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Introduction

“What is a scientist after all ? It is a cu-
rious man looking through a keyhole,
the keyhole of nature, trying to know
what’s going on.”

Jacques Yves Cousteau

It is an exciting time for high energy physics, as the most powerful accelerators ever
built are now exploring phenomena at scales and distances never probed before. The
TEVATRON Run II at the Fermi National Accelerator Laboratory, with more than 5
fb−1 of integrated luminosity, has provided a plethora of information on the TeV
scales, from an extremely precise measure of the top-quark mass [1] to the 95%
confidence level exclusion of a Standard Model Higgs with a mass between 154 and
170 GeV [2]. At the same time, the LHC at CERN after only few months of run-
ning, has provided to CMS and ATLAS already few tens of pb−1 starting the phy-
sics program, with the first important measurements (vector boson and top cross sec-
tions [3,4]) as well as competitive exclusions for new physics (dijet resonances [5,6],
leptoquarks [7],. . . ).

The fundamental interactions and constituents of matter are framed in the Standard
Model (SM) of the electroweak and strong interactions. The SM is not only a mathe-
matically consistent (and beautiful !) theory but also describes extremely well (almost)
all observed high-energy phenomena. From the first predictions in the late seventies
–such as the observations of neutral weak currents and of bottom quark (necessary
for CP violation)– to the precision measurements of LEP, its successes have been
impressive, even beyond our best expectations and in some cases hopes.
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12 INTRODUCTION

In this context, the purpose of the current collider experiments is first to observe and
then measure the properties of the Higgs, the independent physical state of the scalar
sector. This sector is important in the SM not only because it is linked to the fer-
mion/boson mass spectrum, but also because measuring the Higgs mass will fix the
last unconstrained parameter of the SM. Nevertheless, its discovery is less than gua-
ranteed, not only because alternative scenarios for EWSB exist, but also given that the
favoured region determined by precision measurements [8] is already excluded by the
direct searches made at LEP [9].

This small tension in the SM as well as the presence of inelegant fine-tuning –which
is necessary to have stability of the Fermi scale– could be the indication that the SM
is not the correct theory and that we need to go Beyond the Standard Model (BSM).
Many theories have been proposed in the last years to solve some critical points of the
Standard Model. For example, theories like Large Extra Dimensions [10, 11], MSSM
[12, 13] and walking technicolor [14, 15] provide a way to regularise the gauge boson
scattering and/or to fix the hierarchy problem.

All such theories are, in general, characterised by a set of new physical states inter-
acting weakly and/or strongly with the known SM particles. If their couplings are
sizeable enough and if their masses are in the kinematical reach of the LHC, such
particles are expected to be directly produced. They will then decay in the detectors
(or in some cases also escape them), giving visible signatures (or missing transverse
energy). Extracting new physics signatures from the huge amount of QCD events at
hadron colliders is going to be a real challenge. Compared to the electron-positron
collisions (like LEP), the data flow describing events resulting from the head-on col-
lision of two high energy proton beams at LHC/TEVATRON is extremely complex.
This is due to several effects : the non-trivial structure of the proton, the total amount
of energy available in the rest frame of the collision and, last but not least, the high
luminosity at which the machines have been designed to work.

Analysing the data of a detector in a proton-proton collider and identifying the im-
prints left by the Higgs or by any BSM particles are extremely challenging tasks and
call for dedicated experimental and analysis methods. The first stage of any analysis
consists in applying a set of kinematical cuts in order to curb as much as possible the
SM backgrounds, without rejecting too much of the “signal” events. While this allows
to reach discovery significance in many cases, it also requests a detailed knowledge of
the Standard Model backgrounds, especially in underpopulated regions of the phase
space. Sometimes, even this stage can be difficult. As a following step, the different
measurement methods can be categorised into two main classes :
– methods that do not use any (or little) theoretical input, i.e., model independent

methods. This class of methods is particularly suited for discoveries since the na-
ture of the new physics can have a large variety of properties. Those techniques are
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often based on the estimation of general features from distributions. The measure-
ment of end-points in distributions and/or the position of the peaks, for example,
can provide key information on the new particles –most of the time the mass. The
end point technique [16] and MT2 [17, 18] are examples of such methods.

– methods that (even maximally) use theoretical knowledge on the searched signal are
called model dependent. Those methods can use the full theoretical information
provided by a given benchmark in order to enhance the information of interest and
help to reach discovery (or exclusions) significance. Kinematical fits [19,20] can be
considered as a clear example of a model-dependent method, since in this case the
decay chain and the mass of some of the propagators are assumed.

The Matrix Element Method (MEM), the main application of the matrix element re-
weighting studied in this thesis, fits in the second category. It maximally exploits the
theoretical information (i.e., the matrix-element) to assign a probability to each event.
In this thesis, we will study the interest of such re-weighting for the ongoing search in
accelerator physics.

This work is divided into five different parts. The first Chapter is dedicated to a brief
overview of the Standard Model and one of its most popular extensions, the MSSM. It
also describes different measurement techniques used in literature. The second Chap-
ter presents the details of the MEM and introduces the definition of the event-by-event
matrix element re-weighting. The third Chapter presents an algorithm designed for an
efficient numerical and automatic estimation of the weight associated to each event.
This algorithm is then exploited in Chapter four in order to study the interest and the
sensitivity of this method. It starts by presenting possible application of the matrix
element re-weighting in the context of the LHC both using a template method and
the MEM. Then this chapter presents an original way to estimate differential cross-
sections in order to observe new physics, named differential Matrix Element Method
(DMEM). The last chapter studies the modification to MEM in presence of QCD ra-
diation such that the method keeps it’s predictive power.

The work presented in this thesis has been the object of various publications, first
on MADWEIGHT and on the Matrix Element Method [21, 22, 23] and on the QCD
correction [24, 25]. The last Chapter on the estimation of the cross-section contains
results that have not been published yet.
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Chapitre1
The current theoretical picture :
the search for new physics

“What we observe is not nature itself,
but nature exposed to our method of
questioning.”

Werner Heisenberg

The question on the nature of the world is longstanding. The theory of the four ele-
ments shows that the Greek philosophers were already interested in the fundamental
components of matter. Since then, the search for the fundamental building blocks has
made sensational progresses both on the experimental and theoretical sides. Those ad-
vances are now embedded in our current representation of the fundamental particles
and interactions, the Standard Model.

This first Chapter aims at giving a very brief picture of the Standard Model and to
motivate the search for the last missing piece, i.e. the Higgs boson. This Chapter will
also introduce the motivations and possible directions for searching physics beyond
the Standard Model, highlighting the experimental challenges to measure and charac-
terise the properties of eventual new particles.

Since this presentation is not supposed to be exhaustive, the interested reader is invited
to consult excellent references such as [26] or [27] for more details on the Standard
Model, [12,13] for additional information on Supersymmetry and the MSSM and [19]
for more explanations on mass determinations.
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16 Chapitre 1. The current theoretical picture : the search for new physics

1.1 Standard Model

We know four interactions :

Gravity : First described by Newton as the attractive force between massive objects,
this interaction is now explained by General Relativity which links gravity with
the curvature of the space-time. The coupling GN associated to gravity is by
far the weakest of the four forces. Nevertheless because the range of gravity is
infinite and all charges are of the same sign, this force is the dominant one at
large scales (planets, galaxies, universe,. . . )

Electromagnetism : This the force between electrically charged particles. Its range
is infinite as well. However, the presence of particles with opposite charges
leads to a “screening” effect over large scales. This force rules many of the
interactions of our daily life, from the chemical bounds to communications.

Strong interactions : This is the interaction responsible for the cohesion of the nu-
cleus (and of all the hadrons) and explains the interaction between the compo-
nents of the nucleon : the quarks and the gluons themselves. This is the strongest
force at short distances (fermi ≃ 10−15m) but, due to confinement, its range is
limited.

Weak interactions : This interaction is responsible for some nuclear phenomena such
as beta decay. It’s range is limited since the carriers of the interactions (the Z
and W± bosons) are massive.

The Standard Model describes these interactions between the constituents of the mat-
ter (and between the carriers themselves !) at the quantum level. The gravity is not
included in the SM. At small scales (but not too small ! !) gravity is so weak compared
to the other three forces that it can be safely neglected, something that we systemati-
cally do when computing cross-sections and decays of particles in high-energy expe-
riments. Moreover, including gravity as one of the gauge theories in the SM becomes
difficult, since the quantum description of General Relativity is not renormalisable.

In this presentation of the Standard Model we will focus our attention on the electro-
weak sector, and introduce the Higgs via the spontaneous symmetry breaking brea-
king. For completeness, we also provide a short description of the strong sector, i.e.,
of Quantum Chromo Dynamics (QCD).

1.1.1 Electroweak interactions before symmetry breaking

In the year sixties, Glashow, Weinberg and Salam [28, 29, 30] proposed a renorma-
lisable Yang-Mills theory based on the gauge groups SU(2)L × U(1)Y to describe
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electroweak phenomena at scales of order ΛEW ≈ 250 GeV. The vectorial fields as-
sociated with the generators of the group mediate the electroweak interaction. The
field Bµ is related to the generator Y of U(1)Y and the fields W i

µ are related to the
three generators T i of SU(2)L defined as

[T a, T b] = iϵabcTc. (1.1)

The associated tensor fields read

W a
µν ≡ ∂µW

a
ν − ∂νW

a
µ + gLϵ

abcW b
µW

c
ν , (1.2)

Bµν ≡ ∂µBν − ∂νBµ, (1.3)

where gL is the coupling constant of SU(2)L. The purely gauge part of the Lagrangian
is given by

LG = −1
4
W a

µνW
µν
a − 1

4
BµνB

µν . (1.4)

Concerning the matter fields, the theory contains three generations of left and right-
handed chiral quarks and leptons with ψR,L ≡ (1 ± γ5)ψ. Left handed fermions
transform as SU(2)L doublets (noted QL for quarks and LL for leptons) while right-
handed fermions transform as singlets of SU(2) (generically noted uR, dR for quarks
and eR for leptons 1).

Gauge and matter sectors are minimally coupled through the kinetic terms

LD = iL̄j
LDµγ

µLj
Li+iQ̄

j
LDµγ

µQj
L+iūj

RDµγ
µuj

R+id̄j
RDµγ

µdj
R+iēj

RDµγ
µej

R

(1.5)

where j stands for the three generations of quarks and leptons and the covariant deri-
vative Dµ is defined as

Dµ ≡ ∂µ − igLTaW
a
µ − igY

Y

2
Bµ, (1.6)

with gY the coupling constant of the U(1)Y gauge group.

The Lagrangian LG +LD is not self-sufficient to completely describe the electroweak
interactions since it cannot explain the observed masses for the W± and Z gauge bo-
sons. Those masses are important to explain the limited range of the weak interaction.
However adding a direct mass term for those gauge bosons would explicitly break the
gauge invariance of the theory. As explained in the next section, this issue can be ad-
dressed in an elegant way by the mechanism of spontaneous symmetry breaking, the
so-called Brout-Englert-Higgs mechanism [31, 32, 33].

1. To simplify, I consider a "strict" version of the Standard Model in which neutrinos are massless. In
this case the right handed neutrino is not introduced in this Lagrangian.
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FIGURE 1.1 – Form of the Higgs potential

1.1.2 The Brout-Englert-Higgs mechanism

The Brout-Englert-Higgs (BEH) mechanism adds a new gauge invariant scalar sec-
tor to the theory. To be able to give mass to the gauge bosons, the potential of this
sector should present more than one minimum. By symmetry, those minima should
transform into each other under the gauge symmetries. Since the expansion of the va-
cuum should be done around a single minimum, this expansion cannot preserve the
symmetry anymore. The interest of such a breaking, qualified of spontaneous, is that
the degrees of freedom linked to transformations of one minimum into another (called
Goldstone bosons) can be re-interpreted –as we will see– as the longitudinal part of the
gauge boson corresponding to the broken generators. In addition to those gauge bo-
sons, the BEH mechanism requires the presence of at least one physical scalar (called
the Higgs) linked to the non trivial value for the vacuum expectation value.

In the Standard Model, three of the four electroweak gauge bosons are massive. As
a consequence, at least three scalars are needed in addition to the one triggering the
BEH mechanism. One minimal solution which breaks the full group SU(2)L×U(1)Y

to U(1)EM is to choose the new sector as a doublet representation of SU(2)L

H ≡
(
H1

H0

)
≡ 1√

2

(
i(π1 + iπ2)
σ + iπ3

)
. (1.7)

The Higgs doublet couples to the gauge sector of the SM through the kinetic term of
the most general gauge invariant renormalisable Lagrangian

LS = (DµH)†DµH + µ2H†H − λ(H†H)2. (1.8)

By enforcing the positivity of theµ and λ parameter, the potential has a “mexican
hat” shape (see Fig. 1.1) which fulfills the condition for the BEH mechanism. The
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minimum of the potential in LS can always be rotated to

⟨H⟩ =
1√
2

(
0
v

)
(1.9)

with a SU(2)L × U(1)Y gauge transformation, and v =
√
µ2/λ which corresponds

to the field value at the potential minimum. 2 The gauge boson mass spectrum is then
established from |Dµ⟨H⟩|2 which contains the following term :

v2

8
(gY Bµ − gLW

3
µ)2 +

g2
L

4
v2W+W− (1.10)

with W±
µ ≡ 1√

2
(W 1

µ ∓ iW 2
µ). The mass of the charged gauge bosons is therefore

given by

mW =
1
2
gLv. (1.11)

On the other hand W 3
µ and Bµ mix into two physical gauge bosons, the photon Aµ

and the boson Zµ(
Aµ

Zµ

)
=
(

cos θW sin θW

− sin θW cos θW

)(
Bµ

W 3
µ

)
, (1.12)

with masses

mA = 0, and mZ =
mW

cos θW
. (1.13)

In those equations the weak angle θW is defined by tan θW = gY /gL. Additionally
the Higgs doublet in the SM allows a Yukawa term in the Lagrangian which, after
spontaneous symmetry breaking, provides mass terms to the fermions.

It also should be noted that in 1973, Llewellyn-Smith demonstrated with a few hy-
pothesis (mainly renormalisability and unitarity), that the electroweak sector requests
the presence of at least one scalar. He also computed the required relation between the
scalar(s), the gauge boson and the fermions. Those relations corresponds to a sponta-
neous symmetry breaking of the theory [34].

1.1.3 Strong interactions

As in the electroweak sector, the strong interactions are described by a renormalisable
Yang-Mills theory based on a gauge group which in this case is SU(3)c [35,36]. This

2. The vacuum expectation value is fixed experimentally by the measurement of the coupling in the
Fermi interaction. Therefore, the only free parameter of the Standard Model is the mass of the Higgs boson
h0 –the particle associated to the expansion of σ around the vacuum– since m2

h0 = −µ2 + 3λv2.
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theory describes the interactions of quarks carrying colour quantum numbers. The
gluons –the vectors of the interaction– are the vectorial fieldsGa

µ corresponding to the
eight generator T̄ a of the SU(3) group.

The Lagrangian corresponding to the QCD sector reads 3

LQCD = −1
4
Ga

µνG
µν
a + iq̄jγµDµq

j , (1.14)

where j stands for the 6 different quark flavours and Ga
µν and Dµ are defined as

Ga
µν ≡ ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (1.15)

Dµ ≡ ∂µ − igsT̄aG
a
µ. (1.16)

Contrary to the W± and Z boson, the experimental gluon mass is compatible with
zero [37]. Therefore, the theory does not call for any spontaneous symmetry breaking.
Another important property of the strong sector comes from the β function of the Re-
normalisation Group Equation which is negative –due to the self interactions– leading
to stronger interactions at lower energies (and so to confinement) and to asymptotic
freedom at high energies. This last property allows us to make reliable perturbative
predictions at high-energy colliders.

1.2 The quest for the Higgs

As stated in the previous section, the Higgs is the last missing piece of the Standard
Model. Discovering the Higgs is then of central importance since it will transform
the SM into a fully determined theory which is in “nearly” perfect agreement with
basically all the current experimental information.

In this section we present some of the theoretical considerations restricting the Higgs
mass range, before going over the researches done at LEP, TEVATRON and the one
expected at LHC. We will conclude this section by presenting the information on the
Higgs mass coming from the Electroweak precision measurements.

1.2.1 Theoretical constraints

If we try to describe the fermion scattering at high energy with the Fermi interaction,
the cross section –proportional to the centre of mass energy (

√
s)– breaks the unitarity

3. Note that the Dirac kinematic term has some redundant factor with Eq. (1.5). Therefore, the SM
Lagrangian is not the sum of the two Lagrangian.
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bounds around ΛEM ≃ 200 GeV. The Glashow-Weinberg Salam theory resolves this
problem through the existence of the W±. But this moves the unitarity problem to hi-
gher energy and to other processes like e+e− →W+W− and W+W− →W+W−.

In the SM the Higgs plays the same role as the W± for the Fermi interaction, it pro-
vides negative interference such that the unitarity breaking behaviour of the cross-
section is cancelled by its contribution. The first partial wave 4 for the amplitude
W+W− →W+W− process can be estimated by

a0 ≈
−m2

h0

8πv2
, (1.17)

in the limit where s ≫ m2
W ,m2

h0 . The optical theorem (|Re(al)| < 1/2), induces
then a maximal bound for the Higgs Mass mh0 . 870 GeV. A combined analysis of
all 2 → 2 scattering processes involving gauge and Higgs bosons gives a slightly more
stringent bound of about 710 GeV.

Besides these unitarity limits, the requirement that all processes involving the Higgs
boson can be consistently described with a perturbative expansion also leads to res-
tricts onmh0 . One of them starts from the Higgs partial decay width into pairs of gauge
bosons, which grows proportionally to the cube of the Higgs mass. The one loop cor-
rections [38], for instance, are of the same order as the Born tree-level contribution
for mh0 ≈ 10 TeV, while the two loop corrections can be larger than the one-loop
correction already for mh0 ≈ 1 TeV. More complete calculations [39] have led to a
definitive upper limit at about 700 GeV, which is in surprisingly good agreement with
the naive estimate obtained from a perturbative approach to unitarity.

1.2.2 LEP exclusion

At LEP the SM Higgs was supposed to be produced mainly in the s-channel Higgs-
strahlung channel : e+e− → Z → h0Z, where the Z can be either virtual (LEPI)
or real (LEPII). The cross-section of this process as a function of

√
s and mh0 is

presented in Fig. 1.2.

The different Higgs decay modes and their branching ratios are displayed in Fig. 1.3.
For a mass below 140 GeV, the Higgs decays mainly in pair of fermions, especially
in bb̄ (more than 80% of the decays). For higher Higgs mass the W+W− and ZZ

4. The partial wave for the amplitude are defined as

aJ (s) =

Z

d cos θPJ (cos θ)M.
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FIGURE 1.2 – Cross sections of the Higgs-strahlung production mechanism in e+e−

collisions as a function of
√
s and mh0 . The main background processes are also

shown in dashed lines. From Ref. [40].

FIGURE 1.3 – Branching ratios for the SM Higgs boson decay as a function mh0 .
From Ref. [40].
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modes are dominant and the decay width grows quickly with mh0 . Considering this
production and the associate decay modes, the most interesting final state topologies
for a Higgs mass around 100 GeV are :

Fully hadronic decay with process e+e− → (h0 → bb̄)(Z → qq̄). This channel
represents 60% of the total branching ratio. With this channel the Higgs mass
can be reconstructed with a precision of order 2.5 GeV.

Missing energy in e+e− → (h0 → bb̄)(Z → νν̄), the missing ET cut authorises to
get rid of the main background, providing a resolution of the order of 3 GeV.

Semi-leptonic production , e+e− → (h0 → bb̄)(Z → l+l−) where l± is either
electron or muon particle. This channel has a rather small branching ratio (≈
6%) but a rather low background leading to a good energy resolution (1.5 GeV).

