charge
measured in unit of the positron chardgjs the third component of the weak isospin,
+1/2 for up-type quarks or neutrinos andl /2 for down—-type quarks or charged
leptons. For charged current interactions involving qeattke coefficient¥};: of the
Cabibbo-Kobayashi—-Maskawa matiix [18]-[19] are involvathe parametesin Oy

is the Weinberg mixing angle.

which, evaluating the Jacobian betweéf , cos 6) and(z 3, Q?) by mean of Eqs[(1]1)
and [1.2), becomes

(th) 2 2
do _ Q (glvghvg 1 P (1.6)
depdQ?  2x%(k+ P)? (Q? + My )? 4n
with
1
L = 5 (U (1190 1)
) 11 v
HY = g SN (X1 ) a(Ps k= P). (19

The leptonic tensok ., is easily calculable,

Q* a
Ly, = {kuk’u + Kk, — 5 G+ iCrvels kakfy | - (1.9)
The last term is associated to the parity violation of the knie¢eraction, while the
coefficient

24;vViv

C’lV = 71/2 ., a2
Vi, + Alv)

depends only on the type of vector boson exchanged and caabt®ut of Table T]1.
As QED does not violate parity;;, = 0. In Eq. [1.9) we have neglected the term
associated to the parity violation proportional to the reass the leptons.

The hadronic tensor is harder to calculate. It is summed alvatlowed final states
and by convention includes a factdrr) ~! and an overall four-momentum conserving
o—function. Since it is constructed from the only two avaiafour—vectorsP* and
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g" and since it must be Lorentz—invariant, we may write dowgéseral form as:

HW = —g"F 4 (P-q) " |P*P"Fy +ich; PYq° Fs + Ptq” (Fy + iF5)

+q"P"(Fy — iF5) + ¢"q" Fs |, (1.10)

whereF; = F;(z,Q?) are the so—called structure functions. If the spin of the col
liding particles is specified, there are extra terms invélvéThe general form of
the hadronic tensor for unpolarised scattering simplifigther if we impose time—
reversal invariance, which sef§ = 0, and electro—magnetic gauge invariance, which
implies electro—-magnetic current conservatign/7*¥ = 0 and H*Vq, = 0. As a
consequence, the form of the hadronic tensor is furtherlgiegto

1V P. P.
H*Y = (—g“" + T g ) Fi+(P-q! (P“ — Qqq“) (P” - —Qqq”) Fy
q q q

+i(P - q)"te" P PqsFs. (1.11)

In order to simplify the following calculations it is convient to project out of the
hadronic tensor two combinations of structure functione ttansverse and longitudi-
nal components id = (4 — 2¢) dimensions:

Hr = —guH"™ (1.12)
_ F2 (QQZBMN)Q ]J’2 (2$BMN)2
= W-25> <1+7Q2 )—(d—l) {2173 <1+7Q2 )—F1:|
He = RRHY (1.13)
— Q_2 £ (zf”BMN)Q) _ ] ( (2$BMN)2>
 (2zB)2 |:2xB (1 + Q2 B+ Q2 :

Combining Eqgs.[{1]5) and(1.111), we can write the generatesgion for the unpo-
larised and inclusive lepton—hadron scattering crossiesein terms of the structure
functionsF; as

2o (0 y 425 () 1.14
drpdQ? Q2 dzpdy ¢4
_ Wmnawvany | 2 o (xBy]\/lN)2 B — i
= @rae U T ) e ) B

wherea; = g%, /(47) andapy = gy /(47).
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The information on the a priori unknown structure of the &r@s seen by the virtual
boson is carried by the structure functidiis They can only be functions @6}2, z 5 or

y as well as the mass of the nucleon. In the parton model thetgteufunctions have
a very simple expressions, since the hadron is describegtimstof the probability
density distributions for the momentum fractions of itstparconstituents

fin(z)dz = P(z € [z,2+dz])  withi=gq,q,9, (1.15)

which only depend on the hadron itself and are independehegfrocess. They also
do not depend on the scafg?. In this simple picture, which was then understood
as theQ? — oo limit, the structure functions are observed to obey an agprate
scaling law

F%(xBaQ2aMJ2\/)_>Fi($B)- (1-16)

The hadron cross sectialr (") is then given by the sum of point-like quark or anti—
quark cross sectionsr (") weighted by the functiong; ;,(2)

o = 3 / s fin(z)de? (%B) (1.17)

i=q,q,9" 9

and the hadron tensdr (1.8) can be written as a sum of partmmorsdﬁfﬁ

Hu(Pg) = 3 / C fin() ) (P.g). (1.18)

1=q,q,g

The same projections performed at the hadronic level in [EA3) can be done at
partonic level, just keeping in mind that the longitudinahgponent must be projected
by p.p, = 22P,P, and therefore

HT = Z / _f’Lh qu(}) (ZP7Q)

1=9q,4,9

He = > / gfi,h(Z)dﬁf)(szq)- (1.19)

i=q.3,9" 9
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The projections of the partonic tensor are related to thiopar matrix elements\u
by the following relations

1 " »
HT = M(*g#y)/d(pMuM B

1 14
i o= / dDMP M, (1.20)

as it can be inferred from Ed._(1.6). From the above equatimiescan easily derive
the expression of each structure function as a combinafiBbés, depending on the
nature of the exchanged boson. Indeed, inverting[Eq.](1at®) applying the parton
model factorisation, Eq[{1.18), one gets

Sl (1i€HT+(f’1j“;)>‘gQH

) / T (D) [amgm o g g
filw = FZEE)=—4Q%HL

B /dzfl de() (1.21)

To be more explicit, we may consider the partonic proe€gs— ¢. First we evaluate
the spin and colors averaged matrix element squardddimensions, withl = (4 —
2¢)

fgwi/\/l“('y*q = QMY (yv'q = q) = 26263(1 — Q. (1.22)

Integrating over the one—body phase space one obtains
—gw/ A0y M (v q = ) M” (v'q = q) = 2¢°5(1— )Q*(2m)5(p"). (1.23)

Since the struck quark carries a fractiof the momentum of the parent’s hadron
momentum

10/2 = (zP+ q)2 = :?—B(z —zB) = 6(p/2) = g—Bd(z —zB), (1.24)

which implies that the fraction of the momentum carried g/ $kruck parton is equal
to the Bjorkenz. This is quite remarkable, namely a macroscopic parameier c
trols the momentum of the parton involved in the process. akaé the longitudinal
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projection is concerned, for massless leptons it vanishes

Gty Y M*(y g = M (v — q) =0. (1.25)

Finally, from Eqgs.[(1.19) and (1.R1), one gets

Fl(z) = = 427 e fin(x)
xF)(x) = 0 |
20F () = Fy(x). (1.26)

The last equality in Eq[{1.26) is the so—called Callan-Gmesation and it is a direct
consequence of the spéqproperty of the quarksF; and(F» — 2xF) correspond
respectively to the absorption of transversely and lomijitally polarised virtual pho-
tons. The combination
AMZ 2?
QQ
is called longitudinal structure function. Structure ftiaon measurements show that
F1, < F, confirming the spin-1/2 property of quarks.
The treatment o/ exchange involves only minor modifications due to the differ
coupling and the presence of a non—zero axial contribueeping them into account
one ends up with the following expressions

Fr(z,Q%) = <1+ )Fg(x,Q2)f2xF1(:c,Q2) 0200 Fa(z)—20Fi(z) (1.27)

Ff(z) = > xBi(Q*)fin(x), (1.28)
1=q,q
eFf(x) = Y 2Di(Q%) [fin(z) = fin(@)],
i=q
with
Bi(Q%) = —2eVezVizPy + (Vi + A27)(Vig + A7,) P, (1.29)
Di(Q*) = —2eiAczAizPy+4V.zAczVig Aig P2,
2
P, = @

(Q2 + M%) (4sin® Oy cos? Oyy)’

whereV;z andA; are respectively the vector and the axial couplings of TaGle
Finally the charged current contribution associated tdtheexchangé™ N — vX
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reads as
BV (2) = 22 [Din(x) + Uin()] (1.30)
2P (@) = Y [Dinx) - Uin()]

%

whereU includes all up—type quarks ard all the down—-type quarks. For the ex-
change ofl¥ —, the expression is the same as Hq. (11.31) whiére> D and vice
versa.

1.1.2 Next—to—leading order QCD corrections

The parton model existed before the formulation of QCD. Amsas QCD corrections
are added on top of tree-level processes, singularitiesaapp the calculation. In the
following we go through the calculation of the next—to—lieabrder QCD corrections
to the DIS process, performing all calculationsdin= (4 — 2¢) dimensions. This
provides a simple ground where the collinear factorisati@orem can be discussed
in more details. In the following we consider a process wleergrtual photon is
exchanged, given that only minor modifications are involifede were considering
a weak boson exchange. We further assume that ultra—viotptlarities have been
already taken care of by the renormalisation of the baretaatsof the theory.

At O(a,) two classes of contributions appear; the interferencedatvhe tree—level
amplitude (a) and the one—loop correction (b) have to beidered, together with
the emission of a real gluon at tree—level (c). Moreover,ltageto consider a process
initiated by a gluon which then splits into a pair of quark amti—quark, the so—called
boson-gluon fusion process (d).

We first concentrate on th@(«) contribution coming from the procegs* — ¢ at
one—loop and the same contribution at tree—level. Thetsireiof the one—loop vertex
and the tree level diagram are the same, so, as we do in therraligation of the UV
divergencies to define the renormalised coupling, we defireffactive vertex[1/1]

T — o (4 Ti-9 (2 3 o T
I = —ieeq {17471'CF<Q2) T(1 =26 (62+6+8+ 3 +(’)(e))]. (1.31)
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The double pole ire originates from the region of the loop integration where the
exchanged virtual gluon is simultaneously soft and codlim® the massless quark
lines. As we are going to see explicitly, the singularity amcelled by the analogous
contribution from the emission of one real gluon. This is aaraple of infrared
safety of QCD: virtual and real corrections cancel the irddssingularities. The KNL
theorem([20, 211] and its generalisation to QCD [22, 23] gutwes that what we have
seen in the case of DIS at next—to—leading order happens ¢odairs for any QCD
inclusive observable.

The calculation of the transverse component of the hadtenigor coming from this
virtual contribution is straightforward, it only requirése integration over the one—
body phase space as in EQ. (1.23) and the multiplication eyctimventional factor
1/(4me?), yielding

HRD, = eq(1—0d(1—¢) (1.32)
as drpP\  T(1—¢) (2 3 2
1-o- — | === |5+~ — 1-— .
{ %CF( = ) e (B desa )09
We now concentrate on the real contribution

Y (q) + q(p) = q(®') + g(ky),

providing some more details on the calculation, which cimstaxamples of all singu-
larities that we have to deal with. The square of the matexngint summed over the
polarisations of the outgoing lepton and averaged ovembening spins and colors
is given by

SIM(v*q — ¢'9)]? = '

k. .p k. 200 . 0/
:8NCCF€2€3(95,U€)2 |:(16)< gD 4+ 29 p)+(kQ (p p) 12

kg-p  kg-p g P)(kg - p)
The three terms above correspond to the emission of a gldgheobutgoing quark
(s—channel), the emission of the gluon off the incoming gy&cchannel) and the
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interference between the two contributions. To obti W), we need to integrate
over the two—body phase space of the final state particles,

i 1 €_ *
apo, = e /d%ZIM(v q—qg))
' kg -1 | kgop Q*(p-p)
= 46204501:/d<1)6 { g + 2= 4 , (1.33)
‘ “lkg-p " kg-p " (kg p)(kg - p)

where the two—body phase spat® is evaluated in4 — 2¢) dimensions. Looking
at the denominators of the terms appearing in the integrmm@dge that there are two
kind of divergences: collinear, when the gluon is emittethjpel to the incoming or
outgoing lepton, and soft, when the energy of the gluon Vesis In the partonic
centre—of-mass frame one may write explicitly the four-reata of the particles in
terms ofs, the centre—of-mass energy in tiie-parton system,

§=(EP+q?=Q*1-¢)/¢,  with  =up/z

and the variable related to the anglé* between incoming and outgoing particles
in the centre—of—-mass frame by= (1 + cos#*)/2. In terms of these variables,

Eqg.[1:38) becomes

- e2a,Cr (2mp*\? (1—¢)
Hi("jfe)al = : 87 < \/g ) F(l . E) (134)

/O-Hdvv*e(lfv)ie{(lfe) {(1E§)+(1;£) +(12_€§) (1;1))}

where the soft gluon and the initial state collinear singtits manifest themselves
as¢ — 1 andv — 0 respectively. The final state collinear singularity belstgthe
same class as the soft singularity because both of them ianptyo—mass particle in
the final state. Indeed
1-¢)

(2P +q)* = QQ(T = (kg +9')* = 2(ky - p").
The limit (k, - p') — 0 is the same ag§ — 1, both of them involving the kinematics
of the lower order scattering to which they can be associated
Using the definition of the standard Euj@érfunction and the following identity

&€ _ _lgn_ 1) (lee—¢) log ¢
(175)67766(1 €)+<1*f)+ e( ¢ )++€17€, (1.35)
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we may solve the integration in EQ.(1134) by expanding iWe end up with

e 2% Amp®\© o T(l—e)

Hem = eq%CF(cy ) (=2
((3+2+ D01z e (m20)
N

IEET NI S
i-g'*®  2a-e: ° “0(9}7 (1.36)

where the plus—prescription is a distribution defined as

F(€)y = F(€) — 6(1—¢€) /0 dy F(y). (1.37)

The double pole associated to the soft gluon singularitgraisipate before, is can-
celled out by the analogous virtual soft singularity. Welafewith the single pole as-
sociated to the emission of gluons collinear to the inconpiagon. To derivd, one
needs also the longitudinal component of the partonic temduch is non—singular
and easy to deduce. As in the leading—order calculatiomanishes in the virtual
contribution, while for the real contribution, it is finited is given by

1 ~ *
S, = o /d%ZIpuM“(v a—dg)?

_ o @ (47ru2 ¢ )Er<2e>
Q2 1-¢) T(2—2¢)

2 2
eq Qg

- 25Eer o, (1.38)

Summing up Eqs[{1.82) arld(1136) and combining them wit((E88), we can write
the structure functions; andF; as

s [td 2
Fi(z) = g—ﬂ : ffq (%){Pqﬁ?)(é) |:%7E+10g(47r)10g(%)]
14&2 1-¢ 3 56+ 9
e [155 (e (59)-3)+ 5|

Yq 1
Fi(z) = Fgf) - ei% %q (%) Cré. (1.39)
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wherqu(f;) is the Altarelli-Parisi splitting function which univeidsadescribes the
splitting of a quark into a quark. Ed._(1139) exhibits a silagity in ¢ which need
to be renormalised. In order to do that, we can regard thekagdiatribution ¢ as
a d—dimensional bare distribution and therefore absorb tHénear pole into this
unmeasurable quantity defining a renormalised physicalabljs

o) =ate0- 2 [ L4 (2.0) [0 (210 (L) + Rato))]
(1.40)

The second term in Eq_(1.40) is divergent but, as we do wherewermalise the
UV divergencies, we can compensate this divergence witklitregence of the bare
partonic distributiorny(z, €). In the same equation we introduced the sgafte the
factorisation scale by simply splitting the logarithm appeg in [1.39) as

2 2 2
log Q—2 — log Q—2 +log FE. (1.41)
w HE 12

and pushing the unphysical scalénto the bare parton distributions. We can picture
the redefinition of PDFs as follows. As the scale increasegtioton starts to “see”
evidence for the point-like valence quarks within the protti the quarks were non-
interacting, no further structure would be resolved insieggthe resolving scale: the
Bjorken scaling would set in, and the naive parton model el satisfactory. How-
ever, QCD predicts that on increasing the resolution, opbalstsee that each quark is
itself surrounded by a cloud of partons. The number of resbpartons which share
the proton’s momentum increases with the scale.

Of course in Eq.(1.40) there is an arbitrariness in the @hofcthe finite contribution
R,,(&): different choices correspond to different factorisatsshemes. For instance
two popular schemes take two opposite directions: in\the scheme only the singu-
lar term plus some coefficients are absorbed into the PDHRewrhthe DIS schemes
all terms are absorbed into the PDF so thatr, Q%) = ze2¢™P!5 (z, Q?), namely

Ryq = —vE + log(4m) M S scheme
1+&2 1-¢ 3 56 +9
— 1 -= - DI h
Ryq CF[15 (og( 3 1 + o N S scheme

Therefore PDFs should not be regarded as physical quantiiece they depend on
the scheme used to define them. However, their convolutitmtive appropriate co-
efficient functions, evaluated in the same factorisatidreste, gives rise to physical,
measurable structure functions.

The calculation of the transverse and longitudinal compts#®r the process initiated
by a gluom*g — ¢q follows the same lines as that fetg — gg. We end up with
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the following expressions for the gluon contributiondtoand F

st [( S (1) { - r0© [ oston) - ()]

B9
Tk [[g? - g0 (15) - 14 8- ) }
FY9(z) = wa - 5T 12 62/ dé (g) 4€(1 — €). (1.42)

WherePg(?) is the Altarelli-Parisi splitting function which univelsadescribes the
splitting of a gluon into a quark (or antiquark) of flavor Analogously to what was

done in Eq.[(1.40), we can define the finite gluon density as

o wir) = o)~ 2 [ Lo (L.0) [P0 (2 - 108 (L) + Run©))]
(1.43)

where again the choice fdt,, depends on the factorisation scheme
Generalising the results obtained from the exchange of #opho the exchange of

any vector boson, the NLO formula f(b?l(w‘), FQ(Vh) andFéVh) in the M S scheme

reads
2
9 (L4

9" (x ) b [Pé? (€1og &+ oY g)|.
T Hp

+ E7N/F

+Cy ”M_S(s))
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where,
CY () = FOYSE) - O,
- 11+ ¢ 1- 3
M) = CF5[1+65 (1°g(T€)_1ﬂ’
o) = ") - CrL+e),
YT _ T {[52 (6] log <1T5> —1+8¢(1 - 5)] :
cy M) = o,
CYiMS(e) = VM3 (g). (49

The last identity is a direct consequence of charge conjugafrhe corresponding
PDFs in theM S scheme at NLO are given by

- 1 d s 2 €
et = 2 [ L5 (L) [sa-os-2rver (L) ]

Sead) = X [ En(fe)[Error(F5) ] e

i=q,g" "

1.1.3 DGLAP evolution equations

The PDFs which appear in EQ. (1146) are not perturbativdutable quantities, but

one has to extract them from experimental data within a ahtsgorisation scheme.
Instead the structure functions are physical and measutplantities which cannot
depend on the arbitrary factorisation scale introducetérrédefinition of PDFs. The
requirement that the physical cross section does not depeted by order on the

factorisation scale, using renormalisation group teahedg leads to the well-known
Dokshitzer- Gribov-Lipatov-Altarelli-Parisi (DGLAP) etions[[24, 25, 26]. Indeed,
settingy = pr and differentiating Eq[{1.44) with respectltg 1, one ends up with

an equation for the scale dependence of PDFs of the form

2 20wa) s / L dg [P;;’)(f)q (%ﬂ) + PO()g (%ﬁ)] +O(0?), (147)

oz 2n ¢ ¢ 3

which is the basic form of the DGLAP equations. The abovevdéion is valid only
at the lowest order in perturbation theory, but an all-opteof is possible[[27].
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The explicit calculation carried out in the previous sethows that, in the redefini-
tion of the quark distribution, one has to include the cdmttions from they — ¢g and
theg — qq splittings. Likewise the gluon involves contributionsiinahe splitting of

q — 99,7 — ggandg — gg. More generally, at any given order in perturbative QCD,
one has to consider all possible splittings> b(cd) and higher order vertexes. If one
takes for instance an initial quark, in the collinear linfte radiation ofn—partons
out of the quark line needs to be considered,

n
Y ra—=a+ Y L
=1

A more accurate analysis reveals that collinear divergeatse only from the region
in which the transverse momenta of the radiated partongianegty ordered:

lkrn|? > lkrn_1]? > .. > |kra %

The computation of Feynman diagrams in the collinear lisaids to a squared ampli-
tude proportional to:

(" ey (17927 _
|Mn|2N T(%) . E Pi17j1®131'27j2®...®Pin7jn®0(0)'vq,

where® is the shorthand notation for the convolution product of @g41). Analo-
gously to the case of single emission, the collinear divecge can be absorbed into
redefinition of the quark distribution, leaving a logaritierdependence on thescale

in the physical cross section:

o(Q%) ~ (;—;)nlog" <%2) : (1.48)

These logarithms are potentially dangerous because faydargeQ? /12, the prod-
ucta log(Q?/1?) might be ofO(1) thus spoiling the perturbative approach.

In what follows, | show that DGLAP equations take care of thebtem due to the
large collinear logarithms because they resum to all orthens into the evolution of
parton distribution functions. In order to show it expligitin the following | sketch
the solution of the DGLAP equations at leading and next-eading orders. In the
presence oh; active quark flavors, where the precise definition of actiaedt is
going to be given in the following section, E@. (1.47) is gefised to a system of
(2ny + 1) couple integro—differential equations of the form

d (g(z, )\ _ as) ! (3 Pi; %7048(15) Pig %:O‘S(t) q; (&,t)
dt (g(ﬂcﬂf)) 2 /z 2 3 (ngég,as(t)% ngéf,as(t) o )

J=4,q
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(1.49)

wheret = 1og andaé( ) is the running coupling constant. Although PDFs are
non-perturbatwe objects, the evolution kerngjs can be computed in perturbation
theory:

&@%wzﬁﬂ%fW@. (1.50)

n=0

The coefficients of the expansion have been calculatedipattvely at next-to-leading
order [28] and more recently they have been computed up thfieO in «, [29,[30,
31]. At the leading-order they read

P (x) = Cr % + 36(1 — x)} , (1.51)
%?u>=fﬁ[ 1—xﬂ,
Pg(g)(w):CF (1-2) }
P (x) = 2N _(1 _xx)+ 1- : x(1x)} +5(1fz)%_

The leading order splitting functions can be interpretethagrobability of finding a
parton of typei in a parton of typg with a fraction¢ of the longitudinal momentum
of the parent parton and a transverse momentum squared msghhary?. The
interpretation as probabilities implies that the splgtiunctions are positive definite
for x < 1, and satisfy the sum rules

/1 dx Pyy(z) =0,
0
/0 dr x [Pyg(z) + Pgq(2)] = 0,

/0 di & (24 Py () + Py ()] = 0, (1.52)

which correspond to quark number conservation and momeaoturservation in the
splittings of the quark ad the gluon respectively.
The structure of the solution of these coupled integroedéffitial equations may be
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written as

filz, Q%) =) Tij(w,05,09) @ f5(,QF), (1.53)

J

wheref;(z, Q%) are the input PDFs, to be determined empiricdllyz, a5, a2) are
the evolution factors. From now on, | use the shorthand iostat

as = as(Q?), al = a,(Q7) (1.54)

The evolution factors also satisfy evolution equations:

0
QQTQQD‘J‘(IE, o, 0)) = Z]Dik($, as) @ Tij(z, as,a?), (1.55)
k

with boundary condition§;; (z, a2, a%) = §;;6(1 — z).

An efficient method to solve the DGLAP equations consistsifinihg particular lin-
ear combinations of the individual quark distributionsiicls a way that th€2n  +1)
equations[(1.49) maximally decouple from each others. dddérom considerations
based on charge conjugation and flavour symmetry, it is plesgd write downn
non-singlet (NS) flavour combinations which evolve indegfesrily [32]

+ + +

dnsi; = 4 — 495,
nf

s = D 4 (1.56)
1=1

Whereqii = ¢; £ g;. Only one combination of flavors is left which couples to the
gluon, the singlet combinatiod;, defined as

nf

= (a+7)- (1.57)

i=1
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A convenient basis, in presencerof = 6 active flavors, can be explicitly written as

6

Vo= > g, (1.58)
i=1

Vs = u +d,

Vo = u +d —2s,

Vis = u +d +s —3c,

Vou = u +d +s +c —4b7,

Vs = u +d +s +c¢ +b =517,

T3 = ut —dt,

Tg = u™+d" —2st,

Tis = ut+dt +st —3ch,

Toy = ut +dm+sT 4+ —4bT,

Tss = ut+dt+sT+c+b —5tT,

whereV is the total valencel; areq,, ¢—like combinations and; areqxs—like com-
binations of the flavour distributions. In this basis, thelDX® equations are simpli-
fied and, using the short—hand notation for the convolutimapct, they read

d v v WU

Eq?\:,"s (1,t) = P3¢ ®@qii(at) (1.59)
d /% P,, 2nP, )
= z,t) = 91 </ Tag >®< ) z,1). 1.60
dt ( g > ( ) ( qu ng g ( ) ( )

The combinationd/; and T} evolve according to EqL{L59) witRy 4 and Py 4 re-
spectively, while the total valendé evolves withPy, o. At LO PJ(VO;’JF = P](\?;’_ =
PP = P AtNLO P~ = P%%" while the other splitting functions are differ-
ent. Starting fron©O(a?) all splitting functions are different from each others. hhay
solved the equations for tlye? combinations, it is straightforward to invert the linear
system Eq.[{1.58) and obtain the individual PDFs evolvedhaisgale()?.

Before solving the DGLAP equations it is useful to introdadechnical tool. The ex-
pression for a physical observable consists of a convallttgdween a hard coefficient
function and parton distribution functions as in Hg, (1.44)theorem states that the
convolution product of two functiong andh can be turned into an ordinary product
by taking Mellin moments of the functions. Suppafe= g ® h, then the Mellin
transforms off is simply given by the ordinary product of the Mellin trangfoof ¢
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where the Mellin transform of a functighis defined as

MIf)[N] = /0 dyyV (). (1.61)

In Mellin space, the evolution equation for the evolutiootéa, Eq. [1.5b), can be
written as

0
QQaTQQFij(Na g, a)) = Z%k(M as) T (N, o, 02) (1.62)
k

wherel';; (N, as, a2) are the Mellin moments of the-space evolution factor
1
[ii(N, a5, a?) = / dx N7 (2, s, a2) | (1.63)
0

and~;; are the anomalous dimensions, defined as the Mellin mométits eplitting
functionsP;; (x):

’yij(Nv Oés(t)) = /01 dx xN_la;—f_rt) wPij(xvas(ﬁ))' (1.64)

Like the splitting functions, also the anomalous dimensicen be expanded in series
of o, as

(V) = (52) (). (1.65)

2w
n=0

Since splitting functions (and therefore anomalous diriters3 depend on the scale
only through the coupling constant, an easy way to solve[E49j consists in differ-
entiating the above equation with respecttoand rewrite it as

B
as g Tia (N as, ay) = — ; Rir(N, as)T; (N, ag, a2). (1.66)

where the matrix®;; = (R);; has the perturbative expansion

R(N, a5) = Ro(N) + asR1(N) + O(a?). (1.67)
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The matrices in the expansion &; are recursively defined in terms of the coeffi-
cients in the perturbative expansion of the anomalous dsines as

k

© (k)
¥ 0
Ro="1— Ri="— - bR, 1.68
0= 5 = H1k (1.68)

whereb; = B1/80 and §; are the coefficients of the QCB—function defined in
Eq. ().

The complete matrix of anomalous dimensiensand thus the matricR are in fact
almost completely diagonal: all the flavor nonsinglet anigéwee quark distributions
evolve multiplicatively, and only the singlet quark and @tuactually mix. Thus we
only need to solve Eq_{1.56) for the non-singlet scalarwgiat factors and the two
by two singlet evolution matrix.

We consider first the simplest case of the evolution of flawrsinglet distributions:
the evolution factor then satisfies the simple first ordeia¢gign

FNS(N7 0537048) = _RNS(Na aS)FNS(N7 OéS,Oég)- (169)

Oln ay

At LO the solution is trivial:

B A
0 aS NS
I'ns,no(N, o, o) = ( ) ; (1.70)

)
aS

while at NLO we need to work a little harder: using Hg. (1.68gdinds

(1) —RQ
R 1+ biog Qg NS
Ins NLo (N, 0, 0) = exp { bljs = (1 ¥ bia0> } (@) - @

This exact solution is equivalent up to subleading termbieédihearised solution

| )
Fk]%,NLO(N; g, ) = (1 — RMns (as — ag)) (as) , 1.72)

a0
which is in turn the exact solution to E. (1169) willys = Rl(\?s) + asRl(\IlS).

Turning to the singlet sector, we need to solve Eq. (1.66)nnReare two by two
matrices, corresponding to coupled singlet quarks andgtuo

T's(N, as,ag) = —Rg(N, as)Ts(N, as,ag). (1.73)

Oln ay
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At LO we can proceed by diagonalisation:

. . @\ ) @\ A
FS,LO(N7aS7as)EL(N7aS7as):e+(N) <_> +e_(N) <_> ’

af a?
(1.74)
where
1
Ax(N) = T&)[Vég)(N)JrVég)(N)
2
iJ (447 (V) = A4 ()) +47§3)(N)7§2)(N)] (1.75)

are the eigenvalues of the two by two matfbéo) (N) of singlet anomalous dimen-
sions, and

1

- imm?) (N) = Ax(N)D), (1.76)

e+ (N)

are the corresponding projectors. The full NLO solution isrencomplicated, and
must be developed recursively as a perturbative expansmmd the LO solution
L(N, as, a?): writing

s nLo(N, as, ) = U(N, a,)L(N, as, a?)U(N, o), (1.77)

whereU (N, a;)

U(N,as) =14 a,UD(N) + ?UPD(N) +-- -, (1.78)

solves Eq.[(1.86) provided
_R®e e;RMe_ 1 ~ ~
Uk — _© oyt —~lesRW™e, +e_RWe_|, (1.79)
A=A —k A —Xp—k k{’L * }

where

~ _ k—1 ]

RO =R{, R®=R{+Y R{UO. (1.80)

=1

By solving recursively Eqs[{1.YB,_1180) with the NLO approation in Eq. [1.6B),
the NLO evolution factor can be computed. Just as in the ngiedi case, the exact
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NLO solution may be linearised to give

T\Lo(V,a5,09) = L(N,a,,a?) (1.81)
+a, UD(N)L(N, ag, o) — a’L(N, ag, ) UV (N),

which again is an exact solution to the truncated evolutoregion, and equivalent to
the full solution Eq.[(Z.77) up to subleading terms.

Finally we want to see explicitly that the problem of the kupllinear logarithms
is solved by the DGLAP evolution. Looking at EQ. (1].70), we @asily verify this.
SettingQ? = 1.2, itis straightforward to show that all the leading logamithofQ? / 12
are resummed in the evolution factor:

_ -_’7(0)(N) O‘S(QQ)
I'o(N) = exp _ 5o log OZS(MQ)]
Bo 2
- Q2
= exp as(QQ)'y(O) (N)log F}
S (O‘S 1ogQ_2v<0><N>>n (1.82)
n=0 ,U/2 7

where we expanded in, and used the LO running ef,, Eq. [3). If higher terms in
the perturbative expansion of the anomalous dimension imeheded, also sublead-
ing logarithms would be resummed. The inclusion oftheh order in the expansion
of the anomalous dimension enables use to perform the reatiomof N°LO loga-
rithms:

- Q
~ Z > ol () log" =54 ().

n=0 k=0

1.1.4 Collinear factorisation Theorem

In the previous sections deep inelastic scattering at oapivas discussed, showing
how it is possible to absorb the singularities arising fromémission of collinear par-
tons into a redefinition of the parton densities. The fastdion theorem of collinear
singularities states that it possible to write the hadrangss section as a convolu-
tion between a partonic, process dependent, coefficiestitmand universal parton
distributions. Corrections to the leading—twist factatisn are suppressed by powers
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of Q2. In QCD, structure functions have ’higher—twist’ powermemtions, which are
difficult to estimate quantitatively

FW(z, Q2
R, Q) = F@ Q) + T (1.83)
In the above equation™ refers to the twist, defined as "dimension minus spin”, of
the contributing operators. The factorisation of Eq. (Jl.@tludes only the twist—
2 operator. The power corrections due to higher order tveistsvisible at lowg?
structure functions data.

A rigorous proof of factorisation to all orders exists foregeinelastic scattering in
the context of the operator product expansion (for a revissvief. [33]). In hadron—
hadron collisions, the analysis is more complicated siheequestion arises whether
the partons in hadrol , through the influence of their colour fields, change theidist
bution of partons in hadroh,, thus spoiling the simple parton picture. Factorisation
of the cross section into a pure short-distance contributomputable in perturba-
tion theory and non-perturbative, but universal, partatriiution functions is more
complicated because of these colour correlations. Nesledh it can be proved to all
orders for sufficiently inclusive observables|[27].

As an illustrative example of how factorisation works alsadriclusive hadronic pro-
cesses we consider the Drell-Yan production @aoson. The Drell-Yan process
is the production of a high—mass lepton pair from the decahefelectroweak bo-
son produced in a hadron—hadron collision. Originally thestfrequent Drell-Yan
event corresponded to the creatiore®t~ or i~ pairs from the decay of a virtual
photon but, as energy of collisions increased, it incluttescontribution from?Z ex-
change and alse. anduv,, pairs coming froni’*+ decays. For the full computation
at NLO of thelW* production, see Refi_[34]. Here we just sketch the calcutaith
order to show the power of the factorisation theorem.

In the parton model picture the cross—section is simplyrgiwe

do(© 1 1 i _
W(hl, hg — Wi) = / dl’1 / dl‘g Z 9ij, W fl(xl) f_] (-TQ)
w 0 0 =1
s . R
(fifo = W) (M}, 7) (1.84)

M2,
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wherei, j runs overU, D in case ofi¥ + production andD, U in case ofi¥’ ~ produc-
tion anddg is the partonic cross—section given by

d&©) ~(0)

gz, Fifa = W) = SVBG Vi Po(s - Miy) = %6(14). (1.85)

In the above equations = M3, /5 and§ = z122S. Plugging Eq.[(1.85) into
Eqg. (1.8%) gives

do(©®
dM2 (

hy hy — W) = UW* / Z gisw fi(z) f;(7/z)  (1.86)

7,j=1

At the next—to—leading order there are basically two cbotions. There is the gluon
bremsstrahlung correction to the lowest order processcohlieear singularity arises
when the gluon becomes parallel to one of the incoming quaakth-quark. Because
of the KLM theorem, we know that soft singularities will bencelled by the virtual
correction to the lowest order process. There is also thenghitiated procesgg —
W+q'. This will contain a collinear singularity when the scaggquark is parallel
to the incoming quark in the centre—of-mass frame. The tatlon of the Feynman
amplitudes for these process is simplified by applying éngssymmetry to the DIS
matrix elements calculated above. The phase space isdtiffdsut it can be easily
evaluated, ending up with the following results:

deM) O+ (1 Q? .
sz*(qq - Wiy = ]\?/2 i {*2352)(7) (g —4m —vg +log (F)) +Coq (7)}
w w
) . (0)
s 6 1 Q>
- Wi —_ w s _P(O) ~ Z _Ag— 1 7)) C N
o wre = S 5 [P ([ —ar s s () )+ Cunr)]

(1.87)

where we encounter the collinebfe pole accompanied by the finite coefficients that
we already found in Eqd. (1.9, 1142). The coefficient furdC,,, andC,, can be
explicitly written as

_ 2 2
4(1 4 2°) (%) - 2% log z + (2% - 8) o(1— z)} ,
+

R {z[f + (1= 2)°]log (@) +34 22— 3z2] : (1.88)

Coq(2)

Cr

Cqg(2)
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The NLO cross section for hadron—hadron collisions may bemras

do™) ! !

dM2 (hl, h2 — W+ = /0 dl’l/o dwg gij,w (189)
’rlf B B
D [fil@) fi(wa) + i) fi(x2)]

4,j=1

de(0) _ de _
[W(ﬁfz - W*)+ FivE (fifa = WTg)
W W
s de

> lfilwr) gx2) + g(1) filw)] m(fg = W)

i=1

In case ofil¥’ ~ production, the structure is the same, whgres f. The structure
of Eq. (1.90) is very similar to the corresponding expressithat arose in the NLO
description of the DIS structure functions, Eds. (1392).4Introducing thel/ S
PDFs defined in the previous section for the DIS process in(E48), we obtain a
finite expression for the NLOV T production

do 0 dg dz
_ / 1/ drz Z G (1.90)
p 1p L2

dM2Z, 55

[fimm,u%)ﬂ”’ (w2, 1%) + 75 (@1, ) 17 @2, )|

{5(14”;‘—; ( 2P0 (7 )log<Q:) +cqq/(7))} 4

> guw [FT @) g7 e i) + 97 (0 13) + £ (@2, )|

[2 (aoms (2) - o)

wherep is the ratio between the hard scale of the procegs and the centre-of-
mass energy. The power of the factorisation is that essentially the s of
the cross section into long—distance scale—dependent &ishort—distance coeffi-
cient functions will treat in the same way the collinear silagities arising at NLO,

independently of the considered process.
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1.2 Heavy quarks

In the previous section we have seen that factorisatiorréime@nables one to write
a wide class of relevant cross—sections characterised &nga scale)? in terms of
perturbatively calculable quantities and a limited setaf perturbative quantities that
must be obtained from experiments. In this section | treatctise of cross—sections
involving heavy quarks. Since in the framework of perturEa@QCD we model the
hadron as an object constituted by massless partons, aédod of processes involv-
ing heavy quarks require particular care. They are typidadindled by combining
perturbative QCD calculations with light quarks in the imitstates and calculations
of heavy particles in the final states. The combination ofttfeingredients depends
on the mass of the heavy quark with respect to the other sicat@lsed in the consid-
ered process.

Processes involving heavy quarks are a good example of+scitie processes. To be
precise, we define a heavy quark to be one whose thiagés large enough that the
effective coupling at the scale of a heavy quark magd\/q) is in the perturbative
region. With this definition, the charm, bottom and top gqeaake heavy quarks. i;

is the number of light quarks, and; the total number of quarks, in the present state
of knowledge of QCDp; = 3 andn; = 6.

Whenever a cross—section is characterised by two scaleshedard scal&)? and
the mass of a heavy quafi?, perturbative calculations typically present both loga-
rithms and powers of the ratio of the scaM%/QQ. These contributions may spoil
the accuracy of the calculation. As we have seen in the puevdection, defining a
heavy quark parton density would automatically resum tigafdithms to all orders in
perturbative QCD via the DGLAP evolution equations. Howehes approach is only
adequate at high energies where the mass of the heavy quanalbwith respect to
the typical scale of the process. In a small or intermedieg@mes, it ignores power
suppressed contributions. On the other hand, a calculatf@re the heavy quark
appears only as a final state ignores the logarithms and #liid only at a relatively
small scale. This kind of situation requires an adequasgrivent for the mass of the
heavy quark which ought to be valid in all cases, wiigh< M? as well as when
Q? ~ M? and@? > M2

In this section | first present the Collins—Wilczek and Ze& renormalisation

scheme([35], which shows explicit decoupling of the heavsirlgs at low energies.
Then | give some details about its application to QCD andudisthe matching condi-
tions between different sub—schemes associated to diffatember of active partons.
To conclude, | mention the main characteristics of the s&sspnoposed to deal with
heavy quark masses in perturbative calculations.
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1.2.1 CWZ renormalisation scheme

A detailed explanation of the renormalisation scheme pseddy Collins—Wilczek
and Zeel[3b] is given in Chapter 8 of Ref. [36]. In this secticummarise the toy
model described in Ref.[36] in order to show that the CWZ sahiexhibits explicit
decoupling. Later | show that the same scheme may be appl@&D in presence of
one or more heavy quarks [37].

Let us consider &3 scalar theory with two fields id = 6 dimensions. Let be a
light— field of massn and® a heavy—field of masa/. If we impose the symmetry

under® — —®, the Lagrangian density of the theory can be written as
2 P 2 2 @2 (I)Q
(99)*  (09) L _ i [

3
91¢— + 92¢—] + Ly, (1.91)

L=t —M?—-
* 6 2

2 2 2 2

whereL. ;. includes the counterterms which cancel the divergencdwediare quan-
tities of the theory. It can be explicitly written as

2 2 2

Lo = (2 — 1)% + (2, — 1)@ — [mz(Zm -1+ MQZmJVI]% (1.92)
2 3 2

7[M2(ZM -1+ m2ZMm]% - ,u37d/2 (918 — gl)% + (92 — 92)% .

In the above Lagrangian density | have ignored the linean teat is typically intro-
duced in order to cancel the tadpoles.

According to the decoupling theorem, phenomena on eneajgsmuch less thal/
are described by an effective low—energy theory whose lragaa has the form
2 2 3
£eff = Z(a%) — m*QZ% - Mgid/2g*zg/2% + Eeff,c.t.; (193)
where the counterterms Lagrangian has a similar structutbeone of Eq[{1.92)
with only light fields included.

To prove the decoupling theorem, we have to show thiatg* andz might be cho-
sen so that the Green functions @fobtained from the effective Lagrangian differ
from those obtained in the full Lagrangian only by teri& /M), wherep are the
external momenta to the Green functions. TH& renormalisation scheme does not
correspond to the right choice. On the contrary a zero—-maumesubtraction scheme
(BPH) exhibits explicit decoupling. In the proof we congidmly the LO (a) and
NLO diagrams (b,c,d) shown below. The argument can be gksentao higher or-
ders [36]. We consider only those Feynman amplitudes witareal light fields and
internal heavy fields, because those are the only ones whigiht montribute to the
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renormalisation of the couplings of the effective Lagramgivith terms depending on
the mass of the heavy fields which are present only in the fadirangian.

(a) (b) (©) (d)

It is straightforward to show that, fa/2 — oo as the external momenta are fixed, the
graphg(a) and(b) are suppressed by powersia®. Indeed, in grapka) each of thex
internal heavy quark line contributes with a propagatdr/(p* — M?) which, in the
M? — oo limit gives a power—suppressed contributien1 /(M ?2)". Analogously,

in the diagram(b), the four point loop amplitude is not divergent and, in tiraiti
M? — oo, we can ignore the momenta of the external particles endingith a
contribution

4 [ d°K 1 1
P2=9 | oo @ —apy < a2

which vanishes a&/? — oo. If we were considering its leading contribution, it would
be an effective four—point vertex. The non—renormalisgtuif the coupling is tied to
the negative power af/2.

Diagrams(c) and (d) are divergent. The divergent three—point functiei, being
p1, p2 andps the incoming momenta ank the loop momentum, can be written in
d = 6 — 2¢ dimensions as

ddk? ,U'Q_Sd/Q
I's = g5 / : — (1.94)
( )¢ [(k + p1)? M2+zs][k p2)? — M? +ie][k? — M? + i
1-z HQ_Sd/Q
= 2 d - -
igs | dv / )4 k% — M2 + x(p3 + 2kpr) + y(p3 — 2k - pa) + ie]®

Mf/ dx/l ”dy M? —piz(l —z) — p3y(1 —y) — 2zypipa \
? 0 0 dmp? ‘

3
g2 (47r)
The divergence in Eq_{1.P4) may be normalised in severabwiaythe /.S scheme
one subtracts only the pole irye and the associateg; + log(4n) finite terms. The
key point is that the subtraction in tdd S scheme is independent of the mass of the
particles involved in the process. In this way the renorgealithree—point function is
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given by

RMS(T3) = ¢(4g§)2 [10g (]‘Z—;) +0 (jp\;ﬂ . (1.95)

For largeM this gives a logarithmic correction to the effective conglconstant ac-
cording to

3 2

320 — o, _ 92 M- 5 1
#g =g 58w (20 045 (1.96)

Instead, in the zero—-momentum subtraction scheme, we get

ZM 3 () . ! 1o
M? —pla(l —z) —piy(1 —y) — 2zypip2\“ [ M> \°
4 p? 4 p?
€ 1 1—x
3_HM /
= g dx dy
? (4m)2 Jo 0
2

2 2
p p pip p
(1— ng(l—x) — Méy(l—y)—Qxy ]\1422) =0 <W)

and therefore the renormalised effective coupling woultdepend on the mass of
the heavy fields if not by power—suppressed terms

229" = g1+ O(p* /IM?). (1.98)

The same can be shown for the two—point function in the drag@. In the M S
subtraction scheme, we obtain the following renormalisationditions:

2

92 M? 4
= 1-— log— + O
z Tosn3 08 7t (9%)
2772 2
%2 2 93M M 4
zm = M=o <10g7 — 1) +0(g%), (1.99)

and consequently we have to fine—tumein order to get a finite value fom* in
the limit M2 — oo. Instead, in the zero—-momentum subtraction scheme, oise get
RZM(Ty) = O(p*/M?) and therefore

1+ 0p*/M?)
m*? = m?+ O@p*/M?), (1.100)

w
|
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i.e. we see a manifest decoupling of the low—energy effedtieory with respect to
P.

The idea of Ref.[[35] is to define a renormalisation schemeslwhombines the de-
sirable features of the zero—-momentum subtraction reriatian and those of the

M S schemes. The reason why BHP alone is less convenient isdétathe treatment

of the infrared divergencies and to the laigg(m?/p?) which appear in the calcula-
tions whemp? > m?. The M S scheme is far more convenient at high—energies. The
idea then consists in using tfié.S scheme for high-momentum calculations, where
all masses are neglected, while employing a mixed schenogvathomentum, where

M S is applied to all graphs containing only light fields, whiketBPH is applied to

all graphs containing at least one heavy line.

In the intermediate region between masses, the operatotgeeaccording to the
renormalisation group equations as the sgal@ries. In the CWZ scheme the renor-
malisation group coefficients are mass—independent argdrénormalisation—group
equations are highly simplified. Moreover it can be dematstt that this scheme
does not introduce extra infrared divergencies and thaie&grves gauge invariance.

These features make the CWZ scheme patrticularly suitabdeabwith calculations
involving heavy quarks. Indeed, if we consider processeslhiich all external mo-
mentum scales are much smaller than the masses of the hearkggwe can omit all
graphs containing heavy quark lines and only make a powpptsssed error. Fur-
thermore, given that the CWZ scheme reduces tath¢ renormalisation scheme at
high energy, the same holds in the opposite situation wheemtmsses of heavy quarks
are negligible with respect to the high scale of the processhat case the quark is
considered a massless parton and the renormalisation gopugiions keep the same
form as in theM S scheme, with the only difference that the total number obitavs
substituted by the number of light flavors.

The application of the CWZ scheme to QCD[[37] requires to galise what we have
discussed until now to a theory where more than one heawyidietthsidered. First of
all it is useful to specify the notation: by, we refer to the number of active flavors,
i. e. of all flavors which are light with respect to the hardiscz the proces§)?. By
definitionny > n;. The CWZ renormalisation and factorisation scheme appbed
QCD consists then in series of sub—schemes labelled by théeof active flavors.
Therefore, in order to define the parton densities and theltwy the number of active
flavors used in the definition must be specified. In each siiterse characterised by
n 4 active flavors

- Graphs that contain only gluons or active quarks are realised byM S coun-
terterms.
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- Graphs with external non—partonic lines (like leptons ecter bosons) are
renormalised by .S counterterms.

- Graphs whose external lines are gluons or active quarks/thigh have internal
heavy quark lines are renormalised by zero-momentum stilitra

- Heavy quark masses are defined as pole masses, defined asitienpf the
pole in the quark propagator in perturbation theory.

These rules apply in the renormalisation of the strong dogmonstant, of the parton
densities and fragmentation functions. As a consequertuwenm, = ny the scheme
coincides with theM/ S scheme. Moreover it has the advantage that evolution equa-
tions for the coupling and parton densities are the samera@@® with n 4 flavors

and purel/ S subtraction.

The term "variable flavor number scheme” (VFNS) refers to $bquence of sub—
schemes that we just described. It is typically implemeitgdsing M .S evolution
with a number of active flavors that varies as one crossesdhadariesy ~ Mo,
whereM is the mass of one of the heavy quarks. Thus, for a given gcaléquarks
with mass less thap are treated as partons and have associated QCD—evolved part
distributions. The heavy quark parton distributif vanishes whep? < Mf? H

If for simplicity we consider only the first threshold, cosponding to the charm mass,
at first sight this approach might be confused with the sdedahtrinsic charm ap-
proach, where the charm quark appears in the initial statét & considered as a part
of the hadronic wave function. However the two approachesampletely different.
In the VENS charm (or any other heavy quark) is treated in dl@irway to a mass-
less parton but the fixed—order perturbation theory (FORIGutation performed in a
3 flavors scheme, where the charm appears only as a finalistgteses some condi-
tions on the charm—quark density in the VFN scheme. Thesditiams, also called
matching—conditions, do not exist in the intrinsic charnprafach, where the charm
density is just an arbitrary function fitted to experimemtatad. What we have said
for the charm density holds for all heavy flavor densitiese T4 + 1)—th distribu-
tion is determined by matching the FOPT calculation jpflavors with the(n 4 + 1)
calculation in the massless limit.

These conditions between schemes with differentderived from the FOPT calcu-
lations are just a case of a transformation between diffesrormalisation and fac-
torisation schemes. The matching conditions for partotridigion functions can be

1Even if commonly the VFN scheme is implemented by choosiegitching point and the switching
point between sub—schemes to be equal to the relevant heavly mass, this choice is not essential. The
difference in theoretical predictions due to the scale isigier order ins with respect to the order of the
calculation.

2The possibility of having an intrinsie distribution has been studied for instance in Ref] [38]
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found in Ref.[39]. They have the form

18, / Yy Ky (—,"—A“,agm’) 70, ). (1.101)
u?

J=4.4,9

The functionsk;; can be expressed as an expansion in terms, afith coefficients
which are polynomial idog(M2, . ,/p*). They are known up to two loops for the
parton densities [39]. In Eq_(1.704yuns over all quarks, light and heavy, while the
sum overj runs only on the gluon and the light quarks. This means trah#avy
quark parton density in the: 4 + 1)—scheme is expressed in terms of the light den-
sities, which physically means that the heavy quark PDFeiigetated perturbatively
at threshold. If there were also an intrinsic heavy—flavartgbution, the sum on the
right—hand side of the equation would extend also to thénisitr heavy—flavors.

The same relation between sub—schemes are imposed todhg strupling constant.
The g function coefficients in EqL{5) depend on the number of flaxand, ifn; is
interpreted as the number of active flavors at a given sdad¢ toefficients are given
for the coupling of an effective theory in whiet, flavors are considered light and the
heavy flavors decouple from the theory. The coupling for ety withn 4 o flavors
and the one for the theory witn 4 + 1) flavors are related by an equation of the form

agnA-H)(M ) = (”A) <1+ZZC l[a(”A) )" log (Ml;Q )) , (1.102)

n=1 =0 natl

where mass\/,, , 11 is the mass of the 4 + 1-th quark. The matching coefficients
are known up toy = 4, see for instance Ref, [40]. At leading orderdinit is easy to
derive the coefficient;q. Indeed

al™* Y (%) as(My, 1) (1+ as(My, 11)bo(na + 1) log(My, 41 /1)) + O(a?)

Q) = (M) (14 an (22 )bo(n) log(M12, 1 /) + O(a)
2,(na) M
) = a4 S0 g (M) 4 o),
™ 12
(1.103)

where we used the definition of(n) = (33 — 2n)/127. From Eq. [1.103) we
observe thaty("”l)(MﬁA 1) = agnA)(M§A+1) + O(a?) and that the matching
between quantities in the subschemes withand(n4 + 1) active flavors does not
involves large logarithms of masses, provided that the maabisation/factorisation

scaley is of order the mass of thgr4 + 1)—th quark.
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1.2.2 Heavy quark mass schemes

Theoretical predictions in QCD have been performed acogrii a variety of schemes
for dealing with the heavy quark masses. A proper treatmidreavy flavors is essen-
tial for precision measurements at hadron colliders, eafpgin global QCD analy-
ses. Recent studies show that ffieand Z productions at the LHC are sensitive to
detailed features of PDFs which depend on heavy quark mésste{41,42] 43].
The theoretical framework described in the previous sadsaconceptually simple.
However its implementation in the calculation of processeslving heavy quarks
requires attention to a number of details, both kinemaéindldynamical, that may be
implemented in different ways leading to different schemesghis section | identify
the different but self-consistent choices that can be mgdwibfly outlining differ-
ences and similarities.

