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Abstract

The Standard Model of fundamental particles and their interactions is one of the most
successful theories in physics. In particular, up to the weak scale (a few hundreds of
GeV) it agrees to a great degree with a large set of experimental data. However, there
are several theoretical reasons, such as the so-called “Hierarchy Problem”, as well as
experimental ones, such as the neutrino masses and the evidence for dark matter in the
Universe, to expect that something new (particles and/or interactions) could lie at TeV
scale. Hints and/or answer(s) to these fundamental questions will be provided by the
Large Hadron Collider (LHC), a proton-proton collider running at high energies.

The present thesis aims to explore new physics at the LHC through phenomenologi-
cal studies that employ simulations and computational tools to directly link theories
with experimental data. In particular, the focus is on Beyond Standard Model theo-
ries that can incorporate a quantum description of gravity, such as extra dimensional
theories, Supersymmetry and yet a simplified model where the constant of Newton
is scale dependent. Phenomenological analyses are performed in which graviton and
gravitino emission in combination with multiple jets are investigated at hadron collid-
ers. Inclusive samples are generated by merging matrix element with parton shower
descriptions, and validated by a comparison against next-to-leading order QCD calcu-
lations. Predictions for relevant observables at the LHC and Tevatron are obtained.
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Résumé

Le Modèle Standard des particules élémentaires et des interactions fondamentales
constitue une des théories les plus fructueuses en physique. En particulier, jusqu’à
l’échelle éléctrofaible (quelques centaines de GeV), cette théorie est en excellent
accord avec un grand nombre de résultats expérimentaux. Cependant, plusieurs raisons
théoriques et expérimentales telles que le problème de la hiérarchie, celui de la masse
des neutrinos ou de la matière noire laissent entrevoir de possibles extensions (parti-
cules et/ou interactions) à l’échelle du TeV. Des pistes pour répondre à ces questions
fondamentales seront fournies par le Large Hadron Collider (LHC), un collisionneur
proton-proton fonctionnant aux hautes énergies.

La présente thèse a pour objectif l’exploration de “nouvelle physique” au LHC sur
base de simulations et d’outils informatiques permettant de relier directement la théorie
aux données expérimentales. Dans ce cadre, un intérêt particulier est porté aux théories
au-delà du Modèle Standard pouvant inclure une description quantique de la gravité,
telles que des modèles avec des dimensions supplémentaires, la Supersymétrie, ou en-
core un modèle simplifié où la constante de Newton dépend de l’échelle. Des analyses
phénoménologiques sont réalisées, dans lesquelles des processus d’émission de gravi-
tons et de gravitinos accompagnés de jets multiples sont étudiés dans les collisionneurs
hadroniques. Des échantillons inclusifs d’événements sont obtenus en combinant les
descriptions selon l’élément de matrice et selon la gerbe partonique. Ils sont validés
par la confrontation aux calculs à l’ordre suivant en théorie de perturbation de QCD.
Des prédictions pour des observables appropriées au LHC et au Tevatron sont ainsi
obtenues.
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Samenvatting

Het standaard model van de fundamentele deeltjes en hun interacties is één van de
meest succesvolle theorieën in de fysica. Meer bepaald, tot op de zwakke schaal (een
paar honderd GeV) komt het met grote nauwkeurigheid overeen met een groot deel
van de experimentele data. Maar er zijn enkele theoretische redenen, zoals het zo-
genaamde “Hierarchie Probleem”, en ook experimentele redenen zoals de neutrino
massa’s en het bewijs voor donkere materie in het universum, om ook te verwachten
dat iets nieuws (deeltjes en/of interacties) kan opduiken rond de TeV-schaal. Hints
en/of antwoorden voor deze fundamentele vragen worden geleverd door de Large
Hadron Collider (LHC), een proton-proton deeltjesversneller die op hoge energieën
werkt.

Deze thesis heeft als doel de verkenning van nieuwe fysica aan de LHC, door fenome-
nologische studies die simulatie en computationele technieken gebruiken om theorie
en experimentele data met elkaar te verbinden. In het bijzonder, ligt de focus op
“Beyond Standard Model” theorieën die een kwantum beschrijving van gravitatie be-
vatten, zoals extra dimensionele theorieën, Supersymmetrie en ook nog een vereen-
voudigd model waarin de constante van Newton schaalafhankelijk is. Fenomenolo-
gische analyses worden uitgevoerd, waarin graviton en gravitino emissie in combi-
natie met meervoudige jets worden onderzocht in hadron versnellers. Veelomvattende
samples worden gegenereerd door het samenvoegen van matrix elementen met par-
ton stortregen beschrijvingen, en gevalideerd door een vergelijking met op-één-na-
toonaangevende orde QCD-berekeningen. Voorspellingen voor relevante observabe-
len aan de LHC en Tevatron worden bekomen.
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Chapter1
Introduction

The Standard Model (SM) of fundamental particles and their interactions is one of the
most successful theories in physics. It provides an astonishingly accurate description
of phenomena in a wide range of scales. In particular, up to the weak scale (a few
hundreds of GeV) it agrees to a great degree with the experimental data collected, also
predicting the existence of a new scalar state, the Higgs particle, which, however, has
so far eluded all searches1.

There are several theoretical reasons, such as the so-called “Hierarchy Problem” and
the “fermion mass hierarchy”, as well as experimental ones, such as the neutrino
masses and the evidence for dark matter in the Universe, to expect that “new physics”
could lie at the TeV scale. Hints and/or answer(s) to these fundamental questions are
expected to be provided very soon by the Large Hadron Collider (LHC), a proton-
proton collider running at high-energies.

In particular, the search for a quantum field theory aiming at unifying gravity with the
other three known forces of nature (electromagnetic, weak and strong forces) has been
the main subject of several researches for many years. If the SM is not the complete
picture, it may be possible to construct effective theories that incorporate gravity as
a field theory. Higher dimensional theories have been an attempt of such scenarios
since the beginning of the 20th century, when it was realized that the 5-dimensional
generalization of the theory proposed by Einstein could describe both gravitational and
electromagnetic interactions. However, because of the weak characteristic of gravity,
inconsistencies arose when the mathematical theory was formulated. Such theories
were therefore left aside until the appearance of the theories of Supergravity and Su-
perstrings in the early 1970’s.

More recent ideas using extra-dimensions have been proposed in the context of min-
imal extensions of the SM. These theories are created to address SM limitations, and

1The most recent results from the LHC and Tevatron experiments provide, however, the first experimen-
tal indications of its existence.
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4 Chapter 1. Introduction

have a particular behaviour at high-energies. They however maintain all the low-
energy features of the SM. The philosophy of such extra-dimensional theories lies
in the idea that the SM is a 4-dimensional projection of a theory living in higher-
dimensional space-time. Different scenarios have been built with such principles. We
can cite for instance theories with large extra dimensions [1, 2, 3], and theories with
warped extra dimensions [4, 5].

Furthermore, there are different extensions to the theory that are based on more effec-
tive approaches to include gravity. For example, general descriptions of 4-dimensional
theories can account for gravitational interactions with SM particles through the exis-
tence of new particles living in a hidden sector [6, 7, 8, 9, 10, 11].

In addition, further extensions can be cited, such as Supersymmetry, which is based on
symmetry principles rather than on extra-dimensions. Supersymmetric theories start
from the assumption that there must exist an extra symmetry that transforms fermions
into bosons, and vice-versa. As a consequence, all particles of the SM must have
super-partners, i.e. particles that differ from SM particles by half a spin. Variations of
such theories can predict, for example, the existence of the graviton particle, a hypo-
thetical spin-2 particle that mediates the force of gravitation, and its super-partner, the
spin-3/2 particle named gravitino.

The observation of new fundamental particles at hadron colliders can therefore be
one indication of the existence of Beyond Standard Model (BSM) theories. Typically,
each new physics model has its own characteristic predictions. Yet, it is often the case
that very different theories might lead to similar signatures at colliders. This is the
case, for example, with models that predict the existence of a dark matter candidate,
weakly interacting, whose emission would just generate missing transverse energy in
energetic multi-jet events. Gravitinos and neutralinos, predicted by supersymmetric
theories, or gravitons, in specific variations of extra-dimensional models, are just a
few examples of particles and models giving possibly equivalent signatures at the
LHC.

With the LHC running, and a high luminosity being achieved, chances are that new
physics will be emerging soon. However, the fact that so far no new particle has been
detected, implies that more careful, accurate and dedicated studies will be needed.
If evidence for new physics will emerge, it will be urgent yet certainly not trivial to
understand its nature and to clearly identify it. The typical final states produced at
the LHC involve a large number of jets, heavy-flavour quarks, missing energy and
leptons. Therefore, such an overwhelming number of possible signs of new physics
need a very careful understanding of the detector as well as an accurate modelling of
the data themselves.
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For this reason, precise simulation and computational tools play a key role in the
current analyses. They have become indispensable in the effort of connecting theory
with experimental data sets.

The possibility of automatically obtaining predictions at colliders from any BSM the-
ory shows substantial progress. With such, it is possible to test and validate theories
before an experimental analysis is performed. Tests and validations account for the
specifications of the experiment and are very time consuming. This step already con-
siderably reduces the number of theories suitable for correctly describing experimental
data once these are at our disposal.

Until a few years ago, such possibility was not available. The implementation of com-
plex BSM models in existing general purpose event generators was often a process
susceptible to several calculation errors. That was because the derivation of Feyn-
man rules to describe new interactions and their implementation into event generators
depended on several aspects, going from convention definitions to computational dif-
ficulty. This situation has dramatically changed with the introduction of new simula-
tion tools that can automatically link arbitrary lagrangians to a particular Monte-Carlo
event generation that can be chosen by the user. Moreover, the development of sev-
eral alternative simulation techniques (such as the merging procedure employed to
match simulations performed by matrix element event generators with those obtained
from the use of parton shower description) have substantially improved the precision
of predictions at high energy hadron colliders. The evolution of such tools now pro-
vides a user-friendly manner to simulate BSM theories, and does not require a deep
knowledge and/or strong computer skills to be applied.

The work presented in this thesis aims at performing phenomenological investigations
at the LHC particularly focused on theories that incorporate gravity by means of a
set of simulation tools and techniques developed for this purpose. We demonstrate
how it is possible to perform complete phenomenological investigations that cover all
the steps to link any theory with experiments. Furthermore, we explicitly show the
particular efforts we have made for the development of automatic tools. As a natural
step, we make use of such tools and design search strategies that can be applied in
different studies, including those at a more experimental level.

This thesis is divided in five main chapters. In the following chapter, we present an
introduction to the Standard Model and why extensions thereof are considered. In
Chapter 3, gravitation as a quantum field theory is introduced as well as BSM theo-
ries that include the graviton particle. Theories with extra-dimensions and a particular
theory, in which Newton’s constant vary according to the effective scale of the theory,
are considered. The Large Hadron Collider is introduced in Chapter 4, together with
simulation techniques that will be employed through the present study. In Chapter
5, we present the main phenomenological analyses for graviton production at hadron
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colliders. We consider the emission of one graviton in combination with jets. Finally,
in Chapter 6, we introduce Supersymmetry and perform phenomenological investiga-
tions. Despite the large number of new particles predicted within this theory, we focus
on the production of gravitino in combination with jets. Similar techniques to those
applied for graviton production analyses are employed for the gravitino. We conclude
with a complete comparison of all the results obtained, and an outlook.

The work presented in this thesis is based on the following publications:

• X. Calmet and P. de Aquino,
Quantum Gravity at the LHC,
Eur. Phys. J. C 68, 305-311 (2010) [arXiv: 0906.0363]

• X. Calmet, P. de Aquino and T. G. Rizzo,
Massless versus Kaluza-Klein Gravitons at the LHC,
Phys. Lett. B 682, 446-449 (2010) [arXiv: 0910.1535]

• N. D. Christensen, P. de Aquino, C. Degrande, C. Duhr, B. Fuks,
M. Herquet, F. Maltoni and S. Schumann,
A comprehensive approach to new physics simulations,
Eur. Phys. J. C 71, 1541 (2011) [arXiv: 0906.2474]

• P. de Aquino, K. Hagiwara, Q. Li and F. Maltoni,
Simulating graviton production at hadron colliders,
JHEP 1106 132 (2011) [arXiv: 1101.5499]

• P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer
ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman diagram
computations.
accepted for publication in Comp. Phys. Comm. (2012)
[arXiv: 1108.2041]

The discussion of Chapter 6 is on-going work and it has not yet been submitted for
publication:

• P. de Aquino, F. Maltoni, K. Mawatari, B. Oexl
Jets plus missing energy in light gravitino production at the LHC.
in preparation (2012).

http://dx.doi.org/10.1140/epjc/s10052-010-1340-4
http://dx.doi.org/10.1016/j.physletb.2009.11.045
http://dx.doi.org/10.1140/epjc/s10052-011-1541-5
http://dx.doi.org/10.1007/JHEP06(2011)132


Chapter2
The Standard Model

The Standard Model (SM) is a successful description of particle physics nowadays. It
is a quantum field theory that explains the dynamics of our universe through matter
and forces. It incorporates three fundamental forces: the weak, the strong and the
electromagnetic forces, and includes different types of particles.

Mainly, the SM states that all the matter is composed by fermionic fields interacting
among each other via vector fields. In order to understand the field content of the SM,
it is necessary to begin with the definition of the symmetry group.

2.1 Symmetries, gauge theory and particle con-
tent

Symmetries have always played an important role in physics. The creation of the SM
has not followed a different path: it is a theory based on a local symmetry.

The first theorem of Noether assures that any differentiable symmetry of the action of
a physical system leads to a corresponding conservation law [12]. Any conservation
law of physics can be interpreted as resulting from the symmetries of a particular
theory.

One example is the theory of Quantum Electrodynamics (or, QED). The invariance
under local transformation implies the existence of gauge fields with specific proper-
ties. To demonstrate such remarkable consequence, let us begin by considering a free
theory of fermions. The free lagrangian can be written as

L = ψ̄(iγµ∂µ −m)ψ, (2.1)

with ψ being the spin-1/2 field, ψ̄ = ψ†γ0, and γµ the Dirac matrices. The lagrangian
is invariant under a global gauge transformation ψ → e−iαψ, with α a constant phase,

7



8 Chapter 2. The Standard Model

which implies the conservation of the Dirac current jµ(x):

∂µj
µ = 0; jµ = ψ̄γµψ. (2.2)

However, Eq. (2.1) is not invariant under local gauge transformations, where now
α depends on the space-time coordinates, and suggests that the derivative should be
redefined as

∂µ → Dµ ≡ ∂µ + iqAµ. (2.3)

where Aµ is a vector field. The lagrangian (2.1) with the replacement ∂µ → Dµ is
now invariant under the following local transformations

ψ(x)→ ψ′(x) = e−iα(x)ψ(x), (2.4)

Aµ(x)→ Aµ ′ = Aµ(x) +
1
q
∂µα(x), (2.5)

and is finally given by

L = ψ̄ (iγµ∂µ −m)ψ − q ψ̄ γµAµ ψ. (2.6)

The second term has been derived from the imposition of local invariance. It describes
the interaction of the fermionic matter ψ already existent on the theory, with the gauge
field Aµ. Therefore, a theory that had in principle only matter fields, needs vector
fields to provide interactions amongst fermions.

One could thus generalize this principle for all interactions, i.e. generate interaction
terms for the weak, electromagnetic, strong (and later gravitational) forces through
specific symmetries imposed on the theory. This is basically the idea for constructing
the SM initially proposed by Glashow [13] and independently by Salam and Ward
[14], extended later by Weinberg [15] and Salam [16]. Of course the complexity is
larger than previously explained, since it works perfectly for abelian theories, however
the world is not only described by them. Before going ahead, it is worth reminding that
the SM of particle physics was created as a puzzle, and each piece was put together at
different moments of History.

Initially, the electroweak theory was developed, and the gauge group SU(2)L×U(1)Y
was used to relate electric charge with the isospin and the leptonic hypercharge of
a particle. Besides matter fields, four gauge bosons are included due to the gauge
symmetry: one triplet associated with the SU(2) group and one singlet associated to
the U(1). The corresponding lagrangian, restricted to the leptonic fields, is given by

L = L̄γµDµL+ ēRγµD
′
µeR −

1
4
Wµν iW i

µν −
1
4
BµνBµν (2.7)
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where the covariant derivatives are defined by

Dµ =∂µ + i
g

2
σiW i

µ + i
g′

2
Bµ, (2.8)

D′µ =∂µ + ig′Bµ,

and L is the isospin doublet that contains the left-handed neutrino and electron, eR
is the right-handed electron1, σi are the Pauli matrices, and g and g′ are the coupling
constants. W i

µν and Bµν are the field-strength tensors:

W i
µν =∂µW i

ν − ∂νW i
µ − gεijkW j

µW
k
ν (2.9)

Bµν =∂µBν − ∂νBµ.

The matter content of the world is not only formed by leptons but also by hadrons,
and it has been discovered that hadrons are composed by quarks. The symmetry that
relates the color charge in quarks is SU(3)c. The SM is consequently defined to
have SU(3)c × SU(2)L × U(1)Y as the gauged symmetry group. Each gauge boson
field is associated to the generator of the algebra of each group. Therefore, eight
coloured spin-1 particles associated to the SUc(3) gauge group exist and are also
known as gluons. In addition, there are still the four un-coloured particles, W i

µν and
Bµν quoted previously, that will mix to form the massive W± and Z0 gauge bosons
and the massless photon.

In a nutshell, the final particle content of the SM is summarized in Fig. 2.1 [17]. The
masses and most significant quantum numbers of each particle are stated in the figure.

One important piece of the SM, the scalar fields, has not yet been mentioned. It has
been stated that conservation laws are a consequence of imposed symmetries. The SM
theory is therefore based on gauge symmetries, and lagrangians are constructed from
the assumption of massless fields. The mechanism to generate mass to the particles
requires the existence of at least one scalar particle, the Brout-Englert-Higgs boson2.
This is the so-called BEH mechanism [18, 19, 20], which will be explained in what
follows.

1Right-handed neutrinos are not included in the theory.
2From the present moment on we shall abbreviate Brout-Englert-Higgs boson by Higgs boson, which is

the usual shortened form used in the literature.
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Figure 2.1: An illustration of the particle content of the Standard Model, excluding
scalar fields. This is an interpretation of the periodic table of elements adapted to
fundamental particle physics from [17].

2.2 The Brout-Englert-Higgs mechanism

It is known from Noether’s theorem that symmetries imply conservation laws. It is
a consequence of the invariance of both the lagrangian and the vacuum of a theory.
However, there could be a situation where the lagrangian is invariant under a symmetry
in which the vacuum is not. If such circumstance occurs, the symmetry is defined as
to be broken, or hidden.

Consider for instance a scalar field φ whose lagrangian is given by [21]:

Lφ =
1
2

(∂µφ)(∂µφ)− V (φ), with V (φ) =
1
2
µ2φ2 +

1
4
λφ4, (2.10)

where φ is real and λ > 0. The lagrangian is clearly invariant under the transforma-
tion φ → −φ. When the vacuum expected value (vev) is calculated, two separated
situations arise:

(a) If µ2 > 0, the vacuum is invariant under such symmetry,

〈φ〉0 ≡ 〈0|φ|0〉 = 0 (µ2 > 0). (2.11)

(b) However, if µ2 < 0:

〈φ〉0 = ±
√
−µ2

2λ
≡ ± v√

2
(µ2 < 0). (2.12)
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V( )!
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Figure 2.2: Potential V (φ) of Eq. (2.10) as a function of φ for the two situations
presented: (a) with µ2 > 0 and (b) for µ2 < 0. For case (a), the minimum is at φ0 = 0
and for case (b) φ0 = ±v, where the vacuum is degenerated.

The vacuum state in this case is degenerated, and it depends on the choice between
+v and −v.

Both situations are illustrated in Fig. 2.2. On the left side, the potential is shown as a
function φ for µ2 > 0. As Eq. (2.11) revealed, only one vev is obtained. However,
on the right, the plot of same potential is shown for the choice of µ2 < 0. Eq. (2.12)
exhibits a degenerate vacuum state, displayed by the two local minimums in Fig. 2.2
(b).

We could therefore choose one state, for instance 〈φ〉0 = +v, and re-define the field
in order for the vacuum to be at the origin:

ξ(x) ≡ φ(x)− 〈φ〉0 = φ(x)− v. (2.13)

Now 〈ξ〉0 = 0, and the lagrangian (2.10) becomes

Lξ =
1
2

(∂µξ)(∂µξ)− λv2ξ2 − λvξ3 − 1
4
λξ4. (2.14)

This is the lagrangian of a free scalar field ξ with mass term3 mξ =
√
−2µ2. The sym-

metry was therefore hidden behind the primary definition of the field. By redefining
the field φ it was possible to obtain the massive ξ. This concept is named spontaneous
symmetry breaking and it illustrates the main mechanism used to generate the mass of
fermionic and bosonic fields of the SM.

3Notice the mass is positive, since we are analysing the case where µ2 < 0.
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In the SM, it is necessary to define a doublet composed of two complex scalar fields.
Suppose the doublet φ can be defined in a Hermitian basis as [22, 23, 24]

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 − iφ2

φ3 − iφ4

)
(2.15)

The scalar lagrangian to be added to (2.7) will be similar to the one given in (2.10).
However, in order to maintain the gauge invariance under SU(2)L × U(1)Y , the co-
variant derivative (2.8) should be used:

LBEH = |Dµφ|2 − V (φ). (2.16)

In the new basis, the potential is

V (φ) =
1
2
µ2

(
4∑
i=1

φ2
i

)
+

1
4
λ

(
4∑
i=1

φ2
i

)2

. (2.17)

We can choose the position of the minimum as φ1 = φ2 = φ4 = 0 and φ3 = v, being
v the Higgs vev. A new field h can be defined to be a radial excitation around the vev.
The symmetry SU(2)L ×U(1)Y is broken to U(1)em if we choose the specific value
for the vev to be

√
−µ2/2λ. The field can thus be re-written as

φ =
1√
2

(
0

v + h

)
, (2.18)

The potential V (φ) of the lagrangian becomes

VBEH = −1
4
λv4 + λv2h2 + λvh3 +

1
4
λh4. (2.19)

The second term indicates the mass of the Higgs field, m2
h = 2v2λ. The third and the

forth terms, i.e. the terms related to h3 and h4, indicate self-couplings of the Higgs
boson.

The kinetic term of the lagrangian, |Dµφ|2 includes terms with the W i
µ and Bµ fields,

∣∣∣∣(ig2σiW i
µ + i

g′

2
Bµ

)
φ

∣∣∣∣2 =
(v + h)2

8
[
g2(W 1

µ)2 + g2(W 2
µ)2 + (−gW 3

µ + g′Bµ)2
]
.

(2.20)
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If four new vector fields are defined as:

Z0
µ =

1√
g2 + g′ 2

(
gW 3

µ − g′Bµ
)
, W±µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.21)

Aµ =
1√

g2 + g′ 2

(
g′W 3

µ + gBµ
)
,

Eq. (2.20) can be written in terms of the new fields.The boson masses can be identified
by the following terms of the lagrangian

m2
WW

+
µ W

−µ +
1
2
(
m2
ZZµZ

µ +m2
AAµA

µ
)
. (2.22)

With the above expression, it is straightforward to find the masses related to the Wµ,
Zµ and Aµ fields [22]:

mW =
v g

2
, mZ =

v

2

√
g2 + g′ 2 and mA = 0. (2.23)

Notice however that covariant derivatives can now be written in terms of the new
bosonic fields. Consequently, it is possible to re-write Eq. (2.8) in a more useful
format, in terms of the electromagnetic coupling, given by

ge =
g g′√
g2 + g′ 2

(2.24)

or in terms of the weak mixing angle,

ge = g sin θw, cos θw =
g√

g2 + g′ 2
, and sin θw =

g′√
g2 + g′ 2

. (2.25)

The mass of the W± and Z bosons are therefore related through the expression

mW = mZ cos θw. (2.26)

As a result, all effects ofW± andZ exchange processes (at tree level) can be exhibited
as a function of the ge, θw and mW parameters.

Finally, to find the value for the vev v we can replace the expression found for the
mass of the W± bosons in terms of the Fermi constant:

GF =
√

2
g2

8m2
W

=
√

2
2 v2

. (2.27)

Because the Fermi constant is experimentally known with a very good accuracy,GF =
1.16637(1) × 10−5 GeV−2 [25], the value for the Higgs vev can be deduced as v ∼
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246 GeV. This is the value where the SU(2)L × U(1)Y is broken. However, because
the parameter λ is not known, the mass of the Higgs boson cannot be predicted.

A similar mechanism is used to obtain the mass of the fermions. The invariant la-
grangian that should be added to (2.7) can be exhibited as

Lyuk = −λe L̄ φ eR − λd Q̄L φdR − λu Q̄L φ̃ uR + h.c. (2.28)

where QL is the isospin doublet that contains the left-handed up and down quarks, uR
and dR are the right-handed up and down quarks, φ̃ = iσ2φ

∗, and σ2 is one of the Pauli
matrices. After spontaneous symmetry breaking, the mass of the fermions (except
neutrinos) are generated as mf = λfv/2, and neutrinos continue to be massless. The
couplings λf are called Yukawa couplings [22], and are determined depending on the
experimental values of fermionic masses.

2.3 Experimental facts and Standard Model con-
straints

As it has been stated, the SM is one of the most tested theories in physics. It has
been experimentally investigated through different methods, and nowadays particle
colliders are used for such task.

The final missing piece is, with no doubt, the experimental observation of the scalar
sector of the SM through the Higgs particle. Very recent developments have been
made in order to limit and constrain the mass of the Higgs particle using data from the
Large Hadron Collider (LHC), the revolutionary proton-proton collider experiment
situated in Switzerland. At this stage, we limit ourselves to display the most advanced
SM results obtained from LHC data. A detailed description related to such collider
will be presented in Chapter 4.

The LHC has started colliding protons for physics analyses in 2009, breaking energy
records ever since. For more than a year starting in 2010, it has collided protons with
a center-of-mass energy of 7 TeV, achieving a considerably high sensitivity. For this
reason, many of the SM parameters have already been very precisely measured by the
LHC. A summary of the most recent values due to electroweak constraints can be,
for example,found in Reference [26]. As it has been stated, within the SM the only
missing aspect is now the Higgs boson mass. However, it has been further constrained
at the LHC by the end of 2011.

For a Higgs boson with a mass above 125 GeV, the search is dominated by bosonic
modes, where Higgs decays to W+W− and ZZ. For lower masses, the most impor-
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Fig. 2: Higgs branching ratios and their uncertainties for the low mass range (left) and for the full mass range

(right).
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Fig. 3: Higgs branching ratios for the differentH → 4l and H → 2l2# final states (left) and for H → 4q, H → 4f
and H→ 2q2l, 2ql#, 2q2# final states (right) and their uncertainties for the full mass range.

are correlated for MH > 500 GeV or small below, we only consider the simultaneous scaling of all
4-fermion partial widths. The thus obtained individual theoretical uncertainties for the branching ratios

are combined linearly to obtain the total theoretical uncertainties.

Finally, the total uncertainties are obtained by adding linearly the total parametric uncertainties

and the total theoretical uncertainties.

2.1.4 Results

In this section the results of the SM Higgs branching ratios, calculated according to the procedure de-

scribed above, are shown and discussed. Figure 2 shows the SMHiggs branching ratios in the low mass

range, 100 GeV < MH < 200 GeV, and in the “full” mass range, 100 GeV < MH < 1000 GeV, as
solid lines. The (coloured) bands around the lines show the respective uncertainties, estimated consid-

ering both the theoretical and the parametric uncertainty sources (as discussed in Section 2.1.3). More

detailed results on the decays H→WW and H → ZZ with the subsequent decay to 4f are presented in
Figures 3. The largest “visible” uncertainties are found for the channels H → !+!−, H → gg, H → cc,
and H→ tt, see below.

In the following we list the branching ratios for the Higgs two-body fermionic and bosonic final

states, together with their uncertainties, estimated as discussed in Section 2.1.3. Detailed results for four

representative Higgs-boson masses are given in Table 3. Here we show the BR, the PU separately for

8

Figure 2.3: Higgs branching ratio for contributing decay channels as a function of the
Higgs mass. These plots are made by the Higgs Working Group, extracted from [28].

tant channels are bb̄, ττ and γγ [27]. This is explicitly displayed on Fig. 2.3 extracted
from [28] that shows the Higgs branching ratio of each decay channel as a function of
its expected mass.

The largest decay mode of the SM Higss bosons is h → W+W−. If the Higgs
boson would have a mass between 160 GeV and 170 GeV, an excess would most
probably (95% of confidence level) have already been observed by the Tevatron,
proton-anti-proton hadron collider situated in the United States of America. Within
the W+W− channel, purely leptonic (h → W+W− → `ν`ν) and semi-leptonic
(h → W+W− → `νqq) decay modes are being searched at the LHC. The decay of
the Higgs boson to a pair of Z bosons has also been very attractive due to the pro-
duction of a very clean signal. If the Z boson would decay as Z → ``, h → ZZ

would produce 4` signature, which is very uncommon for the SM, leading to very
small background. The production of h → ZZ → ``qq and h → ZZ → ``qq are
also being analysed. At the low mass region, direct analyses of h → γγ, h → bb̄ and
h→ ττ are being taken care of by the collaborations of the LHC experiments.

Limits for the Higgs boson mass can therefore be set taking into account these analy-
ses. Fig. 2.4 shows CMS4 most recent results for the measurement of the rate σ/σSM
(95% of confidence level), which is the excluded Higgs production cross section di-
vided by the expected cross section based in the SM.

We can conclude from experimental analyses that the search for the Higgs boson might
be close to the end. We have now a very thin mass gap where the Higgs could fit in. It
is possible to notice from the right plot of Fig. 2.4 that an excess has been observed.

4CMS is one of the multi-purpose experiments of the LHC. More details will be given in Chapter 4.



16 Chapter 2. The Standard Model

)2Higgs boson mass (GeV/c
100 200 300 400 500 600

SM
σ/

σ
95

%
 C

L 
lim

it 
on

 

-110

1

10

Observed
σ 1±Expected 
σ 2±Expected 

LEP excluded
Tevatron excluded
CMS excluded

Observed
σ 1±Expected 
σ 2±Expected 

LEP excluded
Tevatron excluded
CMS excluded

-1 = 4.6-4.7 fbintCombined, L
 = 7 TeVsCMS Preliminary,  Observed

σ 1±Expected 
σ 2±Expected 

LEP excluded
Tevatron excluded
CMS excluded

-1 = 4.6-4.7 fbintCombined, L
 = 7 TeVsCMS Preliminary,  

)2Higgs boson mass (GeV/c
110 115 120 125 130 135 140 145 150 155 160

SM
σ/

σ
95

%
 C

L 
lim

it 
on

 

-110

1

10

Observed
σ 1±Expected 
σ 2±Expected 

LEP excluded
Tevatron excluded
CMS excluded

Observed
σ 1±Expected 
σ 2±Expected 

LEP excluded
Tevatron excluded
CMS excluded

-1 = 4.6-4.7 fbintCombined, L
 = 7 TeVsCMS Preliminary,  

Figure 2.4: The combined 95% CL upper limits for the signal σ/σSM as a function
of the Higgs boson mass. The dashed line is the median expected by the SM, the
yellow and green bands, surrounding the dashed line, are the regions with 1σ and
2σ expected in the absence of a signal. The solid line exhibits the signal observed.
The vertical green band is the exclusion gap imposed by LEP measurements, the blue
band excluded by the Tevatron and the orange bands are the mass range excluded by
the CMS collaboration on the present study. Both plots are extracted from [29].