In each of these discovery channels the main problem is to disentangle the signal from
the background which has identical final states and –quite often– larger cross-sections
than the signal. The difference in the kinematics between signal and background en-
courages to apply selection cuts. For instance, e+e− → (h0 → bb̄)(Z0 → νν̄) and
e+e− → Z/γ → bb̄ are easily separable due to the presence of large missing energy
in the first case and not in the second. Applying a ET cut then provides a sample of
events with virtually no background. The mass distribution of the pair bb̄ would then
present a peak at the Higgs mass.

The final result of these studies is an exclusion –at 95% confidence level– of a Standard
Model Higgs with a mass lower than 114.4 GeV [9].

1.2.3 Tevatron exclusion

In opposition to LEP, the TEVATRON is a proton/anti-proton collider. As a conse-
quence the main production mode for a Higgs is gluon fusion (through a top loop).
In this case the most promising discovery channels are those where the Higgs decays
in two W for mh0 & 2mW . If the Higgs is significantly lighter than 2mW , it decays
mostly in bb̄, faces so a large background that the Higgs-strahlung production with
h0 → bb̄ (or h0 →WW ∗) turns out to be the most promising discovery channel.

As with LEP, the main problem is to disentangle the signal and the background. At
hadron colliders this is even harder due to the presence of large QCD radiation and
that the centre of mass of the partonic process is not fixed. In this case, more advanced
analysis techniques are necessary.

As an example, let us mention that TEVATRON experiments normally use Neural Net-
work techniques to discriminate the signal from the background. The neural network
takes a series of inputs such as the momenta of particles, the tagging of heavy flavour,
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FIGURE 1.4 – Cross-section for Higgs boson production at the TEVATRON (Run II).
From [41].

the value of the square matrix element associated to this event (See Eq. 2.3), ... and
combines them in a non-linear formula in order to return a single number : zero or one.
The formula is obtained by training the neural network on Monte-Carlo data. i.e., the
formula is adapted iteratively in order to maximise the occurrence of a correct answer

that the Monte-Carlo returns the correct answer (one for signal and zero for the back-
grounds) [42].

At the time of this work, CDF collected and analysed 5.9fb−1 of data while D∅
reaches 6.7fb−1. The combined results –for all channels and for both experiments–
leads to the exclusion at 95 % of confidence level of a a Standard Model Higgs bet-
ween 158 and 175 GeV [2] (see Fig. 1.5).

1.2.4 LHC searches

The LHC is a proton-proton collider running at higher energy (designed for 14 TeV but
currently running at 7 TeV). As a consequence, the main production mode for a Higgs
(See Fig. 1.6) are gluon fusion and the weak boson fusion. Gauge boson associated
production is suppressed due to the absence of valence anti-quarks in the proton.

Depending on its mass, the Higgs can be discovered in different channels. In the very
low mass region (mh0 . 130 GeV) the gg → h0 → γγ process is probably the only
usefull discovery mode with a very clear signature but with a very small cross section
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FIGURE 1.5 – Observed and expected 95% confidence level upper limit on the ratio to
the SM cross section as a function of the Higgs mass.

FIGURE 1.6 – Cross-section for Higgs boson production at the LHC (
√
s = 14 TeV).

From [41].
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FIGURE 1.7 – CMS expected discovery potential for the SM Higgs boson at 14 TeV
with 30 fb−1 in luminosity.

and a large background. Above the 2mZ threshold, the golden channel gg → h0 →
ZZ → 4l should allow for Higgs detection up to masses of order 1 TeV. In the mid-
region (130 . mh0 . 180 GeV) the gg → WW (∗) → l+l−νν̄ mode turns out to
be the best option by offering a sizeable rate together with good background rejection
possibilities.

As shown in Fig. 1.7 the LHC was originally built such that the Standard Model Higgs
can be found whatever the Higgs mass. If the LHC continues to run at 7 TeV for about
one year, he is expected to reach quite similar sensitivity as the current one of the
TEVATRON (See Fig. 1.8 ).

1.2.5 Indirect constraints from precision measurements

Independently of direct searches, there are other ways to indirectly determine or constraint
the mass of the Higgs boson. The Higgs can be produced in loops, and then pre-
cise measurements can be sensitive to the Higgs mass. This method was used by the
LEP experiment to determine the mass range for the top-quark mass before its disco-
very [43].
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FIGURE 1.8 – CMS expected discovery potential for the SM Higgs boson at 7 TeV
with 1 fb−1 in luminosity.

In order to restrict the Higgs boson mass range by studying radiative corrections to
electroweak parameters, one first needs to select a proper renormalisation scheme.
We selected the Veltman scheme [44] where the free parameters are gL and sin θW .
Consequently the relation mW = mZ cos θW is no longer valid beyond tree-level. To
study the deviation to this relation, it’s usual to use the ρ parameter defined as

ρ ≡ m2
W

m2
Z cos2 θW

. (1.18)

The accidental presence of a SU(2)L × SU(2)R global symmetry in Eq. (1.8) [45]
has important phenomenological consequences. Indeed, as demonstrated in [46] the ρ
parameter can be linked in a suitable gauge to the ratio of the renormalisation constants
for the Goldstone fields π1 ±π2 and π3. Since these fields transform as a triplet under
SU(2)V –the remaining symmetry after the spontaneous symmetry breaking which is
called custodial symmetry– these renormalisations are kept constant and ρ = 1 at all
orders of perturbation as long as pure scalar interactions are present.

Unlike to the pure scalar part of the Lagrangian, both gauge and Yukawa interactions
(if up and down quark are not degenerated) break the custodial symmetry. In the one
loop corrections to the ρ parameter there is a quadratic dependence in both heavy
fermions and gauge bosons masses and only a logarithmic dependencies for the Higgs
mass. For the explicit details on the ∆ρ corrections at one loop in the Standard Model,



28 Chapitre 1. The current theoretical picture : the search for new physics

FIGURE 1.9 – One of the first top candidates observed in the CMS detector.

the interested reader is invited to consult original works [44,47,48] or the review [49].

∆ρtop ≈ 3GF

8
√

2π2
m2

t , (1.19)

∆ρh ≈ − 3GF

8
√

2π2
tan2 θW m2

W log
m2

h0

m2
W

. (1.20)

Those equations link mt, mh0 , mW and sin2 θW in a non trivial way. A global fit
[8] shows that the preferred value is mh0 = 76+33

−24GeV . Similar studies based on
likelihood ratios [50] show equivalent results.

As emphasized in [51], the two most accurate measurements of sin θW do not agree
very well, leading to conflicting predictions for the Higgs mass. The rather large va-
lue obtained for the bb̄ asymmetry at LEP favours a relatively heavy Higgs (mh0 =
420+420

−190GeV) while the sin2 θW value extracted at SLD [52, 53] favours a lighter
Higgs (mh0 = 31+33

−19GeV) in contradiction with the LEP exclusion bound.

1.3 Top-Quark Mass measurement

As discussed in previous sections, an accurate measurement of the top mass is neces-
sary to give a precise indication of the Higgs mass. Since it is the heaviest particle
known so far it provides the largest contribution to loop corrections.
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CMS and ATLAS have already collected their first top candidate events (see Fig. 1.9)
and started to study the associated physics and particulary the top-quark mass [3].
One of the techniques used to obtain such a measurement is Kinematical Fitting. The
kinematical fitting technique tries to improve the resolution of the measured quan-
tities and determines the momenta of the invisible particles by imposing a series of
well established kinematic hypotheses like the invariant mass of some particles and/or
energy-momentum conservation. Due to the uncertainties in the measured quantities,
those constraints are not always exactly fulfilled. A chi-square minimisation method
–under constraint– is then used to find the optimal kinematical configuration which
fulfills the constraints and which agrees with the observed events in the resolution
interval.

Let us focus on the top-quark mass measurement made with the Kinematical Fit me-
thod on the fully leptonic channel. The chi-square minimisation is performed under
the following constraints [3, 19, 20] :
– The invariant mass of the leptons and the neutrino should be equal to the W mass.
– The reconstructed invariant mass for the two tops in the two branches should be

identical.
– The kinematics of the events should verify the conservation of energy-momentum.
Since the TEVATRON has run for a longer time, the detector behavior is better charac-
terised, allowing accurate parameterisation of the detector response. In this context,
CDF and D∅ developped a method to use the maximum of theoretical constraints
by using the squared matrix element. This method called the Matrix Element Me-
thod [54, 55, 56, 57, 58, 59, 60] builds a likelihood based on the probability to observe
a set of events. This probability is the convolution of the squared matrix element with
the probability that the parton event evolves in the given signature into the detector.
A maximisation of the likelihood leads to the single most precise measurement of the
top-mass up to now : 173.3 ± 1.1 GeV [1]. This technique is the main topic of this
thesis and will be explained more in details in the next Chapter.
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1.4 Physics Beyond the Standard Model

Even though the Standard Model is currently an exceptionally accurate theory both in
the electroweak and the QCD sectors, there is a potential theoretical problem in the
scalar sector. In the Standard Model written as an effective field theory, the radiative
corrections to the Higgs mass are proportional to the square of the cutoff-scale Λ
(see [61] for instance) :

δm2
H =

3
8π2v2

(
4m2

t − 2m2
W − 4m2

Z −m2
h0

)
Λ2. (1.21)

The cutoff Λ can be identified with the scale at which some new physics sets in. If the
Standard Model is the only valid theory up to where gravity ceases to be negligible
then Λ should be of the order of the Planck scale Mpl ∼ 1019 GeV. Radiative correc-
tions for the Higgs mass are then much larger, by many orders of magnitude, than the
final mass (which cannot be larger than ∼ 800 GeV). In the Standard-Model the only
solution is to apply fine-tuning, i.e. , to let the bare Higgs mass perfectly balance the
radiative corrections. With radiative corrections for m2

h0 of the order of M2
pl, the bare

mass squared should be precisely tuned to more than thirty orders of magnitude. This
problem is called the hierarchy problem.

Efforts to solve the hierarchy problem are mainly going in three directions :

1. Protecting the Higgs mass from large radiation corrections by introducing some
new symmetry. Along this direction we have Supersymmetry [12, 13] (which
we will discuss below) and Little Higgs theories [62].

2. Get rid of the large mass hierarchy by approaching the Planck scale from the
electroweak scale. This can be achieved by considering large extra dimensions
[10,11]. In these models the Planck scale is actually around 1 TeV. Only gravity
is allowed to propagate in the extra dimensions and appears then as the weakest
force.
then appears as weak.

3. Make a composite Higgs. This is accomplished for example in Technicolor theo-
ries where the electroweak SU(2)L symmetry is broken dynamically and the
Higgs particle corresponds to a condensate of fermions [14, 15].

In addition to the hierarchy problem, there are other reasons for enlarging the SM. For
instance, the indications coming from the Cosmological Microwave Background that
a large part (80%) of the matter density in the universe consists of non-baryonic slow
moving particles [63]. No particle in the Standard Model has the correct characteristics
(mass/coupling) in order to fit the cosmological restrictions, and therefore new physics
must be introduced.
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1.5 Minimal Super-symmetric Standard Model

As explained in the previous section the hierarchy problem can be resolved by adding
a new symmetry. One possible solution is Supersymmetry which transforms a boson
in a fermion and vice-versa :

Q|fermion⟩ = |boson⟩, Q|boson⟩ = |fermion⟩. (1.22)

Since this symmetry changes the Lorentz representations, the algebra is non trivially
connected to the Poincaré group. For example the MSSM has the following algebra
(N = 1 super-symmetry without any central charges)

{Q,Q†} = 2γµCPµ, (1.23)

{Q,Q} = {Q†, Q†} = 0, (1.24)

[Q,Pµ] = 0, (1.25)

[Q,Mµν ] =
1
2
σµνQ, (1.26)

with C being the charge conjugation matrix.

From those relations it is straightforward to demonstrate the following properties (see
for example [13]) :
– All particles belonging to the same irreducible representation of super-symmetry

have the same mass.
– Any super-multiplet has the same number of bosonic and fermionic degrees of free-

dom.
This first property is clearly not realised in nature since we do not observe any charged
scalar particles with the mass and couplings of the electron. However it is still pos-
sible that super-symmetry could be an approximate symmetry which is broken either
explicitly or by some spontaneous symmetry breaking of the same type as the BEH
mechanism. The super-partners of the Standard Model particles can then differ not
only with respect to spin but also to mass, which could then be larger.

The second property implies that every Standard Model fermion should correspond to
two scalars (called right/left handed degrees of freedom). The name of those particles
starts with a “s” (for scalar) before the name of the SM particle. For example selectron
(right/left), stop (right/left), ... Those scalars are also called generically the squarks
and the sleptons. For the partners of bosons, the rule is to add the suffix “-ino” like
gluino, wino, higgsino, ... The higgsino, the photino and the Zino mix together in mass
eigenstates called the neutralinos.

The introduction of those particles solves the instability of the Higgs mass since a loop
with fermionic particles enters in the amplitude with a negative sign as compared to
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the equivalent bosonic loop. Therefore the quadratic divergences in the corrections to
the Higgs mass are exactly cancelled by the presence of the super-partners. This is
true to all orders in perturbation theory

δm2
h0 ∼ α

2π
(Λ2 +m2

B) − α

2π
(Λ2 +m2

F ) + logarithmic divergencies. (1.27)

This cancellation still works when supersymmetry is broken, as long as it is done in a
special manner, called soft super-symmetry breaking [64].

Another nice feature of super-symmetry occurs if a parity, called R-parity is conser-
ved [65]. R-parity can be defined as R = (−1)F (−1)B−L where F = 1 for fer-
mion and zero for boson, B is the baryon number and L the lepton number. Super-
symmetric particles have R = −1 and Standard Model particles have R = 1. In this
case the super-particles can only be produced in pairs. In addition the decay of a any
super-particles should have a odd number of super-particles. Then the lightest super-
symmetric particles (LSP) is stable. If the LSP is neutral and not strongly interacting,
then it is a perfect candidate for cosmological dark matter. Calculations have shown
that there are large regions in the super-symmetric parameter space where the LSP has
the right mass and coupling to explain the abundance of the observed dark matter [66].

1.6 Characterise new physics

In some specific scenarios, discovering the particles beyond the Standard Model should
not be too difficult. In particular when the energy threshold is reached and the cross-
section is significant (take for instance squarks and gluinos). Determining the correct
BSM scenario, on the other hand, will be quite difficult as it will require the determi-
nation of the characteristics of the new particles, i.e., their mass, their couplings and
their spins.

The mass is the first quantity that can be obtained from a limited sample of events. As
a first step, a theory independent method can be used to determine the mass-spectrum
of the theory. In this context, different methods have been proposed to measure the
masses of the new states in a model-independent way : specific observables are choo-
sen that are mostly sensitive to the mass of the new heavy resonances entering the
decay chains. The final power of a given method is a balance between how well the
information of the visible quantities can be used to restrict the unknown masses and
the dependence on the experimental and theoretical systematic uncertainties.

Examples in the literature include the end-point method [16] –based on the end-point
regions of the invariant mass distributions built from visible particles–, and the poly-
nomial method [67, 68] –attempting to reconstruct the whole event from the visible
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momenta. These two methods can also be combined to give a better constraint on the
mass spectrum. The MT2 method [17, 18], and its recent developments –although ba-
sed on more complicated observables– also follows the same philosophy. For a recent
review on these kinematic methods see [19] and references therein.

The opposite philosophy should be to use the full theoretical information provided by
the different scenarios and to discriminate them according to their predictive power on
the measured sample. This can be achieved by looking at a specific set of kinematical
variables, but also by looking at the probability that the sample could be produced for
a given theory. This corresponds to the Matrix Element Method that we will detail in
the next Chapter and develop throughout this thesis.
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Chapitre2
Matrix element re-weighting

“We are driven by the usual insatiable
curiosity of the scientist, and our work
is a delightful game.”

Murray Gell-Mann

In many of the new physics scenarios, like the MSSM described in the previous Chap-
ter, the non Standard Model particles decay very quickly and are not expected to leave
any trace in the detector. Hence their existence and properties have to inferred from
the Standard Model particles into which they decay.

The problem of identifying decay patterns and measuring the properties of the new
states is particularly intricate when the expected experimental signatures involve a
complex final state, typically with several jets, leptons and missing energy. In Chap. 1,
we briefly introduced several model-independent techniques which are mostly sensi-
tive to the masses of the new heavy resonances entering the decay chains.

Such strategies will be determinant in restricting the mass spectrum of new reso-
nances. However, by construction, most of them will not exploit or provide any in-
formation on other properties such as their spin and/or coupling structure. As another
example, the precise measurement of the absolute mass of each particle entering a
specific decay chain that ends with two missing particles remains challenging, espe-
cially in the case of short-length decay chains initiated by proton-proton interactions.
In this context, it is useful to consider complementary and model-dependent tools for
the investigation of properties of the new physics states.

35
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Here, we will focus on an event by event re-weighting technique which dramatically
differs from the methods outlined above, mainly because we made a maximal use of
theoretical assumptions. The idea is to associate to each experimental event – charac-
terised by the set of momenta pvis 1– a weight defined as the probability to produce
and observe event in a given model, labelled by the letter α.

Let us first evaluate such probability in he ideal situation where the resolution of the
detector is perfect. The probability is then given by the theoretical squared matrix
element, averaged over the unmeasured quantities : the momenta of the initial and non
reconstructed particles (neutrino and/or weakly interacting particles). In consequence
the weight reads

Pideal(pvis|α) =
1
σα

∫
dx1dx2 f1(x1)f2(x2)

∫
dΦ|Mα(p)|2

∏
i∈vis

δ(pi − pvis
i ).

(2.1)

Here f1 and f2 are the parton distribution functions, Mα is the theoretical matrix
element, dΦ is the phase-space measure and σα is the total cross section, computed
with the same matrix element. The normalisation ensures that[∏

i∈vis

∫
d3pvis

i

]
Pideal(pvis|α) = 1. (2.2)

In order to take into account not only the resolution of detector but also the fact that
partons will first radiate and then hadronize, the density of probability Pideal should
be reformulated as a convolution between the probability to create an event at partonic
level –with momenta p– and a “transfer function” W (p,pvis), i.e. the probability for
a partonic configuration to evolve to reconstructed momenta pvis.

P(pvis|α) =
1
σα

∫
dx1dx2 f1(x1)f2(x2)

∫
dΦ|Mα(p)|2W (p,pvis). (2.3)

This equation associates a weight to each experimental and allows us to use the full
theoretical information but also the experimental one which can improve the sensiti-
vity of measurement. This thesis will focus on this formula and put in evidence its
experimental interest.

The practical evaluation of such probability requires first a series of approximations,
beginning by considering the tree-level approximation for the squared matrix-element.
For the transfer function, it is natural to see it as a product of resolution functions

1. In general some other information can be used to characterise the events, like particle identification
and flavour tagging. In order to have a convenient notation, this will not be written out explicitly.
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associated to the energy, the rapidity and the azimuthal angles of each final partonic
particle,

W (p, pvis) =
∏

i∈vis

Wi(pi, p
vis
i ), (2.4)

Wi(pi, p
vis
i ) = WE

i (Ei, E
vis
i )W η

i (ηi, η
vis
i )Wϕ

i (ϕi, ϕ
vis
i ), (2.5)

where pvis
i , pi stands for the measured quantities and the phase-space variables asso-

ciated with the particle i, respectively. A common simplification, linked to the preci-
sion of the detector, is to consider a delta-function for all resolution functions but those
related to the energy of hadronic object. 2 The latter are fitted by using Monte-Carlo
and validated over control samples.