For sake of illustration let us write down the general pQCEtdéasation for high—
energy hard processes, exemplified in the inclusive DIS&tra functions; (z, Q?)
as

nyrinygf 1
@)=Y Y [ Eheoci (59 a0w), @i

b) b
a=1b=1"X £ K

wherea runs over the partons in the initial statepver the partons in the final states
andmg the masses of the heavy quarks.

FFNS The conceptually simplest way for taking into account hegwgirk mass ef-
fects is the fixed—flavor number scheme (FFNS) in which albiladbelowmg
are treated as massless and they are the only ones whichrettierDGLAP
evolution equations and in the running of the coupling camist The heavy
quarks enter only in the massive computation of the coeffidienctions. For
Q = c¢,b,t the fixed number of light flavors is; = 3,4, 5 respectively; the
indexa in Eqg. (T.104) runs from 1 tay, while the indexb run from 1 to the
total number of known flavors,; = 6.

Historically, higher-orde©(a?) computations of the heavy quark production
were all performed in the FFNS [44]. These calculations jgeveliable results
when the scale of the process is of the orderef compared to the conven-
tional massless calculations. However, at any finite onder perturbative cal-
culation, the FFNS results become increasingly unreliabléne scale becomes
large compared tang: the Wilson coefficients at order contain logarithmic
terms of the formo? log™ (Q/mg), wherem = 1, ..., n which might spoil the
perturbative expansion. Thus, even if ajflavor FFNS are mathematically
equivalent, in practice, the 3-flavor scheme yields the magible results in
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the region@ ~ m., the 4-flavor scheme in the region. < Q < m,, the 5-
flavor scheme in the regian, < Q < my, and, if needed, the 6-flavor scheme
in Q Z t.

This naturally leads to the formulation of the variable flamamber schemes (VFNS)
which consists of a sequencef-flavor FFNS, each in its region of validity, con-
sistently matched at the transition points. There are séways of implementing a
VFNS.

ZMVENS The simplest way for implementing the VFNS in parton analyisehe
so—called zero—mass variable flavor number scheme (ZMVHAN8)is scheme
all quarks are treated as massless. Heavy quarks are akt®mnthreshold and
they are radiatively generated at threshold by the subpsace+ QQ with
mq = (. The ZMVFNS is therefore a combination of massi@$s' schemes
characterised by different numbers of light flavags Basically the only mass
effects are due to the change of number of flavors in the @3Dnction and
in the anomalous dimensions as one crosses the heavy queskdids. The
coefficient functions are calculated under the assumptianall active partons
are massless, with the associated singularities subdractee /.S scheme

Their expressions are the usual massless coefficient tunsctihich are well—
known to NNLO in the QCD coupling; for DIS and Drell-Yan processes, and
to NLO for many other processes. Hence, due to the simplddifys imple-
mentation, till a few years ago this scheme was the most brazed in parton
analyses.

However this scheme neglects terms above threshold whéchraportional to
powers ofg—%, thereby losing accuracy for scales close to the threshdlkis
does not depend uniquely on the fact t(_‘ianQ/QQ) terms are neglected in the
coefficient function, but also on the approximate treatnoérthe phase space.
Indeed in Eq.[(1.104) both andb run over all active parton flavors at scale
u. This convention is problematic since the initial state sums over the ac-
tive parton flavors, while the sum ovemvolves summation over physical final
states. This leads to inconsistencies for the conventioM&FNS calculation.
For example, consider a typical smalkinematic configuration, say = 10~*
and@ = 3 GeV, corresponding to virtual Compton scattering cenfrezass

3This is implemented through a step evolution from the ihiizale to the final one passing through the
thresholds. Regarding b andt as “heavy” implies that they may be computed perturbatjieho intrinsic
heavy flavor combinations are assumed.
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(CM) energyW = /Q?(1 — x)/x = 300 GeV. Since the factorisation scale is
smaller than the bottom quark mass, the bottom quark in this calculation
scheme is not counted as an active parton; thus the finalzaton flavor sum-
mation does not includg whence instead bottom quarks are easily produced
at this centre—of-mass energy, as is indeed experimemtadigrved. Finally
another problem in the ZMVFN scheme is related to the scalargable. In
the conventional formulation of the ZMVFN scheme, the axteef integration
in Eq. (T.10%)x is identified with the Bjorkencg. Since this integral origi-
nates from summing over final-state phase space of reatiestihis practice
leads to violation of Lorentz kinematics in the case of hetayor production.
For instance, in neutral-current DIS @t ~ m; andW ~ 2my, this calcula-
tion scheme will predict similar contributions frotnquark production and
sea quark production (since ZM hard matrix elements arefiantependent),
whereas, in fact, this kinematical regime is below thgroduction threshold,
and thed scattering cross section is much less suppressed thandhe. It
follows that, by extending the lower bound of the convolatiotegral toz g in
Eg. (1.10%), the ZM formalism grossly overestimates therimmtions from the
region of phase space near the physical thresholds.

I-ZMVENS In order to overcome the inconsistencies of the ZM formaligem-
tioned above, while preserving the simplicity of its coeffit functions, in
Ref. [45] an intermediate-mass scheme has been proposethylbe consid-
ered either as an improved ZM formulation (I-ZMVFNS) whicbriects the
kinematic treatment of the final phase space or as a simpliferal-mass
VENS. The improvement over the ZM scheme is achieved by capgiahe the
lower limits of the convolution integral in E4.(1.7104) withe equivalent rescal-
ing variable

X(z,Q%) =zp(1+ M7/Q?), (1.105)

WhereMJ% indicate the total mass of the final states. The choice ofvhis

able restricts the phase space to the physically alloweidnmedt is shown in

Ref. [45] that there are some subtleties related to the defindf y and a flex-

ible rescaling variablé that generalises the mass-dependent rescaling variable
of Eq. (1.105) is proposed and discussed. Moreover in the saference it is
shown that global analysis carried out in the I-ZMVFNS capragimate the
general-mass scheme results quite well, both in terms ofethdting PDFs,

and in terms of predictions of standard observable at the.LHC

If the advantage of the ZM and the I-ZM schemes is the sintgliaf their imple-
mentation and their consistent resummation of large Idgas of O(Q?/m7,), nev-
ertheless they do not fully implement the effect of the hegurgirk masses. For this
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reason, schemes which interpolate smoothly between th&Fkhich gives a correct
description of the threshold region, and ZM-VFNS which aous for large energy
logarithms, have been formulated: they are the so—calledrgé-mass VFN schemes
(GMVENS). Here we briefly describe the available formulatio

ACOT: A technique for the inclusion of mass-suppressed contabst built upon
the CWZ renormalisation scheme [35], was developed longaaddat is the so—
called ACOT scheme [46]. It provides a mechanism to incafmthe heavy
quark masses in theoretical calculations both kinem#&yieald dynamically.
It yields the complete quark mass dependence from the lowigio &nergy
regimes; formg > Q it ensures manifest decoupling, and in the limip < Q
it reduces precisely to thelS scheme without any finite renormalisation term.
The key ingredient provided by the ACOT procedure is therswltibn term, the
third diagram in Fig._1}4, which removes the “double cougitiarising from the
regions of phase space where the LO and NLO contributiondagpeSpecifi-
cally, in the case shown in Fig._1.4, the subtraction termvismgby

osuB = f3 ® Pyrsg ® 0Qv @, (1.106)

whereogyp represents a gluon emitted from a protgf)(which undergoes
a collinear splitting to a heavy qua(ngﬁQ) convoluted with the LO quark-
boson scatteringgy —.q. Here,Py_,o(z, 1) = 2= log(u?/m?2) Py_.(x) where
P,_..(z) is the usuall/ S splitting kernel.

2 j@
Figure 1.4: Schematic representation of the ACOT schembimgntation at NLO in
the heavy quark production process.

Several variants of this method were subsequently propssetl asS-ACOT [47]
and ACOT-x [48,[49]. The former was formulated after observing that the
heavy quark mass could be set to zero in certain pieces ofafedtattering
terms without any loss of accuracy. For instance, in the Nia@udation of
the process illustrated in Hig.1.4, one canssef = 0 for both the LO terms
(QV — @) and the NLO quark-initiated terms (both the réal’ — Qg and
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the virtualQV — Q) as this involves an incoming heavy quark. One can also
setmg = 0 for the subtraction terms as this has an on-shell cut on @n-int
nal heavy quark line. Hence, the only contribution whichuiegs calculation
with mg, retained is the NL@V — QQ process, drawn in the second diagram
in Fig.[1.4. Instead the ACOY-scheme is a modified version of the ACOT
scheme obtained by rescalimg — y, whereyx? is defined in Eq.{1.105) [48].
The factor(1 + (Mf)?/Q?) represents a kinematic suppression factor which
suppresses the heavy quark production relative to theglightarks.

c .
FZ
0.03 ¢
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Figure 1.5: Calculation of DIS heavy quark production foraaisty of schemes: LO
represent®)V — @ process. NLO includes th@(al) processes in the massless
approximation. In the FFNS the heavy quark PDF is set to zedaitaonly receives
contributions fronyV — QQ. ACOT and S-ACOT are described in the text. Taken
from Ref. [50].

In Fig.[1.8 the shapes of charm structure functigiix, 1), computed in a va-
riety of scheme and perturbative orders, are compared. cimgarison has
been performed in Ref.[50]: LO represents &) QV — @ process. NLO
includes the?(al) processes (primarilyV — QQ) in the massless approxi-
mation. In the FFNS the heavy quark PDF is set to zero; henc®(&.) this
only receives contributions frogl’ — QQ. The ACOT and S-ACOT schemes
are virtually identical—the curves are indistinguishabhléhis plot. Finally, the
implementation of they-prescription for the S-ACOT scheme provides some
additional suppression in the regiprn~ mg.

TR: An alternative method, sometimes called Thorne—Rob&R3,(was introduced

in Ref. [51] as an alternative to ACOT _[46] with more emphasiscorrect
threshold behaviour. Like the ACOT scheme it is based oretheing two dif-
ferent regions separated by a transition point, by defatlabout the value of



1.2. Heavy quarks 55

ACOT type schemes TR type schemes

Q < my, Q > my constant term Q < my, Q > my, constant term
"j; ‘1‘ ‘j Q=m,
+ + + Q=m,
NLO | F @  NLO F |
+ + + Qem,
NNLO ! ! !
> >

Figure 1.6: Diagrammatic comparison of TR and ACOT type sateefor the case of
DIS. This diagram is schematic to emphasise the similaréied differences. Taken
from Ref. [50].
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LO LO
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the heavy quark mass. In Réf. [50] a diagrammatic compalisbmeen the two
approaches is displayed, Hig.11.6, which helps in illumitpseveral aspects of
the TR scheme. At a fixed orderin perturbation theory, the difference be-
tween ACOT and TR amounts to adding differéta’*") higher order terms,
therefore the difference is reduced as one increases tlee ofdur perturba-
tion theory. At LO,aY, when the heavy quark PDF is an “active” parton, the
LO contribution isy + @ — Q. However, when the heavy quark PDF is not
an “active” parton the LO contribution vanishes. For the AC§&heme, no
higher order terms are added to this results. For the TR sehamortion of
theyg — QQ contribution is added; fon < mg the full yg — QQ term

is included, and fop > mq thevg — QQ term frozen afu = Q to avoid
any difficulty with large logarithms of the forim(mg/u). Consequently, in
the , < mg region, the TR scheme yields a finite LO result while the ACOT
scheme yields zero. While both schemes formally agre@(atl ), the O(a})
terms can be important, particularly in the< mg region. At NLO, for the
low 1 region we now includeg — QQ as well as they + Q — Q process. At
NLO the ACOT scheme obtains a finite result in the regior: m¢. For the
TR scheme, in addition to the terms present in the ACOT scharpertion of
theyg — gQQ contribution is added; again, far > m¢ thevg — ¢gQQ term

is frozen afu = Q. As before, both the TR scheme and ACOT scheme formally
agree a0 (ay), but they will differ by the NNLOO (%) terms.

The TR scheme achieves in practice the same highest asyorgrder as ACOT
by some modeling of terms belo@” = m7, which become (relatively) unim-
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portant at highQ?. These terms are allowed due to the fact that in the PDFs
matching conditions there is an arbitrariness related éod#finition of the
heavy quark coefficient functions. %%/QQ — 0 all VENS coefficient func-
tions must tend to the massleSES-scheme limit, but at finite)? there is a
freedom in the heavy quark coefficient functions. In the TResoe [51] the
approach is to make a choice where all coefficient functidreydhe correct
thresholdiv? > 4m§2 for heavy quark pair production. This was first imposed
by defining the heavy quark coefficient functions such thatabolution of the
observabler, do/0log Q?, is continuous order-by-order at the transition point.
However, it results in expressions which become incredsiogmplicated at
higher order. In Ref[[52] the correct threshold behavioaswachieved by us-
ing the simple approach of replacing the limitofor convolution integrals with

x, defined in Eq.[(1.105). In the case that the heavy flavoufic@ft functions
are just the massless ones with this restriction one obthS-ACOT () ap-
proach. A very similar definition for heavy flavour coefficienvas adopted in
Ref. [52], resulting in the TRscheme, and extended explicitly to NNLO.

FONLL : A somewhat different technique for the inclusion of heawaik effects,
the so-called FONLL method, was introduced in Refl[53] ie ttontext of
hadroproduction of heavy quarks. The FONLL method onlyeselbn stan-
dard QCD factorisation and it involves calculations withssige quarks in the
decoupling scheme of Ref, [35] and with massless quarkseivii scheme.
The name FONLL is motivated by the fact that the method wagirtally used
to combine a fixed (second) order calculation with a nexetming log one;
however, the method is entirely general, and it can be usedrtine consis-
tently a fixed order with a resummed calculations to any oadesither. The
application of the FONLL scheme to deep—inelastic strigcfunctions was re-
cently presented in Ref. [54]. The method is based upon the @d looking
at both the massless and massive scheme calculations as gquessions in
the strong coupling constant, and replacing the coeffi@éitite expansion in
the former with their exact massive counterpart in the tatten available. In
Ref. [54] three FONLL scheme implementations have beenqueg: scheme
A, where one uses the NLO massless scheme calculation, edateith the
LO (i.e. O(as)) massive scheme calculation; scheme B, where one uses the
NLO massless scheme calculation, matched with the NLO®i(e2)) massive
scheme calculation; and scheme C, where one uses the NNLS)asmscheme
calculation, matched with the NLO massive scheme cal@anatMoreover, in
order to suppress higher order contribution arising in th#raction term near
the threshold region, two prescriptions are proposed. @nsists in damping
the subtraction term by a threshold factor which differsrfronity by power—
suppressed terms; the other consists in using a rescalimpleasuch as the
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one defined in Eq[{1.105). Both prescription introduce tewmhich are for-
mally subleading with respect to the order of the calcuigttberefore they do
not change its nominal accuracy, but they may in practiceavgthe perturba-
tive stability and smoothness of the results.

Thanks to its simplicity, the FONLL method provides a franoekvfor under-
standing differences between other existing approachesfax a study of the
effect of different choices in the inclusion of subleadiags. It is easily seen
that the scheme A in the FONLL calculation should be equivale the S-
ACOT scheme. If ay-scaling prescription is applied to all terms computed
in the massless approximation, scheme A should becomeatenivto the S-
ACOT-y prescription. A benchmark comparison presented at the loeshes
workshop[[55] confirms this statement in a quantitative vigayadopting com-
mon settings the heavy quark structure functibhsand Fr.., as implemented
in the ACOT, TR and FONLL schemes, have been computed anda@uipln
Fig.[1.1 the S-ACOT, ACOT and FONLL-A computations for thg structure
function are compared. It is clear that, without applying tmeshold or rescal-
ing prescription, the S-ACOT and the FONLL-A schemes are@yxaquiva-
lent. On the other hand the difference between the full ACGd the S-ACOT
scheme vanishes f@)? ~ 10 Ge\?, as it should be, given that they differ only
by mass—suppressed terms. Scheme C should again be equigadgeNNLO

0,4 [ T llllllll T llllll1 T llllllll T llllllll T llllll- L T ""'"I T ""'"I T "'""I T """1 T """-
| Solid: FONLL—A J 0.8 [~ Solid: FONLL—A —
[ Dashes: S—ACOT i | Dashes: S—ACOT

0.3 |- Dotdash: Full ACOT - N Dotdash: Full ACOT
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Figure 1.7:The F». structure function forQ? = 4 (left) and 10 (right) GeV in the FONLL
scheme A (plain) compared to the Simplified ACOT (S-ACOT) &ndACOT schemes. Taken
from Ref. [64].

generalisation of the S-ACOT scheme. Scheme B instead @vesmespond to
any S-ACOT calculation. It is more reminiscent of the TR noethwhere at the
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NLO level the full NLO massive result is also uEeeHoweverfrom Figd. 118 no
obvious similarities can be identified between the two feesibf schemes, nei-
ther at NLO nor at NNLO at smafD?. Clearly the difference between schemes
decrease whef)? is increased. Furthermore it was observed that, switchiing o
the threshold prescriptions in both cases, FONLL-A getsaiatlose to TR’ at
NLO and FONLL-C gets rather close to TR’ at NNLO.
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Figure 1.8:The F». structure function foxQ? = 4 (top) and 10 (bottom) Ge¥in FONLL
and in TR, both for the NLO schemes (left plots) and for the NNLO schefnight plots). In
both cases the default threshold prescriptions are ygedaling for TR and a damping factor
for FONLL. Taken from Ref.[[54].

4This is only true aty? = m2, since in the TR method the higher order term in the massieailation
is frozen at threshold.



Chapter

Parton Distribution Functions

In this chapter several aspects of the determination obpadtistribution functions
are explored. Starting from an historical overview of thettme for extracting PDFs
from experimental data, | emphasise the progress that has ihade, not only due
to the increased theoretical and experimental accuracglbatdue to the refinement
of the statistical tools used. | describe both experimeantdltheoretical inputs of the
so—called global analyses and the statistical issuesiagst¢o the determination of
a set of functions from a finite number of data points. Thenesofithe delicate as-
pects related to the determination of the best—fit in a sphftenotions are discussed,
especially the inclusion of the normalisation uncertaiti| show that an improper
treatment of normalisation uncertainties might lead toaes lsind propose a prescrip-
tion able to eliminate the latter. The final section is desidtethe description of the
several benchmark studies which have been recently pegfbiimorder to clarify the
differences between various approaches used to fit PDFsnmpdified context where
common settings are used.

2.1 Global QCD analyses

Parton Distribution Functions are universal, processefetident, non—perturbative
quantities which must be extracted at a given scale from ewisgn to the available
experimental data. They are then evolved by mean of the DGdgARtions to another
scale where they are used as an input for theoretical predéct Any calculation of
cross sections with hadrons in the initial states invollresahoice of a set of PDFs,

59
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as well as the experimental simulations performed by meaMadte Carlo event
generators.

The needs of precision physics at hadron colliders haverd@eted a revolution in the
approach to the determination of PDFs over the last few y&¥hile the Tevatron has
been providing data for a variety of hard hadronic processesh establish the valid-
ity of collinear factorisation and parton universality teetlevel of precision physics,
the LHC requires a precision approach to the structure afititdeon in the context of
searches for new physics. Given that the uncertainty of RBfgi®sents the dominant
systematic uncertainty in the theoretical prediction ehedkey processes at the LHC,
such as the production of electroweak bosons, a reliable/denige of their errors is
essential for the full exploitation of the LHC physics pdteh

At a very early stage_[56, 57, b8], parton distributions weetermined through a
combination of general physical principles (as embodiedum rules), model as-
sumptions and the first crude experimental information cgfiiom Bjorken scaling
and its violation. These determinations aimed to show thepadibility of the data
with the partonic interpretation of hard processes. Thaokssecond generation of
high—precision DIS and hadron collider experiments, QCargally evolved towards
being viewed as precision physics. This required an appraaparton densities de-
termination based on the next-to-leading order theory (depto have perturbative
uncertainties under control), and also based on fairly Widebal” sets of data of a
varied nature, in order to minimise as much as possible tleeafotheoretical prej-
udice in the determination of the shape of the parton digidbs. Next-to-leading
order parton sets became standard analysis tools and westantly updated. In
particular, the wealth of data from the HERA collider [17§il&d a considerable ex-
tension of the kinematic region over which parton distridsa$ could be determined,
along with a substantial improvement in accuracy.

With parton distributions becoming a tool for precision pitg, it became important
to be able to assess accurately the uncertainty on any gamornpset. The procedure
for estimating the PDFs uncertainties was progressivdiged and more data were
included into the analyses. There are currently at leastdtmbal sets of parton dis-
tributions with uncertainties available and constantlgated by the CTEQ-TEA [59,
60,41/ 61[ 62], MRST-MSTW [63, 64, 65,166,/143], NNPDFI[67, 68,70/ 71] and
Alekhin—ABKM [[72},[73,[74[75] groups. There are many sinitias in the approach
of the first two collaborations, both in the choice of the pae&risation and in the
determination of PDFs uncertainties. The ABKM collabaratises the same kind of
fixed functional parametrisation for parton densities babmewhat different proce-
dure in the determination of the error. The NNPDF collakioratidopts a radically
different approach, which is going to be described in ChapO# the other hand,
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among the non—global analyses, there are the PDF sets dstdrby the H1-ZEUS
collaboration from the self-consistent and accurate HER#®& {L7].

2.1.1 Experimental input

The essential input for a global QCD analysis comes from éxyantal data. In prin-
ciple, one would like to include as many experimental ddsaae possible in order
to maximally constrain PDFs. However the complexity of edaltaset makes the
application of standard statistical tools difficult and thiferences between datasets
pose a challenge for global analyses. First of all, when ntatgsets of the same
or similar processes are included, they may not be consiat@ording to standard
statistical tests, even if the individual ones appear todifeconsistent. Besides some
experiments are performed using different nuclear targélthough the assumption
of incoherent scattering off individual partons inside thecleus is valid as a first
approximation, nuclear effects might significantly affédw@ analysis and theoretical
calculations of nuclear correction factors are model-depet, hence often controver-
sial. On the other hand, there are issues related to the kitieputs in variableg)?
andW? = Q?(1—xz)/z. Although in principle one would like to have a range as wide
as possible, there are some restrictions that must be tat@adcount: theory and ex-
periments should be compared only where the theory is eagdotbe reliable and
this implies that some kinematic region must be excludegiclly the data whose
Q? < 2GeV? andW? < 10 Ge\~.

To give an idea of the wide range of potential experimentdaha for global QCD
analysis, in Tal.2]1 we list the typical input data, the mead physical observables
and the PDFs constrained by each of them. The datasets ilistEab.[2.1 cover a
wide kinematical range and each of them has different featufhe HERA experi-
ments are high statistics, high precision experimentsy Thasist of many hundreds
of data points with statistical and systematic errors off@ew percents. The com-
bined H1-ZEUS data of neutral and charged current redua@ss cections improve
on the accuracy of the separate H1 and ZEUS separate datdisetto the cross—
calibration between detectors. HERA data are mostly at lgwvhile fixed target
data, like NMC, BCDMS and SLAC, cover a higherregion. Even if the latter have
considerably lower statistics and often large systematarg, their inclusion enables
one to disentangle isospin triplet and isospin singlet rdontions due to the com-
bination of deuteron and proton data. Moreover chargeceatiscattering data from
charged lepton beams and neutrino scattering data diggatidwe quark and antiquark
distributions. On top of these data, H1 and ZEUS have alseigied some measure-
ments ofF; . andF; , which help in constraining the charm and bottom distribugio
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Experiment] Observable | Constrain | Ref.
DIS experiments
SLAC FS P R medium—largezq,g,g9 | [76]
BCDMS FiP pid medium—,largezq, 7, g | [77,[78]
NMC FiP pid medium—,largezq,7,g | [79]
FLP [ large= d,, /u, ratio [80]
E665 . FiP, lig“d . medium—,largezq¢,q,g | [81]
H1,ZEUS | F§ P,gNCe" 50Ce small= ¢q, d,, [17]
and small-,mediumz g
FiLP, Fe P b B2]
FL small=z g B3]
HERAI-AV GNCe™ 5CC.e* all » g small=z g [84]
ZEUS-H2 GNCe 00" medium-—,large qg [85]
CCFR FY medium= u, + d, [86]
Gv@)e strange sea, 5 [87]
CHORUS &v®) medium-—,large=q, G, g [88]
NuTeV ;g") medium—,largezq, 7, g [89]
GV ()e strange sea, 5 [89]
Fixed Target Drell-Yan production
20_Cu —
E605 jij q,9 [90]
E772 jjyzp 3 7.9 [©1]
E866 d;@g Tor, a9 [92,93]
Mzdmp/dl\cj;lfizp ﬂ’?d [94]
Collider vector boson production
wt _ w= .
CDF g W large< u/d ratio [©5]
zZ
do— u,d [96]
yZ
DO o u,d [97]
Y
Collider inclusive jet production
H1, ZEUS DIS+jet data medium-= g 98]
CDF gletinc large= g [99]
DO gletinc large= g [100]

Table 2.1: Table of the experimental datasets and of the unediobservables in-

cluded in a typical global QCD analyses of parton distritaifiunctions.
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On the other hand, the dimuon data from the CCFR and NuTe¥mothtions help in
constraining the strange sea, as it will be discussed in Ghap

If DIS data provide important constraints to the quarks amii-guark distributions,
as well as to the gluon at medium and smajlthere are other regions of the PDF
space which need to be constrained by the hadronic datal-Mael data, like the
fixed—target E605, E772 and E866 experiments help in disghitey the anti—quark
contributions. On the other hand, the collider vector bgsaduction data helps in
constraining the:/d ratio at high<« and theu andd distributions. Finally collider jet
data cover a broad rangeimandQ? by themselves and are particularly important in
the determination of the high~gluon distribution.

2.1.2 Theoretical input

There are several sources of uncertainty in a parton asalykich may be divided in
two classes: those associated to the experimental errdthiase due to the so—called
theory errors, which depend on the theoretical inputs ofataysis. It is important
to remark that the error bands associated to the PDFs do clatd&nthe theoretical
errofl. The latter may induce systematic shifts in the central esland the error
bands.

The main theoretical inputs to global analyses are the geatively calculated hard
cross sections, along with the QCD evolution equations wbantrol the scale de-
pendence of the PDFs. The S scheme is used almost universally but some PDFs
are also available in the DIS scheme. One of the main theatairors comes from
the higher—order contributions. Most global PDF analysescarried out at NLO.
Recently, the DGLAP evolution kernels have been calculatddNLO [30,[31], al-
lowing a full NNLO evolution to be carried out, and partonssat NNLO are avail-
able [43]74]. However, not all processes in the global fitgl, specifically the inclu-
sive jet production, are available at NNLO. Thus, currentiNylobal PDF analyses
are still approximate.

Other sources of possible large corrections to the star@&fd parton model formula
may come from the lack of resummation of logarithms arisinthe boundaries of

the phase space, from effects beyond the standard DGLAMsixpa from power—

law corrections like higher—twists, target—mass corosxiand, if applicable, nuclear
corrections.

Another significant source of theoretical error is the tmeait of the heavy quark
masses. The various schemes for including their effect lolaadjanalysis have been

1The inclusion of the theoretical uncertainty in the stadd@DF uncertainty bands has been broadly
discussed but there is no agreement about its precise aefirfftor a broader discussion see Réfsl [[64] 101]
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described in the previous chapter. Here | summarise theylgaark schemes used by
the parton fitting collaborations in their most recent asaty

e The ABKM collaboration has recently released three setsladMnd NNLO
PDFs evaluated in a FFNS withy = 3,4,5 [102]. The set withny = 4 is
obtained by using the set witty = 3 as input and using the Buza—Matiounine—
Smith—van Neerven matching conditions of Refl[39Ddt= m2. Analogously
then; = 5 set is obtained from the 4—flavors PDFs.

e While the ACOT scheme [46] was formulated long time ago, is\iest used
for an actual general-purpose global parton fit only regeitlRefs. [49[ 41].
All previous CTEQ analyses were performed in the ZMVFENS neff¢he full
ACOT scheme had been used in specific studies in the CTEQ HE¥ sHfits,
HQ4 [103], HQ5 [104] and HQE [49].

e The Thorne Roberts (TR) scheme|[51] was used in MRST globallyaes up
to MRST 2004 [[65]. The TRscheme([52] was first used in the MRST 2006
analysisl[66], and has been used in all subsequent MSTW s 3].

e The FONLL GM-VFN scheme [53, 54] is currently being implerteshin the
NNPDF family of fits [105], which up to now have been obtainedhie
ZMVFENS [68,[70/71].

On top of the mentioned theoretical errors there are thisatetssumptions, implicit
in the choice of the parametrisation and in the flavour deamsitipn. In principle
one should parametrise and extract all ¢&e + 1) independent parton distributions
by fitting observables from experimental data involvindetiént linear combinations
of PDFs. In practice, however, one has to rely on some assomsgince the avail-
able data cannot constrain all of them. For example, an appsation used in early
fit consisted in considering the s@a= d, due to the lack of experimental infor-
mation. For the same reason, until a few years ago, the gnagnce distribution
(s—3) was typically set to zero. Nowadays the availability of Dr¥an and as well as
charged-current and the dimuon production data, allowsstnthngle the sea quarks
contribution and to determine independént, s, 5 distributions.

The choice of the parametrisation is another crucial pdii6]. In principle, since
PDFs represent our ignorance of the non-perturbative nond#&ucture, there should
be complete freedom in choosing their parametric form. H@men order to carry
out a parton fit, one needs to choose a particular functiaral for the PDFs at the
initial scale. The typical approach adopted by most of th&#fitting collaborations
consists in setting a functional parametrisation whickesakito account some handle
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we have on PDFs behaviour; the standard parametrisatios foas) such as
fi(wa Q(Q)) = ao x™ (1 - :C)GQP(:Ea as, a4, )a

where for some PDF combinations the normalisation paramegeare typically de-
termined by imposing the momentum and valence sum rules.fadter a; is moti-
vated by physics considerations in the smalimit where the power; has a Regge
interpretation. The factar; is motivated by physical considerationsin the limit> 1
which is the resonance region where PDFs are supposed tadigtgevalue can be
related to the quark counting rulés [107]. However it is eaclto what value of)?
these considerations should apply and therefore suchqpieti can only be taken as
a rough guide for the values to be expected. Finally the fandP(x) is a smooth
polynomial function inz which interpolates between the smallnd the largee re-
gions.

The functional form has to be flexible enough to accommodasgerwved experimental
data without introducing a theoretical bias. Given thatfteribility is intrinsically
related to the number of parameters, the latter should lye lanough. However,
adding more parameters to the parametrisation might ceatplthe fitting procedure
due to the lack of experimental constraints.

Another issue is related to the question: how do we estinfegtestror associated to
the choice of a particular functional form? Are the resuidgpendent on its choice?
This kind of question cannot be easily addressed within taméwork of the tradi-
tional parton analysis. In Chap. 4 we will see that in the NIRRIpproach, where a
more general parametrisation than the simple polynomialisrused, this question
may be easily addressed. Another attempt in this directasbieen performed in the
recent HERAPDF analysis [108], where in addition to the nhacieertainty a new
error contribution is introduced resulting from the parnisation choice. Alterna-
tive parametrisations leading to good fit quality but peautiehaviour at large=are
used to estimate the parametrisation uncertainties. Aelepe of these fit solutions is
built, which is added in quadrature to the contributionshef éxperimental and model
uncertainties, as it is shown in F[g. P.1.

2.1.3 Fitting procedure

When performing a global fit one needs a criterion for evahggthe "goodness of fit”
for a particular set of PDFs. All experimental uncertaistieée generally assumed to
be Gaussian. Then the least squares method estimates ti gfutae fit by mean of
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H1PDF 2009, Q® = 4 GeV?

XP(x)

xU

B experimental uncertainty
[] + model uncertainty
I + parameterisation unc.

B R R R R R
10 10 10~ 10 10 10 10 10

X

Figure 2.1: The parton distribution functions from HERAPD®, U, xu.,, U, D,
xd,, S = 2x(U~ + D~) andzg, atQ? = 10 Ge\2. The experimental, model and
parametrisation uncertainties are shown separatelynfia@em Ref [108].
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thex? function [109]. If only statistical errors are includedetlatter is defined as

N )
=3 ( = )

i=1 7,stat

(2.1)

whereF ) is the experimental measurement of some observapiég ™ ({ 1) is
the theoretical prediction as a function of the initial ®d8DFs{ f }, hence function of
the parameterg which describe the set of parton distributions, ang.: is the total
uncorrelated statistical uncertainty. The parameiegige determined by minimising
thex?, i.e. one wants to determine the set of paramei@sshich satisfy the condition

x> (&’0) = ming [X2 (&')] ) (2.2)

The sum in quadrature of statistical and systematic urioéiga is an acceptable ap-
proximation only if statistical errors are dominant andretations negligible. How-
ever the statistical accuracy of current data is much higteer it used to be, and the
experimental groups provide the contributions from théedént sources of system-
atic errors along with the experimental data; this leadsotwsier the effects of the
correlated systematic uncertainties. This can be done img uise explicit form of
the experimental covariance matrix, which collects albmfiation about statistical,
systematic and normalisation uncertainties. The lattdefied as

N. N N,
[cov]ij = (Z 011050+ Y CimGin + Y OinTjn + 5ijaﬁs> ﬂ(eXp)FJ§6Xp) ,(2.3)
=1 n=1 n=1

wherei and;j run over the experimental points; andFj(e"p) are the measured
central values, and the various uncertainties, given asivelvalues, arey; ;, the N,
correlated systematic uncertainties;,, the N, (.V,.) absolute (relative) normalisation
uncertaintiesy; s the statistical uncertainty.

With this definition, they? which is minimised during the fitting procedure is given
by

Naat

V@ =Y (B = B @) [eov '], (F = E") @) 2.4)

ij=1

A special treatment is required for the normalisation andtiplicative uncertainties
which, as we are going to see in Sect. 3.2, should be treapsdately from other
systematic errors in order to avoid systematic biases.
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2.1.4 Determination of errors

Until a few years ago, only the central values were providetiexrrors on PDFs were
estimated by varying some sets of parameters, or compaiffiegatht determinations.

They were generally considered to be negligible in compari® other sources of
theoretical or experimental error. Now, the simultaneorgggess in higher-order
theoretical calculations and experimental results regué realistic estimate of the
error of the released PDF sets. Indeed, all modern partorgfitollaborations provide

a set of PDFs at the initial scale and their errors.

The determination of the PDFs error is a difficult problemt ooly because of the
difficulties in collecting and propagating uncertaintiestained in large experimental
covariance matrices, but also because a PDF set is a setatiofus that should be
inferred from a finite amount of data points. Therefore oriaded with the problem of
constructing a probability measure in a space of functidhe. mean of an observable
O depending on a set of PDEg } would then be given by

(OHfH) = /[Df] OHSHIPUT (2.5)

where O[{f}] is the value ofO based on the PDF sétf} andP[{f}][Df] is the
probability density measure in the space of PDFs.

A technique for estimating the probability dens®y{ f }][Df] and to deduce the er-
rors and the correlation of quantities depending on PDFsasiged by the use of

Monte Carlo (MC) methods. Using random sampling, a MC evaluation of the

integral which appears in Eq.(2.5), these methods sucecezaddulating such integral
without relying on Gaussian approximations or linearisadi of uncertainties. The
underlying idea is that, if a sufficiently high number of PDieplicas is generated
according taP[{ f }][Df], the integral of Eq[{Z]5) can be approximated by the sum

OUSN) =~ 57— D Ol 26)

wherei runs over the members of the Monte Carlo ensemble. In thénafigvork
where this technique was presented, Ref. [110], the prétyatbénsity P[{ f}[Df],

was projected from the functional space of all possible fional forms assumed
by the parton densities into th#,,,—dimensional space of parameters character-
ising the chosen functional form; the initial probabilitgrsity is then a function
P(a)dd, with @ = ay,a, ...,an,,,. The space of parameters is sampled by gener-
ating a Monte Carlo ensemble consisting’gt,, random sets of paramete{ré‘}(k),

k =1,2,..., Ny distributed according t®[a]. However, while this can be numeri-
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cally implemented, the limitations of the method proposedeéf. [L110] and developed
in Ref. [111] are related to the generation of the Monte Carlsemble. Indeed, the
sampling of the parameter spap‘e}(k) is not particularly efficient due to the presence
of many flat directions, which would require the generatibrary large ensembles
which cannot be used for practical purposes. In the NNPDIroamh [67] 68, 70, 71]
this problem is solved by generating the Monte Carlo enseritbthe space of the
experimental data included into the fit rather than in theespd parameters, as dis-
cussed in detail in Chap. 4.

The most widely used approach in the PDF fitting communithésHiessian method.
A detailed description can be found in Refs. [1112, 63]. Giaeset ofV,,,, parameters
a determining the PDFs at the initial scale, one first deteesithe best fit parameters
a° from the minimisation of the fully correlategf. Then, in order to estimate the as-
sociated uncertainty, one assumes that the deviatigh from the minimum valuec

is quadratic in the deviation of the parameters specifyiegnput parton distributions
a from their values at the minimu@ and assumes that

A =x*— x5~ Z Hij (ai — af) (ai —af) , (2.7)

whereH is the Hessian matrix, defined as

_ %% (@)

B = pada; (2:8)

H;; has a complete set oV ,,, orthonormal eigenvectors;, with eigenvaluesy,

Npar
Z Hij ((_J:) Vjk = EkVik i,k: 17---7Npar . (29)

j=1

The eigenvectors provide a natural basis to express ampitagiations about the min-
imum. One has to take into account that since variations inesdirections in the
parameter space lead to deterioration of the quality of thiafimore quickly than
others, the eigenvalues span several orders of magnitude and therefore the diago-
nalisation might be hard, especially when the fully comesdig ? involves large co-
variance matrices. In terms of the diagonalised set of parars defined with respect

to the eigenvectors;;

Zi = \/%Z(aj - a?)vij (210)
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2-dim (i,j) rendition of d-dim (~16) PDF parameter space

contours of constant 2 global
u,: eigenvector in the [-direction
p(i): point of largest a; with tolerance T 2

p()

So: global minimum

diagonalization and
rescaling by
the iterative method
o Hessian eigenvector basis sets

(a) (b)

Original parameter basis Orthonormal eigenvector basis

Figure 2.2: A schematic representation of the transfolondtom the PDFs parameter
basis to the orthonormal eigenvector basis defined in[E8).(Zaken from Ref[[113]

one obtainsAy? = " 22, i.e. the surfaces of constagt are spheres in thé space
of radius/Ax?2. The diagonalisation procedure is illustrated in Eig] 2f2ne then

considers an observalf®@depending on PDF§f }, hence on the parametefsin the

neighbourhood of the global minimum, assuming the first tefrthe Taylor—series
expansion of® gives an adequate approximation, the deviatioofrom its best
estimate is given bAO = O — Oy = >, O,z with O; = 00/0z|5. For a given
toleranceAx? the uncertainty on the physical observable can be evaluatate

simple formula

(A0) = Ax? -0 = 3 (0(51) - O(57))? (2.12)

%

where in the above equality; is evaluated by finite difference ami}t are PDF sets
which correspond to two points in thgparameter space specified by

Z]i = :|:51-j\/ AX2/2,

as one can see in Fig._2.2. Thus, with the calculation of thestda matrix and its
eigenvectors, one obtaifiN,,., + 1) sets of parton distributionsy, 57", - -+, Sy,
from which one can evaluate the uncertainties of PDFs thimesand of the observ-
ables depending on them by using the master formula[Ed)2.1

Possible drawbacks of this method are the assumption tkdinbarised approxi-
mation in error propagation is valid, and the introductidmon-standard tolerance
criteriaAx? > 1 which does not allow to give a statistically rigorous megrtimthe
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resulting uncertainties. Indeed results depend on thecetafithe tolerance/Ax?,
which is the allowed variation iry?. Textbook statistics implies that, if the measure-
ments belong to experimental sets which are compatibleewtth others, one should
haveAy? = 1. However it has been argued that a higher value is requirectier to
keep into account the inconsistencies between dataséig@utinto a global analysis.
The CTEQ collaboration has investigated this problem imitift14]. They consider
that the choice\x? = 1 is not a reasonable tolerance on a global fit with about 2000
data points from diverse sources, with theoretical and madeertainties which are
hard to quantify and experimental uncertainties which matybe Gaussianly dis-
tributed. They have tried to formulate a more reasonabtengeior the tolerancd”

by estimating the range of overalf along each of the eigenvector directions within
which a good fit to all datasets (within 90% C.L.) can be ol#dirand then averaging
the ranges over tha',,,, eigenvector directions. According to this stufly~ /100.
The MRST collaboration suggested a slightly smaller vabrelT ~ /50 confirmed
by a similar analysis performed by the ZEUS collaboratiatg]1 More recently, the
MSTW collaboration has substituted the chdiee= /50 by a new procedure which
enables aynamiadetermination of the tolerance for each eigenvector domecby de-
manding that each dataset must be described within itsigneagor 90% C.L.) limits
according to a hypothesis-testing criterion, after réagahe x? for each dataset so
that the value at the global minimum corresponds to the nradtgble value. Appli-
cation of this procedure to the MSTW benchmark fit gi¥fes 3 for 1o uncertainties
andT ~ 5 for 90% C.L. uncertainties. Nevertheless the usg& of 1 is still contro-
versial given that there is no rigorous statistical prootfe criterions adopted to esti-
mate it. The introduction of a tolerance larger than one iswadent to the PDG error
rescaling procedure for dealing with incompatible dataaatl practically corresponds
to inflate the experimental and PDFs uncertainties by afagtax?/2.7 [109].

Another technique for estimating PDFs errors which doesr@lgton the quadratic
approximation of the? is the Lagrange multiplier method. The technique has been
applied in literature to determine the PDFs induced ung#i#s on several physical
observables [€3, 116]. However it is not practical for gldhia of parton distributions
since it depends on the considered physical observablead handy for an external
user.

2.2 Normalisation uncertainty

Within the context of global analyses the treatment of ndisation uncertainties be-
comes relevant. Indeed, when combining datasets from ardigmnt experiments it is
necessary to take into account the overall normalisatiaemainty associated with
each experiment: an experiment with large normalisatiocettainty should con-
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tribute less to the fit than one with a small uncertainty. Nalisation uncertainties are
usually multiplicative, in the sense that each data poithiwithe set has a normalisa-
tion uncertainty proportional to the measurement at thiitpall these normalisation
uncertainties are however correlated across the whold geta points.

Fitting the data by using the complete covariance matrix, @), leads to a sub-
stantial bias in the fitted value due to the fact that smalé¢a ghoints are assigned a
smaller uncertainty than larger onés [117]. This problemmsigally avoided by using
the “penalty trick”: the normalisation of each dataset eated as a free parameter
to be determined during the fit, within a range restrictedi®yduoted experimental
uncertainty. While this method gives correct results whim§ data from a single
experiment, in Ref[[118] we showed that it remains biasedmirsed in fits which
combine several different datasets. In the same Ref. theafled “to-method” was
introduced, which provides a completely unbiased and hapimhvergent method for
including the normalisation uncertainties in a fit.

Before proceeding, | define a simplified notation. In thistieecl consider a simple
situation, where we have measurements:; of a single observable with experi-
mental uncertainties given by the covariance mduiw];; which takes the form of
Eq. (2.3). With this notation, the fully correlated reads

n

() = (t—my)(cov)i;(t —my) (2.12)

i=1

and thus the least squares estimate isrgiven by

= ZZ]':1 (cov™)im;

> (2.13)
Zi,j:1(COV_1)ij
and its variance is found through
Vo (10N ! (2.14)
L 2 ot? N szzl(COV_l)ij- '

The features of the results obtained with this method deparite choice of function
which is minimised in order to determine the best—estimate o

2.2.1 The D’Agostini bias and the penalty trick

When datasets have overall multiplicative uncertainsash as normalisation uncer-
tainties there are biases arising from the rescaling ofrefdl7]. The analysis in
Ref. [118] shows that with the Monte Carlo method the effé¢his bias starts when
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more than one experiment is considered, while in the Hessithod the bias is there
also in the case of a single experiment. Here we only conglideessian approach
in a very simple model of a single experiment with only twoadpbints. In this case
the covariance matrix is simply given by

O’% + szm% s2mymo > (2.15)

(covim)ij = ( 5 5

smime O’% + 52m2

wheres? is the normalisation uncertainty of the considered expenitriTherefore the

x? Eq. 212) is

(t —m1)*(05 +m3s%) + (t — m2)?(0f + mis?) — 2(t — m1)(t — m2)mimas®

2
t) =
o 7To% + (o3 + mie D)

(2.16)
Minimising this x2-function with respect te yields
my/of +my /o3 w
T /024 1/02 + (m1 — m2)252/0202 1+ (my —mg)2s2/52 217
wherew is the weighted mean
wzﬁ;%‘ z:i_zlgi% (2.18)

with n = 2.

It follows that, whenm; # ms ands # 0, the result for has a downward shift with
respect to the unbiased result That this shift is a bias can be seen for instance by
considering the simple casg = o2 = ¢. Then Eq.[(2.1]7) gives

— m oy 2.2-=2 2 4
L= Tramsmejgr = M1~ 2wt fo" 4 O(rh)). (2.19)
where we have defined
— 1 my — Mo
=5 = 2.20
m 2(m1+m2), r —— ( )

Thus simply minimising they? of Eq. (2.12) with the fully correlated covariance
matrix leads to a central value which is shifted downwards: & sufficiently large
s? /o2 one can get an average which is lower than either of the twaegalvhich are
being averaged, so one concludes that the result is biabed:ariance of is afflicted
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by the same downward bias with respect to the expected s?w?(1 + r?) result.

%2 + s2w?(1 4 1r?)
Vie = 26202 /32
1+ r2s2w?/%

(2.21)

This is usually referred as the “d’Agostini bias”, after REf17] where it was stud-
ied and explained. It can be shown that this bias gets worseeasumber of data
points increases. The origin of this bias is clear: smaltdues ofm,; have a smaller
normalisation uncertainty:; s, and are thus preferred in the fit.

The standard way to include normalisation uncertaintigbénHessian approach by
avoiding the d’Agostini bias consists of including the natisations of the data, as
parameters in the fit, with penalty terms to fix their estirdatalue close to one with
variances?. This is usually referred as the “penalty trick”. In Réf._8}it is shown
that, while it gives correct results for a single experimemien used to combine
results from several experiments it is biased.

In order to show this explicitly, here we first consider a &nexperiment, with diago-
nal covariance matrix, but now with an overall normalisatimcertainty with variance
s2. The value oft according to the penalty trick is obtained by minimising éneor
function

Ftiess(t,n) = i (t/n _Qmi)Q 4 _21)2 . (2.22)

g; S
i=1 g

where the last term is called the penalty term. The parasietardn are determined
by minimising this error function: minimising with respectt givest = nw, with

w as defined in Eq[{2.18), while minimisation with respectitfixesn = 1. To
compute the error on the fitted quantity in this approach, meeds to evaluate the
Hessian matrix:

1 (2 2 1 /1 —t
yv-l=2|("a% aog)|=_— ) (2.23)
2 % % Y2\t ¥2/s% 2

The covariance matrix is obtained by invertiig !. In this way one recovers
Vie = 22 + s2w?, (2.24)

i.e. the result is unbiased. However if we turn to the more gersituation where
we have several data points from different experiments,thod with independent
normalisationsp; = 1 + s;, we see that the penalty trick leads to a result which is
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10f - Penalty Trick
s - D'Agostini bias 3
Self Consistent CovM: i ™

8 10 12 - --14--

- Penalty Trick

Self Consistent CovMat

Figure 2.3:The “bias” functions:() for the central value (left plot) and(z) for the variance
(right plot), corresponding to the results obtained whesdiAgostini bias is present, using
the penalty trick, and using the self-consistent covagamatrix method. The unbiased result
corresponds ta = v = 0.

biased when all uncertainties are equal. To see it expligit set up the error function
S (t/ni —m)? = (ng — 1)?
Eess (t,ni) = Z A Z = (2.25)

where now there is a separate penalty term for each of thealisations to be fitted.
The minimum is obtained for

= ) -
t o= = ma 2.26
Zi:1 n2102 ( )
sit [t
n;, = 1+ 21 3 (— — ml) . (227)
nio; \n;

These(n + 1) equations are complicated nonlinear relations which mastdived
for t andn;. However it is possible to find solutions for certain specides, which
are sufficient to show that the approach is biased. In Re8][t\lo special cases are
considered: the case of only two experiments with= oo = o ands; = ss = s
and the case of only two experiments where the normalisatioor dominates, i.e.

s; > o;. In both cases, it is shown that one gets a biased result tordemtral value
and variance of the quantity This bias is more subtle than the d’Agostini bias, since
it is caused by nonlinearities in the error function rattarntby a consistent bias in the
variances. It can thus have either sign, depending on taéueleight of statistical
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and normalisation uncertainties. The bias may be writtehérform

2

- g 2 4
t = m(1+c(52m2)r +0(r)), (2.28)
I PR P 2 o’ 4
Vie = =0+ =s"m*(1+r*+v(5=)r"+0(r"), (2.29)
n n s2m

with the functions: andv given by

r—2 vsz@z*l)Q
c(r) = —— () = 47($+1)3.

EEY (2.30)

The unbiased results would correspond te v = 0. The d’Agostini—biased results
can also be cast in the form of Eqs.(3.28.2.29), but now with = —2/(x + 1),
v(x) = 0 (since in this case the variance is unbiase@@t’)). The “bias” functions
c(z) andv(zx) for these two cases are compared in Eig] 2.3. Thanks to thatgen
trick, the bias in the central value is generally less sevmrethe variance is now also
biased.

A possible way out, alternative to the penalty trick of theypous section and based
on a covariance matrix approach, was suggested by d’Agasttef. [117], which is
indicated in Fig[ZB as the self-consistent covarianceirpdtowever in Ref.[[118]
we showed that this method leads to results which are sitoignose found using the
penalty trick: for one experiment there is no bias, but faesal experiments a bias
arises. In the next section, we will present a new method lwisidree of multiple
solutions, is unbiased when uncertainties are equal, bighwdiso correctly weights
the different experiments according to their normalisatimcertainties when these
are unequal.

2.2.2 The t0O method

The biases found in the previous section come from the fattttie % (¢) function
used in the fitting is no longer a quadratic function of theestablet being fitted,
and thus the distribution afxp(—xZ(¢)/2) is no longer Gaussian. The dependence
of the covariances of the data ¢hdistorts the shape of the¢?, and thus introduces a
bias. The idea proposed in Ref. [118] in order to avoid thi® isold the covariance
matrix fixed when performing the fitting. One can do this byleating the covariance
matrix using some fixed valug rather thant. The value oft, can then be tuned
independently to be consistent with the value obtained from the fit. The basic idea
is then to determing, self—consistently in an iterative way.
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I now show that this procedure gives unbiased results foalegprmalisation uncer-

tainties. Here | concentrate on the Hessian method; a morerglediscussion can be
found in Ref. [118]. | also show that the iterative deterntimaof ¢, converges very

rapidly, and thus that the method is also practical.