However, it is yet very early to state whether it is related to the Higgs boson or it
is only statistical fluctuations. The fact that both collaborations observe an excess in
the same range for the mass of the Higgs, 120 GeV < MH < 130 GeV, it is a strong
indication, which however can only be confirmed with analyses performed for a higher
integrated luminosity.

We are living therefore in a historical moment for particle physics. If the Higgs is not
discovered by the LHC very soon, the SM will not have a mechanism to explain the
generation of mass for fermions and bosons. Fortunately, it has been shown that the
LHC has strong indicators for a low mass Higgs boson of approximately 126 GeV.
For the moment, only time can provide us these answers.

2.4 Why to go Beyond the Standard Model?

In the previous sections, it has been shown why the SM of particle physics is one
of the most successful theories in physics, which explains with great accuracy the
experimental data we have so far. However, the SM suffers from few shortcomings,
which led theorists to believe there could be new physics lying at the TeV scale. Here,
we present some of these issues, which will be addressed in further chapters by the
introduction of extensions of the SM.
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(a) (b)

Figure 2.5: (a) Example of a fermionic loop on a scalar particle, (b) illustration of a
scalar loop on a fermionic particle.

2.4.1 The Hierarchy Problem

Many features of the SM arise from the BEH mechanism, the procedure to generate
masses for the particles observed. However, only calculations at the lowest level of
perturbation theory, also known as tree-level contributions, have yet been discussed.
In reality, radiative corrections to the mass of a particle should be computed when
one-loop corrections to the propagator are considered.

Take for example a toy-theory with a single fermion ψ coupled to a massive scalar
φ [30]. The lagrangian is given by

Lφ = i ψ̄γµ∂
µψ + |∂µ φ|2 −m2

s|φ|2 − λf ψ̄ψφ. (2.29)

As it has been done for the SM, we suppose the symmetry is spontaneously broken
and the fermion obtains the mass mf = λfv/

√
2 at the lowest order.

To compute corrections to the fermion mass within this toy-theory, it is necessary to
consider one-loop contributions to the fermion propagator due to the scalar particle,
as illustrated in Fig. 2.5 (a). The renormalized fermion mass is given by

mf = m
(0)
f + δmf (2.30)

where m(0)
f = λfv/

√
2, and the correction to the mass depends on the introduction of

a cutoff Λ to the theory:

δmf = −
3λ2

fmf

64π2
log

Λ2

m2
f

+ ... (2.31)

where ... indicates terms that vanish when Λ→∞ or terms independent of the cutoff.
Notice that the correction to the mass of the fermion depends explicitly on mf . In the
limit where the mass of the fermions are very small, the lagrangian (2.29) is invariant
under chiral transformations. Therefore, decreasing the mass of the fermion increases
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the symmetry of the theory. It is thus usually said that fermionic masses are protected
by chiral symmetry.

Similarly, we could compute corrections to the scalar propagator due to the fermion
loop, as shown on Fig. 2.5 (b). When this is done, the mass of the scalar obtains a
δms correction, which can be written as:

δm2
s = −

λ2
f

8π

[
Λ2 − 6m2

f log
Λ
mf

+ 2m2
f + ...

]
(2.32)

Differently from corrections for fermionic masses, the mass correction for a scalar
particle is found to be quadratically divergent. For this reason, nothing can actually
protect the mass of the scalar particle of having very large corrections. If we assume
the theory to be valid until the Planck scale, i.e. scale at which quantum corrections to
gravity become important, corrections to the scalar particles will be of such order of
magnitude. Unless the mass of the particle and its correction are at most of the same
order, the theory is considered to have a naturalness problem.

For the SM Higgs boson the same fact occurs. Obviously, corrections to the propagator
due to all types of particles on the loop must be considered. However, the largest
contributions come from fermionic loops, where quadratic divergences appear.

Since unitarity requires the Higgs boson to have a mass smaller than 1 TeV, quadratic
divergences would indicate a large problem, considering corrections would have a
much larger order of magnitude than the mass at lowest order. A counter term to
cancel these quadratic divergences could solve the problem. However, such large
cancellations would be highly un-natural. Conversely, one could adjust the cutoff
down to 1 TeV. The result would be a theory that ceases to being valid at this energy
scale. This is known as the hierarchy problem, and it is one of the reasons for which
it is believed that new physics could indeed lie above the TeV scale.

2.4.2 Fermionic mass hierarchy

Another issue not well explained by the SM is related to the order of magnitude of
the fermion masses. We have seen that fermionic lagrangian is defined by the Yukawa
term, or Eq. (2.28), and they should acquire mass from spontaneous symmetry break-
ing. Concentrating on the quark terms, we have:

Lqyuk = −λd Q̄L φdR − λu Q̄L φ̃ uR + h.c, (2.33)
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which can be decomposed as

Lqyuk =
(
ū′R c̄′R t̄′R

)
MU

 u′L

c′L

t′L

+
(
d̄′R s̄′R b̄′R

)
MD

 d′L

s′L

b′L

+h.c..

where we have used the prime notation to represent the weak eigenstates. However,
there is no reason, in principle, for the matricesMu = v√

2
λiju andMd = v√

2
λijd to

be diagonal. In fact, the weak eigenstates are linear superposition of mass eigenstates
and the transformation can be given as u′

c′

t′

 = Vu

 u

c

t

 ,

 d′

s′

b′

 = Vd

 d

s

b

 (2.34)

where Vu and Vd are unitary matrices that diagonalize the mass matricesMu andMd.

In the SM lagrangian, charged currents (processes intermediated by a charged particle,
such as W±) are proportional to

(
ū′L c̄′L t̄′L

)
γµ

 d′L

s′L

b′L

 =
(
ūL c̄L t̄L

)
(V †uVd)γ

µ

 dL

sL

bL

 (2.35)

while neutral currents are proportional to

(
ū′L c̄′L t̄′L

)
γµ

 d′L

s′L

b′L

 =
(
ūL c̄L t̄L

)
(V †uVu)γµ

 dL

sL

bL

 . (2.36)

Notice that V †uVu = 1, and there is no flavour mixing terms (at tree level) for neutral
currents. However, flavour changing terms appear for charged currents coming from
the CKM matrix defined to be VCKM = V †uVd [21].

Experimentally, the CKM matrix is constrained and its parameters are defined accord-
ing to the observed mass values for the fermions. It has been also realized that the
CKM matrix follows a hierarchy and can be parametrized following the Wolfenstein
parametrization [31].

In principle there is no natural explanation for the hierarchy observed in the CKM ma-
trix. This can be related to the hierarchy observed in the experimental values obtained
for the mass of the fermions. In particular, note that fermionic masses are generated
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from the same mechanism. It is therefore un-natural to obtain masses with so different
order of magnitude. For instance the ratio melectron/mtop is of the order of 3× 10−6.
This issue is usually known as the fermionic mass hierarchy, and it could be one more
indication of new physics at the TeV scale.

2.4.3 CP violation

CP symmetry is the combination of charge (C) conjugation and parity (P) symmetries.
These symmetries state that the laws of physics must be the same if:

• charge is conjugated, i.e. particles are replaced by anti-particles;

• parity is exchanged, i.e. left-handed particles are replaced by right-handed par-
ticles.

Both symmetries hold for electromagnetic interactions. It has been discovered how-
ever that they can be separately violated for weak interactions [32, 33]. The CP sym-
metry has been proposed to solve the problem of individual C and P violations, with
the statement that the CP should be the real symmetry between matter and anti-matter.

Violation of CP has been experimentally discovered in 1964 by Cronin and Fitch [34,
35], through experiments made with K0. Later on, CP violation in B mesons has also
been observed [36, 37, 38].

The main question regarding the subject nowadays is why is the strong force CP-
invariant? The QCD lagrangian contain one term that could be responsible for a pos-
sible CP violation. This term is set to zero due to the non-existence of such events.
The issue is also known as strong CP problem, and presents one more evidence for
new physics at TeV scale. Besides, CP violation is often used to explain the unbalance
of matter/anti-matter of the Universe.

The most famous solution has been proposed by Peccei and Quinn [39, 40]. This
theory postulates the existence of a new particle named axion, generated from the
spontaneous symmetry breaking of a new symmetry. We shall explain more about this
particle in what follows.

2.4.4 Dark matter

A different indication of new physics at the TeV scale is the evidence of dark matter
existence. Dark matter is defined to be an undetermined type of matter that does not
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Figure 2.6: WMAP data shows that the content of the present Universe is formed
by 4.6% of baryonic matter, i.e. atoms that compose planets and stars; 23% of dark
matter; and 72% by dark energy, subject not discussed within this study. Dark energy
should be different from dark matter, and responsible for the experimentally observed
acceleration of the Universe. These images are created by and belong to the NASA /
WMAP Science Team [43].

emit or reflect electromagnetic radiation. In fact, the subatomic composition of this
new type of matter is not yet known, neither are its interactions.

The first evidence was postulated by Jan Oort in 1932, in a study related to the search
of orbital velocities of stars in the Milky Way. In 1933, when calculating orbital veloc-
ities of galaxies and clusters, Fritz Zwicky discovered that part of the mass expected
by his calculations was missing, and denominated it dark matter [41].

Nowadays, several observations have confirmed dark matter evidence [42]. For in-
stance, analyses combining galaxy cluster dynamics, supernova data and Cosmic Mi-
crowave Background (CMB) radiation with Big Bang nucleosyntesis are good indi-
cators for its existence. Besides, precise measurements have been performed and re-
cently confirmed the existence of dark matter at larger scales than the size of galaxies
and clusters. It is believed that approximately 5% of the known matter in the Universe
is formed of atoms, while 23% is dark. A relation of the matter content of the Universe
as of today, extracted from WMAP results, are displayed on Fig. 2.6 [43].

In principle, dark matter could be formed of either baryonic, non-baryonic content or
yet by a combination of both. It could consist of planets, black-holes or even burnt-
out stars in the galatic halo, for example. These are so-called MACHOS, i.e. massive
compact halo objects, and are the most probable constituent of the dark matter if it is
found to be formed of baryonic content [44].

Nevertheless, there are reasons to believe that dark matter could not consist of only
baryonic content. Studies have shown that there is more dark matter in the Universe
than the maximum number that can be calculated. The theory of Big Bang nucleosyn-
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tesis and acoustic peaks in the CMB can be used to accurately determine the fraction
of baryons in the Universe, and therefore to predict how much dark matter is expected
to be baryonic. For this reason, it is widely believed that a significant part of the dark
matter content is likely to be exotic, i.e. composed by non-baryonic content.

From the SM of particle physics, only the neutrino would fill in all the requirements
to be a non-baryonic dark matter candidate. Since it does not carry electric charge
and it interacts very weakly to the particles of the SM, the cross section for neutrino
production is very small. However, the mass density of neutrinos in the Universe has
been calculated and is not enough to explain the matter fraction of the cosmic average
density. Besides, there are studies of galaxies structure affirming that neutrinos with a
very small mass cannot be entirely responsible for the measured dark matter compo-
sition. As a solution, there could exist different types of neutrinos not yet observed,
such as sterile neutrinos, to account for part of the dark matter content. In this case,
clearly new physics is expected.

There are usually three categories to separate possible non-baryonic dark matter con-
tent: i) hot dark matter, which encompass theories with sterile neutrinos, ii) warm
dark matter and iii) cold dark matter. These categories are related through the velocity
of propagation of the particles, rather than their actual temperature. Particles moving
ultra relativistically fit in the first category, particles moving relativistically fit in the
second category and finally, particles moving at classical velocities are categorized as
cold dark matter.

Different (and most probable) options are available. If dark matter is non-baryonic and
not formed by neutrinos, it should be composed by new particle(s). The most common
suggestions are axions and WIMPs (or weakly interacting massive particles).

The axion is the hypothetical particle postulated by Peccei and Quinn to solve the
strong CP problem that appears in QCD [39, 40], as explained previously. They are
supposed to be scalar particles generated from the spontaneous symmetry breaking of
a new symmetry.

WIMPs are massive particles, predicted by some theories Beyond the Standard Model
(BSM), i.e. theory extensions to the SM. Examples of such theories are supersym-
metry or theories with extra dimensions, both to be detailed on subsequent chapters.
Candidates for WIMPs should interact only via the weak or gravitational forces, and
not through the strong force. These are for example the neutralino or the gravitino
in different variations of supersymmetric (SUSY) theories. SUSY theories not only
predict a stable particle to be the dark matter candidate, but also solve several other
issues presented here (for example the hierarchy problem). It is therefore one of the
most studied BSM theories giving rise to different branches. More details on SUSY
theories will be presented in Chapter 6. Finally, WIMPs candidates could also be
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for example new and unpredicted particles coupled to the SM only via gravitational
interaction.

All the options briefly discussed here to find the best candidate for dark matter largely
indicate the existence of new constituents of fundamental particles. Moreover, an
extended version of the SM would be necessary to incorporate such exotic particles. If
this is true, chances are that these particles will be at the LHC energy range. Therefore,
hints of new physics existence could appear very soon.





Chapter3
Gravitation in Beyond Standard
Model theories

It has been shown that the SM is a successful theory that unifies three forces of Na-
ture. However, general relativity is still left apart, and for many years several analyses
seeking a general unification have been made. Throughout this chapter we shall briefly
present the standard description used to quantize gravity, and assemble a quantum field
theory that unifies all forces. The intention is also to display the limitation of the stan-
dard quantum gravity theory and introduce how new theories could well address SM
shortcomings.

3.1 Gravity as a field theory

Initially, to introduce gravity to the theory, one could start from the renowned Ein-
stein–Hilbert action for gravity [45]:

Sgravity =
∫
d4x
√−g

[
R

κ2

]
(3.1)

where κ2 = 16πGN , g = det[gµν ], gµν is the metric tensor and the curvature scalar
R = gµνRµν . The Ricci tensor is defined as

Rµν = ∂νΓλµλ − ∂λΓλµν + ΓσµλΓλνσ − ΓσµνΓλλσ (3.2)

where,

Γλαβ =
gλσ

2
(∂αgβσ + ∂βgασ − ∂σgαβ) . (3.3)

25
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Varying Sgravity will result in the Einstein field equation [46, 47]:

Rµν − 1
2
gµν R = −κ

2

2
T µν , (3.4)

where T µν is the matter energy-momentum tensor.

For a quantum theory of gravity, it is necessary to consider quantum fluctuations for
the gravitational field. One possibility generally chosen is:

gµν = ηµν + κhµν (3.5)

gµν = ηµν − κhµν + κ2 hµλ h
λν + ...

where the flat space is represented by the metric ηµν = diag(1,−1,−1,−1). Notice
we work using natural units, i.e. ~ = c = 1. If one applies Eq. (3.5) in (3.1), the
action can usually be expanded in orders of κ and takes the form:

Sgrav =
∫
d4x
√−g

[
L0
grav + L1

grav + L2
grav + ...

]
(3.6)

where

L0
grav =

R
κ2

; (3.7)

L1
grav =

hµν
κ

(
1
2
ηµνR−Rµν

)
;

L2
grav =

1
2
∂αhµν ∂

αhµν − 1
2
∂αh ∂

αh + ∂αh ∂βh
αβ − ∂αhµβ ∂βhµα

+R
(

1
4
h2 − 1

2
hµνh

µν

)
+
(

1
2
hλµhνλ − hhµν

)
Rµν .

where indices are raised/lowered with ηµν and in which R = ηµνRµν , and Rµν =
Rµν with gµν → ηµν .

We are looking for a quantum theory to unify gravity with the other three forces of
Nature, or in other terms, to incorporate gravity in the SM. For this reason, besides the
graviton lagrangian we should consider all the other types of fields:

S(φ, ψ,Aµ) =
∫
d4x
√−gL(φ, ψ,Aµ), (3.8)

where the action S can be the action for either a scalar field φ, or a fermionic field ψ,
or yet a vectorial field Aµ.

As it has been performed for the gravity action, it is necessary to consider quantum
fluctuations in the action above. As a consequence, an interaction term between the
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gravity field and the SM field is obtained:

S =
∫
d4x

(
−κ

2

)
hµνT µν , (3.9)

where Tµν is the energy-momentum tensor corresponding to the matter content of the
theory, i.e.,

Tµν(φ, ψ,Aµ) =
(
−ηµν L(φ, ψ,Aµ) + 2

δL(φ, ψ,Aµ)
δgµν

)∣∣∣∣
gµν=ηµν

. (3.10)

The final action for a quantum theory of gravity, where SM fields can couple to the
quantum field of gravity, should contain therefore a total lagrangian which is the sum
of Eqs. (3.1) and (3.9). The inclusion of matter in combination with Eq. (3.4) results
in the total lagrangian that can be re-written as:

S =
∫
d4x

[(
1
2
∂αhµν ∂

αhµν − 1
2
∂αh ∂

αh + ∂αh ∂βh
αβ (3.11)

− ∂αhµβ ∂βhµα
)
−
(κ

2
hµνT µν

)]
,

where the first term is also known as the Fierz-Pauli lagrangian [48] and we take
R = 0.

Consider for example the action of a scalar field:

Sφ =
∫
d4x
√−g 1

2
[
gµν∂µφ∂νφ−m2φ2

]
. (3.12)

Using the expansion of gµν in Eq. (3.12), we obtain:

Sφ =
∫
d4x

[
1
2
(
∂µφ∂

µφ−m2φ2
)
− κ

2
hµν T µνφ

]
, (3.13)

with

T φµν ≡ ∂µφ∂νφ−
1
2
ηµν

(
∂ρφ∂

ρφ−m2φ2
)
. (3.14)

From Eqs. (3.13) and (3.14) we can therefore construct Feynman diagrams related
to the interaction between scalar fields and the graviton tensor represented by hµν in
these equations.

We can similarly apply the same technique for fermions and vectors in order to obtain
the interaction vertex between these particles and the graviton field. We thus consider
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Cµνρσ = ηµρηνσ + ηµσηνρ − ηµνηρσ;

Dµνρσ(k1, k2) = ηµνk1σk2ρ − [ηµσk1νk2ρ − ηµρk1σk2ν + ηρσk1µk2ν+
+(µ→ ν)];

Eµνρσ(k1, k2) = ηµν(k1ρk1σ + k2ρk2σ + k1ρk2σ) −
−[ηνσk1µk1ρ − ηνρk2µk2σ + (µ→ ν)];

Fµνρσλ(k1, k2, k3) = ηµρησλ(k2ν − k3ν) + ηµσηρλ(k3ν − k1ν) +
+ ηµληρσ(k1ν − k2ν) + (µ→ ν);

Gµνρσλδ = ηµνηρσηλδ − ηµνηρδησλ + [ηµρηνδηλσ +
+ ηµληνσηρδ − ηµρηνσηλδ − ηµληνδηρσ + (µ→ ν)].

Table 3.1: Definition of the parameters Cµνρσ, Dµνρσ, Eµνρσ, Fµνρσλ and Gµνρσλδ
using the notation introduced in Ref. [49].

the generic action that include vectors and fermions,

S =
∫
d4x
√−g

[
e ψ̄ i γµDµψ −

1
4
Fµν F

µν

]
, (3.15)

where e is the vierbein, ψ is the fermionic field, and Fµν is the electromagnetic tensor
that contains the vector field Aµ. In addition, we consider quantum fluctuations spec-
ified by Eq. (3.5). Writing the lagrangian expression to be compatible with Eq. (3.9),
the energy-momentum tensor for vector and fermionic fields are

T Vµν =
1
4
ηµνF

ρσFρσ − F ρ
µ Fνρ (3.16)

T ψµν = − ηµν
(
ψ̄ i γρDρψ −mψ̄ ψ

)
+

1
2
ψ̄ i γµDνψ+

+
1
2
ψ̄ i γνDµψ +

1
2
ηµν∂

ρ(ψ̄ i γρψ)− 1
4
∂µ(ψ̄ i γνψ)

1
4
∂ν(ψ̄ i γµψ).

As a result, it is possible to obtain the total Feynman rules for the present theory.
These rules describe the effective theory in which a graviton field couples to the usual
vector, fermion and scalar fields. They are summarized in Fig. 3.1.

We can see from Fig. 3.1 that if gravity couples to the SM fields, it is very weakly
coupled. In fact, Eq. (3.9) reveals that the interaction is proportional to the square
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Figure 3.1: Feynman rules for a theory containing general spin-0, spin-1/2, spin-1 and
spin-2 fields, described by the lagrangian summarized in Eq. (3.9). The notation is
coherent with [49], and the parameters Cµνρσ, Dµνρσ, Eµνρσ, Fµνρσλ and Gµνρσλδ
are defined in Table 3.1.
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root of Newton’s constant, or in other terms, to the inverse of the Planck mass. The
interaction of the graviton with the SM fields will therefore be so small that it would
be very hard to be tested by collider experiments.

Nevertheless, the problem for quantizing gravity is more extensive. When comput-
ing quantum corrections to the graviton propagator, we account for loop diagrams.
To calculate quantum corrections at one-loop, we need to consider the lagrangian
to quadratic order. When this is done, because gravity coupling is dimension-full,
i.e. proportional to κ, and taking into account the non-linear nature of the theory, di-
vergences appear that cannot be re-absorbed by any fundamental parameters that we
have introduced. Because of the dimension-full coupling and explicit powers of mo-
mentum in the self coupling of the graviton, divergences gets worse as more loops are
considered. It is believed therefore that the physics we know ceases to being valid
above the Planck scale, when quantum corrections become important.

The dream of unifying gravity with all three forces of nature is not yet reached, how-
ever we have seen that progress has been made for the understanding of the underlying
theory. Currently, one promising approach is to treat relativity as an effective field the-
ory [45, 50]. Quoting J. Donoghue in Ref. [45]: “Since small quantum fluctuations at
ordinary energies behave normally in perturbation theory, it is natural to try to sepa-
rate these quantum corrections from the problematic (and most likely incorrect) high
energy fluctuations. Effective field theory is the tool to accomplish this separation.”

Different extensions to the SM aiming to treat this problem using the effective field
theory approach have been proposed. This is the case for example of the theories
suggested by G. Dvali et al [6, 7, 8] and by X. Calmet et al [9, 10, 11]. Additionally,
other BSM theories that intend to address different SM issues (such as the hierarchy
problem or indirect signs of dark matter) may also achieve the unification of all the
forces of Nature, including gravity. The following sections will present an overview
of some particular SM extensions and describe their solution to the issues cited above.

3.2 The theory with a scale-dependent Mpl

The Planck scale Mpl is generally treated as the fundamental scale of a theory. This
is consequence to the fact that this is the scale where quantum gravitational effects
become important. However, it could happen that these effects become large at a
much smaller scale, such as the TeV scale. Consequences would thus be several. The
trivial outcome would be that standard theories would not be any longer valid above
this scale and extensions would have be considered.
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The primary extension we shall present is the consequence of a presumed renormal-
ization of the Newton’s constant, or in other terms, the Planck mass [11].

It is known that the Newton’ s constant is inversely proportional to the Planck mass:

GN =
1
M2
pl

, or,
κ

2
=
√

8π
Mpl

=
1
Mpl

. (3.17)

where Mpl ≡ Mpl/
√

8π ∼ 2.4 × 1018 GeV is the reduced Planck mass. Recall that
the action of a general field coupled to gravity is given by Eq. (3.9). If we consider a
generic massless scalar field, the resulting action shall be the combination of Eqs. (3.1)
and (3.12):

S = Sgrav + Sφ =
∫
d4x
√−g

[
R

κ2
+

1
2
gµν∂µφ∂νφ

]
. (3.18)

Expanding gµν according to Eq. (3.5), the resultant action should be the sum of
Eqs. (3.6) and (3.13). However, notice that Newton’s constant is incorporated by
definition in the expansion through the parameter κ. If this dependence is isolated
from hµν , the expansion becomes simply

gµν = ηµν + hµν . (3.19)

The leading order term of the lagrangian displayed in Eq. (3.18) can be displayed as:

R

κ2
∼ 1
κ2
h�h =

h

κ
�
h

κ
. (3.20)

Since κ was not absorbed in the definition of small fluctuations, loop correction to the
propagator of the graviton could be re-interpreted as a renormalization to Newton’s
constant.

In order to be more precise and consistent with the example we have been employing,
consider our toy theory with a scalar field coupled to gravity. The graviton propagator
must receive 1-loop corrections from the scalar particle in the loop, as illustrated in
Fig. 3.2. Neglecting the index structure, the graviton propagator including the 1-loop
correction, can be displayed as

Pgrav(q) ∼
[

i

q2 κ2
+

i

q2 κ2
Σ

i

q2 κ2
+ ...

]
. (3.21)

However, similarly to what has been done to calculate the Higgs boson mass cor-
rections, it is found that the integral included in Σ is quadratically divergent. The
authors of [11] proposed to absorb this part into the redefinition of Newton’s constant,
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+

Figure 3.2: Illustration of the graviton propagator and its one-loop correction due to
the existence of scalar fields coupled to gravity in the theory.

obtaining:

1
GrenN

=
1

GbareN

+
c

16π2
Λ2, (3.22)

where GrenN is the renormalized constant measured by experiments, c is a new param-
eter, and Λ is the ultraviolet cutoff.

If the Planck mass is scale-dependent, then the true scale at which quantum effects
become important is µ?:

GN (µ?) ∼ µ−2
? . (3.23)

Requesting GrenN to be of the order of the Planck scale, GbareN (Λ) ∼ Λ and the ultra-
violet cutoff of the order of µ?, results on c ∼ O(1032).

If we now assume the possibility that spin-1/2 and spin-1 particles also couple to
gravity1 [51, 52], and compute the total number of particles required to generate the
Planck scale from the fundamental scale µ?, we obtain:

µ2
? =

M2
pl

1 +Nl/96π2
(3.24)

where Nl = Nφ +Nψ − 4NV , Nφ is the number of scalar fields in the theory, Nψ is
the number of fermion fields and NV vectorial fields.

Eq. (3.24) indicates that roughly 1032 light particles coupled to gravity (within a new
hidden sector), are necessary to address the hierarchy problem and generate the Planck
scale from the fundamental scale, here assumed to be the electroweak scale. In prin-
ciple, this observation may appear to be excessively strong. However, more generally
accepted theories, such as the theory with Large Extra Dimensions [1,2,3] also predict
the existence of a large number of new particles, as we shall confirm in Section 3.3.

1Consider the simplest lagrangian to describe such theory, where the coupling with fermions is treated
with the vierbein formalism and the vectorial coupling employs the traditional field strength tensor.
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The effective lagrangian

A main consequence of the theory presented above is that there must exist a large
number of particles coupled to gravity through a hidden sector. Because the theory
contains a massless graviton, from the present moment on, we shall refer to it as
massless graviton model, or MGM for short. To obtain the effective lagrangian of
the theory, one must proceed by defining the action of each field and couple it to
the gravity by considering quantum fluctuations for the metric. Eq. (3.8) exhibits
explicitly the procedure.

Feynman rules have been calculated for a general theory with spin-2 particles cou-
pled to SM fields. They are displayed in Fig. 3.1. For the MGM theory, each SM
particle that couples to gravity within the hidden sector shall follow these rules. If
one integrates over the total number of new particles, the effective scale of the theory
can reach the electroweak scale through the scale dependence of Newton’s constant.
Therefore, Eq. (3.23) can be translated to the Planck scale,

Mpl(µ?) ∼ µ?, with Mpl = Mpl/
√

8π. (3.25)

As a consequence, the MGM theory will have the same Feynman rules as displayed
in Fig. 3.1, with (3.25) included in the κ parameter. Because Mpl(µ?) ∼ µ?, the
gravity coupling to the SM fields becomes important at the electroweak scale once µ?
is chosen to be O(TeV).

We therefore have a complete theory that incorporates the gravity force, and in which
all types of fields can only couple to gravity through a hidden sector. Now, graviton-
related processes can have reasonably large cross sections at colliders, and they need to
be taken into account. Cross-sections and decay-rates based on this particular theory
can be calculated in order to impose limits for its parameters taking into consideration
electroweak constrains.

It is important however to stress that this is an effective theory, and we have calculated
vertices up the first order of hµν . It signifies that there is at most one graviton field
at each vertex. We can start by computing cross-section at colliders for processes
with one graviton emission, as for example, proton + proton → gluon + graviton.
This calculation shall be performed in Section 3.5, followed by full phenomenological
analyses at the LHC. In addition, we shall compare these cross sections calculated for
the MGM theory against cross sections computed based on different BSM theories.
With this aim, an introduction for different BSM theories that contain spin-2 particles
are presented below.
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3.3 Extra Dimensions

Theories with extra spatial dimensions to work as an extension to the SM theory, have
become extremely popular in the last decade. However, these ideas are not new. They
have started to appear in the beginning of the 20th century just after Einstein’s theory
of relativity had been formulated.

The first idea was proposed by Theodor Kaluza, a german physicist, who studied the
consequences of the theory of relativity of Einstein assuming a 5-dimensional space-
time metric, instead the usual four. For his own surprise, Kaluza discovered that it was
possible to unify Einstein’s theory of gravitation with Maxwell’s electromagnetism by
the addition of one dimension [53]. A few years later, Oskar Klein reformulated the
theory proposed by Kaluza and demonstrated that very small and compact spatial extra
dimensions could exist. However, these theories predict that gravity should be very
weakly coupled to SM fields, and for this reason they were, for a very long time, left
aside.

In the search for unified theories, in the earlies 80’s, these ideas started to re-born and
gave rise to different types of new theories, from strings to extra-dimensional theories,
the latter being the subject we will now focus on.

Theories with extra dimensions start from the idea that we could live in a world de-
scribed by more than 4 dimensions. However, different from string theories, where in
total 10 or 11 dimensions are required, the assumption is that only a small number of
extra-dimensions are added to the usual four. The idea is to look for an extension to
the SM by adding very small and compact extra dimensions.

What would be the 4-dimensional consequences of having a D-dimensional space-
time? This was one of the questions asked by N. Arkani-Hamed, S. Dimopoulos and
G. Dvali, authors of the first proposition to employ Kaluza and Klein calculations for
the search of a SM extension. Nowadays, this theory is also known as ADD theory
[1, 2, 3], or theory with large extra dimensions, name originated from the prediction
related to the size of the radius of the extra dimension. Several branches of extra
dimensional theories have been developed ever since. We can cite for instance the
theory with warped extra dimensions, proposed by L. Randall and R. Sundrum [4, 5].
Both SM extensions are discussed in the following sections.

3.3.1 Large Extra Dimensions

Arkani-Hamed, Dimopoulos and Dvali have proposed to use the framework of extra
dimensions in principle to address the hierarchy problem. It is known that there are at
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least two significant energy scales in nature: the Planck scale, where quantum correc-
tions related to gravity become relevant; and the electroweak scale, where masses of
the SM particles lie. One of the key motivations for creating extensions to the SM the-
ory is, as explained previously, the large value for the ratio Mpl/Mew. Although the
electroweak scale has been well tested by recent experiments, it is not easy to explore
the gravitational sector due to the large order of magnitude of the Mpl scale.

For this reason, the fundamental scale of the SM theory has been assumed to be Mpl.
However, similarly to what has occurred to the MGM theory, a reinterpretation of
some parameters could bring the value for the fundamental scale down to the elec-
troweak scale, and the naturalness of the theory would be recovered.

Consider a D-dimensional theory, where D = 4 + δ and δ is the number of extra
dimensions. Einstein’s action for gravity is now,

Sgravity =
∫
d4x dδy

√
−ĝ
[
R

κ2
D

]
. (3.26)

where xµ are the usual 4-dimensional coordinates, y are the extra-dimensional coor-
dinates and ĝ is the higher dimensional metric corresponding to g. If one impose the
so-called KK reduction, i.e. if we integrate the action over the extra dimensional coor-
dinate and impose that the 4-dimensional action should be the same as Eq. (3.1), we
obtain a relation between κ and κD. This relation is clearer when written in terms of
the Planck constant:

M2
pl ∼M (2+δ)

D Vδ (3.27)

where Vδ is the volume formed by the extra dimensional space, proportional to the
radius of the extra dimension(s).