An important drawback of the parameterisation in resolution functions comes from
the implicit one-to-one correspondence between a parton and a reconstructed jet (See
Eqs.(2.4) and (2.5)). Two different problems appear due to this correspondence. First,
in the case of indistinguishable particles, it is not possible to know in advance which
assignment is the correct one. The solution is to average the weight on all possible
permutations. 3 The second problem arises when the number of reconstructed particles
does not correspond to the number of visible particles which is often the case due to
the presence of initial (and final) state radiation. We discuss how to treat this case in
Chap. 5.

One of the main interests of Eq. (2.3), resides in the the Matrix Element Method
(MEM) [54, 55, 56, 57, 58, 59, 60] (see Sec. 4.1) which combines these weights in a
likelihood function defined as

L(α) =
∏

events

P(pvis|α). (2.6)

For instance, the most accurate top-quark mass measurement [69, 70, 71, 72, 73] were
achieved with this type of likelihood by the CDF and D∅ collaborations. Beyond the
use of the matrix re-weighting for the MEM, the event-by-event probability can be
used in other types of analyses. It was exploited in the observation of single-top pro-
duction –via a Template method [74, 75] – and in the determination of the exclusion
limits for a Standard Model Higgs with a mass 158 GeV < mH < 175 GeV, as an
input to a Neural Network [76].

Let us illustrate the MEM method in an “idealised” case : the measurement of theW±

mass from the process : pp → W → lνl. 4 In Fig. 2.1 we show the likelihood for a

2. The τ lepton is of course an exception since it is often considered more as an hadronic object.
3. In general, only one of the permutations has a significative contribution since the wrong permutations

have much smaller probabilities due to “wrong” invariant mass. We have checked that in consequence this
procedure does not induce a large effect on the precision of the method.

4. Chap. 4 will illustrate the method in more complex cases and in more interesting scenarios.
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FIGURE 2.1 – Logarithmic likelihood values for a sample of 250 partonic events
generated with mW = 80 GeV. The dashed line is a parabolic fit to the points close to
the minimum. The statistical error is estimated by the half width of the distribution at
log(L/Lmax) = 0.5 and is extracted from the fit : mW = 80.1 ± 0.4 GeV.

sample of 250 Monte-Carlo events – at partonic level and without any background–
generated with a test mass ofmW = 80 GeV. The displayed curve presents a parabolic
behaviour, consistent with a Gaussian distributed likelihood. We use this behaviour to
fit to a parabola and accordingly extract the measurement : mW = 80.1 ± 0.4 GeV.
This shows that in an idealised case the estimator is unbiased 5 and that the method
can be used for extremely short decay chains where other methods hardly (or even do
not) provide results.

5. We checked that no bias appears at higher luminosity.



Chapitre3
Computation of the weights : a
general method

“Anyone who attempts to generate ran-
dom numbers by deterministic means is,
of course, living in a state of sin.”

John von Neumann

As presented in the previous Chapter, matrix element re-weighting consists in associa-
ting a weight to each event, corresponding to the integral described in Eq. (2.3). Such
a calculation is very challenging since large variations of the integrands occur not
only in the matrix elements – which can be dealt with standard phase-space integra-
tors [77, 78, 79]– but also by the presence of the transfer functions and the associated
resolution functions. Such large, fast and non-trivial variation in a high dimensional
space cannot be solved either by multi-purpose integrators or by standard phase-space
integrators. A dedicated integrator is therefore required.

To explain how to build such an integration algorithm, we will first present different
Monte-Carlo techniques, by following the review by Weinzierl [80]. Then we will
continue this Chapter by presenting a general strategy –based on those MC techniques–
for re-weight events corresponding to any type of decay-chain topologies. This algo-
rithm was implemented in a fully automatic way in the MADGRAPH framework [81].
The corresponding code was dubbed MADWEIGHT [23]

39
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3.1 Monte-Carlo techniques

Monte Carlo (MC) integration is the most efficient numerical integration technique to
estimate multi-dimensional integrals. It is the only method where the error decreases
like 1/

√
N independently of the number of dimensions. If the number of dimensions

is large, it converges more rapidly than a trapezoidal (N−2/d) or a Simpson formula
(N−4/d) [80].

Given a real function f(z) defined in the d-dimensional volume V = [0, 1]d, the ba-
sic idea of a Monte Carlo integration is to generate a sample of N random points
z1, z2, . . . ,zN in this volume according to a uniform distribution in order to approxi-
mate the integral I =

∫
dzf(z) by

E =
1
N

N∑
n=1

f(zn). (3.1)

For the discussion of interest, we can restrict ourselves to the case of a positive-definite
function f . If this function is sufficiently smooth, the law of large numbers guarantees
that this estimator converges to the true value of the integral I for arbitrary large N .
The error on the estimator is related to the variance of the function

σI =
σ(f)√
N

≈ S√
N
. (3.2)

In turn, this variance is estimated by the following estimator :

S2 =
1

N − 1

N∑
n=1

[f(zn) − E]2 . (3.3)

As an example, and in order to quantify the future improvement of the method, let us
consider the following integral :

∫ 100

−100
e−z2

dz. The theoretical value is given by
√
π ≈

1.77245, where the variance of the function is σ2(f) =
∫ 100

−100

(
e−z2 − I

)2

dz ≈ 585.
Table 3.1 shows different estimation of the integral for different number of Monte-
Carlo points. The estimated as well as the theoretical errors are also given. All values
are in agreement, but the error is clearly underestimated.

In the computation of cross sections, one is often led to integrate a scattering amplitude
that varies by several orders of magnitude over the region under integration. In that
case, the very large variance σ2(f) of the integrand severely limits the convergence of
the Monte Carlo integration. One way to improve the convergence is to decrease the
factor σ(f) appearing in Eq. (3.2) by applying a change of variables z → z′ = P (z).
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Number of points I σ(f)/
√
N

102 3.3 ± 2.3 2.5
103 1.3 ± 0.4 0.79
104 1.90 ± 0.16 0.25
105 1.73 ± 0.05 0.079
106 1.758 ± 0.016 0.02
107 1.764 ± 0.004 0.007

TABLE 3.1 – Estimation of the integral I =
∫ 100

−100
e−z2

dz = 1.77245385 by Monte-
Carlo techniques for a given number of points. The second column provides the theo-
retical expected error on the estimator.

By defining the Jacobian function p(z) = Jac[P (z)], the integral I can be rewritten
in terms of the new variables as follows∫

dzf(z) =
∫
f(z)
p(z)

p(z)dz =
∫
f [P−1(z′)]
p[P−1(z′)]

dz′. (3.4)

If we restrict the Jacobian function p(z) : [0, 1]d → R+ to be normalised to unity
(
∫
p(z)dz = 1), we can interpret it as a probability density. The integral I can be

estimated from a sample of random points z′
1, z

′
2, . . . ,z

′
N distributed according to the

probability density p(·), in which case the estimator E and the new variance S2 are

E =
1
N

N∑
n=1

f(z′
n)

p(z′
n)
, (3.5a)

S2 =
1

N − 1

N∑
n=1

[
f(z′

n)
p(z′

n)
− E

]2
. (3.5b)

The efficiency is increased if the variance in Eq. (3.5b) drops, which is achieved if
the probability density p(z) is taken to be proportional to f(z) as much as possible :
p(z) ≈ f(z)/I . When computing cross sections, the analytical expressions of the
required phase-space mappings z → z′ = P (z) are well-known [82].

3.1.1 Adaptive Monte Carlo techniques

Generally, determining the optimal phase-space mapping for a given integrand is a
difficult task because the relevant information on the shape of the integrand may be
hidden in complicated expressions. Analytical changes of variables can then be repla-
ced by – or better combined with – an adaptive technique, i.e. an algorithm that learns
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about the function as it proceeds and adapts the integration measure using an iterative
procedure. VEGAS [83] and MISER [84] are examples of such algorithms. Since
MADWEIGHT, our phase-space integrator, uses VEGAS we will concentrate in this
section on this specific adaptive method.

To reduce the variance of the estimator, VEGAS tries to approximate at each iteration
the optimal density function p(z) ≈ f(z)/I by a series of step functions, i.e., the
so-called grids. Due to storage and efficiency requirements, VEGAS uses a separable
probability density function in d dimensions :

p(z) = p1(z1) p2(z2) . . . pd(zd). (3.6)

If such a parameterisation of the probability density function is appropriate to ap-
proximate the shape of the integrand, the adaptive integration procedure speeds up the
convergence by decreasing the variance in Eq. (3.5b) through the adjustment of the
grid. In the case of a very sharp integrand, this condition is essentially fulfilled provi-
ded that the strength of each narrow peak in the integrand is associated with a single
variable that in turn can be mapped onto one variable of integration zi. In that case,
the integrand expressed in the parameterisation z is of the form

f(z) =

(
d∏

i=1

fi(zi)

)
×R(z), (3.7)

where the functions fi’s may vary abruptly while the “remainder" non-factorizable
function R(z) is essentially flat over the region under integration. The probability
density function p(z) can be adapted to flatten the peaks of the integrand in Eq. (3.7)
by cancelling each sharp function fi appearing in the numerator of the ratio f(z)/p(z)
in Eqs. (3.5).

In order to show the interest of an adaptive technique, we return to our previous
example where we tried to evaluate the integral

∫ 100

−100
e−z2

dz. The evaluation of the
integral will be done by VEGAS in five successive iterations with a grid adaptation bet-
ween each iteration. In order to have a fair comparison with Table 3.1, the number of
events presented in Table 3.2 is the total number of events used on the five iterations.
The integral estimation presented in that table shows a significative improvement of
the accuracy of the method.

If the integrand expressed in the phase-space mapping z presents a structure of sharp
peaks that does not follow the factorized form in Eq. (3.7), the adaptive integration
procedure is bound to converge slowly. However, if enough information about the
shape of the integrand is available, a first change of variables z → z′ = P (z) that ro-
tates the axes of integration can sometimes be applied such that in the new phase-space
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Number of points I σ(f)/
√
N

102 2.8 ± 0.7 2.5
103 1.82 ± 0.02 0.79
104 1.7720 ± 0.0012 0.25
105 1.77248 ± 3.10−5 0.079
106 1.772453 ± 1.1.10−6 0.02
107 1.77245384 ± 3.10−8 0.007

TABLE 3.2 – Estimation of the integral I =
∫ 100

−100
e−z2

dz = 1.77245385 obtained
by VEGAS. The first column indicates the number of points used to evaluate the
integral. The last column indicate the error in the case of the non adaptive Monte-
Carlo technique.

mapping z′, the importance of each peak in the integrand is controlled by a single va-
riable of integration. After this change of variables is applied, the integrand expressed
in the new variables z′ is of the form given by Eq. (3.7), and the separable density
function p(z′) can be successfully adapted to reproduce the shape of the integrand.

3.1.2 Multi-Channel method

Sometimes the integrand presents different peaks fi in different regions of the domain
of integration. Even if each of those peaks can be independently written in the form
of Eq. (3.7) ensuring efficient integration of each peak separately, this does not mean
that the whole function can be written in such a way. A natural solution is to split the
domain of integration in different parts, defined by characteristic functions βi(z), each
of which being associated to a single peak fi and an associated change of variables pi

(numerical and/or analytical) . The integral can then be seen as a sum of sub-integrals :

∫
dzf(z) =

∫
f(z)dz =

N∑
i=1

∫
βi(z)f(z)dz ≈

N∑
i=1

∑
j

βi(z′j)
fi(z′j)

pi(z′j)
. (3.8)

In practice, this expression converges to the correct value, as long as the βi(z) func-
tions are normalised such as

N∑
i

βi(z) = 1. (3.9)

But they do not need to be characteristic functions. The use of arbitrary functions for
the βi(z) explains the term “channel”, since the integrals is then divided into smaller
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integral corresponding to a different structure of the integrand. In order to gain in
efficiency, the βi(z) should be chosen in a smart way such that the βi(z)’s are close to
1 in the area where the associate change of variable corresponds to the peak structure
fi. A convenient choice is given by [77]

βi(z) =
1

Norm(z)
fi(z), (3.10)

Norm(z) =
∑

i

fi(z). (3.11)

3.2 Strategy of the integrator

For the computation of the weights, there is generally no simple phase-space parame-
terisation that maps all the peaks in the integrand and in which the boundaries of the
phase-space volume can be easily expressed. Our strategy is to start from a standard
parameterisation of the phase-space measure

dΦ =

(
n∏

i=3

|pi|2d|pi| sin θidθidϕi

2Ei(2π)3

)
dq1dq2(2π)4δ4

p1 + p2 −
n∑

j=3

pj

 , (3.12)

where i = 3, . . . n labels the final particles. In this parameterisation, the strength of
each peak in the transfer function is already mapped onto a single variable of inte-
gration, whereas none of the propagator enhancements in the squared amplitude is.
Identifying the Lorentz invariants associated with the Breit-Wigner resonances and
expressing them as functions of the integration variables in Eq. (3.12) is straightfor-
ward. The difficult task is then to invert these functions in order to derive a phase-space
measure parametrised by both these Lorentz invariants and the variables mapping the
peaks in the transfer function. Along with this inversion, the δ function associated with
energy-momentum conservation in Eq. (3.12) has to be resolve in a efficient way.

The requested change of variables can be decomposed in a series of successive changes
of variables. In Fig. 3.1 we represent those changes of variables, also called blocks,
by boxes. Each box will correspond to an appropriate change of variable 1 in order to
generate efficiently the dynamics of the particles contained in the box.

This decomposition in a series of change of variables is already used by phase-space
integrators designed for the computation of cross-sections. In that case, those blocks

1. The identity is sometimes an appropriate change of variables.
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FIGURE 3.1 – Illustration of the structure in blocks optimising the parameterisation of
the phase-space measure in the case of a specific decay chain. The missing particles
are indicated by the Greek letter ν.

are designed, such that each of them preserves explicitly the energy-momentum conser-
vation. They start to build the set of impulsion of the events by fixing the momenta of
the initial particles, and then generate the different particles following the different de-
cay branches. At each step, they use the Breit-Wigner to fix the mass of the decay pro-
duct, and generates randomly the angles of the decay product. Even if this procedure
is extremely efficient for estimating cross-sections –indeed every sharp variation is
mapped into a single variable of integration–, this is irrelevant for the matrix-element
re-weighting, since it’s not possible to adapt this procedure to include the angles of
visible particles in the phase-space parameterisation. The associate peaks being extre-
mely narrow –quite often delta functions–, the phase-space integration hardly succeed
to converge with this parameterisation of the phase-space.

In consequence, we need to develop a completely new strategy. The idea is to re-
solve the conservation of Energy-momentum in the last changes of variables (blocks).
An unefficiency then occurs since it’s not possible to ensure that the conservation of
Energy-momentum can be fixed at this stage. If such case happens, we just throw away
the points. As long as we don’t face this situation too often, the integration process re-
mains efficient. Indeed, generating a point is usually much faster than estimating the
corresponding squared-matrix element. In practise this point will not be critical.

Due to our generations choices, we will distinguish two types of blocks : the primary
blocks, which do not resolve the energy momentum conservation, and the Final blocks
which resolve energy-momentum conservation leading to the final parameterisation of
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the phase-space. In the next two Sections, we will discuss these changes of variables.
Then we will see how we choose and combine then.

3.3 Primary change of variables

Each Primary Block (PB) starts with the standard parameterisation of the phase-space
measure associated with the m external legs contained in the block,

m∏
i=1

|pi|2d|pi| sin θidθidϕi

2Ei(2π)3
. (3.13)

Notice that we choose to never include x1 and x2 in a primary block since those
quantities are strongly related to the total energy in the process and are not related to
any sharp variation of the integrand. It is then a natural choice to leave those variables
for the final block.

The change of variables of the simplest block is just the identity, in which case the va-
riables in this block are maintained in the parameterisation of the phase-space measure
in Eq. (3.13). For the purpose of listing the other changes of variables that we have
investigated, it is useful to represent a block and its corresponding change of variables
by a diagram in the following way :
– The variables involved in the transformation are written explicitly. The legs asso-

ciated with the initial variables appear as thick lines. The legs associated with the
final variables –which correspond to the invariants that enter into the expression of
specific propagators– are shown as dashed lines.

– A blob stands for a branch of legs of which total momentum parametrises the change
of variables related to the block.

In this representation, a blob can a priori be itself decomposed into several primary
blocks. However, the change of variables associated with a given primary block is only
parametrised by the total momentum of each branch represented by a blob, it does not
depend on the details of these branches.

As the detector has an excellent precision on the direction of all visible particles,
it’s important to preserve those variables in the final parameterisation of the primary
blocks On the contrary, undetected particles such as the neutrino are not constrained by
any transfer functions 2 and removing these variables of the integrand parameterisation

2. Since these particles are not measured, no transfer functions are associated to them. A common
mistake is to consider the missing energy as a measurement, but this quantity is roughly the sum of all the
observed particles in the process. Including this as a measurement and associating to it a transfer function
is then like a double counting of the visible particles measurement.
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FIGURE 3.2 – The four primary blocks with their corresponding change of variables.
Initial (resp. final) variables are written explicitly, and the corresponding legs are re-
presented by thick lines (resp. dashed lines).

can improve by a huge factor the convergence of the integral. Finally since some of the
particles can have poor resolution in the energy, replacing this variable by an invariant
mass can sometimes improve the estimation of the integrals. 3

Additionally, the number of implemented blocks in our algorithm is reduced by our
requirement of analytically invertible changes of variables. For an arbitrary phase-
space point, given the momenta of all the legs ending by the blobs and the invariant
mass of each leg represented by a dashed line in the reduced diagram, the variables
in the final block are determined by means of analytical expressions. We checked that
the analytical change of variables -when it exists- is faster than the numerical counter
part.

These blocks are displayed in Fig. 3.2. The changes of variables associated with each
block are discussed in Section A.2 of the Appendix.

PB A. The transformation removes the 3-momentum of a missing particle from the
set of integration variables in the parameterisation of the phase-space measure.
The new integration variables are the Lorentz invariants m∗

i1
, m∗

i2
and m∗

i3
as-

sociated with the first, second and third mother particles of this missing particle.

3. Using such type of transformation is not optimal since this means that some of the variation of the
integral cannot be mapped in the new parameterisation. Section 3.5 provides a discussion of the interest of
such change of variables.
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PB B. The transformation removes the energy and the polar angle of a missing par-
ticle from the set of integration variables in the parameterisation of the phase-
space measure. The new integration variables are the Lorentz invariants m∗

i1

and m∗
i2

associated with the first and second mother particles of this missing
particle.

PB C/D. The transformation removes the energy of a missing particle from the set of
integration variables in the parameterisation of the phase-space measure (ver-
sion C). The new integration variable is the Lorentz invariant m∗

i1
associated

with the mother particle of this missing particle. In version D of this block, the
missing particle is replaced by a visible particle, but the transformation remains
the same one.

PB E. The transformation removes the momenta |p1| and |p2| of two visible particles
produced by the same resonance from the set of integration variables in the
parameterisation of the phase-space measure. The new integration variables are
the Lorentz invariants m∗

i1
and m∗

i2
associated with the first and second mother

particles of these visible particles. The corresponding change of variables is
invertible analytically only if at least one of the two visible particles is massless.

3.4 Change of variables fixing the conservation
of energy-momentum

After having applied the different primary blocks, the parameterisation of phase-space
not linked to any Primary blok reads

m∏
i=1

|pi|2d|pi| sin θidθidϕi

2Ei(2π)3
dx1dx2 δ

4

p1 + p2 −
n∑

j=3

pj

 , (3.14)

wherem is the number of external particles which are not in any of the primary blocks.
By construction the main interest of the final block is to restore the energy-momentum
conservation. In order to see how this is done in practice, we will study two specific
cases before treating the general case.