In the case of a single experiment, in place of Eq. (2.12) thegance matrix pro-
posed in Ref[[118] is chosen to be
(covyy)ij = (cov)ij + t2s?, (2.31)

wheret, should be viewed as a guess forto be fixed beforehand. In a Hessian
approach the? is then

n

Xoo (8) = D (t —mi)(covy, )i (t — my), (2.32)

i,j=1
and minimisation is trivial:

ZZ;‘:1 (COth)l)ijmj

ZZJ‘:1 (Covtt)l)ij ,

t= (2.33)

while

1
Vi=c—"—"7— (2.34)
Zi,j:l(covtol)ij

For the special case in which the data have uncorrelatedtitat errors only we
recovert = w, independent of the value chosen fgrwhile

Vie = B2 4 s%t2. (2.35)

This reduces to Eq_{Z.24), but only if we tuhe= t.

When we have: independent experiments (each with one data point), thar@nce
matrix proposed in Refl_[118] is given by

(cove)ij = (07 + 57t5)dij, (2.36)

so they? is now

2 _ (t —mi)
X’ = Z Tl (2.37)
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whence we have the single solution

Zn o
i 21 242
i=1 o +sy to

(S —
=1 TR

(2.38)

and

1
Vie = e (2.39)

Dim1 02152t
For the special case = s, 0; = o, these reduce to= m andV;, = 1 (02 + s%13)
as they should: the fit is unbiased, and the variance is dtyrestimated provided
only thatty = ¢t. The same can be shown in the case when normalisation untieda
dominate. The result may be generalised to any generatisituthat one has to deal
with when performing a parton fit [118].

For this reason th&-covariance matrix EqL{2.81) givesd function that can be used
to obtain unbiased fits, withy controlling the relative balance between statistical and
normalisation errors, both in the Hessian and Monte Carlthote The remaining
difficulty with this approach is thafy is not determined self—consistently within the
minimisation, but rather must be fixed beforehand. Cledriyé value chosen is
incorrect, this may itself lead to an incorrect fit.

However, the dependence anis rather weak. That this is the case is qualitatively
clear: firstlyty only determines the uncertainties, so an error we makgigia second
order effect; furthermore all dependenceguoancels when all they; are equal, when
o; ands; are equal, or when normalisation errors dominate overssital, or indeed
vice versa. In Ref[[118] this is proved in a quantitative way

It follows thatt, can be determined iteratively: a first determination isfperformed
with a zerd"—order guess fory, such as, for exampléy = 0. The result fort thus
obtained is used afg for a second iteration, and so on. In Réf. [118] the method
was applied to the NNPDF1.2 parton fit [70], showing that griscedure converges
rapidly: two iterations were sufficient to get a stable resul

So far we have taken a naive approach, in which we constriesstl squares esti-
mators, and minimised them with respect to the theoretiealiptiont. To conclude,
it is interesting to consider instead how we might consteulikelihood function for
the measurements and normalisations, and thus whetherf #my above mentioned
estimators are maximum likelihood estimators.

Consider for definiteness the case of several experimeiitspveasurements,; and
variancess;. In presenting the measurements in this form, there is amrnyidg
assumption that the measurements are Gaussian. The di&dlis then simply de-
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fined as the probability that the measurements take thewsbsealues given a certain
theoretical value for such measurements:

1 i (ml — t)2

whereN is some overall normalisation factor for the probabilitgpeéndent omr; but
not onm,; or t. Of course this probability is jus¥ exp(—%xQ(t)), so the maximum
likelihood estimator is found by minimising the?, i.e. it is the same as the least

squares estimator.

Now consider what happens when there are also normalisatiogrtainties:; with
variancess;. In the absence of further information it is natural to assuhese are
also Gaussian. Furthermore they are clearly entirely iaddpnt of the measurement
uncertainties, since the physics involved in determinirggrtormalisation is generally
quite independent of that related to the measurementsr indeed the theoretical
valuet. Thus the total likelihood should factoris@(m,n|t) = P(m|t)P(n). The
maximum likelihood estimators obtained fraf{m, n|t) and P(m|t) should thus be
the same.

The adoption of the fully—correlategf-function, assumes for the likelihood

I~ (m; —t)?
This is incorrect, because it is no longer Gaussianjnand indeed not even properly
normalised (to normalise ity must depend omn, and then maximising,, (m|t) is
no longer the same as minimising té). Thus the fully—correlateg?-function is
not a maximum likelihood estimator, principally because pinobability distribution

it assumes is skewed by the normalisation uncertainties.

Similarly the Hessian method with penalty trick, by adogtine error function Ed.(2.25),
assumes for the likelihood

2 2

ok
i=1 ?

P, (m,n|t) = N exp ( - li [(ml —t/ma)” + (s 5_2 1)2D. (2.42)

This is also incorrect, because now the likelihood, whilei§an inm;, is not Gaus-
sian inn;, and furthermore cannot be factorised into a prod®@i:|t)P(n). Once
again it is not properly normalisedY must depend oi. So this too does not give
us a maximum likelihood estimator. The main problem heréas, tsince the model
for the likelihood does not factorise, the assumption of mmmn theoretical result
t introduces artificial correlations between the normalisameasurements;; this
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leads to biases since these measurements are in principlpletely independent.

This is why the penalty trick, while giving correct results & single experiment with

only one overall normalisation uncertainty, fails when lggibto several independent
experiments.

Finally consider thé,—method discussed in this section, which takes as its rsgarti
point they2-function Eq[2.3l7). Here the assumption for the likelidd®

Py (mlt) = Nexp ( 1zn:(mi_t)2) (2.43)

mjt) = Nexp | — = S5 .

fo P\T e o gs?
=1 3 3

This is now correct: it is Gaussian in;, properly normalised, and all we have to

do to make sure we get the correct answer is chagsensistently. Note that it can

alternatively be formulated as

n 2 2

Y
This is rather like the penalty trick ER.(2]42), but with thein the first term replaced
with its best estimate,, just as in going fromn-cov Eq.[Z.41l) td,-cov Eq.[2.4B) we
replacem; in the denominator with our best estimage Note of course that actually
ng = 1: this is the natural choice for presenting the data that gkeementalists
choose. Eq.(2.44) is also a good definition of the likelihoibds Gaussian in both
m; andn;, the normalisation is determined quite independently ahd it factorises
correctly into the produc®;, (m|t)P(n). Thus when we minimise with respect#o
P, (m|t) and P, (m, n|t) give the same maximum likelihood estimator fpas they
should.

Since the-method yields the maximum likelihood estimator, it possssll the nice
asymptotic properties of maximum likelihood estimatorsparticular it is consistent
and unbiased.

To demonstrate the practical application of thenethod, in Ref[[70] the method was
implemented itin the NNPDF1.2 parton fit [70]. This confirniled rapid convergence
of the technique, showed that the inclusion of normalisatiocertainties can lead to a
small improvement in the quality of the fit through the resiolo of tensions between

datasets, and moreover that where these tensions are ghifhis can lead to a

subsequent reduction in PDF uncertainties, as it is showahap. 4.
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2.3 Benchmark fits

In this section | present several benchmarks studies peefrin the past years in
order to clarify some of the aspects involved in the fittingpafton distribution func-
tions. In order to disentangle them, common theoreticahaodel settings are adopted
in order to better assess the differences between differecedures. Here | present
some benchmarks whose aim is to comprehend the study ofdtigtisal consistency
of a parton determination under the inclusion of new dataRAWELHC and H1-
NNPDF benchmarks), the difference between Monte Carlo aesbidn approaches
(H1 benchmark) and the impact of the parametrisation ch@gide-NNPDF bench-
mark).

2.3.1 HERA-LHC benchmarks

One of the main drawbacks of the analyses based on the fixetidoal form parametri-
sation and the use of the Hessian method, is that sometireesdttition of new ex-
perimental data to the fit, therefore the increase of inftionaleads to an increase
rather than to a decrease of the PDFs error bands becausaiitata require the use
of a more general parametrisation. This makes a statistitapretation of the uncer-
tainty bands on parton distribution difficult. The issue waised for the first time in
Ref. [101] in the context of a benchmark analysis performethe MRST [119] and
the Alekhin [73] collaborations.

In order to compare the two parton determination procedtinessame datasets, the
same cuts and theoretical prescriptions were used. To seoative only the data in
Tab[Z2 were included in both fits and cutspf = 9 GeV? andW?2 = 15 GeV? were
applied in order to avoid the influence of higher twist. Bdik Alekhin and MRST

dataset Data points| Observable| Ref.
ZEUS97 206 | FY [120]
H1lowx97 77 | FP [121]
NMC 95 | F? [79]
NMC_pd 73| F{/FY [80]
BCDMS 322 | F? 7]
Total 773

Table 2.2: Data points used in the HERA-LHC benchmark afteerkatic cuts of
Q% > 9 GeV? andW? > 15 GeV? are applied.

benchmark partons are determined by using the Hessian thatitio Ax? = 1 and
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parametrising PDFs at the starting scalg = 1 GeV? according to the following
functional form:

x fi(x,Q3) = Aj(1 — )b (1 4 2% + y) % . (2.45)

Four independentinput PDFg &ndd valence, the sea and the gluon) are parametrised
at the initial scale, the light sea asymmetry is set to zare=( d) and there is no
independent strange PDFs, which is rather set to be a fixetidineof the non—strange
sea §(z, Q%) +5(z, Q2) = 0.5[u(x, Q%) +d(x, Q3)]); finally ¢; and~; set to zero for

the sea and gluon distributions. Hence, there is a total &feE8PDF parameters plus
as(Mz) (which is fitted as a free parameter) after imposing sum rilége common
theoretical assumptions are

NLO perturbative QCD in tha1S renormalisation and factorisation scheme;

zero-mass variable flavour number scheme with quark masses 1.5 GeV
andm, = 4.5 GeV;

momentum and valence sum rules imposed;

iterated solution of evolution equations.

The only differences lies in the treatment of the errorgesiall details on correlations
between errors is included for the Alekhin fit while in the MR the correlations
are only partially included.

From the plots in Figl_2]4 the generally good agreement kexiviee parton distri-
butions derived in the two fits is apparent. However the campa between the
benchmark partons and the published partons from a glolgfibre problematic. If
the statistical analysis is correct, the benchmark parsbosid agree with the global
partons within their uncertainties, which they do not, as oan see in Fig. 2.5. The
disagreement is remarkable, not only in the extrapolaggion, where no data con-
strain the PDFs behaviours, which are hence driven by tkieatgrejudice in the
absence of a flexible enough parametrisation, but also ird&t® region. It is also
striking that the uncertainties in the two sets are rathmilar despite the fact that the
uncertainty on the benchmark partons is obtained from afiguA y? = 1 in the fit
while that for the MRSTO1 partons is obtained frakx? = 50. Moreover the un-
certainty in the benchmark gluon is much smaller than in tfSW01 gluon, despite
the much smaller amount of low-data in the fit for the benchmark partons. This
comes about as a result of the lack of flexibility in the benahaparametrisation of
the gluon.
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Figure 2.4: Left plotzdy (z) atQ? = 20 GeV? from the MRST benchmark partons
compared to the one from the Alekhin benchmark partons. tRigi: z¢(z) atQ? =
20 GeV? from the MRST benchmark partons compared to the one from takhin
benchmark partons. Taken from Ref. [101].
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Figure 2.5: Left plotzdy (z) atQ? = 20 GeV? from the MRST benchmark partons
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The fact that partons extracted using a very limited dat@setompletely incompat-
ible with those obtained from a global fit, even allowing foe tuncertainties, implies
that the inclusion of more data from a variety of differenpesiments moves the cen-
tral values of the partons in a manner indicating either tiadifferent experimental
data are inconsistent with each other, or that the theatdtiemework is inadequate
for correctly describing the full range of data. This clgalllustrates the problems in
determining the true uncertainty on parton distributions.

In order to understand such behaviour, a similar exercise peaformed again in
Ref. [122]. Here the comparison is extended to include a NNFfDand the recent
MSTW 2008 fit. As far as the MSTW analysis is concerned, theeberark analysis
is much more closely aligned to the global analysis than Wasase for the previous
benchmark compared to the MRST global analysis. Indeed BEWO8 analysis has
several features which are different with respect to MR®I20First of all the in-
put parametrisation includes three additional free patara@ssociated withd — )
and four additional free parameters associated with stra@gs, giving a total of 20
eigenvectors, seven more than in MRSTO1. The choice ofant&E, T = /Ax?,
that in MRSTO1 was set to one forincertainties and t¢/50 for a 90% confidence
level (C.L.) uncertainty band, has been substituted by apreeedure described in
Sect. 3.1.4. The NNPDF approach instead is going to be dieduis details in the
next chapter. Here it is important to outline that, beingelohen the Monte Carlo
determination of PDFs uncertainties and on the use of a dahtrparametrisation
provided by neural networks, it does not have to introdugetalerance and the PDFs
parametrisation used for the benchmark and the global &ttharsame.

In Ref. [122] it is shown that the PDFs from the NNPDF and MST@htchmark
fits are compatible, especially in the data region, whenealsé extrapolation region
there are some discrepancies. Differences are also sizemtile estimation of un-
certainties, probably due to the differences in paranatds. Here we are mainly
interested in the comparison betwen the benchmark and timldfits for each of
the two collaborations. In Fig. 2.6 the NNPDF benchmark ficdenpared to the
NNPDF1.0 reference fit of Ref._[68] (NNPDF global), while ilgH2.2 the MSTW
benchmark fit is compared to the MRSTO1 [119] (MRST globat) #5TWO08 [43
global fits (MSTW global). For NNPDF, global and benchmarg figmain com-
patible within their respective error bands. The NNPDF Ihemark fit has a sizeably
larger error band than the reference, as one would expeutdrfit based on a smaller
set of (compatible) data. For MSTW, we first notice that theTMSEbenchmark set
has larger uncertainty bands than the MRST benchmark sehandeach of the sets
obtained from global fits. Consequently, the MSTW benchniidiEs are generally
more consistent with the MSTW global fit sets than the cowadmng comparison
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Figure 2.6: Comparison of the NNPDF benchmark and NNPDFdférence fits for
theu-valence (left) and-valence (right) af)? = 20 GeV?.

between MRST benchmark PDFs and global fit PDFs shown in Ré1][ largely
due to the more realistic uncertainties in the MSTW benchmidnlike the NNPDF
group, the MSTW group sees some degree of incompatibilityden the benchmark
PDFs and the global fit PDFs for the valence quarks, partiguila the case of the
down valence, see Fig. 2.7.

2.3.2 H1 benchmark: determination of uncertainties

In this section we present another benchmark based on thed80-parton fit[[123].
It compares a new version of this fit, in which uncertaintydsare determined using
a Monte Carlo method introduced in Reéf. [110], to the refeedit, where uncertainty
bands are obtained using the standard Hessian method. Tihemotvation of this
benchmark is to study the impact of possible non-Gaussihaweur of some exper-
imental uncertainties and, more generally, the dependemtee error treatment.

As we discussed in Sect. 3.1, standard error estimation ¢fsP@lies on the as-
sumption that all errors follow Gaussian statistics. Hosrethis assumption may
not always be correct. Some systematic uncertainties sukthranosity and detector
acceptance follow rather a log-normal distribution [10Cpmpared to the Gaussian
case, the lognormal distribution which has the same mean@idnean square, is
asymmetric and has a shifted peak. The non-Gaussian behafithe experimental

uncertainties could lead to an additional uncertainty efrésulting PDFs.
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Figure 2.7: Comparison of the MSTW benchmark and MRST/MST@baj fits for
the u-valence andl-valence atp? = 20 GeV?. All uncertainties shown correspond
to 1o bands.

In the Monte Carlo (MC) method presented earlier one doehaee to rely on the

Gaussian distribution of the uncertainties. The MC techeigonsists in generating
replicas of the initial datasets which have the centralevalithe experimental observ-
ables, fluctuating within its systematic and statisticalenminties taking into account
all point to point correlations. Various assumptions carctesidered for the error
distributions. When dealing with the statistical and painpoint uncorrelated errors,
one could allow each data point to randomly fluctuate wittsruncorrelated uncer-
tainty assuming either Gaussian, lognormal, or any otheirett form of the error

distribution.

The MC method is tested by comparing the standard error astim of the PDF
uncertainties with the MC techniques by assuming that alleirors (statistical and
systematic) follow Gaussian (normal) distribution. Th@dagreement between the
methods is manifest in the left—hand side plot in 2.9suksing only a Gaussian
distribution of all errors, the results agree well with th@slard error estimation.

In the same analysis two cases are considered, which magsesgrmost faithfully

the error distributions: a lognormal distribution for therlinosity uncertainty and the
rest of the errors are set to follow the Gaussian shape, yargnormal distributions
for all the systematic errors and the statistical errorssateto follow the Gaussian
distributions. The results of this comparison, shown in. Bi@, shows that for the
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Figure 2.8: Comparison between errors on PDFs obtainedtatalard error calcu-
lation (black) where Gauss assumption is used, and errdasnelol via Monte Carlo
method (red) where luminosity uncertainty is allowed to tlhate according to log-
normal distributions and all the other uncertainties folldhe Gaussian distribution
(left), and where all the systematic uncertainties arenadtbto fluctuate according
to lognormal distributions (right). Only the gluon PDF igm, where the errors are
larger. The green lines show the spread ofthimdividual fits. Taken from Ref[[101]

precise H1 HERA-I data the effect of using a lognormal disttion is similar to using
pure Gaussian distribution case.

2.3.3 H1-NNPDF benchmark: dependence on parametri-
sation

The third benchmark is a further elaboration on the benckmpagsented in the pre-
vious subsection, extended to include the NNPDF fit, whicb alses a Monte Carlo
method for error esteem. The main purpose of this benchredadkdompare two fits

(H1 and NNPDF) which have the same error treatment but @iffigoparton parametri-
sations. The inclusion in this benchmark of the NNPDF fit gbahteresting because
it allows a comparison of a fit based on a very consistent sgéata coming from the

H1 collaboration only, to fits which include all DIS datasets

This analysis is based on all the DIS inclusive data by the dlthlsoration from the
HERA-I run. A kinematic cut of)? > 3.5 GeV? is applied to avoid any higher twist
effect. The data points used in the analysis are summariseabile 2. B.
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dataset Data points| Observable| Ref.
H197mb 35| gNOF [121]
H197lowQ2 80 | gNCO-+ [121]
H197NC 130 | gNC-+ [124]
H197CC 25 | gCC+ [124]
H199NC 126 | 5NC— [125]
H199CC 28 | 69¢— [125]
H199NChy 13 | gNC— [125]
H100NC 147 | gNC+ [123]
H100CC 28 | GCC+ [123]
Total 612

Table 2.3: Data points used in the H1 benchmark after kinientatts of Q% >
3.5 GeV?,

The theoretical assumptions are similar to those set in BRA-LHC benchmark.
Both the H1 and NNPDF methodologies are based on the Monte @a&thod to de-
termine uncertainties. They differ in the way PDFs are patased: H1 parametrises
PDFs according to a polynomial functional form which ddsesi five independent
PDFs with 10 free parameters after sum rules are imposed D¥arametrises each
independent parton distribution by a neural network chareed by a large number
of parameters, 37 for each PDF, therefte 4 = 136 parameters in total.

In Ref. [122] the results of the NNPDF benchmark are comp&retle NNPDF1.0
reference fit results. The general features of the benchararkanalogous to those
of the HERA-LHC benchmark discussed in the previous sectidgth some effects
being more pronounced because the benchmark dataset issanwraaller. However
here we focus on the comparison between H1 and NNPDF benkHitsawith the
purpose of understanding the impact of the respective ndethgies.

The quality of the two fits is comparable, the differencegirbeing compatible with
statistical fluctuations. In the region where experimeimfrmation is mostly con-
centrated, specifically for the, distribution over all the:-range and for thed and the

d, distributions in the smalk range, the results of the two fits are in good agreement,
though the H1 uncertainty bands are generally smaller.

In the region where experimental information is scarce @sing, sizable differences
are found. Specifically, in these regions NNPDF uncertagrdre generally larger than
H1 bands: the width of the uncertainty band for the H1 fit v@armich less between
the data and extrapolation regions than that of the NNPDIeHraark. Also, the H1
central value always falls within the NNPDF uncertainty tamut the NNPDF central
value tends to fall outside the H1 uncertainty band whenthescentral values differ
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Figure 2.9: Left: The Monte Carlo set of gluon PDFs for the Hhdhmark. The
comparison between the standard error calculations ar@dhssian error distribution
for the gluon PDF shows a good agreement. Green lines refithgespread of Monte
Carlo generated allowances for the errors, and the reddireethe RMS of this spread.
The black lines correspond to the standard error calculatidthe PDF errors. Right:
The Monte Carlo set of gluon PDFs for the NNPDF benchmark. rEddines show
thelo contour calculated from the Monte Carlo set. Taken from [ReX2]

significantly. In Fig[Z.D the respective full Monte Carlo PBets in the case of the
gluon distribution is shown. It shows that the NNPDF paraisation has a greater
flexibility than the fixed functional form used by the HERAPD®&llaboration.
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Chapter

The NNPDF approach to parton
fitting

In this chapter | present the determination of the nucleatopadistributions from
the analyses performed within the NNPDF collaboration tivelast three years. The
general aim of the NNPDF approach is to determine objegtlveth the value and the
uncertainty of a set of functions from a discrete set of madgpendent (and possibly
incompatible) experimental measurements. This is actinanks to the combination
of several ingredients which | describe in details in the fa@rt of the chapter: the
Monte Carlo sampling of the space of data, the redundantpetresation provided by
Neural Networks and the fitting strategy based on a crosistatain method.

| then turn to present the results obtained in the recent NNRiTalyses. On top of
the results on the shapes and the uncertainties of PDFsgustighe compatibility
between datasets, the statistical consistency of thetsesndl their phenomenologi-
cal relevance. All results are compared to other recenbpaséts, differences and
similarities are discussed. To conclude, | give an outldake upcoming analyses.

3.1 The NNPDF method

Even though over the last decade a huge progress has beenmthdedetermina-
tion of sets of parton distributions with uncertainties|[89,[62/ 63| 111, 7%, 42, 43],
many of the problems raised in Ref. [110] are still only pastlved. In particular, the
benchmark comparisons presented in Sect. 3.3 have shotthéhzartonic uncertain-

91
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ties are not easily interpreted in a statistical sensendivat they are to a significant
amount determined by theoretical or phenomenological@agiens. The results of
the benchmark might be the consequences of incompagkilitetween data or of in-
adequacy of the theory used to describe them or of both of .thiéwm standard parton
determination method based on fitting a particular funetidorm does not seem to
be sufficiently flexible to ascertain whether this is the casavhether the difficulties

are due to an intrinsic limitation of the methodology.

Moreover, whereas uncertainty bands for parton deterimimatased on restricted
data sets [75] are obtained by using standard error projpagztlo contours, those
for global fits which include a large variety of data [59] 68} abtained on the basis
of a tolerance, determined by studying the compatibilityhaf data with each other
and with the underlying theory. The question whether thigdiais necessary and
how it can be derived in a consistent way has been raised eraleyccasions [101,
12€]. In particular, given that the effect of this tolerameequivalent to multiplying

experimental errors by a factor between four and six, theofiske tolerance might
inflate the error of PDFs in regions where data do constramth

The drawbacks of the traditional method to extract PDFs lséveulated the formu-
lation of alternative approaches. The one developed by teDF collaboration has
proved to be successful and to provide a statistically-daletermination of Parton
Distribution Functions. The method is based on a Monte Casfroach, with neural
networks used as unbiased interpolants: the use of neuvebries provides a robust
and flexible parametrisation of the parton distributionthatinitial scale, while the use
of the Monte Carlo sampling allows to evaluate all quargijt®ich as the uncertainty
or the correlation of PDFs, in a statistically-sound way.

A schematic representation of the NNPDF approach is givefigr3.1. It involves
two stages. First one generates a Monte Carlo ensembleliwa®pf the original data
points included into the fit. The ensemble is generated Wwitptobability distribution
of the data and contains all the available experimentarimé&ion. It must be large
enough that the statistical properties of the data are deymexd to the desired accuracy.
Each element in the Monte Carlo set is a replica of the expearial data and contains
as many data points as are originally available. Whethegien ensemble has the
desired statistical features can be verified by means dbttal standard tests by
comparing quantities calculated from it with the originedperties of the data.

In the second stage, a set of parton distributions is coctstrilfrom each replica of the
data. Each independent PDF at a given scale is parametsisal individual neural
network. Physical observables are computed from partdnlmisions by evolving
the initial scale parton distributions to the scales of tkigegimental measurements by
using the DGLAP evolution equations. Physical observailesomputed by convo-
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Figure 3.1: Schematic representation of the NNPDF approach

Experimental Data ’

luting the evolved parton distributions with hard partocioss sections. The best fit
set of parton distribution is determined by comparing theotltical computation of
the observable for a given PDF set with their replica expenital values by evaluating
a suitable figure of merit. Both the minimisation and the dateation of the bestfit
in a big space of parameters such as the one spanned by tlaémetwork parameters
are delicate issues that | am going to describe in detailsdméxt section.

The ensemble of these best fit PDFs, which contains as mamgete as the number
of replicas of the data that were generated, is the finaltreétihe parton determina-
tion. The experimental values in each replica will fluctuateording to their distri-
bution in the Monte Carlo ensemble and the best fit PDFs witltflate accordingly
for each replica. Even though individual PDF replicas miinttuate significantly,
averaged quantities like central value ardekror bands are smooth inasmuch as the
size of the ensemble increases. This is shown il Fig. 3.2enthershape of individual
replicas and the error band computed for two sets of 25 anddflizas of the gluon
PDF in Ref. [68] are displayed.

An important feature of the approach is that many issues bpaletermination can
be addressed using standard statistical tools. For exathplstability of results upon
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Figure 3.2: Sets of 25 replicas (left) and 100 replicas @ighthe gluon distribution
at the initial scaleQ? = 2 GeV? from Ref. [68]. The solid red (dark) lines show the
average ando intervals computed from the given sets.

a change of parametrisation can be verified by computingittarcte between results
in units of their standard deviation. An advantage of the MdParlo approach is that
it is no more difficult to do this for uncertainties, corrédat coefficients or even more
indirect quantities, than it is for central values of phgsigbservables. Likewise, it is
possible to verify that fits performed by removing data frdma set have wider error
bands but remain compatible within these enlarged uncgieaj and so forth. The
reliability of the results can thus be assessed directly.

In the next subsections | describe in detail each of the nmgredients of the NNPDF
method and | show the improvements that have been perfortoeg with the subse-
guent analyses.

3.1.1 The Monte Carlo sampling of the probability density

Given a PDF or a quantity depending on PDP${f;}), its average is given by
the integration in the functional spa¢g{f;}) spanned by the parton distributions,
weighted by a suitably defined probability measure of allsgae functions describ-
ing PDFs at a reference scale:

(©) = /V aPULY OUL)). (3.1)

In the NNPDF approach the probability measure is repredeoyea Monte Carlo
sample in the space of PDFs defined in two steps: first the géoeiof an ensemble
of replicas of the original data set, such that it reprodubesstatistical distribution
of the experimental data, followed by its projection inte $pace of PDFs through
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the fitting procedure. Notice that all theoretical assuonirepresent a prior for the
determination of such probability measure.

The ensemble in the space of data has to contain the avadapérimental informa-
tion. In practice, most data are given with multigaussiasbpbility distributions of
statistical and systematic errors, described by a covegiaratrix and a normalisation
error. In such cases this is the distribution that will beduitsegenerate the pseudodata.
However, any other probability distribution can be usedifl avhen required by the
experimental da& The statistical sample in the space of data is obtained hy ge
eratingV,, artificial replicas of data points following a multi-Gauwssidistribution
centred on each data point with the variance given by theraxrpatal uncertainty.
More precisely, given a data polﬁfz‘p) = Fi(zp, Qf)) we generaté = 1,..., Niep
artificial pointsF; """ as follows

Ne
F = S FY (1 + Do +r§k>ap,s> k=1, Ny, (3:2)
=1

where

Ng N,
B =TI (1 n rgjgap,n) IT 1+, (3.3)
n=1 n=1

The variable$z()kl) , r,()k), rfg’f% are all univariate Gaussian random numbers that generate

fluctuations of the artificial data around the central valiveig by the experiments.
For each replica, if two experimental point andp’ have correlated systematic
uncertainties, thenz(ffl) = T,(f,)za i. e. the fluctuations due to the correlated systematic

uncertainties are the same for both points. A similar comaion rfg’f% ensures that
correlations between normalisation uncertainties arpgmtg taken into account.

It is possible to define appropriate statistical estimaédne to quantify the accuracy
of the statistical sampling obtained from a given ensembtemicas [67]. They are
defined in AppendikB. In Fid._3l3, | show the scatter plot faran values and errors
evaluated and averaged over all the PDFs, for a sample oD0&rid 1000 replicas. It
is clear that 10 replicas are enough to reproduce the cematsds within 1% accuracy
and that one needs 100 replicas for reaching the same agdortie evaluation of
uncertainties. Using these estimators, one may verifydhdbnte Carlo sample of
pseudo-data withV,e, = 1000 is sufficient to reproduces also the correlations of
experimental data with a 1% accuracy for all experiments.aAgxample, results

1For instance in Chap. 3 it was observed that for the preciselERA-I data lognormal and Gaussian
distributions produce similar results.
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for the estimators computed from a sampleNg, = 1000 replicas are shown in
Table[3.1 for some of the data sets included into the NNPDF fits

NNPDF1.2 - Central values NNPDF1.2 - Errors
. . . . 100 : :
100 Nrep=10 ¥ Nrep=10 X
NS (000 , 10 N5 000
= X g F Nrep™
(7)) 10 f P .11, 1 12}
[o] ‘ S
~(_=’ ﬁ. 1t
g 1h e
o o
5 S 01t
s 01t s
< = 0.01 |
o o
= b=
0.01 ¢ 0.001 |
0.001 L : : 1 0.0001 : : . .
0.001 0.01 0.1 1 10 100 0.0001 0.001 0.01 0.1 1 10
Experimental data Experimental data

Figure 3.3: Scatter plot for mean values and errors evaluatel averaged over all
the ensemble of MC replicas of the data according to thestitatl estimators defined
in Appendix B. Results are shown for a sample of 10, 100 and® 18plicas in the
NNPDF1.2 analysis.

3.1.2 The Neural Network parametrisation

The Monte Carlo technique adopted to propagate the expetaberror into the space
of PDFs is completely independent of the method used to petrésm parton distri-

butions; it might well be used along with polynomial funeta forms [101]. On the

other hand, in order to get a faithful determination of padgstributions, one ought to
make sure that the chosen functional form is redundant énoatto introduce a the-
oretical bias which would artificially reduce parton unegnty in regions where data
do not constrain enough PDFs. There are several ways fanaijasuch a redundant
parametrisation. One may use some clever polynomial basisiore refined tools

such as the self—organising maps [127]. Our choice was tptaddeural Networks

parametrisation.

Neural Networks provide a redundant and minimally biasedpatrisation of PDFs,
the only theoretical assumption being smoothness, thantketflexibility and adapt-
ability of their functional form. They represent one of theshsuccessful and mul-
tidisciplinary subjects [128]. The birth of the artificiataral network goes back to a
mathematical model formulated in 1943 for reproducing saifnthe characteristics
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Experiment NMC NMC-pd SLAC BCDMS
<PE <F<a”>>rep > 9.0.10~° | 1.8.107° | 3.1.107* | 1.3.107°
'T[F@")} M Looo 1.000 1.000 1.000

PE <a<m>>rep > 15.107% | 4.2.107% | 3.1.107% | 4.0.107°
<a<exp)>dm_ " 00147 | 00170 | 00104 | 0.0698
<g<m>> t 0.0146 0.0171 0.0104 0.0692

| o 1.000 0.998 0.998 0.999
<p<exp)>dat 0.033 0.165 0.312 0.470
<p<a“>> t 0.033 0.176 0.311 0.463

r [pm)df 0.963 0.988 0.987 0.994
cov<exp)>dat 6.52.10~° | 4.39-107° | 3.07-10° | 2.90-10~°
<cov<a“)> t 6.78-10° | 4.73.10~° | 3.03.10°° | 2.82.10°°

r [cov@”)df 0.989 0.984 0.988 0.999

Table 3.1: Statistical estimators for the Monte Carlo artificial daengration withN,c, =
1000. PFE stands for percentage error anid the scattering correlation. The definition of these
statistical estimators is given in Appendix B.

of the synaptic connections of the brain [129]. Nowadaydiegfons of artificial
neural networks are widely used in many different contes.artificial neuron is
defined as a processing element whose statethe timet can assume two different
values:£(t) = 1, if itis firing, or £(¢) = 0, if it is at rest. The state of theth unit,
&;(t), depends on the inputs coming from the othier 1 neurons through the discrete
dynamical equation

N
Gt)=g | Y wiy&t—1)—0; |, (3.4)
j=1

where the weights);; represent the strength of the synaptic coupling betweejrthe
and thei-th neuronsg; is the threshold which must be overtaken to activate theagign
andy is the activation function. The latter is typically boundsther in the interval
[0,1] or [—1, 1]. If it is of the form of the© step function

0ifh <0,
9h) = O(h) = <1ifh_> 1)’
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Figure 3.4: Schematic structure of a multi-layer feed-mdwneural network.

the activation is said to be discrete. If the functions igfistance the sigmoid function

1
g(h) = Tren’ (3.5)
which satisfies
lim g(h) = ©(h) (3.6)

h—o0

the activation function is said to be continuous. It has t&eswn that any continu-
ous function can be uniformly approximated by a continucaisral network having
only one infinitely large internal layer, and with an arbijraontinuous sigmoid non-
linearity [130].

The particular kind of neural network that we use in our asialys the so-called
multilayer feed-forward neural networks or perceptrorgveh in Fig.[3.4. The first
layer is the input one, where the input patterns are intredunto the rest of the
network. In the NNPDF fits, the input parameters arandlog(x). The latter has
been introduced for optimising the computation. Betweenitiput layer and the
output one, proportional to the initial scale PDF, thereare or more hidden layers
of neurons evaluating the functigrof the weighted sum of their inputs, which, in turn,
are sent forward to the following layer and so on, until thgpotilevel is reached. For
illustrating purposes, we consider a three—layer neutalor&. When an input vector
¢ is introduced to the network, the states of the hidden neusoqguire the values

ny
Ul:g<zwl(]2)€k_9§2)) 7]2157n27 (37)
k=1
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the output of the network is the vectomwhose components are given by

ni
G=g Zw§f>aj—9§3> yi=1,...,n3. (3.8)
j=1
Generally, if one had. layers withn,...,nz units respectively, the state of the

multilayer perceptron is established by recursive retetio

ij

n;—1
=g Dl Ve o) i=1 =2, L, (3.9)
j=1

where¢(® represents the state of the neurons irﬂthdﬁyer,wﬁ) the weights between

units in the(! — 1)t and thel™” layers, and" the threshold of thé" unit in the"
layer. Then the input is the vectér') and the output the vectgf>). The number of
parameters for a given architecture, beirtlge number of layers and({) the number
of units in each layer, is

-1
Npar = 3 n(G + 1) [1+n()). (3.10)

j=1

As an example, one can write explicitly the functional forar & 1-2—1 network,
having one single input, one output and one intermediat¥ kaith only two neurones,
thus determined by 7 parameters, as

3) _ 1

®) _
o D .2
1

2 1 1) 2 1 1
1+e 1+59§ J—efPuly 1+eeé J—efPwl)

The explicit functional form may be written for any other litecture, just yielding a
more complicated expression.

In the NNPDF approach, each of the independent PDFs in tHaetewmwbasis intro-
duced in Eq.[{1.38) is parametrised using a multi-layer fieedard neural network
supplemented with a polynomial preprocessing. In [ab.tB2jndependent combi-
nations of PDFs and their parametrisations are shown. Ifirgigarton analysis [68],
only five out of thirteen partonic distribution were congielé to be independent of
each others, basically the light up and down quarks and thregmonding anti—quarks
and the gluon. The other PDFs were determined by mean of semwm thssump-
tions: the strange sea was assumed to be proportional tmthestrange sea and to
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f(x) Parametrisation] Architecture | Npar

Singlet >(x) NNz 2-531 37
Gluon g(x) NN, 2-5-3-1 37
Total Valence Vi)=Y, fi(x) NNy 2-5-3-1 37
Triplet T3(z) =ut(z) —dt(z) NNr, 2-5-3-1 37
Sea Asymmetry | Ag(z) = d(z) — u(x) NNa 2-5-3-1 37
Total strangeness s (z) = (s(z) + 5(z))/2 NN, 2-5-3-1 37
Strange valence| s~ (z) = (s(x) — 5(x))/2 NN,— 2-5-3-1 37

Table 3.2:Neural Network parametrisation of parton distributionstia NNPDF analyses. In
Ref. [68] only the first five parton distributions were coresigd to be independent, the last two
were added in Ref,_[69] and in all subsequent analyses.

be symmetric. These assumptions were a source of bias ireteentination of par-
ton densities. Since the second analysis of Ref. [69], aapaddent parametrisation
for the strange and anti—strange distribution was addedll lthe analyses that we
published until now, the zero mass variable flavor number-Z®N) scheme to in-
corporate the effects of the heavy quarks. Details aboatrtrent of the heavy quarks
in the past and future analyses is discussed in the nexbeedthe neural networks we
use are chosen to have all the same architecture, namel\3215¥Fhis corresponds
to 37 free parameters for each PDF, i.e. a total of 185 frearpaters in Ref/[68]
and 259 free parameters in Réf. [69] and therein. This nurisbtr be compared
to less than a total of 30 free parameters for parton fits basesdfandard functional
parametrisation$ [59, 63, 175]. The use of a redundant acthite reduces a priory the
possibility of a functional bias. Lack of bias will be chedka posteriori. In the next
section | show that results are independent of the choicecbitacture.

Neural networks can accommodate any functional form, plexithey are made of
a large number of layers and sufficient time is used to tra@émthNevertheless, it is
customary to use preprocessing of data to subtract somendairfunctional depen-
dence. Then, smaller neural networks can be trained in deshiome to deal with the
deviations with respect to the dominant function. In the ND¥Hits, we use prepro-
cessing to divide out some of the asymptotic small- and fardgeehaviour of PDFs.
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| PDF | [mmin7 mmax] | [nmin7 nmax] | T [XQ; m] | r [X2a n} |

S(z, Q%) 2.55,3.45 1.05,1.35 -0.018 | 0.131
9(z,Q3) 3.55,4.45 1.05,1.35 -0.002 | 0.050
Ts(z, Q%) | [2.55,3.45 0,05 -0.023 | -0.130
Vr(z,Q2) | [2.55,3.45 0,05 0.003 | -0.068
As(z, Q2) [12,14] [£0.95,—0.65] | 0.000 | -0.069
sT(z,Q2) | [2.55,3.45] [1.05, 1.35] 0.021 | -0.055
s (2,Q2) | [2.55,3.45) [0,0.5] -0.027 | -0.015

Table 3.3: The range of random variation of the largeand smallz preprocessing expo-
nentsm andn used in the NNPDF20 analysis [71]. The last two columns dieecorrelation
coefficient defined in Eq[{3.13) between the and respectively the large— and smallpre-
processing exponents.

The input PDF basis can be thus written in terms of neural oldsvas

RG] = (- NN,

m.QD) = A=) NN )

( ) = (1—2)™Tsz7 " NNy (2), (3.11)
As(z,Q) = Aag(l—x)™2s27"2sNNay (),

( ) = Ay(1—a2)m9x "9 NN,(z)

( ) = (1—a)™" 27"+ NNy (2),

(€,Q2) = (1—2)™ 27" NN, (z) — saux(@, Q2),

where
saux(x,Qg) =A,- |27 (1 - :zz)tf} . (3.12)

The relative normalisation of the neural networks is setrbgasing the momentum
sum rules as it is explained in Sdct. 3]1.6.

In Ref. [68] the exponents of the preprocessing functionewkept fixed to a given
value and the independence of the choice of the pre—procegsis verified a pos-
teriori. However, in Ref.[[69] and henceforth we avoided giole bias related to
this choice. We reached a greater stability by exploringgelapace of preprocessing
functions: a randomised range of variation of preprocessiponents was introduced
in the fit. The range of preprocessing exponents used in tret reoent fit[71] is
shown in Tablé313.
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A way for verifying the explicit independence of results aerocessing exponents
within the ranges defined in Taldle B.3 was introduced in F¥&l] by evaluating the
correlation between the value of a given preprocessing rexpoand the associated
value of they? computed between thie-th net and experimental data. The correlation
coefficient is defined as follows: considering for definitenthe larges preprocess-
ing exponent of the singlet PDE(x, Q?), one has

<X2m2>rep B <X2>rep <m2>rep

2
O'm):

r [XQ, mg} = (3.13)

This provides the variatiody? as the larges exponentymy is varied around its
mean value. The correlations was found to be very weak asshasvn in the last
two columns of Tablg3]3. Theg2(®) for the individual replicas is only marginally
affected. This validates quantitatively the stability bétresults with respect to the
preprocessing exponents.

3.1.3 Figure of merit and tO algorithm

The figure of merit for fitting of the neural networks on theiindual replicas is the
error function, defined in Ref. [67] as

dat ij=1

Nya
B® _ 1 Zf (F_(arc)(k) _ F_(nec)(k)) ((&W(k’))il) (F_(arc)(k) _ F_(nec)(k))
T @ J J ’
ij
(3.14)

where the valudﬁ(“et) of the observable corresponding to theth data point is
computed from the PDFs by evolving PDFs to the scale of thesarements and
convoluting them with the coefficient functions. The erronétion is similar to the
x? per degree of freedom defined in Eq.{2.4). However, the éurostion measures
the quality of the fit of each set to its corresponding rephidaile they? measures the
quality of the fit of each set to the experimental data. Moezdle covariance matrix

employeﬁ(’“) is different from the one defined in E@._(R.3).

Indeed, as it was discussed in Chap. 3, the treatment of fisatian uncertainties
needs some care: including normalisation uncertaintigssicovariance matrix would
lead to a fit that is systematically biased to lie below thead&fil7]. The way this
problem was handled up to the NNPDF1.2[fit|[68, 70], consistéuacluding normal-
isation uncertainties by rescaling all uncertainties,yeconstructing for each replica
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the modified covariance matr’éé“vgf) appearing in Eq[(3.14) as

N, )
v =cov®) ;= <Z 8, 7"+ 6 (EU")LS) ) FF; (3.15)
=1

with the statistical uncertainties, , and each systematic uncertaiaty; being rescaled
by a factor which depends on the considered regigaaccording to

7 =880, o) =sMoi,  1=1,.. N.. (3.16)
and thus
cov®;; = cove ;50 S (3.17)

Therefore the experimental correlation matrix withoutmalisation uncertainties needs
to be evaluated only once, given that it does not depend orefiliea, Whilem(’“)ij

is obtained by multiplying by the normalisation factﬁlfg\), ande(.f‘X, for each replica.

If within an experiment all sets have only a common globahmalisation uncertainty,
the rescaling is an overall multiplicative factor.

However we figured out that this method is only accurate wiiemoamalisation un-
certainties have a similar size, as it is discussed in Chalm Ref. [71] an improved
treatment of normalisation uncertainties was implemenf@tlowing Ref. [118], the
covariance matrix for each experiment is computed from tietedge of statistical,
systematic and normalisation uncertainties as follows:

N.
- — 2
covij = (coviy)ij = <§ 01051 +5ijai,s> FiF;
=1

N, N,
+ (Z GinTjn + 3 ai,naj,n> FORY, (3.18)
n=1 n=1

where now the matrix does not depend on the reglicaand; run over the experi-
mental points anaFi(O), Fj(o) are the corresponding observables iteratively determined
from some previous fit. As it was shown in Chap. 3, the convarg®f the iterative
procedure is very fast and the final vaIues}Q@ used in Eq.[(3.18) do not differ
significantly from the final fit results.
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3.1.4 Genetic algorithm minimisation

The error function Eq. [{3.14) can be minimised with a varietytechniques, in-
cluding standard steepest—descent in the space of paramBtee to the non—local
nature of the error function and the complex structure ofpdi@meter space, genetic
algorithms [131] turn out to be the most efficient method. Tien advantage of
genetic algorithms is that they work on a population of Sohs, rather than tracing
the progress of one point through parameter space. Thug; regions of parameter
space are explored simultaneously, thereby lowering tissipitity of getting trapped
in local minima.

The state of the neural network is represented by the vector
nn = (nnl,nng,...,nanM) . (3.19)

where each elementh; corresponds either to a Weigbg.) or to a threshold;, and
Npar indicates the total number of parameters determining thgubof the networks.
The initial set of parameters is chosen at random. At eacétiom of the minimisa-
tion, usually referred as generation, a sedNgf,.; copies of the vectann is generated.
The Nt mutants are obtained by replacing one or more randomly chelsenents
of the state vectonn by a new value according to the rule

1
nng — nng +n <7’ — 5) , (3.20)
wherer is a uniform random number between 0 and 1. This step is egfais mutation
andn, the mutation rate, is a free parameter of the algorithm.

Once the set of different mutants is generated, the vecttheoset of vectors with
lowest values of the error Eq.(-3]14) are selected out ofdtad population ofV,,;
individuals, and used to replace the original vector. Thigice might be replaced by
other methods based on probabilistic selection. Howevehawe found no advan-
tage in using probabilistic methods for the selection oftiest mutant. The selection
of the copy with the lowest figure of merit is best suited for etrategy. With this
choice the genetic algorithm produces a monotonicallyeksing profile of the figure
of merit. The procedure is iterated until the vector with $heallest value of the error
function meets a suitable convergence criterion, to beudsed in the next subsec-
tion. However, in order to avoid unacceptably long fits, wherery large number of
iterationsNger™ is reached, training is stopped anyway. This leads to a dosslof
accuracy of the corresponding fits which is acceptable gdealit only happens for a
small fraction of replicas.
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Genetic algorithms are controlled by some parameters,tfikemutation rate, that
may be tuned in order to optimise the efficiency of the wholeimisation procedure.
In order to avoid the local minima and increase the trainipgesl, the most obvi-
ous improvement consists in introducing multiple mutagign— 7; with different
probabilitiesp; with i = 1, ..., Nyuiemus. We verified that this produces a significant
improvement of the convergence rétel[67].

Further improvements were introduced in Refs! [68, 71]. fiitsé of these was to al-
low, for each PDF =1, ..., Nyqt, different values of the mutation ratgs;. This is
motivated by the fact that each PDF functionality is difféi@nd thus best approached
using a specific learning rate. Furthermore, as traininggeds, all mutation rates are
adjusted dynamically as a function of the number of iterstitv;

nig =1 /Nin . (3.21)

In order to optimally span the range of all possible bendfiiatations the exponent

ry, was randomised between 0 and 1 at each iteration of the geaigtirithm. An
analysis of the values of, for which mutations are accepted in each generation re-
veals a flat profile: both large and small mutations are beaéfit all stages of the
minimisation. We also tuned the number of mutants dependinthe stage of the
training. When the number of generations is smaller tNg@gt, we use a large pop-
ulation of mutantsVy,, > 1, while afterwards we use a much reduced population
Nt . < N¢. ... The reason for this procedure is that at early stages of thania
sation it is beneficial to explore as large a parameter spapessible, thus we need
a large population. Once we are closer to a minimum, a redpopdlation helps in
propagating the beneficial mutations to further improvefitmess of the best candi-
dates.

Finally, in order to deal more efficiently with the needs ditfij data from a wide va-
riety of different experiments and different data sets imithn experiment, we adopt

a weighted fitting technique, following an earlier study iefj67]. The aim of the
technique is to let the minimisation procedure convergéalpapowards a configura-
tion for which the finaly? is even among all the experimental sets. Weighted fitting
consists of adjusting the weights of the data sets in them@tation of the error func-
tion during the minimisation procedure according to thedividual figure of merit:
data sets that yield a large contribution to the error fuomcget a larger weight in the
total figure of merit. The function which is minimised is thus

1 Sk .
B = 5 20 0 Naa By (3.22)
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© 0) © 0) 0) 0) (©
771 2)3 nl(% i 723 nl( Vr 771( Ag 775 S+ ni,S)’*

[10,1] | [10,1] | [1,0.1] | [1,0.1] | [1,0.1] | [5,0.5] | [L,0.1]

wt mut max SW a b
Ngen Ngen Ngen E Nmut Nmut Nupdate

10000 | 2500 | 30000| 2.6 80 10 10

Table 3.4:Parameter values for the genetic algorithm adopted in R&f. [

whereNq,; ; is the number of data points of the-th set andEJ(k) the error function

defined in Eq.[(3.14) but restricted to the points of fheéh dataset. The weigh}ék)
are determined as

(k) \ 2
E}

(k) J
! (E,Ei“))

with E,(IQX being the highest among tb]ék) at the given GA generation. Their values

are updated eveny,pqate geNErations, with defaulV,pqate = 10.

In Ref. [71] and therein, a slightly different way of detenimg the weight3)§.k) was

adopted. In Eq(323E %), is replaced b)E;'“g. The idea is the following: in the
beginning of the fit, target valuelé;arg for the figure of merit of each experiment are
chosen. Then, at each generation of the minimisation, thehtseof individual sets
are updated using the conditions

1. 1f BY > B, thenp!" (E<k> / Etarg) ’
2. F B\ < B!, thenp{” =0 .

Hence, sets which are far above their target value will gergelr weight in the fig-
ure of merit. On the other hand, sets which are below thefjetaare likely to be
already learnt properly and thus are removed from the figtineawit which is being
minimised. However, everyV;;. iterations, the figure of merit associated to the sets
removed from the minimisation is computed and, if the lalttes deteriorated, these
sets are put back into the global figure of merit. The deteation of the target values
E;arg for all the sets which enter into the fit is an iterative prasedthat works as
follows. We started with aIJE;'Clrg = 1 and proceeded to a first very long fit. Then,
we use the outcome of the fit to produce a first nontrivial seE}ifg values. This
procedure is iterated until convergence. In practice, eayence is very fast. This
implementation of targeted weighted training is such thatdrror function of each
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dataset tends smoothly to its “natural” value, thapj@, — 1 as the minimisation pro-
gresses. Those sets which are harder to fit are given moréitkan the experiments
that are learnt faster.

As an illustration of the procedure, | show in Fig. 13.5 gh;é) weight profiles as
a function of the number of genetic algorithm generationsstime sets of a given
replica. Note how, at the early stages of the minimisatiets svhich are harder to
learn, such as BCDMSp or NMC-pd are given more weight thamekg while at the
end of the weighted training epoch all weights are eiﬂj@rw 1 or oscillate between
0 and 1, a sign that these sets have been properly learnt.

6 T T
] HERAI-NCep
) CDFjets
", NMC-pd - - - -
5 BCDMSp -+ 1
4
@
2
& 3
2
" '
l o g -
100 200 500 1000 2000 5000 10000

Genetic Algorithms generation

Figure 3.5:lllustration of the weighted training in one particular liep. Individual weights
for each dataset converge to a valueppfvhich is close to 1 as the training progresses. Only
the behaviour of representative datasets is shown here.

An important feature of weighted training is that weighte given to individual
datasets and not just to experiments. This is motivated &dyett that typically each
dataset covers a distinct, restricted kinematic regiomddethe weighting takes care
of the fact that the data in different kinematic regions gaifferent amounts of in-
formation and thus require unequal amounts of training.s fibcedure poses the
problem that different sets coming from the same experirmentorrelated with each
others and these correlations are neglected in the evatuatiEq. [3.2R). For this
reason, the targeted weighted training epoch Iastwg@"g generations, unless the to-
tal error function Eq.[{3.14) is above some threshBl#) > EsvV. If it is, weighted
training continues untiE*) falls below the threshold value. Afterwards, the error
function is just the unweighted error function Hg. (3. 14)npmited on experiments.
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Itis in this final training epoch that a dynamical stoppinghe minimisation is acti-
vated, as | discuss in the next section. Going through a fiaaling epoch with the
unweighted error function is in principle important in orde eliminate any possi-
ble residual bias from the choice Eﬁ“g values in the previous epoch. However, in
practice this safeguard has little effect, as it turns oat #il weights tend to unity
at the end of the targeted weighted training epoch as thekitdod71]. The whole
procedure ensures that a uniform quality of the fit for albgats is achieved, and that
the fit is refined using the correct figure of merit which indsadall the information on
correlated systematics.