The fundamental scale of the theory is now MD and can be of the order of the elec-
troweak scale, according to Arkani-Hamed, Dimopoulos and Dvali’s philosophy. The
Planck scale is consequently generated by the fundamental scale through the volume
of the un-observed extra dimensions.

Values of the radius of the extra dimensionsR are related to the Planck mass according
to Eq. (3.27). If the fundamental scale is chosen to be of the order of 1 TeV, a theory
with one extra dimension, i.e. δ = 1, is excluded, since R ∼ 1011 m. For δ = 2,
R ∼ 0.2 mm, which is within experimental limits (low gravity experiments) [54]. For
this reason, from now on we consider ADD theories with δ ≥ 2.
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A realistic model

Now, it is clear that it would be possible to address the hierarchy problem within
the framework of extra dimensional theories. We can therefore proceed to present a
realistic theory where gravity couples to SM fields.

It is usual to name the full dimensional space as the bulk, and the 4-dimensional space
as the brane. For this reason, theories with extra dimensions are also known as brane-
world models. We shall also make use of these terms.

The first concern should be the accessibility of the fields to the extra dimensional
coordinate. If a general field φ is free to propagate through the bulk, the consistent
action should be [54]

Sbulk =
∫
d4x dδy

√
−ĝ Lφ (x, y) . (3.28)

Rather, if the field must be constrained on the 4-dimensional brane,

Sbrane =
∫
d4x dδy

√
−ĝLφ (x) δδ(y − y0). (3.29)

To find out the consequences of a general field propagating in the bulk, consider once
again a toy-theory described by a generic scalar field coupled to gravity. Now the
space-time is 5-dimensional and the scalar field is free to propagate through the bulk.

The relevant action for such theory is

SDφ =
∫
d4x dy

√
−ĝ 1

2
[
gMN∂Mφ∂Nφ−m2φ2

]
, (3.30)

being y the coordinate of the extra dimension, and the upper case indices running
through all the dimensions, i.e. M, N = 0, 1, 2, 3, 5.

The compactness of the manifold is revealed by the periodicity of the field

φ(xµ, y) = φ(xµ, y + 2πR), (3.31)

and a Fourier expansion can be employed:

φ(xµ, y) =
1√
2πR

ϕ0(x) +
∑
n

1√
πR

[
ϕn cos

(ny
R

)
+ ϕ̂n sin

(ny
R

)]
. (3.32)

To apply the KK reduction, we must integrate the 5-dimensional action and relate
it to the known 4-dimension action for a scalar field. Introducing Eq. (3.32) in the
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5-dimensional action and integrating it over y, we obtain

SDφ =
1
2

∫
d4x

{ ∞∑
n=0

(
∂µϕn∂µϕn +m2

nϕ
2
n

)
+
∞∑
n=1

(
∂µϕ̂n∂µϕ̂n +m2

nϕ̂
2
n

)}
(3.33)

where m2
n = m2 + n2

R2 . Eq. (3.12) is the corresponding 4-dimensional action to
(3.33). Comparing both equations, we can deduce that the higher dimensional scalar
field is observed in the effective theory as an infinite tower of fields with masses mn.
These excited modes will be named KK excitations, referring to the calculation first
performed by Kaluza and Klein.

The consequence of a field free to propagate in the bulk is thus the appearance of a
tower of 4-dimensional fields with the same quantum numbers but increasing masses.

In order to visualize how such consequence would be possible, we shall make an
analogy with a lower-dimensional theory. Consider the three-dimensional sphere il-
lustrated in Fig. 3.3 (a). How could one describe it in a two-dimensional theory?

The sphere could, for instance, be characterized as a sum of an infinite number of 2-
dimensional circles, located in the vicinity of each other, as displayed in Fig. 3.3 (b).
These circles should have different radii, forming the sphere when placed alongside.

The KK-excited modes of the scalar field could be interpreted following the same con-
cept. In this sense, the zero-mode field could be identified with the SM field. The sub-
sequent modes should therefore exist with higher masses. Because theD-dimensional
space-time metric considered is flat, the expansion of the field has been performed in
terms of trigonometric functions. Therefore, the mass separation between two succes-
sive KK modes is 1/R for the ADD theory.

The concept of having a D dimensional object projected into the D − 1 dimension
is also known as compactification. It can be applied for any type of field, (i.e. for
spin-0, spin-1/2, spin-1 and spin-2 fields) provided that it propagates through the bulk.
The consequence will consistently be the same: the reduced theory will have a similar
spectrum with larger degeneracy.

The effective theory

In the ADD theory, only the graviton field is allowed to propagate through the bulk
while the SM fields are kept in the 4-dimensional brane. The theory has been exten-
sively discussed by several authors [49,55,56]. Here we summarize how to obtain the
4-dimensional effective theory starting from the D-dimensional action.
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y
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z

Figure 3.3: 3-dimensional spheres represented by the infinite sum of the 2-
dimensional circles along the y-axis. The left sphere has been constructed using the
software Mathematica®.

Eq. (3.28) describes the action of a particle propagating in the bulk. Therefore, in the
ADD theory, this is the action of the graviton. Quantum fluctuations for the metric
must be adapted to the higher dimensional space-time:

gMN = ηMN + κD hMN . (3.34)

The lagrangian of a particle in the brane is given by Eq. (3.29), where now φ should
refer to the SM fields. The energy momentum tensor has also to be defined in D-
dimensions, and when the gravity field is weak it becomes:

TMN = Tµν η
µ
M ηνN δ

δ(y). (3.35)

In 4-dimensions, Eq. 3.9 determined the effective coupling of the graviton with a SM
field. In D-dimensions, the corresponding lagrangian is given by:

LDint =
κD
2
hMN T

MN (3.36)

In order to start the dimensional reduction, assume the extra dimension is compactified
in a torus. By doing so, the higher dimensional volume can be approximated as Vδ ∼
(2πR)δ , and the graviton field, which is periodic hµν(y) = hµν(y+ 2πR), allows for
the expansion

hMN (xµ, y) =
∑
n

h
(n)
MN (xµ)√

Vδ
einy/R. (3.37)
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Applying the expansion (3.37) in the total action, and performing the KK reduction,
the part of the lagrangian proportional to the graviton field should be

Lint =
κ

2

∑
n

h(n)
µν T

µν , (3.38)

in addition to an extra term related to the dilaton field, which we will not focus on
within the present study.

The zero mode of the graviton field should be massless and coupled to the SM particles
proportionally to the inverse of the Planck mass, giving rise to the weak nature of
gravity as we know it. The following KK modes should be massive, and the mass
splitting between consecutive modes2 should be ∆m = 1/R.

Notice the similarity between the lagrangian obtained for the 4-dimensional massless
graviton (MGM) model presented in Section 3.2 and the effective lagrangian of a
higher dimensional graviton described by Eq. (3.38). For a generic coupling constant,
both lagrangians are equivalent. The Feynman rules for the ADD theory can thus be
identified with the rules specified in Fig. 3.1. The difference lies in two factors: i) for
the MGM theory only one massless graviton is predicted, while for the ADD theory
also a tower of massive gravitons is expected; ii) for the MGM theory, the coupling
constant is scale dependent and can be of the order of the electroweak scale because of
the existence of a large number of invisible particles that can only feel the gravitational
force. Conversely, for the ADD theory, the effective scale can reach the TeV scale due
to the existence of extra dimensions, which results in the prediction of the KK tower
of the graviton.

As it has already been stated, the mass value for each KK excited mode is proportional
to |n|/R. Therefore, the mass splitting between two successive modes is so small that
it cannot be measured. It would require a large number of states in order for the mass
splitting to be at experimental range. In other words, a large number of KK modes of
the graviton would be necessary to compensate the factor 1/Mpl coming from each
interaction vertex. Therefore, for cross section and decay rates calculations, it is more
relevant to obtain the contribution of the sum over all the KK states. One can thus
integrate the number of KK-modes between |n| and |n| + dn [56]. The total number
will be given by

dN =
[

2πδ/2

Γ(δ/2)

]
|n|δ−1dn =

[
2πδ/2

Γ(δ/2)

]
M2
pl

M2+δ
D

mδ−1

8π
dm (3.39)

using that m = |n|/R and Eq. (3.27) to relate the higher dimensional radius R with
Mpl and MD. As consequence, the cross section calculation for graviton production

2Here we assume a flat higher dimensional space-time metric.
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will have an extra integration over the KK mass states.

d2σ

dt dm
=
[

2πδ/2

Γ(δ/2)

]
M2
pl

M2+δ
D

mδ−1

8π
dσm
dt

, (3.40)

where dσm/dt is the differential cross section for producing one KK graviton of mass
m.

In the next chapter we shall compute cross sections for producing KK graviton(s) at the
LHC, and compare them with results obtained by taking into account different BSM
models such as the MGM or the RS model, which will be presented in the succeeding
section. We can, nevertheless, already state that the dependence of the cross section
on Mpl can be replaced by MD when the emission of the full tower of graviton is
being considered. Similarly to the MGM theory, the ADD theory predicts therefore
graviton emission processes at the LHC energy reach.

3.3.2 Warped Extra Dimensions

Several branches of extra-dimensional theories have been suggested since ADD was
first proposed. Various scenarios can be created by considering different particles
in the bulk, or different higher dimensional space-time metric. Within this line of
thought, L. Randall and R. Sundrum have proposed an alternative to the ADD sce-
nario to address the hierarchy between the electroweak and Planck scales [4, 5]. They
suggested a theory with 5-dimensional space-time that could be described by the total
metric

ds2 = gMN dx
M dxN , (3.41)

where again upper case indices represent the full set of coordinates or M, N =
0, 1, 2, 3, 5, and

gMN =

(
gµν 0

0 1

)
=

(
e−2k|y|ηµν 0

0 −1

)
. (3.42)

Eq. (3.41) can also be written as

ds2 = e−2 k |y| ηµν dx
µ dxν − dy2, (3.43)

where xµ are the usual 4-dimensional coordinates, k is of the order of the Planck scale
and y is the fifth-dimensional coordinate.
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We shall start as customary, by writing the 5-dimensional action for gravity in the
bulk:

Sgravity =
∫
d4x dy

√
−ĝ
[
R

κ2
5

]
. (3.44)

where κ5 =
√

16π/M5 is the higher dimensional coupling and ĝ = det[gMN ]. Em-
ploying Eq. (3.42) in ĝ, we obtain the relation

√−ĝ = e−4k|y|.

For the authors, although the 4-dimensional space-time is flat, the exponential factor
works as a warping factor for the total metric. The symmetry S1/Z2 is applied, i.e. the
periodicity of the fifth dimension is used to identify both y ↔ y + 2πR and y ↔ −y.
Both extremity points of the orbifold, y = 0 and y = π R, do not transform under the
Z2 symmetry [57].

In principle, only gravity will be allowed to propagate through the bulk while other
fields must be localized at one of the branes. We can thus choose y = 0 as the initial
point and define the action at each 4-dimension brane, located at the orbifold fixed
points y = 0 and y = π R:

Svis =
∫
d4x
√−gvis Lvis gvisµν ≡ gµν(xµ, π R) (3.45)

Shid =
∫
d4x
√−ghid Lhid ghidµν ≡ gµν(xµ, 0)

From these equations, we obtain ghidµν = ηµν , whereas gvisµν = e−2kπR ηµν .

In order to understand the consequences of this exponential factor, let us suppose the
Higgs field is locked in the visible brane, i.e. localized at y = πR. The Higgs action
is:

Shiggsvis =
∫
d4x
√−gvis

[
gµνvisDµH

†DνH − λ
(
|H|2 − v2

0

)2]
. (3.46)

Applying gvisµν = e−2kπR gµν , and re-defining the Higgs field as H → ekπRH , we
obtain

Shiggsvis =
∫
d4x

[
ηµνDµH

†DνH − λ
(
|H|2 − e−2kπR v2

0

)2]
. (3.47)

Notice the exponential factor redefines the symmetry-breaking scale, which is now

v = e−kπRv0. (3.48)

We can therefore conclude that the theory proposed by Randall and Sundrum predicts
that any mass parameter at the visible brane is exponentially reduced from its absolute
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value at the hidden brane. If we assume the natural scale of the theory to be Mpl at
the hidden brane, we can require the visible brane to have masses of the order of the
electroweak scale. This requirement constrains the product kR ∼ 12, and address to
the hierarchy problem in a very natural manner.

In order to obtain the relation between the Planck scale Mpl and the effective scale
M5, one should perform the dimensional reduction in the action (3.44). Identifying
the resulting action with the 4-dimension action, we obtain:

M2
pl = M3

5

[
1− e−2kπR

k

]
. (3.49)

From (3.49) it is clear that Mpl depends strongly on the limit kR. It results that
the huge gap between the Planck scale and the electroweak scale exists due to the
warping factor of the 5-dimensional metric. However, different from the ADD theory,
the fundamental scale of the RS theory is still the Planck scale, and is reduced to the
TeV scale at the brane localized at y = πR.

A realistic model

In order to know how the exponential factor of the metric will influence the dimen-
sional reduction, consider a 5-dimensional scalar field φ allowed to propagate in the
bulk [58, 59, 60]. The relevant action is again

S5d
φ =

∫
d4x dy

√
−ĝ 1

2
[
gMN∂Mφ∂Nφ−m2φ2

]
, (3.50)

which can be written, considering Eq. (3.43), as:

S5d
φ =

∫
d4x dy e−4k|y| 1

2

[
e2k|y| ∂µφ∂

µφ+ ∂5φ∂
5φ−m2φ2

]
. (3.51)

Using the periodicity of the field with the symmetry imposed, we can expand the scalar
field as

φ(xµ, y) =
1√
πR

∑
n

ϕn(xµ) fn(y). (3.52)

If fn(y) are chosen to satisfy both:

1
2πR

∫ πR

−πR
dy e−2kRfn(y)fm(y) = δnm, and, (3.53)[

−e2k|y|∂5(e−4k|y|∂5) +m2
φe
−2k|y|

]
fn(y) = m2

n fn(y), (3.54)
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equation (3.51) becomes

S5d
φ =

1
2

∑
n

∫
d4x

[
ηµν∂µϕn∂νϕn −m2

nϕ
2
]
. (3.55)

Notice that the zero-mode, or n = 0, represents the action of a scalar field in the usual
4-dimensional theory. Eq. (3.55) is therefore the dimensionally reduced action.

The solution of Eq. (3.54) is

fn(y) =
e2k|y|

Nn

[
Jα(

mne
k|y|

k
) + β(mn)Yα(

mne
k|y|

k
)
]
, (3.56)

where Jα and Iα are Bessel functions of order α, α =
√

4 + m2

k2 , mn are the masses
of each KK state and the coefficients Nn and β(mn) are determined by normalization
and the boundary conditions in the branes:

φ(xµ, y) |y=0, πR= 0 ∂5φ(xµ, y) |y=0, πR= 0. (3.57)

Therefore,

β(mn) = − 2 Jα(mnk ) + mn
k J ′α(mnk )

2Yα(mnk ) + mn
k Y ′α(mnk )

. (3.58)

Due to the warping factor of the metric, the KK mass statesmn do not increase linearly
as happens for the ADD theory. They can be calculated and given by [60]

mn '
(
n+

α

2
− 3

4

)
πke−πkR, (3.59)

for mn � k, kR� 1 and n = 1, 2, 3, ... .

Once more, the consequence of a 5-dimensional field propagating in the bulk is the
appearance of the KK tower. However, for RS theories, two successive KK mass states
are not separated linearly, but their separation depends on the exponential factor of the
metric.

The effective theory

In order to obtain the effective theory, let us assume that only gravity can propagate in
the bulk. The SM fields must be constrained in the 4-dimensional brane localized at
y = π R. The action of gravity and SM fields are given by Eqs. (3.44) and (3.45).
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The graviton field must be expanded as it has been performed for φ in Eq. (3.52), and
fluctuations of the metric must be taken into account:

gµν = e−2k|y| ηµν + hµν . (3.60)

Imposing (3.60) in (3.44) and (3.45) we obtain the interacting lagrangian of the gravi-
ton and the SM fields:

L =
κ

2
h(0)
µν T

µν − e−kπR κ
2
h(1)
µν T

µν . (3.61)

The massless graviton, localized at the hidden brane, couples to SM fields propor-
tionally to the Planck mass, whereas the first KK mode can couple to the SM fields
proportionally to the TeV scale, accounting for their localization at the visible brane.
The zero mode of the graviton can therefore be identified as the massless graviton pre-
dicted by usual quantum gravity, whereas the first mode can have a mass of the order
of the TeV scale. The mass of the n-th mode of the graviton is given by [61]:

mn = k xn e
−kπR (3.62)

where xn are the roots of the Bessel function of order 1 (for example x1 = 3.8317).

Once more, due to the similarity of Eqs. (3.61) and (3.9), the Feynman rules for KK
modes of the graviton coupled to the SM fields are exhibited in Fig. 3.1. However, the
generic coupling displayed in Fig. 3.1 is now given by e−kπR/Mpl for the coupling
of the first mode of the graviton with the SM fields. Notice that because of the ex-
ponential factor present in this coupling, RS theories are considered to be much more
strongly interacting than ADD theories with large extra dimensions.

3.4 The graviton propagator

We have presented so far a complete overview of BSM theories featuring spin-2 par-
ticles, from 4-dimensional theories to extra dimensional theories. Further ahead, we
shall display the phenomenology of these theories at hadron colliders. We are lacking
therefore only an analytical discussion on the graviton propagator, which is one of
the factors differentiating massless graviton theories to the ones containing massive
spin-2 particles. We shall follow the formalism presented in [62] to derive the spin-2
propagators. Nevertheless, the reader could check [63, 64] for the derivation of the
propagator in full details.
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To obtain the graviton propagator, we start from the Fierz-Pauli lagrangian [48] for
massive spin-2 particles:

Sgrav =
∫
d4x

[
1
2
∂αhµν ∂

αhµν − 1
2
∂αh ∂

αh+ (3.63)

+ ∂αh ∂βh
αβ − ∂αhµβ ∂

βhµα +
1
2
m2(hµν hµν − h2)

]
.

The last term is related to the mass of spin-2 particles and the relative −1 coefficient
between hµν hµν and h2 is an assumption named Fierz-Pauli tuning [62]. There is no
known symmetry that imposes such choice. However, the Fierz-Pauli tuning is usually
employed to prevent the theory from containing scalar ghosts.

If (3.63) is integrated by parts, the action/lagrangian can be re-written as

Sgrav =
∫
d4x

1
2
hµν Oµν,αβ hαβ , (3.64)

where Oµν,αβ is given by

Oµν,αβ =
(

1
2
ηµαηνβ +

1
2
ηµαηνβ − ηµνηαβ

)(
�−m2

)
+ ∂µ∂µηαβ+

∂α∂βηµν − 1
2
(
∂µ∂αηνβ + ∂µ∂βηνα + ∂ν∂αηµβ + ∂ν∂βηµα

)
,

and satisfies the symmetries

Oµν,αβ = Oνµ,αβ = Oµν,βα = Oαβ,µν . (3.65)

To extract the graviton propagator, we should apply the quantum prescription and
move to the momentum space. The propagator will be the operator Pαβ,σλ which
satisfies the relation

Oµν,αβPαβ,σλ =
i

2
(δµσδ

ν
λ + δνσδ

µ
λ) . (3.66)

For Eq. (3.65) that is

Pµν,αβ =
i

p2 +m2

[
1
2

(
ηµα +

pαpβ
m2

)(
ηνβ +

pνpβ
m2

)
(3.67)

+
1
2

(
ηµβ +

pµpβ
m2

)(
ηνα +

pνpα
m2

)
−1

3

(
ηµν +

pµpν
m2

)(
ηαβ +

pαpβ
m2

)]
.
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To derive the massless propagator we follow a similar prescription. We start from
Eq. (3.63) in the limit where m→ 0. We can again integrate it by parts obtaining:

Sgrav =
∫
dDx

1
2
hµν Eµν,αβ hαβ , (3.68)

where Eµν,αβ = Oµν,αβ |m→0.

However, now it is necessary to fix the gauge in order to obtain the propagator. The
most common choice is the de Donder gauge:

∂µhµν −
1
2
∂νh = 0, (3.69)

which is achieved by adding the gauge fixing term for the lagrangian:

Lgf =
(
∂σh

σ
µ −

1
2
∂µh

)
gµν

(
∂σh

σ
ν −

1
2
∂νh

)
. (3.70)

Notice we use hαα ≡ h.

The total lagrangian is given by the sum of the gravitation and the gauge fixed la-
grangians:

L = Lgrav + Lgf ≡
1
2
hµν Õµναβ hαβ . (3.71)

with

Õµν,αβ =
1
2
�
(
ηµαηνβ + ηµβηνα − ηµνηαβ

)
. (3.72)

To obtain the propagator, we once more go to the momentum space and apply the
quantum prescription. We obtain simply:

P̃µν,αβ =
i

q2

[
1
2
(
ηµαηνβ + ηµβηνα − ηµνηαβ

)]
. (3.73)

When the massless (3.73) and massive (3.67) propagators are compared, one can re-
alize a difference in the last term, which appears even in the limit where m → 0:

P̃µν,αβ 6= lim
m→0

Pµν,αβ =
i

q2

[
1
2

(
ηµαηνβ + ηµβηνα − 2

3
ηµνηαβ

)]
. (3.74)

This is the famous van Dam-Veltman discontinuity [65, 66].
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To understand how such discontinuity arises, let us consider the study made by Dicus
et al in Ref. [67]. They have performed a full analysis on the graviton propagator both
for the massive and the massless cases.

First, consider an off-shell graviton particle. If the graviton is massless, it has the
usual five polarization tensors (J = 2, Jz = 0,±1,±2) in addition to the (J = 0)
component:

P̃µν,αβ ∼
∑

λ=±2,±1,0

εµν(2, λ) εαβ ?(2, λ)− εµν(0, 0) εαβ ?(0, 0). (3.75)

However, an on-shell massless graviton has only transverse components:

P̃µν,αβ ∼
∑
λ=±2

εµν(2, λ) εαβ ?(2, λ). (3.76)

The authors of Ref. [67] affirm that besides the cancellation of (J = 2, Jz = ±1)
components, the (J = 2, Jz = 0) is cancelled by (J = 0), leaving only (J = 2, Jz =
±2) components.

However, a massive graviton does not have the (J = 0) component:

Pµν,αβ ∼
∑

λ=±2,±1,0

εµν(2, λ) εαβ ?(2, λ). (3.77)

Thus, when the zero-mass limit of Eq. (3.77) is considered, the (J = 2, Jz = ±1)
and (J = 2, Jz = 0) components are cancelled, but the (J = 0) component remains.

Therefore, the discontinuity arises from the fact that a virtual massless graviton has
a component with zero angular momentum (J = 0), that serves to cancel the (J =
2, Jz = 0) component when the graviton is on-shell, whereas the massive graviton
does not have the (J = 0) component at all.

It is clear now that theories containing massless gravitons should be treated separately
from theories comprising massive such particles. In this context, the similarity of the
Feynman rules between the MGM theory and extra dimensional theories disappear
at the propagator level. One could therefore investigate if the discontinuity of the
graviton propagator can also been seen at the cross section level.

With this question in mind, we have analytically computed cross sections of graviton
emission processes for both cases: emission of a massless graviton and emission of a
massive graviton, taking the limit where m → 0. This will be the subject of the next
section.
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3.5 Graviton emission cross sections

On Section 3.1, we have shown the Feynman rules for a general theory in which
SM fields are coupled to the graviton field. These rules are displayed in Fig. 3.1,
considering a generic coupling presented through the parameter κ. We shall now use
these rules to analytically calculate cross sections for graviton emission processes in
addition to quarks and gluons.

The production of quarks and gluons recoiling against a graviton G can arise from
the parton sub-processes q + q̄ → G + g, q + g → q + G, q̄ + g → q̄ + G, and
g + g → g + G. Primarily, we have calculated the leading order contributions at the
parton level for a theory featuring a massless graviton. Regarding the notation, we use
G̃ for the massless, and non-tilded G for the massive spin-2 particles. For simplicity,
at this stage, we treat all quarks as being massless. The sum over the polarizations
of the graviton is given by Eq. (3.76). We have found that the polarization and color
averaged cross section for q + q̄ → g + G̃ is given by

dσ(q q̄ → g G̃)
d cos θ

=
κ2 αs

72

(
s2 + 2t2 + 2 t s

s2

)
, (3.78)

where αs = g2
s/4π, gs is the strong coupling constant, κ is given on Eq. (3.17), s and

t are the Mandelstam variables: t = −1/2s(1 − cos θ), and θ is the angle between
the beam and the visible final particle. The cross sections for q + g → q + G̃ and
q̄ + g → q̄ + G̃ are given by

dσ(q g → q G̃)
d cos θ

= −κ
2 αs
192

(
2 s2 + 2 s t + t2

s t

)
. (3.79)

The corresponding matrix element can be obtained using crossing symmetry from that
of the transition q+q̄ → G̃+g. These cross sections can be deduced from [68]. Finally
we also obtain the cross section for g + g → g + G̃ which is given by

dσ(g g → g G̃)
d cos θ

= −3κ2 αs
128

(
s2 + st+ t2

s
√
t (s+ t)

)2

. (3.80)

Note that the calculations can be simplified tremendously by the realization that the
graviton is on-shell and thus any contraction of the style Tµνqµ vanishes, where Tµν

is the energy momentum tensor and qµ is the momentum of the graviton.
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Subsequently, we have computed the differential cross section contributions for a the-
ory featuring a massive graviton. Now, the sum over the polarizations of the graviton is
given by Eq. (3.77), the massive graviton propagator. We have obtained the following
respective results. The cross section for q + q̄ → g +G is given by:

dσ(q q̄ → g G)
d cos θ

=
κ2 αs
144

1
1−m2/s

[
(2− 4ut

(s−m2)2
)
(

1 +
(m2

s

)4)+

+
(

2
(s−m2)2

4ut
− 5 + 4

4ut
(s−m2)2

)
m2

s

(
1 +

(m2

s

)2)+

+ 6
(
u− t
s−m2

)2 (m2

s

)2]
, (3.81)

where s, t, u are the Mandelstam variables, and t, u = −1/2s(1−m2/s)(1∓ cos θ).
The cross section for q+ g → q+G can be obtained from this expression by crossing
s↔ t:

dσ (q g → q G)
d cos θ

=
κ2αs
384

(−t/s)(1−m2/s)
(1−m2/t)2

[
(2− 4us

(t−m2)2
)
(

1 +
(m2

t

)4)
+
(

2
(t−m2)2

4us
− 5 + 4

4us
(t−m2)2

)
m2

t

(
1 +

(m2

t

)2)+

+6
(
s− u
t−m2

)2 (m2

t

)2]
. (3.82)

As in the massless case, the cross section for q̄ + g → q̄ + G is also the same as that
of q + g → q +G. For the process g + g → g +G, we find

dσ(gg → gG)
d cos θ

=
3

256
κ2αs

(1−m2/s)(1− cos2 θ)

[
(3 + cos2 θ)2

(
1 +

(m2

s

)4)
−4(7 + cos4 θ)

m2

s

(
1 +

(m2

s

)2)+

+6(9− 2 cos2 θ + cos4 θ)
(m2

s

)2]
. (3.83)

If we take the limit where m → 0 of Eqs. (3.81), (3.82) and (3.83), we obtain the
same results as Eqs. (3.78), (3.79) and (3.80) respectively. The discontinuity existent
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for the propagator of a spin-2 particle vanishes at cross section level when processes
with an on-shell graviton are considered.

The smoothness of this limit has been pointed out in several references, including [55].
Particularly, Mirabelli et al have pointed out that due to helicity conservation, only
the polarization modes that correspond to the massless graviton are produced in the
reaction being analysed. However, in order to understand theoretically the smoothness
of this limit, we have carried out a small calculation that verifies it for the qq̄ → gG

process. The validation follows.

From Eqs. (3.73) and (3.67) it is possible to obtain the relation

lim
m→0

Pµν,αβ = P̃µν,αβ +
1
6
ηµνηρσ. (3.84)

On the calculation of the cross section of the process specified, the difference between
both calculations (using massless or a massive graviton in the m → 0 limit) lies
on the amplitude |M|2. Therefore, the corresponding relation to Eq. (3.84) between
amplitudes computed for each case can be written as

lim
m→0

∑
pol

|Mµν,αβ |2 = lim
m→0

M∗µν Pµν,αβMαβ = (3.85)

=M̃∗µν P̃µν,αβ M̃µν +
1
6
M̃∗µµ M̃ α

α =

=
∑
pol

∣∣∣M̃µν,αβ

∣∣∣2 +
1
6

∣∣∣M̃ µ α
µ , α

∣∣∣2 ,
whereMµν,αβ is the amplitude calculated using a massive graviton and M̃µν,αβ us-
ing a massless graviton.

To obtain a smooth limit at the cross section level, the second term of Eq. (3.85) should
be zero:∣∣∣M̃ µ α

µ , α

∣∣∣2 ≡ 0. (3.86)

To verify the smoothness of the limit we check that Eq. (3.86) is indeed true for the
particular processes we are interested in. Take for example qq̄ → gG. Four Feynman
diagrams contribute for such process, which are illustrated in Fig. 3.4.
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Figure 3.4: Illustration of the four Feynman diagrams contributing for the process
qq̄ → gG. The straight lines represent a quark or an anti-quark, the curly line repre-
sents the gluon and the double-curly line the graviton.

Calculating the amplitude for the first diagram, we obtain:

M(a) =
igsκ

4
v̄ γβT a u (Cµναβ − ηµνηαβ) εαa ε

µν = (3.87)

= − 3igsκ
2

v̄ γαT
a u εαa .

From the amplitude of the second diagram:

M(b) =
igsκ

8
1

(k2 − p1)2 v̄ [γµ(−2k2 + p1)ν + γν(−2k2 + p1)µ (3.88)

−2ηµν(−2 6k2+ 6p1)] (6k2−6p1)γαT a u εαa ε
µν =

=
3igsκ

4
v̄ γαT

a u εαa .

Similarly, for the third diagram:

M(c) =
3igsκ

4
v̄ γαT

a u εαa . (3.89)

And finally the forth:

M(d) =
igsκ

2
v̄γβT

a 1
2k1k2

[−p2 (p1 + p2)Cµναβ+ (3.90)

+Dµν,αβ(−p2, p1 + p2) + ξ−1Eµν,αβ(−p2, p1 + p2)
]
u εαa ε

µν =

=
igsκ

2
v̄ γβT

a u
1
s

[s
2

(−2ηαβ) + (−s)ηαβ
]
εαa = 0.

It is now trivial to verify that the sum of all contributing diagrams is zero, exactly
as expected from Eq. (3.86). If one follows the same strategy and computes |M|2
for the additional processes that can produce one graviton, the smooth limit is always
obtained. Even for massive quarks in the initial/final state a similar calculation has
been carried out and the smooth limit prevailed.
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To conclude, it would be significant to notice that the expressions for the cross sections
displayed within the present study can be applied for the MGM and extra dimensional
theories if the correct effective coupling are considered. For instance, for the MGM
theory, Eqs. (3.78), (3.79) and (3.80) can describe correctly the theory if the general
κ parameter is replaced by the effective parameter set in Eq. (3.25). Similarly, the
strategy can be applied to relate Eqs. (3.81), (3.82) and (3.83) with the ADD theory.