Fully reconstructed process. We first consider a topology with no missing particle.
An example of such a decay chain is illustrated in Fig. 3.3(a). In order to restore energy
momentum conservation in this case, we need four independent variables that can be
fixed accordingly. Since the fractions of the beam energy taken by the two initial
parton are not linked to any sharp dependencies should be two of these variables. For
the final states particles –and especially for jets–, the resolution in energy is much
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FIGURE 3.3 – Illustration of a decay chain with no missing particle : (a) the full to-
pology, (b) the corresponding reduced diagram. The variables in the final block are
written explicitly.

poorer than the resolution in angles. For this reason, a relatively efficient choice is to
complete the final block by adding two momentum variables |pi| and |pj | of particles
i and j that are relatively less constrained by the transfer function. In this example, the
final block contains exactly four variables, and the effect of the variable transformation
is to integrate out the δ function with these four variables.

Process with one unreconstructed particles. We next move on to the case of a de-
cay chain including missing particles in the final state. The phase-space variables asso-
ciated with the momenta of missing particles are not directly constrained by the trans-
fer function. Therefore they do not need to be mapped onto variables of integration in
the phase-space mapping. We can identify the final block by selecting the momentum
components of some missing particles instead of the energies of visible particles. A
specific example of a topology with missing particles is displayed in Fig. 3.4(a). One
way to define the final block is to choose the set including the Bjorken fractions and
the momentum components of the missing particle shown as a thick line in Fig. 3.4(a).
The change of variables associated with this final block removes these five variables
from the set of integration variables in order to integrate out the δ function in Eq. (3.12)
and to map the invariant mass of the resonance decaying into the missing particle onto
a variable of integration in the new parameterisation of the phase-space measure.
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FIGURE 3.4 – Illustration of a decay chain with two missing particles (identified by
the letter ν) : (a) the full topology, (b) the corresponding reduced diagram. The initial
(resp. final) variables of the transformation associated with the final block are written
explicitly, and the corresponding legs are shown as thick lines (resp. dashed lines).

General case. In order to generalise the discussion of the choice of the final block
to the case of an arbitrary decay chain, it is useful to introduce a representation of the
final block and the corresponding transformation of variables :
– The variables in the final block are written explicitly and the corresponding legs are

shown as thick lines.
– An incoming arrow means a momentum which is supposed to be generated by some

previous primary blocks (see Sec. 3.3).
– The new integration variables resulting from the change of variables associated with

the final block are also written explicitly, and the corresponding intermediate legs
are shown as dashed lines.

– All other intermediate legs that do not touch a blob are hidden behind a rectangular
box.

We refer to the resulting graph as the block representation. As an illustration, the block
representation for the two topologies shown in Figs. 3.3(a) and 3.4(a) are displayed in
Figs. 3.3(b) and 3.4(b), respectively. In general an incoming line may hide a compli-
cated branch of particles. But the change of variables associated with the final block
is parametrised only by the total momentum of those particles by construction.

The presence of the box in the final block, is a source of possible inefficiency. Indeed
no mapping can be made in order to compensate the presence of a sharp peak in this
part of the diagram. The choice of the final block should always be done in order to
minimise the content of this box, in order to reduce as much as possible the possibility
of slow convergences.

Each of the final blocks treated in our code is illustrated by a block representation in
Fig. 3.5. Their number is restricted because we only keep the final blocks for which
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FIGURE 3.5 – The reduced diagrams representing the six final blocks that have been
investigated in our procedure.
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the corresponding change of variables is invertible analytically. The corresponding
formulas are discussed in Appendix. A.1.

FB A. The transformation removes the Bjorken fractions q1 and q2 and the norm of
the three-momenta pi, pj of two visible particles from the set of integration
variables in the parameterisation of the phase-space measure.
Example : pp→ ZZ → 4j.

FB B. The transformation removes the Bjorken fractions q1 and q2 and the 3-momen-
tum of a missing particle from the set of integration variables in the parameteri-
sation of the phase-space measure. The new integration variable is the invariant
mass of the particle decaying into the missing particle.
Example : pp→ Z(W+ → l+ν).

FB C. The transformation removes the Bjorken fractions q1 and q2, the 3-momentum
of a missing particle and the energy of a massless visible particle 4 from the
set of integration variables in the parameterisation of the phase-space measure.
The new integration variables are the Lorentz invariantsm∗

i1
andm∗

i2
associated

with the mother particles decaying into the missing and the massless particles,
respectively.
Example : pp → [t → b(W+ → l+ν)][t̄ → b̄(W− → jj)] with massless b
quarks.

FB D. The transformation removes the Bjorken fractions q1 and q2 and the 3-momenta
of two missing particles from the set of integration variables in the parameterisa-
tion of the phase-space measure. The new integration variables are the Lorentz
invariants m∗

i1
, m∗

i2
, m∗

i3
and m∗

i4
associated with the first and second mother

particles of each missing particle.
Example : pp→ [t→ b(W+ → l+ν)][t̄→ b̄(W− → l−ν̄)].

FB E. The transformation removes the 3-momenta of two missing particles from the
set of integration variables in the parameterisation of the phase-space measure.
The new integration variables are the Lorentz invariants m∗

i1
and m∗

i2
associa-

ted with the mother particles of each missing particle. The integration over the
Bjorken fractions is expressed as an integration over the invariant mass and the
rapidity of the colliding partons.
Example : pp→ H → (W+ → l+ν)(W− → l−ν̄).

FB F. The transformation removes the 3-momenta of two missing particles from the
set of integration variables in the parameterisation of the phase-space measure.
The new integration variables are the Lorentz invariantsm∗

i1
andm∗

i2
associated

with the mother particles of each missing particle.
Example : pp→ (W+ → l+ν)(W− → l−ν̄).

4. In case the particle is massive, the corresponding change of variables turns out to be not analytically
invertible.
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FIGURE 3.6 – A example of reduced diagram for which the transformation that is
applied to the FB cannot be inverted by means of analytical formulas.

Limitation of our strategy. It should be stressed once again that each transforma-
tion of variables that is applied to the variables in the final block has been implemented
in the code analytically : for an arbitrary phase-space point, given the momenta of all
the legs ending by the blobs and the invariant mass of each leg represented by a da-
shed line in the reduced diagram, the variables in the final block are determined by
means of analytical expressions. We checked that the analytical change of variables
-if it exists- is faster than the numerical counter part. Associated to the fact that ana-
lytical changes of variables can efficiently deal with a large class of processes, we did
not study further the possibility to use non-analytical changes of variable.

For example, the final block displayed in Fig. 3.6 with three missing particles has not
been considered. In principle, the 3-momenta of the three missing particles and the
Bjorken fractions could be adjusted to satisfy eleven constraints induced by the seven
resonances and the conservation of 4-momentum, but this adjustment cannot be done
by means of analytical expressions. In our strategy, this type of situation is dealt with
by using a multi-channel method with the most(s) efficient(s) final blocks associated
to the process, in this case the final blocks B, C and D will be used.

3.5 Combining the blocks

With the set of primary and final blocks presented in the previous Sections, it is pos-
sible to generate efficiently the dynamics of a large variety of processes. Finding this
optimal parameterisation is just a matter of testing which combination of the blocks
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is the correct one (see Sec. 3.6). But some processes are intrinsically impossible to
optimise completely, i.e., put in the form of Eq. (3.7). This is for example the case for
top-quark pair production decaying in a semi-leptonic channel. Indeed the number of
independent sharp variations in the integrand –nineteen 5– is larger than the dimension
of the integrand –sixteen 6.

In such a case, we keep several channels and combine them by a multi-channel method
(See sec. 3.1.2). The changes of variables that we consider for this multi-channel will
be those which have the minimal number of un-aligned peaks. The different channels
will correspond to different choices of mapped peaks. For example, the primary block
D will always be considered in a multi-channel since it forbids the mapping of the
transfer functions associated to energy of the outgoing particle.

In comparison with previous implementations for the evaluation of the matrix element
weights, this multi-channel approach speeds up the convergence of the integration in
case of an over-constrained topology. The previous topology has been investigated
in [70,71,85], where either the helicity of the W boson or the mass of the top quark is
reconstructed from tt̄ events in the semi-leptonic channel. In these analyses, a single
channel was used for the evaluation of the weights, leaving unmapped a subset of
peaks in the integrand. On the contrary, our procedure always maps a given peak in
the integrand onto a variable of integration in at least one channel.

3.6 Finding the appropriate change of variable

With more than 10 different changes of variables, finding the appropriate combina-
tion(s) of block in order to achieve the optimised phase-space parameterisation is a
non trivial problem in itself. This problem can seems quite easy –after a bit of practise–
but is not straightforward to implement in fully automate code. In MADWEIGHT, We
have implemented it in a Python Module with the following strategy :

1. Localise the different invisible particles in the process.

2. Identify the two invisible particles (and the two visible particles) which are the
closest one of the initial particles. The distance between two particles being
defined has the number of s-channel propagators needed to go from one particle
to the other.

3. Build a solution based on the final block a (zero neutrino) without using primary
block D and E.

5. They are 4 peaks associated to the Breit Wigner of the four propagators, and then 3 peaks associated
to the 5 visible particles corresponding to the resolution functions in energy, rapidity and azimuthal angle.

6. The six final particles have 3 degrees of freedom each and each of the incoming parton has one. This
makes a total of twenty, but four are correlated due to the conservation of energy-momentum.
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4. Build a solution based on the final block b (one neutrino) without using primary
block D and E.

5. Build a solution based –depending of the situation–on final block d or e (two
neutrinos) without using primary block D and E.

6. Compare those three solutions and select the one –or those– which optimised
the number of mapped peaks.

7. If some peaks are left unmapped, we go to in multi-channel mode, and find
the other changes of variables linked to the previous solution. Those can be
obtained easily by simple equivalence rules. At this stage the blocks D and E
are considered for building the different phase-space mappings.

Finally, the code write automatically a series of Fortran code which is used by MAD-
WEIGHT in order to know how to make the integration and what the expression of the
multi-channel coefficient is.

3.7 One-channel phase-space generator

Given an optimised phase-space mapping defined by its structure in blocks, one can
then consider a phase-space generator built upon this phase-space mapping. The ge-
neration of an arbitrary phase-space point proceeds in two steps :

1. the generation of the integration variables appearing in the optimised paramete-
risation of the phase-space measure,

2. the determination of the momentum of each leg in the decay chain and the com-
putation of the Jacobian factors.

Concerning the first step, any variable of integration associated with the new phase-
space mappings introduced in the previous Section enters into one of the three follo-
wing categories :

1. The variable controls the strength of a resolution function. If the resolution func-
tion is a δ distribution, the variable is fixed to the value associated with the expe-
rimental event. Otherwise, the grid of VEGAS is adapted such that the variable
is generated according to a probability density that reproduces approximately
the shape of the resolution function.

2. The variable controls the strength of a propagator enhancement. In this case,
the variable can be generated according to a probability density that reproduces
exactly the shape of the propagator by using the inverse primitive function of a
Breit-Wigner.

3. The variable is either the polar or the azimuthal angle of a missing particle. In
this case, the variable is generated according to a uniform distribution in the
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interval [0, π] or [0, 2π] at the first iteration. The grid is adapted at each iteration
to approximate the optimal probability density.

Once the integration variables have been generated, the kinematics of the whole decay
chain and the Jacobian factors are computed. For each block, the formulas that give
the expression of the external momenta as a function of the variables of integration
are discussed in Appendix. A. These formulas are parametrised by the momentum
of the branches represented by the blobs that appear in the graphical representation in
Fig. 3.5 and 3.2. For this reason, one needs to fill the kinematic variables in each block
in a specific order, starting with the primary blocks at the very end of the decay chain,
and ending with the final block.

This procedure is best illustrated with the example in Fig. 3.1. A phase-space point
is defined by generating all the integration variables in the transformed expression of
the phase-space measure : the invariant mass of each leg are shown as a dashed line,
the direction (θ, ϕ) of any visible particle, and the energy of the visible particles are
represented by the solid thin lines. Then all other kinematic variables are determined
as a function of the generated variables, first in the primary blocks A and E, then in
the primary block D (by means of formulas that are parametrised by the kinematics
in block E), and finally in the final block B (by means of formulas that are parame-
trised by the kinematics of all the secondary blocks). Such an approach can be easily
generalised to the case of an arbitrary decay chain.

The whole procedure that we have presented so far has been implemented in the Mad-
Graph framework, and the corresponding module has been named MADWEIGHT. For
a given decay chain and a transfer function for the final state objects, the optimi-
sed phase-space mappings are automatically selected, and the resulting multi-channel
phase-space generator is used for the evaluation of the weights. While this procedure
applies for virtually all cases, the speed of convergence of the numerical integration
strongly depends on the process under investigation, and whether the calculation time
is a serious limitation or not has to be assessed on a case-by-case basis.

3.8 Validation of the phase-space generator

One potential issue related to our phase-space mappings optimised for the computation
of the weights is the fact that some of the associated Jacobians develop singularities
in specific phase-space regions. These singular regions are an artefact of the change
of variables. In our case they have a null measure in the integration volume. One can
therefore split the integration volume into a volume V1 where the Jacobian is finite
and a volume V2 that contains the singular region and that can be made arbitrary small
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l blocks integrated volume

3 FB A 6.30 × 10−5

3 FB B 6.30 × 10−5

3 FB C 6.30 × 10−5

6 FB D 694 GeV6

4 FB E 0.0166 GeV2

4 FB F 0.0166 GeV2

5 FB B + PB A 3.89 GeV4

4 FB B + PB B 0.0166 GeV2

3 FB B + PB C 6.30 × 10−5

3 FB B + PB D 6.30 × 10−5

4 FB B + PB E 0.0166 GeV2

TABLE 3.3 – Phase-space volumes
∫
dq1dq2dϕn1/(sq1q2) for l massless particles

produced in hadron-hadron collisions at
√
s = 1 TeV. The number l of final-state

particles is indicated in the first column. The second and third columns indicate the
structure in blocks defining the phase-space mapping used to calculate the volume
with our phase-space generator, and the numerical value we obtained. Those numbers
correspond to the theoretical expected value up to three digits.

compared to the volume V1. To any given accuracy, we can ignore the contribution
from the volume V2 provided that ϵ = V2/V1 is sufficiently small. At the numerical
level though, one may fear that instabilities will appear in this procedure.

In practice, we have not encountered any numerical instabilities resulting from a
change of variables that is associated with a specific phase-space block. Any phase-
space block and the related changes of variables that have been defined in our proce-
dure have been checked by reproducing the volume of the entire phase-space region
with our phase-space generator using a parameterisation of the phase-space measure
that involves this block. This Monte Carlo procedure to compute the phase-space vo-
lume has a very poor convergence, as the phase-space mappings that are optimised
for the computation of the weights are clearly inefficient for the computation of just
the phase-space volume. Nevertheless, by increasing the number of generated phase-
space points, we checked that the phase-space volume is reproduced with an accuracy
better than one percent for each tested phase-space mapping. We first set the mass of
the final-state particles to zero and obtained the results summarised in Table 3.3. We
then considered the case of massive particles in the final state and obtained the results
summarised in Table 3.4.

In order to validate the multichannel implementation, we also computed the total cross
section of several processes by integrating the squared matrix element with our phase-
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l blocks integrated volume

3 FB A 3.49 × 10−5

3 FB B 3.49 × 10−5

3∗ FB C 4.13 × 10−5

6 FB D 124 GeV6

4 FB E 8.17 × 10−3 GeV2

4 FB F 8.17 × 10−3 GeV2

5 FB B + PB A 1.28 GeV4

4 FB B + PB B 8.17 × 10−3 GeV2

3 FB B + PB C 3.49 × 10−5

3 FB B + PB D 3.49 × 10−5

4∗ FB B + PB E 9.78 × 10−3 GeV2

TABLE 3.4 – Phase-space volumes
∫
dq1dq2dϕn1/(sq1q2) for l particles with a mass

m = 50 GeV produced in hadron-hadron collisions at
√
s = 1 TeV. The number l

of final-state particles is indicated in the first column. A star ∗ indicates that the mass
of one of the final state particles is set to zero, as this condition is required by one of
the blocks. The second and third columns indicate the structure in blocks defining the
phase-space mapping used to calculate the volume with our phase-space generator,
and the numerical value we obtained. Those numbers correspond to the theoretical
expected value up to three digits.

space generator. This can be achieved by setting all transfer functions to one. Here
again, the convergence of the numerical integration is poor, as the phase-space pa-
rameterisation is not designed for such computation. By using a very high statistics,
we reproduced the total cross sections associated with the processes listed in the first
column of Table 3.5.
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process σMW/σME channels blocks

pp→ (W → jj)j 0.982(6) 3 FB A
pp→ (W → lν) 0.9991(14) 1 FB B

pp→ [W → ν̃τ (τ̃− > τ−χ̃)] 1.003(5) 1 FB B ; PB C
pp→ 2[µ̃→ µχ̃] 1.020(5) 3 FB B,F ; PB C

pp→ 2[t→ b(W → lνl)] 1.000(25) 1 FB D
pp→ tt̄→ b l νl b j j 0.94(5) 6 FB B ; PB D,E

pp→ h→W+W− → µ+ νm µ− ν̄m 0.99(2) 1 FB E

TABLE 3.5 – Validation of the phase-space generator by computing total cross sec-
tions. The processes under consideration are written in the first column. The second
column gives the ratio of the cross section computed with MADWEIGHT over the
one computed with MadEvent [77]. The third column indicates the number of chan-
nels that are used in the MADWEIGHT integration, and the last column indicates the
blocks that are involved in that integration.
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Chapitre4
Standard Applications of the
Matrix Element Re-weighting

“There are two possible outcomes : if
the result confirms the hypothesis, then
you’ve made a measurement. If the re-
sult is contrary to the hypothesis, then
you’ve made a discovery.”

Enrico Fermi

In literature, we may found different ways to use the matrix element re-weighting
in order to enhance the sensitivity of a measurement An automatic and efficient me-
thod to calculate the weights is therefore suitable. In this Chapter we will provide
three examples of applications of the method using MADWEIGHT and also compare
the sensitivity with some other techniques. The idea is not only to discuss examples
explicitly, but also to check the performance, flexibility and reliability of our imple-
mentation in “realistic” cases.

To achieve this we build "pseudo-data" samples using MADGRAPH4 [81] for the par-
tonic events at a centre of mass energy of 14 TeV considering the CTEQ6L1 [86]
data set for the parton distribution functions. Parton-level events are then passed to
PYTHIA for the showering and the hadronisation with the Initial State Radiation acti-
vated (but not the underlying event). Finally, a fast simulation of the detector response
was performed using PGS 4 [87] with resolutions tuned to those expected for the
CMS detector.

61
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Each transfer function should, in principle, be extracted for each process and for a
specific detector. For this analysis, we use the standard approximation for the transfer
function explained in Chap. 2. This corresponds to consider infinite resolution on all
angles variables and for the energy of the charged leptons. In addition, and for the
sake of simplicity, we consider only one parametrisation for the energy of the b-jets
and the lights jets. Since we do not make use of the b-tagging techniques, we therefore
consider all possible assignments between jets and final states partons involved in the
matrix element calculations. In order to estimate this transfer function, we generate
hundreds of thousands of jets/b-jets corresponding to the studied topology. Finally,
we suppose that the transfer function can be written as a double Gaussian

WE(E,Evis) =
1√

2π(a2 + a3a5)

[
e
− (E−Evis−a1)2

2a2
2 +a3 e

− (E−Evis−a4)2

2a2
5

]
, (4.1)

where all five parameters depend of the energy as follows :

ai = ai,0 + ai,1

√
E + ai,2E (4.2)

In order to fit the 15 constants ai,j , we split the range of Energy of interest (20 − 220
GeV) in 10 bin of 20 GeV. In each of them we fit the transfer functions by a double
gaussian with ai = ai,0 – no depencies in energy. Then we fit the dependencies of
each parameter separately. The result for the binned method is displayed in Fig. 4.1
and in Fig. 4.2 for different range in Energy. An un-binned likelihood technique [88]
hardly improves the result obtained by the binned method. The value for the fitted
parameter are displayed in Table 4.1. They show that bias of the first gaussian is about
a couple of GeV while it’s width is about 15% of the jet Energy (12% at 100 GeV).
The second gaussian has a relative weight of 20% with respect to the dominant one
and has more important width and bias in order to fit the distribution’s tails.