The final choices of the parameters of the genetic algoritiscudsed in this section
which have been adopted in the NNPDF2.0 parton determimatie summarised in

Table[3.4.

3.1.5 Determination of the optimal fit

The very large and redundant parametrisation of the irstale PDFs requires a de-
tailed analysis of the fitting strategy. On top of devisingadgorithm to fit neural
network PDFs, one has to deal with the fact that any reduraimetrisation may
accommodate not only the smooth shape of the true undeixgs, but also fluctu-
ations of the experimental data. The best fit then is not diyethe absolute minimum
of the likelihood. When dealing with quantities with someltsin smoothness, such
as physical cross sections, this procedure does not prataagptimal fit. Indeed,
even for fully compatible data, independent measureméritesame quantity at the
same point will fluctuate within the uncertainty of the measoent. If fitted by maxi-
mum likelihood, such independent measurements will auticadly be combined into
their weighted averagé [132]. However, if two independertasurements are per-
formed of the same observable, but measured at very closesvaf the underlying
kinematic variables: for example the structure functitia, Q?) at the same)? and
two different but close values. Then a fit which goes through the central values of
both measurements might be possible, but in the limit in Withe two measurement
are performed at infinitesimally close points this wouldrespond to a discontinuous
behaviour of the observable, which is unphysical. This [gwhis exacerbated in the
case of incompatible measurements. Instead, the best fitdshe characterised by a
value of thex? which is equal to the value expected on the basis of the fltions
of the data, beyond which the figure of merit improves onlyduse one is fitting the
statistical noise in the data.

In order to determine this value, a strategy was develop&kin [67], based on the
cross-validation method used quite generally in neuralost studies[[133]. Namely,
PDFs are trained on a fraction of the data and validated orefi@f the data. Training
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is stopped when the quality of the fit to validation data (e data which are not used
in the training) deteriorates while the quality of the fittaihing data keeps improving.
This corresponds to the overlearning regime where neutafanks start to fit random
fluctuations rather than the underlying physics. The methadade possible by the
availability of a very large and mostly compatible set ofddaind it guarantees that the
best fit does not attempt to reproduce random fluctuatiorfeead@ta. The method also
handles incompatible data, by automatically toleratingtflations in the data even
when they are larger than the nominal uncertainty, wherfitieg these fluctuations
would not lead to an improvement of the global quality of the fi

The application of the cross—validation method in the NNRiBFhas been described
in details in Refs[[68, €7]. For each replica the data sediitppned into training and
validation subsets with fractiofi?’ andf") = 1— £ of the data points respectively.
The values of the fractions can in general be different fohetatasej. The points in
each set are chosen randomly out of the total dataset. Thdenapartitioning of the
data is different for each replica. The same value of thaigifraction for all data
sets is takenf!, = f/ = 1, i.e. randomly for each replica, half of the points of each
set belong to the training set and half to the validation ke division is performed
set by set in order to make sure that all data sets (and thastedly all kinematic

regions) are represented in the training and validatiohfseteach replica.

The fit is then performed on the data in the training set, aedfifure of merit in
both sets is monitored. Whereas usually, when using a gealgtirithm, the figure of
merit cannot increase during the minimisation, with theghged training algorithm
discussed earlier the value of the figure of merit during misation oscillates due
to the updating of the weights. In order to avoid spuriouppstag induced by these
oscillations, the monitored error functions are computednaving averages over a
given number of iterations, namely

<EtY7V31 (])> = ! Z Etr,val(l) . (324)

Minimisation is stopped whelFE,.;(j)) in the validation set (not used for fitting)
stops decreasing. This is illustrated in Hig.l3.6, wherentioging averaged training
and validation error functions are plotted as a functiorhef tumber of generations
for one particular replica of the NNPDF2.0 reference fit. Dearning is apparent as
beyond the stopping point the training figure of merit keepsrdasing steadily while
the validation flattens out and actually rises by a small amholihe stopping criteria
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Figure 3.6: Training and validation error functions as action of the number of
iterations for one of the replicas in the reference fit. Thogpging region is zoomed
on the right—hand side plot.

are then satisfied if the averaged training error functiateisreasing
FEi (5
ry = (7)) <1— 8y, (3.25)

<E'EY (.] - Asn’lear)>

while the averaged validation error function increases

<Eval (.7))

Tval = <Eval (] — Asmear» > 1+ dyal - (3.26)
The parameters,, d,, setthe accuracy to which the increase and decrease isedquir
in order to be significant. The values of the stopping paramatust be determined
by analysing the behaviour of the fit for the particular detaghich is being used for
neural network training. As an illustration of how this israoin practice, we show
in Fig.[3.7 the averaged training and validatiby /., ratios Eqs.[(3.25, 3.26) for a
given replica and different values of the smearing lenyth..,. For this particular
replica the training has been artificially prolonged beyd@adstopping point. From
Fig.[31 it is apparent that while the training ratio satisfig < 1 always, i.e. that
Ey, continues to decrease, after a given number of generatiensawer,,, > 1,
which then oscillates above and below 1: this is the sign Weathave entered an
‘overlearning’ regime and minimisation needs to be stopped

The optimal values of the stopping parameters are choseer wall enough that
overlearning is avoided, but large enough that the fit doéstop on statistical fluctu-
ations. The latter condition can be met only if the valuévgf...., is large enough, but
if Nsmear IS 100 large stopping becomes very difficult and the first d¢tborlcannot be
met. In practice, as explained in Réf. [71], a set of 100 oggliwith very long training
is generated, and for each valueiéf,,.., a range of values of;, andd,,; has been
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Figure 3.7:The training (left) and validation (right) ratios (definadkqs [3.2b_3.26)) for a
particular replica, as a function of the number of genetgpeathms generations, for various
choices of the smearing parameféfinecar = Asmear. The ValueNgmear = Asmear = 200 is
used in the reference fit (see Tablel 3.5).

max
Nsmear Asmear 5tr 5va1 Ethres N, |

gen

200 200 [107"[310~"] 6 | 30000

Table 3.5:Parameter values for the stopping criterion in the NNPDRER4lysis[[71].

tried out until an optimal set of values which satisfies al #bove criteria has been
found. The final values of the parameters used in Ref. [71fstex in Tabld 3.5.

In order to check the consistency of the whole procedure,efi F1] a set of 100
replicas from a fit with the same settings as the final referditdut with no stop-
ping and a large maximum number of genetic algorithm geigratV,.i* = 50000
was produced. This set of 100 replicas allowed us to ver#y tihe targeted weighted
training and stopping criterion do not bias the fitting prahaee and that the stopping
criterion does not introduce underlearning by stoppinditreg a time when the qual-
ity of the fit is still improving. We verified that, while the avagey? for this fit is
only marginally better than that of the reference fit, somgeeinents do show signs
of overlearning, with an accordingly lower value of the adnition to thex? . This is
illustrated in Fig[(3.B, where thEi(k) profiles for two particular experiments (NMC-
pd and E605) and replicas taken from this fit without stoppénghown. In the first
training epoch, in which the weighted training Elg. (3.22péivated, one can see
oscillations, but the downwards trend is clearly visiblew.c® targeted weighted train-
ing is switched off, minimisation proceeds smoothly, andsee in the two cases that
after a given number of genetic algorithms generations vier ém overlearning. For
the two experiments the typical overlearning behaviouwsyabterised by the fact that
the vaIidationEt(f) is rising while the training’f(k) is still decreasing, sets in at about

val

15000 generations. This is the point where dynamical stapavoids overlearning.



112 Chapter 3. The NNPDF approach to parton fitting

NMC-pd DYE605
1 —& —E,
3. ~-Epal 3 --Eval
— Exarg t — Exavge:
\\
2.5 -a] 25§
A
1 1
05000 10000 15000 20000 25000 30000 35000 40000 45000 50000 %5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

GA generations GA generations

Figure 3.8: Two typical examples of overlearning behaviour, extradtedn a fit with the
same settings as the final reference fit of the NNPDF2.0 asdy$] but with no stopping
and a large maximum number of genetic algorithm generatifi§™ = 50000. The right
plot shows the overlearning of the E605 experiment obseirvede particular replica, and the
left plot corresponds to the NMC-pd experiment. Note thathiese fits weighted training is
switched off atNgw, = 10000.
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Figure 3.9: Distribution of the parameters of the neuralvoek describing thels
parton densities at the initial scalg? = 2 GeV? over the final ensemble of 1000
fitted initial parametrisations in the NNPDF2.0 analysi&][7

A final remark. The set of neural nets at stopping providesest fit, but it is other-
wise impossible to endow the best fit values of their pararastéh a physical inter-
pretation. In fact, since the nets are redundant, the valie®mst of these parameters
is unconstrained or zero. This is visible in Hig.13.9, whére distribution of neural
network weights at stopping for 100 replicas of the tripletiral networkZs (=, Q3)

is displayed. The well-balanced distribution of weightswuard zero shows that the
individual neurons in the neural network operate in thetured range of sensitivity.
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3.1.6 Positivity constraints and sum rules

In parton fits general theoretical constraints can be impdsging the minimisation
procedure, thereby guaranteeing that the fitting proceailseexplores the subspace
of acceptable physical solutions.

Valence and momentum sum rules are enforced in the NNPDoapp[68] by con-
straining the relative normalisation of PDFs. For four of thasis PDF parametrisa-
tions defined in Eq[(3.11), namejyV, A ands., an overall normalisation constant
is factored out. The value of this constant is determinedgoyiring that the valence
and momentum sum rules be satisfied. The valence sum rules

1 1
/ deru™ (z) =2 / ded () =1 (3.27)
0 0
fix the value of the total valence and sea asymmetry norntiglisato be

3
Jode [(1— 2)™ NNy (z) /av]
1— [} de [(1 - 2)™7s NNy, (z) /2775

Apn, = : (3.28)
BT 2 dr (1 )45 NNay (a)/755]

Ay =

while the momentum sum rule

1
/ doa (S(z) + g(x) = 1, (3.29)
0
constrains the normalisation of the gluon density

1= fydue[(l—a)"NNy(@)/a"]
T J) de (L o) NNy (o) /7]

(3.30)

In the same way, the contribution,«(z, Q3) is introduced in order to enforce the
strange valence sum rule; the constdpt is fixed by requiring

1
/ dx s~ (x) =0, (3.31)
0
which gives the condition

 D(ry- +te +2) ! M- —n__
A, = T DTG 1) /0 dx (1 —x) T NN,-(x). (3.32)
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The sum rules requires to change sign at least once. This way of implementing
the sum rule is designed in order to ensure that this cro$sipgens naturally in the
valence region, rather than in some contrived way outsided#tia region where the
shape ofs~ is completely unconstrained. To this purpose, the expanent ¢,-

are chosen in such a way that,x(z, Q3) peaks in the valence region, and that the
small-« and large= behaviour ofs~(z, Q%) are not controlled by the,ux(z, Q3)
contribution. In practice the latter condition is enfordadrequiringr,- > —n, -
andt,- > m,-, while the former is enforced by letting- = ¢,- /k, which sets the
maximum of s, (x, Q3) atz = k_}q We then choose,- = 3.5, and takek as a
uniformly distributed random number in the rangec [1, 3]. The consequences of
this very flexible implementation of the strangeness vadesuen rule will be discussed
in Chap. 6.

Besides direct experimental information and momentum sulesy a further con-
straint on the input PDFs comes from the requirement of pdgit Indeed, even
though PDFs are not positive-definite beyond LO, cross @estinust remain pos-
itive, and this constrains the set of admissible PDFs|[134je implementation of
positivity constraints is nontrivial, because in prineigne should require positivity
of all observables, regardless of the fact that they are unebk in a realistic experi-
ment. In practice, in Ref_[71] we imposed positivity Bf (x, Q?), which constrains
the gluon and the singlet PDFs at smallas well as that of the dimuon cross section
d*ov¢ /dxdy [70], which constrains the strange PDFs. Positivitypfx, Q?) is im-
plemented in the ranged)—? < z < 0.005 and that of the dimuon cross section in
1079 < z < 0.5, in both cases at the initial evolution sca@lé = 2 Ge\2. This is
done because, if positivity is enforced at low scales, it lél preserved by DGLAP
evolution.

In the NNPDF approach, positivity constraints on relevamggical observables are
imposed during the genetic algorithm minimisation usinggiange multiplier, which
strongly penalises those PDF configurations which leadgatiee observables. There-
fore, due to positivity constraints, the minimised errardtion Eq.[[3.14) (or Eq[{3.22)
in the weighted training epoch) is modified as follows

Ngat,pos

E® _y gk _ Apos Z o (_E_(net)(k)) Fi(net)(*’c)7 (3.33)
i=1

where Ngat, pos 1S the number of pseudodata points used to implement théistysi
constraints and we choosg,s ~ 10'° as its associate Lagrange multiplier. The
impact of the positivity constraints is going to be quandfie Sect. 4.2.
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3.1.7 Distances

An important feature of the NNPDF approach is that many issafeparton deter-
mination can be addressed using standard statistical tBolsexample, the stability
of results upon a change of parametrisation or upon the geepsing range, as well
as the difference introduced by a change in the fitting siseter by the addition of
new data, can be verified by computing the distance betwesertseén units of their
standard deviation.

Given two sets ofViq, rep andNrfg replicas, one is often interested in knowing whether
they correspond to different instances of the same underiyiobability distribution,
or whether instead they come from different underlyingriistions. For finiteNr(Q)
this question can only be answered in a statistical sensehiFgurpose, one may
define the square distance between two estimators baseé givén samples as the
square difference between the estimators divided by ite@sgion value, i.e. divided
by the corresponding standard deviation. By constructioa,expectation value of
the distance is one. Note that asking whether two PDF detations come from the
same underlying distribution is much more restrictive thaking whether they are
consistent within uncertainties. For instance in the cdsepair of PDF determina-
tions, such that the data—set on which one of the two is basedubset of the dataset
of the other, and such that all data are consistent with ettedr,athese two deter-
minations will clearly not come from the same underlyingrdisition, because the
distribution of PDFs obtained from the wider data—set wél/é& smaller uncertainty.
However, if the data are consistent they will remain newaetss consistent within
uncertainties.

Given a set otNr(eg repllcaSq of some quantityy, the estimator for the expected
(true) value ofy is the mean

N()

(k)
= N“ Z (3.34)
rep =1

(@™

The square distance between the two estimates of the expeaitee obtained from

setngl), qZ(Q) is then

2 (1) (2) ((q( )>(1) - <q(2)>(2))
d ((q ) (g >) 72 [N T % [{g)] (3.35)

where the variance of the mean is given by

1
NG

oty (@] = —= 00 [d")] (3.36)
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in terms of the variancef, [¢)] of the variableg(® (which a priori could come from
two distinct probability distributions). The expressidhat we use for estimating the
variance of the mean and the distance between variancesoided in Appendix B.

By construction, the probability distribution for the diste coincides with thg?
distribution with one degree of freedom, and thus it has méar= 1, andd < 2.3 at
90% confidence level. However the accuracy in the deterioimaff the expectation
value scales ajs/\/m, so if the underlying probability distributions are diféert
the distance will grow am in the largeN;.p, limit. In this limit (in which the
central values of the underlying distribution are accuyastimated by mean over the
replica sample) the distance between central values isdiyehe distance rescaled
by \/Niep: if Nr(elg = Nr(fg = Nyep, then

1
8(0ts) 0(2)) = —mm=d(01), 0(2) (3.37)

"~ V/Neep
provides (in the largeV,,) limit, the difference between central values in units & th
standard deviation. It follows that because of the halvifithe size of the sample
required for averaging as discussed above, for all distasitewn in the next section,
and computed withV,.,, = 100 replicas, one sigma correspondsite- v/50 ~ 7.

3.2 Results

The viability of the method discussed in this chapter wagioailly demonstrated in
the determination of the structure functiéh(z, @?) of the proton and neutron from
its direct measuremernt [135, 136]. It was then applied tbleros of increasing dif-
ficulty. In Ref. [67] it was used to provide the determinatafra single parton distri-
bution (theT5(z) distribution), thereby addressing the issue of deternginiquantity
which is not measured directly, but rather related throdngdoty to an experimental
observable. Eventually a full analysis of the DIS data wasdiphed [68], followed by
the study of the strange content of the profon [69, 70].

However, the requirements of precision physics are sudhitiemandatory to ex-
ploit all the available information in PDFs determinatioi3iS data are insufficient
to determine accurately many aspects of PDFs, such as tlweifldecomposition of
the quark and antiquark sea or the gluon distribution, éafhgat large—. For this

reason in the recent NNPDF2.0 global fit [71], on top of all tda¢a used in the pre-
vious analyses, Drell-Yan and inclusive jet data have beeluded. Furthermore
the separate ZEUS and H1 datasets have been replaced wiERA-I combined

dataset[84]. The dataset used in this parton determinetithus comparable in vari-
ety and size to that used by the current state—of—the—ars @Btermination, namely



3.2. Results 117

CTEQ6.6[42] and MSTWO0E [43]. All NNPDF parton sets are aafalié through the
LHAPDF interfacel[13]7].

In this section, rather than reporting all results of Ré68,[69/ 70 711], | select some
results and collect them in thematic subsections. The aitm $how that PDFs de-
termined using the NNPDF methodology enjoy several delsif@atures: the Monte

Carlo behaves in a statistically consistent way, given timetertainties scale as ex-
pected with the size of the sample; results are demonstiraddpendent of the parton
parametrisation; PDFs behave as expected upon the additioew data, i. e. un-

certainties expand when data are removed and shrink whgratkeadded unless the
new data is incompatible with the old; results are even stapbn the addition of

new independent PDF parametrisations. To conclude | digtwesrole of the theoret-
ical uncertainty and give an overview of the next sets whiehane going to be made
available, namely a refined analysis where the effect of thesnof the heavy quarks
is included in a general mass scheme and the NNLO analysis.

3.2.1 Experimental data and physical observables

In this section | present the datasets included in the NNPi#yaes[[68| 70, 71]
and the corresponding observables. The kinematical regivared by these data in
shown in Fig[(3.110. The covariance matrix of each experinmeitided in the fit is
computed from knowledge of statistical, systematic andnadisation uncertainties
provided by the experimental collaboration. Whenever threetated systematics are
not provided, the statistical and systematic errors arenseanin quadrature and the
covariance matrix is diagonal.

The first set of PDFs determined with the NNPDF approach [68% wased on a
comprehensive set of experimental data from deep-inelastttering with various

lepton beams and nucleon targets. To keep higher—twiseéctions under control,

only data withQ? > 2GeV? andW? > 12.5GeV? are retained. The DIS data
shown in Fig[3.10 are those actually used in the analysige3he kinematic cuts we
use are not too conservative, we supplemented our fits wijetanass corrections, as
it is discussed in Chapter 5.

These data include the proton and deuteron structure amsstdefined in Eq(1.21),
determined in fixed-target experiments by the BCDMS [77, &&] NMC [80, 79]
collaborations. They provide information on the valenagoe of parton distributions
and help in disentangling isospin triplet and isospin shgbntribution. They are
supplemented with data on the structure functions from SUA&} which, though
rather older and less precise, improve the kinematic cgeerrathe larges region.
When available, the ratiby / F is included, which benefits from cancellations in the
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Figure 3.10: Experimental data which enter the NNPDF2.0 analysis. Fdrdmc data,
the values oft; andz. determined by leading order partonic kinematics (Egs.0)3.88.41)
and [3.48)) are plotted.

correlated systematic uncertainties. Altogether thes ctaver the middle- to large-
x and smallerQ? region of the kinematical range, corresponding to the lesight
corner in Fig[3100.

Collider experiments have explored a larger kinematiaadjesin great detail. Neutral
and charged current reduced cross sections, defined il E&)(from the H1[[12]1,
124,125 123] and ZEUS [120, 138, 139, 140,1141 ] 142] cotlatians were used in
the first analyses [68, 69, [70]. Both neutral and chargedeatiscattering data from
charged lepton beams and neutrino scattering data enaldedisentangle the quark
and antiquark distributions. In the most recent NNPDF2 .8lyamis [71] these data
were replaced by the combined HERA-I datal [84]. They havetebaccuracy than
the one expected on purely statistical grounds from the dwatibn of previous H1
and ZEUS data, because of the reduction of systematics frerorbss-calibration of
the two experiments. These data are given with 110 corcetatstematics and three
correlated procedural uncertainties, which we fully imtghin the covariance matrix.
These HERA data sets yield information in a much wider regitthe (z, Q?) plane,
in both the smalle and the largeQ? directions. The data foF;, that have recently
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appeared in Ref[[83] and the measurements of neutral duarehcharged current
deep-inelastic cross sections by the ZEUS experiment basddERA-11 data [85,
143] are also included. ThE, measurement is a rather small data set, but it provides
an important direct measurementiof.

In order to control the valence—sea (or quark—antiquandsgion, we also included
neutrino DIS data. Specifically, we use the large, up-t@dahd consistent set of
neutrino and antineutrino scattering data by the CHORU#%lootation [[88]. These
data have a similar kinematic coverage to the fixed targetetdepton DIS da% In
the NNPDF1.2 fit[[70] the analysis supplemented by data op-ile&astic neutrino
production of charm from NuTeV [89, 144] (dimuon data, hdod#) which give us
a handle on the strange distribution, whose determinatias tive main goal of the
paper [70]. NuTeV dimuon data overlap with the rest of fixedjéa experiments,
providing information of the proton strangeness#op 10~2. The charm production
cross section is obtained from the published NuTeV neutfimuon production cross
sections[[144] as

1 I e

1 dZO,u(D),c

——(2,9,Q") =

2

where(Br (D — 1)) is the average branching ratio of charmed hadrons into muons
and A (z,y, E,) is a bin-dependent experimental acceptance correctiornre Me-

tails are provided in Sect. 6.1, where the study of the stammtent of the proton is
discussed.

In the NNPDF2.0 PDF determination three classes of hadnorticesses were in-
cluded into the fit: Drell-Yan production in fixed target exipgents, collider weak
vector boson production, and collider inclusive jet praéhre

The fixed—target Drell-Yan data included in the NNPDF2.0 ffé B605 and E866.
The former provides the absolute cross section for DY prodoérom a proton beam
on a copper target [90]. The double differential distribatin the rapidityy and the
invariant mass of the Drell-Yan lepton palt;?, is given. E886, also known as NuSea,
is based on the experimental set-up of E605. The absolus sextion measurements
on a proton target is described in Refs.][92, 93], while tlessisection ratio between
deuteron and proton targets can be found in Ref. [94]. Dadifflerential distributions
in Feynmanz» and M are provided. For both experiments systematic and statisti
errors are added in quadrature, since the correlationxratriot provided by exper-
imentalists. Fixed target Drell-Yan data from the E772 expent [91] and from the
deuteron data of E866 [92,193] are not included. They hava beewn to have poor
compatibility with other Drell-Yan measuremerits[75] ahdg do not add additional

2The CHORUS data, as well as the NuTeV, the E605 and the E8&6 éér to a nuclear target rather
than a proton target, therefore they might be affected byeffeet of nuclear corrections. However we
do not include them in our default fit, since the study of treffect in the analysis that we performed in
Ref. [70] reveals that their effect is smaller than the PDEautainty, about 1-2%
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information to the global PDF analysis. The double—dififttia distribution inAM and
either the rapidity of the paig or Feynmanz is defined in terms of the hadronic
kinematics as

11nq0+(h_ . _ 2q.
a 3 F = —F7)
2 qo — 4> \/5

where /s is the hadron-hadron centre-of-mass eneggig the four-vector of the
Drell-Yan pair andy, is its projection on the longitudinal axis. At leading ordie
parton kinematics is entirely fixed in terms of hadronic &blés by

y (3.39)

M M
) = re¥ = ﬁey , ) =Te V= ﬁe_y , (3.40)

or equivalently

1 1
By (erryfrra). =l (-ersEr). Gay

The corresponding inverse relations are
r=2a%5; M? = 52929 (3.42)
and

1 af -0 0
y:§1nF; Tp =27 — Tg. (3.43)
2

At leading order, the or z Drell-Yan differential distribution is given by

do 4mo? 9 _ _
dTQdy(y) = 9N Z e; [qi(x1)qi(22) + Gi(w1)gi(w2)] , (3.44)
do 1 do
- = - 3.45
azdey W 0+ 28 anrzdy ) (3.49)

where the dependence a1? is made implicit is the fine—structure constant and
the quark electric charges.

The weak boson production data included in the NNPDF2.0 dittlae DO and CDF
Z rapidity distribution and the CDF boson asymmetry. The D@ rapidity distri-
bution measurement was performed at Tevatron Run Il andsisritbed in Ref.[[96].
It gives theZ/~* rapidity distribution in the rang@&l < M., < 111 Ge\E. The

3The contribution from theZ® /v* interference terms is well below the experimental uncetits and
it is neglected
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CDF Z rapidity distribution is analogous to its DO counterparigdt is described in
Ref. [97]. At leading order, the parton kinematics is giveigs. [3.35,3.43), and the
differential distribution is given by

d_O’ WGFM‘Q/\/i

- 35 Z cij [qi(21)q;(x2) + Gi(x1)qi(22)] (3.46)

where the PDFs are evaluated/di,, which denotes eithelbly, or Myz; the elec-
troweak couplings are defined in Tab.J1.1.

The CDFW boson asymmetry measurement, also performed at TevatronlRe
described in Ref[[25]. The physical observable is the ligpasymmetry

do™" Jdyw — do" Jdyw

A = .
W) = o7 [y T o [y

(3.47)

Because of the lack of a fast analytic implementation, weatdntlude lepton—level
data, such as the Tevatrdri asymmetries described in Refs. [145, 1146,1147], which
have been included in recent parton fits| [43,1148] udiiactors. However a study
on the inclusion of these data through reweighting is preeskin Chap. 6.

Finally also the inclusive jet production cross section &grection of the transverse
momentumpr of the jet for fixed rapidity bing\y are included. The leading—order
parton kinematics is fixed by

29 = p—\/ge*", (3.48)
while a simple leading—order expression for the crossieseis not available because
of the need to provide a jet algorithm. Both the CDF Run lkr-algorithm data and
DO Run II — midpoint algorithm data are included. The formes abtained using
the kr algorithm with R = 0.7. The dataset and the various sources of systematic
uncertainties have been described in Refl [99]. We choossdahek algorithm
measurements rather than the cone algorithm measurernieiits gince the latter
are not infrared safe. Data & = 0.7 are preferable to available measurements
atR = 0.5 0or R = 1 since at Tevatron energids = 0.7 optimises the interplay
between sensitivity to perturbative radiation and impdah@n-perturbative effects
like Underlying Event([150, 151].

The data is provided in bins of rapidit¥n and transverse momentym. The kine-
matical coverage can be seen in Fig. 8.10. The DO data isn&ataising the MidPoint
algorithm with R = 0.7. The dataset and the various sources of systematic uncer-
tainties have been described in Ref. [100]. While the MidPalgorithm is infrared
unsafe, the effects of such unsafety in inclusive distidmg are smaller than typical
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Xtot 1.21
(E) +op 2.324+0.10
(Ey) + o, 2.29+0.11
(Byal) +0p,, | 2.35+0.12

(TL) + orr, | 16175+ 6257
(x*™)+o,2 | 1.29+0.09

(olo®)) (%) 11.4
<U(“et)> (%) 6.0
{p <exp>> 0.18
{pnev) 0.54

Table 3.6:Table of statistical estimators for NNPDF2.0 reference] [with N,., = 1000
replicas. The total average uncertainty is given in peagmt All statistical estimators are
defined in Appendix B.

uncertainties [152] and thus it is safe to include this dstadto the analysis. The data
is provided in bins of rapidity\n and transverse momentym.

3.2.2 Statistical features and data compatibility

The set of fitted parton distribution functions at the iniieale provides an ensemble
of parton distributions from which we can study the qualityhe fit and the compati-
bility between different data—sets. As an example, | sunsadhe statistical features
of the NNPDF2.0 analysi$ [71] in Table’8.6. Theé,, estimates the quality of the
fit and refers to the best fit PDF set, given by the average beeV{., replicas. The
quality of the fit has improved in comparison to NNPDF1.2 [@8}pite the widening
of the data—set to also include hadronic data. This is maimyto the improvementin
the minimisation and stopping algorithm previously disad The valug?,, = 1.21
has a small Gaussian probability and it is quite unlikely agadistical fluctuation.
It suggests experimental uncertainties might be undemnagtid at the 10% level, or
that there might be theoretical uncertainties of the sarderof his appears consistent
with the expected accuracy of a NLO treatment of QCD, andythieal accuracy with
which experimental uncertainties are estimated.

The distribution of thef(k) and of the error functio®*) computed for each replica
are displayed in Fig. 3.11. Note that*) andxz(k) differ because in the former each
PDF replica is compared to the data replica it is fitted to |evim the latter it is com-

pared to the actual data, and also because of the diffeesathient of normalisation
uncertainties. The means of thé and theFE distributions differ by about one unit,
consistently with the expectation that the best fit coryaetproduces the underlying
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Figure 3.11:Distribution of x2® (left), Eéf) of the training set (centre) and of the training
lengths (right) over the sample &f..,, = 1000 replicas.

true behaviour about which data fluctuate, with replicagerfluctuating about data.
The average training lengttT’ L) (expressed as a number of generations of the ge-
netic algorithm) given in Table_3.6 and its distributionmayed in Fig[3.I1 show
that, while most of the replicas fulfil the stopping criterj@ small fraction{ 12%)

of them stop at the maximum training leng¥:2*, thereby causing some loss of
accuracy in outlying fits. We have checked that,\g8;* is raised, more and more
of these replicas would stop, and that the loss of accuraeytaour choice of value
of Ngen* is very small. Finally, as in the previous NNPDF determioasi, the uncer-
tainty of the fit, as measured by the average standard dewiat) is rather smaller
than that of the data: 6.0% vs. 11.4%. The uncertainty réalushows that the PDF
determination is combining the information contained i tlata into a determination

of an underlying physical law.

To study the consistency between data sets, one has to Ithuk sthtistical estimators
shown in Tab[-3]7, and at the histogram@fvalues for each experimental data—set
shown in Fig[3.12, where the unweighted average) . = 7— Z;V:f X321; @nd
standard deviation over datasets are also shown. Fromdtegham, no evidence of
any specific dataset being clearly inconsistent with themwih seen, and the distri-
bution of values looks broadly consistent with statistexgbectations, with about five
datasets with? at more than one but less than two sigma from the average, Wso
see no obvious difference or tension between hadronic aBdiBlasets. Clearly, the
x? values for some experiments if taken at face value have lows§an probabilities
(though only one, namely NMC, has a probability less thad®@)p However, they
appear to be stable upon the inclusion of new data, thus stigge lack of tension
between different datasets. For instance,thealue of the NMC data is very close
to that of Refs.[[68, 70]: this value thus appears to reflegtitternal consistency of

these data, not their consistency with other data.

The x? of the HERA-I combined data ig?> = 1.14, somewhat larger that the value
found when fitting the separate ZEUS and H1 data. The valuesdrom averaging
the relatively largey® ~ 1.3 for the very precise NC positron dataset, with a low value
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Figure 3.12:Values of they? for the datasets included in the NNPDF2.0 referencé fit [71],
listed in Table3J7. The horizontal line corresponds to theveighted average of? over
datasets and and the black dashed line td shimterval about it:<><2>sets = 1.06, 0,2 = 0.40;

DIS and hadronic datasets are grouped respectively to thand right of the histogram and
distinguished by different colors.

x? ~ 0.6 for CC electron data. The reasons for this distribution dfi®a are unclear,
however, we note that also in NNPDF1.2][70] theof the CC datasets was typically
smaller than the average as well. We note also that the satterpaf x> among
the different datasets has been obtained within the frameafothe HERAPDF1.0
analysis of these combined HERA-I dataset [84]. The CDFctliié—asymmetry
measurements hawe¢ = 1.85. The poor compatibility of these data with the rest of
the global fit data was also noted in the global analysis of R&E]. The quality of the
fit to Z rapidity distribution data at the Tevatron differsdely between experiments:
while an excellent fit is obtained for DO data, CDF data areswowell described.
This suggests that there might be problems of internal stersiy between the two
experiments. A similar pattern was observed in the MSTWO08ailfit [43]. Note that
these datasets have a very moderate impact on the globaltfiteg? of these data is
essentially the same in NNPDF2.0 and in NNPDF1.2, wheredheyot fitted.
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Experiment | x* (E) <o(exp)>dat(%) <U(net)>dm(%) <p(exp)>dm <p(nec)>dm
NMC-pd 0.99 | 2.05 1.8 0.5 0.03 0.36
NMC 1.69 | 2.79 4.9 1.7 0.16 0.77
SLAC 1.34 | 2.42 4.2 1.9 0.31 0.84
BCDMS 1.27 | 2.40 5.7 2.6 0.47 0.55
HERAI-AV 1.14 | 2.25 7.5 1.3 0.06 0.44
CHORUS 1.18 | 2.32 14.8 12.8 0.09 0.38
FLH108 1.49 | 251 71.9 3.3 0.65 0.68
NTVDMN 0.67 | 1.90 21.1 14.6 0.03 0.63
ZEUS-H2 151 | 2.66 13.6 1.2 0.29 0.58
DYEG605 0.88 | 1.85 22.6 8.3 0.47 0.75
DYE866 1.28 | 2.35 20.8 9.1 0.20 0.45
CDFWASY | 1.85 | 3.09 6.0 4.3 0.52 0.72
CDFZRAP | 2.02 | 2.96 11.5 3.5 0.83 0.65
DOZRAP 0.57 | 1.65 10.2 3.0 0.53 0.69
CDFR2KT | 0.80 | 2.22 23.0 5.2 0.78 0.67
DOR2CON | 0.93 | 1.92 16.2 6.0 0.78 0.64

Table 3.7:Same as Table_3.6 for individual individual experiments.te\that experimental
uncertainties are always given in percentage. All statststimators are defined in Appendix
B.

Finally, in Ref. [71] we have checked that if we run a very Iditgvithout dynamical
stopping, they? of the experiments whose values exceed the average by mae th
one sigma does not improve significantly. This shows thatthgation of these?
values from the average is not due to underlearning.

3.2.3 Parton Distributions

In this section | show the results obtained in the various BRRnalyses relative to
the shape and the error of the parton distribution functiorcompare the results of
the NNPDF fits to each others and to the MSTW and CTEQ parton AtsPDF
combinations are defined as in Hg. (1.58). The uncertaimygdahown ared.

In Fig.[3.13 the predictions for some of the parton densitigsacted in the subsequent
analyses are shown. The statistical consistency of the NN&iproach is apparent.
The inclusion of new data reduces the uncertainty of the PDFegions were the
new data provide further constraints, however leaving thempatible with the PDFs
previously determined. For instance the gluon at large-much more constrained
by the jet data, however at smatht remains basically unconstrained by data and the
green and blue bands look the same. The uncertainty of tbacatlike PDFs is also
greatly reduced by the inclusion of the Drell-Yan data. Sethat the sea asymmetry,
whose sign was not determined in absence of these data uisalyatonstrained to
be positive just due to their inclusion. The consistencydlitated by the fact that in
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the subsequent analysis the same parametrisation andntleessatistical features are
employed.
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Figure 3.13: The gluonzg(x) (top), the tripletzT5(z) (middle) and the sea asymmetry
zAs(z) (bottom) at the initial scal€? = 2 GeV? from the NNPDF2.0 analysis. Both the
PDFs (left) and their absolute uncertainties (right) amsh compared to the previous NNPDF
releases NNPDF1.0[68] and NNPDF 1.2][71].

The NNPDF2.0 PDFs are also compared to those extracted DTE€6.6 [42] and
MSTWO8 [43] analyses. These next—to—leading order partercfintain the same
amount of experimental information, the only differencénigan the different treat-
ment of the heavy quark masses. In Fig. 8.14 we see that mo8DRR.0 uncertain-
ties are comparable to the CTEQ6.6 and MSTWO08 ones; thetgoarever some in-
teresting exceptions. The uncertainty on strangenesshviNPDF2.0 parametrises
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Figure 3.14:The gluonzg(z) (top), the total strangenessS™ (x) (middle) and the triplet
Ts(x) (bottom) at the initial scal€)? = 2 GeV? from the NNPDF2.0 analysis. Both the
PDFs (left) and their absolute uncertainties (right) a@sh compared to MSTWO08[43] and
CTEQ6.6[42] PDFs.

with as many parameters as any other PDF, is rather largerthitese of MSTWO08
and CTEQS6.6, in which these PDFs are parametrised with asrea§l number of pa-
rameters. The NNPDF2.0 uncertainty on total quark singlbi¢h contains a sizable
strange contribution) is also larger. The uncertainty andimall< gluon is signifi-
cantly larger than that found by CTEQ6.6, but comparablaab af MSTWO8, which
has an extra parameter to describe the smafjlton in comparison to CTEQ6.6.
The uncertainty on the triplet combination is rather smmaleNNPDF2.0 than either
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MSTWO08 or CTEQG6.6, largely due to the impact of Drell-Yanajathich are found
to be completely consistent with DIS data within our NLO treant.

An important advantage of the Monte Carlo method used in tRDF approach to

determine PDF uncertainties is that, unlike in a Hessiamaggh, one does not have
to rely on linear error propagation. For instance it is polesio test for non-Gaussian
distribution of the fitted PDFs even though our starting datd data replicas are
Gaussian distributed. A simple way for doing that is to cotepu 68% confidence
level (C.L.) for it (which is straightforwardly done in a M@nCarlo approach), and
compare the result to the standard deviation. In[Eig.]3.is5cttmparison is shown for
some NNPDF2.0 PDFs at the initial scale as a function dthe plots show that, in the
extrapolation region for most PDFs deviations from Gaumsbighaviour are sizable.
This is especially noticeable for the gluon at smajland for the quark singlet and
total strangeness both at small and largeHowever, in Ref.[[711] is shown that in the
regions in which the PDFs are constrained by experimentalttia standard deviation
and the 68% confidence levels coincide to good approximattors suggesting a
Gaussian behaviour.

Figure 3.15:Comparison of 68% confidence level andihtervals for the gluon (left) and the
total strangeness (right). The PDFs have been determirted IMNPDF2.0 analysi§ [71] at the
initial scaleQ? = 2 GeV2.

Deviations from Gaussian behaviour are sometimes relatgabsitivity constraints
Eq. (3.3B): for instance positivity df;, and the dimuon cross—section limits the possi-
bility for the small-= gluon and strange sea PDFs respectively to go negativelther
leading to an asymmetric uncertainty band. In order to asgeantitatively the effect
of the positivity constraints, in Fif.3.16 PDFs with unegmties determined as 68%
C.L. with and without positivity constraints are comparatie see that positivity of
Fr(x,Q?) leads to substantial uncertainty reduction in the smajluon. Note that
there is nevertheless a kinematic region in which the glumsgegative by a small
amount, thought', remains positive. Also, removing positivity of the dimuaiogs
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section would lead to a much softer strange sea at smaith rather larger uncer-
tainties. This in turn leads to a softer smalkinglet, also with larger uncertainties.
This is due to the fact that below< 0.01, where no neutrino data are available, posi-
tivity is the only constraint on the total strangeness It is also interesting to observe
that positivity also has the effect of stabilising the replsample: indeed, the 68%
confidence levels computed without positivity display sonséle fluctuations which
would only be smoothed out by using a significantly wideriecgpsample. These fluc-
tuations are absent when positivity is imposed, meaningstingh wide fluctuations in
individual replicas are removed by the constraint.

NNPDF2.0 (NO POS) NNPDF2.0 (NO POS)

%)

xg (x, Q

10° 10* 10° 10? 10" 1 10° 10* 10° 10° 10" 1

Figure 3.16:Gluon (left) and total strangeness (right) PDFs determinethe NNPDF2.0

analysis [[71] at the initial scal®2 = 2 GeV? with and without positivity constraints. All
uncertainty bands are determined as 68% confidence leved:s Rot shown here are not
affected by the positivity constraints.

3.2.4 Stability

An advantage of the NNPDF approach is that various featurtteed®DF set can be
assessed using standard statistical tools. In this seetid@assess the stability of the
fit and the reliability of the error estimate by discussingthexamples

1. the stability upon the choice of parametrisations ogtfjrpresented in Refl [68].

2. the stability upon the addition of unconstrained paraisegions presented in
Ref. [69].

3. the detailed comparison between the NNPDF1.2 and NNRDIE&, by vary-
ing one by one each of the procedural aspects and compugrdjstances pre-
sented in Ref[[71].
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In the first analysis, | show the dependence of results onrittétacture of the neu-
ral networks. Specifically, we reduced the architecturenfi®-5-3-1 to 2—-4-3-1,
thereby decreasing the number of parameters of each PDF37ot 31, the total
number from 185 to 155. In Fi§._3.117 the bestfits and the drmods for the gluon
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Figure 3.17:Comparison of best-fit gluon (top) and total valence (bojtatithe initial scale
Q% = 2 Ge\? obtained in the NNPDF1.0 analysis [68] with two differenthitectures: 2—4—
3-1 (left) and 2-5-3-1 (right).

and the total valence distributions obtained with the the different architectures are
shown. The plots suggest a remarkable independence of tamptisation. In or-
der to quantify this statement, the distance between theetvgembles obtained with
different parametrisations has to be evaluated. Resudtgiaen in Tabl€318. The dis-
tances confirm the result: fluctuations are at most at shievel in poorly controlled
quantities, such as the value of the light quark sea asymrimethe extrapolation re-
gion or the uncertainty on the triplet combination in theragblation region, which in
the NNPDF1.0 analysis [68] is poorly constrained due to #iok of Drell-Yan data.
Results are indeed independent of the number of parameters.

In the second analysis | show the results obtained in the NNIPDfit [69]. The
latter is not much useful for practical purposes, howev@rdvides a proof of the
consistency of the whole NNPDF procedure. In the NNPDFl1dlysis, the strange
parton distributions® = s & 5 were parametrised by two independent neural net-
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Data Extrapolation

Y(z,Q3) | 5100 <z <0.1 10°<z<10717

(d[q]) 0.98 1.25

(d[o]) 1.14 1.34
g(x,Q3) [ 51077 <x<0.1 1007°<z<107?

(d[q]) 1.52 1.15

(d[o]) 1.16 1.07
Ts(x,Q3) | 0.05<x<0.75 103<zr<107?

(d[q]) 1.00 111

(d[o]) 1.76 2.27
V(z,Q3) 0.1<z<06 3103 <x<310°2

(d[q]) 1.30 0.90

(d[o]) 1.10 0.98
As(z,Q3) | 01<x<06 [310°<z<310°

(d[q]) 1.04 1.91

(d[o]) 1.44 1.80

Table 3.8:Distance between results obtained from a sets of 100 PDsneitiral network
architecture 2-5-3-1 and a sets of 100 PDFs with neural m&taehitecture 2-4-3-1.

works, instead of being taken to be proportional to the laytiquark distribution as
in NNPDF1.0. However, the dataset is the same as for NNPDEb.thes™ distri-
bution is only very weakly constrained, and tfieis essentially unconstrained by the
the data. The only weak constraint to the strangeness ia Qiwthe CHORUS and the
HERA charged—current data as well as by the strange valemcede. Nevertheless,
when results of this pair of fits are compared, they show rkaide stability, despite
the fact that each neural network is parametrised by a velyn@ant set of parameters
(the addition of two neural nets results in the addition ofXtra free parameters in
the fit). In Fig[3.18 | show the results from the NNPDF1.1 gaifor theX(x), g(x),

s+ (z) ands_(x) distributions compared to NNPDF1.0. We can see that theaent
values for both PDFs are reasonably close between NNPDR#l.0IBIPDF1.1, thus
ensuring the validity of the flavour assumptions in the farmese. Moreover, the
parton distributions which are unaffected by the additibimdependent strange de-
grees of freedom (such as the gluon) are unchanged, andlthearked effect of the
independent parametrisation of strangeness is an ingriegsbout a factor two, of
the uncertainty on the total valence quark distributibh€ « — 4 +d —d +s — 5

). Remarkably, statistical analysis of the NNPDF1.0 setalwas already sufficient
to show that the uncertainty on this combination was undienased [68]. The other
PDFs are fairly stable, which is an important result sincthlteo new input PDFs
and a randomisation of the preprocessing have been in@igbin the new analy-
sis. A comparable increase in uncertainty is observed irexti@polation region of
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Figure 3.18:The NNPDF1.1[[69] singlet (top left), gluon(top right), abstrangeness (bottom
left) and strange valence (bottom right) compared to the BRP0, CTEQ66 and MRSTO01
sets.

Y (z), which can be attributed to the extra flexibility induced he presence of the
independent () PDF.

In the third part of this section, starting from NNPDF1.2, perform a series of fits
in which the procedural aspects are varied in successitiowed by another series
of fit where new datasets are introduced one by one. At eaphirstihis procedure

we

examine the general features of the fit by evaluating tladityjof the fit, which is

shown in Tabl€ 319, and computing the distances with respehe precedent fit.

o Effect of the improved genetic algorithm and stopping date (IGA).

The improvement in neural network training described intiect.1 leads to a
significant improvement in fit quality, as one can see in TBXEe each replica
fits better the corresponding data replica (low®}), and also each replica neu-
ral network is more efficient in subtracting the statisticaise from data (lower
(x2(®)), thereby leading to a better global fit (lowgf,,). The improvement
is due to the improvement in fit quality of fixed—target DIS esments (NMC,
BCDMS and CHORUS) are known to have a certain amount of datansis-
tency [136/ 68, 154], without change in fit quality for otheperiments: this
means that the new algorithm is more efficient in leading talarced fit qual-
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[FitNNPDF_| 1.2 | 1.2+IGA | 1.2+IGA+, | 2.0 DIS| 2.0 DIS+JET] 2.0 |

Xiot 132 | 1.16 1.12 1.20 1.18 1.21
(E) 279 | 2.41 2.24 2.31 2.28 2.32
(Eu) 275 | 2.39 2.20 2.28 2.24 2.29
(Eval) 2.80 | 2.46 2.27 2.34 2.32 2.35
<X2<k>> 1.60 | 1.28 1.21 1.29 1.27 1.29
NMC-pd | 1.48 | 007 0.87 0.85 0.86 0.99
NMC 168 | 1.72 1.65 1.69 1.66 1.69
SLAC 120 | 1.42 1.33 1.37 1.31 1.34
BCDMS | 1.59 | 1.33 1.25 1.26 1.27 1.27
HERAI 1.05 | 0.98 0.96 113 113 1.14
CHORUS | 1.39 | 1.13 112 1.13 111 1.18
FLH108 | 1.70 | 1.53 153 151 1.49 1.49
NTVDMN | 0.64 | 0.81 0.71 0.71 0.75 0.67
ZEUS-H2 | 1.52 | 151 1.49 1.50 1.49 151
DYE605 | 11.19| 22.89 8.21 7.32 1035 | 0.88
DYE866 | 53.20| 4.81 2.46 2.24 2.59 1.28
CDFWASY | 26.76 | 28.22 20.32 13.06 14.13 1.85
CDFZRAP | 1.65 | 4.61 3.13 312 331 2.02
DOZRAP | 056 | 0.80 0.65 0.65 0.68 0.47
CDFR2KT | 1.10 | 0.5 0.78 0.91 0.79 0.80
DOR2CON | 1.18 | 1.07 0.94 1.00 0.93 0.93

Table 3.9: Statistical estimators for the sequence of fits that takenfidNPDF1.2 to
NNPDF2.0. The estimators shown for NNPDF1.2 are as in TéhobRef. [70] and those
for NNPDF2.0 are as in Tab_3[6=B.7. Estimators are showthfototal datasets in the upper
part of the table, while the lower part of the table showsythéor each individual experimental
dataset. Values of the? for data not included in any given fit are shown in italic; thiat x 2.,
shown in the first line does not include the contribution fritiase data. The value of thé in
the HERAI line refers in the first three columns of the tablée weighted sum of the H1 and
ZEUS data, and in the latter three columns to the combinessdtaccording to which data
has been included in the fit.
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ity between experiments, without some data being underi@drile others are
overlearnt. The IGA affects essentially all PDFs by redg¢ireir uncertainties,
the two fits are always consistent at thelgvel.

Impact of the treatment of normalisation uncertainties.

The previous fit is modified by implementing the improved tneent of the nor-
malisation uncertainties described in Chap. 3. A small laticeable improve-
ment in the quality of the fit is observed (the toj&l going from 1.16 to 1.12).
The latter is mostly due to the improved description of theditarget DIS
experiments. The distances between this fit and the prewneswhich only
differ in the treatment of normalisation uncertaintieg displayed in Fid._3.19.
The PDFs which are mostly affected are the smatlinglet and gluon and the
triplet distributions.
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Figure 3.19: Distances between the PDFs obtained in a fitimigilmoved genetic al-
gorithm (IGA) and a fit with IGA + improved treatment of norrigation uncertainties
(IGA+tp). The distances are shown in linear (left) and logarithmight) scales for
the central values (top) and the uncertainties.

e Impact of the combined HERA-I data.

The previous IGA# fit is modified by replacing the ZEUS and H1 data with
the new combined HERA-[[84]. This fit is now identical to theNRDF2.0
fit, but with only DIS data included (NNPDF2.0-DIS). The iaslon of the
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very precise HERA-I data leads to a slight deterioration ofj@iality (the to-
tal x2 going from 1.12 to 1.20) which remains however still bettert that of
NNPDF1.2. This deterioration is concentrated in the HERfadhemselves,
with the quality of the fit to all other data unchanged. Thiggests good consis-
tency of the HERA and fixed target data, but with the accurdtyecombined
HERA-I data now exceeding the accuracy of the theory use@scribe them
in NNPDF2.0: for instance the lack of inclusion of charm memsections, but
also possibly deviations from NLO DGLAP at small-er possible evidence for
NNLO corrections at larger. A particularly interesting aspect of this fit is that
the quality of the fit to Drell-Yan data (not fitted), which wasor in all previ-
ous fits, improves considerably, especially for tleasymmetry. This suggests
that the accuracy of the charged—current data in the HERéwhined set is
now sufficient to provide some handle on the flavour decontiposof the sea
at large=« which is only weakly constrained by neutral current DIS datad
strongly constrained by DY data. The distances betweer tfitssis shown in
Fig.[3.20: the impact of the combined HERA data is a modenattgéneralised
improvementin accuracy at smati—
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Figure 3.20:Distances between the PDFs obtained with a IGAfit of Fig.[3.19 and a fit
in which the separate H1 and ZEUS data are replaced by theicethblERA-I DIS data
(NNPDF2.0 DIS). The distances are shown in linear (left) lagdrithmic (right) scales for the
central values (top) and tHe uncertainties.
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e Impact of jet data.

The addition of jet data to the 2.0-DIS fit leaves the qualityhe global fit
unchanged. This demonstrates the perfect compatibilifgtofiata with DIS
data: in fact, the quality of the fit to jet data was quite goeerein all previous
fits, in which they were not included in the fitted data—set diistance between
the 2.0-DIS and 2.0-DIS+JET fits, displayed in Fig. 3.21 vehthat these data
affect almost only the gluon, as one would expéct [155], ilegdo a better
determination at medium- and large-This is shown in Fig._3.22, where the
gluons of 2.0-DIS and 2.0-DIS+JET are compared.
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Figure 3.21:Distances between the PDFs obtained from a NNPDF2.0 DIS figf3.20
and those obtained from a fit in which jet data are also indutdNPDF2.0 DIS+JET). The
distances are shown in linear (left) and logarithmic (rjgicales for the central values (top) and
the 1o uncertainties.

e Impact of Drell-Yan data
The addition of Drell-Yan data to the 2.0-DIS+JET fit leavies guality of the
global fit unchanged. Taken together with the previous caispa of the 2.0-
DIS and 2.0-DIS+JET data, this shows that DIS data and hadldata are fully
compatible, and furthermore the two classes of hadron&idatuded here, DY
and inclusive jets, are compatible with each other. Minoompatibilities only
appear within each dataset (typically due to some subsettaffwbints or, in the
case of Drell-Yan to the CDF W asymmetry and Z rapidity dttion data).
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Figure 3.22:Comparison between the gluon density at the initial s@Je= 2 GeV? at smalll
(left) and large (right) obtained from NNPDF2.0 DIS fit of Fif_3.P0 and a fit in whichdeta
are also included (NNPDF2.0 DIS+JET) (the distances are/stioFig.[3.21).