Our subsequent goal is to investigate how to distinguish between MGM and ADD
theories through phenomenological analyses at colliders, and moreover, if we can still
identify signs of such theories considering the expected SM background. This will
be the starting point for Chapter 5 following an introduction to hadron colliders and
phenomenological simulations which will be presented in the next chapter.



Chapter4
The LHC and collision
simulations

The Large Hadron Collider (or LHC for short) was built to smash protons at a very
high center-of-mass energy, in order to test predictions of different theories in particle
physics and to confirm the existence of the Higgs boson.

For the comparison between experimental data against theory predictions, simulations
play a crucial role. In order to correctly make predictions of the consequences of
particular BSM theories, it is necessary to use simulation tools. These packages can
reproduce events expected at the hadron collider, which can be used to compare with
real data. In this chapter, we thus present an overview of both the LHC itself and
methods used to simulate events at hadron colliders. There are numerous references on
this subject. We, however, shall base our discussion and follow the structure presented
in Refs. [69, 70, 24].

We begin with an introduction of the LHC and its characteristics. Further ahead we
present Monte-Carlo simulations of collisions and conclude by defining matrix ele-
ment/parton shower merging schemes, which will be substantially employed in the
following chapters for phenomenological analyses of new physics emissions.

4.1 Introduction to the LHC

The LHC was constructed at the “Organisation européenne pour la recherche nu-
cléaire” (CERN) near Geneva, in the tunnel which previously comprised the LEP
experiment, the Large Electron-Positron collider that ran up to the year 2000.

The LHC tunnel has 27 km of circumference, is buried approximately 100 meters un-
der ground and is designed to collide protons with a maximum center-of-mass energy

53
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of 14 TeV. Collisions have started in the end of 2009, rapidly achieving the center-of-
mass energy record of 2.36 TeV, exceeding even limits established by the Tevatron1.

On March, 2010, the LHC started colliding protons with
√
s = 7 TeV, beating its own

previous record, and achieving the final center-of-mass energy established for the first
run.

To reach such colliding energy, the proton beam has to go through several acceleration
steps, which are shown pictorially in Fig. 4.1 [71]. First, protons are produced in the
LINAC, and accelerated to 1.4 GeV in the Booster. They are subsequently accelerated
at the PS (proton synchrotron), and pass to the SPS to achieve the energy of 450 GeV.
They finally move to the main ring to gain their final energy (at the current stage 3.5
TeV each proton) and collide within one of the four main detectors: the Compact
Muon Solenoid (CMS), the Toroidal LHC Apparatus (ATLAS), the LHCb or yet the
Large Ion Collider Experiment (ALICE). The first two detectors are called “general-
purpose” experiments. The LHCb is oriented towards analyses on the b-quark sector,
CP violation and rare decays. ALICE however has been designed to focus on heavy
ion physics and the study of quark-gluon plasma.

In a nutshell, the goal for colliding protons is to test theories of fundamental interac-
tions and their building blocks. Based on theoretical models we can predict chances
of obtaining specific final states from the collision of two protons. With the LHC
data, we are able to verify if theoretical expectations are actually fulfilled. With cross
sections provided by theoretical calculations based on specific models, it is possible
to compute the quantity of such events are expected at the detector using the specifi-
cations for the collider. In reality, the complexity for linking experimental data with
theoretical expectations is higher. However, we try to summarize the main aspects
which will be employed within this study in what follows.

The rate of collisions R and the luminosity L are related through the value for the
cross-section σ that can be calculated for a particular process:

R =
dN

dt
= Lσ. (4.1)

Here, dNdt is the number of events produced per second.

1The Tevatron is located at the Fermi National Accelerator Laboratory, and was built to collide protons
and anti-protons with a center-of-mass energy limit of approximately 2 TeV. It has worked from 1983 until
September of 2011, having many important discoveries on its list of achievements (including the discovery
of the top quark in 1995). The large number of breakthroughs made by the Tevatron enabled the proposition
of a even stronger particle collider, the LHC.
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Figure 4.1: The LHC accelerator complex at CERN [71].

For different experimental reasons, detectors cannot observe all events produced. We
should thus account for the efficiency for observing a particular process. We obtain

Nevents = σ × L× E , for L =
∫
L dt, (4.2)

where Nevents is the total number of events produced, L is the integrated luminosity
provided by the experiment and E is the efficiency of observing such process.

The choice of building a proton collider was made aiming the achievement of high
luminosities. The luminosity is controlled by the parameters of the experiment, the
process however should be parameter independent. Anyhow, because the proton is
composed by partons, one should consider parton distribution functions (also known
as PDFs) to the computation of inclusive cross sections, considering the combination
of different initial partons.

The cross-section for a hard scattering process with two hadrons in the initial state [72]
is

σ(P1, P2) =
∑
i,j

∫
dx1 dx2 fi(x1, µ

2) fj(x2, µ
2
F ) σ̂ij

(
p1, p2, Q

2/µ2
F , Q

2/µ2
R

)
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(4.3)

where P1 and P2 are the four-momenta of the initial hadrons and p1 and p2 are the
four-momenta of the partons present in the hard interaction. They are related by

p1 = x1P1 and p2 = x2 P2. (4.4)

The quark or gluon distribution functions at a factorization scale µF are exhibited by
fi,j . The factorization scale can be qualitatively described as the resolution of the
hadron which is being tested [73]. Q2 is the characteristic scale of the scattering,
and µR is the renormalization scale. The parton-level cross section for the process
envisaged to be analysed is σ̂ij and depends on Q as well as on the choice of the
factorization and renormalization scales.

From Eq. (4.4) it is trivial to observe that partons only carry a fraction of the four-
momentum of the initial hadron, resulting on a parton-level center-of-mass energy

√
ŝ

smaller than the total proton-proton
√
s energy. They are related by τ ≡ x1 x2 = ŝ/s,

where ŝ = (p1 + p2)2 and s = (P1 + P2)2. We can define a new quantity, the
differential parton luminosity, as:

dLi,j
dτ

=
1
τ

1
(1 + δi,j)

∫ 1

0

dx1 dx2 [x1fi(x1)x2fj(x2) + (1→ 2)] δ(τ−x1x2). (4.5)

The cross-section will thus be given by:

σ(s) =
∑
i,j

∫ 1

τ0

dτ

τ

[
1
s

dLi,j
dτ

]
[ŝσ̂i,j ] , (4.6)

where the sum is performed over all pairs of partons.

If one chooses the set of parton distribution function to be used, it is possible to obtain
the differential luminosity 1

s
dLi,j
dτ as a function of the partonic center-of-mass energy.

Examples of such plots are shown in Fig. 4.2, extracted from Quigg et al [74]. At the
LHC with

√
s = 14 TeV, we find that, in general, processes produced from a gluon-

gluon initial state contribute more significantly than quark-quark or quark-gluon initial
states. Therefore, processes having significant contribution at the Tevatron collider
may not be equally relevant at the LHC.
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Figure 4.2: Parton luminosities 1
s
dLi,j
dτ for processes with gluon-gluon (gg) , quark-

quark (qq) and quark-gluon (qg) in the initial state as a function of the partonic center-
of-mass energy. Plots extracted from Ref. [74], computed using the CTEQ6L1 PDF
[75].

4.2 Predictive methods at colliders

In order to correctly predict the consequences of a particular theory at colliders, it is
necessary to define which observable one should focus on. In this section, we thus
introduce the relevant observables for the present study.

4.2.1 Kinematics and jet definitions

Typically, in a collider experiment, the two incoming beams are assumed to be in op-
posite directions on the z-axis. The polar angle is θ and the azimuthal angle is φ. At
hadron colliders, the incoming beams have a spectrum of longitudinal momenta deter-
mined by the PDFs. The center-of-mass of the incoming partons is usually boosted in
comparison to the center-of-mass of the incoming hadron. Therefore, it can be useful
to define final states in terms of variables proportional to longitudinal observables.

Let us start by defining the transverse momentum pT of a particle. The four-momentum
of a particle can be written as

pµ = (E, px, py, pz). (4.7)

The transverse momentum is defined to be

pT =
√
p2
x + p2

y = p sin θ. (4.8)
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Similarly we can define the transverse mass and transverse energy:

mT =
√
p2
T +m2, ET = E sin θ. (4.9)

Two further observables that will be largely employed within our phenomenological
investigations are the missing transverse energy and the missing transverse momentum
of an event:

~ET/ = −
∑
visible

~ET , and ~pT/ = −
∑
visible

~pT (4.10)

which can be constructed from the sum of the transverse energy/momentum of visible
particles within the event. This quantity is one of the smoking-gun observables at the
LHC, since many new physics signatures are expected to have large ET/ .

Other significant observables are the rapidity y,

y =
1
2

ln
(
E + pz
E − pz

)
= tanh−1

(pz
E

)
, (4.11)

and the pseudo-rapidity η,

η = − ln tan
(
θ

2

)
. (4.12)

In the coordinate system presented above, θ is not Lorentz invariant, however, the
pseudo-rapidity is. In the limit where m → 0, the rapidity and the pseudo-rapidity
of a particle are the same. It is also interesting to point out that we can calculate the
pseudo-rapidity of an outgoing particle even not knowing its mass.

Notice also that the four-momentum of a particle can be written in terms of the trans-
verse mass, the rapidity, and the azimuthal angle:

pµ = (mT cosh y, pT sinφ, pT cosφ, mT sinh y). (4.13)

Up to this stage we have only defined observables related to incoming or outgoing
particles. However, sometimes we cannot completely experimentally differentiate
outgoing particles. That is the case for light quarks and gluons, which due to color
confinement, hadronize before being detected. These hadronic final states are usually
numerous and appear as an agglomerate of particles, called jet of hadrons. An illus-
tration of the relation between parton-level outgoing particles and jets, i.e. hadronic
final states, is represented in Fig. 4.3, extracted from [76].
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Figure 4.3: Illustration of the relation between partonic final states and hadronic final
states, which gives identical jets in all the cases. Figure based on [76].

To associate the hadronic final state with the most probable parton-level particle, it is
necessary to define the jet. However, the reconstruction of a jet is not unique and it
can vary depending on the parameters chosen. One should specify at least which are
the particles belonging to the jet, and how to combine their momenta. These choices
of parameters compose what is called as a jet definition. There are algorithms created
to this aim, also referred as clustering algorithm. These are separated in two main
classes: cone algorithms, and sequential recombination algorithms. The first is based
on the idea that the energy flow of the vertex is not modified by the branching2 of
the parton. It is a “top-down” approach in the sense that the algorithm defines the
size of the jet based on one main particle. Sequential recombination algorithms, use a
“bottom-up” approach, in which two particles are combined in one, sequentially, until
only one particle (containing all the information of the others) is left. More details of
each algorithm is given below. For more details, we refer to Refs. [76, 77].

Cone algorithms were the first type of jet algorithms proposed intended for the treat-
ment of outgoing particles from e+e− collisions [78]. It starts by classifying all the
(final) particles according to their pT . The particle with the highest pT is defined as the
central particle. The algorithm draws a cone of radius R around the central particle,
in terms of the pseudo-rapidity η and the azimuthal angle φ:

∆R =
√

(∆η)2 + (∆φ)2 (4.14)

where ∆η = ηi − ηc and ∆φ = φi − φc, in which i is the index referred to the i-th
particle, and c to the central particle. Subsequently, the algorithm uses all the particles
in the cone, and find the direction of the sum of the momenta of these particles. If
the sum is the same as the momenta of the central particle, a stable cone is obtained.
Otherwise, the sum of the momenta (of the particles) of the cone is made the new
central particle and the iteration re-starts until the cone is found to be stable. Once the
cone is stable, all the particles inside the cone can be removed from the list of particles
of the event. The iteration stops once all the particles are identified as belonging to a
specific cone.

2Once a parton is emitted, it can multiply and emit other partons. These are usually soft, or collinear
partons, which can be approximately reproduced in perturbation theory. A more precise explanation is
given further ahead within this chapter.
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The major disadvantage of using such kind of algorithm is the use of the pT of the
particles to decide what will be the first central particle. The problem is that the trans-
verse momentum is not a collinear safe observable, and it could lead to divergences.
One could then use cone algorithms that do not rely on one particle to be the central,
but perform several tries in which all particles are once central. Several stables cones
would be obtained in this case, and an optimized merge would be done defining the
jet. These types of cone algorithms avoid collinear divergences, but are not infra-red
safe. A full solution to both problems was found and nominated Seedless Infrared
Safe Cone algorithm [79], being the main cone algorithm used nowadays.

Sequential recombination algorithms have a different strategy. They are based on a
definition of “distance” between jets rather than a cone. The first algorithm using
sequential combination was also developed for e+e− collisions and called the kT
algorithm [80]. In this case, a distance between two particles (i and j) is defined as:

yij =
2 min

(
E2
i , E

2
j

)
(1− cos θ)

Q2
, (4.15)

where E is the energy of the particles, Q is the scale of the hard-scattering and θ
is the angle separation between both particles. The two particles with the smallest
distance, measured in terms of yij , are recognized and combined together giving rise
to a “pseudo-particle”. This strategy is repeated until the pseudo-particle and all the
other particles in the event are separated by a larger distance than ycut. When this
happens, the pseudo-particle is determined as the jet.

The algorithm was adapted later on for hadron collisions [81, 82]. The distance be-
tween particles i and j can be fixed in terms of the ∆R:

dij =
min

(
p2
Ti, p

2
Tj

)
∆R2

ij

R2
, (4.16)

where ∆R is defined similarly to the cone algorithm. It is also necessary to define the
beam distance:

diB = p2
Ti. (4.17)

Now, the algorithm searches for the smallest distance, either dij or diB . If the smallest
distance is the one separating both particles i and j, the algorithm works as explained
previously combining both to a pseudo-particle. Otherwise, the particle i is removed
from the list of particles and the jet is defined. This algorithm is very often employed
to define a jet. We will make use of it in our phenomenological analyses.

A branch from the kT algorithm also very commonly used as of today is the so-called
anti-kT algorithm [83]. Both kT and anti-kT algorithms have similar strategies, the
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difference lies on the distance definition. In this case, dij and diB are defined as:

dij =
1

max
(
p2
Ti, p

2
Tj

)∆R2
ij

R2
, (4.18)

diB =
1
p2
Ti

.

Once we have selected one method for defining a jet, it can be treated as an unique
particle. We can thus define observables that are related to jets, such as the HT . From
the same class of the ET/ observable, the HT is defined as the sum of the pT of all the
jets of an event:

HT =
∑
i=jets

∣∣~p iT ∣∣ . (4.19)

The HT is an observable widely used in experimental searches due to its power on
measuring the scale of the visible pT of an event.

As the parton center of mass energy increases, hadron collision events with large jet
multiplicities become more probable. As a result, accurate simulations require to
correctly account for the presence of QCD radiation, which might modify predictions
for these relevant observables that we have just presented. For specific processes, it is
important therefore to account for extra orders in αS when calculating cross section
contributions. Subsequently, we demonstrate the necessity of such contributions.

4.2.2 Next-to-leading order cross section contributions

The expression (4.3) is obtained through perturbative QCD. One can obtain cross sec-
tion contributions of specific processes up to the lowest order in αS . To achieve more
accurate results, one should compute higher orders contributions. These can be calcu-
lated considering the addition of one extra particle (quarks, or gluons) to the process
being evaluated. The first two additional orders in αS are usually named next-to-
leading order (NLO) and next-to-next-to leading order (NNLO) contributions.

Take for instance the production of a Z boson [76]. The leading order term is pp→ Z.
Eq. (4.3) for this leading process is given by

σ(P1, P2) =
∑
i,j

∫
dx1 dx2 fi(x1, µ

2) fj(x2, µ
2) σ̂(0)

ij→Z . (4.20)
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Figure 3: The CMS rapidity distribution of an on-shell Z boson at the LHC. The LO, NLO, and
NNLO results have been included. The bands indicate the variation of the renormalization and
factorization scales in the range MZ/2 ≤ µ ≤ 2MZ.

range used in the rest of the paper, µF = µR = µ and M/2 < µ < 2M , provides a good
guide to the perturbative uncertainty remaining from the terms beyond NNLO.

In Fig. 5 we present the rapidity distribution for on-shell Z production at Run II of
the Tevatron. The scale variation is unnaturally small at LO; it is 3% at central rapidities,
and varies from 0.1% to 5% from Y = 1 to Y = 2. This occurs because the direction of
the scale variation reverses within the range of µ considered, i.e., dσLO/dµ = 0 for a value
of µ which satisifes MZ/2 ≤ µ ≤ 2MZ . This value of µ depends upon rapidity, leading to
scale dependences which vary strongly with Y . The scale variation exhibits a more proper
behavior at NLO, starting at 3% at central rapidities and increasing to 5–6% at Y = 2.5.
At NNLO the scale dependence is drastically reduced, as at the LHC, and remains below
1% for all relevant rapidity values. The magnitude of the higher-order corrections is slightly
larger at the Tevatron than at the LHC. The NLO prediction is higher than the LO result
by nearly 45% at central rapidities; this shift decreases to 30% at Y = 1.5 and to 15% at
Y = 2.5. The NNLO corrections further increase the NLO prediction by 3–5% over the
rapidity range Y ≤ 2.

This remarkable stability of the rapidity distribution with respect to scale variation
cannot be attributed to the smallness of the NNLO QCD corrections to the partonic cross
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Figure 4.4: On left: LO and NLO diagrams for pp → Z production. In the right:
Rapidity plot from [84].

To add the NLO term, besides taking loops into account, it is necessary to consider
extra quarks and gluons produced in addition to the Z boson. The additional term is
given by pp→ Z+X , whereX is the emitted particle. A pictorial view of the process
is presented in Fig. 4.4 (left). Accounting for the NLO contribution, the cross section
is given by:

σ(P1, P2) =
∑
i,j

∫
dx1 dx2 fi(x1, µ

2) fj(x2, µ
2)
[
σ̂

(0)
ij→Z + αS(µR) σ̂(1)

ij→Z+X

]
.

(4.21)

In the previous sections, we have verified that the expected rate of observation of a
process is related to its cross section, which is linked to observables such as the trans-
verse momentum or the rapidity of a particle. The inclusion of higher order correc-
tions on cross section calculations will thus increase the accuracy of results obtained
for these relevant observables. This can be seen for example in the calculation of the
Drell-Yan cross section for the Z boson decaying into a pair of leptons.

Consider the qq̄ → `+`− process, mediated by a Z boson and a photon. The tree-level
cross section can be calculated [72]:

σ̂(qq̄ → `+`−) =
4πα2

9ŝ
(
Q2
q − 2QqV`Vqξ1(ŝ) + (A2

` + V 2
` )(A2

q + V 2
q )ξ2(ŝ)

)
,

(4.22)

where ŝ = (p1+p2)2, p1 is the four-momentum of the quark, p2 is the four-momentum
of the anti-quark, Qf is the charge of the fermion, Vf = T 3

f − 2Qf sin θw, Af =
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T 3
f , T 3

f = +1/2 for the up-quark/neutrino families and T 3
f = −1/2 for down-

quark/electron families. ξ1 and ξ2 are defined to be:

ξ1(s) =

(√
2GFM2

Z

16πα

)
s(s−M2

Z)
(s−M2

Z)2 + Γ2
ZM

2
Z

(4.23)

ξ2(s) =

(√
2GFM2

Z

16πα

)2
s2

(s−M2
Z)2 + Γ2

ZM
2
Z

where GF is the Fermi constant, α is the electromagnetic coupling, MZ and ΓZ are
the mass and width of the Z boson.

The differential lepton pair cross section dσ̂/dM2
`` can be calculated, and from Eqs. (4.3)

and (4.4) we know that ŝ = x1x2s. Accounting for the different parton probabilities,
the differential cross section is given by

dσ

dM2
``

=
∫ 1

0

dx1dx2

∑
q

[fq(x1)fq̄(x2) + fq̄(x1)fq(x2)]
dσ̂

dM2
``

. (4.24)

To find the consequences of NLO corrections to a relevant observable, it is possible
to find the double differential cross section as a function of the rapidity distribution.
Eq. (4.11) can be written in terms of the parton momentum fraction:

y =
1
2

log
(
x1

x2

)
, and consequently x1 =

√
τ ey, x2 =

√
τ e−y, (4.25)

where τ = M2
``/s. The tree-level double differential cross section is thus

d2σ

dM2
``dy

=
σ0

3s

∑
q

fq(x1)fq̄(x2) + fq̄(x1)fq(x2). (4.26)

Once the next-to-leading order is considered, the double-differential cross section will
have an extra order in αS and divergences should be eliminated for the calculation to
be finite. This is possible through different regularization schemes chosen [72]. For
the process being considered, the (double differential) rapidity distribution is obtained
for the LO, NLO and NNLO for instance by Anastasiou et al [84]. The plot in the
right side of Fig. 4.4, extracted from the analysis of Ref. [84], exhibits such distri-
bution. The bands are larger depending on the uncertainty of the calculation. These
uncertainties are computed by varying both renormalization and factorization scales
within M``/2 < µ < 2M``, where µ = µF = µR.
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From Fig. 4.4 we can notice one feature of these corrections at LHC: the large σNLO/σLO
factor, also known as the K-factor. Besides,

σNNLO
σNLO

<
σNLO
σLO

. (4.27)

A similar statement can be made concerning the uncertainty bands, (which decreases
from LO to NNLO expectations) suggesting that even higher order corrections would
have minimal relevance at the LHC energy scale.

Several tools exist to automatically compute cross sections at leading order of 2→ n

processes. These tools consider only tree-level diagrams, and the phase-space integra-
tion is performed in a region where results are finite. Tools to determine automatically
NLO corrections have a complexity much larger. Because loop computations involve
divergences, it is not so trivial to obtain NLO correction from numerical calculations.
A lot of progress has already been made for the automation of such tools [85, 86, 87],
however, we shall not employ this variation of simulation tools within the present
studies as they are not yet completed or publicly available.

Nevertheless, leading order calculations have proven to give astonishing results. Dis-
tinct leading-order tools focused at different regions of phase-space have shown to
be complementary providing overall very precise results when concerns the shape of
relevant observables. Simulate events employing the correct tools is therefore the ba-
sis for obtaining accurate predictions at hadron colliders. Next, we present some of
these tree-level tools, to subsequently introduce phenomenological analyses focused
on graviton emission processes.

4.3 Monte-Carlo collider simulations

4.3.1 Simulation tools

Usually, hadron collisions can be separated mainly in two categories: hard and soft
collisions. The difference lies on how separated the resulting partons are. Well sepa-
rated partons belong to the first category, whereas collinear partons are included in the
second. Likewise, hadron collisions can be simulated using mainly two approaches,
which are suitable for each category presented above. The first is the matrix element
technique, in which amplitudes are associated to a particular process, allowing for
a cross-section calculation and event generation after the necessary integration over
the phase-space. The second is the parton-shower description that simulates succes-
sive parton splitting, taking into account the emission of QCD radiation and, possibly,
hard scatterings.
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There are several Monte-Carlo software that can be used for both descriptions. For in-
stance, SHERPA [88], CALCHEP [89], COMPHEP [90], MADGRAPH/MADEVENT [91,
92, 93, 94], ALPGEN [95], HELAC [96] or WHIZARD [97] are based on the matrix-
element technique.

To exemplify how simulation within the matrix element technique works, let us use
one of the above matrix element generator: MADGRAPH/MADEVENT. Initially, the
process envisaged to be calculated should be specified, i.e. both initial and final state
particles should be stated. The theory which is likely to be used for the computa-
tion of the processes has to be declared. As a result, MADGRAPH generates the
Feynman diagrams and computes matrix element amplitudes at a randomly chosen
point of phase-space using helicity amplitude routines. The implementation of he-
licity amplitudes and wave-functions have first been performed by the HELAS pack-
age [98, 99, 100, 101] and have recently been automatized [102], as describes Ap-
pendix C. These matrix element amplitudes are subsequently used by MADEVENT,
which computes cross-sections (or decay widths) for the particularly chosen process,
and generates simulated events for hadron colliders.

This approach is very flexible due to the fact that, in principle, any theory or model
of particle physics can be used within the code, once it has been implemented in
the event generator. However, the description is only valid at determined regions of
phase-space, where final-state partons are very well separated from each other.

When protons collide at high energies, there is a large probability that partons will
continue basically in the same direction with small transverse momentum. There is
however some probability that particles with large transverse momentum are generated
from the collision. This is so-called hard scattering, and can be diagrammatically seen
in Fig. 4.5. When the scattering is hard, calculations must be done using perturbative
QCD [72]. The lowest order is the one used in matrix-element simulators described
so far.

Nevertheless, soft processes are more likely to be generated. A emission is soft when
the particle emitted has very a small fraction of the energy of the particle that emitted
it. A particle defined to be collinear when the angle between two particles is very
small, such as they seem to be almost collinear in the literal sense of the word.

In the limit where final-state partons are soft, or collinear, one has to take into account
parton splitting and QCD radiation. These are also refereed as “underlying events” and
encompass events with initial and final state radiations and interactions of remaining
partons of the initial proton. In fact, when a collision happens, partons can interact
with other produced partons (or partons reminiscent from the collision) by radiating
quarks and gluons. These radiated particles can themselves interact with other partons
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Figure 4.5: Pictorial view of a hard-scattering event at the LHC. Illustration based on
Ref. [103].







 
 



 
Figure 4.6: Illustration of a parton branching.

to produce their own QCD radiation. This forms a chain, or a shower of radiating
quarks and gluons, also known as parton shower.

The parton shower approach is a treatment of QCD parton splitting which is a per-
turbative approximation and valid up to the order of some cut-off value. Above this
value, which is usually fixed in terms of the pT of the final particles, the probability
of the splitting is low and the hard scattering approach is more suitable to describe
such process. To briefly summarize how the parton shower approach works [72, 24],
consider the parton branching illustrated in Fig. 4.6. The parton a splits into b and c.
We assume that

t ≡ p2
a � p2

b and p2
c , (4.28)
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Figure 4.7: Illustration of sequential parton splitting.

where t is also known as the virtuality of the incoming parton. The separation angle
between both outgoing partons is θ, and the energy fraction is z:

z =
Eb
Ea

= 1− Ec
Ea

. (4.29)

In the soft and collinear limit, the cross section to describe a N -parton process (σN )
is modified by the splitting of one parton as:

dσN+1 = dσN
αS
2π

dt

t
P̂ba(z)dz (4.30)

where P̂ is the Altarelli-Parisi splitting function [72]. As a consequence, sequential
parton splitting can be simulated.

Suppose multiple parton branching, such as this represented in Fig. 4.7. It can be
shown that the probability of a parton evolving from t′ to t without resolvable radi-
ation, i.e. without emitting other partons above a cutoff ε, is given by ∆(t)/∆(t′),
where ∆(t) is:

∆i(t) ≡ exp

−∑
j

∫ t

t0

dt′

t′

∫ 1−ε

ε

dz
αS(t)

2π
P̂ji(z)

 . (4.31)

The ∆i(t) is the probability summed over all possible processes i → j. It is called
Sudakov form factor and is the basis of Monte-Carlo simulation for the parton-shower
approach. These algorithms employ the Sudakov form factor to control sequential
splittings. They consider the probability of evolving from t1 to t2 without resolvable
radiation:

∆(t2)
∆(t1)

= R (4.32)

where R is a randomly generated number between [0, 1]. If the value of t2 is smaller
than Q2, the next branching should have a fraction z = x2/x1 of the initial momen-
tum and the next splitting should be generated. If this is the case, the probability
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distribution for generating a fraction z of the initial momentum will be proportional
to (αs/2π)P (z), where P (z) is the splitting function. Otherwise, no further split-
ting occurs. One can obtain the fraction of the initial momentum after a splitting by
solving [72]:∫ x2/x1

ε

dz
αs
2π
P (z) = R′

∫ 1−ε

ε

dz
αs
2π
P (z) (4.33)

whereR′ is randomly generated number between [0, 1], and ε is the cutoff for resolv-
able radiation.

This results on a cascade emission of partons up to the step where no more branching
occurs. At this stage, partons are converted into hadrons following a hadronization
description. This is used to simulate the creation of stable particles which will be
the true observed final state at colliders. The hadronized particles will interact directly
with the detector, and the resulting description is described as being “at detector level”.

Different Monte-Carlo simulation tools are also available to simulate events following
the parton shower and hadronization descriptions. These are for instance, PYTHIA [104],
HERWIG [105], and ARIADNE [106].

The choice of which description to use is of course made depending on the pro-
cess to be analysed. Collisions with a significantly low center-of-mass energy, pro-
cesses that include few jets in the final state are very well described by using matrix-
element simulation tools. However, as the parton center-of-mass energy increases,
events with numerous jets in the final state become more likely. It is thus necessary
to take into account the presence of QCD radiation using parton shower simulation.
Because parton-shower approach underestimates the radiation of hard jets, the best
solution is to use both descriptors at the same time. Nevertheless, some care is nec-
essary in the limit where both tools are employed. At this region, one could consider
the same event twice. For avoiding this problem one can use a matching, or merge
scheme [107, 108, 109], which will consistently divide the space-space in two regions
and specify the description to be used. A more detailed explanation on matching
schemes is introduced in the following section.

4.3.2 Matrix-element/parton-shower matching scheme

The idea is to correctly simulate events using Monte-Carlo techniques and account for
jets produced by initial state radiation. Generally, there are two ways of simulating
(N + 1)-jet events: i) requesting a final state with N partons, where hard emissions
could lead to the extra jet, or ii) from (N + 1) partons final state, in which soft or
collinear radiation evolved to generate the extra jets.
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Figure 4.8: Pictorial example of a possible double counting of events with different
multiplicities if the parton shower approach is considered at the same time as the
matrix element technique without the employment of matching scheme. In the first
diagram, it is shown one example for the production of a Z boson in association with
one parton. The diagram in the middle exemplifies the production of a Z boson in
addition to 2-partons final state. Finally the third diagram shows the production of a
Z+1-parton process in which the parton radiates a hard-gluon, resulting on the same
signature as the previous diagram.

As we have previously stated, the necessity of employing both prescriptions to simu-
late events with multiple jets in the final state comes from the fact they act at different
regions of the phase-space. Parton shower descriptions are accurate for collinear/soft
jet emission, but they can easily break down above a given scale where matrix element
approach should be used. However, if both approaches are employed without some
care, we could double count events with different multiplicities. One example of an
event that could be double counted is illustrated in Fig. 4.8. The first diagram shows
the production of a Z boson with one additional parton, which showers. The second
diagram represents the Z boson produced with two partons in the final state. The third
diagram however illustrates the production of a Z boson in addition to one parton
which radiates and creates a hard gluon. Considering both approaches at the same
time would double count events represented by the second and third diagrams. We
have therefore to apply matching techniques in order to define, on an event-by-event
basis, which prescription should be employed.

Different approaches have been proposed to merge the matrix element with parton
shower descriptions. One can cite for instance the CKKW scheme [107, 108] and
the MLM scheme [110, 111]. In general these procedures differ in three main as-
pects: the jet definitions used in the matrix element scheme, the employment of ac-
ceptance/rejection of the jet configuration and in the way that jets are vetoed inside
the parton shower approach. Nevertheless, these approaches are based on a similar
technique, which is basically to divide the phase-space into two regions. The separa-
tion between these regions, let us name it Qmatch, should be expressed in terms of the
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∆R or pT variables specified on the previous section, or of the kT distance defined by
Eqs. (4.16) and (4.17).

Here, we will focus on the MLM approach, using the software MADGRAPH/MADEVENT for
matrix element simulations, and PYTHIA for the parton shower description. To be
more precise, let us describe how the MLM description works. We use the kT algo-
rithm to cluster jets, and we shall follow strictly Refs. [111, 109].