4.1 The Matrix Element Method

As previously stated the Matrix Element Method (MEM) consists in combining the
matrix-element weights for a given sample in a likelihood,

L(α) =
∏

events

P(pvis|α), (4.3)

where P(pvis|α) is defined in Eq. (2.3).
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FIGURE 4.1 – Histogram of the difference of energy between the partonic jet and
the reconstructed one. The blue curve correspond to the curve obtained by the fit, the
black one is the curve observed on a large sample of events (more than 106).

The interest of such likelihood comes from the Neyman-Pearson lemma [89] which
guarantees that the likelihood ratio is the most powerful discriminant variable. In other
words, this is the method which has the lowest probability of mistaking the signal for a
background fluctuation. But this holds only if the density of probability P is correctly
normalised. Nevertheless, only a subset of the collisions produced in a detector are
kept for the analysis. Both the trigger and event selection imply a limited acceptance,
which needs to be taken into account :

P(pvis|α) =
1
C
Acc(pvis)P(pvis|α), C =

∫
Acc(p)P(p|α)dp, (4.4)

where C is defined such that P(pvis|α) is correctly normalised,[∏
i∈vis

∫
d3pvis

i

]
P(pvis|α) = 1. (4.5)

withAcc(pvis) the acceptance function. It equals one if the events pass the trigger and
the event selection, and zero otherwise. Note that the acceptance term does not depend
of the theoretical hypotheses.
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FIGURE 4.2 – Histogram of the difference of energy between the partonic jet and
the reconstructed one. The blue curve correspond to the curve obtained by the fit, the
black one is the curve observed on a large sample of events (more than 106). The last
plot corresponds to a range in Energy which was not taken into account in the fit of
the parameters.
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parameter type proportional to value

a1,0 bias first gaussian independent term 1.56 GeV
a1,1

√
E 0.29 GeV

1
2

a1,2 E 0.010
a2,0 sigma first gaussian independent term 0.95 GeV
a2,1

√
E 0.52 GeV

1
2

a2,2 E 0.019
a3,0 ratio of gaussian independent term 0.20
a3,1

√
E 0.0 GeV− 1

2

a3,2 E 0.0 GeV−1

a4,0 bias second gaussian independent term 11.6 GeV
a4,1

√
E -2.4 GeV

1
2

a4,2 E 0.32
a5,0 sigma second gaussian independent term 3.3 GeV
a5,1

√
E -0.086 GeV

1
2

a5,2 E 0.14

TABLE 4.1 – Parameter for the transfer functions optimised for tt̄ production.

The likelihood then reads

L(α) =
N∏

i=1

P(pvis
i |α) =

N∏
i=1

Acc(pvis
i )P(pvis

i |α)∫
Acc(p)P (p|α)dp

, (4.6)

− log(L) = −
N∑

i=1

log(P(pvis
i |α)), (4.7)

= −
N∑

i=1

log(P(pvis
i |α)) +N log

(∫
Acc(p)P(p|α)dp

)

−
N∑

i=1

log(Acc(pvis)). (4.8)

In practice, the last term of Eq. (4.8) can be dropped since it does not depend on α and
therefore has no discriminant power. The second one
(N log

[∫
Acc(pvis)P(pvis|α)d3pvis

]
) is called the acceptance term and compen-

sates the bias introduced by the event selection.

The numerical evaluation of the acceptance term can be performed by generating a
Monte-Carlo sample of events for each theoretical hyppotheses. Indeed it is easy to
show that

∫
Acc(pvis)P(pvis|α)d3pvis = Nacc

Ngen
where Ngen is the number of events
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generated by the Monte-Carlo generation and Nacc is the number of those events
which pass the selection [88].

In order to see the potential importance of the acceptance term, let us go back to the
example of Chap. 2 where we have extracted the W mass from a sample of partonic
events in an ideal detector. But this time, we compute the likelihood for a sample of
events with 1 pT > 40 GeV. The result likelihood with and without acceptance term
are displayed in Fig. 4.3. Neglecting the acceptance term introduces a strong bias
leading to mW = 82.3 ± 0.5 GeV. If, however, we include the correction term we
obtain mW = 79.4 ± 0.7 which is compatible with the input value (80 GeV).

4.2 Top-quark mass measurement

The top-quark mass measurement by means of the matrix element method was pu-
blished for the first time by the D∅ collaboration using the single-leptonic final state
arising from top-quark pair production [69]. The method has been later extended to
include a simultaneous determination of the Jet-Energy-Scale uncertainty [90] . The
accuracy of the experimental determination of mt has been further improved by the
contribution of other studies based on the matrix element method [71,72,73]. In these
analyses, a dedicated phase-space integration was performed to compute the matrix-
element weight (see for one example [88]).

As a first example of application of our automatic re-weighting algorithm, we illustrate
the performance of the method for the determination of the top-quark mass at the LHC,
by using a small statistics of tt events in the single lepton final state :

pp→ [t→ b(W− → µ−νµ][t→ b(W+ → jj)]. (4.9)

For the sake of simplicity, we assume that there is no background and use 20 signal
events after selection. Pseudo-data have been simulated with an input top-quark mass
at 170 GeV. The selection requires one muon with a reconstructed transverse mo-
mentum above 10 GeV and exactly four isolated jets with a reconstructed transverse
momentum above 20 GeV.

The determination of the top-quark mass from our sample of pseudo-data is obtained
by the minimisation of − log(L) with respect of mt where the likelihood L is defined
in Eq. (4.8). We have checked that for this process and for such luminosity, the bias
introduced by the acceptance cuts is very small and can then be freely ignored in this
example.

1. The value has been chosen such that the selection cuts are quite strong and strongly increasing bet-
ween the different test masses.
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FIGURE 4.3 – Logarithmic likelihood values for a sample of 250 events generated
with mW, input = 80 GeV and having a pT larger than 40 GeV. The top plot doesn’t
take into account the associate acceptance term, leading to a bias in the measurement :
mW = 82.3 ± 0.5. The bottom plot includes the acceptance term correction which
compensates the bias due to the selection cut. The measured value mW = 79.4 ± 0.7
is then compatible with the input mass.
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FIGURE 4.4 – (a) Logarithmic likelihood values for a sample of 20 events generated
with mt, input = 170 GeV. The dashed line is a parabolic fit to the points close to the
minimum. The statistical error is estimated by the half width of the distribution at
log(L/Lmax) = 0.5 and is extracted from the fit. (b) Calibration of the matrix element
mass fitting procedure. The error-bars correspond to the the value of mass of the top
quark and the associated statistical error reconstructed from tt samples generated with
different input values of mt. The dashed line is a linear fit to the error-bars.

The values of − log(L) for different assumptions of mt are displayed in Fig. 4.4(a).
A clear minimum is observed close to the input mass value. A parabolic fit gives the
value mt = 171.9± 2.0stat GeV. Using ten independent samples generated under the
same conditions, we extracted the expected mt value and the expected statistical error
for such a measurement : mt = 173.5 ± 3.7stat GeV. By generating tt samples with
top quark masses of 160, 170, 180 and 190 GeV with the same selection procedure and
the same fitting procedure, and with a statistics of 100 events per sample, we identified
a small significant shift between the input and the reconstructed mass by repeating the
analysis for other input masses, as can be seen from the calibration curve displayed in
Fig. 4.4(b). We observed a shift rising with the energy which is at about 1.8 GeV for
an input top-quark mass of 170 GeV. As we will discuss in Chap. 5, the presence of
Initial State Radiation not correctly dealt with by the MEM is the origin of such bias.

4.3 Smuon production

Over the past fifteen years, numerous developments of techniques for mass recons-
truction of new particles that might be produced at the LHC have been realised. Ac-
cording to most scenarios, the hypothetical new physics states are not expected to be
directly observed experimentally, i.e., they appear as intermediate states in specific
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FIGURE 4.5 – Generic decay chain corresponding to the production of two resonances
followed by their decay into weakly-interacting and Standard Model particles. The
weakly-interacting particles are represented by the dashed lines.

decay chains or they escape from the detector without interacting with it. Their mass
can hence only be reconstructed indirectly, by making a number of assumptions on
the decay chain at work. The number of assumptions in turn is directly correlated to
the amount of information that can be extracted from the decay chain. However, due
to the lack of constraints on physics beyond the Standard Model, the proposed tech-
niques have to be general enough, at least if they are aimed at reconstructing the mass
of new hypothetical particles in the early stages of investigation. Furthermore, the li-
mited knowledge of the detector has to be taken into account. It is in this context that
a number of mass measurement techniques based on kinematic methods have been
proposed in the literature. They can be classified according to the type of decay chains
that they address and according to the assumptions on which they rely [19].

Despite the plurality of kinematic variables that have been proposed, mass determina-
tion remains very challenging for specific decay chains. One well-known example of
a difficult topology is the production of two resonances followed by their decay into
a weakly-interacting particle and a Standard Model particle, shown in Fig. 4.5. In this
case, the kinematic methods that have been proposed to reconstruct simultaneously
the mass of the two new particles require a very high luminosity. Whether their sen-
sitivity is sufficient under real experimental conditions still remains to be determined.
A complementary way to address the same problem is to ask what would be the maxi-
mum sensitivity achievable, given a very detailed set of hypotheses to be tested that
not only include masses but also the spin and couplings information, i.e., taking into
account the full theoretical model prediction.

The problem can be investigated with the matrix element method that usually makes
use of the strongest assumptions on the analysed events [89]. One way to dramatically
increase the theoretical information is to assume that the masses of the new physics
states are the only unknown properties of the decay chain. We therefore consider a
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FIGURE 4.6 – Logarithmic likelihood as a function of the hypothesis values for
[(m2

µ̃r
−m2

χ̃1
)/2mµ̃r ,mχ̃1 ] built upon (a) the matrix element weights, (b) the trans-

verse momentum of the µ+ and the invariant mass of the muons.

specific decay chain corresponding to the topology in Fig. 4.5 : the production of a
pair of smuons followed by their decay into a muon and a neutralino

pp→ (µ̃+
r → µ+χ̃1)(µ̃−

r → µ−χ̃1) . (4.10)

We suppose that we have isolated a pure sample of events that correspond to the decay
chain in Eq. (4.10). Furthermore, we assume a perfect reconstruction of the kinematics
of the two muons in each event. With these assumptions, the significance that can be
achieved with the matrix element method provides us with an upper bound on the
significance that can be delivered by any realistic analyses at a given luminosity.

We have considered the following input hypothesis for the masses of the sparticles :

mµ̃r,input = 150 GeV, mχ̃1,input = 100 GeV . (4.11)

Under this hypothesis, we have generated events corresponding to the decay chain in
Eq. (4.10). We have built a sample of fifty events with exactly one µ+ and one µ− with
a transverse momentum larger than 20 GeV, and no other particles except maybe some
jets with a pT less than 20 GeV. These events are regarded as a pseudo-experimental
sample in the following.

The sensitivity that can be achieved with the matrix element method has been analy-
sed by computing the weights P(pvis

i |mµ̃r ,mχ̃1) for each event pvis
i in the pseudo-

experimental sample and for each tested hypothesis for (mµ̃r
,mχ̃1), and by analysing

the likelihood built upon these weights. This time the acceptance term is not negligible
and is then taken into account in the analysis.
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It is advantageous to express the likelihood in terms of the variable (m2
µ̃r
−m2

χ̃1
)/2mµ̃r ,

which corresponds to the momentum of each final state particle in the rest frame of
the smuon from which it originates. The complementary variable can be chosen to be
mχ̃1 . The likelihood for different theoretical hypotheses is shown in Fig. 4.6(a). The
optimal value for the variable (m2

µ̃r
−m2

χ̃1
)/2mµ̃r is 42 GeV, which corresponds to

the input value. In the MEM, we also observe a very mild sensitivity with respect to the
variation of the complementary particle, but this may be too sensitive to systematical
error in order to be observable in a real experiment.

One way to highlight the increase of sensitivity obtained by using the complete theo-
retical and experimental information is to compare the profile of the likelihood built
upon the matrix element weights (shown in Fig. 4.6(a)) with the likelihood profile that
is obtained by keeping only the information contained in the transverse momentum
pTµ of the µ+ and the invariant mass Mµµ of the muons. In order to simplify the
computation of this second likelihood profile we neglect the correlations between the
two variables pTµ and Mµµ. Thus the weight attached to each event is reduced to

P (xi|mµ̃r ,mχ̃1) →
1
σ

dσ

dpTµ
(PTµ|mµ̃r ,mχ̃1)×

1
σ

dσ

Mµµ
(Mµµ|mµ̃r ,mχ̃1). (4.12)

The resulting likelihood profile is displayed in Fig. 4.6(b). The comparison with Fig. 4.6(a)
shows that the sensitivity to the theoretical hypothesis (mµ̃r ,mχ̃1 ) is dramatically re-
duced when only the information contained in the kinematic variables pTµ and Mµµ

is used.

4.4 Spin sensitivity : Charged Higgs

As a third illustration we address the challenge of determining the spin of new par-
ticles. A simple example is the production of a light charged Higgs boson with a mass
close to the W± boson mass. The information on the spin of a resonance is passed
through the angular distribution of its decay products. If the momentum of each final-
state particle produced in the decay chain is measured, the angular distributions can be
reconstructed and the spin of the resonance identified. In fact in many cases, such as
the one we have chosen, the final state is characterised by missing transverse energy
from undetected particles and the angular distributions of the decay products cannot
be fully determined. The interesting question becomes therefore whether the avai-
lable information from the final state is sufficient to discriminate between different
spin assignments in the decay chain. The matrix element re-weighting appears to be
particularly relevant in this case, since the event weight will encompass the whole
available event kinematics including the spin correlation effects that survive after the
experimental reconstruction of the events.
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The presence of a charged Higgs in top decays was searched both at D∅ et CDF by
putting limits on the possible branching ratio of the top in a charged Higgs for different
masses of the charged Higgs and different values for tanβ [91,92,93]. In those papers
two main techniques were used, one based on the matrix element and a second on the
pT distributions.

In the following example, we assume that the production of the signal and its irredu-
cible background proceeds exclusively via the production of top quark pair that sub-
sequently decay into H±b or into W±b, with mH± ≃ mW± , followed by a leptonic
decay of both bosons. The signal process is

pp→ [t→ b(H+ → τ+ντ )][t→ b(W− → µ−νµ)], (4.13)

and the corresponding irreducible background results from the production of a pair of
W bosons,

pp→ [t→ b(W+ → τ+ντ )][t→ b(W− → µ−νµ)]. (4.14)

At the reconstruction level, we required the presence of exactly two jets with a pT

larger than 20 GeV, one τ+ –assumed to be reconstructed as precisely as the other
charged leptons– and one µ−. The cuts on these leptons are |η| < 2.4 and pT >

5 GeV. We reject the events containing photons or electrons with pT > 5 GeV and
|η| < 2.4, while, as for previous example, we neglect all radiation with a pT less
than 20 GeV. The transfer functions associated with the other particles have the same
parameterisation as described in Section 1.3. We arbitrarily choose a final relative
normalisation of signal and background events, working with a sample of 240 signal
events and 760 background events.

Before proceeding further, we stress that while providing an interesting case study,
this example cannot be regarded as very realistic. First, the relative cross sections and
reconstruction efficiencies for the signal and the background have been chosen arbitra-
rily. Second, such a light charged Higgs is not favoured by present constraints, which
point to much higher masses. Finally, the tau lepton reconstruction is idealised as it
is considered here on the same footing as a muon. A more realistic approach would
consist in taking into account the energy loss from the tau decay with a dedicated
transfer function for the energy of the tau. Nonetheless, as shown below, this example
illustrates quite well the power of the matrix element re-weighting (used here in a
Template Method).

Let us define PS(pvis), PB(pvis) as the weights evaluated for the event final state pvis

under the signal and the background hypotheses, respectively. These weights can be
calculated from the signal and background full matrix element as defined in Eq. (2.3).
Alternatively, as in some experimental analyses [94] , they can be associated with a
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FIGURE 4.7 – Expected normalised distribution of events with respect to the discrimi-
nant d built upon (a) the matrix element weight and (b) the pT of the tau for a pure
signal sample (solid histogram) and for a pure background sample (dashed histogram).
The error-bars are the distributions associated with the pseudo-experimental sample,
assuming that the statistical error on the number N of events in a bin is given by

√
N .

normalised differential cross section with respect to a single observable, such as the
τ+ transverse momentum

PS,B(pvis) → 1
σS,B

dσS,B

dpT

[
pT (τ+)

]
, (4.15)

which also captures the spin effects. The advantage of the weights defined in Eq. (4.15)
lies in their simplicity. Their evaluation only requires to use a standard phase-space
generator that is optimised for the computation of cross sections. Such an observable,
for example, is very commonly used in the determination of the polarisation of the W
bosons in top events and provides us with a useful benchmark to study the increased
sensitivity that the matrix element method might provide.

These weights can then be combined to build an event-by-event discriminating va-
riable

d(pvis) =
PS(pvis)

PS(pvis) + PB(pvis)
. (4.16)

The normalised-to-one distributions of events as a function of the discriminant va-
riable d are shown in Fig. 4.7 for the two cases. The solid (resp. dashed) histogram
is the distribution expected for a pure sample of signal (resp. background) events.
These distributions have been generated from large samples, in order to allow us to
neglect the statistical fluctuations. Spin correlation effects are expected to give rise to
different values for the weights under the two spin hypotheses. Nevertheless, for most
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FIGURE 4.8 – χ2 values associated with the fit of the pseudo-experimental data to the
theoretical prediction parameterised by the fraction r of signal events for the weights
calculated from (a) the matrix element, (b) the pT of the tau. Each dashed line repre-
sents the one-standard-deviation interval defined by the condition χ2(r) < χ2

min + 1.

of the events, this disparity is expected to be small, resulting in a discriminant close to
d ≃ 0.5. Note that in our example, signal and background events are characterised by
the same topology with intermediate particles of the same mass. Only the spin of the
intermediate W± or H± resonances differ between the two decay chains. The distri-
butions clearly show that the discriminant power is substantially reduced when only
the information on the transverse momentum of the τ+ is retained.

Yet, for some events the discriminant is significantly different from 0.5, corresponding
to configurations clearly favoured by one of the two hypotheses. Such events influence
the shape of the distributions and allow us to distinguish them. One can take advantage
of this difference to find out the fraction of signal events in the pseudo-experimental
sample. The normalised-to-one distribution associated with the pseudo-experimental
sample as a function of the discriminant variable d is also displayed in Fig. 4.7. The
fraction of signal events in the pseudo-experimental sample can be estimated by fitting
the points [Pdata(d)] with the curve

Pdata(d) = rPS(d) + (1 − r)PB(d), (4.17)

and minimising the χ2 with respect to the parameter r that represents the fraction of
signal events in the pseudo-experimental sample. The χ2 values of the corresponding
fit as a function of the fraction of signal events are shown in Fig. 4.8. The best fits
for each discriminant are obtained for r = 24 ± 9% and r = 28 ± 23%, respectively.
Both results are compatible with the true fraction of signal events, but the discriminant
using matrix elements increases the accuracy by a factor of about 2.5.
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4.5 Differential Matrix Element Method

Even if the re-weighting technique can be used in different ways, it is currently mainly
used for precision physics (determination of mass, couplings, cross sections) and as
an input to discriminate signal from backgrounds (as an entry of a neural network for
example). We can also use the matrix element re-weighting to estimate differential
cross-sections.