However, the quality of the fit to Drell-Yan data was gengratbor when they
were not included in the fit, due to the fact that they are sieagio the sepa-
ration of individual flavours at large=which is only very weakly constrained
by other data. The distances between the 2.0-DIS+JET arfditidNPDF2.0
fits, displayed in Figd._3.23, show the sizable impact of thelPran data on all
valence—like PDF combinations at medium and largéae triplet, the valence,
the sea asymmetry and the strangeness asymmetry. Thecsighifinprove-
ment in accuracy on all these PDFs is apparent in[Eig] 3.22 rémarkable
improvement in the accuracy of the determination of thengfemess asymme-
try s~ (x) will turn out to have relevant phenomenological implicagdor the
so—called NuTeV anomaly, as | discuss in Chap. 6.

3.2.5 Theoretical uncertainty and outlook

In the determination of PDFs, all systematic uncertaintiethe data have been ac-
counted for in the Monte Carlo data generation: they are finepagated through the
fitting procedure onto the ensemble of fitted PDFs. Thergfm®r bands already
include both statistical and systematic uncertaintiebefdata. On top of these, how-
ever, there are the theoretical uncertainties mention€&hap. 3, which might cause
systematic shifts in PDFs central values and uncertainties

The two main sources of theoretical uncertainties in the NNRnalyses are related
to the fact that they are performed at NLO, and thus they eegféects at NNLO and
beyond, and to the approximate zero—mass (ZM) scheme ushkghtavith the finite
masses of the heavy quarks.
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Figure 3.23: Distances between the PDFs obtained from the NNPDF2.0 5l of
Fig.[3:21 and the reference NNPDF2.0 fit (Drell-Yan data atetuded). The distances are
shown in linear (left) and logarithmic (right) scales foetbentral values (top) and the un-
certainties.

A way for estimating the theoretical error due to higher-eorcbntributions in per-
turbation theory consists in varying the factorisation amdormalisation scales. In
order to combine PDFs and scale variation uncertainties audoproduce several
sets with varyingur and ur and combine the obtained ensembles according to the
method proposed in Ref. [156] to combine PDFs apdincertainties. The latter is
going to be described in details in Sect. 6.2. Another ptessitethod would consist
in taking these scales as random variables distributeddestw/k andku, wherek
sets their variation range, and letting them fluctuate betweplicas. Such analysis
has not been performed yet, but it represents an intergstisgibility to be explored
in the near future. Notice that the same procedure might péempto estimate the
uncertainty related to all parameters which enters into & B&termination, such as
the values of the masses of the heavy quatksm;, andm;.

A less accurate way to assess the uncertainties relategerhperturbative orders
has been adopted in Ref. [68]. The reference NNPDF1.0 NLO&# eompared to
the fit repeated at LO. The comparison is displayed in[Eigg.3t%shows that the size
of the uncertainties remains essentially unchanged. Eunrtbre, all central values of
the LO fit vary by an amount which is compatible with statigtituctuations, with the
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Figure 3.24 Comparison between PDFs at the initial sa@fe= 2 GeV? from the NNPDF2.0
DIS+JET fit of Fig[3.2IL and the reference NNPDF2.0 fit whictiided also Drell-Yan data
(the distances are shown in Fig. 3.23). From left to right faooh top to bottom the following
distributions are show: triplet, valence, sea asymmetdysirange valence.
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Figure 3.25:Comparison of the NLO NNPDF1.0 fif[68] and LO fit results foe tiiuon (left)
and quark singlet PDFs (right).

exception of the singlet and gluon shown in figure, which Jayyabout 2-3. This
is expected due to the fact that the gluon contribution to Bd8fficient functions
only starts at NLO. On the other hand, the quality of the fiedetates significantly
when using LO theory, as we might also expect. This compassggests that in the
NNPDF1.0 analysis the theoretical uncertainties due tk tddnclusion of NNLO



140 Chapter 3. The NNPDF approach to parton fitting

corrections are negligible on the scale of statistical waggties. This conclusion is
based on the observation that NNLO corrections to all PDE&aown to be smaller

than the typical NLO corrections (i.e. the NLO-LO differendn the nonsinglet sec-
tor [157,[66] and the observation that the latter correctiare already smaller than
the statistical uncertainty by a factor of two. A more acteir@nalysis, which is in

preparation in the context of the definition of a suitable Labtpn fit able to match the
requirements of the LO Monte Carlo event generators, réfetise most up—to—date
NNPDF2.0 reference fit [71] and will enable us to draw moraied conclusions.

Another source of theoretical uncertainty is the treatnoétiie heavy quark masses.
The theoretical framework has been extensively discussé&thap. 2. All publicly
available NNPDF analyses are performed according to the\@iN-scheme, with the
exception of the dimuon data, for which the prediction isleaged in the improved
ZM scheme. This approximate treatment of the heavy quarksesamtroduces a
shift in theoretical predictions that ought to be quantifidddeed the latter might
be responsible for the differences in the predictions olethfor some LHC standard
candle processes when compared to those obtained with pehten sets including
a GM-VFNS in their analys@s To improve over the zero—mass approximation, in
the upcoming NNPDF2.1 release [105], a general mass schem®liemented, in
particular the FONLL schemé [54]. For the time being, onlglipninary results based
on a fit to the NNPDF2.0 dataséet [71], supplemented by chawmtstre function data
F§(z,Q?) are available. In Fig_3.26 a preliminary comparison of tmglet and
gluon PDFs at the initial evolution scal# = 2 GeV? in NNPDF2.1 and NNPDF2.0,
normalised to the NNPDF2.0 central values is displayecdis that the inclusion of
heavy quark mass effects leads to a increase in the singl&dium and smalk:, as
well as to a marked increase in the smalifuon. However differences appear to be
within the PDF uncertainty bands. This preliminary anaysiplies that heavy quark
mass effects should modify the NNPDF2.0 predictions for LotServables byd or
so at most. The results still need to be validated and argggoilbe made publicly
available soon.

Further possible sources of theoretical uncertainty, ivhiould be intersting to assess
in future studies, include effects related to large— andllsmaesummation of the
perturbative expansion, higher twist corrections, andeareffects.

4For a comparison of standard candle predictions, see Chap. 6



3.2. Results 141

Ratio to NNPDF2.0

13

Ratio to NNPDF2.0

NNPDFZO

NPDF2.1 (TMP)

INPDF2.0

INPDF2.1 (TMP)

Figure 3.26:The ratio of the preliminary NNPDF2.1 Singlet (left plot)dagluon PDFs (right
plot) to the respective NNPDF2.0 ones, at the initial evoluscaleQ3 = 2 GeV2. Error bands
are normalised to the NNPDF2.0 central value.
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Chapter

The FastKernel Method

A global analysis of Parton Distribution Functions invadwbe significant complica-
tion of dealing with the coupled evolution of a full set of fmar distributions. Being
PDFs extracted from many different experiments, one hasnthine the evolved par-
ton distributions with their coefficient functions for a widet of different observables.
In parton fits, this computation aims to be as fast and ace@spossible.

The hybridz—N space solution of the DGLAP evolution equations was intogdiin
Ref. [67], for the evolution of a single non-singlet part@ndity. Here | describe the
method elaborated for extending this formalism to the céds®wpled evolution of a
full set of PDFs. Furthermore, the FastKernel method is fdated. The latter, using
higher order polynomial interpolations, yields a fast anduaiate evolution of PDFs
and a fast computation of Drell-Yan observables. The latiews us to deal with
the computation of hadronic observables at next—to—legalider without relying on
any K—factor approximation. The accuracy of the partonic evoluis tested against
other evolution codes and the precision of the computatidheoNLO order Drell—
Yan distributions is assessed.

4.1 Hybrid 2-N space solution of DGLAP equa-
tions

The perturbative computation of physical observablesligasthe evolution of PDFs
up to the scale of the measurements and their convolutidntivéthard cross-sections.
One way of speeding up the computation of the observabléagiarPDF fit was

143
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introduced in Ref[[67] and adopted since the earliest NNRBFThe main advantage
is that each of the two computations can be optimised segarfaom a numerical
point of view. In particular, one may use a Mellin-space apph to solve evolution
equations, but adopt-space parametrisation of PDFs. Moreover evolution kernel
may be pre-computed, benchmarked, and stored once and foefate the fitting
procedure.

In this section | discuss details of the method and its appiia to the computation of
DIS observables in Refs. [67,168]. In the next section | idtrce an improved faster
method which enabled us to broaden the analysis by inclutidgonic observables.

4.1.1 Leading-twist factorisation and evolution

Deep inelastic observablég (z, Q?) may always be expressed at leading twist as a
convolution of parton distributiong; (z, Q) and hard coefficient functions
C1;(z, as(Q?)), computed in perturbation theory, as it was shown in Eq4)1.4

Fr(z,Q%) =Y Crj(w,a4(Q%) © f(z, Q) (4.1)

where® denotes the usual convolution product. The labedfers to the considered
observable, which may be a structure function or a reduczsbesection, whilg runs
over parton distribution functions. The scale dependetricheoparton distribution
functions is given by the renormalisation group, or DGLAR@&tpns

Q2

53 0 @) = X Py (,0,(Q) 8 (0, Q) @2)

whereP;; are the Altarelli-Parisi splitting functions, explicithiven at leading—order
in Eq. (1.51). The structure of the solution of these couptéegro-differential equa-
tions may be written as

fi(waQQ) :Zrij(waasvag)(@fj(xvc’?g)v (43)

wheref;(z, Q3) are the input PDFs arid; (z, a5, a2) are the evolution factors. From
now on, | use the shorthand notation introduced in Eq.{184)= as(Q?) o =
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as(Q3). Substituting Eq[{(413) into Eq.(4.1)

FI(*T7 QQ)

> Cri(r,00) @ Dj(z, 05,02 @ fi(x, QF)

ik
ZKIj(xvasvag)®fj(vag)v (44)

where the hard kernel

Krj(z, o, ag) = Z Cri(z, o) @ Tj(z, as, ag), (4.5)
k

is the convolution between evolution factors and coefficienctions and may be
computed in perturbation theory.

Performing many nested convolutions is numerically ratinee consuming. However
the hard kernels Ed.(4.5) are independent of the partiseteof input PDFs adopted,
and may thus be calculated only once and stored.

4.1.2 Calculating the evolved z—space PDFs

The QCD evolution equations are most easily solved usindiMeloments|[[32], as
all the convolutions become simple products, and the egusitinay be solved in a
closed form. In Sect. 2.1.3 th¥-space solution of the DGLAP evolution equation
is explicitly written up to next—to—leading order and may dmesily generalised to
higher orders. Given the explicit expression for ffiespace evolution kernels and for
the hard kernels, the problem is reduced to the computafitimeoMellin inversion
integral.

Thez—space evolution factors are obtained by taking the inWdidén transforms of
the solutions obtained in Eqs. (1171, 1.77):

dN

[(z,as,a’) = / — 2 VT(N, as,a?). (4.6)
c <71

On the other hand, the-space hard kernels are obtained by taking the inverserMelli

transforms of the product between the-space evolution kernels and the Mellin mo-

ments of the coefficient functions, EQ. (11.45)

dN
F(:c,as,ag):/—_J;_NI‘(N,aS,ag)C(N,aS). (4.7)
c 2mi
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In what follows, | explicitly consider the inversion dfevolution factors, but the same
considerations hold for the hard kernéls

The numerical computation of the Mellin inversion integisadelicate, because the
oscillatory behaviour of the integrand at larges not damped by multiplication by
an initial PDF. This problem is mitigated by a suitable cleodf the integration path
C. One possible choicé [67,168,]70,] 71] is the Talbot path, drmnFig.[4.1, which
goes around the singularities&t= 0, —1, —2, .... It is defined by the condition

1
= —_— <0< .
N(9) = ro (tan9+1) <0<, (4.8)

wherer is a constant corresponding to the intercept of the curvdnemdal axis. To

™
)

Figure 4.1: The path in the complex N-space followed by tHbdfantegration path,
Eq. (4.8) forr=1.

further improve the numerical efficiency the Fixed Talbgfalthm can be used[158],
where the integral is replaced by the sum

M-1
P(e) =+ %r (N =r)a™" + 3 Re [a NI (N (8,)) (1 + o (9,9))” ,
k=1

(4.9)
where
oc(0)=0+ (0/tan — 1) /tané,

0 = kn/M,andr = 2M/ (51n1/z). As shown in Ref.[[158])M yields the relative
accuracy, i.e. the number of accurate digits. Sixteenglayié more than enough to
achieve an accuracy 6¥(10~°) in the inversion. For the singlet evolution the Talbot
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path must displaced by one unit to the right

dN dN
Fs(ZE,O[S,OLO) = _:E_NI‘S(N Qs, & O) =< _-x_NFS(NilaO‘SvO[O)a
s 9 s
C c 4T

+1 2mi
(4.10)

since now the singularities areat= 1,0, —1,

However all splitting functions, except the off-diagonatrées of the singlet matrix,
diverge whenr — 1; this implies that the evolution kerndlgz, o, o) will likewise
be divergentas — 1, and must thus be interpreted as distributions. Specifiaatie
may define

I\ (2, a5,02) = DIns(e,as,a2) — Gys(as, ad)d(l - ), (4.12)
I‘gr)(w,as,ag) = I‘S(‘T 045,04) GS(O‘MO‘O)‘T 6(1_$)a (412)
where
1
Grs(as,ad) = /dwFNs(:v as,a?) = Ins(N, as,a?) | y=1, (4.13)
0
1
Gs(as,ag) = /dle"s(z g, ) Ts(N,as, « 2)|N:2, (4.14)
0

are all finite constants. The convolutions Eg.{4.3) may theevaluated as

fi(zan) = GNS(asvag)fi(zan)+/ dy F(+)(y,045, )f ( QO>

— (GNs(as,aO) /OzdyFNs(%aa, ))fz(iﬁ Q?)

+

/ _FNS Y, 0, ) (fl (%7@3) - yfz(:C;Qg)?) . (415)

for nonsinglet distributiong;. Similarly

Ld T
fS(ZE, Q2) = GS(Oés, Oég)fs(l’v Q(Q)) +/ gy F(+)(ya Qg, (s))fs (;a Q%))

<Gs(as,a°) /0 dy yT's(y, as, )) fs(z, Q)
. U py gy as,a) (5 (£.08) ~vred)) . @9
; y ) ER) s y7 0 Ll 0 9
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for singlet distributionsfs, where now all integrals converge and can be computed
numerically.

The solution of the evolution equations through the deteatidn ofx—space evolu-
tion factors, Eqs[(4.15,4.116), is particularly efficieethuse of the universality of the
evolution factors, i.e., their independence of the spebifiendary condition which is
being evolved. In this way the evolution factors can be pmeqouted and stored, and
then used during the process of parton fitting without hatingegcompute them each
time.

4.1.3 LH benchmark

During the PDF fitting procedure, a given PDF set must be @gbhaany times up to
the fixed values ofz, Q?) at which data are available. For egeh@?) the numerical
determination of the right—hand side of Eds. (4[15, ¥.16dlives the evaluation of
two contributions: the first requires the multiplicationtbé PDF by a predetermined
constan{G(a, o) — [, dy T (y, as, a2)); while the second requires a convolution of
the predetermined evolution factbty, o, a?) with the subtracted PDF, and thus the
numerical evaluation of the integral ovgr

In Refs. [67[68], the numerical integration is performethgsi Nquaq —point Gaus-
sian integration in each of tr&Vier 1 — 1 intervals in which the integration range
(x,1) of y is divided. The total number of points used to perform thevobrtions in

y is given by

Npt = Nguaa (2N — 1) (4.17)

and the values of are determined accordingly, for each given value .of

The accuracy of the PDF evolution code has been cross-cthesdainst the Les
Houches PDF evolution benchmark tables [126,/101]. Thdskesavere obtained
from a comparison of thelOPPET[159] andPEGASUS [32] evolution codes, which
arex—space andv —space codes respectively. In order to perform a meaningfatc
parison, the iterated solution of tlié—space evolution equations is used, EQs. {1.71,
[L.77), and the same initial PDFs and the same running cayplie used, following
the procedure described in detail in Refs. [101,/126].

In Table[4.1 the relative differencg,; for various combinations of PDFs between
the NNPDF evolution and the benchmark tables of Réfs.|[1@6] &t NLO in the
ZM-VFENS, for two different values ofVi.,, is shown. In the upper part of the ta-
ble Ny, = 6, that is, each convolution integral is performed with apgprately
500 points. This choice leads to an accuracy which is enooigbgroduce the Les
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| x || €rel (uv) | €rel (dv) | €rel (E) | €rel (d + ﬁ) | €rel (3 + e§) | €rel (g) |
Niter =6
1077 [] 22107° [81107° [ 49107° 1.5107° 1.2107% [ 2.2107°
107% || 6.3107% | 3.2107% | 9.810°° 1.110°° 54107% | 3.0107¢
107° 1.8107% | 1.4107° | 8.3107° 3.010°¢ 36107°% | 1.410°¢
1074 ] 31107° | 1.6107° | 3.6107° 4.3107° 3.3107° | 3210°°
1072 || 1.8107% | 1.2107% | 5.9107° 58107 89107 | 3610°°
1072 || 2.8107° | 1.5107° | 4.7107° 4.3107° 46107° | 8.2107°
0.1 32107% | 1.3107° | 3.010°¢ 9.4107¢ 21107° | 511077
0.3 1.9107% | 2.4107% | 6.5107° 1.0107° 32107°% | 26107°
0.5 1.701075 | 1.3107° | 1.5107° 1.3107° 3.0107% | 351076
0.7 7.0107° | 8.0107°% | 5.9107° | 8910°°¢ 2.4107°% | 9.910°¢
0.9 1.4107% | 6.2107% | 1.3107° 7.4107% 1.8107% | 5.1107°
Niter =4
1077 || 421072 [ 451072 ] 5.11072 511072 511072 [ 5.11072
1076 1.61072 | 1.81072 | 2.41072 2.31072 241072 | 251072
107° || 491072 | 441072 | 871072 | 83107° 871072 | 9.61072
107% || 2.3107% | 221072 | 3.91073 3.71073 391072 | 441073
1073 1.1107% | 6.7107* | 3.51073 3.01073 341072 | 461073
1072 || 151072 | 85107* | 341072 | 271073 3.7107% | 551072
0.1 39107°% | 1.3107% | 4.310°° 1.1107° 2.4107°% | 1.0107%
0.3 1.9107¢ | 2.6107° | 6.610°° 1.6107° 59107% | 7.11077
0.5 1.6107° | 1.1107° | 1.4107° | 2.0107° 58107% | 3.3107°
0.7 6.8107° | 1.2107% | 5.7107° 6.510° 46107° | 34107°
0.9 1.4107° | 5.1107° | 1.6 107° 6.4107* 1.71072 | 1.2107*

Table 4.1:Comparison of the accuracy of our PDF evolution with respetie Les Houches
benchmark tables for different PDF combinations at NLO & ZM-VFNS. We show results
for two values ofNic.r, Which define the number of points over which the Gaussiagnations
are performed, as discussed in the text. The number of Gawugsints in each interval is set to
Npts = 4

Houches tables witlD (10~?) precision for all values of;, which is the nominal
precision of the agreement betwad@PPET andPEGASUS. In the lower part of Ta-
ble[4.] the accuracy results for the actual parameters venebsed in the NNPDF1.0
fit [68] are shown. An integration with 128 points, corresgingy to Nii., = 4, pro-
vides a sufficient accuracy, considering the typical sizebath experimental and
theoretical uncertainties.

The main point to keep in mind is that in this approach, foheaeasurement evalu-
ated at a different value aof, the grid determined by the distribution of the Gaussian
points is different. Therefore, the computational costéases linearly with the num-
ber of data points included in the analysis. This slows ddverfitting procedure and
makes it practically impossible if a double convolutionnisalved, as in the com-



150 Chapter 4. The FastKernel Method

putation of Drell-Yan or Jet observables. This problem isesb by the FastKernel
method, discussed in Sect. 5.2, where instead the samesgridd independently of
xZ.

4.1.4 Hard cross-sections and physical observables

To determine the input PDFs, we must compare the predictibtaned with them to
the experimental data. This involves convolution of theles PDFs with the hard
coefficient functions defined in Eq._(4.1). This may be donetedficiently by pre-
computing the hard kernels Eq._(#.5), which may then be dot®o with the initial

PDFs as in Eq[{4l4). In Mellin space

Krj(N,as,a?) =3 Cri(N, 0s)lii (N, ag, a2), (4.18)
k

so the most efficient procedure is to compite; (N, as, a?), and invert the Mellin
transform using a formula corresponding to Eq. (#.10), i.e.

fC 27rzx_NKIJ(N 0557060), if J= TV,

4.19
deN 7NKIJ(N—1,045,0¢2) it 7=2X,9. ( )

Kfj(waO%WaO) {

The convolutions may then be performed using formulae aintd those used in
Egs. [41b[4.36), writing";(z,Q*) = 3, Fr;j(z,Q?), for the nonsinglet contri-
butions (i.ej =1,V)

Frj(z, Q%) <f€1j(0<s,040) /IdyKIJ(yaaéa )) fi(,QF)

+

/:i Krj(y, as,a)) <fg <§,Q8> —yfj(:c,Qg),> (4.20)

while for the singlets (i.ej = %, g)

Fiy (. Q?) @MM%A@MWM,OMMM

+

1
/%%w%>@@m}ﬁwmwun



4.1. Hybridz-N space solution of DGLAP equations 151

where

fO dl’K[](ZE Qg, O ) KI_](N Qg, 0)|N:17 if j:Tv‘/v
fo drx Krj(z,as,0%) = Kr;(N, o, %) | y=2, it 7=2%,9,
(4.22)

mj(as,ao) {

are all finite constants. The convolutions in Egs. (M.200)¥a2e evaluated in the same
way as those in Eqd. (4115, 4116), i.e. with all the kernedsqumputed.

As anillustration, let us consider one of the observablefithe neutral current DIS
reduced cross section, given by

¥ ExFPfVC _ y_QFNC

~NC,et NC 2
O— ’ = F (:1:7 Q ) )

(4.23)
with Yo = 1 + (1 — y)2. In the above equatioF N is given by the sum of thé
andF?Z, whose leading—order expression are defined in Eqs.](1.28) tespectively.
In terms of the PDF evolution eigenstates Eqg. (11.58)

1 1
¢ = z{EIS+ EX(Ts + g(T8 —Ts) + g(T24 —T35))}, (4.24)
_ _ 1 1
F§C = ESV+ENS(V3+§(V8—V15)+3(V24—V35))a (4.25)

where the charge coefficients

5 1
Ef = +3ButBa),  Bfg=g+

S %(Bu 7Bd)7
Eg = 3(Dy+D4),  Eys=3%(Du—Da), (4.26)

are combination of the coefficienfs; and D; defined in Eq.[(1.30). In perturbative
QCD the reduced cross sections are written as

GO = a{(C5, — £C; )@ BIS + Ey(Cag —4-Cry) ® g
2
+(Cayq = $£-CLq) ® (Bs(Ts + 5(Ts — T1s) + 5(Toa — T3s))),
Fy-Ca,q ® (BsV + Exg (Vs + (Vs = Vi5))), } (4.27)
whereVy, = Va5 =V, and

By = (e3) + (By), (4.28)
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2 (Bu+2Bq), if ny=3,
nf 1 .

LB, + By, f =4,
e DI TR (4.29)

et 1 (2B, +3By), if ny=5,

1(B,+Bg), if ny=6.

In terms of hard kernels, the cross section is given by
~NC,ot

SNC, = z{Kncy ® X0+ Kne,g ® 90 + Kxc+ @ (Ts0 + 5 (Ts.0 — Ths,0))

FEne,w @ Vo F Kne,— @ (Vao + 3(Veo — Vise))},  (4.30)
where in Mellin space

Kxcn(N) = (C54(N) = 4 C 4(N)ESTE (N) + Ey(Ca,g(N)
—3Cr g (N)TE(N) + 2(Caa(N)
— O (N)) B (T3 (N) = T (),
Kxcg(N) = (C54(N) = 4= Cpo(N)EETE(N) + Ey(Ca,(N)
— £ CL g (N)TE(N) + 1(Ca(N)

2
—$-COLq(N) Exs (T (N) = Tg(N)),

2
Enct(N) = Bs(Coq(N) = 4 Crg(N)TEs(N),
Excv(N) = Eg3=Cag(N)Tks(N)
Knc,-(N) = Exsy=Csq(N)Txs(N). (4.31)

The same procedure has been applied to all other DIS obdesvabluded in the fit.

4.1.5 Target Mass Corrections

Among the theoretical errors discussed in Chap. 3, theraigter twists and target
mass corrections. The former are related to the power seggietermsO(1/Q?)
which are ignored in the leading—twist picture of the faisation theorem. Physical
observables are computed using the leading twist periorbitteory, and higher twist
corrections are kept under control by the choice of a redftifiigh kinematic cut, as
discussed in Chap. 4. Target mass corrections (TMCs) id&teap into account the
finite mass of the target in a fixed—target experiment, whéchxplicitly written in
Eqg. (I.I5) in the terms proportional fd . Often the mass of the nucleon is ignored
in the computation of the structure functions, but this agpnation is accurate only
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for Q2 > M?%, which is not always true, especially when the mass of thgetas
large.

Since the corrections due to the finite mass of the targetfgmarely kinematic origin
and can be determined exacfly [160], we can easily inclueiatim the computation of
DIS observables. One way to implement them, as in Ref. [@8]sists in rearranging
the target mass correction so that it is explicitly factedignto the hard kernel, and can
thus be pre-computed along with the perturbative evolwiwh coefficient functions.

As an exanlple, let us consider the structure funcfisfr, Q?). From Eq. (4.19) of
Ref. [160], F» at twist four is given in terms of the leading twigt by

$2 Fg(f Q ) M]2VJ}

Fy(6,Q%) = R e +6—5 0° 7 —h(EQ%), (4.32)
where
4AMZ a2 2
T=1+ 0 §:1+\/F’ (4.33)
My is the mass of the target, and
B0 = [ % R Q) (439

Taking Mellin transforms with respect towe get
Z / ENCy (N, a0) f5(N, Q%), (4.35)

while

1
12<N,Q2>=/0 d«ssN*L % By (2. @),

N 1 2
B } b [ nee),

1
= —F(N -1,Q%
N 2( aQ)7

SO

/ N &Y Fy(N, Q%). (4.36)

d N
ne@) = [ RS R0-Le) - [

1127 N

J\ml»—l



154 Chapter 4. The FastKernel Method

Now, by substituting Eqs[{4.8B5, 4]36) into Eg. (4.32) weadrt

- B 2 6M2 3
F2(£7Q2) = / 2_7”€ <T3f2§2 + Q2N 6:3_2 (N+1 )ZC2] N as)fJ(N Q )
(4.37)

We can reinterpret the factor in front 6% ; (IV, a5 ) as the new target mass corrected
coefficient function:

~ (1_,’_7.1/2)2 3(177_71/2)
CQJ(N,O[S,T) = 1732 1+ N1 CQJ(N,O[S). (4.38)

The target mass corrected hard kernel is then simply

KFQ] 5,065, Z/ _5 NCQ k(N Qg, T )ij(N7f¥57ag)- (439)

27

The same procedure may be applied to find the target masston®to theF; and
Fp, structure functions. FaF3 we have

2 2 2 1
$F3(§€Q)+4g/[21v 72/2/ %Fg(Z,QQ), (4.40)

z
whence we deduce the target mass corrected coefficientdanct

F3(6,Q%) =

~ 1 1/2 1 —1/2
Cs (N, 05, 7) = +27 (1 n 2%) Cs;(N, ), (4.41)

p
and thusf{g_,j(g, as,a?) using an equation analogous to Hg. (4.39). Finally,

22(1 - 7) Fy(&,Q%) MZQV x (3

Fule, @) = Fulo, @)+ T DS P T 02D 6 02), aa2)
whence
Cr(N,as) = Crn(N,as)+
(L4722 -7) B-na+77%) 1
473/2 (1 B 472 N+ 1)
xCo(N, ). (4.43)

Note that in the limitM % /Q? — 0,7 — 1, — z, and therefor@;ﬂj(N, O, T) —
C[J(N, Oés), andK],j(f, O, Oég) — K],j(l’, O, Oég) for each ofl = 2,3, L.
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The implementation of target mass corrections sketchedeabasily matches the
approach based on the Mellin space computation of the hartekand the pre—
computation of theirr—space Mellin transform. The effect of the inclusion of &irg
mass corrections is most enhanced at siélland larger, as expected, yielding a
contribution of 3-4% at most.

4.2 The FastKernel method

The method described earlier requires a specific grid fon eéterent experimental
measurement performed at a different valuecofFor hadronic observables, which
depend on two PDFs, a double convolution must be performed.niain bottleneck
of the method is the computation of these convolutions, whgght end up being too
slow for a parton fit. In the FastKernel method, introduce®éf. [71], the convolu-
tion is sped up by means of the use of interpolating polyntsnthereby leading to
both fast evolution and fast computation of all observafdesvhich the kernels have
been determined.

The introduction of the FastKernel method in the NNPDF2.8lgsis enabled us to
use in the fit an exact computation of the Drell-Yan (DY) psscewhich in other
current global PDF fitd [42, 43] is instead treated using-gactor approximation to
the NLO (and even NNLO) result, due to lack of a fast—enougtiémentation.

Several tools for fast evaluation of hadronic observabksgbeen developed re-
cently, based on an idea of Ref. [161]. These have been ingpitd for the case
of jet production and related observables in the FastNL@é&work [162]. More re-
cently, the general-purpose interface APPLGRID based ersdéime idea has been
constructed[163]. Also, the method has been used in thefagtace DGLAP evolu-
tion code HOPPET[159]. The FastKernel method developecin|R1] is based on
similar ideas, and it allows for the first time the fast andumate computation of fixed
target Drell-Yan and collider weak boson production cressisns.

In the following section | present a description of the nexatsigy used to solve the
PDF evolution equations in the NNPDF20 analysis [71]. Théurh to the associ-

ated technique to compute DIS structure functions. Finadliscuss how analogous
techniques can be used for the fast and accurate computéditi@alronic observables.
Although the method is completely general, for simplicityestrict the discussion to
the Drell-Yan process, since for inclusive jets FastNLO b& used instead [162].
As far as notation is concerned, in the following | use theeind to denote both

the kinematical variables which define an experimentaltp@in@?) and the type of

observable, while in the previous sectibmwas only labelling observables.
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4.2.1 Fast PDFs evolution

We have seen that, I, is the matrix of DGLAP evolution kernels ar(d;, Q%)
defines the kinematics of a given experimental point, one writg the PDF evolved
from a fixed initial scale)? to the scale of the experimental point as a convolution
between the evolution kernels and the initial scale PDFs,(E§). In the method
drawn in Sect. 5.1, the integral in EQ._(4.3) was performedenically by means of a
Gaussian sum on a grid of points distributed betwegrand 1, chosen according to
the value ofr;. The point here is to use instead a single gridjindependent of the
xy value. | label the set of points in the gridagsby o = 1, ..., N, with

Tmin =1 <22 < ...<zn,—1 <N, =1.

Having chosen a grid of points, we define a set of interpagafimctionsZ(®) such
that:

T(z,) = 1

I(O‘)(xg) = 0,0#«

N

Y Iy = 1, (4.44)
a=1

Anillustrative example is given by the basis of functionawln in Fig[4.2 and defined
as

B () = T2y )y 1))+ e~ ) ()
(4.45)

Each functionE(®) has a triangular shape centredszig and it vanishes outside the
interval(z,_1, za+1). FOr anyy, only two triangular functions are non zero and their
sum is always equal to one.

With a general interpolation basis, PDFs at the initial scain be approximated as

Fe@Q) = 1) = > @) T W) + Ol@ars — 7a)], (4.46)

1

x

(03
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Figure 4.2: Set of interpolating triangular basis functiofihe corresponding analyti-
cal form is given in Eq[{4.45).

wherep is the lowest order neglected in the interpolation. Plugdty. [4.46) into
Eq. (43) and dropping for simplicity the dependencéXjrand@?, the latter becomes

, Npdt Ny ' dy o "
fj(thI) = fj(xl) = Z Z fk aca / —F]’k (—) A (y)
k=1 a=1 rr Y Y
+0[(Ta+1 — Ta)”]
pdf Ny
fi(z1 Z 505 IR (2a) + Ol(Tasr — za)P], (4.47)
where
~J 2 02y =4l — dy ()
O—ak(xfa QO’ QI) Onk = y ij y vA ( ) (448)

In Eq. (4.48)I specifies the data point, runs over the points in the-grid and(j, k)
run over the PDFs that evolve coupled to each others. Hawviecpmputed théij,;
coefficients for each point, the evaluation of the PDFs only requir®s evaluations
of the PDFs at the initial scale, independent of the pointhitivthe evolved PDFs
are needed, thereby reducing the computational cost ofigonl
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Figure 4.3: Set of interpolating Hermite cubic functionshe [0,1] interval.

If the interpolation is performed on a more complicated detuactions than the
triangular basis Fid._4].2, better accuracy can be obtairiddavsmaller number of
points and thus the computational cost may be further retiuesr PDF evolution, in
Ref. [71] the cubic Hermite interpolation drawn in Hig.14r8 ased. With this choice,
for each intervay € [z, z4+1) the function to be approximated can be written as

L) = hoo)fY(za) + hio(t)hama + hot () f2(zat1) + hi1 () haMat1
+O[($Ol+1 - l’a)4],

where

he = g(ma-i-l) - g(wa)v = M (4-49)

andg(y) is a monotonic function in [0,1] which determines the disition of points in
the interval (linear, logarithmic, etcs);,, andm,, 1 are derivatives of the interpolated
function at the right and left—hand side of the interval, ethtan be defined as finite
differences:

folra)=filrans) 4 BGas)=RGo)  foro < o< N, 1

My = fl[c)(IaJrlh)*f/S(Ia), fora=1 (450)

£ ()= O (za1)

- , fora = N,.
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Finally the functions: are the 3'—order polynomials drawn in Fig._4.3 and defined as

hoo(t) = 262 =3t +1=(1+2t)(1—1t)? (4.51)
hio(t) = 3 =2t +t=1t(t—1)2

hoi(t) = —2t3 +3t* = t3(3 — 2¢)

hii(t) = 2 —t2=t*(t—-1)

Collecting all terms, Eq[{4.49) becomes

W) = f@aa1) AYY) + f(2a) B () + f(2at1) C¥(y) (4.52)
+ R (@asr2) DY) + Ol(@as1 — a)’].

Hence the function, at any given poinis obtained as a linear combination g at
the four nearest points in the grid. The coefficients of suwahlmination are given by:

A (y) = {0’ fora =1 (4.53)
—hio(t) 2=, fora #1
hoo(t) — hao(t) — 2Ll fora =1

B@ (y) = { hoo(t) — 8@ (1 — e ) —hai(t), fora=N,—1
hoo(t) — 8@ (1 — cha ) P = for o £ 1, N, — 1

2 hat1

ha+1

) (y) = < hoy t) + h11(t) + hao(t) fora =N, —1
hoy (1) + 2@ (1 _ ha ) + @ forg £1,N, — 1

ha+1

(
(
hou (t) + M1l (1 — e ) + hio(t), fora=1
(
(

D@ (y) = 0, fora=N, —1
hll(t)tha—aﬂ, fOfOé?észl

Substituting Eq.[(4.33) into the integral for the evolutafithe PDFs and labelling by
¢ the index such that

Te < wp < Teyt,
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theé coefficients are rewritten as:

f;[€+1 %y Tk %I A©)(y), fora =¢,
f;‘[&+1 d?y T, B© (y)
(N, — (€ + 2) Jrerz Wy (B1) AEHD(),  fora=¢+1,

Jrern dupy, ( ) Cc© (y)

v

_ [re+z dy T &+ (y
B (N — (€ +2)) [7652 ¥ Ty B
Tar = 0Nz — (6+3)) [757 d;’F K 71 A+ (y) fora=¢+2, (4.54)
O(Ny — (I =1)) frot dyF ()

FO(Nz —a) [ 2— j C o 1)(y

+0(Ny — (a+1)) [ “aﬂ d“ r B@)(y

+6(Nz — (o +2)) ;‘;ﬁ dy“ Tk E ; A<a+1> foré +3<a < Ny+1,
0 fora < €.

Despite the complicated bookkeeping, these expressionseaasily pre—computed
and input into the fit.

A final remark: because of the divergent behaviour of:thepace evolution kernel

in z = 1, as we have already seen in Eg. (4.11), the integrals imujudi in the
integration interval need to be regularisedyin- z;. If one considers for instance
the first integral ofA(®) in Eq.[4.5%), one may perform the same subtraction as in
Egs. [4.11) in order to have a finite expression of all preastebcoefficients:

7

[ret iup (%1> A® (y )

= e (%) (A9) - $A0En) + A9 [160 B ()
= It (3) (4900 - FA9@)) + A0@) [, dTan()
=L (3) (490 - 349 @)

+A© () [T (N, — 774 d2Tiu(2)]. (4.55)

As a result alls are regularised; they can be stored once and for all for eguérie
mental point, as they do not depend on the PDF at the inite#désc

4.2.2 Accuracy of the fast PDFs evolution

The accuracy of the PDF evolution code described above, éas determined by
benchmarking against the Les Houches PDF benchmark tahl&ablel4.? the rela-
tive difference for various combinations of PDFs betweenRIDF evolution and the
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benchmark tables of Rel. [101] at NLO in the ZM-VFNS, for #amifferent grids

is shown. In each grid, the intervath,;,, 1] is divided into a logarithmic region at
small= and a linear region at medium—, high—The choice of a relatively small
grid of 50 points leads to reproducing the Les Houches tabl#san accuracy of
O(107%), more than enough for the precision phenomenology one aiasd better

than the accuracy displayed in Tablel4.1.

4.2.3 Fast computation of DIS observables

Using the strategy described in the previous section, oneesaaily write down the
expressions for the DIS observables included in the fit advsxplicitly how their
computation works on the interpolation basis. The basia idethat, starting with
the standard factorised expression, the coefficient fanc¢ti, may be absorbed into
a modified evolution kernek(;;, defined in Eq.[(4]5). The kernel acts on theh
PDFs at the initial scale, and it is an observable—depenruesar combination of
products of coefficient functions and evolution kernelsjtdss been shown in the
explicit example of the neutral current reduced cross eectiq. [4.311). Substituting
Eq. (4.4Y) into the expression for the observable, therlatta be written as:

Npar N, 1
d T o
o (2@ = Y ff(ma)/ Y K (—I) T(y) (4.56)

=1 a=1 ar Y Yy
Npas N,

= fjo(woz) &aj + Ol(war1 — za)?],
j=1 a=1

where

1
o1 (21, Q2. Q3) = 6L, = / %KU (%,aS(Q%Las(Q%)) I()(y). (4.57)

Now the only index running over the PDF basisjibecause the other indéxis
contracted in the definition of.

Consider for example the expression for the deuteron streétinction. We can write
down explicitly the terms of Eq{4.57) as:

Ny
FQd(‘TIv Q%) = Z O—il() flO(za)JFJil fl(za>+‘7£2 f2(za) +O(Tat1 — 7a)],

a=1

(4.58)
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| X (30 pts) || €rel (uv) | erel(dv) | erel(z) | €rel (g) |
1-1077 | 25-107% ]| 35-107* | 21-107* | 2.1-107*
1-107% || 16-1073 | 1.5-1072 | 2.3-107* | 2.5-107*
1-107% || 1.5-1073 | 1.4-1072 | 2.5-107* | 2.8-107*
1-107% |/ 6.5-107* | 5.1-10* | 3.0-10* | 3.4-10~*
1-1072 || 6.5-107% | 4.7-107* | 34-10"* | 3.9-10~*
1-1072 || 14-1073 | 1.9-1072 | 34-10"* | 5.3-10~*
1-107! || 70-107% | 1.0-1072 | 1.1-10~* | 4.1-10*
3-1007! || 1.9-107® | 86-107° | 1.3-107° | 5.8-107°
5.107' || 1.5-107* | 1.8-107* | 1.0-107* | 1.1-10~*
7-107! || 3.8-107%(39-107®|31-107% | 2.8-107*
9-107! || 85-1072 | 9.5-1072 | 3.4-107% | 2.0- 102

| X (50 pts) || €rel (uv) | erel(dv) | e1rel(2) | €rel (9) |
1-1077 [ 21-107%]23-107*]27-10"° [ 4.7-10°6
1-107% || 89-10°| 84-107° | 3.0-1075 | 2.1-107°
1-107°% || 9.3-107° | 6.0-107°® | 2.3-1075 | 2.0-107°
1-107* || 45-107% | 2.8-107° | 44-1075 | 4.2.107°
1-1072 || 3.0-107% | 1.7-107® | 4.0-1075 | 3.5-107°
1-1072 || 79-107° | 6.8-107® | 4.5-107° | 5.8-107°
1-107! || 1.7-107% | 2.1-107* | 1.6-1075 | 3.9-107°
3-107' |1 9.1-107%(39-107°|1.1-107° | 1.9-10"7
5-1071 || 24-107°% | 2.2-107° | 2.2-107°% | 2.2-107°
7-107' |1 9.1-107%|15-107°| 7.8-107° | 1.2-107¢
9.107! || 1.0-1072 | 3.3-1073 | 8.0-107* | 2.8-1073

| X (100 ptS) || erel(uv) | erel(dv) | e1rel(2) | erel(g)
1-1077 32-107° [ 5.0-107® [ 54-107% [ 2.0-10~°
1-10% || 26-107%]1.3.-10%|57-1076 | 5.9.10°°
1-107° 1.1-107% ] 2.2-1075 | 3.7-107% | 1.0-107°
1-10~4 1.8-107°]33-107% | 1.3-10° | 6.9-10~F
1-1073 1.3-1076]49-107% | 4.7-1076 | 7.7-107
1-1072 1.6-107% | 1.7-107° | 4.8-1076 | 1.1-107S
1-1071 34-107°129.107% | 8.7-107% | 2.1-10°6
3-101 2.0-107%|25-107% | 79-107% | 3.9-10°6
5-101 1.7-107% | 1.3-1075 | 1.7-107% | 3.1-107°
7-1071 71-107°|83-107%|6.3-107° | 1.3-107*
9.1071 3.9-107° | 3.8-107* | 2.5-107° | 1.7-1073

Table 4.2: Relative accuracy of FastKernel evolution coregdo the Les Houches
benchmark tables for PDFs evolved to the s¢ate= 10* GeV2. The interpolation is
performed on cubic Hermite polynomials and the grid is cogsauloof 30 points (top),
50 points (middle), or 100 points (bottom), distributeddathmically in the smalls
region and linearly in the medium— and largeegion.
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with
a0 =y, W (Co0lT) (%) @) (y)
ot = [l [ (Cog o179 (5) 4 (Cag 0 T20) (2)
,% (027,] X I‘35,q) (Iy_l) + (02 ® FS,qq) (:61)

5
18
~cy(ny) (Cag @ TS99) (2) 1760 (y)

g = [l W=k (Cog @79 (5) + 3 (Cog @ T29) (%)
35 (Caq @T%9) (2) 4 & (Co @ TS99) (1)
—cy(ny) (Co,g @TS97) (&) 7€) (y) (4.59)

where all kernels and coefficient functions are defined in &3] and f{, = T5.o,
f2 =Yg andfy = go, in the evolution basis of Eq.{1.58). The same procedure may
be applied to any other DIS observable and similar exprassice obtained.

4.2.4 Fast computation of hadronic observables

The FastKernel implementation of hadronic observablegireg a double convolu-
tion of the coefficient function with two parton distributis. We could follow the
same strategy used for DIS: construct a kernel for each wliskerand each pair of
initial PDFs, and then compute the double convolution wiuiable generalisation
of the method introduced in Sect.412.3. However, for haidrohservables, we adopt
a somewhat different strategy, which allows us to treat iroaensymmetric way pro-
cesses for which a fast interface already exists (such gsgat those (such as DY)
for which we have to develop our own interface. Namely, iadtef including the co-
efficient function into the kernel according to Eq. (4.57% @ompute the convolution
Eq. (4.1) using the fast interpolation method.

To see how this works, let us consider first the case of a psogik only one parton
in the initial state. Starting from Ed.(4.1), we can projtbet evolved PDF, onto an
interpolation basis as follows:

Npar Ny 1
d
o (21,Q3) = Z fk(ya,Qf,)/ ?yclk (%,as(cﬁ)) T%(y)
k=1 a=1 T

+ O[ Yat+1 — ya)q]a (460)
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wheregq indicates the first order neglected in the interpolationhef ¢volved PDFs.
This defines another grid of point§y, }, upon which the coefficients can be pre—
computed before starting the fit:

La
| w2 a@h) 20 = i (4.61)

If, on top of this interpolation, we interpolate the partastdbutions at the initial
scale on thqz, } grid as we did in the previous subsection, we get

2

pdf N

oS (21,Q7) = ZZ (Yo, Q) Cfiy + Olyas1 — ya) ] (4.62)

o~
3 i
a o~
&

Nz

O 6 5im I (x5)

|
il M
i ME

+ Ol(Ya+1 — Ya) (xp4+1 — 5)"].

Notice that the two interpolations are independent of edebroThe number of points
N, andN, in each grid, the interpolating functions, and the inteatioh orderg and
q are not necessarily the same.

We now may apply this to the rapidity—differential Drell+Yaross section to exem-
plify the procedure. The NLO cross section is given by

doPY 4ra? Ya 2/1 /1

—_— = — e dz dx 4.63

dQ2dY7 9Q§s; 7 o 1 . 2 (4.63)
{ (4 (z1, Q1) Fj (22, Q) + g5 (2, Q7) G (1, QT)] (DY (21, %2, Y7))

+9(z1,Q7) [0 (22, QF) + G (22, QT)] (D*Y (a1, w2, Y7))
+g(x2,Q§) [qj(xleg) + %(ZEl,Q?)} (Dqg(xhx%y})) }7

where the coefficient functions can be found in Refs. [165].16

For each point of the interpolation grid, we define a set ofHslimensional interpo-
lating functions as the product of one—dimensional fumtidefined in Eq[{4.44):

TP (21, 20) = T (21)TP) (22). (4.64)
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The product of two functions can be approximated by meantesé interpolating
functions as

Ny
Fyhly2) = > FWra)h(yz,s) T (y1, y2)
a,B=1
+ Olyr,a+1 — ¥1,0) (Y2,841 — Y2,8)%] (4.65)

Applying Eqg. [4.65) to the PDFs in Ed.(4164), we get

doPY &l N
aQ2dy; QDY er > [4/(W1.a)T(y2,8) + G (y1,0)85(y2,8)] (4.66)
I j=1 a,p=1

1 1
/ dwl / dng( )($1 $2) qu(l‘l,l‘g,Y})

0
1

1 1
+[9(y1,0) (45 (y2,8) + @5 (y2,8))] , 41 / dzy Tt (@1, 22) D&Y (w2, 21, Y7)

= NOo

+[9(W1.0) (g5 (Y2.8) + @i (y2.,5)) / dxy / TP (w1, 19) D&Yy, 20, Y1)

+O[(yl,a+1 —y1,0)" (V2,841 — Y2,8)"],

where at next—to—leading ord&%8(xy, zo,Ys) = D%Y(xq,x1,Y7). Therefore, we
can define

1 1
C}O;’jﬁ) = / drq / dach(o"ﬂ)(acl,xg) D(xy,29,Y7), (4.67)
7 f 9

wherei, j run over the non—zero combinationsgf andg. By substituting them into
Eq. (4.67), we end up with the expression

do™Y al e _ _
0%y, n(@QDY e 3 P (g (51.0) (y2.8) + G (41.0) 05 (y2.6)]
I

j=1 1

Toq [9W1,0)(q5(y2,8) + @j(y2,8))]
+C D 1(g5(r.a) + T (1.0))9(y2,5)

a,B=

C(Of B) [
[ 2,8

+O0[(W1,0+1 = Y1,0) (Y2,841 — ¥2,8)"], (4.68)
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which is the analogue of Eq.{4]60) for a hadronic observaliie physical basiég} ;
and the evolution basisf }; are related by a matrix:

Ajrfr (jj :Ajsfs-

Each PDFf is evolved at the physical scale of the process, and the tewolnatrixI’
which relates the initial scale PDFs to the evolved ones is

f7'('r7 QQ) = F,-n(l’, Q(Q)a Q2) 2y fn(wa Q(2))

Therefore Eq.[{4.68) becomes

doPY 2 al 2 o .B) A
Qv n(@Q@ND ed D D O (A Ajs + AjrAsy) Fr(y1,a) f(y2,8)
J=1 a,f=17r,5=1
[0535)5r2(141s + Ags) + CD (Agr + Ajs)quz} (4.69)

X fr(y1,a) fs(y2,8) + Ol(y1,a+1 — Y1,0)* (Y2,841 — ¥2,8) ]

Defining
Nq
Crs = e (Ajr Ajs + AjrAjs) (4.70)
j=1
Nq
drs = 63 [57«2(14]5 + A]5> + (A]r + A]r)(ssQ}
j=1

and applying Eq[{4.47) to the evolved PDFs, we end up withsaltevhich is similar
to Eq. [4.68):

dO'DY Npar Npar (o8) 1. BI
CLASE D 3 3l Dol seacria ) @)

v,60=11l,m=1 “a,f=171,5=1

I,9q I,q9 'yrl dsm

HdrsCSD) 4 dy Ol 6165 } 1 (@1,0) 15 (@2,6)
+O[(Y1,a+1 = Y1.0) (Y2841 = ¥2,8) (T1,741 — T1,5)" (T2,641 — T2,6)"].
In order to define the coefficients in Ef.(4.71), we have toerakexplicit choice of

an interpolating basis. For the interpolation of the evdlP®Fs we use the triangular
interpolating basis drawn in Fif._4.2 and defined in Eq. (%.450jecting the PDFs
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on the triangular basis,we get

N{l?
q) =Y _ aa) EY) + Ol(yat1 — ¥a)’]
a=1
and define
1 1
c§?;?=/ d:cl/ dz B (21) B (22) DI (21, 22), (4.72)
’ 9 9

whereK indicates the perturbative order aind run over the non-zero combinations
of ¢, g andg. To be more explicit, defining the indéxand( in such a way that

T < z) < Tet1 e < x5 < T4, (4.73)

we can give the precise definition of the NLO coefficients:

;U““ dz1 fzoﬁ“ dwa B (21 E<’8)(9€2)D§fo(9€1,x2), a=&E+1,8=((+1
;;““ dz Z?;ff dzo B (1 E(ﬁ)(xz)DS;{)(xl,m), a<é+1,8>¢+2,
CR = Szt da JI e B (@) B® (@)D (@1,2), a>64+2,8<C+1,
JEethdey [2241 doy B (21) B (22) D[ (a1,22), a2€+2,82C¢+2,
0 a<E—1,8<C—1.

)
)
)
)

The expression for the LO is trivial, given tthlg) (r1,22) = 6(z1 —29)5 (22 — 29).