The initial stage is to generate processes with N partons in the final state, i.e. to pro-
duce pp→ X+N -jets samples using the matrix element descriptor. They are defined
following the kinematic cuts:

pT > pminT , |η| < ηmax, ∆Rij > Rmin, (4.34)

where pT and |η| are the transverse momentum and pseudo-rapidity of the final state
partons and ∆Rjj is their minimal separation in the (η, φ) plane. The parameters
with a subscript “min”, or “max” are the generation parameters and must be the same
for all N partons.

The tree structure is set according to the color-flow of the event, and the chosen scales
of αS , using the kT value calculated at each vertex. The factorization scale for the
parton densities is given by the hard scale of the process, i.e. Q2 = m2

X + p2
TX .

Subsequently, the shower is generated by the parton-shower descriptor and evolved up
to the hard scale of the process, which was defined to be Q2. A jet algorithm is then
applied to the partons produced, specifying the final number of jets. These jets are
determined by the following parameters: the cone sizeRclus, the minimum transverse
energy EclusT and the pseudo-rapidity ηclus. To be consistent with the division of the
phase space, and to cover all the available range, it is necessary that Rclus ≥ Rmin ,
ηclusmax ≤ ηmax and EclusT ≥ pminT .

The matching scheme starts now. Beginning from the hardest parton, the closest jet
in the (η, φ) plane is chosen. If the distance between the parton and the center of
the jet is smaller than Rmin, the jet is matched. This matching test is done in order
to match each jet to a parton in the event. If that happens, the event is considered to
be fully matched. Events which are not fully matched are rejected. Also, for events
that pass the matching test, it is additionally required no extra jets to be present. That
will avoid the double counting of the events that are already predicted, and more ac-
curately described, by the N +1 sample. However, for the highest parton multiplicity,
these events are not rejected (considering no such N + 1 sample will be available),
maintaining the full inclusiveness character of the sample.
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It is valuable to state that the distribution of observables should not depend on the
parameters defined on the scheme (such as R, η or Qmatch). Moreover, the transition
from one description to the other should be smooth.

The determination of the parameters used for the matching should depend on the pro-
cess to be calculated. To demonstrate the utility of matching schemes, we shall present
results for the process pp → Z + 0, 1, 2-jets. We use this specific process, since it
is one of the main background channels for the phenomenological analyses that we
present for graviton emission. The Z boson could decay into a pair of neutrinos, and
the signal expected would be missing transverse energy in addition to jets.

The first parameter we need to define is the matching scale. This is not a physical
observable, therefore the results should not depend on it. However, the choice of such
scale should be done smartly, in order to divide coherently the phase-space. If the
cutoff is chosen too low, divergences in the matrix element simulation could appear.
However, if the scale is chosen too high, there could be some regions where the parton
shower would not be able to simulate events.

The intention is to have a smooth transition from one description to the other. The
differential jet rate is the best variable to measure how smooth this transition may be.
This variable is defined as the kT scale at which an event passes from the (N + 1)-jet
to a N jet configuration while the algorithm cluster the showered partons. In reality,
all the matching procedure do is to group showers according to the kT scale chosen:
if the jet is within the kT distance, it belongs to a specific parton and grouped together
with all the jets belonging to the same parton, otherwise it does not. In consequence,
in a transition N + 1→ N , all the events with final number of jets smaller than N + 1
should be below the cutoff, and events with multiplicity equal or larger than N + 1
should lie above the scale chosen. In Fig. 4.9, we present differential jet rate plots
for pp → Z + 0, 1, 2 -jets, where we have used Qmatch = 30 GeV, PYTHIA for the
parton shower simulation and MADGRAPH/MADEVENT for the generation of events
based on matrix element calculation. For the employment of the matching scheme
as well as for the creation of the plots, we have made use of MATCHCHECKER [24],
code designed for the interpretation of matching analyses.

The first graph of Fig. 4.9 shows the 1 → 0 differential jet rate. We can see that the
curves of Z + 1-jet and Z + 2-jets samples are placed above the cutoff, while the
Z + 0-jet sample is placed below. For 2 → 1, we have Z + 2-jets above the Qmatch
scale, while Z + 0-jet and Z + 1-jets situate below. One can see therefore in the three
curves presented, the exact division where the straight pink line lies. In the left side
of the line, mainly events are determined by parton shower approach, and in the right
side using the description based on matrix element amplitudes. There is no need to



72 Chapter 4. The LHC and collision simulations

  

Figure 4.9: Differential jet rates for the process pp→ Z+ 0, 1, 2-jets. The cutoff can
be identified by the straight pink line. The curves in the left of the cutoff are produced
using parton shower simulation. The curves in the right by matrix element simulation.
Here, we can easily see the smoothness of the transitions.
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Figure 4.10: The choice of the Qmatch scale should not modify the shape of any
physical distribution. This statement is demonstrated in this plot of the differential jet
rate of a 2→ 1 transition for different values of the Qmatch scale. The curves shown
are the final result, i.e. the sum of the contribution given by each multiplicity. The
process being considered is Z + 0, 1, 2 jets.

focus at the 3 → 2 differential jet rate, because the transition is given fully by the
parton shower.

As it has been stated, the choice of the Qmatch scale should not modify overall re-
sults, i.e. the shape of the observed distributions. To prove this statement we show in
Fig. 4.10 the differential jet rates for several choices of the cutoff scale. As expected,
the curves lie above each other, predicting the same final result.

Finally, we can show distributions for some relevant observables. For instance Fig. 4.11
exhibits the differential cross section as a function of both the pT of the Z boson (left)
and the pT of the highest energetic jet (right). One can easily see how parton shower
and matrix element descriptions are complementary. At low values for the pT , the
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Figure 4.11: Differential cross section as a function of the pT of the Z boson, left, and
of the pT of the highest energetic jet, in the right. The process being considered is
Z + 0, 1, 2 jets, at the LHC with

√
s = 14 TeV, Qmatch = 20 GeV and CTEQ6L1

PDF.

main contribution comes from lower multiplicities, basically computed through the
parton shower description. As the energy increases, contributions from multiple jets
in the final state become more significant and therefore matrix element description is
more suitable to correctly account for them.

One substantial use of the matching technique is that it predicts very accurate shapes
for distributions. The reason is that besides leading order processes being consid-
ered with the employment of the matrix element description, QCD radiation is taken
into account within the parton shower approach. Therefore, even being a leading or-
der simulation, the matching technique takes into account real emission processes. It
therefore provides very precise shapes of the distributions comparable to NLO predic-
tions. However, NLO calculation are still necessary for the prediction of the K-factors.

In order to verify how precise matching predictions are compared to NLO calcula-
tion for graviton emission processes, we have performed complete phenomenological
analyses. Next chapter will therefore be focused on such phenomenological studies.





Chapter5
Phenomenology of graviton
production

In exact sciences, the word “phenomenology” is employed to relate empirical obser-
vations of phenomena with theories that attempt to describe it. This definition applies
to particle physics as well. Comparison between theory and experiment is achieved
through computer simulations. High-energy events are generated following the prob-
ability distributions expected from a theory, assuming certain initial conditions. Once
the expectations of a particular theory are known, it is easy to test it and to constrain
parameters.

The goal of this chapter is to perform phenomenological analyses on graviton emission
processes at hadron colliders, taking into account theories which have been previously
presented as a possible extension to the SM.

We start with an introductory analysis of graviton emission within processes with
one jet in the final state [112, 113]. The events are characterized at colliders through
its missing transverse energy signal. Two different theories are considered for such
analysis: the theory with one massless graviton (MGM), and the theory with large
extra dimensions (ADD), both presented in Chapter 3. The theory with warped extra
dimensions (RS) is not expected to generate missing energy signature, since the first
mode of the graviton should quickly decay into SM particles. Therefore, we do not
consider it for this specific analysis.

We subsequently present a full phenomenological treatment of graviton emission within
processes with multiple jets in the final state [114]. For the analysis, most types of
theories predicting spin-2 particles are included and separated in three representative
classes. Predictions of most relevant observables using different simulation methods
are displayed, compared and validated against next-to-leading order QCD calcula-
tions.

75
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5.1 Graviton emission in mono-jet searches

The specific four-dimensional model discussed in Chapter 3 is rather different at the
theoretical level from the ADD extra dimensional model. Besides the fact that the
graviton propagator has a different expression for each theory (due to the dependency
of the propagator with the mass of the graviton), gravity could become strong in four
dimensions if there would be a large hidden sector interacting gravitationally with the
SM.

This large hidden sector could contribute to the renormalization group running of
Newton’s constant. In Chapter 3 we have shown that for approximately 1032 new
particles, it would be possible to have Mpl(1 TeV) ∼ 1 TeV. For this reason, at the
effective level of the theory, we could replace the coupling constant of Eq. (3.9) by the
running Planck mass:

κ

2
=

1
Mpl(µ?)

, and Mpl(µ?) ∼ µ?, (5.1)

where µ? ∼ 1 TeV. The masses of the new particles determine the energy scale at
which the running of Newton’s constant starts. We could choose for example mi ∼
100 GeV. If that is the case, most of the running of the Planck mass occurs at the
order of 1 TeV. This suggests that the running of the reduced Planck mass could be
effectively approximated by a step function:

If µ < 1 TeV, Mpl(µ) = 2.4× 1018 GeV, (5.2)

while for µ ≥ 1 TeV, Mpl(µ) ∼ 1 TeV. (5.3)

As a result, the phenomenology expected for the MGM theory is very peculiar, since
strong gravity breaks at the TeV scale for the MGM, while it does not for the ADD
theory.

On the other hand, an infinite tower of KK excited modes of the graviton (coupled
to the SM fields) are expected within the framework of the ADD theory. Subsequent
modes of the graviton should have a mass gap of 1/R, with R being the radius of the
extra(s) dimension(s). For plausible values of R, excited modes of the graviton have
a very compact discrete mass spectrum, i.e. subsequent modes should lie very tight to
each other in absolute values of mass. In order to obtain an effective description of the
full KK graviton tower, it is necessary to sum over all the states, or approximately, to
integrate over the entire range of the mass spectrum. The mass integration is defined
in Eq. (3.40), which results on the (expectation of) observation of one KK graviton
with mass m.
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In both theories, the graviton particle is expected to be identified at hadron collid-
ers as transverse missing energy or momentum. Therefore, our first goal is to make
a phenomenological analysis of processes that include invisible particles [112, 113].
A comparison of the signal against the SM expectation for missing energy, which is
mainly translated into the production of pair of neutrinos, will give us a useful bench-
mark.

One extra motivation to the current phenomenological investigation has been pre-
sented in Section 3.4. We would like to investigate if there are phenomenological
consequences of the propagator discontinuity, even if no discontinuity has been ob-
served with analytical calculations at cross section level. For this reason, we have
chosen to scrutinize graviton production in addition to one-jet in the final state, in-
cluding all the processes discussed in Eqs. (3.78)−(3.83).

Mono-jet (i.e. 1-jet + missing energy) signature is one of the most familiar signal
of several BSM theories, including both scenarios presented here. It will be crucial
therefore to establish whether LHC could differentiate between theories. Moreover,
in case of non-observation of mono-jet signals, one could use data from the LHC to
constrain parameters of both theories. Particularly, it could set a limit on the value of
the scale at which quantum gravitational effects become important.

The production of jets with large ET in addition to a graviton G can emerge from the
parton sub-processes q + q̄ → g +G, q + g → q +G, q̄ + g → q̄ +G, and g + g →
g + G. To simulate and generate events for both theories, we use the matrix element
description through the MADGRAPH/MADEVENT package. The ADD theory was
implemented in MADGRAPH/MADEVENT version 4 by K. Hagiwara et al [99] and is
supported by the package since 2008.

We follow the same strategy to implement the MGM theory according to our necessity.
First, internally to the MADGRAPH code (or more precisely to the HELAS code),
modifications in the graviton wave function routines are made in order to properly
deal with massless spin-2 particles. In addition, helicity routines are modified and
the massless spin-2 particle propagator is added to the code. Finally, a model file
for the MGM is created (including particles, interactions and vertex definitions). In
Appendix A the implementation is detailed, and checks and validation tests that have
been accomplished are displayed.

The running of the Planck mass is implemented with a Heaviside step function in the
cross section. The Planck mass for collisions at the parton level with

√
ŝ > µ? is given

by M(µ?) = µ?, and for less energetic parton level collisions we can approximate
Mpl → ∞. Because it is quadratic in energy, most of the running happens near to
the scale in which gravity becomes strong, µ?. Therefore, the approximation of the
running of the Planck mass by a Heaviside step function can be very accurate.
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The discussion begins with the results from predictions obtained by the MGM theory.

5.1.1 Mono-jet for the MGM theory

As explained, the graviton itself is not detectable and it appears as missing energy.
One could think that if gravity becomes strong at the TeV scale, the Tevatron would
have already felt its effect through Drell-Yan processes. However, in this scenario, the
Drell-Yan process is extreme suppressed since virtual gravitons are decaying into the
large hidden sector, and thus, the main signature would be that of the present analysis.
Nevertheless, this is a very common signature. We expect the SM background to be
dominated by the production of a Z boson (plus a single jet), with the Z decaying
into pairs of neutrinos. We have therefore initially compared our predictions to the
irreducible background process pp(p̄) → ν ν̄ + jet [115, 116, 117] both for the LHC
and Tevatron.

We display results for the number of events expected at the LHC in Fig. 5.1 and at the
Tevatron in Fig 5.2. The analysis is made at the LHC for

√
s = 14 TeV with L=100

fb−1 of integrated luminosity and at the Tevatron for
√
s = 1.96 TeV with L= 1.1

fb−1. The CTEQ6L1 PDF is employed. In order to have the background reduced, we
choose a high-PT cut and require the jet to be central:

LHC: pjetT > 500 GeV, |ηjet| < 3 (5.4)

Tevatron: pjetT > 100 GeV, |ηjet| < 3.

From Fig. 5.1 it is possible to deduce that there is a possibility for the LHC to identify
signals of a massless graviton if µ? < 4 TeV.

The distinctive indication of such theory would be the peak observed at EmissT =
µ?/2. The reason for this specific location of the peak is understood. Let us fix√
ŝ = M0, which is the invariant mass of the final state. The pT of the jet, and

in this case also the ET , is M0
2 sin θ, where θ is the angle of the jet with respect to

the beam. As θ varies, for any fixed M0, the ET changes and can be in the range
0 < ET < M0/2. Now, let us concentrate on the cross section for the graviton
emission processes. AsM0 increases, the cross section should diminish fast due to the
reduced phase space and the rapid decrease in the parton densities. As a consequence,
the cross section will have a maximum value when M0 is minimum. However, in our
case M0 ≥ Mpl(µ?) ∼ µ? below which our cross section is zero by definition. This
leads the ET distribution to have a maximum at µ?/2, as observed in both Figs. 5.1
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Figure 5.1: Number of events per bin considering a luminosity of 100 fb−1. The
background considered is Z(→ νν̄) + jet. Figure extracted from [112].

Figure 5.2: Number of events per bin at Tevatron considering a luminosity of 1.1fb−1.
The background is Z(→ νν̄) + jet. Notice that the y-axis is not displayed using a
logarithmic scale in order to facilitate the analysis. Figure extracted from [112].
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and 5.2. Therefore, the threshold is clearly a consequence from the imposition of the
running of the Planck mass through the Heaviside step function.

From Fig. 5.2 we can infer that the Tevatron reach is quite limited. Combining results
from the figure and these presented by the CDF Collaboration [117], we find that if
µ? ' 500 GeV, experimental hints should already have emerged at Tevatron. This
limit is also obtained when cosmic rays data is used [118]. For µ? > 600 GeV, we
observe that it would be very hard to differentiate the MGM theory from the SM
background.

We now present a comparative analysis of the results obtained with those predicted
for the ADD theory at the LHC.

5.1.2 Mono-jet for the ADD theory

We employ two different techniques to simulate ADD at the LHC. Primarily, a modi-
fied version of the code developed by T. G. Rizzo for a different investigation [119] is
adapted to the present analysis. Results are compared to a MADGRAPH/MADEVENT fully
simulated sample. Same cuts given in Eq. (5.4) are used, and the PDF CTEQ6.6 [120]
is applied.

The results of our direct comparison of the ADD predictions with those of the MGM
theory assuming that Mpl(µ?) = 1 TeV can be found in Fig. 5.3. Here, we observe
that both new physics models predict mono-jet ET distributions which are reason-
ably different in shape. The decreasing curve from MGM mono-jet spectrum above
the
√
ŝ = M? threshold is lighter than the corresponding ADD distributions for any

number of extra dimensions.

Comparing Figs. 5.1 and 5.3, we see the peak in the distributions associated with
the MGM model, arise from the cross section threshold at

√
ŝ = µ?, which are non-

existent for the distributions associated with the ADD theory. In the latter case, theET
distribution decreases monotonically, while the threshold in the MGM model cross
section naturally leads to peak in these corresponding distributions. Therefore, the
threshold would be the main point in distinguishing predictions of these two classes
of models at the LHC. Moreover, because we have an indication of a cutoff in the
cross section at a fixed value of

√
ŝ, this feature could allow us to extract the cutoff

value directly from the LHC experimental data.

Notice from Fig. 5.3 that the parameters of the ADD theory are adjusted so that its
curve starts at the same point as that of the MGM theory. This is done in order to
fairly compare shapes of distributions obtained from both theories. A small difference
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Figure 5.3: The number of mono-jet events expected as a function of the EminT dis-
tribution at the 14 TeV LHC, with L=100 fb−1 of integrated luminosity. A EminT cut
of 500 GeV has been applied as well as the |ηjet| < 3 cut to require the jet to be
central. The yellow histogram is the expected SM background (Z → νν̄), and the red
and higher histograms are for the ADD model with the number of extra dimensions
being 2,3,4, etc. The lower black curve is for the MGM model with µ?=1 TeV. The
parameters of the ADD curves are in each case adjusted by varying their associated
Planck scale to produce the same result as does the MGM model at EminT = 500
GeV, in order to compare the relative shapes for these distributions. Figure extracted
from [113].
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between the black (MGM) and coloured curves (ADD) is observed. It is not a pow-
erful difference that would allow to experimentally differentiate between both BSM
theories. However, both curves lie above the background, and if observed, they would
annunciate possible signals of new physics.

5.2 Graviton emission in multi-jet searches

We have analysed so far phenomenological consequences of graviton emission in
combination with one parton level light jet. However, events with only one jet have a
relatively low probability to appear at the LHC, considering its large center-of-mass
energy. Besides, we have exclusively investigated graviton emission processes in
which the signature is composed of invisible particles. There are however theories,
such as the RS theory, that predict the decay of the spin-2 particle (into a pair of
leptons for example).

Our subsequent goal is therefore to perform a complete analysis on graviton emission
processes, including processes with more than one jet in the final state, and incorporat-
ing a full set of theories that contain different classes of spin-2 particles. Additionally,
we aim on comparing our results against SM background expectations at the LHC and
at Tevatron.

The search for this kind of new physics at the TeV scale is today among the major tasks
of the LHC. Experimental analyses of such signatures require accurate simulations
not only to design efficient signal selection strategies but also to extract information
on new physics parameters, such as masses, coupling strengths, structures and spin.

The main idea is thus to include a wide class of models that involve spin-2 particles,
such as:

• weakly coupled (Planck scale suppressed) massive graviton models, with infi-
nite number of nearly continuously distributed KK modes of the graviton and
the overall integrated effects are significant at the TeV scale, represented here
by the ADD model;

• TeV scale massless graviton models, in which the graviton effects are negligible
below the fundamental scale of quantum gravity, i.e. the TeV scale, due to the
running of the gravitational constant, e.g., in theories with many particles that
interact with the SM particles only gravitationally. Represented here by the
MGM theory;

• strongly coupled (TeV scale) massive graviton models, in which the graviton
KK modes are widely separated. The lowest excitation gets mass at the TeV
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scale and can decay into the SM particles within detectors. This class of theories
is represented here by the RS model.

To show and validate the potential of MADGRAPH/MADEVENT implementation choose
to study the most important signatures in representative models of the three classes
above. For the ADD and MGM models the gravitons couple weakly to the SM parti-
cles and appear as invisible particles at colliders, as previously discussed. The main
searching channel is pp(p̄) → G + jet(s), in which at least one accompanying hard
jet is needed. For the RS model, resonance production pp(p̄) → G is expected, with
G decaying into e+e− or µ+µ− for example. For completeness we additionally con-
sider graviton in mono-jet channel to compare the RS model with the ADD and MGM
results.

Several tools exist nowadays that are able to perform such simulations [121]. Here,
we focus on MADGRAPH/MADEVENT, where a spin-2 particle implementation at
the matrix element level exists [99]. In the appendix A we present the modifications
made on such implementation to incorporate massless spin-2 particles. For the anal-
ysis with multiple jets in the final state, modifications in the massive spin-2 routines
are still necessary in order to obtain a fully automatic event generator. First, MAD-
GRAPH version 4 can only generate Feynman diagrams with up to 4-point vertices,
and for this reason, diagrams containing 5-point vertex (e.g., 4 gluons-graviton) have
to be added by hand. Although it was fine for previous studies on graviton produc-
tion with up to 2 jets [122,123], it is inconvenient for graviton production with higher
multiplicity jets. Secondly, gravitons are densely distributed in the ADD model and
hence, it requires a special treatment for the propagator. These modifications have
been successfully performed and are detailed in Appendix B.

As the parton center-of-mass energy increases, hadron collision events with large jet
multiplicities become more probable. As a result, it is necessary that accurate simu-
lations correctly account for presence of QCD radiation, which could modify leading
order predictions for relevant observables.

Recall that in Chapter 4 it has been explained that there are mainly two approaches
to simulate hadronic collisions: the matrix element technique and the parton shower
approach. In parton shower MC programs like PYTHIA [104] and HERWIG [105],
additional jets are usually obtained in the collinear and soft approximation. Hard and
widely separated jets are poorly described in this approach. On the other hand, tree-
level fixed order calculations can provide reliable predictions in the hard region, while
failing in the collinear and soft limits. For this reason, to correctly take into account
QCD radiation, matrix element simulators must be employed together with parton
shower approach making use of matching description detailed in Section 4.3.2.
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In this study, we use the kT -MLM matching scheme implemented in MADGRAPH/
MADEVENT and interfaced to PYTHIA for parton shower and hadronization. In the kT
matching scheme, matrix element multi-parton events are produced with a minimum
separation kT cutoff, as described in Eq. (4.16) for Qmatch = QME

min. For every event,
the final-state partons are clustered according to the kT algorithm. Only clusterings
corresponding to the Feynman diagrams provided by MADGRAPH are allowed. In
order to closely mimic the behaviour of the parton shower, the kT value for each
clustering vertex corresponding to a QCD emission is used as renormalization scale
for αs in that vertex. For the central hard 2 → 1 or 2 → 2 process, the transverse
mass m2

T = p2
T + m2 of the particle(s) produced in the central process is used as a

factorization scale, as well as a renormalization scale.

Subsequently, this event is passed to the parton shower MC simulator. Before hadroniz-
ing or decaying, the final partons are clustered into jets using the kT algorithm with
a jet cutoff of Qmatch > QME

min. The jets are then compared to partons. If dij(parton,
jet) is smaller than the cutoff Qmatch, they match. The event is only accepted is all
the partons have matched with jets. For events with parton multiplicity smaller than
the highest multiplicity, the number of jets must be equal to the number of partons.

Before establishing our phenomenological analyses, let us present one more detail of
the current investigation. Our aim is equally to compare matched predictions against
NLO calculations. For the RS theory, the leading order process is the zero-jet sample,
since spin-2 particles should decay into a pair of leptons. For ADD and MGM theories,
the leading order process is necessarily the 1-jet sample, because missing transverse
energy cannot not be an observable if there is no visible particle to allow the invisible
to be tagged. Therefore, we start by presenting the investigation carried out for RS
models in fully inclusive samples for pp → G + n-jets, where n = 0, 1, 2. Subse-
quently, exhibit a semi-inclusive analysis for pp → G + n-jets, where n = 1, 2, 3, in
which all three classes of theories presented above are investigated.

5.2.1 Fully inclusive graviton production for the RS theory

The first process to be explored is pp → G + X , where the graviton will eventually
decay into leptons. Let us start the discussion with the NLO-QCD corrections to such
process.

NLO-QCD corrections

In Chapter 4 a brief discussion on NLO-QCD corrections to Z boson production within
the SM has been presented. Currently, we follow the same strategy for the computation
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Figure 5.4: Leading order diagrams for the calculation of graviton emission. The curly
lines represent a gluon, the straight lines a quark or anti-quark, and the double wavy
line represents the graviton.

of NLO-QCD corrections to the production of a spin-2 particle within the RS theory.
We begin with the process P1 +P2 → G+X , where P1 and P2 are the initial hadrons,
and X is an arbitrary hadronic final state.

The QCD hadronic cross section can be expressed as Eq. (4.20). To add NLO terms is
necessary to consider loops and real emission of QCD radiation. Eq. (4.21) represents
the cross section expression including first order terms.

The difference compared to the calculation presented in Section 4.2.2 is that for Z
boson production only quark-anti-quark initial states are relevant, whereas for gravi-
ton production it is necessary to consider also the gluon-gluon initial state. Fig. 5.4
presents the diagrams relevant for the LO process, Fig. 5.5 shows real emission dia-
grams contributing for the NLO calculation and finally Fig. 5.6 exemplifies diagrams
relevant for loop corrections. The diagrams contributing to first order corrections can
be summarized as:

• q + q̄ → G+ g;

• q + q̄ → G (one-loop);

• q + g → G+ q;

• q̄ + g → G+ q̄ ;

• g + g → G+ g;

• g + g → G (one-loop).

We can re-write Eq. (4.21) explicitly for graviton emissions [124, 125, 126]:

σ(P1, P2) =
∑
i,j

∫
dx1 dx2 fi(x1) fj(x2) τ

[
σ̂

(0)
ij→G + aS(µ2

R) σ̂(1)
ij→G+X

]
. (5.5)



86 Chapter 5. Phenomenology of graviton production

Figure 5.5: Real emission diagrams contributing for the NLO calculation of graviton
emission process.

Figure 5.6: Loops diagrams contributing for the NLO calculation of graviton emission
process.
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where σ̂(0)
ij→G ≡ σij0 δ(1 − z) is the Born partonic cross section, aS = αS/4π and

σ̂
(1)
ij→G+X are the contributions from loops and QCD emission. The scaling variables

are:

p1 = x1P1 p2 = x2P2 (5.6)

s = (P1 + P2)2 ŝ = (p1 + p2)2

ŝ = x1x2s = τs, z ≡ M2
G

ŝ
=
M2
G

τs
=
τ0
τ
.

For graviton emission we have:

σ̂(0)
qq =

κ2π

24
δ(1− z); σ̂(0)

gg =
κ2π

16
δ(1− z); (5.7)

σ̂(1)
qq =

2πκ2

9

[(
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π2

3
+ 3 log
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Q

µF

))
δ(1− z) + 4

1
(1− z)+

log
(
Q

µF

)
+

4
(

log(1− z)
1− z

)
+

− (1 + z) log
(
Q2(1− z)2

µ2
F z

)
− 2 log z
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4
3z
− 4z2

3

]
;

σ̂(1)
qg =

πκ2

48
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4
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−7

2
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4
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+ z + z2

)
log
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µ2
F z
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σ̂(1)
gg =

3πκ2

16
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−203

9
+

4π2

3
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44
3

log
Q
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Q
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+ 16
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+

π

32
nf

[
70
9
− 16

3
log
(
Q

µF

)]
δ(1− z);

where nf is the number of quark flavours considered and the “plus distribution” is
defined as:∫ 1

0

dz h+(z) f(z) =
∫ 1

0

dz h(z) (f(z)− f(1)) (5.8)

For the computation of the NLO cross section, we implement a small code based on
Eqs. (5.5) to (5.7). A change of variable is performed to facilitate the integration:

x1 ≡
√
τey; x2 ≡

√
τe−y; τ = x1x2. (5.9)

We find the jacobian and change the integration limits:

∫ 1

τ0

dx1

∫ 1

τ0/x1

dx2 =
∫ 1

τ0

dz
τ0
z2

∫ − log
√
τ0/z

log
√
τ0/z

dy (5.10)
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mG GeV σLO (pb) σNLO (pb) K-factor

91 4.59× 103 8.73× 103 1.90
500 1.97× 102 3.38× 102 1.71
800 5.77× 101 9.67× 101 1.67
1000 2.99× 101 4.95× 101 1.65
1200 1.67× 101 2.74× 101 1.63
1500 0.78× 101 1.25× 101 1.61

Table 5.1: LO and NLO results for the integrated cross section of a graviton emission
process within the RS theory at the LHC with center-of-mass energy of 14 TeV. The
first mode of the graviton couples to the SM fields according to Eq. (3.9). Here, it
is chosen 1

Λ = κ
2 = 3 TeV, µF = µR = mG, nf=5 and employed the CTEQ6L1

PDF [75].

For the leading order distribution, the integral is easy to solve. We present it therefore
as a reference. For instance, the leading order contribution for the gluon-gluon initial
state is exhibited in Eq. (5.7). The cross section is thus given by:

σ(gg/qq̄ → G) =
κ2π

16
τ0

∫ − log
√
τ0

log
√
τ0

dy fi(
√
τ0ey)fj(

√
τ0e−y), (5.11)

where (i, j) = (g, g), (q, q̄), (q̄, q). The integral over partonic fractions presented just
above are also named partonic luminosities.

As a result, we obtain the K-factor for graviton emission within the RS theory. Tables
5.1 and 5.2 display values for the K-factor calculated for different center-of-mass en-
ergy at the LHC. Notice that the factorization and renormalization scales are set to be
the mass of the graviton.

The aim is now to obtain matching predictions for fully inclusive processes and com-
pare the K-factor obtained, defined to be σNLO/σLO, with the normalization factor,
or N-factor, defined to be σNLO/σmatch.

Matching predictions

For the matching scheme we have chosen to use pp → G + n-jets where n = 0, 1, 2
(n = 2 samples are inclusive). The parameters employed for the RS theory are the
same as for the NLO calculation. The analysis has been accomplished for: (a) the
LHC with

√
s = 14 TeV and mG = 1 TeV; (b) the LHC with

√
s = 7 TeV and mG =
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mG GeV σLO (pb) σNLO (pb) K-factor

91.2 1.61× 103 3.21× 103 1.99
500 2.62× 101 4.61× 101 1.76
800 5.24 8.73 1.67
1000 2.18 3.52 1.62
1200 0.99 1.56 1.57
1500 0.34 0.51 1.53

Table 5.2: LO and NLO results for the integrated cross section of a graviton emission
process within the RS theory at the LHC with center-of-mass energy of 7 TeV. The
first mode of the graviton couples to the SM fields according to Eq. (3.9). Here, it is
chosen 1

Λ = κ
2 = 3 TeV, µF = µR = mG, nf=5 and employed CTEQ6L1 PDF [75].
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Figure 5.7: Differential cross section as a function of the differential jet rate for 2→ 1
and 1→ 0

500 GeV; (c) and for the Tevatron with
√
s = 1.96 TeV and both mG = 500 GeV and

(d) mG = 1 TeV. At generation level we have employed Qmatch = 50 GeV, and no
cuts have been used.

First, we make sure the matching is properly working. To this aim we plot the differ-
ential 2→ 1 and 1→ 0 jet rates. Results for the LHC with

√
s = 7 TeV for a graviton

with mG = 500 GeV are displayed in Fig. 5.7. Notice the smoothness of the passage
from when parton shower is employed to when the matrix element technique is used.
All samples both for the Tevatron and the LHC have similar shapes for the differential
jet rate and present as good smooth passage.