This original technique is strongly inspired by the techniques consisting in the evalua-
tion of the differential cross section with the Kinematical-Fit method [95, 96] and is a
direct extension to the Matrix Template method [97]. We called our new method the
Differential Matrix Element Method (DMEM).

Building differential cross sections with respect to arbitrary quantities might imply
the knowledge of the full kinematics of the events (i.e. estimate quantities like the
momentum of a neutrino). This knowledge requires to include some theoretical input
in order to discriminate the different partonic configuration. We propose to use the full
power of the matrix element by using the marginal events distributions of

1
P(pvis)

∂P(pvis)
∂Z

. (4.18)

as a discriminator between the different kinematical configuration. Since such curves
are normalised to unity, summing over them provides an estimation of the shape of the
differential cross section.

In order to observe the feasibility of the techniques, we have generated with MAD-
GRAPH [81] top quark pair events decaying in the fully leptonic channel

pp→ tt̄→ bb̄l+l−νlν̄l, (4.19)

at a centre-of-mass energy of 14 TeV and with CTEQ6L1 [86] as the set of PDF.

As a first check that our technique provides a sensitive estimator for the differential
cross sections, we used a sample of 5000 parton events to estimate the differential
cross section for the top-quark pair invariant mass and for the top-diffusion angle in
the tt̄ rest frame. 2 The results are displayed in Fig. 4.9. The DMEM differential curve
reproduces well the theoretical curves without any significant bias.

We also performed a second, more realistic, comparison at detector level. In order
to simulate our sample, we take the parton level sample –generated by MADGRAPH–

2. Since we are running at parton level, the transfer functions used for those computations are delta
functions.
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FIGURE 4.9 – Normalised differential cross section of top quark pair production in
fully leptonic decay for the tt̄ invariant mass (top) and for the top diffusion angle
measured in the tt̄ rest frame (bottom). The two estimators of the differential cross
section are based on a sample of 5000 Standard Model partonic events.
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and passed it through PYTHIA – with ISR activated– and then pass the resulting events
in a fast simulation of the CMS detector response done with PGS. 3 In order to have
a quite clean sample, we have applied cuts inspired by the selection performed at
CMS [3]. We select events with exactly two jets with transverse momentum larger
than 30 GeV, and request the presence of two opposite sign leptons with pT > 20
GeV. Additionally, we ask a transverse missing energy larger than 30 GeV.

Fig. 4.10 displays the same differential cross section as displayed in the parton-level
case. For the differential cross section corresponding to the invariant mass, we note a
small bias. One possible explanation is that the theoretical curves does not take into
account the influence of ISR while this variable is quite sensitive to those effects. The
limited resolution of the detector as well as the parameterization of transfer-functions
could also induce some bias. On the Opposite, the diffusion angles – less sensitive to
those effects– didn’t present any bias.

With or without bias, the important point is to check whether a given theoretical pre-
diction (i.e. the Standard Model) reproduces the data or not. To illustrate this point, we
will evaluate the differential cross-sections with a sample containing tt̄ events induced
by a resonant heavy vectorial state.

pp→ Z ′ → tt̄→ bb̄l+l−νlν̄l. (4.20)

This is a simple example of typical new physics scenarios for tt̄ estimation of the cross
section [97, 98].

In order to generate samples with different contamination of Z ′ events, we generate
a pure sample of Z ′ events with mZ′ = 600 GeV. These events are generated in
the same way and with the same cuts as those described for the SM sample. After
cut selection, this sample is mixed with different Standard model events with a fixed
fraction of Z ′ events – we will present results for 5, 8 and 10% of Z ′ events in the
final samples.

It should be stressed that the matrix element used for the computation of the differen-
tial cross section is always the Standard Model one. Our method does not have any a
priori information on the type of new physics which can be observed in the detector.

Fig. 4.11 shows the result for the differential cross section relative to the invariant mass
of the tt̄ pair. 4 A clear tendencies emerge : The more we have new physics events in
the sample the more the curve diverges from the SM expected one. The smoothness

3. The transfer functions used in this case are of the double Gaussian type like in Eq. (4.1).
4. Equivalent evaluations of differential cross sections have been performed for different variables with

in all cases less sensitivity in comparison to the tt̄ invariant mass.
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FIGURE 4.10 – Normalised differential cross section of top quark pair production in
fully leptonic decay for the tt̄ invariant mass (top) and for the top diffusion angle mea-
sured in the tt̄ rest frame (bottom). The two estimators of the differential cross section
are based on a sample of 10000 Standard Model partonic events. The theoretical curve
is the expected one at tree-level –no ISR and UE are taken into account.
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FIGURE 4.11 – Differential cross section for the top quark pair invariant mass for 3
different samples of 5000 events containing different ratios of SM and Z ′ events. The
graph presents the estimation of the differential cross section for the DMEM method.
The Standard Model expected curves have been estimated on a sample of 100 thousand
Standard Model events.
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of the deviation indicates that the DMEM is a sensitive way to discriminate the SM
hypothesis.

In order to be able to claim deviation from the Standard Model, we can associate to
each curve a chi-squared value measuring the agreement of the curve with the expected
one. The details on the chi-square definition are discussed in App. B. In order to have
an expression which measures the deviation from the Standard Model, we use the
confidence level :

CL(χ2
0) ≡ P (χ2 ≥ χ2

0). (4.21)

The expected value for a pure Standard Model event is 0.50 ± 0.33. A value close to
zero indicates that the samples is not (or unlikely) a pure SM sample, while a value
close to one indicates that the two curves are in too perfect agreement.

The expected confidence level value and the one sigma range were evaluated for the
different samples containing the Z ′ events. The standard model can be excluded at
90% of confidence level for already 5000 selected events containing 5% of Z ′. Of
course, if the ratio of non Standard Model events is bigger the exclusion is reached for
lower luminosity.

The way the sensitivity of the DMEM method compare to other techniques as well
as the importance of the systematic uncertainties related to method are still to be eva-
luated. Also the sensitivity to New Physics should be evaluated on a larger class of
examples before we can assess the importance of this new method which looks pro-
mising anyway.



Chapitre5
QCD Radiation In the Matrix
Element Method

“If someone says that he can think or
talk about quantum physics without be-
coming dizzy, that shows only that he
has not understood anything whatever
about it.”

Murray Gell-Mann

The MEM was intensively used at the TEVATRON. However, only events for which
the number of jets exactly matches the number of coloured partons in the hard matrix
element have been included. For instance, only two-jet events have been considered
for the analysis of the di-leptonic top-quark pairs. At the TEVATRON, this approach
works, since the top quarks are relatively heavy compared to the beam energy and thus
the phase space for extra radiation is highly suppressed.

However, at the LHC, radiation of hard jets is expected to be abundant, not only for
top pair production but also for new physics processes involving coloured particles
with masses of a few 100 GeV [99, 100]. With a centre-of-mass energy of 14 TeV,
the number of top pair events is reduced by more than 40% if one requires no extra
jets with pT > 40 GeV 1. This estimate is based on events generated with PYTHIA

6.4 [101] and passed through the fast detector simulation PGS 4 [87]. As will be shown
later, even the presence of additional jets with pT < 40 GeV can lead to problems with

1. About 27% of events have one additional jet with pT > 40 GeV, while about 15% have two or more
extra jets.
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fitting the signal events, so that a tighter cut will be necessary to eliminate the influence
of jet radiation, hence leading to a large loss of signal statistics.

Alternatively, one could try to take into account events with extra jets by including
matrix elements with more partons in the final state. Referring again to the example of
di-leptonic top pairs, this would amount to matrix elements corresponding to the pro-
cesses pp→ bb̄l+l−νν̄ + nqq+ nq̄ q̄+ ngg, which have nq quarks, nq̄ antiquarks and
ng gluons in the final state beside the usual top decay products. While this approach
should allow to correctly include all events, it substantially increases the computation
time, due to the complexity of the multi-particle matrix elements, the more complica-
ted structure of the phase space, and the combinatorial related to summing over quark
flavours and gluons in the extra jets. Even if one restricts oneself to considering only
up to two extra partons in the final state, the computing time of the likelihood fit is
increased by more than an order of magnitude.

For all processes of interest –SM and common BSM scenario– most of those additio-
nal extra-jets originates from Initial State Radiation (ISR) [99]. Additional radiation
have mainly two origin : Underline Event (UE) and Final State Radiation (FSR). While
the second one is supposed to be taken into account by the transfer functions, 2 the first
producing low energy jets is an un-reducable source of systematic bias in any attempt
to deal correctly with ISR.

In the following two Sections a method will be described which accounts for the main
effect of ISR by performing a kinematical correction event by event, using matrix
elements for the hard process only, without additional partons in the final state. For
concreteness, the numerical analyses has been carried out for two representative pro-
cesses. Top-quark pair production with di-leptonic decay,

pp→ tt̄→ bb̄l+l−νν̄, (5.1)

is a typical case of pair production of heavy particles with relatively long decay chains.
As a second example we will consider Higgs production via gluon fusion,

gg → h→W+W− → l+l−νν̄, (5.2)

with the characteristic feature of a s-channel resonance.

Numerical results shown in the following Sections corresponds to a centre-of-mass
energy of

√
s = 14 TeV, but the essential aspects do not change for lower values of√

s. The results of these Section have been cross-checked with a specialised private
code written by A. Freytas using matrix elements based on COMPHEP 4.4 [102].

2. Quite often the assignment between a jet and a parton needed during the transfer functions determi-
nation is based on alignment between the two objects. Such rules are broken for hard radiations which are
then not taken into account correctly, leading to a systematical bias.
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FIGURE 5.1 – Schematic depiction of the event topology for pair production of heavy
particles X , together with initial state radiation.

5.1 Initial State Radiation at partonic level

In order to study the effects of ISR on the method, we first restrict ourselves to an
analysis at the parton level. Simulated “data” events have been generated with PYTHIA

6.4 [101], and the momenta of the final state particles as well as of the ISR have been
extracted from the event record for each event. No cuts on the parton momenta have
been implemented and therefore the acceptance term is simply 1. For simplicity and
clarity of the discussion, we do not include backgrounds in the analysis.

The proposed technique is based on the observation that the most significant effect
of ISR is on the kinematics of the events, since without proper inclusion of ISR the
momentum balance would be violated. The proper kinematics of the hard scattering
matrix element can be restored by simply boosting the momenta of the particles cor-
responding to the hard process by the momenta of the ISR. Since the longitudinal
incoming momenta are integrated in the computation of the likelihood, it is sufficient
to perform the boost for the transverse coordinates only. In practice, instead of boos-
ting the measured final state momenta, we perform the boost on the incoming partons
of the matrix element, which is equivalent since the squared matrix element is a Lo-
rentz scalar. As we are only performing a kinematical boost, the ISR momenta for
each incoming leg are summed up, and the sequence of individual branching does not
play any role.

This boost correction is the simplest possible treatment of ISR, which only maintains
the proper momentum balance, while the effects of the particular QCD vertices and
internal propagators (labeled by numbers and pa,b,... in Fig. 5.1, respectively) are not
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taken into account. It has the advantage of not increasing significantly the computing
time of the MEM likelihood fit compared to the situation without ISR. On the contrary,
the convergence of the integral is usually faster since the kinematics of the events are
often in a better agreement with the mapping of the peaks.

However, one can try to do better by including Sudakov re-weighting for the ISR.
The Sudakov factor corresponds to the probability for no branching to occur between
two scales p2

T,E1 < p2
T,E0. For ISR it is appropriate to formulate the Sudakov factor

in terms of backwards evolution from the hard process to the incident proton. In this
case it is given by [103, 104]

∆ISR(p2
T,E0, p

2
T,E1) = exp

(
−
∫ p2

T,E0

p2
T,E1

d(p2
T,E)

p2
T,E

αs(p2
T,E)

2π
∗

∑
j∈{j→i+X}

∫ zmax(p2
T,E)

zmin(p2
T,E)

dz
Pj→i(z)

z

fj(xi/z, p
2
T,E)

fi(xi, p2
T,E)

)
,

(5.3)

where the sum runs over all possible assignments of partons i, j (quarks or gluon) in
the branching j → i+X . Here fj are the parton distribution functions and Pj→i are
the splitting functions, which for massless quarks read

Pgq(z) = Pqg =
4(1 + z2)
3(1 − z)

, (5.4)

Pqq(z) =
1
2
[
z2 + (1 − z)2

]
, (5.5)

Pgg(z) = 6
[1 − z(1 − z)]2

z(1 − z)
. (5.6)

Furthermore, z is the ratio between the squared pre-branching invariant mass of the
parton-parton interaction and the squared post-branching invariant mass.

On the other hand, to account for the proper weight of the ISR, one needs the probabi-
lity of having a splitting j → i+X at some kinematic configuration (p2

T,E , z), which
is given by taking the derivative of the Sudakov factor :

Pj(p2
T,E , z) = − d2

d(p2
T,E)dz

∆ISR(p2
T,E0, p

2
T,E), (5.7)

=
αs(p2

T,E)
2πp2

T,E

Pj→i(z)
z

fj(xi/z, p
2
T,E)

fi(xi, p2
T,E)

∆ISR(p2
T,E0, p

2
T,E). (5.8)

The branching probability for any kind of parton, which is the quantity needed in
practice, is then given by

∑
j Pj(p2

T,E , z).
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FIGURE 5.2 – Reconstruction of the top quark mass from a matrix element likelihood
fit to 1000 parton-level di-lepton tt̄ events at the LHC with

√
s = 14 TeV. A top mass

of mt = 175 GeV has been used for the event generation. Shown in the plot are the
idealised situation without ISR in the event generation (solid curve), the influence of
ISR if no correction method is used (short dashed), the result for application of the
kinematic boost correction only (long dashed), and the boost correction with Sudakov
re-weighting (dash-dotted). The likelihood reflects statistical errors only.

Evidently it is not possible to reconstruct the entire sequence of ISR branchings in the
correct order from the event data. For most events, however, one microscopic bran-
ching process carries most pT of all ISR from one leg –due to the pT dependencies of
the Sudakov factor–, so that a reasonable approximation can be obtained by adding up
all ISR momenta stemming from one leg and calculating the Sudakov factor for one
single branching with the summed momentum p2

T,E = p2
T,ISR.

Since the ISR tends to be emitted at low angle, we approximate the ratio z by the
longitudinal momentum components,

z ≈ pin,z

pin,z + prad,z
, (5.9)

where pin is the momentum of the incoming parton of the hard collision process and
prad is the momentum of the ISR associated with this leg, see Fig. 5.1.

Fig. 5.2 shows numerical results for the MEM likelihood fit for the example of top-
quark pair production with di-leptonic decays (Eq. (5.1)). The panel illustrates the im-
pact of ISR if no special treatment for it is used : For reference, the solid curve shows
the idealised situation without ISR in the event generation, so that each event contains
exactly four visible partons (two b-quarks and two leptons). The dashed curve, on the
other hand, corresponds to event generation with ISR, but ISR is not accounted for in
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FIGURE 5.3 – Reconstruction of the Higgs boson mass from a matrix element likeli-
hood fit to 1000 parton-level di-lepton events at the LHC with

√
s = 14 TeV. A Higgs

mass of mh = 180 GeV has been used for the event generation, so that the W+W−

is open and dominant. The plot compares the idealised situation without ISR in the
event generation (solid curve) with simulation results including ISR, and either no
correction (short dashed) or purely kinematical boost correction (long dashed). The
likelihood reflects statistical errors only.

the likelihood fit ; instead events with ISR with pT > 40 GeV have been vetoed. This
generation is based on the same number of partonic events. As evident from the plot,
the fit yields a central value for the top quark mass close to the true input value, but
the statistical uncertainty is increased by a factor of about two (as can be seen from
the larger width of the curve), partially due to lower number of events passing the
selection cuts – about 27%.

Fig. 5.2 demonstrates also the effect of the boost correction. As expected, the statis-
tical error is not increased by applying this method. Applying only the kinematical
boost correction, without the Sudakov re-weighting, leads to a central value for the
fitted top mass that is shifted downwards by about 0.5 GeV. While this is still mar-
ginally consistent within the 2-sigma confidence interval, it is indicative of a slight
systematics bias. If in addition the Sudakov factor (5.8) is included, the central value
of the reconstructed top mass is much closer to the true input value and fully consistent
within 1-sigma interval.

Fig. 5.3 shows results for Higgs production with decay to l+l′−νlν̄l′ through a pair
of W bosons (Eq. (5.2)). As we can see from the figure, such s-channel resonance
processes are even more sensitive to the influence of ISR. Indeed, the Higgs mass is not
properly reconstructed by the MEM likelihood fit even if ISR jets with pT > 40 GeV
are vetoed –it is only when the veto threshold is lowered to an unrealistically low
value of 6 GeV that the fit becomes marginally consistent with the correct input value
mh = 180 GeV. On the other hand, the purely kinematical boost correction (without
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reweighting) already yields a fit result that is very close to mh = 180 GeV, while
inclusion of the Sudakov reweighting leads to near-perfect agreement with the input
value.

This strong sensitivity of the MEM fit to ISR is a particular feature of processes with
narrow s-channel resonances, where Γres ≪ mres [e. g. process (5.2) with mh =
180 GeV and Γh ≈ 0.6 GeV]. By ignoring ISR with transverse momenta of a few
GeV, the best-fit centre-of-mass energy of the hard process can be shifted by a similar
amount of a few GeV. In contrast, a pair production process without an s-channel
resonance is much less sensitive to the precise value of the incident momenta p(′)

in .

While the application of the boost correction is straightforward at the parton level, the
situation becomes a bit more complex, however, in a more realistic framework with
jet fragmentation and hadronisation, as will be shown in the next Section.

5.2 Initial State Radiation at the hadron level

In this Section the influence of ISR is investigated in a setup including parton sho-
wering, hadronisation and a simple detector simulation in the event generation. As
before, events have been generated with PYTHIA 6.4 [101], but now using the infor-
mation about the fully hadronised events including also underlying events, which have
been passed through the fast detector simulation PGS [87] with general LHC detec-
tor parameters. For top-quark pair production with di-leptonic decay (Eq. (5.1)), all
events in the sample are required to contain two leptons and at least two reconstructed
jets with pT > 50 GeV, but no other selection cuts besides the intrinsic detector accep-
tance have been applied. Acceptance Term have been fitted according to the method as
described in the previous Chapters. We checked that the presence of the initial state ra-
diation didn’t have any impact on the reconstruction of jets inside PGS. Accordingly,
we use the same transfer functions that the one developed in Chap. 4.

As before and for the sake of the generality and of the simplicity, we will not consider
heavy flavour tagging and consider all permutations of the jets in the event, irrespec-
tive of their flavour content, as candidates to come from the top quark decay. The
remaining jets are interpreted as stemming from ISR. 3

Fig. 5.4 shows how ISR can affect the likelihood fit if ISR is not accounted for in the
matrix elements. The solid curve shows again the situation without ISR in the event ge-
neration. The small bias can be related to FSR effects –which could be corrected with
a more accurate parameterisation of the transfer functions. The short-dashed curve

3. If an event has more than four jets we only permute the four hardest jets to save computing time.
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FIGURE 5.4 – Reconstruction of the top quark mass from a matrix element likelihood
fit to 1000 hadron-level di-lepton tt̄ events at the LHC with

√
s = 14 TeV. A top mass

ofmt = 175 GeV has been used for the event generation. The solid curve corresponds
to the idealised situation without ISR in the event generation, while the result for
uncorrected ISR is shown for a veto on extra jets with pT > 40 GeV (short dashed)
and pT > 20 GeV (dotted). Also shown are the effect of the purely kinematical boost
correction (dash-dotted) and the boost correction with ISR transfer functions (long
dashed). The likelihood reflects statistical errors only.

corresponds to inclusion of ISR in the event generation but not in the MEM likelihood
fit, and events with more than two jets with pT > 40 GeV have been excluded from
the fit. In spite of this cut, the central value for the fitted top mass is shifted signifi-
cantly compared to the input value mt = 175 GeV, a feature that was not observed in
the parton-level analysis (see Fig. 5.2). It can be explained by the fact that ISR typi-
cally generates multiple jets per event, and even if each jet has pT < 40 GeV, the total
transverse ISR momentum can be much larger. In events with very hard ISR the ki-
nematics of the final state particles are substantially modified, so that the phase-space
integration for matrix elements without ISR correction is sometimes pushed into an
unphysical region.