The FastKernel method for hadronic observables is ead#yfaced to other existing
fast codes, such as FastNLO for inclusive jéets [162], by simping FastKernel for
the interpolation at the initial scale and parton evolutiand exploiting the existing
interface for the convolution of the evolved PDF with the eypiate coefficient func-
tions. In the particular case of the inclusive jet measurgsmesed in the present anal-
ysis, the analogues of the coeﬁicieﬂéf;f) in Eq. (4.71) can be directly extracted
from the FastNLO precomputed tables through its interfaltepugh in such case the
relevant PDFs combinations are different than those of t@idcess Eql{4.68).

4.2.5 FastKernel benchmarking

It is straightforward to extend the FastKernel method dbedrin the previous sec-
tion to all fixed—target DY and collider vector boson prodeistdatasets using the
appropriate couplings and PDF combinations.
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In order to assess the accuracy of the method, | have benkbdtie results obtained
with our code to those produced by an independent dode [16&Jmcomputes the
exact NLO cross sections for all relevant Drell-Yan disttibns. The comparison is
performed by using a given set of input PDFs and evaluatiagahious cross—sections
for all observables included in the NNPDF20[[71] fit in theédmatical points which
correspond to the included data.

The benchmarking of the FastKernel code for the Drell-Yascess has been per-
formed for the following observables:

e The rapidity andr  distributions and asymmetries for fixed target Drell-Yan in
pp and pCu collisions (E605 and E866 kinematics)

e TheW rapidity distribution and asymmetries at hadron collid@es/atron kine-
matics)

e The Z rapidity distribution at hadron colliders (Tevatron kinaties)

The results of this benchmark comparison are displayedgrid4, where the relative
accuracy between the FastKernel implementation and thet erde is shown for all

data points included in the NNPDF2.0. This accuracy has be&ined with a grid

of 100 points distributed as the squared root of the logarfitom x,,,;,, to 1.

Itis clear from Fig[ 4.4 that with a linear interpolation fmed on a 100—points grid,
we get a reasonable accuracy for all points, 1% in the worse, aghich is suitable
because the experimental uncertainties of the availaliéesets are rather larger. This
accuracy can be improved arbitrarily by increasing the nemab data points in the
grid, with a very small cost in terms of speed: this is demmtst in Fig[4.b, where
we show the improvement in accuracy obtained by using a §%®0 points.
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Figure 4.4:Relative accuracy for NLO Drell-Yan rapidity distributiomising the FastKernel
method, compared to the code [of [166], as a function of rgpidi Each point corresponds to
the kinematics of a data point included in the NNPDF2.0 fite Hecuracy refers to a grid of
100 points distributed as the squared root of the logarittem fc i, to 1.

1072 .
[ FastKernel METHOD
L+ o+ ¥ a a o o o o
+ D e o o
L +
+ +
1072 -
10™ | —
- + E605
[ E886
[ O Wasy
L Zrap
PSR T T T (ST ST ST ST S SN T T T S N S S S S N
0 0.5 1 1.5 2
y

Figure 4.5:Same as Fid._414, for 40 points in the kinematical range eal/by the data points
included in the NNPDF2.0 fit, using a grid of 500 points dlatited as the squared root of the
logarithm fromamin to 1.
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Chapter

Application of the NNPDF
method to phenomenology

In this chapter lillustrate three phenomenological stsderied out by exploiting the
NNPDF method. First | present the determination of the gearontent of the proton
formulated in the NNPDF1.2 analysis. With PDF uncertasitinder control, detailed
precision physics studies become possible: the NNPDFIit2rpanalysis leads at
the same time to the solution of the NuTeV anomaly and to theipe determination
of the|V_,| and|V.4| elements of the CKM matrix. Secondly, | discuss the effect of
the combined PDF and strong coupling uncertainties anditheiact on the standard
candle processes at the LHC. Finally | introduce a reweaigfteéchnique which allows
us to include new experiments into the NNPDF analyses witheed of refitting; in
particular this method is applied to the inclusioni@flepton asymmetry data.

5.1 The strange content of the proton

The determination of the strange and anti—strange quatridigons of the nucleon is

of considerable phenomenological interest, because maalystiates in the Standard
Model and beyond couple directly to strangeness. For instdme determination of

the electroweak mixing angle by the NuTeV collaborationmijgrovide evidence for

physics beyond the Standard Model and is very sensitivestgtifange content of the
nucleon|[167], 168].

However, neutral-current deep-inelastic scatteringchvltionstitutes the bulk of the
data which is used for parton determination, have minimasieity to flavour sep-

171



172 Chapter 5. Application of the NNPDF method to phenomenology

aration, and no sensitivity at all to the separation of quarl antiquark contribu-
tions. As a consequence, until very recently in parton fitthsas CTEQ6.5[41],
MRST2006[[66] and NNPDF1.0[68], the strange and anti—geaquark distributions
were assumed to be equal and proportional to the total ligiij@ark sea.

This situation has recently changed, due to the availglufia wider set of inclusive
neutrino DIS scattering data [169,/88] and, more imporjanfldata for deep-inelastic
neutrino and anti-neutrino production of chatml[89,/17A]X7imuon” data), which
is directly sensitive to the strange and anti—strange patistributions. Indeed, from
Eq. (3.38) we see that the measured dimuon cross—sectioogsentional to the charm
production cross—section. The latter is given by

B 1 d20.1/(13),c
~v(D),c 2y — _— 2 1
o (z,y,Q%) = B, drdy (7,y,Q%) (5.1)
2 2 2
_ G% My i y, 2MR a?y? Ly
2m(1+ Q2 /My, )? Q2 Q
x FY (2. Q%) — 2 FY 7 (0, Q%) £ Yo aFy (2, Q?) |,
where
Q? = 2MyE,zy, Yi=1+(1-y)> (5.2)

We refer to Chap. 2 and 4 for the definition of all kinematicaaqtities involved in
the above equation. The charm production cross—sectiogtésrdined by the charm

structure functiongy ”¢ F* "¢ andzF "¢, which in the quark model are given
by
Fy(,Q%) = aF"(2,Q%) (53)
= 2z (|Vcd|2 d(z) + |Ves|? s(z) + |Ves|? b(z)), (5.4)
F(,QY) = —aFy°(x,Q”)

= 2z (|Vea|* d(2) +|Ves|* 5(2) + [Ves|* b(2)),

with £/ "¢ = 0. Itis clear from the above equation that the dimuon crossicse
provides a direct constraint on the strange and anti—strdigiributions. It may be
explicitly shown that the same constraint, even if weakegiven by the charged—
current observables [68].

As a consequence, dedicated analyses of the strange getiitiudion have been per-
formed [172| 178, 62, 174], and independent parametrisatibthe strange and anti—
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strange distributions have been included in most recembpéits [43]. However, the
method of parton determination used in these analysesd lwasétting the parame-
ters of a fixed functional form, is known to be hard to handlewlexperiments are
relatively unconstraining. Indeed, it is not uncommon tiegt addition of new ex-
perimental information to a parton fit of this kind, actudiads to an increase rather
than to a decrease of uncertainty bands , because the newedaiee the use of a
more general parametrisation. For this reason in most péiteo[43,[42] the strange
is parametrised by a very restrictive functional form, vhiaight bias the result and
artificially reduce its uncertainty. In conclusion, the memess of the experimental
information on these quantities, makes it difficult to sepathe genuine information
from theoretical bias.

The methodology developed by the NNPDF collaboration isipaarly able to deal

with this kind of issues. This methodology is largely freebidis related to parton
parametrisation, and handles in a satisfactory way incetaghformation, contra-
dictory data, and the addition of new data within a singlenieavork. Indeed, in

the NNPDF1.1 analysi$ [69], 74 free parameters were inteddo parametrise the
strange and anti—strange parton distributions and, evixeyf were basically uncon-
strained by data, results are statistically consistent.

In the NNPDFL1.2 parton determination [70], we added the dimdata to the global
deep-inelastic scattering dataset on which the NNPDF1dONIWPDF1.1 fits were
based, and constructed a new parton set including a detationinof the strange
and anti-strange distributions.  In Flg. 5.1 5.2 thér, Q2), s(z,Q3) and
5(z,Q3) strange PDFs are shown at the input scale and compared todsierea
cent CTEQ6.6[[42] and MSTWO08 [43] sets, as well as to the NNPDKet [68].
Whereas the CTEQ collaboration has not performed a fullrdetation of thes™
uncertainty band, a study of the dependence of the best-fitn assumptions on its
functional form was performed in Ref._[62]. We see that indlaga regionz > 0.03
all determinations of* agree, however the NNPDF1.2 has a much larger uncertainty
than other existing determinations.

The origin of this can be understood by looking at Fig] 5.3em@?25 randomly cho-
sen replicas out of the full NNPDF1.2 set are displayed, &editean and standard
deviation computed from them: the large uncertainty is asequence of the great
flexibility afforded by the neural network parametrisatiohhis is particularly no-
ticeable in the case of ", which must have at least one node because of the sum
rule Eqg. [3.311): individual replicas cross theaxis in different places, with different
sign (from positive to negative or conversely), and somécap have more than one
crossing. It is interesting to observe that the “neck” in timeertainty ons— around
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Figure 5.1: From top to bottom, the strange C-even and C-odd combiratitiiz, QF),
s (x, Q%) PDFs, plotted at the initial scatg? = 2 GeV? versusez on a on a log (left) or lin-
ear(right) scale, computed from the NNPDF1.2 seiNaf, = 1000 replicas. The NNPDF1.2
result is compared to the MSTW08[43] and CTEQ6.6| [42] gldital Fors~ some of the
results from obtained the CTEQ®6.5s strangeness sErieafé2]lso shown.
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Figure 5.2:Same as Fidg_5l1 with strangéz, Q3) (top) and anti-stranga(z, Q3) (bottom)
PDFs plotted at the initial scatg? = 2 GeV?.
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Figure 5.3: A set of randomly chosetV,., = 25 replicas of the strange PDRS (z, Q3)
(left), s~ (2, Q3) (right) out of the full set of Fig.5]1, and the PDFs computexhf them.

x ~ 0.1 corresponds to the value afat which the crossing is most likely to occur.
The role played by the valence sum rule EHg. (B.31) in detezthihese features of
the strangeness asymmeitry can be elucidated by repeating the fit without imposing
it. The results, displayed in Fig. 5.4, show that, even wittthe sum rule constraint,
many replicas still cross the-axis.
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Figure 5.4:A set of randomly choseiV,., = 25 replicas of the strange valenge (z, Q3)
out of the full set of FigiL5J1, and the PDFs computed from thetare sum rule Eq[(3.31) is
not imposed during the fitting procedure. Both smal(left) and large« (right) regions are
shown.
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Figure 5.5:2s" (2, Q3) (top), zs ™ (z, Q3) (bottom) PDFs combinations (left) and their abso-
lute uncertainties (right), plotted at the input scglg¢ = 2 GeV? versusz, computed from
the NNPDF1.2 set ofV,e, = 1000 replicas. The NNPDF2.0[71], NNPDF1.2°70] and
NNPDF1.0[[68] distributions and their absolute errors anepared.

Inthe NNPDF2.0 analysis, the Drell-Yan data have been aoidibeé fit. They provide
a strong constraint to the valence—type PDFs, as it was sho@map. 4. On the other
hand, the new parton distributions remain consistent withs¢ determined in the
previous analysis. The same holds for e as it is shown in Fid. 5]5.



5.1. The strange content of the proton 177

‘ NNPDF1.2, Q7 =20 GeV2 N = 1000 | ‘ NNPDF12, Q=20 GeV2 N = 1000

-0.05 0 005
Rg=2[S]/[U+D]

Figure 5.6:Probability distribution of(s (left) and Rs (right) atQ? = 20 GeV? computed
from the reference set d¥.., = 1000 NNPDF1.2 PDF replicas. The region filled in black
corresponds to the central 68% confidence inteniat, (Q = 20 GeV?) = 0.7117: 175
andRs (Q =20 GeV?) = 0.006 + 0.045%*".

This might have a strong impact in all analyses presente@fn[R0]. For this reason,
in what follows, | refer to the NNPDF1.2 results and, whenilaide, | show how they
are modified by using the NNPDF2.0 parton set as an inpuilalision.

5.1.1 Implications for LHC observables

The main interesting features of the strange distributfonphenomenological appli-
cations are the momentum fractions, defined as

[Sﬂ (Q%) /0 dxzsi(:c,QQ) , (5.5)

with similar definitions for moments of other PDF combinaBp and in particular
their ratio to the light sea and the light valence momentwautfons:

oy dac x st (m QQ) [ST]
K - v S AN 56
@) = dzz( 0.0 +d@QY) [0+ D] G0
Re(@) = 2 Jodmrs(0@) —o L 59

fol drz (u=(z,Q?) + d—(z,Q?)) [U~- + D]

In parton fits where the strange content of the proton is detexd by flavor assump-
tions, these quantities are assumed to be fixed at the stataei s(Q3) ~ 0.5,

Rs(Qg) = 0).
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The value and uncertainty on these quantities can be detedfiiom the NNPDF1.2
set by performing averages over PDFs replicas. The pratyathistribution of Kg at

Q? = 20 GeV? is shown in Figl’516, and turns out to be quite far from Gaumsstéis

is not unexpected, given that the denominator in Eq] (5.6)psaume rather small val-
ues. Therefore, we compute the @incertainty as a central 68% confidence integral,
namely requiring the two outer tails of the probability distition (lighter blue region

in Fig.[5.8) to correspond to 16% probability each, with teatcal value still given
by the average. The median of the probability distribut®edual tok 24 = 0.59,
significantly different from the average because of the asgtry.

In the case of the strange momentum asymméteythe denominator is fixed by
knowledge of the valence content of the nucleon, which isaknquite accurately:
hence we expect the uncertainty to be symmetric and dondrigteéhe uncertainty
of the numerator. Indeed, as we see in 5.6 the probabitribution for Rg
turns out to be approximately Gaussian so that the uncégrtasmputed from its
central 68% confidence essentially coincides with the stethdeviation of the distri-
bution, while its central value and uncertainty are esa#intproportional to those of
the strangeness asymmetfy |.

In Ref. [71] the addition of fixed—target Drell-Yan data lagadsignificantly stricter
constraints on the shape of the strange distributiér(s), as it is shown in Fid. 5]5:
the new determination of" and especiallg~ at large have a much reduced uncer-
tainty in the NNPDF2.0 analysis. As a consequence, theggravomentum fraction
and strangeness asymmetryxt = 20 Ge\? are

K« 07140195 4 g ogsyst (NNPDF1.2) 5.8)

s = .
0.503 4 00755t (NNPDF2.0)
0.006 == 0.045%%% + 0.010%** (NNPDF1.2)

Rs = (5.9)
0.019 + 0.0085ta* (NNPDF2.0),

i.e. the PDF uncertainty oi(s is reduced by more than a factor two, while that
on Rg is reduced by a factor 5, with all results consistent withircertainties. The
systematic uncertainty is determined by keeping into acteeveral factors like the
effect of the heavy quark masses, which in the NNPDF1.2 aisily included only in
the computation of the dimuon cross—section by using thedwgz ZM-VFN scheme.
On top of that we considered the effect of nuclear correstiestimated by repeating
the fit with CHORUS and NuTeV data corrected using the de &teBassot [175]
and HKNO7 [176] models. Finally we considered the effectref momentum sum
rules by repeating a fit without including them. As it is shawTab[5.1, the effect
of any of these systematics is rather moderate, even if \@ngervatively estimated.
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Kg (mean) Rgs
Reference 071703 | (6+45)-1072
ZM-VFN 0.477050 | (8£39) 1073

Nuclear - dFS03| 0.74752) | (12+48)-1073
Nuclear - HKNO7| 0.687025 | (0+40)-1073
LO 0.617035 | (14+38)-1073

No strange SR | 0.627039 | (17+32) 1073

Table 5.1:The strange relative total and valence momentum fractfopsand Rs, Egs. [5.5,
B7), at the scal@? = 20 GeV?. The first row gives the value computed from the reference
NNPDF1.2 set ofV,., = 1000 replicas, while the other rows give results from setévaf, =

100 replicas each obtained from alternative fits discussedxin #ll uncertainties are & or
68% central confidence intervals.

Moreover even in a fit in which the sum rule Ef.(3.31) is not asgd the result
changes very little. In the NNPDF2.0 analysis we have madatteonpt to provide a
new determination of systematic theoretical uncertasrgie/s and Rg by assuming
that they should be similar to those determined in Ref. [70].

[ NNPDF1.2, Q=20 GeV2 N, = 1000 | [ NNPDF20, Q7= 20 GeVA N, = 1000 |

Figure 5.7:Distribution of K5 atQ* = 20 GeV? computed from the reference setMf., =
1000 NNPDF1.2 (left) and NNPDF2.0 (right) PDF replicas. The caintegion corresponds to
the 68% confidence interval.

The distribution of s values for 1000 NNPDF2.0 replicas is shown on the right—hand
side of Fig[5.V. The narrower distribution which one getthis NNPDF2.0 analysis

is closer to Gaussian and no difference is found between8#eddnfidence level and
(symmetric) b intervals. This is most likely related to the results of Chapwhere it
was shown that in the data region PDFs uncertainties aredigsaussian, and that
they start deviating from the Gaussian behaviour only iretkteapolation region. The
strange distribution being much more constrained by dataerNNPDF2.0 fit, this
might provide an explanation for what is observed in Eigl 5.7
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Analysis Reference] Ks [S7]- 103
NNPDF1.2 [70] 071753 | 0.5+£86
NNPDF2.0 [71] | 0.503+0.075 | 3.3+ 1.5

MSTWOS(*) [43] 0.56+0.03 | 1.4+1.2
Tung:2006tb(*)|  [42] 0.72+0.05 | 1.2+1.2
AKPO8 [174] 0.59+0.08 | 1.0+1.3

Table 5.2:The relative strange momentum fractiéf; (Q* = 20 GeV?) Eq. [58) and the
strangeness momentum asymmesy | (Q = 20 GeV?) Eq. [55), as determined from var-
ious parton sets. All uncertainties correspond to 68% cenfid levels. For the sets marked
by (*) the value for[S~] (Q?) is obtained evolving the published value@j,; = 20 GeV>
through NLO perturbative evolution.

Results are summarised in Tablel5.2, along with the resalisd using other parton
sets. The NNPDFL1.2 uncertainty is much larger than thatdanmther fits, for the
reasons discussed above. Note that, however, all valuesseatially consistent with
the simple assumptioR s = 0.5 used in older parton fits. In the same table the second
moment for the strange valence, proportional to Bhecoefficient is shown. Results
when necessary are evolved to a common scale, exploitinigthéhat at NLO[S ]
evolves multiplicatively. In this case, too, the NNPDF1rertainty is much larger
than that obtained in other fits: while for all other setsjuding NNPDF2.0, there is
an indication that a positive value 6§ ] is favoured (all results being nevertheless
compatible with zero), this indication loses its significarin our analysis due to the
very large uncertainty.

Now we look at the phenomenological implications of the NNRL2 analysis, as
studied in Ref.[[17[7]. We first studied the sensitivity of tfiglV ratio

raw = oz/(ow+ +ow-)

to the uncertainty in the strange distribution. This obabte is particularly inter-
esting since PDF uncertainties are greatly reduced whesiaening the ratio of two
cross-sections, and thus provides an excellent candidate fmeasurement of the
LHC luminosity. However, as it was shown in Ref. [42], altigbuthe impact of the
uncertainties on th&) andZ cross sections due to the strange PDF are rather small
on their own, the ratio-zy, has a greater sensitivity to the strange uncertainty in the
region0.01 < x < 0.05 because PDF uncertainties do not completely cancel in the
ratio. Thereforeryy is potentially affected by the larger uncertainty of strafpF
found in the NNPDF1.2 analysis with respect to other partensities determina-
tions. The NNPDF 1.2 prediction for the ratigy, and the associated correlaﬁbn
plo(Z),0(W*)] are given in Tab 513, together with the results obtainedgitie

1Ref. [42] instead uses the notatioas ¢ to denote the correlation between two PDFs/observables.
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NNPDF1.2 NNPDF1.0
rZw 0.0961 £ 0.0005 | 0.0965 =+ 0.0003
plo(2),c(W)] 0.976 0.994
CTEQ®6.6 CTEQ6.5
rZzw 0.0964 + 0.0004 | 0.0957 £ 0.0002
plo(2),c(WF)] 0.983 0.994

Table 5.3:Comparison of the values for the ratio of the Z and W crosdmeat the LHC as
well as their associated correlatiprio(Z), o(W=)], Eq.[5.10, computed with different PDF
sets. Again, all numbers shown correspong/fie=14 TeV.

NNPDF1.0, CTEQ6.5 and CTEQ6.6 sets. In the Hessian apprdaetcorrelation
between the two observables consideredy *) ando(Z), is computed using the
method described in Ref. [42]. In the Monte Carlo approagh,dorresponding ex-
pression is given by

o(Z)o W:t —{o(Z o W:l:
p [O'(Z),O'(Wi)] _ < ( ) ( )>rez < ( )>rep< ( )>rep :
2Py — (022 [e W)y — (W2,

where the averages are performed overMjg, replicas of the NNPDF sets. In
Fig.[5.8 we compare the;-oy 1o correlation ellipses for the NNPDF1.2, NNPDF1.0,
CTEQ6.6 and CTEQG6.5 sets. We note that, despite the facthiibatrror band on
the strange parton densities is in general much larger ®NIKPDF1.2 set than for
CTEQS6.6, the uncertainty on the ratigyy is of the same size. This is a consequence
of the fact that, as previously mentioned, this ratio is yostrrelated to the strange
PDFs in a limited region of relatively smatl, where the NNPDF1.2 and CTEQ6.6
uncertainties os™ are roughly of the same size. This might be due to the fact that
the NuTeV dimuon data, which constrains the strangene$®itwo analyses, covers
precisely the kinematical range relevant fgf,;,. As the error on the WZ ratio is
small despite the much larger strangeness uncertairttiessta hint for its validity as

a standard candle.

, (5.10)

The situation could be different in the differential rapyddistribution. Indeed, while
the total cross-sections probe mostly the central rapreigyon, at forward rapidities
one might expect differences. In order to check this, in[Ei@ the rapidity distribution
of the ratiorzy

drzw () = do”(y)/dy
dy ~ doW(y)/dy

is shown together with the associated PDF uncertaintiesob¥erve a sizeable in-
crease in the PDF uncertainty from NNPDF1.0 to NNPDF1.2 etdiod rapidities

(5.11)
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Figure 5.8:Comparison of théV and Z one sigma correlation ellipses at the LHC obtained
from different fits: NNPDF 1.2 (green), NNPDF 1.0 (blue), GJ6.6 (red) and CTEQ 6.5
(purple).

due to the increase of the strange PDF uncertainties at-snaallcompared to other
sets. However in the central region, which provides the damicontribution terzyy,
the uncertainties of CTEQ6.6 and NNPDF1.2 turn out to be @ratge, confirming
the agreement of PDF uncertainties shown in TRblk 5.3.

To conclude, | present another analysis carried out in R&fi], focused on a LHC
process which in principle could be used to measure thegar®DF, which at the
moment is poorly constrained in the region< 10~2 [70]. This process is th&/c
associated production. The associated production of aveoson and a charm quark
at hadronic colliders is directly sensitive to the stranga BDF. The dominant pro-
duction channel foi¥/ ¢ production isgg — We, with ¢ a down-type quark. As in
the case of neutrino dimuon production, the down and bottatiaied contributions
are suppressed with respect to the strange one by the sssabihthe corresponding
CKM matrix elements, and therefore at LO, neglecting CKMimgx the cross section
is proportional to the strange PDF. For this reason, thecéstsaliV and charm pro-
duction looks like a promising channel for providing a direenstraint on the strange
PDF at the energy scale dfy;, one order of magnitude above the typical energy of
the NuTeV dimuon data. For this reason, in the past it has pegposed as a can-
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Figure 5.9:Left: the differential rapidity distribution of the ZW ratj defined in E.5.11. The
very small PDF uncertainties are not shown. Right: the ikgd@®DF uncertainties inzw-, as a
function of the rapidityy.

didate for constraining the strange PDF at the Tevatron hed HC colliders|[62].
In Ref. [177] we revisited this proposal by comparing our MePDF predictions
for the totalW ¢ cross section with recent measurements at the Tevatronigind g
predictions for the LHC.

The CDF experiment has published a measurement dfithgroduction cross sec-
tion, obtained using- 1.8 fb~! of pp collisions at\/s = 1.96 TeV [178]. A NLO
prediction for this observable can be obtained easily utiadCFM [179/180] code.
The result of the CDF collaboration measurement is

owe(pre > 20GeV, |ne| < 1.5) x BR(W — lv) = 9.8 £ 3.2pb, (5.12)

to be compared with the NLO prediction obtained using MCFM e NNPDF 1.2
set:
owe(pre > 20GeV, || < 1.5) x BR(W — lv) = 10.11+1.24(PDF) 1§73 (scale) pb,

(5.13)

where the first error is the one coming from PDF uncertairgtiebthe second one is
due to the variation of the renormalisation and factorisaticales in the perturbative
computation. The expected precision of the experimensaltevhen extrapolated to
the full Run Il dataset{ 67 fb~1), is~ 15%, comparable to the present uncertainty
on the theoretical prediction. The theoretical uncenedthe Tevatron is dominated
by PDF uncertainties, with a sizeable contribution fromecpendence.

In order to investigate the possibility of using this veryngachannel as a strangeness
constraint at the LHC, we also computed e cross section for the LHC assuming
a centre of mass energy of 14 TeV and standargdr) cuts both for the charm quark
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and the leptons coming from th& decay. The result that we obtain is
owe(pre > 20GeV /¢, [ne| < 4.)xBR(W — lv) = 631+£46(PDF) 35 (scale) pb. (5.14)

It shows that the uncertainty on the theoretical predictioe to scale variations, and
thus to higher order corrections, is comparable to the uaicgy due to the strange
PDFs. The result seems to suggest that, contrarily to wiieniied in Ref. [62], where
theoretical uncertainties were not considered, it mighdiffecult to use this process
to constrain PDFs. Unless scale uncertainties can be rddhyceigher order compu-
tations or by a better understanding of the charm mass tE&'&rthe theoretical error
limits the usefulness d# ¢ production as a constraint for the strangeness distribstio

In the comparison with other parton analyses we need to keemmccount that there
are significant sources of systematics. The most relevatitoske, especially in the
W analysis, is the effect of the heavy quark mass. The tredtofemeavy quark

mass effects entails various ambiguities related to thecpifgtion used to deal with
subleading term$ [181]. In our case, a source of systematilige to the approximate
treatment of the charm mass.

5.1.2 Solving the NuTeV anomaly

The coupling which controls neutral current neutrino DIPeleds on the electroweak
mixing angle, which can thus be extracted from its experitaeneasurement. Specif-
ically, in the parton model théyy electroweak mixing angle can be related to the
experimentally measurable Paschos-Wolfenstein ratio

o(WN = vX) —o(ON — X)

o(WN = £X) — o(DN — IX)

(wl-[oh+(c]-[57]
[Q7]

(5.15)

Rpw

(3—7sin’Ow) | ,

[

% — sin? Ow +

where[S~] is the strange valence momentum fraction Eql(5(5);], [D~] and[C ]
the valence momentum fractions of other quark flavors,j@d = ([U~]+[D~])/2.

The experimental determination in Ref. [167]

sin® Oy = 0.2277 40.00145*¢ £+ 0.0009%° = 0.2277 +0.0017%" | (5.16)

NuTe

is obtained using EqL_(5.1L5) under the assumption that fas@stalar nucleon target
[U~] — [D~] = 0 and under the assumption of vanishing charm and strangecele

2This is discussed in Chap. 7
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[C~]=[S~]=0. With these assumptions the term in square brackets il EB)(8an-
ishes. The result Eq{5.116) disagrees at thde¥el with the value determined in
global precision electroweak fits, such las [182,/1183]

sin? Oy = (0.2223 + 0.0003 . (5.17)
EWfit

Possible explanations for this include nuclear effecesgtebweak corrections, QCD
corrections, and physics beyond the standard model [168jveder, one may also
question the validity of the assumption of the vanishinghaf ¢ontribution in square
brackets in Eq[{5.15). The possibility ti&t~]—[D~] # 0 for NuTeV iron target due
to isospin violation induced by QED evolution effects wascdissed in Refl_[184]: it
could easily explain about a third of the observed discrepan

In the NNPDF1.2 analysis, isospin symmetry is assumed, @ntldermordC~] = 0.
We are then left with the correction

1
5 sin® Oy = —ng (3 — 7sin? GW) , (5.18)

with Rg defined in Eq.[{(5]7). Using the value Bf Eq. (5.9), obtained at the typical
scaleQ? = 20 GeV? of the NuTeV data we obtain

8, sin? Oy = —0.001 £ 0.011°PFs + 0.002¢", (5.19)

where the theoretical uncertainty comes from the effecdsutised in the previous
section and summarised in Tablel5.1, and it is not to be cedfwith the experimental
systematics in the NuTeV measurement EqQ. (5.16).

Even neglecting these theoretical uncertainties, thetiaddi PDF uncertainty due to
strangeness alone is thus about twice the observed disaejesin? 6w . Applying
the correction Eq[{5.19) the NuTeV result becomes

sin? Oy ey = 0-2263 & 0.00145%2 4 0.0009%Y® 4 0.0107FPFs, (5.20)
We concluded therefore that the apparent inconsistengyeaetthe NuTeV measure-
ment and the global electroweak fit disappears once the taimgron the strange
distribution is properly taken into account.

In the previous section, we showed how, due to the addititiadfonic data, the deter-
mination of[S~] in the NNPDF2.0 analysi§ [T 1] is much more precise, see[EB).(5
It is natural to ask what is the implication of this reducedemainty on the NuTeV
analysis. The results shown in FHig. 5.10 are striking: th@@udetermination of the
Weinberg angle[[171], using the values Bf Egs. [5.9), is compared to the result
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Determinations of the weak mixing angle sin29W
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Figure 5.10:Determination of the Weinberg angle from the uncorrectedéNudata [171],
with [S~] correction using NNPDF1.2 (Ed_(5.9)) and NNPDF2.0 (Egd)bresults, and
from a global electroweak fif [182]. Note that only statiaticincertainties are included in
the NNPDF2.0 correction.

of a global electroweak fit [182]. The two corrected valuadjke the uncorrected
NuTeV value, are in perfect agreement with the electroweadmidl with each oth-
ers. However, the uncertainty on the Weinberg angle with NNP.2 correction is
considerably larger than the uncertainty after NNPDF2r@extion.

5.1.3 Precise determination of |V,s| and |V 4]

Neutrino DIS data, and especially dimuon data, can be usedrform direct mea-
surements of electroweak parametéers [185] 186]. Howeeegpdtential precision of
these measurements can be spoiled by PDF uncertaintieedrnide uncertainties on
the strange distributions are quite large, typically latgealmost one order of mag-
nitude than those found in previous global fits. In this settishow that, in spite of
the large uncertainties found in the NNPDF1.2 analysis,eéh [F0] we provided the
most precise direct determination of the CKM matrix elem@fg| within a single
experiment. We also provided a determination¥df;| with an accuracy consistent
with previous results from neutrino data. These resultpassible because PDF un-
certainties are free from parametrisation bias, thus thay loe disentangled from the
uncertainty on the physical parameters.
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The CKM matrix elements [18]-[19] control the strength oé tboupling of various

partons to neutrinos, as it is shown in Tablg 1.1. Since thel€Btudies[[187], neu-
trino DIS has been used as a means to directly determine themparton—model

expressions for the neutrino and anti-neutrino dimuon petidn Egs.[(513, 515) pro-
vide two equations which relate two experimentally measigraross sections to the
two unknowngV.,| and|V,;|.

However, these equations also contain as unknowns the gd@eoments of the light
quark PDFs (the total cross section is proportional to ticeisg moment of the PDF).
With the assumptior~ ~ 0 [187,[188/18D9], the linear combinatidn,*® — Fy
only depends on thg/.4| and theu andd valence components, which are well mea-
sured by other experiments, so it can be used to deterfipe On the other hand,
the orthogonal combinatioR,** + F, ¢ depends on the/,,|/|V.4| ratio, but also on
Kg, as can be seen from Ef. (b.6), and thus it can only be usedeoae the com-
bination|V,s|Ks. Indeed, the PDG quotes a value|®f;| = 0.23 + 0.11 obtained
from the average neutrino dimuon experiments as the bestrduttirect determina-
tion [189]. Only the boundV_,| > 0.74 at 90% confidence level [188] was quoted
in previous PDGI[190] editions, but this is now superseded bjrect determination
|[V.s| = 1.04 £+ 0.06 from D decays. Of course, the values obtained from the current
global CKM fits [191] 192, 189] are much more precise thandtdigect determina-
tions (see TableB.5 below).

In the NNPDF1.2 reference fit}.q|, |Ves|, and|V.| are each fixed to the current
PDG value[[189], obtained from the global CKM unitarity fito €xtract both V.|
and|V.4| from the fit, we performed a scan over the value$lgf| and|V.4| used in
the fit, holding|V_;| fixed, but relaxing the unitarity constraint (in practicechuse of
its smallness, the precise value choser¥oy] is inconsequential). The best-fit value
and uncertainty for the CKM parameters are then determiméloe standard way by
maximum likelihood from the¢? profile.

Thex? determined from a set df4,; data points fluctuates, with a standard deviation
equal too,> = \/2Ng4qa. In order to determine thg? profile as the underlying pa-
rameters are varied, these fluctuations must be kept undéotowithin our Monte
Carlo approach, this could be done by using the same set afrdplicas each time
the x? is recomputed with different values of the underlying pagters. This might
however bias the result in a random way depending on thecpatiset of replicas
which has been chosen in the first place. We prefer thus toreagomly the set of
replicas which is used for different parameter values: flatbns are then kept under
control by using a sufficiently large set of replicas, givaa fluctuation of the?
computed from a replica average has a standard deviatic &gt > / /Nyep. Since
only dimuon data are sensitive to the CKM matrix elementscame determine their
values from the dependence of th# of the fit to these data only, rather than for that
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NNPDF1.2, Nyg, = 500, |V4l=0.2256
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Figure 5.11:.The x? of the NuTeV dimuon data as a function|8f.;| when|V.4| is kept fixed
at its best unitarity fit value. The solid line is the parabdii from which the central value and
1o uncertainty Eq.[(5.21); the dashed curve is a parabolic fiiéaentral and two outer points
only.

of the fit to the global dataset. Given that in the NNPDF1.2yamis[70], 84 dimuon
data points are included, a set®f., = 500 replicas is sufficient to guarantee that
point-by-point fluctuations are smaller than? = 1.

First, we varied independently each of the two CKM matrixmedats, keeping the
other fixed at its central value in the CKM unitarity fit. Thé profile is computed
for five equally spaced values of the parameter which is beanigd. The values have
been chosen on the basis of a preliminary exploration offifeesof parameters based
on fits with a small number of replicas; they are displayediqn[E:13. The ensuing
x? profile is displayed in Fig_5.11 fdi,,| and in Fig[5.1P forV.4|. We observe
well-defined minima in both cases. A parabolic fit leads to

V.s| = 0.93+0.06, (5.21)
V.| = 0.248+0.012, (5.22)

where the & uncertainty is obtained from the conditiadxi? = 1. The fit is quite
stable upon the choice of different subsets of the five aviilpoints: if it is repeated
by only retaining the central and two outer points neither ¢bntral values nor the
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NNPDF1.2, Nyg, = 500, |V[=0.97334

62 ,‘\\ Y Y NuTeV Dimuon M Y o]
Ny Parabolic fit (5 points) — — -
60 ‘ Parabolic fit (3 points) - - - 4
AY //
58 | \\ /'/,
4
N 58 \ ,'ﬁ ]
> ¥ /,

54 f D 7, 1

AN /7,

W\ | /7,
52 | o P |

A O /, .
50 | S~ - -7 . 1
48 . --- . 1
0.21 0.22 023 024 025 0.26 0.27 0.28
IVcdl

Figure 5.12.The x? of the NuTeV dimuon data as a function |8f..| when|V_| is kept fixed
at its best unitarity fit value. The solid line is the parabdii from which the central value and
1o uncertainty Eq.[(5.22); the dashed curve is a parabolic fiéaentral and two outer points
only.

uncertainties Eqs[_(5.R[, 5]22) vary significantly. Thisfaons that the number of
replicas used to compute thé is sufficiently large for the result not to be biased by
statistical fluctuations. Both fits are shown in Flgs. H.1125

This shows that either CKM matrix element can be determinechfour data, with
comparable uncertainty, by keeping the other fixed. We cas plerform a simultane-
ous determination of both these CKM matrix elements. In otalémprove the accu-
racy of this determination, we compute th&at four more points in the Ceq/, |Ves|)
plane, denoted by squares in Hig.5.13. kRen these additional points is computed
from a smaller set oiV,;, = 100 replicas. The result of the combined fit is then

[Ves|
|‘/cd|

0.96 + 0.05, (5.23)
0.244 + 0.012. (5.24)

The uncertainties turn out to be almost identical to the aiaduncertainties, and the
correlation coefficient is relatively sma#l = 0.21, reflected in a moderate shift in
central values in comparison to the separate fits [Egs.][®m22). The location of the



190 Chapter 5. Application of the NNPDF method to phenomenology

1.05
[
1
— o o o
ZU 0.95 @
0.9
[ ]
0.85
0.8 { J | B

0.21 0.22 023 024 025 0.26 027 0.28
|Vcd|

Figure 5.13:The grid of points used in the determination of the CKM magfiements V.|
and|V.4|. Open circles denotes points used for the determinatidiv.of Eq. (5.22), and full
circles points used for the determination|df,| Eq. {(5.21). All points are used in the joint
determination Eq[{5.24).

| [ Veal | IVes |
Statistical 4+0.012 | +0.05
Mass effects 4+0.007 | +0.02
Higher order QCD +0.010 | £0.03

Nuclear corrections +0.008 | £0.03
Total systematic uncertainty +£0.014 | +0.05

| Total uncertainty +0.019 | £0.07

Table 5.4:Summary of statistical and systematic uncertainties irptesent determination of
|Ves| @and|Veq|.

best-fit point and & (Ax? = 1) ellipse in the (V.q4|, |Vzs|) plane for the best-fif?
paraboloid is shown in Fig, 5.1.4.

This determination Eq[{5.24) is affected by the same syatiemthat we examined

in the previous section, namely, higher order QCD corrastigreatment of heavy
quark effects and modeling of nuclear corrections. In otdexssess their impact in
the CKM element determination, we have repeated the detetion of each of the
two parameters as the other is kept fixed, Hgs. {5.21] 5.92gdomputing the? for

a smaller set ofV,,, = 100 replicas along the points denoted as circles in[Fig.]5.13,
with each of these three effects varied in turn. We then tiageshift in central value as
an estimate of the corresponding uncertainty. The restdtstanmarised in Table 5.4.
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Figure 5.14:Location of the best-fit point andsl(statisticalAx? = 1 uncertainty) ellipse
in the (Veal, |Ves|) plane for the best-fit> paraboloid obtained from the? computed at the
points displayed in Fig. 5.13. The best unitarity fit reSli8§] is also shown for comparison.

Putting everything together, we found

V.| 0.96 4 0.07%" | (5.25)
Vgl = 0.244+0.019%". (5.26)

In Tabld5. b we compare the final results EQs. (H.25.15.26) thié best CKM unitarity
fit results and with other direct determinations. The deteation of |V.,| is consis-
tent with other direct determinations, and of comparabteieacy, though one should
bear in mind that previous determinations from dimuon dageavbased on fits with a
fixed functional form, and thus subject to potentially lagystematics bias. Despite
these increased uncertainties, we find that, perhaps simglsi, the dimuon data are
sufficient to determingl/.;| = 0.96 + 0.07t°t. This is one order of magnitude more
precise than any other direct determination from neutrieepdinelastic scattering,
and is comparable to the current PDG best average of dir¢etrdimations fromD
meson decays. It would be interesting to repeat the anafteisthe inclusion of the
Drell-Yan and jet data, i.e. by using the NNPDF2.0 fit. This hat been done yet but
is going to be performed in the near future.
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Analysis Description Reference [Ves|
NNPDF1.2 | Direct determination from global PDF analys|s  [70] 0.96 £ 0.07%°°
CDHS LO determination fromN — ptpu=X [187] > 0.59 (90% C.L.)
CCFR NLO determination froovN — ptpu~= X [87,[188] | > 0.74 (90% C.L.)
PDGO08 Avg of determinations fronD decays [189] 1.04 £+ 0.06
Hocker Avg of determinations frorvN — ptpu~ X [193] 1.04 £0.16
DELPHI Direct measurement frof/ + — ¢s decays [194] 0.947532 1 0.13
LEP (avg) Direct measurement fro/+ — c5 decays [195] 0.95 +0.08
PDGO8 CKM unitarity fit [189] 0.97334 + 0.00023
Analysis Description Reference [Veal
NNPDF1.2 Direct determination from global PDF analysis [70] 0.244 £ 0.019%*
CDHS LO determination fromN — utpu~X [187] 0.24 £0.03
CCFR NLO determination fromN — ptpu~X [188] 0.2327+0:517
PDGO08 Avg of direct determinations fromN — ptpu~ X [189] 0.230 + 0.011
PDGO08 Avg of determinations fronD — K /wlv decays [189] 0.218 + 0.023
PDGO08 CKM unitarity fit [189] 0.2256 £ 0.0010

Table 5.5:Comparison of the present determination of the CKM matrdaeintg V.| (upper
table) and|V.q4| (lower table) with other available direct measurementgrayes and CKM
constrained fits.

5.2 Prediction for LHC standard Candle

As for several relevant processes at the LHC the unceraintbming from Parton
Distribution Functions (PDFs) and from the strong couptingstanty, (M) are the
dominant ones, it is important to have a reliable estimath@f uncertainties and to
use a correct prescription to combine them, keeping intowutcthe fact that PDFs,
especially the gluon, and, are strongly correlated. In particular, when performing
a comparison between predictions evaluated with diffeRDFs sets, it is desirable
to know how much of the discrepancy is due to the differenceiirand how much
instead is due to the uncertainty on PDFs.

In this section the NNPDF predictions for some of the so-eckdtandard candle pro-
cesses at the LHC are presented. They are compared to this @fsthe other two
global analyses, MSTW2008 and CTEQ6.6. For the comparisomsistently use a
common value ofys. Then the dependence of the NNPDF2.0 global set of partons
upon the central value af; is investigated and the correlation between the gluon
PDF and the strong coupling constant is evaluated. Finallgduss the combination

of PDF andn uncertainty.
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5.2.1 NNPDF predictions for LHC standard candles

Schematically, the measured cross section for a pro¥esgjiven by

ox = &, (527)
EXE

where Nx is the number of observed events generated by the prdcess is the
experimental efficiency and is the integrated luminosity. The latter measures the
beam intensity and depends upon several factors, like thehbsizes, the crossing
angles between beams, the density of the beams and so on. eEseirement of the
integrated luminosity is needed and its accuracy influeattggedictions. There are
several ways for measuring it directly from beam parametérgood accuracy of
the direct measurements requires sophisticated techsxandedepends on the details
of the detector. Another way for measuring the luminosittoiperform an indirect
measurement. Inverting the above equation one has

Ny

L= .
€Yoy

(5.28)

If Y is some well-known process, both from the experimental hadretical points
of view, one can infer the luminosity from the measured nundfesvents, the ex-
perimental efficiency and the theoretical predictign In this measurement several
factors are relevant: the understanding of the detectopétige background contam-
ination, and the accuracy of the theoretical prediction.

These processes are the so—called standard candles. Hasurements might also
be used to check the theoretical framework, like factonsaand DGLAP evolution
equations. Two typical standard candles are the produofitime Z andW bosons,
for which there are realistic prospects of experimental tuetretical accuracy at a
few % level. Most of the theoretical uncertainty due to theeon the PDFs. Indeed,
the theoretical uncertainty due to the scale variatioa (&) is about 1%, while the
PDF uncertainty is about 2%. In Refs. [43, 196], a study ofdheelatedZ and W+
production cross section has been performed with the MSTMWILtIRPDFs, and the
error ellipses show that the totar Lincertainty for the NNLO prediction is about 4%.
Another process which has been proposed as a candidate surmadhe luminosity
is the totaltt cross sectiong (tt). Several recent studies [42, 197, 198] motivated
such proposal. For this process the PDF uncertainty is digitly larger than the
scale variation uncertainty associated with higher orgtepgrturbation theory, which
is about 3%. Finally it is important to provide an estimatetaf PDF uncertainty on
the Higgs production, even if in that case the uncertainy ttuthe scale variation
is much more significant than the uncertainty due to the POBis.the other hand,
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given that the main contribution to the Higgs productionhat t HC comes from the
gluon—gluon fusion, the uncertainty on sizeably affects the total uncertainty.
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Figure 5.15:Comparison of predictions for LHC observables for NNPDEF&ISTWO08 and
CTEQ6.6 sets for the LHC at centre of mass energy of 7 TeV.

In Fig.[5.15 and in Table 5.6 predictions for the observatrlentioned above are com-
pared from the three global PDF fits: NNPDF2.0/[71], MSTWOE] [@nd CTEQ6.6[42].
The observables are computed at a centre—of—-mass energhedf ke in the early
LHC runs by using the public next—to—leading order MCFM c{ii&]. For CTEQ
and MSTW we show results both at the default valuerpfaind for a common value
as (Mz) = 0.119 in order to disentangle the discrepancy due to the use oferdif
enta, reference value and the discrepancy due to the PDFs. In trgieoduce the
CTEQ6.6 and MSTWO8 predictions with, = 0.119, the sets from Refs.[199, 200]
have been used. We also assumed that the PDF uncertairtigéertivo PDF sets does
not depend in a statistically significant way on the valuexpfvhen switching from
the default to the common value af (which in both cases differ b§o, = 0.001).

It is clear that using a common value of the strong couplingrowes the agreement
between global PDF sets. If predictions with = 0.119 are compared, the three
global PDF sets are in reasonable agreement both in ceatu@s/and in uncertainties.
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[ c(WHBr (WF = Ty;) [nb] | o(Z)Br (Z° — 1¥1-) [nb] ]

NNPDF2.0 5.84 +0.14 0.91 +0.02
CTEQ6.6 -5 = 0.118 4.10 £ 0.09 0.94+0.02
CTEQ6.6 -5 = 0.119 4.11 £+ 0.09 0.95 4 0.02
MSTWOS8 -5 = 0.119 4.16 £ 0.08 0.94 + 0.02
MSTWO08 -as = 0.120 5.95+0.11 4.1940.08

| | o) [pb] | o(H,mu =120GeV) [ph] |
NNPDF2.0 168.1 £ 7.5 11.59 + 0.22
CTEQ6.6 -5 = 0.118 | 156.0 £ 6.7 10.92 + 0.20
CTEQ6.6 -5 = 0.119 | 160.1 £ 6.7 11.07 +0.20
MSTWO08 -as = 0.119 | 164.4 +4.9 11.48 +£0.18
MSTWO08 -as = 0.120 | 168.1 +4.9 11.69 + 0.18

Table 5.6:Cross sections fail’ T, Z, t£ and Higgs production at the LHC gfs = 7 TeV and

the associated PDF uncertainties. All quantities have beeputed at NLO using MCFM for
the NNPDF2.0, CTEQ6.6 and MSTWO08 PDF sets. All uncertasngigown are & level. See
Fig.[5.I5 for the graphical representation of the resulthisftable.
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Figure 5.16Parton—parton luminosities E€.{5]29) in the various pactochannels, computed
from the NNPDF2.0 set at the LHC fay's = 7 (top left). Relative PDF uncertainties on
parton—parton luminosities E.(5]129) for the NNPDF2.0EQB.6 and MSTW2008 PDF sets,
as function of the mass of the produced heavy ohjégt at the LHC for 7 TeV. In a clockwise

sense, the gluon-gluon luminosity, the gluon-quark lursityoand the quark-quark luminosity
are shown.

To understand the comparable uncertainty between differedictions, it is useful to
look at thegqq, gg andgg parton fluxes, defined as

dl’l

Oy (3) = [ g 03 0 o 08) (529
0 () = [y (o0 M) B (/M) 4 2]
1 Ny
P (13) = L[ S (o1, M) 0 M)+ (2]
i=1



196 Chapter 5. Application of the NNPDF method to phenomenology

Each of them is relevant for the considered processes, $tarioed,, is mostly rel-
evant for theW+ and Z production, whiled,, is more relevant for thet and light
Higgs production. In Fid. 5.16 these quantities are evalliaith the NNPDF2.0 par-
ton set. In the same figure, the relative uncertainty is cogthéo the uncertainty
of the parton fluxes evaluated with the CTEQ6.6 and the MSTWA®n sets. The
comparable uncertainty is the origin of the comparable tag#y of the predictions
for the considered standard candles.

To understand the remaining differences in central valedsden PDF sets, one has
to keep into account that a different treatment of the heawgrkimasses is used, as
it is explained in Chap. 3. For deeper investigations a tetdienchmarking on the
lines of the HERA-LHC benchmarks [101] would be required.

5.2.2 Determination of a;

Even though the strong coupling can be determined by a pditt¢43], its most
accurate determination is obtained by combining resuttsfmany high—energy pro-
cesses, most of which do not depend on PDFs at all. A recenbioach determina-
tion [12] is

as(M2) = 0.1184 + 0.0007, (5.30)

while the current average in the PDIG [109] has a rather marsarwative assessment
of the 1o uncertainty:

as(M2) = 0.1176 £ 0.002. (5.31)

The PDG world average is dominated by NNLO results, with th®Mesults included
carrying little weight.

On the other hand, various parton fitting groups use diftevatues ofa,. Specifi-
cally, for the PDF sets that | am going to include in the folllogvanalysis the reference
values are

as(M2) = 0.118,  for CTEQG.6,
as(M%) = 0.119, for NNPDF2.0, (5.32)
as(M%) = 0.12018, for MSTWOS.

However, in recent publications, sets of partons with vagyi, have been presented
by the fitting collaborations. Specifically CTEQ [42] haseaded, on top of the set
evaluated with the central value of, reported above, four more sets with =
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0.116,0.117,0.119,0.120. However for these sets only the best-fit set is provided
without the error sets. In the CTEQ analysesis taken as an external parameter
which is fixed before starting the fit.

The MSTW collaboration has performed a simultaneous débetion of PDFs and
as [199], which is treated as a parameter of the fit and whosel fitsdue is the one
reported in Eq.[(5.33). This set may be used for the detetinimaf the correlation
betweemn, and both the central value and the uncertainties of PDFsyvalue ofa
found in the fit must be used. On top of that, MSTW has releastdad PDFs with
a, taken as a external parameters for twenty values,ofaried in steps of 0.001 for
from o, = 0.110 up tocrs = 0.130.

In the NNPDF2.0 analysisy, is taken as an external parameter. In order to study
the dependence of the results on the choice 4f\/2), the fit with a5 varied by one
and two standard deviations about this value is performgdepeating the fit and
producing PDFs sets of 100 replicas for each central value défom 0.114 to 0.124

in steps of 0.001. The same was done in the previous NNPDFONAPDF1.2
analysis: the dependence of PDFs@anwas found|[[711[ 156] to be noticeable but
weak, so much so that when was varied byAa, = +0.002 most PDFs were found
to be statistically indistinguishable from those obtainégth o, fixed to its central
value (i.e. to be at a distandex 1 from them). The gluon (and to a lesser extent the
singlet PDF) was found to change in a statistically signifiagay, but still within its
uncertainty band wheng was varied in this range.