Subsequently, in order to exemplify the predicting capability of matching technique,
we present the most relevant distributions at the LHC in Fig. 5.8. These plots exhibit
the differential cross section as a function of its particular observable. The integrated
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Tevatron
mG σLO (pb) σNLO (pb) K-factor σmatch (pb) N-factor

500 GeV 1.039 1.416 1.36 1.059 1.34
1 TeV 0.020 0.031 1.55 0.021 1.52

Table 5.3: K-factor σ(NLO)/σ(LO) and normalization factor σ(NLO)/σmatch for in-
clusive G production in the RS model at the Tevatron, from pp̄ → G NLO QCD cal-
culations and parton shower matching with the matrix elements of pp̄→ G+n jet(s)
with n = 0, 1, 2, Λ = 3 TeV, mG = 0.5 and 1 TeV for

√
s = 1.96.

LHC
mG σLO (pb) σNLO (pb) K-factor σmatch (pb) N-factor

500 GeV 26.238 46.155 1.76 24.642 1.87
1 TeV 23.803 40.316 1.69 24.362 1.65

Table 5.4: K-factor σ(NLO)/σ(LO) and normalization factor σ(NLO)/σmatch for in-
clusive G production in the RS model at the LHC, from pp → G NLO QCD calcu-
lations and parton shower matching with the matrix elements of pp → G + n jet(s)
with n = 0, 1, 2, Λ = 3 TeV, mG = 0.5 and 1 TeV for

√
s = 7 and 14 TeV LHC,

respectively.

cross sections can be calculated, and are displayed in Tables 5.3 and 5.4. We normalize
matched cross sections with leading order values presented in Tables 5.2 and 5.1 for
the corresponding values for the mass of the graviton, which are the underlined row.
Results for both the K-factor (σNLO/σLO) and N-factor (σNLO/σmatch), as well as
the cross sections obtained, are exhibited in Tables 5.3 and 5.4.

Observe that values for the K- factor are very close to the normalization factors (or
N-factors, for short). In fact, the cross section after matching analysis is expected to
be similar to the leading order computed for pp → G. Leading order calculation al-
ready includes the production of extra radiation through the PDFs (parton distribution
functions). However, matching calculation considers explicitly the production of extra
jets in the final state, which leads to a modification on the behaviour of relevant ob-
servables, such as the missing PT , pseudo-rapidity and HT distribution. As a result,
we expect that matched sample, normalized to NLO calculation, will produce better
predictions for observables which involve extra radiation than a pure parton shower
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Figure 5.8: kT -MLM matching results for a pp → G + n-jets with n = 0, 1, 2 full
inclusive sample of the RS model with Λ = 3 TeV. The matched results are given
by the red and blue curves for m1 = 1 TeV at the LHC with

√
s = 14 TeV, and

m1 = 500 GeV at the LHC with
√
s = 7 TeV, respectively. No cuts were applied in

these samples.Figure extracted from [114].
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approach. In order to verify such statement, we follow with a complete analysis of
pp→ G+ n-jets, in which the leading order process is now mono-jet, and the match-
ing is performed up to 3-jets in the final state.

5.2.2 Semi-inclusive analysis for graviton emission processes

For different classes of theories, such as the ADD and MGM, it is more interesting
to explore missing energy signature in combination with jets. We present therefore
a similar investigation to these of the previous section. However, the leading order
process should currently be the emission of one graviton in addition to one jet. An
example of such diagrams are presented in Fig. 3.4 for the quark-anti-quark initial
state. Similar diagrams exist for the gluon-quark and gluon-gluon initial states.

As previously performed, we consider a general theory containing a graviton that cou-
ples to the SM fields following Eq. (3.9) and in which the Feynman rules are displayed
in Fig. 3.1. We summarize the relation between the general parameter κ (explicitly re-
vealed in the lagrangian) and the effective scale of the three representative classes of
theories currently being analysed:

MGM theory
1
Λ
≡ κ

2
=

1
Mpl(µ?)

∼ 1
µ?

(5.12)

ADD theory
1
Λ
≡ κ

2
=

1
Mpl

RS theory
1
Λ
≡ κ

2
=
e+kRπ

Mpl

For the ADD model, one extra integration over KK the mass spectrum is performed
according to Eq. (3.40), which results the effective scale to be of the TeV order.

The implementation of the running of the Planck mass for the MGM theory has been
performed during the generation of the events. The technique to implement the run-
ning has changed from the analysis exhibited in Section 5.1. Previously, we had ap-
plied a cut on

√
ŝ. However, now we have extra jets in the final state. When these extra

jets are soft/collinear, we could get non-physical enhancements below the threshold,
which would have nothing to do with the Q2 of the scattering. A solution would be to
apply a cut in all partonic Mandelstam variables:

√
ŝ,
√
−t̂ and

√
−û. The problem is

that cuts on
√
−t̂ and

√
−û are not physical, and could spoil the infra-red divergence

cancellation when NLO corrections are calculated. We have thus decided to apply a
minimum cut of Hmin

T > M(µ?) ∼ µ? in the sum of transverse momentum of the
jets, which is stronger than the combination of the cuts on Mandelston variables. In
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Figure 5.9: Example of loop diagrams contributing for NLO calculation of the process
pp→ gG.

other words, a Heaviside step function-like behaviour is still added to the cross sec-
tion. However, now for collisions with HT < M(µ?) ∼ µ?, gravity contributions are
so weak that the cross section can be approximated to zero.

To fix the parameters related to the theories, we consider the up-to-date experimental
constraints for each representative class [116, 127, 117, 128, 129, 130]. For the ADD
model, we choose Λ = 5 TeV at the LHC, Λ = 1 TeV at the Tevatron, with δ = 2, 4, 6.
For the MGM model, we set M(µ?) ∼ µ? = 1 TeV and 2 TeV. For the RS model,
we take mG = 1 TeV and 100 GeV, with Λ = 3 TeV. The latter value chosen for the
mass of the graviton is clearly excluded by experimental searches. We have decided
to employ it in order to check how RS theory behaves at low graviton mass limit.
The idea is to check that no strange behaviour comes from the discontinuity of the
propagator.

NLO-QCD corrections

We present the NLO corrections to pp → Gj + X . Such calculation has been per-
formed by several authors, including [122]. Here, we summarize the main aspects.

The NLO calculation for the cross section consists on computing loops and real QCD
emission, as presented in the previous section. The leading order contributions are
now the diagrams represented in Fig. 5.5. Examples of loop diagrams contributing for
this specific calculation are presented in Fig. 5.9. Again, we can separate the calcula-
tion in three parts: the computation of virtual corrections, real emission contributions
and the collinear term. Virtual correction arises from the interference of the born
and one-loop amplitudes. Real-emission contributions appear from the production of
a QCD light jet, and the collinear term is the finite reminder of the factorization of
collinear singularities into the PDFs.
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The authors of [122] have created a code to compute NLO corrections for graviton
emission considering the ADD theory. In [114], we have employed and extended
their code to compute NLO corrections accounting for the three classes of theories.

Concerning the parameters chosen for the calculation, in order to suppress SM back-
grounds in LHC graviton searches [115] we require:

6pT > 500 GeV, |ηjet| < 4.5, and pjetT > 50 GeV. (5.13)

Jets are defined by the kT algorithm, with the resolution parameter set to D=0.6. At
the Tevatron, we require

6pT > 120 GeV, |ηjet| < 1.0, and pjetT > 150 GeV, (5.14)

following the settings considered in a recent CDF study [116, 117]. Notice pjetT is the
minimum pT required for the leading jet. Here, all jets are defined by the kT algorithm
with D = 0.7, and are required to satisfy |ηj | < 3.6 and pjT > 20 GeV. A second jet
with pT > 60 GeV is vetoed.

Again, the SM background considered is the irreducible pp→ ν`ν̄` + jets. The idea is
to use the background as a reference curve. A detailed experimental search would have
to consider other types of processes for the SM background, such as the production of
W boson decaying to a lepton and a neutrino, where the lepton is not tagged.

For the LO/NLO calculations, CTEQ6L1/6M PDFs are employed together with the
corresponding values for the strong coupling αS . The renormalization and factoriza-
tion scales are set to the transverse momentum of the graviton pGT . We vary the scales
in the range between pGT /2 and 2pGT to show the uncertainties related to the scales.

On Tables 5.5 and 5.6 we display LO and NLO values obtained for the integrated cross
section at the LHC and at Tevatron. The K-factor is calculated and also exhibited.

In addition, we have computed the differential cross section as a function of the fol-
lowing distributions:

(a) Transverse missing energy (for ADD and MGM theories) or transverse energy of
the graviton (for RS theory);

(b) Transverse momentum of the first and second highest energetic jets;

(c) Pseudo-rapidity of the the graviton;

(d) Pseudo-rapidity of the first and second highest energetic jets;

(e) The HT distribution, which is defined by Eq. (4.19).
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Before showing and interpreting results obtained for each relevant observable, let us
describe the implementation of the matching scheme.

Matching predictions

Similarly to the NLO calculations, we analyse pp→ G+n-jets, where n = 1, 2, 3 with
the leading order process being n = 1. We employ MADGRAPH/MADEVENT for the
parton-level generation, and shower using the PYTHIA package. In the event gener-
ation with MADGRAPH/MADEVENT, CTEQ6L1 PDF [75] is employed, which fixes
the values of αS at the Z mass. The choices of renormalization and factorization scales
are defined to be the transverse mass of the graviton.

The calculation of the cross section as well as the event generation is performed using
the following matching scales:

LHC QME
min > 45 GeV, Qmatch > 50 GeV (5.15)

Tevatron QME
min > 20 GeV, Qmatch > 30 GeV.

In Tables 5.5 and 5.6 we display the obtained matched values for the integrated cross
section at the LHC and at Tevatron. The N-factor is calculated and exhibited in order
to allow the comparison against the K-factor previously computed.

Comparative analysis and interpretation of the results

Let us start the discussion with a comparative analysis of the values obtained for the
K-factor against N-factor. Tables 5.5 and 5.6 exhibit both values for the three classes
of theories and parameters specified in the beginning of this section. Notice we do not
observe consistent values at the Tevatron as we observe at the LHC. Recall the settings
used to compute such numbers:

kT -MLM matching calculation:

• Process: pp→ G+ n-jets, n = 1, 2, 3.

• Scales: µF = µR =
√
p2
T +m2

G

• PDF: CTEQ6L1
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LHC
σLO (fb) σNLO (fb) K-factor σmatch (fb) N-factor

ADD δ = 2 1.67× 102 2.76× 102 1.65 1.35× 102 2.05
ADD δ = 4 3.83× 101 6.22× 101 1.62 2.67× 101 2.33
ADD δ = 6 1.45× 101 2.36× 101 1.63 9.47× 100 2.49
MGM 1 TeV 2.27× 103 1.08× 104 1.86 6.89× 103 1.56
MGM 2 TeV 7.19× 101 1.52× 102 2.11 9.24× 101 1.64
RS 1 TeV 9.65× 102 1.59× 103 1.65 7.98× 102 1.99
RS 100 GeV 4.72× 103 8.51× 102 1.80 4.70× 103 1.81

Table 5.5: Integrated cross section, K-factor σNLO/σLO and N-factor σNLO/σmatch
for semi-inclusive G production at the LHC with

√
s = 14 TeV, from pp → G NLO

QCD calculations and parton shower matching with the matrix elements of pp →
G + n −jet(s) with n = 1, 2, 3. For the ADD theory, the effective scale is set as 5
TeV, and δ is the number of extra dimensions. For the MGM theory, 1 Tev and 2 TeV
stand for the values chosen for µ?. We consider Λ = 3 TeV for the RS theory, in
which the mass of the first mode of the graviton is either mG = 0.1 or mG = 1 TeV
respectively.

Tevatron
σLO (fb) σNLO (fb) K-factor σmatch (fb) N-factor

ADD δ = 2 5.22× 102 6.39× 102 1.22 2.66× 102 2.40
ADD δ = 4 1.82× 102 1.77× 102 0.97 7.16× 101 2.47
ADD δ = 6 8.24× 101 6.91× 101 0.83 3.59× 101 1.92
RS 1 TeV 1.91× 10−1 1.20× 10−1 0.62 6.17× 10−2 1.95
RS 100 GeV 2.31× 102 3.37× 102 1.46 1.95× 102 1.73

Table 5.6: Integrated cross section, K-factor σNLO/σLO and N-factor σNLO/σmatch
for semi-inclusive G production at the Tevatron with

√
s = 1.96 TeV, from pp̄ →

G+ j NLO QCD calculations, and parton shower matching with the matrix elements
of pp → G + n −jet(s) with n = 1, 2, 3. For the ADD theory, the effective scale
is set as 1 TeV, and δ is the number of extra dimensions. There is no reason for
the computation with the MGM theory, since it has been proved not possible to be
detected at the Tevatron. We consider Λ = 3 TeV for the RS theory, in which the mass
of the first mode of the graviton is either mG = 0.1 or mG = 1 TeV respectively.
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Figure 5.10: The differential cross section as a function of the partonic center-of-mass
energy

√
ŝ for the process pp̄ → Gg considering the RS theory at the Tevatron. This

plot demonstrates separately each sub-process contribution. The analysis is performed
with mG = 1 TeV, Λ = 3 TeV and the cuts: pjet

T > 150 GeV and |ηjet| < 1.

NLO/LO calculation:

• Process: pp→ G+ 1-jet (+ 1 jet for NLO).

• Scales: µF = µR = pGT

• PDF: CTEQ6L1/CTEQ6M

In Chapter 4 we have seen that depending on the collider, different processes can
have different differential luminosity contributions. From Fig. 4.2 it is possible to
realize that at the LHC the sub-process that contribute the most for graviton emission
is gg → Gg. At Tevatron this is not true. From Fig. 5.10 we can see that the most
contributing sub-process is qq̄ → Gg, which carries a large Bjorken |x| (equal or larger
than 0.5). For large values of |x|, the valence quarks, which are dominating, become
smaller at NLO. This results in a NLO PDF different from the LO PDF. Notice that
in our calculation, we have employed NLO PDF for NLO calculation, and LO PDF
for LO calculation. If we also take into account the difference in αS used to compute
NLO and LO cross sections, it will be reasonable to obtain a smaller value for the
NLO cross section. This is the cause for such small values obtained for the K-factor
at Tevatron.

Now, let us concentrate on the N-factors for the Tevatron samples. Notice they are
of order 2 for a heavy graviton, due to the factorization and renormalization scales
chosen for the NLO/LO and matching calculation. For light graviton production, no
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σ(µF = µR = pGT ) σ(µF = µR = mG
T ) Ratio

LHC 0.957 pb 0.803 pb 1.19
Tevatron 0.203 fb 0.087 fb 2.33

Table 5.7: Results for the integrated cross section obtained from the LO process pp→
Gg within the RS theory for mG = 1 TeV and Λ = 3 TeV. At the LHC it has been
employed pjet

T > 500 GeV, and |ηjet| < 5 cuts and at Tevatron pjet
T > 150 GeV, and

|ηjet| < 1. The PDF is set to CTEQ6L1.

difference at the cross section level is expected because the scales chosen for kT -MLM
matching and NLO/LO are similar, i.e.

(
pGT
)2 ' (mG

T )2 = (pT )2
G + m2

G. However,
for heavy graviton

(
pGT
)2
< (m2

T )2.

This can be easily observed if we perform a brief validation check in which we com-
pute values for the LO cross section of the process pp → Gg within the RS theory.
The idea is to employ these two different scales in the calculation both at the LHC and
Tevatron, and compare results obtained. The cuts applied within the analysis are the
following:

LHC pjet
T > 500 GeV, |ηjet| < 5, CTEQ6L1. (5.16)

Tevatron pjet
T > 150 GeV, |ηjet| < 1, CTEQ6L1.

Table 5.7 presents the outcome. At the LHC we have a factor of approximately 1.2
for the ratio σ(pGT )/σ(mG

T ). At Tevatron this ratio is much higher: 2.3. Notice that
the ratio between both scales can be interpreted as N-factor/K-factor ratio of our real
analysis.

From both Tables 5.5 and 5.6 we obtain N-factor/K-factor ∼ 1.2 for the LHC, and a
larger ratio of approximately 2.5 at the Tevatron for the heavy graviton cases. These
results demonstrate the reason why we obtain different values for the K-factor and N-
factor for the current semi-inclusive analysis. They also demonstrate the consistency
of our results.

Distributions of relevant observables

Figs. 5.11 to 5.16 exhibit the differential distributions for the comparison between
NLO-QCD calculation and matrix element-parton shower matching.
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Figure 5.11: NLO/matching comparison for the ADD model at the LHC (
√
s = 14

TeV) with Λ = 5 TeV. The NLO results are given by the red, green and purple bands
for δ = 2, 4, 6, respectively. Matched results are given by the black curves in which
we employ the same parameters as the for the NLO. The dominant Z → νν̄ back-
ground is also shown as a reference by the blue curve. The kT -MLM matched curves
are normalized by the NLO results, and the normalization factors can be found in
Table 5.5. Figure extracted from [114].
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Figure 5.12: NLO/matching comparison for the ADD model at the Tevatron (
√
s =

1.96 TeV) with Λ = 1 TeV for δ = 2, 4, 6. The matched curve is normalized by the
NLO results and the normalization factors can be found in Table 5.6. Figure extracted
from [114].
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Figure 5.13: Graviton mass distribution at the LHC (left) and Tevatron (right) for the
ADD model with δ = 2, 4, 6, respectively. The NLO results are shown by the red,
green and purple bands, and the matched ones are shown by the black curves. Figure
extracted from [114].

We start with a discussion of the results of the ADD theory. From Fig. 5.11, one can
immediately see that the shapes obtained with NLO and kT -MLM matching agree
quite well for the pseudo-rapidity of the leading jet and the graviton and for the trans-
verse missing pT . For the pT distributions of the first jet, the agreement is satisfactory
for large pT & 800 GeV region, while for pT ∼ 500 GeV, NLO curves quickly de-
crease and become unreliable. That is due to the cut on the minimum 6 pT , which
leads to inconsistency on p1stjet

T lower bound at LO and NLO calculations, while the
matching technique gives reliable results. The same argument also applies for HT

distributions when HT ∼ 500 GeV. However, at large HT & 1500 GeV, the kT -MLM
matching tends to give harder distributions, because the contributions from the matrix
elements of G+ 3 partons are also included, while this is not true for NLO.

Fig. 5.12 presents similar results for the Tevatron. Because the energy scale of the
Tevatron is much smaller, the agreement is in general much better.The reason is that
the contribution from more hard jet emission included with matching does not play an
important role for such low center-of-mass energy.

Finally, recall that the infinite sum of KK gravitons in the ADD model has been con-
sidered as an extra integral over the mass states. The mass of the experimentally
expected graviton would therefore be given by a distribution instead of one specific
value. In Fig. 5.13 we show the results for the graviton mass distribution. If the mass
of the graviton would be an observable, one could easily constrain the number of ex-
tra dimensions using these distributions. That is because the average for the graviton
mass depends on the number of extra dimensions. The larger it is the mass, more extra
dimensions are predicted.
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Fig. 5.14 presents results for the MGM model at the LHC. Similar distributions for the
Tevatron are out of reach for M(µ?) = 1, 2 TeV (and excluded for smaller values),
therefore the corresponding results are not shown. We apply here the running of the
Planck mass cut: Hmin

T > M(µ?). One can see a turning point in the distributions
of the leading or second jet pT and transverse missing pT due the cut. The NLO
and matched results agree quite well on shapes for distributions of pseudo-rapidity
of the leading jet and graviton, transverse missing pT and HT of the jets. For the
second jet pT distribution, kT -MLM matching gives a considerably different shape
when compared to the NLO calculation, especially for M(µ?) = 2 TeV case. For the
leading jet distribution, the NLO and matched results for the LHC agree well for large
pT &M(µ?)/2, while for pT .M(µ?)/2, the NLO curves are unreliable, again due
to the inconsistency on p1stjet

T lower bound at LO and NLO calculations.

Finally, Figs. 5.15 and 5.16 present results for the RS model at the LHC and Tevatron.
This analysis aims at a fare comparison between all classes of models. In reality, RS
graviton is expected to decay and graviton distributions would have to be re-drawn as
a functions of its decay products. However, theoretically, distributions of the graviton
should be similar to the ones obtained by the system formed by its decay products.
Therefore, we can use all distributions (displayed in Figs. 5.15 and 5.16) in a compar-
ative analysis against ADD and MGM theories.

Here, the agreement between the NLO and matched results is again much better at the
Tevatron than the LHC for the same reasons pointed for the ADD theory. Also, kT -
MLM matching tends to give harder HT distributions especially for large HT & 1500
GeV due to the fact one extra jet is considered for matching when compared to NLO
calculation.

To conclude, allow us to perform one final analysis. In multi-jet final states, observ-
ables exist that can be subject to large NLO QCD corrections at TeV scales [131].
The HT or the PT of the leading jet distributions are examples of such observables.
They are sensitive to the opening of new channels with new kinematic topologies at
NLO, which are enhanced by parton distribution effects or by special kinematic con-
figurations (leading to large logarithm terms). One could imagine that higher order
corrections would be dominant and for this reason not trust the perturbative series. In
fact, one can easily show that this is not the case for more inclusive quantities. This be-
haviour is due to the choice of the specific observable. In any case, the effects in some
specific region of the phase space can be large and need to be accounted for. Here, we
show that samples with multiple jets in the final-state with kT -MLM matching provide
a reliable description also of this kind of effects.
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Figure 5.14: NLO/matching comparison for the MGM model at the LHC. The NLO
results are given by the red and green bands for M(µ?) = 1, 2 TeV, respectively.
The matched results are given by the black curves with the same parameters as for
the NLO ones. The dominant Z → νν̄ background is also shown as a reference by
the blue curve on the 6 pt distribution. The kT -MLM matched curves are normalized
by the NLO results, and the normalization factors can be found in Table 5.5. Figure
extracted from [114].
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Figure 5.15: NLO/matching comparison for the RS model at the LHC with Λ = 3
TeV. The NLO results are given by the red and green bands for mG = 1 TeV and 100
GeV respectively. The matched results are given by the black curves with the same
parameters as for the NLO ones. Matched curves are normalized by the NLO results,
and the normalization factors can be found in Table 5.5. Figure extracted from [114].



5.2. Graviton emission in multi-jet searches 105

-1 -0.5 0 0.5 1
1x10-2

1x10-1

1

1x101

1x102

NLO results Mg = 100 GeV
NLO results Mg =1 TeV
Matched results

RS @ Tevatron

dσ
/d
η
[1

st
 j
et

]  
(f

b/
G

eV
)

η[1st jet] (GeV)

-2 -1 0 1 2
1x10-3

1x10-2

1x10-1

1

1x101

1x102

1x103 NLO results Mg = 100 GeV
NLO results Mg = 1 TeV
Matched results

RS @ Tevatron

dσ
/d
η
[G

ra
vi

to
n]

 (
fb

/G
eV

)

η[Graviton] (GeV)

150 200 250 300 350 400 450 500

0

1x10-5

1x10-4

1x10-3

1x10-2

1x10-1

1

1x101

NLO results Mg = 100 GeV
NLO results Mg = 1 TeV
Matched results

PT
[Graviton] (GeV)

dσ
/d

P T
[G

ra
vi

to
n]

 (
fb

/G
eV

)

RS @ Tevatron

150 200 250 300 350 400 450 500

1x10-6

1x10-5

1x10-4

1x10-3

1x10-2

1x10-1

1

1x101

NLO results Mg = 100 GeV
NLO results Mg = 1 TeV
Matched results

dσ
/d
H
T 

(f
b/

G
eV

)

HT (GeV)

RS @ Tevatron

150 200 250 300 350 400 450 500
0

1x10-5

1x10-4

1x10-3

1x10-2

1x10-1

1

1x101

NLO results Mg = 100 GeV
NLO results Mg = 1 TeV
Matched results

PT
[1st jet] (GeV)

RS @ Tevatron

dσ
/d

P T
[1

st
 j
et

]  
(f

b/
G

eV
)

Figure 5.16: NLO/matching comparison for the RS Model at the Tevatron with Λ = 3
TeV, for mG = 100 TeV and 1 TeV, respectively. The matched curve is normalized
by the NLO results and the normalization factors can be found in Table 5.5. Figure
extracted from [114].
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Figure 5.17: NLO/matching comparison for the RS Model at the LHC withmG = 100
GeV and Λ = 3 TeV with jet cuts |ηjet| < 4.5 and pjet

T > 50 GeV, and graviton cut
pGT > 50 GeV. Here we show the appearance of very large K-factors explicitly ob-
served in some observables such as the p1stjet

T and HT distributions. Figure extracted
from [114].

In Fig. 5.17 we display some illustrative plots. For simplicity, we consider the RS
model at the LHC with Λ = 3 TeV and mG = 100 GeV, with jet cuts |ηjet| < 4.5 and
pjet
T > 50 GeV, and graviton cut pGT > 50 GeV. Comparing the LO and NLO curves,

it is possible to notice the appearance of very large K-factors, especially at large pGT ,
leading jet pT and HT . As a result, we can see that the matched samples describe
extremely well the NLO shapes.

Let us now summarize the main aspects and findings within the current study. We
have presented a detailed comparison between predictions from NLO QCD calcu-
lations and the tree level matrix-element matching with parton showers in the con-
text of three representative theories featuring a graviton: ADD, RS and MGM. This
study validates and motivates the use of a fully automatized event generator such as
MADGRAPH/MADEVENT including spin-2 particles and multi-parton jet matching
for LHC simulations.
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In ADD and MGM theories, the graviton appears as missing energy while in RS model
it may be observed through its decay products. The fully inclusive samples have
been normalized to the corresponding NLO inclusive total cross sections for producing
G + X , which has been presented in details. Subsequently, key distributions for the
most relevant observables involving one or more jets have been compared to those
obtained by the NLO calculationG+jet+X . We have observed a complete agreement
in shape, as well as in normalization, between the distributions obtained with NLO
and kT -MLM matching calculations at the LHC. At Tevatron, values obtained for the
normalization factors are very different from K-factors. This could be explained by
the distinct PDFs used for NLO and MLM-matching calculations in addition to the
scale definitions employed for each analysis. Finally, we note that observables which
are sensitive to the number of jets, such as the HT are better described by the matched
sample than a fixed-order calculation.





Chapter6
Gravitino production at the LHC

In Chapter 2 we have presented several reasons to expect new physics at the TeV scale.
One of these is the hierarchy problem, explained in Section 2.4.1. Supersymmetric
theories can naturally solve such issue, and at the same time, shed some light on
different SM shortcomings, providing for example candidates suitable for being a dark
matter particle.

We start with a simple description of how quadratic divergences arise in the SM, and
the possible solution for the hierarchy problem provided by Supersymmetric theories.
We subsequently characterize such theories and describe some of its main branches.
Finally, phenomenological analyses for the production of specific super-particles are
exhibited.

6.1 Supersymmetry and the hierarchy problem

In the SM, quadratic divergences emerge when corrections to the Higgs propagator are
calculated. More precisely, in Section 2.4.1 we have demonstrated such calculation for
a toy-model containing one fermion and one scalar particle. Recall that the correction
of the mass of a scalar particle from fermionic loops is given by Eq. (2.32). For a
theory with Nf identical fermions, we have:

δm2
s = −

λ2
fNf

8π

[
Λ2 − 6m2

f log
Λ
mf

+ 2m2
f + ...

]
+O (1/Λ2) , (6.1)

where δm2
s is the correction for the mass of the scalar particle. In the SM, the Higgs

receives such corrections from fermionic particles in the loop. Notice that these cor-
rections are quadratically divergent, causing the hierarchy problem.

One could think, however, that new and not-yet-observed particles exist, and must be
taken into account when corrections to the Higgs mass are computed.

109
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(a) (b)

Figure 6.1: Illustration of loop corrections from new scalars on the calculation of the
Higgs propagator.

Assume a SM-like theory, where fermions are coupled to the scalar field φ:

Lf = −λf ψ̄ψφ (6.2)

The symmetry is broken and we take φ = (v+h)/
√

2, being h the Higgs boson. Sup-
pose for instance that a number Ns of new scalar fields φi exist, where i = 1, 2, ..., n.
They couple to the Higgs field following the lagrangian [132, 133, 134, 30]:

L =
n∑
i

|∂µφi|2 −m2
φi |φi|2 − λs|h|2|φi|2 − 2vλsh|φi|2. (6.3)

Notice that for simplicity, the coupling λs is the same for new scalar fields.

When computing corrections to the Higgs from the loops of new particles, as illus-
trated on Fig. 6.1, again divergences are encountered. Contributions from the quartic
coupling, which are exhibited in Fig. 6.1 (a), are:

[
δm2

h

]
(a)

= −λsNs
16π2

[
Λ2 −

∑
i

2m2
φi log

(
Λ
mφi

)]
+O (1/Λ2) . (6.4)

Combining Eqs. (6.1) and (6.4) we already observe that if we chose Nf = 2Ns and
−λs = λ2

f , the quadratic term in Λ cancels. The sign difference between corrections
computed from the fermionic and scalar fields on the loop enable such cancellation.

Contributions from the diagram displayed in Fig. 6.1 (b), can be written as

[
δm2

h

]
(b)

= −λ
2
sv

2Ns
16π2

[
−1 +

∑
i

2 log
(

Λ
mφi

)]
+O (1/Λ2) . (6.5)

Combining all contributions, we observe a complete cancellation of the divergences
if we appropriately choose the coupling constants and the masses for the new scalars



6.2. A brief introduction to the MSSM 111

and SM fermions to be the same:

δm2
h =

λ2
fNf

4π2

[
(m2

f −m2
s) log

(
Λ
ms

)
+ 3m2

f log
(
ms

mf

)]
+O (1/Λ2) , (6.6)

where we have assumedNf = 2Ns, λ2
f = −λs andmφi = ms. Therefore, if we have

a theory with two scalar particles associated with each fermion existing in the SM, no
divergences are encountered. In other words, the problem of quadratic divergences of
the SM is solved if the theory becomes Supersymmetric.

In a Supersymmetric theory, new scalar fields are associated with SM fermionic fields,
and new fermionic fields are associated with the existing (SM) bosonic fields. In
the next section we present an introduction to the Minimal Supersymmetric Standard
Model (MSSM) and specify the particle spectrum of the theory. Here, we have briefly
demonstrated how the addition of new particles could generate the cancellation of
divergences that appear on the calculation of corrections for the mass of the Higgs
boson.

6.2 A brief introduction to the MSSM

Supersymmetry, or SUSY for short, is a symmetry that transforms bosonic states into
fermionic states and vice-versa. It is therefore an operator Q which performs the
transformations:

Q |Boson〉 = |Fermion〉 , Q |Fermion〉 = |Boson〉 . (6.7)

The operator Q must be an anti-commuting spinor. For generating a consistent SUSY
theory with chiral fields (necessary due to the existence of SM fermions), Q and its
hermitian conjugate Q† must satisfy the following algebra [135]:

{Q,Q†} ∝ Pµ; {Q,Q} = {Q†, Q†} = 0; [Pµ, Q] = [Pµ, Q†] = 0. (6.8)

Pµ is the four-momentum generator of space-time translations.