The situation improves somewhat when the jet pT cut is lowered to 20 GeV (long-
dashed curve in Fig. 5.4), but the fit result is still inconsistent with the input value
mt = 175 GeV. Moreover, such a low cut will be subject to large systematic experi-
mental uncertainties.

Therefore it is necessary to take into account and correct for ISR in the MEM fit, as
shown in Fig. 5.4. In order to perform the boost correction, each ISR jet needs to be
associated with one of the incoming legs. A simple rule is to assume that jets in the left
hemisphere stem from the incident parton coming from the right, and vice versa. As a
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first step, we will not consider a resolution function for the ISR. Indeed, on average the
mis-measurements and UE contributions should compensate each other. Similar to the
parton-level analysis, the application of the kinematical boost correction (short-dashed
curve) leads to a downward shift in the central value of the fitted top mass.

As evident from the figure, the purely kinematical boost correction already leads to
a satisfactory likelihood fit for top-quark pair production events. The situation is dif-
ferent, however, for processes with a narrow s-channel resonance, like Higgs produc-
tion (Eq. (5.2)), since we have seen that this class of processes is very sensitive to
ISR. Numerical results for the MEM fit are shown in Fig. 5.5, which shows that the
boost correction does not lead to a good fit. This can be explained by the fact that
on average the measured ISR jet momenta do not exactly agree with the parton-level
ISR momenta – due both to detector effect but also due to the presence of FSR and
UE. Such measurement inaccuracies have a substantial impact for Higgs production
processes due to its strong sensitivity on the pT of ISR.

One can try to account for these effects by including a transfer function for each in-
cident leg (in addition to the transfer functions for the outgoing legs of the matrix
element). This transfer function parametrises the relation between the transverse mo-
mentum of the incident partons of the hard process and the measured momenta of the
ISR jets in each hemisphere. We use a two-component transfer function, employing
a double-Gaussian when the measured ISR pvis

T is non-zero, and a single Gaussian in
logarithmic scale otherwise :

WISR(pT, p
vis
T ) =

1√
π b2 pT

e−(log(pT)−b1)
2/(2b22), for pvis

T < p0
T, (5.10)

The boundary p0
T between the two regions should be chosen near the sensitivity limit

of the detector (typically a few GeV), but we have checked that the results are not
appreciably affected by varying p0

T between 5 and 15 GeV.

When using ISR transfer functions one needs to integrate over the partonic pT of each
leg, so that the total integration dimension is increased by two. Nevertheless, when
using an adaptive algorithm like VEGAS [83], the integration time grows only by a
factor of less than 10.

Fig. 5.5 demonstrates the effect of the boost correction without and with ISR trans-
fer functions for the Higgs production process (Eq. (5.2)). The plot shows that the
ISR transfer functions properly take into account the typical energy resolution and jet
smearing effects and the fit result is consistent with the input value mh = 180 GeV.

Note that Fig. 5.5 shows two curves for the result with ISR transfer functions, which
correspond to transfer functions tuned to tt̄ and h → WW Monte-Carlo events, res-
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FIGURE 5.5 – Reconstruction of the Higgs boson mass from a matrix element likeli-
hood fit to 1000 hadron-level di-lepton events at the LHC with

√
s = 14 TeV. A Higgs

mass ofmh = 180 GeV has been used for the event generation. The plot compares the
idealised situation without ISR in the event generation (solid curve) with simulation
results including ISR, and either no correction (short dashed) or the kinematical boost
correction without (short dashed) and with (long dashed) inclusion of ISR transfer
functions. The likelihood reflects statistical errors only.

pectively. The likelihood curves are almost identical for the two cases, which demons-
trates that the transfer functions are very insensitive to the hard process.

For the case of top-quark pair production, the fit result for the boost correction with
ISR transfer functions is shown by the long-dashed curve in Fig. 5.4. It agrees very
well with the input value mt = 175 GeV, but in contrast to Higgs production, the
purely kinematical boost correction is already satisfactory so that the inclusion of the
transfer functions does not lead to a significant improvement here. On the other hand
the statistical error is slightly increased but this should be compensated by the fact that
this takes into account the systematic effect linked to the scale determination of ISR.

So far we have shown that the boost correction method with ISR transfer functions is
a robust and practical technique for dealing with initial-state QCD radiation in expe-
rimental likelihood fits based on the MEM. We have still to check how our method is
affected by systematic uncertainties. The largest systematic uncertainty is expected to
be related to the jet energy scale. This uncertainty can be taken into account by kee-
ping the jet energy scale as a free parameter in the fit [70,71,72,73]. However, a proper
analysis of this and other experimental systematic errors requires a more sophisticated
detector simulation and is beyond our scope.

We will have a closer look at theoretical systematic error sources. As already men-
tioned above, we have checked that the variation of the lower pT cutoff for ISR jets
within reasonable ranges has a negligible effect on the fit results. Similarly, it has been
shown that the ISR transfer functions are approximately universal and depends very
little on the details of the hard scattering process (see Fig. 5.5).
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Furthermore, we estimate the systematic error stemming from the parton distribution
functions (PDF) by comparing fit results for CTEQ6L1 and CTEQ6M PDF [86]. Here
we only modify the PDF in the MEM fit, while using in both cases the same event file
and transfer functions, which have been determined with CTEQ6L1 PDF. We find a
negligible difference between the results for CTEQ6L1 and CTEQ6M PDF and thus
conclude that the systematic error from this source is very small.
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Conclusions

“The main purpose of science is simpli-
city and as we understand more things,
everything is becoming simpler.”

Edward Teller

The Matrix Element Method is a powerful analysis technique based on a very simple
idea : use a squared matrix element to associate a probability of coming from a specific
partonic process to an event as seen in a detector. The maximisation of the likelihood
–based on a sample of events– provides then a sensitive and natural variable to disen-
tangle the signal from the background. The effectiveness of this method was proven
by D∅ and CDF collaboration, not only in the top-quark mass measurement but also
the single-top observation and for the exclusion of the intermediate mass Higgs. We
can expect that both CMS and ATLAS will follow the same route. Simple as it looks,
the method, however, entails a very complicated integration over phase space, a tech-
nical issue that has hampered so far its widespread use in other cases as well as a more
detailed study of the possible systematic effects that can be hidden in some common
assumptions.

In this thesis, we have presented a new general algorithm (and its actual implementa-
tion) that solves the problem of the computation of the weights for any decay chain of
interest. A dedicated and automated package –MADWEIGHT– integrates over phase
space matrix elements together with transfer functions. He performs this by combi-
ning different optimised phase-mappings in a process dependent way. At the present
stage, the only limitation of our approach stems from the use of mappings which are
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invertible analytically. However, the modular structure of our algorithm makes the
extension to non-analytical change of variables straightforward.

The availability of a tool such as MADWEIGHT, which is fully automatic, spares the
user from focusing on the technical details of matrix element generation and integra-
tion over phase-space. This opens the way to a potentially large number of applica-
tions. Not only the measurement of masses or cross sections in the Standard Model
could be achieved in a effortless and more efficient way, but the re-weighting tech-
nique could also be employed in the search and identification of new physics models,
as underlined in the example where we measure the charged Higss cross-sections.

The quest for new physics is a two step process. First a deviation from the Stan-
dard Model needs to be identified. Even in this phase, the use of the matrix-element
re-weighting procedure can enhance our sensitivity to the presence of new physics
processes, in a model independent way. With this aim in mind, we have proposed
and developed an original technique to evaluate the differential cross sections from a
sample of events. We called this method the Differential MEM (DMEM). Based on the
Standard Model matrix elements and the detector transfer functions, we re-weight any
possible kinematical configuration and use it to evaluate –on a event by event basis–
the marginal distribution for any variable of interest. We have shown that the sum
of those distributions provides an accurate estimator of the differential cross section.
We have also shown, through examples, that this estimator is quite sensitive to the
presence of new physics events, leading to observable deviations from the Standard
Model expected curve.

Finally, we also performed, for the first time, a systematic study of the impact of QCD
radiation on the MEM. Normally, a fixed number of external partons is used (corres-
ponding to the Born process), and it is not possible to include the high-multiplicity
initial state radiation. At TEVATRON, events with ISR are eliminated by applying a
veto cut. We have shown that, in addition to reduce the statistics, those cuts might
induce a non-trivial bias on the measurement. We have then proposed a method to
include the effect of ISR by correcting the momenta of the incident partons in the
matrix element on an event-by-event basis. Concretely, the incoming parton momenta
are boosted by the transverse momenta of the ISR. This method has been first studied
and tested at the partonic level before being extended to a more realistic situation with
fully hadronized events and a fast detector response simulation. In order to take into
account the detector resolution, we have considered a specific transfer function for
the ISR. Our results are encouraging as they lead to a stable MEM fit, resulting in
excellent agreement with the underlying input value. Finally, we also showed that this
method is very robust under the theoretical systematics uncertainties.

In the near future, MADWEIGHT will be included inside the brand-new MADGRAPH 5
framework [105]. This will gives the opportunity to improve the code and to make it
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more generic in allowing, for example, non decay chain processes which are some-
times important in order to re-weight events according to background hypotheses.
Moreover the systematic effect of the method due to Final State Radiation could be
studied further.

Since the first top-quark mass measurement made with the Matrix-Element Method
made at the TEVATRON, the re-weighting method shows astonishing sensitivity and
applications. In the near future, thanks to both TEVATRON and LHC, we can expect
that this method will help to measure the mass of the Higgs and/or to identify new
particles.
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AnnexeA
Changes of Variables

“Everything should be as simple as it is,
but not simpler.”

Albert Einstein

A.1 Phase-space measure associated with the
final blocks

A.1.1 FB A

The notation for the phase-space variables associated with this main block is given
in Figure A.1. The two momenta p1 and p2 correspond to the visible particles that
enter into the main block, along with the Bjorken fractions q1 and q2. The standard
phase-space parametrisation associated with this main block reads

dq1dq2
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ4 (Pin − Pfin) . (A.1)

The four-vectors Pin and Pfin refer to the total momenta in the initial and final states,
respectively. In our procedure we apply a change of variables that leads to the follo-
wing parametrisation of the phase-space measure

1
16π2E1E2

dθ1dϕ1dθ2dϕ2 × J, (A.2)
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|p1|

|p2|

q1

q2

. . .

. . .

FIGURE A.1 – Notation for the kinematics of FB A.

where θi and ϕi refer to the polar and azimuthal angles of particle i with respect to the
beam axis. The Jacobian J of this transformation reads

J =
2
s
|p1|2|p2|2| cosϕ1 sinϕ2 − sinϕ1 cosϕ2|−1, (A.3)

where s is the squared invariant mass of the colliding hadrons. The energies E1, E2 of
the final particles in the main block are adjusted to balance the transverse momentum
pbranches

T of all the branches represented by the blobs in Figure A.1. We assume that
this transverse momentum is different from zero, except may be in a region of null
measure (see the discussion in Section 3.8). This requires the number of particles in
the final state to be larger than or equal to three. Then the variables |p1|, |p2| can be
expressed as the solution of the following linear system

|p1| sin θ1 cosϕ1 + |p2| sin θ2 cosϕ2 = −pbranches
x , (A.4a)

|p1| sin θ1 sinϕ1 + |p2| sin θ2 sinϕ2 = −pbranches
y . (A.4b)

The Bjorken fractions q1, q2 are then fixed by imposing the conservation of total
energy and total momentum along the beam axis.

A.1.2 FB B

The notation for the phase-space variables associated with this main block is given
in Figure A.2. The momentum p1 corresponds to the missing particle that belongs to
the main block, along with the Bjorken fractions q1 and q2. The momentum p2 cor-
responds to the branch that is directly connected to that missing particle. The variable
s12 is the invariant (p1 + p2)2. The standard phase-space parametrisation associated
with this constrained sector reads

dq1dq2
d3p1

(2π)32E1
(2π)4δ4 (Pin − Pfin) . (A.5)
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FIGURE A.2 – Notation for the kinematics of FB B.

The four-vectors Pin and Pfin refer to the total momenta in the initial and final states,
respectively. In our procedure we apply a change of variables that leads to the follo-
wing parametrisation of the phase-space measure

1
4πE1

ds12 × J. (A.6)

The Jacobian J of this transformation is given by

J =
E1

s
|p2zE1 − E2p1z|−1, (A.7)

where s is the squared invariant mass of the colliding hadrons. The transverse momen-
tum the missing particle is fixed by requiring that it balances the transverse momentum
of all the branches represented by the blobs in Figure A.2. The component p1z of mo-
mentum along the beam axis is fixed by imposing the invariant mass condition

(p1 + p2)2 = s12. (A.8)

If the energy E1 of the missing particle is treated as an independent parameter, the left
side of Eq. (A.8) is a first-order polynomial in p1z . We therefore obtain a unique ex-
pression for p1z in terms of E1. The mass-shell condition associated with the missing
particle gives rise to up to two solutions for the energy E1. Each solution that gives a
real positive value for E1 and that leads to values of the Bjorken fractions q1 and q2
between 0 and 1 is kept, as it corresponds to a distinct physical phase-space point at
which the Jacobian in Eq. (A.7) and the integrand must be evaluated.

A.1.3 FB C

The notation for the phase-space variables associated with this main blob is given in
Figure A.3. The momentum of the missing particle is denoted by p1, the momentum
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FIGURE A.3 – Notation for the kinematics of FB C.

of the branch directly connected to the missing particle is denoted by p2, the momen-
tum of the massless visible particle in the main block is denoted by p3. The Bjorken
fractions are denoted by q1 and q2. The variables s12 and s123 refer to the invariants
(p1+p2)2 and (p1+p2+p3)2, respectively. The standard phase-space parametrisation
associated with this main block reads

dq1dq2
d3p1

(2π)32E1

d3p3

(2π)32E3
(2π)4δ4 (Pin − Pfin) . (A.9)

The four-vectors Pin and Pfin refer to the total momenta in the initial and final states,
respectively. In our procedure we apply a change of variables that leads to the follo-
wing parametrisation of the phase-space measure

1
16π2E1E3

dϕ3dθ3ds12ds123 × J. (A.10)

The Jacobian J of this transformation is given by

J = sin θ3
E2

3E1

s

∣∣∣∣χE2p1z − χE1p2z −

2 cos(ϕ3) cos(θ3)E2p1xE3 sin(θ3) + 2 cos(ϕ3) cos(θ3)E1p2xE3 sin(θ3) −
2 cos(ϕ3)p1zp2xE3 sin(θ3) + 2 cos(ϕ3)p1xp2zE3 sin(θ3) −
2 cos(θ3)E2p1yE3 sin(ϕ3) sin(θ3) + 2 cos(θ3)E1p2yE3 sin(ϕ3) sin(θ3) −
2p1zp2yE3 sin(ϕ3) sin(θ3) + 2p1yp2zE3 sin(ϕ3) sin(θ3) +

2 cos(ϕ3)2E2p1zE3 sin(θ3)2 − 2 cos(ϕ3)2E1p2zE3 sin(θ3)2 +

2E2p1zE3 sin(ϕ3)2 sin(θ3)2 − 2E1p2zE3 sin(ϕ3)2 sin(θ3)2
∣∣∣∣−1

, (A.11)

with χ = 2p3.(p1 + p2)/E3 and s standing for the squared invariant mass of the
colliding hadrons.
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If we treat the variables E1 and α = 2p1.p3 as two independent parameters, the com-
ponents of the three momentum p1 of the missing particle and the energy E3 = |p3|
of the massless visible particle can be expressed as the solution of the following linear
system of four equations

(p1 + p2)2 = s12 (A.12a)

(p1 + p2 + p3)2 = s123 (A.12b)

p1x + E3 sin θ3 cosϕ3 = −pbranches
Tx (A.12c)

p1y + E3 sin θ3 sinϕ3 = −pbranches
Ty (A.12d)

that is parametrised by the momentum p2, by the angles θ3 and ϕ3, by the total trans-
verse momentum pbranches

T of all the branches represented, by the blobs in Figure A.3
and by the variables α and E1. The next step is to determine the values of the va-
riables α and E1. The mass-shell condition for the missing particle of momentum p1

and the equation 2p1.p3 = α defines a system of two coupled quadratic equations in
the variables E1 and α, parametrised by the momenta of the blocks. This system can
be solved analytically. There are up to four solutions for E1 and α. Each solution that
is physical (i.e., such that |p3| > 0, E1 > 0 and each of the Bjorken fractions q1, q2 is
between 0 and 1) corresponds to a distinct phase-space point at which the Jacobian in
Eq. (A.11) and the integrand must be evaluated.

A.1.4 FB D

The notation for the phase-space variables associated with this constrained sector is
given in Figure A.4. The momenta of the missing particles are denoted by p1 and p2,

q1

q2

. . .

. . .

s13

s256
s25

p1

p2

s134

p3p4

p6 p5

FIGURE A.4 – Notation for the kinematics of FB D.

the momenta of the branches connected to the main block are denoted by p3, p4, p5
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and p6. The Bjorken fractions are denoted by q1 and q2. The variables sij and sijk

refer to the invariants (pi + pj)2 and (pi + pj + pk)2, respectively. The standard
phase-space parametrisation associated with this main block reads

dq1dq2
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ4 (Pin − Pfin) . (A.13)

The four-vectors Pin and Pfin refer to the total momenta in the initial and final states,
respectively. In our procedure we apply a change of variables that leads to the follo-
wing parametrisation of the phase-space measure

1
16π2E1E2

ds13ds134ds25ds256 × J. (A.14)

The Jacobian J of this transformation is given by

J =
E1E2

8s

∣∣∣∣E3

{
E5

[
p34z(p1yp2zp56x − p1xp2zp56y

−p1yp2xp56z + p1xp2yp56z) + p1z(−p2zp34yp56x +

p2zp34xp56y − p2yp34xp56z + p2xp34yp56z)
]
+

(E56p2z − E2p56z)(p1zp34yp5x − p1yp34zp5x − p1zp34xp5y +

p1xp34zp5y) +
[
E56(p1zp2yp34x − p1zp2xp34y + p1yp2xp34z −

p1xp2yp34z) + E2(p1zp34yp56x − p1yp34zp56x − p1zp34xp56y +

p1xp34zp56y)
]
p5z

}
+ E34

{
E5p2z(p1zp3yp56x − p1yp3zp56x

−p1zp3xp56y + p1xp3zp56y) + E5(p1zp2yp3x − p1zp2xp3y

+p1yp2xp3z − p1xp2yp3z)p56z − (E56p2z − E2p56z)

(p1zp3yp5x − p1yp3zp5x − p1zp3xp5y + p1xp3zp5y)

−
[
E56(p1zp2yp3x − p1zp2xp3y + p1yp2xp3z − p1xp2yp3z) +

E2(p1zp3yp56x − p1yp3zp56x − p1zp3xp56y + p1xp3zp56y)
]
p5z

}
+

E1

{[
E5(p2z(−p34zp3yp56x + p34yp3zp56x +

p34zp3xp56y − p34xp3zp56y) +

(−p2yp34zp3x + p2xp34zp3y + p2yp34xp3z − p2xp34yp3z)p56z

]
+[

E56p2z − E2p56z)(p34zp3yp5x − p34yp3zp5x − p34zp3xp5y +

p34xp3zp5y) + (E56(p2yp34zp3x − p2xp34zp3y − p2yp34xp3z +

p2xp34yp3z) + E2(p34zp3yp56x − p34yp3zp56x − p34zp3xp56y +

p34xp3zp56y)
]
p5z

}∣∣∣∣−1

, (A.15)

where Eij = Ei + Ej , pij = pi + pj , and s is the squared invariant mass of the
colliding hadrons in their centre-of-mass frame. If we treat the variables E1 and E2
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as independent parameters, then the components of the three momenta p1,p2 of the
missing particles can be expressed as the solution of the following linear system of six
equations

(p1 + p3)2 = s13, (A.16a)

(p1 + p3 + p4)2 = s134, (A.16b)

(p2 + p5)2 = s25, (A.16c)

(p2 + p5 + p6)2 = s256, (A.16d)

p1x + p2x = −pbranches
Tx , (A.16e)

p1y + p2y = −pbranches
Ty , (A.16f)

that is parametrised by the momenta p3, . . . , p6 of the branches connected to the main
block, by the total transverse momentum pbranches

T of all the branches represented by
the blobs in Figure A.4 and by the variables E1 and E2. The next step is to determine
the values of the variables E1 and E2. The mass-shell conditions for the two missing
particles of momentum p1 and p2 define a system of two coupled quadratic equations
in the variables E1 and E2, that can be solved analytically. There are up to four solu-
tions for E1 and E2. Each solution that is physical (i.e., such that E2 > 0, E1 > 0
and each of the Bjorken fractions q1, q2 is between 0 and 1) corresponds to a dis-
tinct phase-space point at which the Jacobian in Eq. (A.15) and the integrand must be
evaluated.