The dependence of NNPDF2.0 PDFs @nis shown in Figs[ 5.17-5.18, where the
ratio of the foura; PDF sets to the central set are shown for all PDFs except the
total strangenesst which is found not to vary significantly. All PDFs are stillthin
the central uncertainty band whexn, = +0.002. However, there appears to be
now a greater sensitivity ta,. Firstly, now not only the gluon but also the triplet,
singlet and valence, whem; is varied in the rangé\a, = +0.002, move close to
the edge of the & range for the central PDF. This corresponds to a distahee

7, well above the threshold of statistical significance, ameinefor the gluon it is

a somewhat larger variation than observed in NNPDF1.2. hEurtore, the triplet
appears to be as sensitive as the gluon to the value .ofThe increased sensitivity
of quark distributions to the value of; is likely a consequence of the inclusion of
Drell-Yan data, which undergo large NLO corrections andthres sensitive tey,.
This increased sensitivity with respectdg suggests that the strong coupling could
be determined from the global PDF analysis with competiigeuracy, following a
procedure similar to that used to obtain the accurate d@tation of the CKM matrix
element V.
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Figure 5.17:Ratios of PDFs withy, varied in the rang®.115 < o, < 0.123 to the central
NNPDF2.0 determination, compared to the PDF uncertaintidbahe singlet at small- and
large-z, the gluon at small- and large<{from top to bottom and from left to right).

The qualitative behaviour of the PDFs with varying shown might be understood
by taking into account the correlation between the partetridutions and the central
value ofa,. For instance, in a purely DIS fit, the gluon is determined ¢alisg vio-
lation of deep—inelastic structure functions mostly in tiedium—smalk regions. In
the high= region it is purely determined by momentum sum rules. Hehtarge—

a higher value ofy; requires a smaller value of the gluon and vice versa. Thit qua
itative picture is supported by a quantitative study of tberelation betweem s and
the gluon, or any other PDFs. As it was shown in Chap. 4, theetadion coefficient
may be evaluated as

(@M, Q1) — (0 (ME)), oy (@),

Oa,0f

rep

p[OLS(Mé), f(x7Q2)]

. (5.33)

In the above equation the distribution®f can be evaluated as follows. Given sets of
replicas determined with different values®f, it is possible to assume a distribution
of values foras. For instance, the average over Monte Carlo replicas of @rgén
quantity which depends on both and the PDFsF (PDF, o) can be computed as
Na Nrae%)j)

F. =L S oF (PDF(kf’j),agj)) , (5.34)

rep ~ N.
TP j=1 k=1
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Figure 5.18:Ratios of PDFs withy, varied in the rang®.115 < o, < 0.123 to the central
NNPDF2.0 determination, compared to the PDF uncertaintgbéiplet, valence, sea asym-
metry and strange valence (from top to bottom and from lefictiat).

wherePDF*59) stands for thé:;—th replica of the PDF fit withy, = agj), and the

&) . . .
numberst.;;f of replicas for each value af, in the total sample are determined by
the probability distribution of values af,, with the constraint

N
o)
Nrep = g Nref) . (535)
=1

Specifically, assuming that global fit valuescafare Gaussianly distributed, the num-
ber of replicas is given by

G ()
Nggmexp W . (5.36)

with the normalisation condition Eq. (5135). Plugging theee equations into Eq.(5.133)
one may compute the correlation coefficient and plot it asatfan ofz. In Fig.[5.19
the correlation between, and the gluon determined both in the NNPDF1.2 and
NNPDF.20 analyses are plotted. The same pattern is obsarusath analyses: a
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Figure 5.19: Correlation coefficient between the gluon PDF in the NNPRFleft) and
NNPDF2.0 (right) analyses. The correlations is computetiating to Eqs.[(5.38.5.34)

sizeable correlation at high-and a strong anti—correlation at mediummostly due
to momentum sum rules.

5.2.3 PDFs+a;, uncertainty for LHC standard candles

To conclude, in this section | present a method for combinimgPDF+, uncer-
tainty keeping into account their correlation. This metigthen used to evaluate the
combined uncertainties on the standard—candle processsglered in the previous
section, and to compare them with the results obtained bmatihg the error as a
sum in quadrature.

A way of computing the total PDFe; uncertainty when the correlation is keptinto ac-
count has been proposed in Refs. [199,/156]. In the MSTW naetiogy of Ref.[199]
this is done by relying on a simultaneous determination oF®Bnda,. As a con-
sequence, the value and range of variatiomxpimust be those obtained in this de-
termination. The procedure is the following: the total upped lower (generally
asymmetric) uncertainties on an observablare determined as

(AF)EPTRe = max ({F*(So) + (AFfipe)+}) = F*(S0)  (5.37)

(AF)EPEFes = B (Sp) —min ({F**(So) — (AFghp)-} )

where F*(Sy) is the observable computed using the central PDFSgeand the
valueca; of the strong coupling AFp3R)+ is the PDF uncertainty on the observable
for given fixed value ofv,, as determined from the Hessian PDF eigenvecloris [43,
199], and the maximum and minimum are determined from a sitefesults, each
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computed with one distinct value af (central 4 half confidence level: confidence
level).

With the NNPDF methodology one is free to choose any valueange fora, inas-
much as the corresponding Monte Carlo PDF replicas areadnlail In the approach
proposed in Ref[[156] the uncertainty is simply given bystendard deviation of the
joint distribution of PDF replicas and, values

€)) 1/2
No Niep
1 - o
AFPDF+ac _ o — > (F[{qm,a)}] ~F{"?|  (5.38)
Nrep — 1 =1 kj=1

al@ ; L
where the number of replicalsfreg for each valueagj) of the strong coupling is
determined in the Gaussian case by Eq. (5.36). In this casbawe taken as central
value and uncertainty om, the one given in Eq[{5.33).
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Figure 5.20:Predictions for some important LHC observables computetiTV. From top
to bottom and from left to righti¥ ™ and Z production tf production, and Higgs production in
gluon-gluon fusion formy = 120 GeV. Results are shown for different valuesoqf(Mz) as
well as for the combined PDFe; uncertainties.

The results for the uncertainty obtained in this way ¥6r™ and Z° production,tt
production and Higgs production in gluon—fusion fo; = 120 GeV are shown in
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Fig.[5.20. We computed predictions for various values oin order to determine the
combined PDFd, uncertainties for these observables. The exact combinéd-&#D
uncertainty is compared to the one obtained by adding in rqiack the PDF uncer-
tainties and thex; uncertainties, in turn obtained either with fixed PDFs, otdking
the PDF set that corresponds to each valueof

It is clear that the two methods, quadrature and exact padjmay yield essentially
identical results, confirming the results found in Ref. [[L5&he effect of the correla-
tion betweenys and PDF uncertainties is indeed quite small: as one mighactxji

is in fact smaller than the effect of the correlation betwagmnd PDF central values
shown in Fig[5.79. Moreover PDF uncertainties are indepataf«, for any reason-
able range ofvs. For processes which depend @nat leading order like Higgs ot
production, the combined PDE+ uncertainty is as expected sizeably larger than the
PDF uncertainty alone: for such processes, comparinggiieds from different PDF
sets using a common value @f is mandatory to obtain a meaningful comparison.

5.3 Reweighting

The use of statistical inference to determine the prolsdistribution function of
derived quantities starting from some initial probabilitgnsity of parton distribu-
tion functions (PDFs) was first advocated in Ref. [110]. la tiriginal work, such
initial probability density for the PDFsP;,it[{f}], is projected from the functional
space of all possible functional forms assumed by the paltmsities into theV,.,—
dimensional space of parameters characterising the clfimsetional form. The space
of parameters is sampled by generating a Monte Carlo (MGrehke consisting of
N,ep random sets of parameters. The expectation values witlecesp the initial
density are then computed as averages over the MC ensemble.

The method has several interesting applications deperadingederivedquantities

that are considered. First it allows one to propagate e#s#yPDF uncertainty to a
new observable without having to perform the usual erropagation that involves
the derivative of the observable with respect to the pararaetMoreover it can be
used to include new observables into an existing fit with@vitg to perform further
minimisations.

The limitations of the method proposed in Réf. [110] areteslao the generation
of the Monte Carlo ensemble. Indeed, the sampling of thenpeater space is not
particularly efficient due to the presence of many flat dioext, which require the
generation of very large ensembles which cannot be useddotipal purposes.
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In the NNPDF approach [67, 68, 170.171] this problem is solvediéneratingV,ep,
MC replicas in the space of the data included into the fit,ridhisted according to
the probability distribution of the experimental data; M€ ensemble of PDFs are
obtained by fitting each data replica, and therefore the Bagip PDF space is deter-
mined by the data themselves. This ensembl&.f best-fit PDFs is the final output
of the NNPDF fits. Hence the method developed within the NNEDIRboration is
ideally suited for the application of the techniques basedtatistical inference.

In the next sections, | first briefly describe the statistjpahciples upon which the
reweigthing is based and then | show several examples oicagiph of the reweight-
ing technique.

5.3.1 Bayesian reweighting

Given a NNPDF ensemble of PDEs= { fi;k = 1,..., N}, the mean, the error, the
correlation of any quantity depending on the PDFs may beuatadl by computing
these statistical estimators over the set of replicas,rdoupto the formulae reported
in AppendiX Q. For instance the integral in the space of fiemstis approximated by
the average over the ensembleso that the mean value of an observaBldepending
on PDFs is given by

(©) :‘/ﬂﬂ%MﬁDf

N
x DOl (5.39)

Consider a set of. new data that have not been included in the determinatioheof t
initial probability density distribution:

{y} =Y1,Y2, " ,Yn-

The experimental uncertainties are summarised byl thel experimental covariance
matrix cov;; defined in Eq.[(Z]3). Assuming that the new experiments areaoroe-
lated with any of the experiments used in the determinatfdheinitial probability
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density, the probability density distribution 6§} is given by:

Ply) =

—

Pyl f)Poal(f) D f

N
= %> Pl (5.40)

k=1

whereP(y| fx) is the conditional probability density distribution, aftealled likeli-
hood function. Assuming that uncertainties are Gaussienptobabilityd™ P(y| fx)
that the new data lie in an infinitesimal voluni’éy of the space of possible data given
the k-th elementf;, of the ensemble of PDFs is

d"P(y|fr) = Pyl fr)d"y = (2m)""/*(det cov,;) /23X I gy (5.41)

wherex?(y, fx) is calculated using the new data:

n

X, 1) = Y (Wi — frl@i))eovi (y; — fala;)) (5.42)

ij=1

The probability density for the new dataset is then obtaimeaveraging over replicas
according to Eq[(5.40):

N
d"P(y) = Py)d"y = % »_ Pylfi)d"y. (5.43)
k=1

Similarly the probability density for thg? to the new dataset may be evaluated:
dP(C|fe) = PO =27 (0(n/2)) (P (y, fi)V* e 20 ay?, (5.44)

whereP (x?| fx) is now thex? distribution. This may be readily derived from Eiq.(5.41)
by diagonalising the covariance matrix and rescaling the tea se{ Y’} of indepen-
dent Gaussian variables each with unit variance. Tdfen= (det 0;;)'/2d"Y, and

x? = Y, Y2 Choosingr-dimensional spherical co-ordinates in the space of data
(with /X2 as the radial co-ordinate), we may writeY = A, 1(x?)"/2~1d\2d"Q,
whered” ' is the measure on the sphere atyd= 27"/2(T'(n/2)) ! is the area of

the unit sphere im-dimensions. The probability Eq. (5]41) may thus be written

(QF)_W/Qe_%Xz(yvfk)dnY (545)
27"2(0(n/2)) 7 (0P (y, fu))/* e B BT dy a1,

d" P(y| fi)
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in agreement with Eq[(5.44) provided
d"P(y|fr) = dP(x?| fr)d" 1€ (5.46)

Again the probability density?(y?) for the x? of the new dataset is obtained by
averaging over replicas:

N
dP(x*) = P(x*)dx* = % Y POCIfu)dx. (5.47)
k=1

so combining Eq[(5.43) and Eq. (5147)
d"P(y) = dP(x*)d"~'Q, (5.48)

sinced™ 11 is independent of the choice of replica, and may thus be takeof the
sum.

If the new data are simply consistent with the old data as sarsed in the probability
density Po1a(f) the probability densityP(y?|f) should be ay? distribution forn
degrees of freedom: fot large this is peaked at, with width \/2n. To test this one
might evaluate x*) and the standard deviatien=. A value of 1 (x?) much greater
than one suggests that the new data are inconsistent withldh&vhile if the value

of o,z is much larger than/n, the new data should be useful to constrain PDFs.
Smaller values mean that the errors on the new data are pyabadyestimated.

Using the formalism of statistical inference, we can updageold probability density
Poia(f) by taking into account the new data to give an improved priibabensity
Puew(f). The new probability density is the conditional probaifior {f} taking
into account the new datgy}, i.e. Puew(f) = P(fly) = P(f|x?). It may thus be
determined from the probability densiti®y|f) or P(x?|f) using Bayes’ theorem,
which relates the conditional probabiliti€¥ A| B) and P(B|A):

P(A|B)P(B) = P(B|A)P(A), (5.49)

where P(A) and P(B) are the unconditional probabilities of and B. Note that
Eq. (5.49) relates probabilities, not probability dersiti to apply it to probability
densities needs some care with regard to measure factars.fdihexample

(P(fIX)DHP () dx?) = (POCIF)dx*)(P(f)DS). (5.50)

Note that the marginalization E@. (5147) follows directlyiategration over, since if
P(f|x?) is correctly normalized[ P(f|x?)Df = 1. Now, cancelling thelx? from
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either side of Eq[(5.50) (since this is just a pre-assigneatval),

P(x* If)
P(x?)

Multiplying on both sides by some observald¢f] and integrating over the PDFs,

P(fIX*)Df =

P(f)DF. (5.51)

Ol = [OUIPUI DS,
-/ o1) P p ) py,

PO
1 KPR |fk
, 5.52
>0 fi] (5.52)

where in the last line we used EQ.(5.39). It follows that we sample the probability
densityP(f|x?) using the replicag;., but reweighted:

Y now = Zwk Olfil, (5.53)

where

POC|fr) _ P(fr]x?)
P(x?) P(fx)

the second equality coming from another application of Bagfeeorem. Importance
sampling of the old probability distribution Eq.(5139) gaatees that all thé>(f)
are equal (tal/N): the weightsw;, are thus the relative probabilities of the replicas
given thex? to the new data. Combining Eq.(5154) and Eq. (b.44), anchgdtiat
the densityP(x?) can be taken out of the sum,

(5.54)

wy = Ny Oy, fi))/2 e 2X W), (5.55)

whereN, is a normalization factor. Applying E4. (5)52) to the unieogtor,(1), . =
1,50  w, = N, and

Ne=N/ Z (9. fi))2 e 00, (5.56)

consistent with Eq[(5.54) and EQ.(5.47).
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One can therefore re—evaluate the average, the standdadide\and the correlation
for all uncertainties using the new probability densitytéasl of the old one by simply
replacing the average in EQ._(5139) with the weighted aweiagq. [(5.58). The same
can be done for the evaluation of the uncertainties and latioas. In particular if
O is one of the PDFs, one can re—evaluate the PDFs after thesianlof the new
data and use the re—weighted PDF set into the analysis thtrethe PDF set used to
evaluate the weights.

A useful measure of the effectiveness of the reweighting is

Cgw? N (5.57)

N = =N :
D k=1 wl% D k=1 wl%

this gives the number of replicas left after the reweighti@tearly,0 < N.g < N.

If N.g becomes too low, the reweighting procedure will no longerddiable, either
because the new data contain a lot of information on the PB&sgssitating a full
refitting, or because the new data are inconsistent with ldhethese two cases can
be distinguished by examining the profile of the new data: if there are very few
replicas with ay? per degree of freedom of order unity, the errors in the newasit
have probably been underestimated.

Neﬂ‘ =

5.3.2 Phenomenological applications

First of all, as a cross-check of the procedure, the rewigighirocedure has been
tested in a well-known situation. The NNPDF2.0 referendeditides a large number
of DIS, Drell-Yan and inclusive jet data, as it is illustradtiem Chap. 4. As a test of
the reweighting procedure within the NNPDF approach, wepanathe NNPDF2.0
reference fit to the one obtained by fitting only the DIS anddhall-Yan data (which
we call it NNPDF2.0_DYP+DIS) and including inclusive jettddahrough Bayesian
reweighting. Given the consistency of the inclusive jetadaith the DIS and Drell—
Yan data included in the NNPDF2.0 analysis|[71], we expeetr#fitting and the
reweigthing to provide statistically equivalent results.

Results are shown in Fig.5]21. The re—weighted PDFs regeéxactly the parton
shapes obtained in the NNPDF2.0 reference fit. In partichkaerror of the medium
and large« gluon is reduced by the inclusion of the inclusive jet dathilevthe other
PDFs remain more or less the same. In Eig.5.22 the distoibvati the? per degree
of freedom,xfét(f)/Ndat, over the ensemble of 1000 replicas and the corresponding
distribution of weights are displayed. We see that theibistion of they? is peaked

between 1 and 2 and it is pretty narrow about that region. &qnently the weights
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NNPDF_DIS+DY_2.0 NNPDF_DIS+DY_2.0

7] NNPDF_DIS+DY_2.0 + jets INPDF_DIS+DY_2.0 + jets

Figure 5.21: Smallz (left) and large= gluon distribution at the initial scal@? =
2 GeV?. The gluon is evaluated before and after the inclusion ofj¢halata by
reweighting.
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Figure 5.22: Distribution of thqﬁg(vli) and the weights in the reweighting of the jets

inclusive cross—sections on the NNPDF20_DIS+DYP_1000 B&F

are mostly concentrated aboutN,.,. The computation of the effective number of
replicas (Vo = 443 in this case) confirms what we can infer from Hig, 5.22, i.atth
half of the replicas constribute to the redefinition of thevmeobability density.

Once the method of Bayesian reweighting has been crossketheit can be used
in several contexts. One possibility is the study of the ptiéimpact of the Teva-
tron lepton asymmetry data at Run Il. This analysis is irgting in several respects.
First of all, it allows us to study the compatibility betwetire 17 lepton asymmetry
data and the other data included into the NNPDF2.0 analgsisiely the CDRV
asymmetry date_[95] and the DIS structure functions datathedow—mass Drell—-
Yan data. These data are found to be problematic within ajlodral analyses, see
for instance Ref[]201]. Secondly, it enables us to asse&ssrtpact of these data in
further constraining the parton densities. In proton{antbn scatteringiy’ * bosons
are produced mainly by the annihilation of a u(d) quarks & ghoton with thei()

in the anti—proton. Any asymmetry in ti&* and W~ rapidity distributions is the
result of a difference between theandd distributions in the proton. Indeed th&
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charge asymmetry at the Tevatron is defined as

do(W*)/dyw — do(W™)/dyw  u(z1)d(z2) — d(z1)u(z2)
do(W)/dyw + do(W~)/dyw  u(z1)d(z2) + d(z1)u(z2)

Aw (yw) = , (5.58)
where the last equality is valid only at leading—order netihg the sea contribu-
tions andr; » = MTgV exp(tyw). TheW = bosons are detected through their decays
into aly; pair. Due to the unknown longitudinal momentum of the newatrihe bo-
son rapidityyy, cannot be directly measured, unless some extra informafioine
transverse energy of the resolved lepton and on the misairggis used on a event—
by—event basis, as in a recent CDF analysi$ [95]. What is@#fgimeasured, see e.g.
Refs. [146| 145, 147], is the lepton charge asymmetry whiehdonvolution between
the W boson production asymmetry and the parity violating asytryrfeom the W
boson decay

do (1) /dm — do(17) /dmy
do(I%)/dm + do(1=)/dn’

A(m) = (5.59)
wherer, is the pseudo-rapidity of the charged lepton. If one definegmission an-
gle of the charged lepton relative to the proton beam irftheest frame byos 6 =

1 — 4E2/MZ,, being Er the transverse energy of the charged lepton, the lepton
pseudo—rapidity and thié” rapidity are related by

1 1 50
mo= yw 4+ =l (YR (5.60)
2 1 —cosfp

Since at the edge of the phase space:feilfr ~ +1 the leading sea contributian!
is enhanced relatively to the valence—valence contribsfion top of measuring the
shapes of the up and down quarks, the lepton charge asympnebgs the separation
into valence and sea quarks. The enhancement, and thetk&o®nstraint on the
separation, is bigger near the edge of the phase space, dtir/sm This is one of the
reasons why in some experimental analyses|[146, 147], yimerastry is measured in
different bins ofE'r.

In the NNPDF analysis only thB” boson asymmetry data of Ref. [95] is included.
They are implemented at next—to—leading order withoutmglpn any K—factor ap-
proximation thanks to the FastKernel method introduced éf. 71]. The other
datasets are not included in the analysis due to the lack akwaifhplementation.
The recent development of the APPLGRID [202] interfacekelii to facilitate the
future inclusion of these data directly in our fits. However gan already study the
impact of their inclusion into the analysis through the rigiléing technique. In this
analysis we consider the sets of measurements performée X collaboration and
published in Refs[[146, 145].
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In Ref. [146] a measurements of the electron charge asymiimepip — W + X —
ev + X events at a centre—of-mass energy of 1.96 TeV using 0.75dbdata col-
lected with the DO detector at the Run Il of the Tevatron delliis presented. The
asymmetry is measured as a function of the electron pseaglity n in the interval
[ne| < 3.2 with the following cuts

I >25GeV [ne| < 3.2 |Mr| < 50 GeV.

Three sets of measurements in 12 bins of the electron pseapidity which differ
because of the different cuts imposed to the transversgygnéthe electron

Er > 25 GeV (bin A) 25GeV> Er > 35GeV (binB) Er > 35 GeV (bin C)

Here | only study the inclusion of the bin A data. The analysilt be extended to
the other two bins in the near future. In Réf. [145] a measerdraf the muon charge
asymmetry fromi¥ boson decay using 0.3 of data collected a{/s = 1.96 GeV
between 2002 and 2004 with the DO detector at the Tevatrdidepis presented. The
measurements are performed in thg| < 2 pseudo-rapidity range and the following
cuts are appliedpr , > 20 GeV andMr > 40 GeV. The range in,, constrains the
PDF in the0.005 < < 0.3 x—region. There is a more recent set of data introduced
in Ref. [203] but the data are not public yet.

In what follows, we use the DYNNLO code [204] to compute thedtetical predic-
tions for the lepton asymmetries. The code is a parton levaht®! Carlo program
designed to compute the cross—section distributions foxéttor-boson colliders in
the proton—proton and proton—antiproton collisions. Itekates exclusive processes
and it enables the user to implement the same cuts and theisalagon as those
implemented in the experimental analyses.

The predictions obtained with the next—to—leading ordengatation with DYNNLO
and several sets of PDFs are compared in[Eig.]5.23 for thaderes datasets. The
error bands refer only to the PDF errors. The latter are etetlby runningVi,em
times the DYNNLO code, once for each member of input partstridution, where
Npem = 44 for NLO CTEQ6.6 [41], Nyyem = 40 for the NLO MSTWO08 [43] and
Nyt =1000 for NNPDF20I[[71]. All sets are available in the commonARDF
interface([137]. It is quite remarkable that, even if theatadare not included into the
NNPDF2.0 fit, the prediction obtained from the NNPDF20_180@uch closer to the
experimental data than the predictions obtained with thergtarton sets.

In this analysis, we first reweight one data set at the timerdier to study the impact
of each of the two separately. In Fig. 5.24 the effect of thditamh of the DO electron

(bin A) data through reweighting into the NNPDf20 fit (prioropability). One can
see that the effect consists in a slight reduction of theresfdhe Singlet and the
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Figure 5.23: Prediction for the DO/ electron and muon asymmetries [146, [145]
(left, electron binA:E7 > 25 GeV, ; right, muonEr > 20 GeV) obtained with
DYNNLO at next-to-leading order, using the NNPDF20_1000][CTEQ6.6 [41]
and MSTWO08([43] parton sets. The uncertainty are the PDFertainty, evaluated
according to the HEPDATA recipe for MSTWO08 and CTEQ6.6 anthulie Monte
Carlo prescription for the NNPDF2.0 set reported in App&(@li

Total Strangeness PDFs in the smalkegion and a more sensible reduction of the
uncertainty of the total Valence in the small and mideteregion. Instead the effect
of the addition of the muon data through re-weighting is tyretild and it does not
produce any effect on the PDF shapes or errors, as one camBige5.25 in the case
of the Singlet PDF.

In order to understand the difference between the two sefEgi[5.26 the histogram
with the distribution ofxﬁg(v’ﬁ) over the 1000 replicas and the corresponding distribution
of weights are displayed for both sets. For these sets

Ndat,e = 127 Ndat.,,u = 105
Neff,e 266, Neﬁ"ﬂu = 758.

While for the DO electron data, the number of effective regodireduces to a quarter
of the original set, still remaining significant, and thetdizition of the weights is
pretty spread, for the DO muon dat¥,q is much bigger. However, the weights for
this dataset are distributed abaot 2, according to a very narrow distribution, which
means that the reweighting does not have much effect.

In Fig.[5.2T we have evaluated the average and the standaiatide of the observ-
able before and after the re-weighting, i.e. with the old asitti the new probability
distributions respectively. We notice that in both casesgredictions get closer to
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Figure 5.24: Singlet (top) and Valence (bottom) PDFs and @iesolute errors at
Q? = Q3 for NNPDF2.0 and NNPDF2.0 + DO electron data (bin A) added by
reweighting.
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Figure 5.25: Singlet PDF and its absolute erroigt = Q3 for NNPDF2.0 and
NNPDF2.0 + DO muon data added by reweighting
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Figure 5.26: Distribution of thecﬁg(ﬁ) and the weights in the reweighting of the DO

W electron asymmetry (top) and of the DO muon (bottom) udiegNNPDF20_1000
set as a initial probability distribution.

the data, while only for the reweighting of the DO electrotedthe PDF uncertainty is
substantially reduced. This confirms what we said earliecdnclude, if we evaluate
the x2 per degree of freedom of the experiments already includeélderNNPDF2.0
analysis before and after the addition of the data through the reweighting proce-
dure, we see that none of the experiments displays a dettdioof thex? due to the
addition of these data. This is a sign that there is no manifesmpatibility between
these data and the other Drell-Yan, jets and DIS data indlirte the NNPDF2.0
analysis. More care must be adopted when we will be consigéhie data in separate
bins (bin B and bin C) because these data might display inedibifity and therefore
be more problematic to include.

The technique that | have applied to a set of real data, migtatgplied to any other
dataset or to any pseudo—dataset. The method just discerabtes one to easily
assess the potential of future experiment to further caimsthe parton content of the
nucleon without relying PDFs fitting collaborations. Foistheason, it is particularly
handy for external users and easily generalisable.
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Figure 5.27: W electron asymmetry computed on the NNPDF& @afore and af-
ter the reweighting of the DO W electron asymmetry (left) &@@muon asymmetry

(right).



Chapter

Processes with heavy quarks in
the initial states

As it has been discussed in Chap. 2, there are two possible wfagerforming a
calculation of a high-energy process involving heavy gqeaf®ne option is the most
straightforward from the conceptual point of view. The heguark mass is taken to
be of the same order of magnitude as the other hard scaldsaahia the process. The
heavy quark does not contribute to the proton wavefunctimhcan only be generated
as a massive final state. In practice the theory which is ustiteimassive calculation
is an effective theory withy; light quarks, where the heavy quarks are decoupled and
do not enter in the computation of the running coupling camisand in the evolution
of the PDFs. Alternatively, one may consider the heavy quaakses much smaller
than the other scales involved in the process and consdyigmire them. The heavy
quarks are treated as massless partons which do condtiguit@tiron and may appear
in the initial state.

Both schemes present several advantages and disadvaatabean be applied in
complementary regimes depending on the relative size dig¢hgy quark masses. In
the massless scheme the calculation is highly simplifiedpaidntially large loga-
rithms (’)(;B/Mé) due to the collinear splitting of the initial heavy quarksagiu-
ons are consistently resummed in the heavy quark PDF. Aoaklg logarithms of
O(pQT,Q/Mé) appear due to the heavy quark splitting in the final state hey may
be resummed in the fragmentation functions or absorbedbistaitable definition of
inclusive heavy quark jets. In the massive scheme instéadgdmputation is more
complicated due to the addition of massive final states; kentbe kinematic descrip-
tion of the heavy quark is correctly taken into account atidfaeling order and can be

215
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coherently studied at the next—to—leading order. In thelaase, the implementation
in parton shower codes is also straightforward. The dovensidhat possibly large
logarithms developing both in the initial and the final stadee not resummed.

To all orders in perturbation theory the two schemes aretictn but the way of
ordering the perturbative expansion is different and atigeforder the results do not
match exactly. For some processes the difference betwédenatéons performed in
the two schemes may be very significant at the leading ordldigg to predictions
which might differ up to an order of magnitude. One of the nfastous and glaring
example is the discrepancy observed in the inclusive Higgdyztion initiated by
quarks. For this reason matching schemes based on the catiohiof the massless
and massive computations with the suitable subtractiohefibuble—counting were
proposed[46, 51, 205, 53].

In this work we critically reconsider the motivations forig schemes (massless or
improved) that allow the resummation of potentially larggdrithms, by performing
a thorough analysis of their origin and relevance in varjmegesses. The first section
is devoted to a brief overview of the studies which have besfopmed in literature.
In the following sections we analyse in detail some repriege processes that can
be treated analytically and cover a broad spectrum of piiisi We start by consid-
ering theb quark production at DIS in both schemes. In this case thes@alolved in
the process are the mass of the bottom quark, the virtudlityedintermediate vector
boson and the energy of the partonic process. Then we movertr@general case
where the masses of the produced quarks are different, &® inatse of the single
top production. Finally, we consider th& boson production associated to a charm
quark. For each of the above processes we proceed as follddirst go through
the massive calculation and determine analytically theestssociated to the collinear
emission of the heavy quarks. Then we study the associads-eection distributions
and assess the size of the logarithms which are resummeel @vdtution of the heavy
parton distribution. This allows us to carefully estiméte ize of the potentially large
logarithms and therefore quantitatively assess their anipgredictions for processes
at the LHC.

6.1 Phenomenological review

In this section | give a general overview of the impact that thoice of different
heavy quark schemes has on the predicted cross sectiosgopii has been broadly
discussed in literature and this section cannot providergpcehensive review. Rather,
it aims to describe the context where the analysis which we parformed finds its
natural location and inspiration. In particular, we mentamme studies performed in
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literature on the DIS production of heavy quarks, the asdediproduction of heavy
quarks and vector or Higgs bosons and we finally mention tiglestop process.

The production of heavy quarks in Deep—Inelastic leptodrdrascattering has been
extensively analysed from both the theoretical and the raxgatal points of view.
Calculations have been performed in the massive schemeeeheavy quark and

Figure 6.1: Leading—order diagrams for heavy quark pradndah the massive (a) and
massless (b) scheme. Leading order diagrams for singlertmuption in massive (c)
and massless (d) schemes.

anti—quark appear in pairs and are produced via photonadlsion, as it is shown

in Fig.[6. (a). The LO calculation starts@{(«;) and has been evaluated at the end
of the seventies (see for instance Ref. [206]). TH@?2) corrections have been eval-
uated in the ninetie$ [44]. The same collaboration has gea/a code [207], which
integrates the heavy quark contributions to the fully défgial heavy structure func-
tionsFib’c(:c, Q?) overz and@? to produce rates and differential distributions relevant
for DIS charm and bottom production. We’ll make use of thidedn the following
analyses. In addition, other methods to study heavy flavaatyetion were advocated,
like the intrinsic quark approach [208] and the variabledtamumber schemeé [46],
whose leading—order contribution is drawn in Hig.]6.1 (b)heTatter was one of
the first processes evaluated according to the so—calledTA&eBeme, discussed in
Chap. 2. The main difference between the two production exgisins which describe
the LO contribution in case of massive or massless (as W®IFASS) calculations can
be attributed to the fact that for massive heavy quark prooluche quark and the
anti—quark are produced in pairs, while in the other apgra@arty one heavy quark is
produced at the leading—order. At NLO, however, theseistiltifferences are milder
as, for instance, the gluon splitting process appears aldeimassless scheme. The
experiments carried out at HERA, which have provided a wesltnformation about
charm and bottom production [82], indicate that the bulkhefheavy quark structure
function in the region explored by HERA is given by gluon+ietied processes.

On the other hand in Ref.[209] the size of the logarithmioieof(Q* /mg,) has been
assessed by comparing the fixed—order massive calculdtdb@ to an asymptotic
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calculation which only containkg™ (Q?/mg,)) andlog™ (11*/mg,) and terms which
survive in the limitQ? — oo. In this analysis it was shown that the logarithms men-
tioned above dominated the structure function, in the séreehe ratio between the
asymptotic calculation where these logarithms are resuhimall orders and the log-
arithms included at fixed order in the massive calculatidarige, exceptin the narrow
threshold region where= Q*(1—2z)/z ~ 4mg,. Inthe same reference, to answer the

do/dlog,q = (nb)
—
Ut o

—

o
38

logo @

Figure 6.2: The combined Osaka and published ZEUS-datg L0l /d log,, =
(nb) for DIS production ofD**-mesons. The dashed line is the NLO fixed flavor
number scheme resuft’XA°T, from the program HVQDIS[207]. The dotted line
(BMSN-scheme[[205]) and dashed-dotted line (CSN—schefi)are based on a
variable flavor number scheme computatioff 5. Taken from Ref.[[209).

question whether these logarithms bedevil the convergafiibe perturbation theory,
a comparison was performed between the massive calcukatidthe variable—flavor
number calculation performed in the BMSN scheine [39]. It whserved that, in
spite of their dominance, these logarithms do not vitiaeedbnvergence of the per-
turbation series so that their resummation in the heavykgeBF is in principle not
necessary. Indeed, as it is shown in 6.2, it is actualhg ho distinguish between
the two approaches except in the vicinityagf = 1072, where the VFNS seems to
describe better the data.

The second class of processes that we consider is the assbgiaduction of heavy
quarks with electroweak gauge or Higgs bosons. Among thewschannels which
might be exploited to search for Higgs bosons at hadrondmli, Higgs radiation
off bottom quarks is of special interest [212]. This prociessthe dominant Higgs-
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boson production mechanism in supersymmetric theorieargétan 3, where the
bottom—Higgs Yukawa coupling is strongly enhar@:dd a four-flavour scheme with

g b
_ _ b
TTOO 7 o H b
kN o N
g / \ q o
oot f1 Y TooL—— ’
(a) (b) g

Figure 6.3: Leading—order diagrams for: (a),(b) includiliggs production in the
four—flavor scheme, (c) inclusive Higgs plus 1 b—jet prothrcin the five—flavor
scheme, (d) inclusive Higgs production in the five—flavoresub.

no b quarks in the initial state, the lowest-order QCD proce$seassociatedbH
production are gluon—gluon fusion, FIg. 6.3 (a), and quarkiguark annihilati(ﬁ]
Fig.[6.3 (b)

gg — bbH and qg — bbH . (6.1)

As we mentioned earlier, the massive approach does not résitagarithmic con-
tribution of the bottom masgiQ?/m3), being @ the typical scale of the process.
However, these terms can be summed to all orders in pertonizaeory by introduc-

ing bottom parton densities (the five-flavour scheme) [2 4 the inclusive Higgs
production cross—section, where tiget is necessarily tagged in the final state, the
leading order diagram of the five—flavor calculation is drawrFig.[6.3 (d). The
leading order diagram of the four—flavor scheme, drawn in[E§ (a), enters in the
five—flavor calculation only at NNLO. In the latter scheme ihcomingb partons are
given zero transverse momentum at leading order, and &ctjaimsverse momentum
at higher orders. If on the other hand one demands that datdeas-jet is observed
@5 > pSt; Inb| < n°ut), then the leading parton process in the five-flavour scheme
is gb — bH, drawn in Fig[&.B (c), and the leading order contributiorthef four—
flavor schemes enters into the five—flavor one at NLO. Find#ligne compares the
theoretical prediction with the experimental cross—secfor Higgs plus twa—jets

B ph? > psuts b1, [n2] < nevt), the two schemes include the same diagrams
at the leading—order in perturbation theory (apart froméhiaitiated contributions
included only in the five—flavors scheme, which are howevenmetely negligible).

1The parametetan 8 = va/v1 is the ratio of the vacuum expectation values of the two Higds
generating the masses of up- and down-type patrticles irrsypenetric extensions of the SM.

2The quark—antiquark annihilation is not considered in tiiedving discussion given that it is unrelated
to the choice of the four versus five—flavor schemes and thabittribution is very small [213].
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The case of the fully—inclusive cross—section is partidylmteresting. In Figl 64

| o.,lfb]
VS=14Tev
M,, = 120 GeV

108}

Hy =My
He=He =

10? 1 10

Figure 6.4: Scale variation of the LO inclusive Higgs pratiutcross section predic-
tion for pp — bbH + X at the LHC in the four- and five flavour schemes. Taken from
Ref. [213].

we display the LO prediction for the totabH cross secion at the LHC in the two
schemes as a function of the renormalisation and factaisatales/[213]. Both cal-
culations exhibit a strong scale dependence. The scalendepee goes in opposite
directions in the two cases, being driven by thescale dependence in the four—flavor
scheme and by thiePDF in the five—flavor one. The leading order scale analysss wa
confirmed by the explicit calculation of the NNLO in the ma&ssl scheme and NLO
in the massive one, even though the discrepancy is sligatlyeed. From the dis-
cussion above it is clear that at least for the fully—inclasiase, a “fair" comparison
between the two schemes could only be done at NNLO for thelesassand NLO for
the massive one.

In the leading—order analysis, setting the renormalisadiod factorisation scales to
1 = My, the five-flavour scheme prediction exceeds the four-flagcheme pre-
diction by more than a factor of 5. For this reason, in Ref5]2he massive and
massless approaches were combined by subtracting theedmauniting, according to
the so called simplified ACOT schemie [47]. This matching isnt¢o keep the best
characteristics of the two approaches. However this sidisohot clarify the origin of
the large discrepancy observed in [Fig] 6.4. In Ref. [216kiswuggested that the cal-
culation ofbtb — h may overestimate the inclusive cross section, due to crpplioa-
imations inherent in the kinematics, which give rise to éabpttom-quark mass and
phase-space effects. However in Ref. [217] the masslesslatibn is performed us-
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ing the ACOT scheme which does not approximate the kinesafithe final bottom
pair and the same discrepancy is observed. The matched@anth§sive calculations
were then separately studied in more details in the same fiabd. Looking at the
collinear plateau of the five—flavor matchild — H calculation, it was argued that
the choice of the factorisation scalg- = My is not the best choice given that the
collinear plateau of the cross—section as a function of dlieearity |¢| drops much
earlier. It was found instead that a choice suchuas= My /4 leads to a reduced
scale dependence in both massive and massless approadhbatme discrepancy
between the four and five—flavor schemes was reduced by a f#digo, as one can
also infer from FigL6/4. This suggests that the scale atfvthie gluon splits is softer
than the scale of the hard process where the Higgs is prodticedever the question
about what is the dynamical origin of that is still unansvaere

In Ref. [218] a similar process was considered at next—guiey order: the produc-
tion of super symmetric charged Higgs boson in associatibm atop quark. In a
four—flavor scheme the leading order procesggs— btH~ while in a five—flavor
scheme the leading order procesglis— tH . In this study, a heuristic method for
identifying the dynamical scale of the collinear splittinfithe gluon into a bottom
pair was employed by analysing the distribution of the défdial cross—section in
the transverse momentum and in the virtuality of the bottarark. More recently
in Ref. [219], the NLO calculation in the four—flavor schenastbeen fully carried
out and a comparison between the results obtained at NLGeifotir—flavor scheme
have been compared to the NLO results in the five—flavor sché@ime result of this
comparison is shown in Fi§g. 8.5. One sees that, even takimgdhle uncertainty
into account, the cross sections evaluated in the two scla¢MEO are barely con-
sistent; independently on the charged Higgs boson masgetiteal predictions in
the five—flavor scheme are larger than those of the four—flanerby approximately
40%. Recently, at the LHC Higgs working group, the same caispa was shown
by using the MSTW2008 PDF input sét [43] instead of the MRSI®6ne [65], and
the distance between the two predictions was slightly smadtill remaining pretty
significant. This requires a better understanding of itgiori

Processes whose final states arelh@r Z boson plus one or two heavy quarks are
also relevant at the Tevatron and the LHC. They not only plete dominant back-
ground to the study off, single top, as well as Higgs production, but also represent
a useful benchmarks for the validation of the theoreticacdption of heavy quark
jets at hadron colliders. The problem of the choice of theesshis also present for
this class of processes, since calculations may be pertbimseveral ways and for
some observables it is convenient to match the massive asglesa calculations by
adopting one of the variable flavor number schemes disclis$gtuhp. 2. In Table6]1
we summarise the state of the art of these calculation itidigéhe scheme in which
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Figure 6.5: Left: Total NLO cross section fop — tH~ + X atthe LHC as a function
of the Higgs mass in the four—flavor and five—flavor scheme.tr@eprediction and
the scale dependence fo5/3 < p < 3uo, whereuy = (M + my + Mg-)/3in
the four—flavor scheme, whiley = (M; + Myg-)/5 in the five—flavor scheme. Input
PDF set MRST2004 [65]. Taken from Ref. [219].

the NLO calculation has been performed and provide someamdes. Each calcula-
tion corresponds to a given experimental signature indétah the last column of the
table.

In the same class of processes one might consider the imeliSproduction and the

W e associated production. The latter has been calculatedfifZg] using a three—
flavor scheme where the charm is treated as a massive final 3ta¢ NLO result is
found to be very sensitive to the choice of the factorisasiod renormalisation scales
by varying them aboud/y,. The authors interpreted this dependence as a sign that
this might be attributed to the fact that in a massive apgrolae collinear logarithms
resummed in the PDF are neglected and they perform some analysis in ordesésa
the size of these logarithms. Sineecontributes to thé?” production rate amounts
to 5% of the totallV rate, this process is very interesting from the phenomeyicdb
point of view. The difference between the predictions ai#diwith the three—flavor
scheme, where the leading order process is; W, and the massive approach, where
the leading order processdg — W, has been estimated to be of about 50% at the
Tevatron energy if the factorisation scale is sebf@,, which leads to a difference in
the prediction of the W production rate of about 2-3%, corapla to the error due to
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Process Scheme Reference| Experimental signa

pp — ZQCQ NLO | 4F,5F (ng = 0) [220] Zjj with 2 Q-tags

pp = ZQQ NLO 4F [221,222]| Zjj with 2 Q-tags
pp — ZQ NLO VF [223] Zj with 1 Q—tag
pp — ZQj NLO 5F [224] Zjj with 1 Q-tag

pp — WbbNLO 4F (mp = 0) [220] W34 with 2 b—tags

pp — WbbNLO 4F [221,[222]| W jj with 2 b—tags
pp — Wb NLO VF [225] W4 with 1 b—tag
pp — Wbhj NLO 5F [226] W44 with 1 b—tag
pp — WeNLO 3F [227] W3 with 1 c—tag
pp — WeNLO VF [228] W3 with 1 c—tag

Table 6.1: Available next—to-leading calculation of preses with a weak boson plus
one or more heavy jets in the final states. For each processitigne in which the
calculation is performed, the reference and the experiahsignatures are indicated.
nF and VF stand forn—flavor and variable flavor number schemes respectively.

the scale variation. Analogously the tofaproduction rate receives a contribution of
about 5% from the gluon—gluon fusion followed by bottom-dnatttom annihilation
gg — bbZ [229]. Hence, to get a 1% accuracy on the tafgbroduction, it must be
under control at 20% level. In the next section we are goingpttsider explicitly the
associated ¢ process due to the simplicity of the calculation which aBavg to gain

a better analytical control.

Finally the choice of the heavy quark scheme in single toplpction was studied in
details in Refs.[[230, 231], where also the production of avigdourth generation
quarkt’, b’ was considered. In this study, it was shown that the centoskcsections
predicted by the — 2, Fig.[61 (d), an® — 3 processes, Fi@. 8.1 (c) differ by 5%
or less, both at the Tevatron and at the LHC, for masses arthantbp quark, see
Fig[6.6. At the Tevatron, the difference is well within thenthined uncertainty from
higher orders and PDFs, so they concluded that the two eilonk are consistent. At
the LHC (10 TeV) the consistency was found to be marginal. [&g@er masses.e.
for ¢ production, the differences were found to be much larger. aR6 of mass of
1 TeV, the2 — 2 prediction using the CTEQ6.6 PDF set is almost twice as latge
the Tevatron and0% larger at the LHC. Therefore, for such large top masses itcou
well be that the logarithm that is implicitly resummed in th@ttom quark distribution
function might become relevant or that an even smaller faztion scale should be
used.

Interestingly, the first comparison between the masslest®massive approach was
performed long ago in a study of the charged Higgs produd#i8g]. The six—flavor
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Figure 6.6: Cross sections (fb) at the Tevatron Run Il (lefij)l LHC 10 GeV (right)
for the sum of top and anti-top quark production in th@hannel, as a function of the
top mass obtained with the CTEQ6.6 PDF set &d= 1 inthe2 — 2and2 — 3
schemes. Bands are the total uncertainty (scale+PDF)eliother plots, dashed is
scale uncertainty, solid is scale + PDF. Taken from Ref.[230

calculationbt — H~ was compared to a five—flavor calculation whose leading+orde
process idg — H~t. A large difference between the two approaches was observed
for the top masses lying in the range expected at those tiees;; < [3, 300] GeV.

The size of the difference increased with the mass of the top.

All these studies raise the question about understandiag islthe scale of the loga-
rithms and what is their dynamical origin. This is what wedstigate in the following
analyses.

6.2 DIS heavy quarks production

In this section we study the production of heavy quarks in Edffisions. This class
of processes includes both the production of heavy pairsiafiG-antiquarks and the
single top production. All calculations and results can bsilg generalised to the
hadron—hadron production of heavy quarks, as we will eitplisee in what follows.

We consider the general case where there are two heavy quadse masses! and

m do not have to be equal, withf > m. In the Feynman diagrams below we draw the
leading order process in the massiveflavor, and masslesg; + 1)—flavor, schemes.
In the massive scheme the heavy quark of mas€),,, is treated as a massive final
state and does not contribute to the proton wavefunctionthétleading order the
process is

(pa) + 9(po) = B*(q) = U'(k1) + Qur(k2) + Qum(ks), (6.2)
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where B* is the virtual vector boson which mediates the scattering. stéess that
the leading order diagram in this scheme is a next-to-lgadnder contribution in
the (n 4+ 1)—flavor scheme where the heavy quék, is treated as a massless quark
and appears as a parton in the initial state. In this caseetiirlg order partonic
contribution is given by the process

U(pa) + Qm=0(ps) — B*(q) — I'(k1) + Qs (k2). (6.3)

n—flav scheme n + 1-flav scheme

~—

In the latter scheme the calculation is highly simplified pontentially high logarithms
due to initial state collinear splitting of the gluon ¢ are consistently resummed
in the evolution of the heavy quark PDF. However, while atyvieigh energy this
scheme is perfectly sensible, at low or intermediate vadfidise scale characterising
the process, this scheme does not treat correctly the kitnesvend at leading order
it ignores power suppressed contributiongfn?/u%). In the former scheme, the
computation is more complicated due to the addition of a madimal state; however
the kinematic description of the heavy quark is correctkgtainto account already at
leading order. The scale which discriminates between thle-@nergy region, where
a massless approach works well and the low—energy regiceramhstead the massive
approach works better, is the scale of the collinear logarivhich is resummed in the
DGLAP evolution of theQ),,—o PDF. This scale is often identified wi? [53,41]. In
what follows, we show that the scale is not exactly giveriByrather by a dynamical
scale that depends on the momenta of the final states.

As discussed in Chap. 2, the scattering of the incoming feptn be described by
the kinematical variable®?, x5 andy defined in Egs. [(111) and (1.2), such that
T = Q?/(Shaay), beingSy.q the hadronic centre—of-mass energy. In Eq._1(1.6)
the inclusive lepton—hadron scattering cross section witew as a product between
the leptonic tensoL,,,,, Eq. [1.9), describing the upper part of the diagram and the
hadronic tensof*¥. The latter assumes the generic form of Eg. (11.10) wherengiv
that the quarks in the final states are not massless, théwsedanctionF, and Fs do

not vanish. However, if one neglects the masses of the lgptbay do vanish when
the hadronic tensor is contracted with the leptonic one. Asalt, the total DIS cross
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section can be expressed in terms of fae F;, and F3 heavy structure functions as

Ymax Qi}ax 27TOélBOéhB
B Q 2 22 2
A / dy/ dQ? —SBME L1y (1 - )2 F (2, Q% M2, m?)
o _— Q2. y(M}23 + Q?)2 2

—y?FP (2,Q% M2, m?) + [1 — (1 — y)?]F5* (z, Q% M?, m2>}, (6.4)

where byF2‘?L73 we indicate the contribution to the structure functions oagrrom

the heavy quark coupling to the virtual vector bog®h(+ or Z boson, for the neutral
current processes afti* for the charged current processes). The structure fursction
depend on the mass of the produced heavy qgarkand on the mass @,,,. The
dependence om? is explicit in the coefficient functions in case of a massied ¢
culation, while it is implicit in the definition of thé),,,—o parton distribution in the
massless calculation.

6.2.1 Massive calculation

The easiest way to evaluate the structure functions is tiggir¢he hadronic tensor
in its transverse, longitudinal and axial components wiaighdirectly related to the
amplitudeM of the partonic subprocess by EQ. (1.20). From that, it iy éagerive
the structure function$s, F;, and F3 according to Eqs[{1.19) and (1]21). We can
therefore consider only the subprocess as initiated bystheector boson.

The LO partonic subproces$(q) + g(py) — Q(ka, M) + Q(ks, m) is drawn in the
diagram below. The amplitude receives a contribution fromtt-channel and the
u—channel where the Mandelstam varialilesd« are defined as

t = (pp—ks)? =m?—2(py - ks),
u = (pp—ko)®> =M?*—2(py - ka). (6.5)
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t—channel u—channel
q ko q
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It is convenient to define another Mandelstam variabtde centre of mass energy in
the boson—gluon system (not to be confused with the leptanep centre—of-mass
energys = (pa + pp)?> = £Shaa Wheref is the fraction of the momentum of the
incoming hadron carried by the gluon), as

2
S = (mta)? =26y - Q= L5112 (6.6)
B &
Gl § where »=2Z 6.7)
2 3
such that
s+t+u= M +m?—- Q% (6.8)

We might also define the mass—subtracted Mandelstam vesiabl

tp =t —m? up =u— M? sl=s5+Q*=Q?/z (6.9)
such that
s1 4+t +up =0. (610)

The partonic tensor, related to the hadronic tensor by[Efi9)lis given by

~ 11 ~— * ~ * * 2

Huw = 55 3 Ko {ZMu(v 9= QuQm)M; (v g = QuQm)dl'2 + O(a?) |, (6.11)
wherel/2s, is the flux factor,l/2 comes from the average on the initial degrees of
freedom K, is the color average\1,, is the leading—order amplitude for the partonic

processdl's is the two—body phase space gnds the average over the initial and the
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sum over the final polarisations. After integrating over #zénuthal angle between
the plane containing the leptons and the plane containiagnitial parton and the
outgoing heavy quarks, the partonic tengor (6.11) can hitenras

2 N quQv Py - q Py q
H;u/ = dUT <_guy + ;—2> + <pbp, - 7q;L> <pbu - q2 qy>

—44g° R 3 ) o (=2 2 R
< 82‘1 ) (dac+ 5daL> — l€upo Dy < Sf )dag. (6.12)

1 1

Using the projection tensoig™, pjpy ande,..,p§ " one may derive the partonic
cross sectiondér, dés = (dbe + 3/2d61) anddés, and from them the structure
functions. The partonic cross sections are directly priopoal to the projected matrix
elements according to

11

doj = 5—5 Ky M{dls,  i=T.L3, (6.13)
1

where the latter are given by

MG(v*g = QuQm) —g" > Mu(v'g = QuQm)ME (v g = QuQm),
4q¢?
(s1

)2
_ C2¢2
Mg(’y*g = QMQm) = —i (8(11)2

MI (Vg = QuQm) = - phpy ZM;L(“/*Q = QMQm)ME(Y g = QumQm),

rpPa” > Mu(v'g = QuQm)M; (v g = QuQm).