In the SM, we identify elementary particles with irreducible representations of the
Poincare group. The irreducible representations of the SUSY algebra are not parti-
cles, but supermultiplets that contain both the SM corresponding fields and its super-
partners. Therefore, field members of the same supermultiplet should have equal
masses and be in the same representation of the gauge group.
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Superfield SU(3) SU(2) U(1) Particle content
SM-like super-partner

Q̂ 3 2 1
3

(
uL

dL

) (
ũL

d̃L

)
Û 3̄ 1 − 4

3 ūR ũ∗R
D̂ 3̄ 1 2

3 d̄R d̃∗R

L̂ 1 2 −1

(
νL

eL

) (
ν̃L

ẽL

)
Ê 1 1 2 ēR d̃∗R

Ĝa 8 1 0 ga g̃a

Ŵ i 1 3 0 W i w̃i

B̂ 1 1 0 B b̃

Ĥu 1 2 +1

(
H+
u

H0
u

) (
H̃+
u

H̃0
u

)

Ĥd 1 2 −1

(
H0
d

H−d

) (
H̃0
d

H̃−d

)

Table 6.1: The particle content of a minimal supersymmetric theory. In the first block,
we present the chiral supermultiplets of the MSSM. Super-partner of the SM fermions
are named sfermions (i.e., sup, sdown, selectron, etc). The first generation of SM
fermions are shown, while the existence of the second and third generations are im-
plicit. In the second block, we present vector multiplets with their particle content:
the SM gauge bosons and their corresponding super-partners name gluino, wino and
bino. Finally, in the third block the Higgs content of MSSM is exhibited.

6.2.1 Particle content of the MSSM

The Minimal Supersymmetric Standard Model, or MSSM, retains this name because it
respects the same gauge symmetries of the SM: SU(3)×SU(2)×U(1). The particles
necessary to construct such theory are the same as these of the SM, in addition to their
super-partners.

A summary of the supermultiplets with symmetries explicitly displayed and their cor-
responding particle content is exhibited on Table 6.1. Chiral supermultiplets are only
specified for the first generation. The existence of the second and third generations is
implicit.
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As a consequence of the SUSY transformation, SM fermionic particles should have
scalar super-partners (both included in the chiral supermultiplet), and SM bosonic
particles should have fermionic super-partners (included in the vector supermultiplet).
Furthermore, super-partners should have the same mass and quantum numbers as their
corresponding SM particle. For example, the super-partner of the electron, the selec-
tron, should have a mass of approximately 0.51 MeV and have the same electric charge
as the electron. If it existed, it should have already been detected. Because as of to-
day none of these super-partners have been experimentally observed, if the world is
supersymmetric, SUSY must be broken.

In the SM, fermionic masses are generated from yukawa terms as it is exhibited in
Eq. (2.28). However, the term −λuQ̄Lφ̃uR is not allowed in SUSY theories, since
the superpotential should only involve superfields with left-handed fermion compo-
nents and not their conjugates in order to prevent from chiral anomalies1 [134, 136].
To create such term, which is relevant for the generation of the mass of part of the
SM fermions, another Higgs doublet is necessary to be added to the supersymmetric
lagrangian. Therefore, the MSSM theory has two Higgs doublets: Ĥu and Ĥd. The
most general super-potential can be described by [135]:

W = ÛyuQ̂Ĥu − D̂ydQ̂Ĥd − ÊyeL̂Ĥd + µĤuĤd, (6.9)

where all the gauge and family indices are suppressed. Other gauge invariant terms
could be part of the super-potential. However, these would violate lepton and/or
baryon number conservation. A new symmetry, R-parity, is therefore imposed in the
MSSM:

PR = (−1)3(B−L)+2s, (6.10)

where B and L are the baryon and lepton numbers, s is the spin of the particle and
PR is the quantum conserved quantity. Terms in the lagrangian are only allowed if
the product of the PR of all the fields (within the specific term) is +1. One can check
that this is always true for each term of Eq. (6.9). Notice all the SM particles and the
Higgs bosons have PR = +1, while all the super-partners have PR = −1.

The consequences of the introduction of R-parity are several. For instance, since
every vertex of the theory necessarily has an even number of super-particles, they
will always be produced in pairs. Therefore, the lightest super-particle (LSP) should
be stable and is thus a good candidate for dark matter. As one can see, through the

1To obtain chiral fermions in SUSY theories, right-handed fermion fields are defined to be the complex-
conjugate of the left-handed fermion fields (φj R = φi

L). Similarly, their scalar super-partners are defined
to be their complex-conjugate (φ∗j and φi). Since the super-potential only involves φi, one Higgs doublet
will not generate mass for all the particle spectrum related to the SM.
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imposition of the R-parity symmetry, the MSSM provides a natural solution for the
dark matter problem of the SM.

From Eq. (6.9), it is possible to write the classical scalar potential for the Higgs [135]:

V =
(
|µ|2 +m2

Hu

) (
|H0

u|2 + |H+
u |2
)

+
(
|µ|2 +m2

Hd
)(|H0

d |2 + |H−d |2
)

+

+
(g2 + g′ 2)

8
(
|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−d |2
)2

+ (6.11)

+
g2

2
|H+

u H
0∗
d +H0

uH
−∗
d |2 +

[
b
(
H+
u H

−
d −H0

uH
0
d

)
+ c.c.

]
.

Notice we have two couplings g and g′, and the potential should give raise to vu and
vd, the vev of both Ĥu and Ĥd.

One can count the degrees-of-freedom of the theory. Before the symmetry breaking,
the theory contains two complex Higgs fields, summing eight degrees-of-freedom.
When the symmetry is broken, SM gauge fields absorb three degrees-of-freedom to
become massive. Five degrees are left to “new fields” that arise from the Higgs boson:
two charged Higgs H±; a CP-odd neutral Higgs A0; and two CP-even neutral Higgs
h and H .

As a result from the SUSY symmetry breaking, higgsinos and gauginos mix giving
rise to: i) four supersymmetric neutral mass eigenstates, the neutralinos; and ii) two
charged mass eigenstates, the charginos. A summary of the particle content (mass
eigenstates) is presented in Table 6.2.

6.3 Supergravity: the goldstino and the grav-
itino

6.3.1 Gauge mediated supersymmetry breaking

As of today, there is no dynamical way to break SUSY which is completely adequate.
Supersymmetry is usually broken by hand, and several mechanisms exist to enable
spontaneous breaking. Here we briefly discuss the so-called gauge mediated SUSY
breaking (GMSB) scenario.

In these types of models, a small extension to MSSM is necessary. It is assumed that
SUSY breaking occurs in a hidden sector, also known as the secluded sector. The SM
particles and their super-partners are fixed in the visible sector. The communication
between both sectors are made through the particles contained in the messenger sector,
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Names spin Mass eigenstates

Higgs bosons 0 h0, H0, A0, H±

squarks 0 ũR, ũL, d̃R, d̃L

s̃R, s̃L, c̃R, c̃L

t̃1, t̃2, b̃1, b̃2

sleptons 0 ẽR, ẽL, ν̃e

µ̃R, µ̃L, ν̃µ

τ̃1, τ̃2, ν̃τ

neutralinos 1/2 χ̃0
1, χ̃

0
2, χ̃

0
3, χ̃

0
4

charginos 1/2 χ̃±1 , χ̃
±
2

gluino 1/2 g̃

Table 6.2: The particle content (mass eigenstates) of the MSSM [135] explicit for
the SUSY and the Higgs sectors. Notice the gauge eigenstates of the third genera-
tion of quarks and leptons are different from the mass eigenstate, therefore these are
represented with numerical indices.

usually being one singlet field in addition to fields with SU(3)L × SU(2)L × U(1)Y
quantum numbers. Soft SUSY breaking terms2 arise from loop interactions involving
the messenger particles. This is convenient because it provides an automatic and natu-
ral suppression of terms with flavour change neutral currents and CP-violation, which
are strongly constrained by experiments.

In the MSSM the supersymmetry breaking is introduced explicitly. Goldstone bosons
are thus generated, and are eaten to give mass to bosons. For global SUSY, the broken
generator is fermionic, so the Goldstone boson in this case should have spin-1/2 and
is usually named goldstino.

The goldstino is the eigenstate of the fermion mass matrix in which the eigenvalue
is zero. The derivation of the goldstino interacting lagrangian depends on the super-
current conservation and it is independent from the details of how the supersymmetry
breaking is communicated to the visible sector [135, 137, 138]. We shall not discuss
more theoretical aspects of the theory, it is enough to know that the appearance of the
goldstino is provided by the breaking of a global symmetry. If SUSY is a local sym-
metry, the gravitino will be the field associated to the invariance of such symmetry.

2Soft breaking terms are these added to the MSSM lagrangian (in order to enable spontaneous symmetry
breaking) that do not create new divergent contributions to the mass of the scalar particles such as the Higgs.
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6.3.2 The super-Higgs mechanism

The SUSY theory invariant under local transformations is named Supergravity [139,
140, 141, 142]. In this type of theories, the gravitino has spin 3/2 and is the super-
partner of the graviton.

In order to see explicitly how local symmetry necessarily implies gravity, let us con-
sider the lagrangian of a scalar field φ and its fermionic super-partner χ [143]:

L = −(∂µφ∗)(∂µφ)− 1
2
χγµ∂µχ. (6.12)

The lagrangian is invariant under global transformations:

φ→ φ+ εχ, (6.13)

χ→ χ− i σµ ε̄ ∂µφ,

but is not invariant under local transformations ε→ ε(x). To maintain the invariance,
a field has to be introduced (similarly to what happens in the SM, where gauge fields
Aµ are generated from the invariance of a local symmetry). An extra term LK must
thus be added to the lagrangian:

LK =
1
Mpl

Kα
µ ψ

µ
α, (6.14)

where Kα
µ ≡ −∂µφ∗χα − i/2χβ(σµσ̄ν)αβ ∂νφ

∗, and ψ is a Majorana fermion with
spin-3/2 that transforms like

ψµα → ψµα +Mpl ∂
µεα. (6.15)

The problem is that the sum of both lagrangians L+LK is not yet invariant. It has an
extra contribution which is proportional to the energy-momentum tensor. However,
this contribution can be cancelled if we add the term Lg:

Lg = −gµνTµν . (6.16)

The transformation of the tensor field is

gµν → gµν +
1
Mpl

ψµγνε, (6.17)

which demonstrates that any locally SUSY theory must include gravity. For the
MSSM, we have shown that chiral supermultiplets contain fermions and their super
partners, and vector supermultiplets contain gauge bosons and gauginos. When super-
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gravity is considered, the theory also has the gravity supermultiplet, which contains
the graviton and the gravitino: (gµν , ψ).

Before the supersymmetry breaking, the gravitino is massless. To become massive, it
absorbs the goldstino and obtain spin ±1/2 components. This is the corresponding to
the Higgs mechanism of the SM, and for this reason is named super-Higgs mechanism.
The mass of the gravitino depends on how supersymmetry is broken.

Usually, the mass of the gravitino can be estimated following from dimensional analy-
sis [135]. Let 〈F 〉 be the vev of scalar fields responsible for supersymmetry breaking.
We thus expect the mass of the gravitino to be:

mψ ∼
〈F 〉
Mpl

, (6.18)

since mψ must vanish when SUSY is restored, 〈F 〉 → 0.

Heretofore, we have avoided to introduce explicitly the SUSY lagrangian because
of its complexity. However, since gravitino interactions will be necessary to subse-
quent phenomenological analyses, we briefly introduce the interaction lagrangian of
the gravitino, and show that the dimensional analysis for the mass of the gravitino
is adequate. We further demonstrate how to obtain the Feynman rules related to the
gravitino and verify the gravitino/goldstino correspondence. This summary is based
on Refs. [143, 144, 145, 146, 98]

Let us start writing the terms in the supergravity lagrangian where the mass term for
the gravitino arises. The supergravity lagrangian depends on arbitrary real functions
of scalar fields φ∗i and φj with i, j = 1, ..., n. It is called the Kähler function:

G(φ∗, χ) = K(φ∗, χ) + ln |W (φ)|2, (6.19)

where K is the Kähler potential and W is the super-potential3. The part of the la-
grangian that include terms for the gravitino is given by:

1√−g L =
i

2
eG/2ψ̄µσ̄

µνψν+
i√
2
eG/2Giψ̄µγ

µχi−1
2
eG/2(Gij+GiGj)χ̄iχj (6.20)

where

Gi ≡
∂G

∂φi
, Gij ≡

∂2G

∂φi∂φj
, and g = det(gµν). (6.21)

3See Ref. [142] for more details.
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TheMpl is momentarily set to 1 to simplify the format of Eq. (6.20). The second term
specifically shows the mix of the gravitino and the goldstino η,

η = Giχ
i. (6.22)

We can redefine the fields, where the gravitino is now ψ′:

ψ′ = ψ − i

3
√

2
γµη −

√
2

3
eG/2∂µη. (6.23)

Eq. (6.20) is thus:

1√−g L =
i

2
eG/2ψ̄′µσ̄

µνψ′ν −
eG/2

2

(
Gij +

1
3
GiGj

)
χ̄iχj , (6.24)

from which we obtain the mass of the gravitino: eG/2. Recovering the Mpl depen-
dency, the mass of the gravitino4 is:

mψ = eG/2Mpl = eK/2
|W |
Mpl

. (6.25)

One can observe from Eq. (6.24) that the gravitino ψ′ absorbs the goldstino η and ob-
tain mass. We can thus conclude that the dimensional analysis giving rise to Eq. (6.18)
is adequate. Once auxiliary fields F i

F i = eG/2
1

Gij∗
Gj∗ (6.26)

obtain a vevs, the symmetry is broken, and gravitinos obtain mass.

Now we have seen that spontaneous supersymmetry breaking can occur. We shall not
discuss in details the mechanism to generate it, rather, we are interested in how the
theory presents (in the visible sector) after symmetry breaking.

6.3.3 The effective theory for light gravitinos

From this moment on, we use the supermultiplets in the four-components notation.
We follow the notation presented in Ref. [144]. The four-component spinors can be
constructed from two-component spinors. For the gravitino Ψ, gaugino λ and chiral

4From now on we drop the prime index: ψ′ → ψ.
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fermions χL,R we have:

Ψ(M)
µ =

(
ψµ

ψµ

)
, Ψ

(M)

µ =
(
ψµ ψµ

)
, (6.27)

λ(M) =

(
λ

λ

)
, λ

(M)
=
(
λ λ

)
, (6.28)

χ
(D)
R =

(
χ

0

)
, χ

(D)
L = (0 χ) , (6.29)

where (M) stands for Majorana and (D) for Dirac. The fields satisfy either the Majo-
rana or Dirac conditions depending on the given index. From now on we drop the (M)

and (D) indices to simplify the notation.

The term in the supergravity lagrangian for the massive free gravitino, considering the
mass term given by Eq. (6.25), is given by [144]:

LΨ = −1
2
εµνρσΨµγ5γν∂ρΨσ −

mΨ

4
Ψµ [γµ, γν ] Ψν . (6.30)

The polarization tensor for a gravitino with momentum p, is [147]:

Πµν(p) =
∑
λ

Ψλ
µ(p)Ψ

λ

ν (p) = (6.31)

= − ( 6p+mΨ)
(
gµν −

pµpν
m2

Ψ

)
− 1

3

(
γµ +

pµ
mΨ

)
(6p−mΨ)

(
γν +

pν
mΨ

)
,

where the sum over the four gravitino helicities (λ = ±1/2,±3/2) is performed.

Because we will be interested on the phenomenology of gravitino production at the
LHC, the energy scale of gravitino production will be much larger than the gravitino
mass. The polarization tensor can thus be simplified as [147]:

Πµν(p) = − 6p gµν +
2
3
6p pµpν
m2

Ψ

, (6.32)

where the first term corresponds to the λ = ±3/2 helicity states and the second to
λ = ±1/2. We will discuss this equation in details further ahead.

The interaction terms of the gravitino are defined through the supercurrent Jµ by:

L = − i

2Mpl

ΨµJ
µ + h.c. (6.33)
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Figure 6.2: Feynman rules for the gravitino interactions.

The supercurrent enables interactions of the gravitino with all the other fields. Al-
though the supergravity lagrangian contains many interaction terms for the gravitino,
the only relevant terms5 for our phenomenological studies will be the following:

L =− 1√
2Mpl

Dνφ
∗i Ψµγ

νγµχiR −
1√

2Mpl

Dνφ
i χiLγ

µγνΨµ− (6.34)

− i

8Mpl

Ψµ [γν , γσ] γµλaF aνσ.

where Dνφ
i = ∂νφ

i + ig Aaν T
a
ij φ

j , Tij is the generator of the gauged Lie group, φ
is the scalar field present in the chiral multiplet, χL/R are chiral fermions and λ are
gauginos.

The Feynman rules for gravitino interactions arise from the lagrangian (6.34) and are
shown in Fig. 6.2. A comprehensive derivation of the lagrangian and Feynman rules
related to the gravitino and some discussions can be found for example in Refs. [144,
146, 142, 148].

Gravitinos obtain mass from (absorbing) goldstinos after SUSY breaking. The longi-
tudinal modes of gravitinos arise from the two helicity state components of the goldsti-
nos. As a result, gravitinos will have in total four helicity states. Eq. (6.31) presents the
polarization tensor of an external gravitino. For the case where

√
s� mΨ Eq. (6.32)

shows that the polarization tensor can be explicitly separated in terms of λ = ±3/2
and λ = ±1/2 [147, 144, 146]. From this equation, one can realize that there is

5Other terms are irrelevant for the present analysis because we will consider processes at the LHC energy
scale, which is much smaller than the scale at which quantum gravity corrections become important (Mpl).
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Figure 6.3: Feynman rules for the goldstino interactions.

a correspondence between the gravitino and goldstino lagrangians. The interacting
lagrangian of the goldstino with matter can be obtained by the following substitu-
tion [149, 150, 145]:

Ψµ →
√

2
3

1
mΨ

∂µη. (6.35)

where η is the spin-1/2 goldstino field. Considering that we are interested in processes
with a light external gravitino, it is possible to use the relation 6∂η = 0. Furthermore,
because in supergravity high energy behaviours cancel out the total amplitude of a
process (with one external gravitino), the derivatives on φ, χ and λ can be replaced by
the masses of the corresponding fields [144]. One can thus obtain the final interacting
lagrangian of the goldstino:

Lη = i
m2
φ −m2

χ√
3mΨMpl

η χR φ
∗ − i mλ

8
√

6mΨMpl

η [γµ, γν ]λaF aµν + h.c. (6.36)

and derive the Feynman rules, illustrated on Fig. 6.3. When the center-of-mass energy
is higher than the mass of the gravitino, the gravitino is mainly composed by ±1/2
helicity states. Therefore, at the LHC, it is sufficient to consider the Feynman rules of
goldstinos.

Our goal is to continue to analyse processes that could be observed at the LHC through
the missing energy signature in combination with jets. Several such studies employ-
ing SUSY theories have already been extensively performed. However, searches for
the gravitino in the final state have not been largely explored due to limitations of
simulation tools. A recent implementation of gravitinos and goldstinos in MAD-
GRAPH/MADEVENT [100,98] has changed the situation. In collaboration with the au-
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thors we have been able to perform a phenomenological study on gravitino/goldstino6

production with multiple jets in the final state, which we present in what follows.

6.4 The phenomenology of gravitino emission

We have seen that in the context of supergravity theories, gravitinos are massive fields,
super-partner of the graviton. In some variations of such theories, these are super-light
particles, however not exactly massless [151, 152].

Similarly to what has been presented in Chapter 5, we are interested in the missing
energy signature in combination with jets. The gravitino, being the LSP, is expected
to be invisible. In addition, because SUSY particles are always produced in pairs7,
we consider the production of two gravitinos. Therefore, we now focus mainly on
the process p p → G̃ G̃ + n-partons, where now G̃ represents the gravitino8. For
simplicity yet being exhaustive, we will consider n = 3 as the maximum number of
partons.

We consider a simplified model with the Feynman rules explicitly defined in Fig. 6.3.
The particle content is reduced, focused for the present study. Only the SM quarks and
gluons coupled to the gravitino/goldstino and the gluino will contribute significantly.
Cross sections related to graviton production at the LHC are suppressed by the Planck
mass. For this reason, graviton production does not contribute for the present study.

However, super-light gravitino production can become relevant, since the cross section
is proportional to the inverse of the gravitino mass. From Fig. 6.3, we observe the
interaction vertices of the gravitino at the LHC energy scale. Different combinations
can be considered to form processes in which the gravitino is one of the products of
a proton-proton collision. Here, we concentrate on scenarios where the gluino is the
NLSP. Sub-processes that contribute most significantly to our analysis are illustrated
in Fig. 6.4. They are summarized as:

• Gluino-gravitino associated production:

pp→ G̃ g̃ → G̃ G̃ g + extra partons; (6.37)
6From this moment on, we will refer to it as the phenomenological study of the production of gravitinos,

which we have shown to be the same as the production of goldstinos in the low energy limit.
7We consider R-parity conserving theories.
8Within the present study we consider processes in which at least one gravitino decays from a gluino, as

illustrated in Fig. 6.4.
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1-parton 2-partons 3-partons

Figure 6.4: Example of processes contributing to pp → G̃G̃+ jets. The three-lines
initial state represents a proton. The double-straight-line on the final state represents
a gravitino. The curly line is a gluon, and the curly-line crossed by a straight line rep-
resents the gluino. The filled circle symbolizes that all the processes that can possibly
generate such final state are included in the illustration of the diagram. Notice that the
diagrams are separated in columns characterized by the number of final state partons.
The diagonals represent matched diagrams. The second diagram of the last column is
not matched in order for the highest multiplicity to be the same for both processes.
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• Double-gluino resonance:

pp→ g̃ g̃ → G̃ g G̃ g + extra partons. (6.38)

The first sub-process will be often referred hereby as “gluino-gravitino associated pro-
duction”, and the second as “double gluino resonance”. In principle, the zero-jet pro-
cess should also exist, in which two gravitinos are directly produced. However, here
we specifically focus on processes with at least one gluino, which decays producing
the gravitino.

The decay width of a gluino (g̃) to a gravitino (G̃) and a gluon (g) is given by [98,144]:

Γg̃→G̃g =
m5
g̃

48πM
2

plm
2
G̃

. (6.39)

Notice that the decay width depends both of the gravitino and the gluino mass. For a
fixed value of the gravitino mass, the decay width rapidly increases with the increase
of the the gluino mass.

Let us explore first the cross sections of each sub-process presented above. However,
because we consider Br(g̃ → G̃g) = 1, it is enough to compute the 2 → 2 sub-
processes that give rise to pp→ G̃g̃ and pp→ g̃g̃.

We can now start by estimating the cross section for pp → g̃G̃. One has to consider
all the three possible initial states: pair of gluons, quark-anti-quark and quark-gluon
(anti-quark-gluon). Each vertex including gravitino is inversely proportional to the
gravitino mass. The result is thus inversely proportional to the square of the gravitino
mass:

σ(pp→ g̃G̃) ∝ 1
m2
G̃

, (6.40)

which has several consequences for our analysis. Eq. (6.40) also depends on the gluino
mass. However, each sub-process has a different dependency on mg̃ , and for this
reason it is not explicitly written. Fig. 6.5 exhibits the cross section dependency on
the gluino mass for a fixed value for the gravitino mass. An exact calculation of the
amplitudes and cross section for each sub-process can be found for instance in [153].

Similarly, the cross section for producing a pair of gluinos can be calculated. As
expected, it does not depend on the mass of the gravitino, since no interacting vertex
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Figure 6.5: Cross section of pp→ g̃G̃ at the LHC separated for each contributing sub-
process. To obtain the curves, we have employed MADGRAPH/MADEVENT with
CTEQ6L1 PDF. The mass of the gravitino is fixed at 10−13 GeV, the mass of the
squarks at 3 TeV and µ = µR = µF = (mG̃ +mg̃)/2 ∼ mg̃/2.
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Figure 6.6: Total cross section of pp → g̃g̃ separately in gg → g̃g̃, qq̄ →
g̃g̃ contributing sub-processes. To obtain the curve we have employed MAD-
GRAPH/MADEVENT with CTEQ6L1 PDF, fixed the mass of squarks at 3 TeV, the
mass of the gravitino at 10−13 GeV and µ = µR = µF = mg̃ .
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with the gravitino exists. Fig. 6.6, illustrates the dependency of the cross section on
the gluino mass.

The cross sections of both sub-processes have a particularity. If we fix the gluino mass,
the cross section for the double-gluino resonance is determined. However, the cross
section for gluino-gravitino associated production process varies depending also of the
mass of the gravitino. For analysing processes with two gravitinos and jets in the final
state, one has to take into account contributions from both sub-processes. The mass
of the gravitino determines therefore which sub-process contribution is dominant.

In principle, it would be necessary to divide the simulation of pp → G̃G̃ + n-jets
in three stages: simulation of dominant gluino-gravitino production, simulation of
dominant double-gluino resonance; and the simulation of equally contributing sub-
processes. However, the matching technique automatically accounts for both sub-
processes at the same time, independent of the region of the parameter space. This
is one substantial advantage of using such technique. There is therefore no need for
simulating each sub-process separately, and we can thus treat the whole parameter
space at once.

Our aim is therefore to perform a complete analysis on gravitino production in com-
bination with jets, in which we make use of the matching technique presented on
previous chapters. We know that apart from normalization issues, the employment of
the matching technique can correctly predict the shape of relevant observables and can
cover all regions of the parameter space.

6.4.1 Parameter definitions

In the present analysis, the gluino mass is fixed at 800 GeV, value chosen based on
recent experimental searches [154]. The gravitino mass is selected according to the
three cases below:

Case A. σ(pp→ g̃g̃) < σ(pp→ G̃g̃) (6.41)

Case B. σ(pp→ g̃g̃) ≈ σ(pp→ G̃g̃) (6.42)

Case C. σ(pp→ g̃g̃) > σ(pp→ G̃g̃) (6.43)

We observe from Eq. (6.42) that the value for the gravitino mass in “case B” (mB
G̃

) is
selected as to fix σ(pp→ g̃G̃) ≈ σ(pp→ g̃g̃). We define one heavier and one lighter
gravitino, as stated by Eqs. (6.41) and (6.43), referred here as “case A” and “case C”.
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Their masses and cross sections are related to case B as:

mA
G̃

=
1
n
mB
G̃
, σA(pp→ g̃G̃) ≈ 1

n2
σ(pp→ g̃g̃), (6.44)

mC
G̃

= nmB
G̃
, σC(pp→ g̃G̃) ≈ n2 σ(pp→ g̃g̃),

For our investigation we take n = 3, i.e., mA
G̃

= 1 × 10−13 GeV, mB
G̃

= 3 × 10−13

GeV and mC
G̃

= 9× 10−13 GeV.

The SUSY model with gravitinos has been implemented in the FeynRules package
[155], and we make use of such implementation [156]. It can be used by MAD-
GRAPH/MADEVENT version 5 thanks to the UFO and ALOHA packages [157, 102]
which translate the Feynman rules obtained from FeynRules into a universal output
that can be used by event generators, such as MADGRAPH/MADEVENT. In particu-
lar, we have worked for the development of the ALOHA package, which is detailed in
the Appendix C.

The complete analysis is performed for the LHC with
√
s = 14 TeV and we employ

the CTEQ6L1 PDF. No cut is used for the generation of events, except for a minimum
jet pT :

pT > 20 GeV. (6.45)

For the matching technique, we employ the kT -MLM scheme, use MADGRAPH/
MADEVENT version 5 [92] for the matrix element simulation and PYTHIA for par-
ton shower and hadronization. We choose Qmatch = 100 GeV, for jet clustering we
use the anti-kT -algorithm with R = 0.5 [158], and impose a cut in the minimum pT
of the jets:

pT > 50 GeV. (6.46)

6.4.2 Checks and validations

Before displaying the results for a specific analysis, it is crucial to validate the imple-
mentation. Since we have two distinct sub-processes contributing separately for the
final cross section, such checks are indispensable.

The first check is made as a separate study. First, we consider both sub-processes with
one extra jet, i.e. pp→ G̃G̃+n-jets, with n = 1, 2 jets for gluino-gravitino associated
production and n = 2, 3 jets for double-gluino resonance. We employ the parameters
presented above and make use of the matching technique. We plot the distributions for
different relevant observables. To check the validity of our implementation, besides
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Figure 6.7: Differential cross section as a function of the HT (left) and 6 pT (right).
Here we exhibit separately the contributions of both pp → g̃g̃ and pp → G̃g̃ sub-
processes that are included in the evaluation of pp → G̃G̃j+ 1 extra jet. The sum of
the contributions agree with matched sample. We employ a pjet

T > 20 GeV cut, and
the results are for the LHC with

√
s=14 TeV.

the total matched simulation, we can separately simulate the contribution of each sub-
process: σG̃g̃ and σg̃g̃ . We can check therefore, that the sum of both contributions
agree with the overall matched distribution.

These plots are interesting to demonstrate the contribution of each sub-process for
the three sets of parameters chosen. For example, Fig. 6.7 presents the differential
cross section as a function of the HT (left), and of the 6 pT (right). We can observe
that for case C, the double-gluino resonance dominates, as requested in Eq. (6.43),
and the sum of the contributions is very similar to this specific sub-process. For case
A the opposite happens: the sum of the contributions is mainly given by the gluino-
gravitino production, as Eq. (6.41) show. Finally, for case B, we can check that both
contributions are equally relevant.

Different from NLO calculations, the matching technique only considers real-emission
contributions. For high-energy collisions processes with initial/final state radiation
become most likely and the matching technique can treat correctly these real contri-
butions. However, virtual corrections are not considered, which are needed to cancel
the infrared divergences that could arise in the calculation of real QCD-emission cor-
rections. Therefore, with the employment of the matching technique, we can obtain
the correct shape for the distributions of the differential cross section, but we cannot
predict the K-factors needed to correctly rescale the final cross section:

dσ(G̃G̃+ jets) = Kg̃g̃ dσ(g̃g̃ + jets) +Kg̃G̃ dσ(g̃G̃+ jets). (6.47)

We thus assume Kg̃g̃ ∼ KG̃g̃ ∼ 1 in the following studies.
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6.4.3 Results

We now consider pp → G̃G̃ + 1, 2, 3-jets. The relevant diagrams are illustrated in
Fig. 6.4 separately in columns for 1-jet, 2-jets and 3-jets contributions. These di-
agrams exemplify the main sub-processes existent. Notice that diagrams with no
initial-state-radiation (ISR) are illustrated in the first line, with one ISR in the sec-
ond line and two ISR in the third line. Therefore, diagrams that should be matched are
represented in the diagonals.

Because there are two distinct sub-processes relevant for the analysis, PYTHIA cannot
automatically correctly set the highest jet multiplicity. The reason is that the lead-
ing order contribution for each sub-process has different multiplicity. It is necessary
therefore to define the number of additional jets as an input of the analysis. We have
set it to be one, which removes the explicit contributions of the second diagram of the
last column of Fig. 6.4 that has two radiated jets.

The irreducible background is given by the matched sample of pp → νν̄ + n-jets,
where n can be 0, 1, 2 and 3. To simulate the background we have used a cut in the
missing ET ,

6ET > 200 GeV, (6.48)

in order to improve the statistics in the high energy region.

Fig. 6.8 collects the results obtained, in which we display the differential cross section
as a function of:

(i) the pT of the leading jet;

(ii) the pT of the second highest jet;

(iii) the 6pT ;

(iv) the HT .