A.1.5 FB E

The notation for the phase-space variables associated with this main blob is given
in Figure A.5. The momenta of the missing particles are denoted by p1 and p2, the

. . .

. . .

s13

ŝ

s24

p1

p2

p3

p4

FIGURE A.5 – Notation for the kinematics of FB E.



104 Chapitre A. Changes of Variables

momenta of the branches directly connected to these missing particles are denoted by
p3 and p4. The Bjorken fractions are denoted by q1 and q2. The variables sij refer
to the invariants (pi + pj)2 and ŝ denotes the squared invariant mass of the colliding
partons. The standard phase-space parametrisation associated with this FB reads

dq1dq2
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ4 (Pin − Pfin) . (A.17)

The four-vectors Pin and Pfin refer to the total momenta in the initial and final states,
respectively. In our procedure we apply a change of variables that leads to the follo-
wing parametrisation of the phase-space measure

1
16π2E1E2

dydŝds13ds24 × J, (A.18)

where y is the rapidity of the colliding partons in the laboratory frame. The Jacobian
J of this transformation is given by

J =
E1E2

4s

∣∣∣∣E4(p1zp2yp3x − p1yp2zp3x − p1zp2xp3y + p1xp2zp3y +

p1yp2xp3z − p1xp2yp3z) + E2p1zp3yp4x − E1p2zp3yp4x −
E2p1yp3zp4x + E1p2yp3zp4x − E2p1zp3xp4y + E1p2zp3xp4y +

E2p1xp3zp4y − E1p2xp3zp4y + (E2p1yp3x + −E1p2yp3x −
E2p1xp3y + E1p2xp3y)p4z + E3(−p1zp2yp4x + p1yp2zp4x +

p1zp2xp4y − p1xp2zp4y − p1yp2xp4z + p1xp2yp4z)
∣∣∣∣−1

. (A.19)

If we treat the variables E1, E2 and p2y as independent parameters, the other compo-
nents of the momenta p1, p2 of the missing particles can be expressed as the solution
of the following linear system of five equations

(p1 + p3)2 = s13, (A.20a)

(p2 + p4)2 = s24, (A.20b)

p1x + p2x = −pbranches
x , (A.20c)

p1y + p2y = −pbranches
y , (A.20d)

p1z + p2z = sinh(y)ŝ1/2 − pbranches
z , (A.20e)

that is parametrised by the momenta of the branches p3 and p4, by the total momentum
pbranches of all the branches represented by the blobs in Figure A.5, by the rapidity y
and the invariant mass ŝ1/2 of the colliding partons and by the variables E1, E2 and
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p2y . The next step is to fix the value of the variables E1, E2 and p2y. The variable E1

can be expressed as a linear function of E2 :

E1 = cosh(y)ŝ1/2 − Ebranches − E2. (A.21)

Then the mass-shell conditions for the two missing particles define a system of two
coupled quadratic equations in the variablesE2 and p2y . In this case, the quartic terms
of the two equations have the same coefficients, and the system reduces to a linear
equation and a quadratic equation. There are up to two solutions for E2 and p2y .
Each solution that is physical (i.e., such that E2 > 0, E1 > 0) corresponds to a
distinct phase-space point at which the Jacobian in Eq. (A.19) and the integrand must
be evaluated.

A.1.6 FB F

The notation for the phase-space variables associated with this constrained sector is
given in Figure A.6. The momenta of the missing particles are denoted by p1 and p2,

. . .

. . .

s13

s24

p1

p2

p3

p4

FIGURE A.6 – Notation for the kinematics of FB F.

the momenta of the branches directly connected to these missing particles are denoted
by p3 and p4. The Bjorken fractions are denoted by q1 and q2. The variables sij refer
to the invariants (pi +pj)2. The standard phase-space parametrisation associated with
this main block reads

dq1dq2
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ4 (Pin − Pfin) . (A.22)

The four-vectors Pin and Pfin refer to the total momenta in the initial and final states,
respectively. In our procedure we apply a change of variables that leads to the follo-
wing parametrisation of the phase-space measure

1
16π2E1E2

dq1dq2ds13ds24 × J. (A.23)
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The Jacobian J of this transformation is given by

J =
E1E2

4

∣∣∣∣E4(p1zp2yp3x − p1yp2zp3x − p1zp2xp3y + p1xp2zp3y +

p1yp2xp3z − p1xp2yp3z) + E2p1zp3yp4x − E1p2zp3yp4x −
E2p1yp3zp4x + E1p2yp3zp4x − E2p1zp3xp4y + E1p2zp3xp4y +

E2p1xp3zp4y − E1p2xp3zp4y + (E2p1yp3x − E1p2yp3x

−E2p1xp3y + E1p2xp3y)p4z + E3(−p1zp2yp4x + p1yp2zp4x +

p1zp2xp4y − p1xp2zp4y − p1yp2xp4z + p1xp2yp4z)
∣∣∣∣−1

. (A.24)

If we treat the variables E1, E2 and p2y as independent parameters, the other compo-
nents of the momenta p1, p2 of the missing particles can be expressed as the solution
of the following linear system of five equations,

(p1 + p3)2 = s13, (A.25a)

(p2 + p4)2 = s24, (A.25b)

p1x + p2x = −pbranches
x , (A.25c)

p1y + p2y = −pbranches
y , (A.25d)

p1z + p2z = s1/2(q1 − q2)/2 − pbranches
z , (A.25e)

that is parametrised by the momenta p3 and p4, by the total momentum pbranches of all
the branches represented by the blobs in Figure A.6, by the Bjorken fractions q1, q2
and by the variables E1, E2 and p2y. The next step is to fix the values of the variables
E1, E2 and p2y . The variable E1 can be expressed as a linear function of E2 :

E1 = s1/2(q1 + q2)/2 − Ebranches − E2. (A.26)

The mass-shell conditions for the two missing particles with momenta p1 and p2 define
a system of two coupled quadratic equations in the variables E2 and p2y . In this case,
the quartic terms of the two equations have the same coefficients, and the system
reduces to a linear equation and a quadratic equation. There are up to two solutions
for E2 and p2y . Each solution that is physical (i.e., such that E2 > 0, E1 > 0)
corresponds to a distinct phase-space point at which the Jacobian in Eq. (A.24) and
the integrand must be evaluated.
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A.2 Phase-space measure associated with the
secondary blocks

A.2.1 PB A

The notation for the phase-space variables associated with this secondary block is
given in Figure A.7. The momentum of the missing particle is denoted by p1, the

p1

s12s123s1234

p2p3p4

FIGURE A.7 – Notation for the kinematics of PB A.

momenta of the three branches connected to the block are denoted by p2, p3 and p4.
The variables s12, s123 and s1234 refer to the invariants (p1 + p2)2, (p1 + p2 + p3)2,
and (p1 + p2 + p3 + p4)2, respectively. The standard phase-space parametrisation
associated with this block reads

d3p1

(2π)32E1
. (A.27)

In our procedure we apply a change of variables that leads to the following parametri-
sation of the phase-space measure

1
(2π)32E1

ds12ds123ds1234 × J. (A.28)

The Jacobian J of this transformation is given by

J =
E1

8

∣∣∣E4(p1zp2yp3x − p1yp2zp3x − p1zp2xp3y + p1xp2zp3y +

p1yp2xp3z − p1xp2yp3z) + E2p1zp3yp4x − E1p2zp3yp4x −
E2p1yp3zp4x + E1p2yp3zp4x − E2p1zp3xp4y + E1p2zp3xp4y +

E2p1xp3zp4y − E1p2xp3zp4y + (E2p1yp3x − E1p2yp3x −
E2p1xp3y + E1p2xp3y)p4z + E3(−p1zp2yp4x + p1yp2zp4x

+p1zp2xp4y − p1xp2zp4y − p1yp2xp4z + p1xp2yp4z)
∣∣∣−1

. (A.29)
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If we treat the variable E1 as an independent parameter, the components of the three-
momentum p1 of the missing particle can be expressed as the solution of the following
linear system of three equations

(p1 + p2)2 = s12, (A.30a)

(p1 + p2 + p3)2 = s123, (A.30b)

(p1 + p2 + p3 + p4)2 = s1234, (A.30c)

that is parametrised by the momenta p2 ,p3, p4 of the branches connected to the block,
and by the variable E1. The next step is to fix the value of the variable E1. The mass-
shell condition for the missing particle with momentum p1 defines a quadratic equa-
tion in the variable E1. There are up to two solutions for E1. Each solution that is
physical (i.e., such that E1 > 0) corresponds to a distinct phase-space point at which
the Jacobian in Eq. (A.29) and the integrand must be evaluated.

A.2.2 PB B

The notation for the phase-space variables associated with this secondary block is
given in Figure A.8. The momentum of the missing particle is denoted by p1, the

p1

s12s123

p2p3

FIGURE A.8 – Notation for the kinematics of PB B.

momenta of the two branches connected to the block are denoted by p2 and p3. The
variables s12 and s123 refer to the invariants (p1 + p2)2, and (p1 + p2 + p3)2, res-
pectively. The standard phase-space parametrisation associated with this block reads

d3p1

(2π)32E1
. (A.31)

In our procedure we apply a change of variables that leads to the following parametri-
sation of the phase-space measure

1
(2π)32E1

dϕ1ds12ds123 × J, (A.32)
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where ϕi denotes the azimuthal angle of particle i. The Jacobian J of this transforma-
tion is given by

J =
E1

4
p1T

∣∣∣− cos(ϕ1 − ϕ2)E3p2T p1z + cos(ϕ1 − ϕ3)E2p3T p1z + E3p1T p2z

− cos(ϕ1 − ϕ3)E1p3T p2z − E2p1T p3z + cos(ϕ1 − ϕ2)E1p2T p3z

∣∣∣−1

.(A.33)

If we treat the variable E1 as an independent parameter, the transverse momentum
p1T and the momentum component p1z of the missing particle can be expressed as the
solution of the following linear system of two equations

(p1 + p2)2 = s12, (A.34a)

(p1 + p2 + p3)2 = s123, (A.34b)

that is parametrised by the momenta p2 and p3 of the branches connected to the block,
by the azimuthal angle ϕ1 and by the variable E1. The next step is to fix the value of
the variable E1. The mass-shell condition for the missing particle with momentum p1

defines a quadratic equation in the variable E1. There are up to two solutions for E1.
Each solution that is physical (i.e., such that E1 > 0) corresponds to a distinct phase-
space point at which the Jacobian in Eq. (A.33) and the integrand must be evaluated.

A.2.3 PB C/D

The notation for the phase-space variables associated with this secondary block is
given in Figure A.9. The momentum of the missing particle is denoted by p1, the

|p1|

s12

p2

FIGURE A.9 – Notation for the kinematics of PB C/D.

momentum of the branch connected to the block is denoted by p2. The variable s12
refers to the invariant (p1+p2)2. The standard phase-space parametrisation associated
with this block reads

d3p1

(2π)32E1
. (A.35)
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In our procedure we apply a change of variables that leads to the following parametri-
sation of the phase-space measure

1
(2π)32E1

dϕ1dθ1ds12 × J, (A.36)

where θ1 and ϕ1 denote the polar and azimuthal angles of the missing particle. The
Jacobian J of this transformation is given by

J =
E1

2
sin θ1|p1|2

∣∣∣∣|p1|E2 − E1p̂1.p2

∣∣∣∣−1

. (A.37)

If we treat the variable E1 as an independent parameter, the momentum modulus |p1|
of the missing particle can be expressed as the solution of the following linear equation

(p1 + p2)2 = s12, (A.38)

that is parametrised by the momentum p2 of the branch connected to the block, by
the polar and azimuthal angles θ1, ϕ1, and by the variable E1. The next step is to fix
the value of the variable E1. The mass-shell condition for the missing particle with
momentum p1 defines a quadratic equation in the variable E1. There are up to two
solutions for E1. Each solution that is physical (i.e., such that E1 > 0) corresponds
to a distinct phase-space point at which the Jacobian in Eq. (A.37) and the integrand
must be evaluated.

A.2.4 PB E

The notation for the phase-space variables associated with this secondary block is
given in Figure A.10. The momenta of the visible particles are denoted by p1 and p2,

p1

p2

s12s123

p3

FIGURE A.10 – Notation of the kinematics for PB E.

the momentum of the branch connected to the block is denoted by p3. The variables
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s12 and s123 refer to the invariants (p1 + p2)2, and (p1 + p2 + p3)2. The standard
phase-space parametrisation associated with this block reads

d3p1

(2π)32E1

d3p2

(2π)32E2
. (A.39)

In our procedure we apply a change of variables that leads to the following parametri-
sation of the phase-space measure

1
(2π)64E1E2

dθ1dϕ1dθ2dϕ2ds12ds123 × J, (A.40)

where θi and ϕi denote the polar and azimuthal angles of particle i. The Jacobian J of
this transformation is given by

J =
E2

2

4
|p1|2 sin θ1 sin θ2

∣∣∣(|p1||p2|/E1 − |p2|f12)(E3 − |p3|f23)

−(E3|p1|/E1 − |p3|f13)(E1 − f12|p1|)
∣∣∣−1

. (A.41)

where fij stands for pi.pj/|pi||pj |. The values for the momenta |p1| and |p2| can be
obtained by solving the following linear system of equations

(p1 + p2)2 = s12, (A.42a)

(p1 + p2 + p3)2 = s123. (A.42b)

By subtracting Eq. (A.42b) from Eq. (A.42a), we obtain an expression for E1 that is
a first order polynomial in |p1| and |p2|. Inserting this expression into Eq. (A.42a)
and into the equation defining the mass-shell condition for the particle of momentum
p1, we obtain a system of two quadratic equations in |p1| and |p2| parametrised by
the momentum p3, by the invariants s12, s123 and by the angles θ1, θ2, ϕ1 and ϕ2.
This system can be solved analytically. There are up to four solutions for the modulus
|p1| and |p2|. Each solution that is physical (i.e., such that |p1| > 0 and |p2| > 0)
corresponds to a distinct phase-space point at which the Jacobian in Eq. (A.41) and
the integrand must be evaluated.
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AnnexeB
Monte-Carlo and statistics
associated to marginal
distribution

“You cannot feed the hungry on statis-
tics.”

Heinrich Heine

This Appendux will focus on technical details associated to the Differential Matrix
Element Method described in Section 4.5. We will focus our attention on two different
points. First we will present how to evaluate marginal distributions. Then we will
present how we quantify the agreement between two distributions.

B.1 marginal distributions

Mathematically, the marginal distribution of a function P(pvis) by a function Z(pvis)
is defined as :

∂P(pvis)
∂Z(pvis)

. (B.1)
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For the weight defined in the MEM (Eq. 2.3) this corresponds to the following rela-
tion :

∂P(pvis)
∂Z(pvis)

∣∣∣
Z∗

=
1
σ

∫
dΦdx1dx2f1(x1)f2(x2)|M(p)|2W (p,pvis)δ(Z(pvis)−Z∗).

(B.2)

Computing this integral for a given value of Z∗ is quite complex, since the presence of
an additional δ functions requires a dedicated phase-space generator. In order to gain
in efficiency, we will rather estimate the marginal distribution on a “small” interval :

∫ Zi+1

Zi

dZ∗ ∂P(pvis)
∂Z(pvis)

∣∣∣
Z∗

=

1
σ

∫
dΦdx1dx2f1(x1)f2(x2)|M(p)|2W (p,pvis)χ(Z(pvis), Zi, Zi+1),

where χ(Z(pvis), Zi, Zi+1) is the characteristic function which is different from zero
if Zi < Z(pvis) < Zi+1. Since P(pvis) can be evaluated efficiently thanks to a
specific phase-space mapping (See Chap. 3), we can expect that the same mapping
will work for all the intervals. In order to avoid computational cost of having to reject
Monte-Carlo points if they are not in the interval of interest, we will compute all
the marginal contributions in a row –when computing the event’s weight. Each time
we generate a Monte-Carlo point –in order to evaluate P–, we calculate the value
associated to the variable Z(pvis) and update the estimator of the integral associated
to that given bin. With such a method, the precision on all bins should be achieved as
long as the bin contributes significantly to the value of P(pvis).

B.2 Correlation matrix and chi-square

After having evaluated differential cross sections, with the sum of the different mar-
ginal distributions, the question is to know if the observed differential cross section
is compatible with the expected one. In order to quantify the agreement between this
histogram and the expected value, we use a chi-squared variable. Since each event
contributes to different bins, all bins are correlated to each other. In consequence the
formula needed for the chi-squared variable is

χ2 =
∑
i,j

(xi − x̄i)
σi

C−1
i,j

(xj − x̄j)
σj

, (B.3)

with C is the correlation matrix, xi the value in the bin i, x̄i the expected value in bin i
and σi the variance of the bin i. In practice, this estimator requires a minimal number
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of entry by bin [106]. In consequence, we consider the bin only if the entries in the
bin is larger than 15.

The estimator of quantity present in Eq. (B.3) is obtained by repeating the method on
NS different samples corresponding to the same luminosity. If we note xa

i the value
in the bin i for the ath sample the estimator reads

x̄i =
1
NS

NS∑
a=1

xa
i , (B.4)

σi =
1
NS

NS∑
a=1

(xa
i − x̄i)2, (B.5)

Ci,j =
1

NSσiσj

NS∑
a=1

(xa
i − x̄i) ∗ (xa

j − x̄j). (B.6)

Note that by construction Ci,j is independent of the total luminosity of the samples.
We checked that choosing a luminosity corresponding to one event, on average, in
each sample provides the most accurate estimation.

Fig. B.1 presents the two correlation matrices used for the computation of the chi-
squared variable in Sec. 4.5 corresponding respectively to the tt̄ invariant mass and to
the top diffusion angle in the tt̄ rest frame.
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(a)

(b)

FIGURE B.1 – Correlation Matrix for Mtt, cos(θ∗tt̄) associated to the MKF method for
top-quark pair production. The first graph (a) is the correlation matrix for the tt̄ inva-
riant mass, while the second (b) is the top diffusion angle in the tt̄ rest frame. These
matrices are evaluated with 100.000 Standard Model “detector like” events passing
the selection cuts.
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