If the generic coupling between the vector boggihand the heavy quar is given
by

— 5

1+ 1
grY" ° + g = grV"Pr + 9¥"Pr, (6.14)

2

then the leading—order amplitude* might be explicitly written as

M (v g = QuQm) = gsta(k2) [(QR’Y#PR + gLW“PL)Wwa +
okh— M
Y %(QRW‘LPR + 917" Pr) | v(ks)ea(py) (6.15)

In appendi{D, the expressions fMg;.z,L are written down explicitly and one can
see the explicit symmetry ity — wu, (M — m). The partonic cross—sectién di-
verges int — 0in the limitm — 0 and inu — 0 in the limit M — 0.

In the partonic centre—of-mass frame of tB&y — Q»;Q,, process, the four-
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momenta vectors are

s+ Q? s+ Q?

by = (2\/—50705 2\/5)5
- (S

2V/s
ke = (E 0, || sin, |k:|cos€)
ks = (Eg, 0, —|k|sin6, —|k| cos@),

whereFEs, Fs and|E| are determined by imposing the momentum conservation in the
evaluation of the two—body phase space

0oy = TR s o sk k)
2 T (2n)%2E, (2m)32E; CRRCIE

1 kzdkdﬂ -
_ Ll <\f N \/lkl2+M2>

(1672)  E-E
1|k 1 1

= | |dcos(9) = dt; = duy. (6.16)
ST NG 167s; 167s;

From the energy—momentum conservation, we get

|E| _ A(SaMQamQ)
— 72\/5 ,
2 .2
B — (s+ M m)7
2¢/s
a2 2
By — (5]‘2/[%7”)7 (6.17)
s

whereA(a, b, ¢) = va2 + b2 + ¢ — 2ab — 2ac — 2bc [109].

The explicit expressions for the partonic cross—sectinsipendiXD show that the
partonic cross—section&, anddaés have a pole irnt; and a pole inu;, which inte-
grated over the phase space give rise to logarithms. Incpéatj the integration im,
gives rise to

[t1 | max dt, 5+M2 — m? +A(S M? m2)
L | , M7, 6.18
= e (e A 69

[t1]min
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while the integration inu; gives rise to

|21 [ max d M2 2 0 A(s. M2 2
Lu:/ @ :log(s _m + A, 2’m2)) (6.19)
it | U1 s—M?+m? — A(s, M2, m?)
In the limitm? << M?, as in the case of single top production,
S M2\? S
L, —log |— (122 L, —1 (—) 2
t—)oglmQ( s)] — log e (6.20)
In the special case:’> = M? — 0, as in the case @i or cz production,
Ly = Ly, — log (%) : (6.21)
m

i.e. the argument of the logarithiy, does not have the phase space suppression on
the numerator. We have seen explicitly that, in the collimegiont — 0 and in

the massless limitn — 0, the scale associated to the splitting of the gluon into a
heavy pair is associated to a scale which does not corredpapd, rather to scales
which are directly related to the final phase space configuratn the next sections

we analyse two processes corresponding to the each of tHamit®presented above
and investigate in details the collinear limits and its ifog@tion on the size of the
collinear logarithms.

6.2.2 Bottom—-Antibottom production

The bottom—antibottom production corresponds to the spease of the cross—section
described in the previous subsection, where

QIW = Qm = b and M =1m = My. (622)

Moreover, if we consider only the scattering mediated byrtugl photon, i.e. we
exclude theZ contribution, we havegr = g1 = e,. If 0 (0 < 6 < =) is the angle
between the incoming vector boson and the outgéirggiark in the partoniey*g
centre—of—-mass frame, the mass-subtracted Mandelstaablegrcan be written as
S1

t, = 2(1—ﬁcos€) Uy

S1

5 (1+ Bcosh). (6.23)
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wheres is the velocity of the heavy quark in the centre—of-mass é&anhich tends
to 1 in them;, — 0 limit

- _]lfi = /1 am/s. (6.24)

From the general expressions reported in Appendix D, we g down the partonic
differential cross sectionggs anddsy, as

dé’Q 7 aeeilasﬁ 4 4 2
= _ _ 1 .
w050 (1 2 cos? )2 z B cos™ 0 (6,2 6z + ) (6.25)

+83% cos® 0z(e(4z — 1) + 2z — 1) — 2(dez 4+ 2)* + 2(4e + 1)z + 1

and
dop Taeed s 9 s o
dcosf  4Q2(1— B%cos?0) [(1—B%cos®0)(z — 1) +4dez] (6.26)
where
c m TB
—_b p—t
Q? 3

The differential cross-sections are symmetricdn 6, reflecting the symmetry of the
matrix elements upon the exchangewgf < t;. Form; — 0, the cross section
diverges incos® — +1, displaying explicitly the collinear divergence assoethto
the splitting of a gluon in a pair of massless quarks. In otdetudy analytically the
collinear limit of the partonic cross sections, we expanolab, = 0. The differential
partonic cross sectiodv, /dt; is easily deduced from Eq.(6125) as

doa 2 dog
dty - m dcosf
cos 0=(s1+2t1)/(Bs1)=1/B+2t12/(BQ?)
_ 3raeaseCp | 22(1—2e)e 22 (2(4e2 +6c—1) 22 + (2 —4e)z — 1)
4 22 Q%
2 2 2
22 (2(62% +5e + 5)Qz4 2(2e +5)z + 1) o).

The same expression with — wu; would be found if we were expanding about
u1 = 0 due to the symmetry of the cross—section under the exchange ¢;. If we
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further expand about = 0, the above expression becomes

N 2
déo 3racase;;Cr

dt, 4

O(g)  42Py4(2) + O(e) Jrz2(710,z2 +10z — 1) 4+ O(e)

t% Q%1 Q4 +O(t)|,

whereP,, is the Altarelli-Parisi splitting function introduced irh@p. 2. If we finally
keep only the pole of the divergent part ignoring thé:) contributions, we end up
with an expression for the collinear pole, which, integddtetweert,,;, = t(cosf =
—1) = —s1(1+ B)/2 andtpax = t(cosf = 1) = —s1(1 — §)/2 gives

/flmx des! 3raease;Crz
) -
t

1-— B Qg J5F S
dt; Q2 Pyg(2)log <—> ox ooy’ Pqg(2) log g

148 2m 2 2

1,min

Whereaéo)’“r’F is the leading—order cross—section in the five—flavor schéie inte-
gration of the collinear limit yields then a term proportidto

Qs s Q> (1- Z)} _

S
%qu(Z) 10g (m—l27> = %qu(Z) IOg |:m—§ >

(6.27)

The scalgs/m7) corresponds to the scale of the splitting of the gluon intoltrear
bb pair and it is proportional but not equal @?

1—=z

It is interesting to notice that, also in Ref. [233], in thentext of the study of the soft
gluon radiation in DIS and DY processes, the scale for theesufssion in the soft
limit = — 1 was found to b&)?(1 — z)/z — Q*(1 — ) and its origin was shown to
be purely kinematic, i.e. purely due to the structure of thage space.

The scale[(6.27) is a dynamical scale which changes on an-éwerevent basis de-
pending on the momentum fraction carried by the gluon andherkinematic invari-
antsQ? andx . Therefore, to make any consideration about its size, oaéchi@ok
atda/ds. In other words, for a given collider energy and acceptaoige has to check
what is the distribution of values @il — z)/z with respect to one. In the case it is
found to be smaller than one, then the logarithmg&gfn?) are notin fact large, even
when@? > m?. If, on the other hand, it is close or even larger than onegridiyms
should be resummed.

In order to investigate such behaviour, we run a modifiedierref the HVQDIS
code [207] with two different settings: one for the HERA espent and one that
represents a typical relevant kinematical region for theCLIHor HERA we set the
energies of the beams to the Run Il enerdigs= 920 GeV andE,. = 27.5 GeV and
we set the kinematical cuts (i, Q%) to 2 < Q% < 100 GeV? and0.1 < y < 0.9. At
the LHC the incoming electron is replaced by an incoming kuler order to identify
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where the distribution of the fraction of momentum carrigdiiee incoming quark is
peaked, we study the procesg — ubb and plot the distribution of the fraction of
energy carried by an initial quark. In Fig[6.l7 we see that, if we set the energy of the
up quark to a fixed value given by the mean of thmmomentum fraction distribution
(z = 0.15, E,=1.05 GeV), then the gluon momentum fraction distributieproduces
well the solid line histogram. Therefore, to reproduce a L€ kinematic, we set

| g-delta [ g-cutlhc |

Entries 128508 | Entries 30444
Mean 0.006782 | Mean  0.006246
0.02183 | RMS 0.02376

F — u-cutinc
g-cutlhc
--- u-deita
g-delta

0.05

| =f

50.04

x
0.03—
0.02— |

0.01—

IR B BRI B

Lol L L1l L 111l H bl
10* 10° I o' 1

Figure 6.7: Solid lines: distribution of the fraction of mentum carried by the initial
up quark and the gluon in the process — ubb, s = (14 TeVP. Dashed lines:
distribution of the fraction of momentum carried by the giuo the processg —
ubb, if E, =7 TeV andz,;, = 0.15, £,=1.05 TeV .

the energy of the incoming proton to a value of 7 TeV and theafrtbe incoming

electron to~ 0.15 - 7 = 1.05 TeV so thatSp.q = 29.4 TeV2. The value for the
cuts iny and Q? is such that the transverse momentum of the outgoing eleétro
above 20 GeV, a typical experimental cut for the detectiofightt jets. Given that
PG min ~ 20GeV = /Q7 i, (1 — Ymax), We set

2. =2000 GeV?  Ymax = 0.8.

The leading—order results produced with the modified varsiddVQDIS have been
cross—checked against MadGraphlv4 [234].

As from Tab[6.P, the comparison shows that results are gérfeompatible within
the uncertainty.

In Fig.[6.8 we plot the distribution a? /m?, s/m?, and the factm@ in logarith-
mic scale for both kinematics. The distributions are veffedént in the two cases. In
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cteq66 HVQDIS MG
s=101200 Ge¥
2< Q2 <100 GeV? Otot = 398.749 £ 0.097 (pb) | oot = 399.170 + 1.104 (pb)
01<y <09
s=29.4 TeV
2.10% < Q2% < 10° GeV? Otot = 46.7044 0.072 (pb) | oot = 46.276 4 0.648 (pb)
0.001< y < 0.8

Table 6.2: Comparison between MG and HVQDIS total crossaesfor HERA and
LHC kinematics. Input PDF: CTEQG66 [42].
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Figure 6.8:Q%/m? (top),s/m? (middle) and1 — z)/z (bottom) logarithmic distribu-
tions forbb production in the HERA (left 2 < Q% < 100, 0.1 < y < 0.9, E,= 920
GeV, E, = 27.5 GeV) and LHC-like (right 2 - 10? < Q? < 105, 0.001 < y < 0.8,
E,=17 TeV, E, = 1.05 TeV) kinematics. Input PDF: CTEQE6[42].
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the HERA kinematics, the invariant mass of #itepair has a peak at a higher scale
with respect taQ?. Indeed, the factofl — z)/z is peaked between 10 and 100. This
means that the scale of the logarithm is actually larger hghm?. Therefore, even

if the experimental cuts are such th@t lies in a region wheréog(Q?/m?) is very
small, the effect of these logarithms might be enhanced logke svhich is effectively
ten up to hundred times larger th§)?. On the other hand, in the LHC-like kine-
matics the invariant mass distribution has a peak aboutla edach is hundred times
larger thanm?, consistently with the prefactdt — z)/z is peaked about one and its
distribution is smoothly distributed between 0.1 and 10idha slight dominance in
the region on the right of the peak. This means that in a LH@&}#inematics, the
scale associated to the collinear splitting is ali@tiand that therefore the logarithms
which are resummed in the bottom PDF are important as onedveogplect by looking
at the@? distribution.

Another interesting question is whether the shape of thefactor(1 — 2)/z is due
to the shape of the gluon PDF or to the energies and cuts assth¢d the considered
kinematic configuration. To clarify this issue, we reprogdithe same distribution
using several different input PDFs for the LHC—like kineiosiby ending up with the
very same distributions as the ones shown in[Eid. 6.8. Weralsthe code a toy gluon
71 — z)® and looked at the distributions as varying the parametesdb. We
observed that, only if the gluon PDF were much steeper thel€FEQ66 gluon, i.e.
only for unrealistic exponents > 5, the peak of th¢l — z)/z distribution would be
more pronounced and would shift to the left. For all otheuealofa, the distribution
does not change. On the other hand, the higbxponent seems to be irrelevant.
Therefore we concluded that for realistic PDFs the scaldefldgarithms depends
mostly on the kinematics rather than on the gluon shape.

We look then at the differential distributions of the crassetion in terms of the trans-
verse momentum and pseudo-rapidity of the outgéiggiark. Their shapes change
radically from the HERA to the LHC kinematics. In the HERA &imatics the trans-
verse momentum is peaked in the smallregion and the pseudo-rapidity is peaked
about zero. In the LHC kinematics instead, the transversmentum distribution
exhibits a double peak, one at smajl and one apr ~ 50 GeV, while the pseudo—
rapidity distribution is centred in the backward region. Hig.[6.9 we observe that
the distribution of momenta of the less energetic quark ekpd in the smalpr,
while the distribution of the most energetic quark is peaebdutpr ~ 50 GeV.
One quark is soft and the other compensatepthef the outgoing electron. This
picture is confirmed by looking at the pseudo—rapidity disttion. The difference
of pseudo—rapidity for the three outgoing particles, etattbottom and anti—bottom
shows that the less energetic quark lies is in the forwarndnregompensating the elec-
tron pseudo-rapidity, while the hard quarks is in the céméigion. This observation
tends to confirm what we found previously, namely that in tih#CLkinematics the
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logarithms are dominant and that therefore the five—flavbes® where the leading
order process is 2— 2 needs to be matched with the four—flavor one.

3
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Figure 6.9: LO differential cross sectionspi (left) and pseudo—rapidity (right)
for bb production in LHC kinematicsp?,;,, = 2000 GeV. The two dashed histograms
represent the distributions relative to the most energptark ¢,) and for the less
energetic onebg). PDF input set: CTEQ66 [42].
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Figure 6.10: Comparison of normalised LO transverse moomemifferential cross
sections for bottom productions in the LHC kinematic. PDpuinset: CTEQ66.[42].
Cut on the transverse momentum of the outgdiggark.

We finally look at the transverse momentum distributionsbfandb when a cut on
theirps is imposed. In absence of cuts pp, theb andb transverse momentum distri-
butions look exactly the same. If instead a cut is appliecherttansverse momentum
of the outgoing bottom quark, leaving the other quark free,distributions look ob-
viously different. In Fig[’6.10 we notice that the shape efttansverse momentum of
the b antiquark does not change much, even raising the cpt-dnom 20 to 80 GeV.
This suggests that the scale associated to the collinearifbms is softer when a cut
on thepr of theb is applied than when no cuts are imposed. Since the quit isup-
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presses the—channel contribution to the cross—section with respettiéo—channel
one, this case relates to the one which is going to be disguisske next section.

To conclude, we found that the scale of the logarithms is aadyoal scale which
depends on the final state particles momenta. This scalealefeat a scale higher
than@? in the HERA kinematics, while it is peaked abd@it for the LHC kinematics.
This means that in both cases the size of the logarithms &rgs br even larger than
log(Q?/m3). This confirms the result of Ref.[209] about the size of thgalithms
resummed in the massless approach and clarifies its dynleorigia.

6.2.3 Single top

This process corresponds to one special of the two spesiesad the general process
discussed in Sect. 7.2.1, where

M =M, m=my, gr=0  gL=gw/V2.
If we restrict the general expressions reported in Appelliibo this case, we may

write the differential cross—section iras

dos 3093y Cr 2252 4 374 4
— = 19853t — 13 2(u — DPP? 2mp M st + 253 (Mt + myuq)

+12Q2t1u1 [Sl(thE + ulmg) —+ u1t1(51 — Qz)]

—28% [miul(Q281 — Q2ﬁ1 + Sltl)

+M152t1(Q281 — Q2U1 + slul)

+82t1uy (2@4 —2Q%s1 + 13 +ui) } (6.28)
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It is apparent that the cross—section has a pole=sn0 in the smallm; limit. If we
expand the above expression abe0, we get

@ _ 30[59‘2/VCF O(m§7m12)M1527m§Q2) .
dt  64(s+ Q)2 13
+2M; + AM7Q* — 2MPs1 4 2Q* — 2Q%s1 + 51 + O(my, my M, mpQ*)
2(8 + Q2)t1
—4AM} + 6MZQ? 4 2M7s1 +10Q* — 10Q%s1 + s1 + O(myg, miMZ, miQ?)
2(s +Q%)?
+0 (t1) } (6.29)

In the collinear limitt — 0, if we ignore the terms proportional ta?, we end up
with an expression for the collinear pole ip, which, integrated between,;, and
tmax Yields

= — W oM} +4Q*M? — 2(s + Q*)M? +2Q" + 5% + Q%)

dt 12853
s M2\ 2
-log |:—2 (1— —t) :|
mb S

- M2 M2 M2 2
o« =gl p (—t) log [—ti (1 - —f) . miSQ% < M,

max ~coll 2
/t dtdogo 3asgi, Cr
t

min

27 s mg M?

Whereaéo)’E’F is the Born—level cross section for the leading order prodeghe

five—flavor scheme. Notice that in the last equality we u€dd< M?, which is
justified by looking at the distribution of the cross sectio®? /M2 in Fig.[6.11. The
scale corresponding to the collinear splitting then is @t rather a dynamical scale
proportional to the ratid/? /m; by a factor

M with 2z = %’52

z S

With respect to the previous case, there is an additionabrfdd¢ — =) due to the
suppression of the final phase space related to the produftaheavy final state. In
Fig.[6.11 we plot the differential cross section as a fumctib)? /M7, of the scale of
the logarithms(1 — M?/s)?/m3, of the factor(1 — z)?/z and its squared root, being
2z = M}?/s. The kinematics is the one of the LHC. We see that the didtdbwof the
(1—2)?/z pre—factor is centred on a value close to one and it is braguisad about it,
being slightly enhanced on the left of the unity. This yiedddistribution of the scale
of the collinear logarithms which in average is slightly sierathan the scale that one
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Figure 6.11: Distribution of? /M? (top left), the scale of the collinear logarithm (top
right), the(1 — z)?/z factor (bottom left) and its squared root (bottom right) réithe
energies of the proton beams are at 7 TN, = 174.3 GeV, m;, = 4.7 GeV. Input
PDF: CTEQ6L1[[59].

would expect by simply identifying the scale of the splittiwith A72. However this
is less small than we would expect from the studies perforim&efs. [230, 231].

6.3 Associated W and charm production

We turn now to discuss another class of process where the $&mae which makes
the process perturbative is the invariant mass of the fia&st rather than the high
virtuality of the incoming particles, as it is in the DIS case particular we consider
the Drell-Yan production of & boson associated to the production of a charm quark.
The advantage of this choice is that it is easier to gain dicatpntrol and that, as
discussed in Sect. 7.1, it might bear some phenomenolagiezance.
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6.3.1 Massive calculation

Here below we draw the LO diagram that contribute to the LQcess for thél/c
production:

9(p1) + 8(p2) — c(ps) + W™ (pa) (6.30)
t—channel s—channel
e o AVAVAVAVAVAV)? (el W
Y +
g9 000000 +——>—— ¢ ¢ c

The Mandelstam invariants for this process are defined as

G162Shaa =5 = (p1+p2)”=2(p1 p2) = (ps +pa)® =mi + My + 2(ps - pa),
t = (p1—ps)®=m2—2(p1 ps) = (p2— pa)® = Miyy — 2(p2 - pa),
u = (pr—pa)’ =My —2(p1-ps) = (p2 — p3)® = +m?2 — 2(p2 - p3).

As in the previous section, it is useful to define the Mandatstnass subtracted
variables as
t; =t —m? up = u— Mg, 51 =5— (me+ My)> (6.31)

The matrix element is the sum of the contributions comingtftbet and thes chan-
nels

M(gs > We) = Mi(gs — We)+ Ms(gs — We), (6.32)
Migs > We) = i, (o) (o) BE (1 (),
Ms(gs = We) = i%@(m)ii(m)ﬂ(ps)v“(l —5) Mtpé)v”u(pz).

It is the same as the one studied in the previous casewith s, M = m., m =0
andQ? = —M§3,. The squared matrix element averaged over the initial celand
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polarisations and summed over the final ones reads

- 29t | Ves|?
smp = —SsawlVal™ | s 60y
24M3 s (t — m2)

+my (2My, + 2Mjt — (s +t)?)

+m? ( — AMF, + 2Myt — 2MG, (57 — st +2t%) + (s + t)2>

+2Mt (2Myy, — 2MG, (s +1) + s° +17) |. (6.33)

In the partonic centre of mass frame we can write the 4-mowigthe particles as

P1 — (\/§/270507 \/5/2)7
b2 = (\/g/2705077\/§/2)5
ps = (Fs,0,|p]siné, |p]cosb),
ps = (F4,0,—|p|sinf, —|p]cosb).
where|p] = |p4] = |p5| andé is the angle between the outgoing ¢ quark and the

colliding partons. The phase space in 4 dimensions is giyen b

d*ps d’py 4
dd, = om)t5) —p3 —
2 (m)22E; (2n)32F; (2m)°6" (p1 + p2 — p3 — pa)

‘ .

1 pr

= dt —
8ms ! 87rs | /|72 7p%, PTs

(6.34)

with

5+m37M3V

2 2
B, = s+ My —me (6.35)
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The total cross section is then obtained by integrating tvemphase space and the
parton distribution functions:

do
o = [derster ) [deag(eand) [ax 33 (6.36)
where
do 1 _ dd
= S MO p222 ith X = 37
X = 2 |MGS| X wit {t,t1,pr,cosb,...} (6.37)

In Fig.[6.12 we plot the partonic cross section, withoutuiihg PDFs, as a function
of (s1,t1) and(s1, pr). We see that most of the events lie in the very smalkgion,
and in the relatively smal; region. The same for ther distribution, although there
is also a peak aroungr ~ pr max due to the Jacobian which appears in the phase
space, Eq[(6.34). In order to check how close to the thrdshohe scale at which the
partonic cross—section is damped, in the same figure weyptotransverse sections
of the three—dimensional plots, one fgrclose to 0 and one for; = 10 GeV?. We
see that at very smal; | the cross—section starts being dampegd-at My +m.)? ~
210* GeV* which is about more than two units 6f1. + My, )?, therefore pretty far
from the threshold region. On the other hand, looking at thefpr s; fixed, most of
the events are in the region very close to the collinear kmit 0.

To draw the same plot by including the parton distributiames perform the change of
variables&1, &) — (7,y), where

L=VTe™ & =\Te .

Under this transformation

1 1 1 +log 7/2
/ dé, / ds 5(60, 13) g (Ea, 1i3) = / dr / dy s(vret!, B )g(Vre ™", i),
To T0/&1 0

—logT/2

where

(mc + MW)2

6.38
Shad ( )

T0 —
By integrating in the rapidity, the product of the PDFs, we obtain the parton lumi-
nosity as a function of

+ log 7/2

L(r, pu}) = / dy s(vTetY, ui)g(Vre Y, uF) (6.39)

—log /2
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Figure 6.12: Partonic cross section plotted as a functio¢jtof, s;) (top left) and
(pr, s1) (top right). Transverse sections of the top left 3D plotddixed value oft;

(bottom left) ands; (bottom right).

and we can write the total cross section as

1
d
oLOAF _ / drL(r, 1) / XL (1) Sty 2, X, s (13)): (6.40)
TO

dx
In Fig.[6.13 we display the double differential partonicssesection multiplied by the
parton luminosity obtained with the MSTW(8 [43] NLO partat.sThe effect of the
luminosity is to damp further the cross sectio{n In order to assess how close to the
threshold is the scale at which the PDFs further damp thesesestion, we plot on the
same figure the MSTWO08 parton luminosity as a function;of= s — (My, + m..)?
at LHC, whereSy.q = (10 TeV)2. We see that the luminosity starts dropping at
s1 ~ (100 GeV)?, i.e. more than one unity itMy, + m.)?, therefore the region
enhanced by the luminosity is broader than the thresholdmdmyt narrower than the
region which would be enhanced in absence of PDFs, seE Bf. 6.
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Figure 6.13: Partonic cross section multiplied by the pgattoninosity plotted as a
function oft; ands; (left) and parton luminosity as a function ef (right) at the
LHC S = (10TeV)2. Input PDFs: MSTWO08[43].

We now compute analytically the differential cross—settlé/ds, related to the total
cross—section by

LO,4F Sha do
Opor - = / dsL(s, /ﬁ;)— (6.41)
(mc+1\/[W)2 dS

To evaluatedis /ds we integrate the double differential cross sectién dsdt, in t1
between

1
2fl,ma,x - _5 (S_m(Q_MI%V—’—A(S’m(Q?M‘%V))
1
tl,min = _5 (S - m(2 - MI%V - A(Sa m37 MI%V)) (642)
and obtain
do t1,max = 22 1
- S 99 S L P 4
ds /t1 i Aty Bl Mos (b, 5, 00 () 753 (6.43)
2
= _O;Sfi\/%v;s 2 (m2 4+ 2Myy,) (2me +m? (25 — AMiy ) + 2Myy — 2Miy s + 5°)
S

log s+m2 — My, — A(s,m2, M3,)
s+m2 — MZ + A(s,m2, M%)

+\/m‘c1 —2m2 (M2, +s) + (M2, — s)°

. (7m§ + mi (7M€V + 33) -2 (7M€V + Mavs)) :| .
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As we did in the precedent analyses, we study the collinear dif the above expres-
sion. Expanding the integrand of EQ. (6.43) abQut 0, we get

dé (5.1 m?2 M2) O(e) n —2MS$, + 2sM3, — s2ME, + O(e) 1

dsdty 7 ME,’ w t2 61/2s3 ty
M4

- (3\/%23 + 0(61)) +0(ty), (6.44)

wheree = m?2/M3Z,. If we neglect term 0® () and the non collinear teri@(¢), we
are left with the pole irt;

do m?2 —2MS$, + 2sMy, — s2 M3, 1
t1, —< M2 ~ W W Wz, 6.45
dsdty (5,1, ME,’ w) 53 t ( )
In approximationn? < M2,
[thmax  ~ s = My +O(m3),
m25
thnin ~ @ — Y, 6.46
t T o) (6.46)
and therefore the integration yields
do M, . - 2 4 S M, ’
% ~ 53 (S *2MW5+2MW)1Og m—g — T y
. M2 M2\?
x ;—J<O>=4F Py, <—> log [ig ( - —W> ] : (6.47)
0 s mg s

wheres(9:4F is the Born—level cross section for the leading—order psde the
four—flavor scheme. The scale associated to the collindigtirsgp

M2, s M2N\? M2, (1—2)? )

is a dynamical scale which depends on the partonic centrerads energy = 7.5.
The result is similar to the one found in the single top arialys

In order to assess the size of this scale, in Fig.16.14 we pbodistribution of the
cross section in terms of /M3,, (1 — 2)?/z and(1 — 2)/+/z with z = M3,/s and
the scale of the Iogarithngg (1 — @) The scale is peaked about a value which
is significantly smaller thad/2,, as we expect by looking at the distribution of the
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(1 — 2)%/z factor in the same Fig. Indeed, if the scale of the logarithenea/yy /m.,
the scale associated to the logarithm would be distribubedia60. Here the shift
observed in its distribution with respectid?; is far more enhanced than in the single

top case.

m,,=80, mc=1.3

m,,=80, mC=1.3

03f
025
o 02

£0.15
T

—\/S = 500GeV
V'S = 1.96Tev

i

—\/s = 500GeV
\S = 1.96Tev

=80, m =1.3
c

10 b ~s(-2)me

— \[s = 500GeV
\'S = 1.96Tev
——\S=14TeV

i

—\/s = 500GeV
\IS = 1.96TeV
——N\S=14TeV

n
'égt =(1-2Nz

E\
10°

107,
fact?=(1-2)%lz

Figure 6.14: Distribution of the LOV ¢ cross—section as a function of /M3, (top
left), the scale of the logarithry's (1 — Mﬁv/s) /m.. (top right), the factor multiply-

ing M2, /m?: @ with z = M2, /s (bottom left) and its squared root (bottom

right).

We may wonder what happens if the only the gluon PDF is turmedrbile the strange
PDFs is peaked as a delta function about the average fragtimmomentum carried.
To answer this question, we first plot the distributions:pandz, for m. = 1.3 GeV
and My, = 80 GeV for the three considered hadronic centre—of-mass esefthen
we sets(z) = 0(1 — zmax) and re-evaluate the distributions. The latter are displaye
in Fig.[6.16. Their shape does not change significantly vepect to Fig. 6.14. We
have also tried to substitute the initial strange by a ihittavn quark. Even though the
distribution of¢; is different when the initial quark is a down quark, as it isetve on
the right—hand side plot in Fif._6115, the shape of the thistibns does not change at
all. This means that the distribution of the scale assoditighe gluon splitting in a
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Figure 6.15: Plot of the momentum fraction carries by theog|ustrange and down
PDFs forShaa = (14 TeV)?2. HereMy,=80 Ge\?, m.= 1.3 Ge\f. The gluon and the
strange distributions are plotted on the left and the glumhthe down distributions
are plotted on the right.

m,,=80, mc=1.3 m,,=80, mC=1,3
E —\/S = 500GeV 0.0s] —\/s = 500GeV
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S
=
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p,~\s(1-2)/mc fact = (1-2)Nz

Figure 6.16: Distribution of the LOV ¢ cross—section as a function of the scale of
the logarithms (1 — Mﬁv/s)2 /m? (left) and the factor multiplying/2, /m?2: (=21
(right). Heres(x) = 6(1 — zavg)

almost collinear— pair is rather independent of the PDFs. It seems to have dypure
kinematic origin.

To conclude our discussion about this process, we integhnatelouble differential
cross—section in and look at the distribution of the differential cross sewtin thet;

do

1
_ 1
do_ / ATL(7, 125 My (£, 75, s (112)) [
dty Tmin

16ms2’

(6.49)

wherernin > 79 is determined by inverting EJ.(642), as illustrated in. Ed?, and
obtaining
m2+ Mz, m2MZ, t
Tmin — - - 5
S St S
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Figure 6.17: Region of integration of EQ.(6143) in the pléndt|).

To perform analytically the integration in E{._(6149), wéraduce a toy parton lumi-
nosity

L (1) =171,

and end up with the following result

do asGrVi _ 5%(m2 4 2M,)(m2 — t)
dty 121253 (m2 — t)* l
(m2 +2My,) (m2 —t) (md — 2m2 M3y, + 2Myy, — 2Mit +t°)

1+2
42 < (mf + 2M€V) (mg — t)

l
+t2 (m2 4 2Mgy) (me — 2m2 Mg, + 2My, — 2Mt + %)
(1 +2) (m2 — 1) (M, - 1)°
2t (8 — mitt + m2t (M2, + 1) — 2Mt)\ (((m2—t) (¢t — ME)\
U+ 1) (t—m2) (MZ —1t) St
28 (mf — mit + m2t (M7, +1t) — 2Mévt)]

+ (6.50)

I+1



6.3. Associated W and charm production 249

which, in them? — 0 limit, tends to

do (me=0) asGrV2 1

@ 6Va@ tsl+2) S (651)

S 241
(= + 1+ 2)My +2(1 + 21 + 2) Myt — 2(1 + 1)°t?) <M2 t)
Z

+ (=201 + 2) M7 S + 1(1 + 1) (2Myy — 2Mipt + %) + (L + 1)(1 + 2)S?) } .

In the limit¢ < M3, andm,. < |t| Eq. (650) simplifies to

do M3, S M2, \*

The logarithm depends on the rag)/3,. Plotting Eqs[(6.50.6.51) as a function of
\/m/mc in Fig.[6.18, we observe that the collinear plateau dropssatate smaller
thanM/3,. The scale where the bulk of the events is concentrated iségian about
My /mc ~ 20.

sigToT
30~

251

20F

N

5 10 50 100 500 1000

Sart(-t)

Figure 6.18: Plot oflo/dt as a function of/|t[/m. for I=2,V/S = 10 TeV, My, =
80.398 GeV form. = 1.3 GeV (pink) andn. = 0 (blue).

In order to cross—check the result and assess whether theitatmodified by using

a realistic input set of PDFs, we performed numerically titedration of Eq.[(6.49).
The code we used to perform the numerical integration hasdress—checked against
other independent codes. The distribution of the events is shown in Fig[6.19,
where thef‘jl—‘; distribution is plotted as a function Qf/m for m. = 0 and for several
values ofm,. # 0. We see that the distribution presents a collinear platéamped
neart ~ 0 for finite values ofm.. We observe that the scale at which the plateau
drops is much smaller thab/2,. This confirms the results obtained in the analytical
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calculation and suggests that the scale associated tolttimgmf the gluon is softer

200 = me=0 GeV
me= 1.3 GeV
=1 mc= 4.5 GeV

mc=20 GeV

50 -

1 10 100

Vitl

Figure 6.191og(t) distribution forv/S = 1.96 TeV, My, = 80.398 GeV and various
values ofm... The distribution is not normalised

that the scale associated to the h#@rdproduction process, whose scale is naturally
given by M2,. This implies that the factorisation scale that should hefaethe
bottom PDFs in the four—flavor scheme is smaller théfy, which is what has been
suggested in several studies presented in Sect. 7.1. Hepoiwed out the reason
why this choice is meaningful and we clearly showed its dyicahorigin.



Conclusion

As pointed out several times in this thesis, the search farpteysics at hadron col-

liders requires precise results in QCD phenomenology. fberetical uncertainties
in cross sections for hadron—hadron collisions is often idated by the uncertain-
ties of parton distribution functions. Their faithful esgtion is therefore essential for
providing reliable predictions at the LHC. Another sourt@mcertainty is related to

the treatment of heavy quark masses in the calculation afgsses involving heavy
guarks. We have seen that there are several schemes forrpigosuch calcula-

tions. Often they lead to predictions which differ by a sfgi@int amount, resulting in

ambiguities in the theoretical description of this claspmafcesses.

My research activity has focused on understanding and @iting the above sources
of theoretical errors. On one side this thesis presentsthéts that | achieved within
the NNPDF collaboration. The method, based on the combinati a Monte Carlo
sampling of the probability measure in the space of PDFs thi¢huse of neural net-
works as unbiased interpolating functions, provides assielly—sound determina-
tion of parton densities. In this thesis | presented the megythat has been made
during the last four years, the results obtained and theyseslcarried out. They
give an important contribution to the understanding of thle bf partonic uncertain-
ties in the high—energy predictions and help in clarifyirgeral issues which cannot
be dealt by mean of the traditional approaches. Moreovaraéphenomenological
studies performed using the NNPDF method, have been pezkant their relevance
has been outlined. A related but somewhat independent msuterns the study of
processes with heavy quarks in the initial states. | hawediced a method to as-
sess the size of the potentially large logarithms of the &8s heavy quarks which
arise in massive calculations. The identification of thealc$cale of these logarithms
and the understanding of their dynamical origin enabledwgiaintitatively estimate

251
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their impact for several representative LHC processes. antadysis might be easily
extended to any other process.

Parton densities determination

The NNPDF collaboration has developed a completely orlgimethod for deter-
mining parton distribution functions. Before the work d¢adrout in this thesis, the
NNPDF approachwas only applied to the determination ofglsiparton density [67].
My main research project aimed at extending the method tdetermination of a full
set of PDFs. On top of the DIS data, upon which the first two fiessanbased [€8, 70],
inclusive jets and Drell-Yan data have recently been irelijdy yielding the first
NNPDF global analysis [71]. In the latter, hadronic crogstiens are evaluated at
NLO, without relying on any K—factor approximation thanksie formulation of the
FastKernel method. Moreover normalisations uncertasrai@ correctly taken into
account by mean of the so—callgdprescription proposed in Ref. [1118]. The faithful
determination of PDFs uncertainties allowed us to perfoserées of statistical anal-
yses which cannot be easily addressed by other methodsttioytar the dependence
on the choice of the parametrisation of the PDFs has beesseshbén a statistical
way and satisfying answers when comparing the resultsradmaiut of a reduced set
of data with the global results have been obtained: whileutheertainty bands do
increase in the regions where there are less data, and gsimfermation, the cen-
tral values of the reduced and the full fits remain compatititbin the uncertainty.
Finally the compatibility between DIS and hadronic datades been studied in a
quantitative way.

The most recent NNPDF global analysis however, still usespgmoximate prescrip-
tion for the treatment of heavy quarks masses, which migitd te systematic shifts
in theoretical predictions. For this reason, the FONLL gaehmass VFN schemEg [54]
is currently under implementation and is going to be inctudte the forthcoming
NNPDF2.1 release [105]. The inclusion of a better treatnuérthe heavy quark
masses is particularly interesting within the unbiased BNRpproach, since it al-
lows us to disentangle its actual effect from other posgiblgributions due to PDFs
parametrisation. Other features, such as the implementafia NNLO analysis for
precision studies, or the inclusion of small- and largeesummation effects, are go-
ing to be explored in the near future. Finally, a suitable L&®tpn fit able to match
the requirements of the leading—order Monte Carlo evengiggars is in preparation.
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Related phenomenology

With the technique developed within the NNPDF approachesd\phenomenolog-
ical studies have been performed and presented in thisth€kie detailed study of
the strange content of the nucleon showed that better daoftthe uncertainty of
the strange and anti-strange parton distributions has #hiveignificance. First, it
enabled us to reassess the determination of electroweaknpgers from the NuTeV
dimuon data and to solve the well-known NuTeV anomaly, by imgakhese results
fully consistent with the precision electroweak data. ity it yielded the most
precise direct determination of the CKM matrix elemért;| [70]. It would be in-
teresting to perform such analysis with the most recent NNPpBrton set/[71] and
check whether the accuracy in the CKM matrix elements detextion may further
improve. The same kind of analysis might be performed byinary; and obtain-
ing a direct determination from the parton fit. In performswgh analysis, all details
presented in this thesis about the correlation betweeand PDFs must be carefully
taken into account.

Another application of the Monte Carlo representation efftNPDF results is the so—
called Bayesian Reweighting technique. In this thesis tethod has been explained
in detail and the technique has been applied to the inclusiche DO W—lepton
asymmetry data into the NNPDF fit without need of refitting.eTdnalysis deserves
to be extended to mor@’ lepton asymmetry datasets, by including the most recent
D0 muon data and the separate electron bins data that halle@rotonsidered in this
preliminary study. This would enable us to compare the tedalthose obtained by
the MSTW and CTEQ collaborations, where a tension is fourtdiden these data
and some fixed target DIS data. Furthermore the techniqubtrbiyeasily applied
to the inclusion of future experiments pseudo—data and tsstidy how they might
further constrain the parton content of the proton.

On top of what has been presented in this thesis, the NNPDiradéas a much wider
range of applications, thanks to the generality of its fesgtult might be implemented
whenever a function or a set of functions cannot be derivda$typrinciples and must
be inferred from a set of experimental data and theoretgslm@ptions, for instance
in cosmology problems or in saturation models.

Heavy quark processes

As mentioned several times in this thesis, there are two temmmntary approaches
in performing a QCD calculation of processes initiated byeavy quark. The heavy
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quark is either considered a massless parton in the intaéé;sor it does not con-
tribute to the proton wavefunction and it is generated as ssiva final state. In the
latter scheme, possibly large logarithms developing inittiiteal states due to heavy
quarks collinear splittings are not resummed into the hemark PDF. The sizeable
difference observed between the two computations for abkey processes at the
LHC requires a better understanding of the size of the ssalecéated to the collinear
logarithms and its dynamical origin. This was the aim of thmeliminary analysis
presented in this thesis.

By considering three representative processes, the hasark gair production, the
single top and the associal&€ andc productions, | formulated a general method
for gaining a better understanding of the difference betwmassless and massive
computations. | showed that the scale of the logarithmsénaridue to the collinear
splitting of heavy quarks is a dynamical scale which dependke final state particles
momenta. In the case of DIS heavy quarks production, therdigzd scale is actually
peaked about the expect&} scale, while in the other cases, when the phase space
of final particles is suppressed by the production of a magsrticle, such as the top
quark or thelW boson, this scale is peaked at a softer scale than the expeatd
my; or My, scale. My analysis of the distributions not only reinforbe fdea that
the origin of leading—order discrepancies between the thiemes may be attributed
to a choice of factorisation scales which is too large withpeet to the actual scale
associated to the splitting process, but it gives a quaivgtaxplanation for that.

The simplicity of the analysis presented in this thesisvedlais to extend the results
obtained to relevant processes that were mentioned in thegohenological review,
such as the Higgs production induced by bottom quarks, oattadogous” produc-
tion. In this way the generality of the method proposed mapssessed and more
final conclusions may be drawn.



Appendix

Notation

The classical Lagrangian corresponding to QCD, is givembyang—Mill Lagrangian

_ . 1 v
Lons = Y Vq (i, D" — m),, ¥, — ZTrGfVG’j, , (A1)

flavors

whereV, are the quark fields’}’f}u is the field strenght tensor derived from the gluon
field A4

G, = [0,A) — 0,A7 — gf*PCAT AL (A.2)
andD* is the covariant derivative:
(DMYap = 0"8ap +ig(t° A ) ap, (D*)ap = 0"6ap +ig(TCA) an, (A.3)

wheret® andT°¢ are the SU(3) generator matrices in the fundamental andradjo
representations, respectively:

[t 7] =i AP, A TP =i AT, (T pe = —if PO (A4)
By convention, the normalization of th#/ (N') matrices is chosen to be

Trt4P = TRreAB, Tr = (A.5)

1
3"
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With this choice, the color matrices obey the following tigas:

N?2 -1
Z taythe Crdapy Cp=
" 2N

rI\rTCTD _ ZfABCfABD _ CA(SCD CA — N.

A,B

(A.6)

For the specific case &fU (3) the structure constants at€y = 4/3, C4 = 3.
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Statistical Estimators

B.1 Monte Carlo statistical estimators

Here | define the Monte Carlo statistical estimators usetiénainalyses presented in
this thesis.

e Central value of the i-th experimental point

Nrep
1 ot (k
(FE™) g = T 2 CRY
rep rep 13

e Variance of the i-th experimental point

o) _ \/ < ( Fi(net))2>rep B < E<net>>ip _ (B.2)

e Covariance and correlation of the i-th experimental point

oy L) = () ()

(net) _ _ (B.3)
J Ugnet)oénet)
COVE?et) _ pl(;}et)o_l(net)o_§net)' (B4)
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e Mean variance and percentage error on central values aéfth data points.

1 Naa 2
<V [<F(net)>rep} >d = N Z <<Fi(net)> - Fi(exp)) . (B.5)
at at S re

Nae <F_(net)> o F‘i(exp)
rep

2

<PE [<F(net)>rep]> — Niat Z BCD . (B.6)

i=1 i

# VL] )y (V[0 (7 [0 ],
(PE[(00 )y ), (PE (07N ] ), - (PE [0} ])

relative to errors, correlations and covariances are définghe same way.
They indicate how close are the averages over generatecddtthe experi-
mental values.

e Scatter correlation:

(RO (FO0) ) = FO g ((FO0),,)

Ugexp)agnet)

dat
)

- |:F(net)j| _
(B.7)

where the scatter variances are defined as

o) = \/< (F(exp))2>dklt — (<F(exp)>dat)2 , (B.8)

o (net) — \/< (<F(het)>rep)2>dat _ <<<F(“e”>rep>dm)2 . (B.9)

o 7 [one]  [p@eV)] r [covnet)] are defined in the same way.
The scatter correlation indicates the size of the spreadtaf @round a straight
line. Specificallyr [c(Y] = 1 implies that<a§“et)> is proportional tar(**?).

e Average variance:

<U(net)>dat - Ncli t Z Ugnet) . (8.10)

o (pnev)) - (cov(ret)) are defined in the same way.
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B.2 Distances

Given a set otNr(eg repllcaSq of some quantityy, the estimator for the expected
(true) value ofy is the mean

N®

rep

S g, (B.11)

(@@ = —
Nr(epzl

The square distance between the two estimates of the expeaitee obtained from
setngl), qz@ is then

WYy — (@Y )
M) = @) @)
@ ((gM)y, (¢@)) = (« (B.12)
() 6%) = 2 T o7 e
where the variance of the mean is given by
2 09)] = oty o] (©13)
U(i)[<q )] = N 0(1) q .
rep

in terms of the variancef, [¢)] of the variableg(*) (which a priori could come from
two distinct probability distributions).

We estimate the variance of the mean from the variance ofghleca sample as

N(l)
i 1 — [ G )2
otyld = —m— > (qé) — (¢! )>) : (B.14)
Nrep —1 351

with (¢()) given by Eq.[(3.34).

Given a set ofNrelD repllcaSq of some quantityy, the estimator for the square
uncertainty of; is the variance of the replica sample given by Eq. (B.14). dik&ance
between the two estimates of the square uncertainty olotdinen setSqfl), qu)

then

(B.15)

d2(0(21)a0(22)) = 21
where for brevity we have defined

5(21') = ‘7(21') [q(i)]- (B.16)
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The variancesr(Qi) [6(2i)] of the square uncertainties could also be estimated from the
replica sample, by computing the variance from various stsbsf the given replica
sample, and then the variance of these resulting variarscégeasubset is varied; for
finite number of replicas this may lead to loss of statistaaturacy. For simplicity

here we use instead the expression [189]

1 o NY -3 2

2 122 1 _ ()] _ Zrep 79 (22 B.17)

g g . m - g .

[9%)] i [ ala™”] i ( <z>) ] (
NG N —1

where as abov@%i) is estimated using Eq_(B.L.4), while the fourth moment of
the probability distribution is estimated from the corresging moment of the replica
sample (which provides an estimate of it which is only asyotipally unbiased):

N

rep

Nlu-) S (o~ 0" (8.18)

rep k=1

malq®)] =

In practice, for small-sized replica samples the distanledined in Eq.[(B.12) and
Eqg. (B.I5) display sizable statistical fluctuations. Inertb stabilise the result, dis-
tances are determined as follows: we randomly M@/Q out of theNr(Q) replicas
for each of the two subsets. The computation of the squatandis Eq.[(3.35) or
Eq. (BI5) is then repeated fo¥,,,. = 100 (randomly generated) choicesté%,/Q
replicas, and the result is averaged: this is sufficientitagithe statistical fluctuations
of the distance at the level of a few percent.



Appendix

PDFs uncertainty computation

Within the NNPDF approach the expectation value of any fionc®©[{q}] which
depends on the PDFs is computed as an average over the easdiRbIFs, using the
master formula

2

(Olq}]) = Z Ol{a}], (C.1)

set

=

where Nyt = Nyep iS the number of sets of PDFs in the ensemble, equal to the
number of replicas. The associated uncertainty is founti@standard deviation of
the sample, according to the usual formula

o0 = < NN_ - ((oHal?) - <o[{q}1>2))1/2

Nio , 1/2
( bet—1z( {a®}1- (0 [{Q}D)) - (C.2)

k=1

These formulae may also be used for the determination ofalesaues and uncertain-
ties of the parton distribution themselves, in which caseftimctionalO is identified
with the parton distributiog : O[{¢}] = q.

Here we briefly compare the procedures we use to determinieatealues and errors
with those used for the various other PDFs available thrddGRDATA. Available

methods for the determination of PDF uncertainties falbltg into two distinct cate-
gories, which we shall refer to as the HEPDATA method (useal@efault in the PDF
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server at the HEPDATA database) and the Monte Carlo metimdabth methods sets
of PDFs with uncertainties are given as an ensemblg,gf sets of PDFs,

{q(k)} . k=0,..., Ne. (C.3)

Conventionally the PDF set®) corresponds to a “central” set.

In the HEPDATA method, the central set is a best fit set of PRiRsch thus provides
the central value for PDFs themselves. The central valuepfgaantityO[{q}] is
obtained in this method by evaluating it as a function of thetal set:

o0 — @[{qm)}]_ (C.4)

In the Monte Carlo method, the central values of any quaityy}] is instead given
by Eq. [C1). However, for any quantit9[{q}] which depends nonlinearly on the
PDFs

(Olia}]) # 0l{a© }1. (C5)

Hence, Eq.[{CI1) must be used for the determination of the@eralue, and use of
the sety(?) is not recommended. However, for a quantity that does defeearly

on the PDFs, such as a DIS structure function, Eq.(C.4) wighcentral PDFg(®)
gives the same result as Elg. (IC.1), and thus it may be usevitsthe Monte Carlo
method. Note that sef® should not be included when computing an average with
Eqg. (C1), because it is itself already an average.

The determination of uncertainties with the HEPDATA metlimthased on the idea
that setg;(*) with k& > 0 provide upper and lower variations (for even and odd values
of k) away from the central sef®) which correspond to eigenvectors in parameter
space. The one-uncertainty is then found by adding in quadrature thesatians:

1/2
Nset/2
1 2
hepdata __ (2k—1) _ (2k)
o5 T | 2 (ofa=vh-ofe® ) | . (o
where the factor
Coo = V2Erf~1[0.90] = 1.64485 (C.7)

accounts for the fact that the upper and lower parton setegpond to 90% confi-
dence levels rather than to opadncertainties. This method should be used with the
CTEQ and MRST/MSTW sets.
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A slightly different application of the HEPDATA method isogired for the Alekhin/ABKM
PDF sets Ref[[73, 74, 75, 102]. With these PDFs, gétswith £ > 0 each provide
the uncertainty limits from the central set, with upper anddr PDFs symmetrical by
construction and already corresponding to engacertainties. So for these PDFs

Nset 2 12
ghepdata _ <Z (]—"[{q(k)}] _]:[{q(o)}]) ) . (C.8)

k=1
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Appendix

O(a;) matrix elements for
heavy quark production

In this appendix we provide the explicit expression for thenx elements defined in
Eq. (6.14). They refer to leading—order process

9(ps) + B*(q) = Qui(k2) + Qm(ks),

whereQ ,; and@),,, are heavy quarks of massksandm respectively whose coupling
with the generic vector bosaB* is given by

1+ 1—
grY" 275—%9L7“ 27555937“F%—+9L7“f2.

The transverse component is given by

+ 2m21\/123% — 287 [m4u1 + M* + (m2 + M2)u1t1} (D.1)

4
MG = 55497
g ﬁﬁ{“

+tiur (2Q* — 251Q% + 1 +uf) +2Q7 [m2u1 (2t1 + u1) + M?t1 (2u1 + t1)]

+16gLgrmM |:81(U1m2 + 1 M?) + uity (s1 — Q)

+g% + 2m21\/123% — 251 [m4u1 4+ M+ (m2 + Mz)ultl}

+tiuy (2Q4 —251Q% + 2 + u%) +2Q? [m2ul(2t1 +u1) + M2t (2u; + t1)]

}.
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The longitudinal component is given by

16Q* (97 + 9%)
s%tlul

M% = |:51(u1m2 + t1M2) +urti(s1 — QQ) . (D.2)

The axial component, which vanishegjf = gg is given by

402 (g2 — o2
Mg = —762 (gL2 2gR) (—2m4s%u1—m281
s1tiuy

(2M251(51 + 2t1) — w1 (2@2(81 +3t1) — 28% + 2518y — 5s1t1 + 3§t1y))

“+t1 <2M4S% + M281 (4Q281 + 6Q2t1 — 33% + s18y — 5s1t1 + 3§t1y)

+ (s + 3s1t1 +263) (2Q* — 3Q%s1 + Q?5y + s7) > } (D.3)
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