From Fig. 6.8 (i) and (ii), one can immediately see that the shapes for cases A, B and
C are similar, and the curves differ mainly in overall magnitude. However, shapes for
the 6 pT and HT distributions are slightly different in the high-energy region. Case A
tends to give harder distributions than cases B and C. This is due to the most contribut-
ing sub-process of each sample. In case A, the dominant contribution comes from the
gluino-gravitino associated production, and in case C from the double-gluino reso-
nance. The 6pT is a combination of the pT of both gravitinos. In case A, one gravitino
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Figure 6.8: Differential cross section as a function of the relevant observables. The
signal is pp → G̃G̃ + n-jets with n = 1, 2, 3. The mass of the gluino is 800 GeV,
and the mass of the gravitino is 1 × 10−13 GeV in case A, 3 × 10−13 GeV in case
B and 9 × 10−13 GeV in case C. The irreducible background, pp → νν̄ + n-jets
with n = 0, 1, 2, 3, is shown for reference. The simulation is performed using the
kT -MLM matching technique at the LHC with

√
s = 14 TeV and CTEQ6L1 PDF.
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Figure 6.9: In the left, the fraction of events (Nevents/Ntotal) for different multiplic-
ities in each sample is displayed. In the right, the final number of events expected as
a function of the jet multiplicities is shown. The signal is pp → G̃G̃ + n-jets with
n = 1, 2, 3. The mass of the gluino is 800 GeV, and the mass of the gravitino is
1 × 10−13 GeV in case A, 3 × 10−13 GeV in case B and 9 × 10−13 GeV in case
C. The irreducible background, pp → νν̄ + n-jets with n = 0, 1, 2, 3, is shown for
reference. The simulation is performed using the kT -MLM matching technique at the
LHC with

√
s = 14 TeV, L = 100 fb−1 and CTEQ6L1 PDF.

is directly produced and the other comes from the decay of the gluino. In case C,
both gravitinos come from the decay of the gluino. A more detailed analysis related to
the kinematics is performed further ahead, when we present the correlation between
relevant observables.

In Fig. 6.8 we also display the irreducible background curve as reference. The curves
for cases A and B lie above the background distribution and could thus indicate signs
of new physics at the LHC. However, for case C more complete analyses are necessary.

One indication of new physics and of the dominant sub-process contribution can be
given by the jet rates. Case A, gluino-gravitino associated production, has one hard-
jet in addition to extra jets coming from QCD radiation. Case C, double-gluino res-
onance, has two hard-jets and contributions from radiated extra jets. Therefore, it is
expected that the number of events with one jet is larger for case A than for case C,
being case B intermediate. This is what we observe in the left graph of Fig. 6.9. More-
over, distinct behaviours are noticed for each sample. The background has the shape
of decreasing stairs, where most of the events have 1-jet, while signal exposes a peak.
The position of the peak varies for the signal samples. Case A has a similar number
of events with 1 and 2-jets. The peak is at events with 2-jets for case B, and in case C
the maximum is reached for events with 3-jets. If signals of new physics are observed
at the LHC, one could therefore use the shape of jet multiplicities to differentiate be-
tween theories, and/or to constrain parameters. However, the right plot of Fig. 6.9
exhibits the expected number of events as a function of the jet multiplicities for the
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Figure 6.10: Scatter plots for cases A, B and C. These illustrate the correlation be-
tween the pT of the leading jet and the 6 pT . For case A, in which gravitino-gluino
production is dominant, most of the points are distributed following a straight diago-
nal line. For case C however, where double-gluino resonance is dominant, points are
spread into an ellipsoid region around the 6pT = p1stjet

T diagonal.

present analysis (in which we use L = 100 fb−1), showing the difficulty in observing
any signal when accounting for the background.

In order to curb the background, we investigate the correlation between observables.
One interesting result is exhibited in Fig. 6.10. These are scatter plots with p1stjet

T and
the 6pT distribution in both axes, in which each point represents one event. The three
different cases considered are displayed.

For case A, where gluino-gravitino production is dominant, points are concentrated
around the main p1stjet

T = 6pT diagonal. This is expected since for this process, the
hard-jet is the gluon decayed from the gluino. Extra jets in events with more than one
jet are most likely to have been generated from QCD radiation, which results in jets
with a reasonably low pT . In this case, the gravitino directly produced has a fairly
high pT , larger than that of the gravitino decayed from the gluino. The tendency is
therefore to obtain the hard-jet approximately back-to-back9 with the missing energy,
which results in events concentrated in the diagonal region as we observe from the left
plot of Fig. 6.10.

For case B, we have both sub-processes equally contributing. We can thus observe
an intertwine behaviour between cases A and C. Fig. 6.10 shows the evolution of the
contributions from gluino-gravitino dominant production to double-gluino resonance,
and how it affects the pT of the particles involved.

For case C, the main contribution comes from the double-gluino resonance, in which
we have two hard-jets. Now, the probability is larger for both gluinos to be back-to-
back, and the pT of the leading and the second jets are likely to be of the same order of

9Jets are defined to be back-to-back when they have equal momenta but opposite directions.
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Figure 6.11: Scatter plot of the signal pp → G̃G̃ + 1, 2, 3-jets (case B), in red, and
the background pp → νν̄ + 0, 1, 2, 3-jets, in black. Each point represents one event.
Here, we can easily see that the background is concentrated in the small p1stjet

T and
6pT region. To reduce the background we have applied the cuts specified by Eq. (6.49),
i.e. we only accept events in the region represented by the upper black box.

magnitude, but opposite directions. A similar argument can be used for both gravitinos
produced in combination with each hard-jet. However, we cannot distinguish between
the gravitinos, as the missing energy is experimentally obtained from visible particles.
Since the missing pT is a combination of the pT of both gravitinos, in this case, there
is a larger probability that they will (partially) cancel each other. The tendency is
therefore to have events more spread around the diagonal, with the high p1stjet

T and
low 6pT region populated. That is what we observe in the third plot of Fig. 6.10.

To reduce the background we use scatter plots to search for the most populated region
with signal events and scarcely any background events. Fig. 6.11 shows the back-
ground superimposed to the signal - case B (equally contributing sub-processes). We
can thus impose the following cut

6pT > 500 GeV, p1stjet
T > 500 GeV, (6.49)

which is represented by the grey lines in Fig. 6.11. The differential cross section as
a function of the relevant observables, accounting for the cuts given by Eq. 6.49, are
collected in Fig. 6.12.
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Figure 6.12: Differential cross section as a function of the relevant observables after
cuts: 6pT > 500 GeV and p1stjet

T > 500 GeV. The signal is pp → G̃G̃ + n-jets with
n = 1, 2, 3. The irreducible background, pp → νν̄ + n-jets with n = 0, 1, 2, 3, is
shown for reference. The mass of the gluino is 800 GeV, and the mass of the gravitino
is 1× 10−13 GeV in case A, 3× 10−13 GeV in case B and 9× 10−13 GeV in case C.
The simulation is performed for the LHC with

√
s = 14 GeV.
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Figure 6.13: In the left, we show the ratio of events Nevents(AC)/Ntotal(BC) for dif-
ferent multiplicities in each sample, where Nevents(AC) is the number of events after
the imposition of the cuts specified in Eq. 6.49 and Ntotal(BC) is the total number of
events before the application of any cut. In the right, the final number of events ex-
pected as a function of the jet multiplicity is displayed. The signal is pp→ G̃G̃+n-jets
with n = 1, 2, 3. The irreducible background, pp→ νν̄+n-jets with n = 0, 1, 2, 3,
is shown for reference. The mass of the gluino is 800 GeV, and the mass of the grav-
itino is 1 × 10−13 GeV in case A, 3 × 10−13 GeV in case B and 9 × 10−13 GeV in
case C. The simulation is performed for the LHC with

√
s = 14 GeV and L = 100

fb−1.

From Fig 6.12 we observe that consequences for the observables related to the pT of
the particles do not change considerably at the high pT region with the application of
the cuts. One could possibly observe signals of new physics for cases A or B, however
the curve for case C still runs together with the background.

Nevertheless, Fig. 6.11 shows that applying the cuts specified in Eq. (6.49) should
remove most of the background. We can thus plot the fraction of events observed after
such cuts as a function of the jet rate. From the left plot of Fig. 6.13 we observe that
most of the background is removed, whereas a great part of the signal remains. The
shape of the distributions change from before the imposition of cuts. The background
distribution has now a peak for events with 2-jets, and the distribution for case A
obtains the decreasing stair shape. Let us stress that the left plot of Fig. 6.13 only
confirms that a great part of the background is removed. However, it is the plot with
number of events as a function of the jet multiplicity, in the right, that can show us the
distributions fairly compared. We observe that case A is possibly be detectable at the
LHC. For cases B and C, an excess at higher multiplicities (more than 4 jets) could be
indication of new physics.

To summarize, the main difficulty of the present analysis lies in the fact that two dif-
ferent sub-processes are substantially relevant. Normally, they would have to be con-
sidered separately and a careful analysis would be necessary to gather all the contri-



136 Chapter 6. Gravitino production at the LHC

butions into one final result. This process would be susceptible to unintentional errors
due to several reasons, such as an under/overestimation of one of the sub-processes
for example. A significant upshot of our technique is therefore the ability of treating
both sub-processes at once, at any region of the parameter space.

If signals of new physics emerge at the LHC as an excess of events with high jet mul-
tiplicities, more refined analyses will be necessary to identify the theory and constrain
parameters. Essentially, a complete control of jet parameters are required, since jet
rate distributions can dramatically change if one parameter is modified. Nevertheless,
once jet parameters are dominated, and the mass of the gluino is fixed, one could use
jet multiplicities to constrain the mass of the gravitino. We observe that different peaks
in Fig. 6.13 could allow us to set limits in the mass of the gravitino, and identify what
sub-process is dominant.

The mass of the gluino must be fixed in order for the analysis with the jet rates to
be useful. At the LHC gluinos, being the NLSP, could be identified through different
signatures. Within the strategy of the present study, gluinos should decay into one jet
and one gravitino, which is the invisible particle. Therefore, gluinos could be iden-
tified through analyses that use the distributions of the differential cross section as a
function of the pT of the leading jet. Because of the kinematics of the processes being
considered, the peak observed in the signal distributions should lie approximately at
mg̃/2. This is what we observe in Fig. 6.8. For case C, where double-gluino resonance
is dominant, the peak is clearly at p1stjet

T = 400 GeV. For case A the determination of
the peak is more difficult, because the dominant contribution is the gluino-gravitino
associated production, but still possible. As we have stated, once the mass of the
gluino is fixed, one can use the shape of jet rate distributions as an indication of the
mass of the gravitino.



Chapter7
Epilogue

7.1 Summary and conclusions

The SM describes very accurately the experimental data we have so far, however,
chances are high that signs of new physics will appear soon at the LHC. Several BSM
theories have been proposed as an alternative to the SM at high energies. If the theory
extension could incorporate gravity in the quantum description of Nature, one of the
greatest puzzles of particle physics would be unravelled. Theories with such attributes
are therefore specially interesting. One can cite for example higher dimensional the-
ories, such as large extra dimensions or warped extra dimensions. Another option
are 4-dimensional theories with a separate sector that contains many particles that do
not interact with the SM particles through the usual weak, strong and electromagnetic
forces. One example is the massless graviton model presented in Chapter 3. There are
also theory extensions that allow for extra symmetries, such as supersymmetry and
supergravity, both introduced in Chapter 6.

Given the large number of existing scenarios, it will certainly not be trivial to de-
termine the nature of new physics once it emerges at high energy hadron colliders.
Simulations, and search strategies will thus play a key role in the determination of
such theories, and moreover, in the treatment of new physics. Therefore, the necessity
of general simulation tools that quickly predict experimental observables have be-
come essential. Furthermore, the demand for new search strategies has substantially
increased with the advance of computer technology and simulation tools aimed at the
treatment of particle physics focused on theory extensions to the SM.

The present work has been intended to accomplish a complete phenomenological anal-
ysis at hadron colliders of BSM theories that incorporates gravitational interactions.
To this aim, the development of new simulation tools and search strategies has been
necessary, and performed. We have carried out an analysis that covers all the steps to
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go from a theoretical framework to the experimental observables expected at hadron
colliders.

The format of this thesis has also followed the “theories → experiments path”. We
have started with an brief introduction followed by an overview of the SM and some
of the open questions that we hope to be (partially) answered by the LHC. In the third
chapter, we have introduced theory extensions to the SM that contains graviton parti-
cles. A rather theoretical description has been presented, in which we show the differ-
ence between theories that include massive gravitons to these with massless gravitons.
In particular, it has been highlighted that the propagator of such particles has a unique
behaviour when the limit from a massive to a massless graviton is considered.

The connection to a more experimental point-of-view has started with the calculation
of differential cross sections for graviton production at hadron colliders. We have
considered different types of theories, containing both massive and massless gravi-
tons. We have observed that the unique behaviour of the propagator of such theories,
known as the van Dam-Veltman discontinuity, does not appear at cross section level.
This is an interesting consequence, since the opposite would be expected. We cannot
therefore use the discontinuity of the graviton propagator as hint for the determination
of the mass of the graviton particle if it is observed at the LHC or at future colliders,
and more phenomenological analyses are necessary.

The proximity to more experimental searches has increased in Chapter 4, when we
have presented the LHC and defined observables. Very energetic particles are the
consequences of high energy collisions, such as these happening at the LHC. When the
center-of-mass energy increases, final-state full of jets become more likely. Therefore,
it is a natural choice to study signatures that predict numerous particles as a result from
the collision.

For this reason, in Chapter 5, we have focused on graviton production in combina-
tion with jets. We have started with a simple phenomenological investigation of pro-
cesses with one graviton and one jet at the LHC. We have used the Monte-Carlo event
generator MADGRAPH/MADEVENT for the simulation of events, which included re-
cent implemented helicity routines for correctly treating massive spin-2 particles. We
have manually implemented the helicity routines needed by massless spin-2 particles,
and the MGM model within the event generator. With such implementations, MAD-
GRAPH/MADEVENT has become complete in terms of spin-2 particles, i.e. could
automatically generate events for any type of spin-2 particles. Results for this particu-
lar analysis have been obtained as a function of relevant observables at the LHC, and
compared to the expected SM background.

However, at the LHC larger number of jets in the final state are expected. Therefore,
despite the significant results obtained with the mono-jet analysis, more realistic in-



7.1. Summary and conclusions 139

vestigations needed to be performed. Because the emission of QCD radiation needs to
be taken into account when multiple jets are the final product of a collision, different
types of tree-level simulation descriptions should be used simultaneously: the matrix
element approach and the parton-shower description. To this aim, modifications in
the routines used by MADGRAPH/MADEVENT were necessary. We have performed
such modifications, and used the merge/matching technique to investigate graviton
production in inclusive multi-jet samples at hadron colliders.

A very general analysis has been carried out. Since the development of the routines
used by MADGRAPH/MADEVENT has been made aiming on the automatic generation
of events involving spin-2 particles, we could investigate the differences/similarities
between three main classes of theories that contain the graviton particle. In the ADD
and MGM theories, the graviton appears as missing energy, while in RS model it may
be observed through its decay products.

We have checked and validated the robustness of matching results with a compari-
son against next-to-leading order simulation of graviton + jet production. The fully
inclusive samples have been normalized to the corresponding NLO inclusive total
cross sections for producing G + X. Key distributions for the most relevant observ-
ables involving one or more jets have then been compared to those obtained by the
NLO calculation G + jet + X. The overall agreement in shape as well as in normaliza-
tion between the NLO observables and these obtained by making use of the matching
technique is excellent. In particular, notice that a unique normalization factor (the one
normalizing the overall inclusive sample) suffices to describe not only the shape but
also the normalization of jet distributions. It demonstrates that the use of matched
samples in experimental analyses is straightforward and accurate. We therefore make
use of such technique once more in Chapter 6. Finally, we have seen that observables
which are sensitive to the number of jets, such as the HT , are better described by the
matched sample than a fixed-order calculation.

Since we are interested in the missing energy signature generated from theories that in-
clude gravitational interactions, supersymmetry within the context of simplified mod-
els of supergravity should be taken into account. Such theories comprise gravitino
particles, which are spin-3/2 particles, super-partner of the graviton. In some varia-
tions of supersymmetric theories, gravitinos are super-light, invisible particles, whose
productions can become relevant at hadron colliders. In Chapter 6 we thus consider
the production of two gravitinos in multi-jet final states.

To obtain the predictions for relevant experimental observables, we have made use of
the matching technique, which takes into account simultaneously hard and soft jets.
Because two different sub-processes separately contribute for our analysis, the use of
the matching tool has been a major advantage. It has not only facilitated and prevented
us from errors, but has also saved substantial computational time. That is due to the
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fact that we do not need to simulate each sub-process separately, nor worry about the
region of the parameter space that a particular sub-process is dominant.

Results obtained for gravitino production are encouraging. We have observed that, if
such new physics signs are detected at the LHC, one could use observables related to
the pT of the jets and/or 6pT to estimate the value for the mass of the gluino. Once this
is fixed, jet multiplicities allow us to predict the mass of the gravitino, and the leading
contributing sub-process.

The methods and ideas employed in the course of the present research are at the cut-
ting edge in high-energy phenomenology. We have helped to develop and advance
tree-level simulation tools and search strategies to easily connect theory with experi-
mental observables. With them, we have performed a complete analysis on processes
involving missing energy signature for theories that incorporate the gravitational force.
We now look forward to their use in the current and forthcoming searches at hadron
collider.

7.2 Outlook

The advancement of simulation methods and computer technology have defined the
beginning a new era for the phenomenology of particle physics. Phenomenological
investigations, are now essential for the search of BSM theories, and hints of their
existence may appear very soon at the LHC. With the large number of possible SM
extensions, it is necessary to know in advance the best strategy to identify new par-
ticles and connect them with the most favourable theory which these particles could
belong to.

For this reason, simulation tools and the search strategies developed and employed
here can be very fruitful for future researches. First, the implementation of spin-2
helicity routines can be used by MC event generators to simulate processes contain-
ing such particles. Several BSM theories can be considered, where similar analyses
to those presented in Chapters 5 and 6 can be performed. Moreover, phenomenolog-
ical investigations could be modified and extended to more model-independent ap-
proaches.

The automation of helicity routines necessary for calculating the matrix element as-
sociated with any new model presents an indispensable step completed towards the
effort to connect theory with experimental data. Any theory can now be easily im-
plemented into a MC event generator, accounting that the implementation of helicity
routines are no longer restricted to the same Lorentz structures as these of the SM. Ob-
taining predictions for experimental observables (considering tree-level calculations)
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has become feasible for anyone, from a person with a more theoretical background to
someone with a more experimental point of view. There are several theories that could
be implemented and studied with the employment of such tool. For instance, there are
extra dimensional theories with SM-like particles propagating in the bulk, different
SM extensions based on specific symmetries, as well as simplified models focused on
the treatment of new particles.

One example of the use of these tools would be a signature-based research aiming the
discovery of a new particle. The idea would be to consider, in a model-independent
manner, all the channels that could result in a particular signature. Similarly to the
investigation that has been performed for the graviton production in Chapter 5, where
we consider three representative classes of theories that could produce a graviton, we
could concentrate in final states that include any type of invisible particles and build
a strategy to differentiate theories using final observables. One goal would be the
identification of the observable(s) that best discriminate classes of theories.

A consequence of the non-observation of new physics so far, is the realization that
some processes need more accurate predictions than these that can be provided by
LO calculations. Since a few years ago, a huge effort is being made for the develop-
ment of both the automatic NLO computations, and the MC event generators that take
into account such corrections. Recent ideas, in addition to the advancement of simu-
lation techniques and machines, enabled the creation of such NLO simulation tools,
which are however still in (the final stage of) development [87, 86, 85]. Once NLO
event generators are available, an “accuracy revolution” will begin, and we will have
the possibility of performing several phenomenological investigations. In particular,
we could extend the analysis made here for mono-jet graviton production at NLO,
and obtain the prediction for the relevant observables with larger precision and, most
importantly, the correct normalization for the cross section.

Although NLO predictions provide accurate results for the cross section, it is still nec-
essary to consider QCD emission and an hadronization description to correctly predict
observables at the detector level. The LO matching/merge description described in
Chapter 4, and employed in Chapters 5 and 6, is interesting because it considers the
best features of both approaches. A novel description combining NLO event genera-
tion and parton-shower description have been developed [159,160,161,162,163,164]
and great progress has been made since their actual conception. Another idea would
therefore be the use of such tool to perform similar investigations to these presented in
the course of this work. With the use of such tools, one could obtain the distribution
of relevant observables with the correct shapes and cross section normalization.

Finally, more severe investigations will be necessary to constrain parameters of BSM
theories with the LHC data once they are available. Simulation tools and search/
identification strategies will help to accelerate this process and enable more theories
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to be looked into simultaneously. There is certainly still a long way ahead, when
it comes to interpreting and understanding results that will soon be provided by the
LHC, but that can also be the reason why the next years may be the most fun and
exciting years for modern particle physics!



AppendixA
Massless graviton
implementation

Here, we detailed present the implementation of massless graviton routines within
MADGRAPH/MADEVENT. Initially, we alter helicity routines (HELAS) for spin-2
particles in order to handle massless particles. We subsequent create a model file for
the particular theory described on chapter 3. All information characterizing imple-
mentation follows.

A.1 HELAS routines modifications

The HELAS routines for massive spin-2 particles have been implemented by K. Hagi-
wara et al [99] in 2008. A summary of the routines can be found on Table A.1. In order
to have massless spin-2 particles in MADGRAPH/MADEVENT , we have modified the
tensor wave function subroutine TXXXXX, and four subroutines for the off-shell tensor
were added to the former implementation.

A.1.1 TXXXXX

This subroutine computes the graviton tensor wave function, namely εµν(p, λ) and
εµν(p, λ)∗ in terms of the graviton four-momentum p and its helicity λ.
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Vertex Inputs Output Subroutine

SST SST Amplitude SSTXXX

ST S HSTXXX

SS T USSXXX

FFT FFT Amplitude IOTXXX

FT F FTIXXX, FTOXXX
FF T UIOXXX

VVT VVT Amplitude VVTXXX

VT V JVTXXX

VV T UVVXXX

FFVT FFVT Amplitude IOVXX

FVT F FVTIXX, FVTOXX
FFT V JIOTXX

FFV T UIOVXX

VVVT VVVT Amplitude VVVTXX

VVT V JVVTXX

VVV T UVVVXX

VVVVT GGGGT Amplitude GGGGTX

GGGT G JGGGTX

GGGG T UGGGGX

Table A.1: Summary of Spin-2 HELAS routines extracted from [99].

The helicity states of the graviton can be expressed by

εµν(p,±2) =εµ(p,±)εν(p,±) (A.1)

εµν(p,±1) =
1√
2

[εµ(p,±)εν(p, 0) + εµ(p, 0)εν(p,±)]

εµν(p, 0) =
1√
6

[εµ(p,+)εν(p,−) + εµ(p,−)εν(p,+) + 2εµ(p, 0)εν(p, 0)] ,

where εµ(p, λ) is the vector boson wave function, already pre-defined on the HELAS
convention. For completeness it is important to state here that the spin-2 wave func-
tions are traceless, transverse, orthogonal and symmetric, obeying therefore the fol-
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lowing relations:

εµµ(p, λ) = 0, εµν(p, λ)εµν(p, λ′)∗ = δλλ′ (A.2)

εµν(p, λ) = ενµ(p, λ) pµε
µν(p, λ) = pνε

µν(p, λ) = 0

The sum of helicity states for the graviton is introduced on the routines to be given by∑
λ=±2

εµν(p, λ)εαβ(p, λ)∗ = P̃µν,αβ(p), (A.3)

where P̃µναβ is the massless graviton propagator defined on equation (3.73). While
the massive graviton has five helicity states of polarization, the massless spin-2 par-
ticles will only have two physical states. The sum of polarization for the massless
graviton is therefore modified on the routines to set λ = ±1, 0 to zero allowing only
λ = ±2 to contribute.

A.1.2 UIOXXX, UVVXXX, UIOVXX, UVVVXX

These subroutines compute off-shell tensor currents U by the FFT, VVT, FFVT, and
VVVT vertices respectively. The main modification here was the inclusion of the zero
mass graviton propagator to be the one showed in equation (3.73) for the massless
case.

The UIOXXX routine computes the bi-spinor spin-2 current from the flowing-in and
flowing-out fermions calculated by the FFT vertex. The flowing-in FI and flowing-
out FO fermions are defined to be arrays which contain their four-momenta:

FI =


p0
I

p1
I

p2
I

p3
I

 , FO =
(
p0
o p

1
o p

2
o p

3
o

)
. (A.4)

The output is a complex array defined by

Tαβ = gt
P̃µναβ
q2

FO [−ηµν(6pI+ 6po − 2mf ) + γµ(pI + po)ν + γν(pI + po)µ] FI

where q is the four-momentum related to the massless propagator, gt = 1
4Λ and Λ is

the effective scale of the model. For the MGM theory, Λ = Mpl(µ?) ∼ µ?.
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The UUVXXX is the subroutine that computes an off-shell spin-2 current from the two
flowing-out vector bosons calculated by the VVT vertex. The graviton output is the
complex array:

Tαβ = gt
P̃µναβ
q2

[
(m2

V + pI · po)Cµνρσ +Dµνρσ(pI , po)+ (A.5)

+ ξ−1Eµνρσ(pI , po)
]
V ρI V

σ
o

where where q is the four-momentum related to the massless propagator, gt = 1
Λ , Λ

is the effective scale of the model, and the parameters Cµναβ , Dµναβ and Eµναβ are
defined on Table 3.1.

The UIOVXX subroutine computes an off-shell spin-2 current calculated by the FFVT
vertex. The graviton output complex array is given by:

Tαβ = gt
P̃µναβ
q2

(ηµνηρσ −Cµνρσ) FO
[
V ργσ

(
g

(1)
f PL + g

(2)
f PR

)]
FI, (A.6)

where q is the four-momentum related to the massless propagator, gt = 1
2Λ , Λ is the

effective scale of the model, the parameter Cµναβ is defined on Table 3.1 and g(1)
f and

g
(2)
f are the SM FFV couplings. For example, if we have a quark-anti-quark-gluon-

graviton vertex, g(1)
f = g

(2)
f = gS .

Finally, the UVVVXX subroutine computes an off-shell spin-2 current calculated by the
VVVT vertex. The graviton tensor is given by

Tαβ =
P̃µναβ
q2

gV [Cµνρσ(pa − pb)λ + Cµνσλ(pb − pc)ρ+ (A.7)

+Cµνλρ(pc − pa)σ + Fµνρσλ]V ρa V
σ
b V

λ
c ,

where q is the four-momentum related to the massless propagator, gt = 1
Λ , Λ is the

effective scale of the model, the parameters Cµναβ and Fµνρσλ are defined on Table
3.1 and gV is the SM VVV coupling.

A.2 MGM model file

The model file was created for MADGRAPH/MADEVENT version 4. It contains all the
information regarding particles, couplings and interactions and follows the structure
presented on [99] for theories containing a massive spin-2 particle. A summary of the
model content is presented below.
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The particle content of the mode is similar to the SM, in addition to a massless tensor:

# This is a special data file which contains particles of the

# model. The format for entering new particles is:

# Name anti_Name Spin Linetype Mass Width Color Label PDG

y y T D ZERO ZERO S G 39

The graviton is represented by the letter y, and its PDG number is 39. The new
coupling associated to the graviton particles are:

# The ordering of particles is very important.

# For FFV interactions, must use particles, not anti_particles.

#

# 3-particle vertices are entered as follows:

# particle1 particle2 particle3 coupling_name coupling_order

#

g g y GTV QTD

a a y GTV QTD

z z y GTV QTD

w- w+ y GTV QTD

q q y GTF QTD

l- l- y GTF QTD

h h y GTS QTD

#

# 4-particle vertices are entered as follows:

# part1 part2 part3 part4 2xcoupling_names 2xcoupling_orders

#

g g g y G GTV QCD QTD

q q g y GG GTFV QCD QTD

qd qd a y GAD GTFV QED QTD

qu qu a y GAU GTFV QED QTD

l- l- a y GAL GTFV QED QTD

qd qd z y GZD GTFV QED QTD

qu qu z y GZU GTFV QED QTD

l- l- z y GZL GTFV QED QTD

vl vl z y GZN GTFV QED QTD

qd qu w- y GWF GTFV QED QTD

qu qd w+ y GWF GTFV QED QTD

vl l- w+ y GWF GTFV QED QTD

l- vl w- y GWF GTFV QED QTD
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Here, all types of quarks are represented by q, up-quark family is qu and down-quark
family is qd. For the leptons, electron, muon and tau are defined as l-, and the three
types of neutrinos are represented by vl. The interaction order is the proportionality
of the vertex with the gS coupling for QCD, ge coupling for QED, and gt coupling for
QTD, which is the new interaction defined for spin-2 particles. The couplings depend
on the particles of the vertex.

The new couplings related to the spin-2 particle are GTV, GTF and GTS. They are
defined to be:

GTV =
1
Λ
, GTS =

1
2Λ

, GTF =
1

4Λ
(A.8)

where Λ is the effective scale of the theory.



AppendixB
New routines for ADD theories
in MadGraph

B.1 5-point vertices

In chapter 3 we have obtained the Feynman rules and vertices for a theory with a
general spin-2 particle coupled to the SM theory. These are exhibited on Figure 3.1.

We can check the existence of 5-point vertices, such as the ggggG vertex or the qqggG.
Previously, MADGRAPH/MADEVENTversion 4 [91] did not have the automatic gen-
eration of 5-point diagrams, which was necessary for the correct evaluation of pro-
cesses with more than 1 jet in the final state. Routines to automatic generate 5-point
vertices have been implemented in collaboration with Q. Li [114]. Here we describe
details of such implementation.

Recall that the ggggG vertex is described on Figure 3.1. It can be re-organized and
written as:

LggggT =− GT GC2 fabef cde Tµν∗ ×
[1

4
ηµνg

a,ρ∗gb,σ∗gc∗ρ g
d∗
σ − gb,ρ∗ga∗µ gc∗ν gd∗ρ

]
,

(B.1)

with the coupling constants GT = −κ2 and GC = gs. In HELAS such vertex can be en-
coded as GGGGTX computing the portion of the amplitude of the ggggT vertex from
four gluon (G) polarization vectors and a tensor (T) boson wavefunction corresponding
to the color structure fabef cde, as it is illustrated on Figure B.1 (a).

In order to implement this vertex in MADGRAPH, which supports at most 4-point ver-
tices, we reinterpret the scattering in the t, u and s channels of the non-propagating
octet tensor boson tA as an auxiliary particle. With tA we can decompose the 5-
point vertex into two 3-point vertices: ggtA and tAtAT , which can then be generated

149
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(a) (b)

tA

tA

T

ga

ga gb

gb

gc

gc

gd

gd

T

Figure B.1: Illustration of the decomposition of the 5-point vertex into two 3-point
vertices to be automatically treated in MADGRAPH version 4.

by MADGRAPH automatically. The color structure of the vertex fabef cde is main-
tained. Figure B.1 illustrates the decomposition. Observe that we assign a flow to tA,
i.e. we treat tA different from its antiparticle in MADGRAPH. The idea is to forbid the
interaction of tA and its antiparticle to avoid appearance of additional diagrams for
gg → gg.

In order to introduce the auxiliary particle tA, several HELAS sub-routines have been
modified and some have been created. Table B.1 presents a summary of all modifica-
tions. We follow with a full description of each routine.

GGGGTX

The subroutine GGGGTX computes the portion of the amplitude of the ggggT vertex
from four Gluon polarization vectors and a Tensor boson wavefunction corresponding
to the color structure fabef cde, which should be called as

CALL GGGGTX(VA, VB, VC, VD, TC, GC, GT , VERTEX) (B.2)

The inputs VA(6), VB(6) and VC(6) are complex six-dimensional arrays which
contain the Vector boson wavefunctions, and their momenta as

pµa = (<eVA(5),<eVA(6),=mVA(6),=mVA(5)),

pµb = (<eVB(5),<eVB(6),=mVB(6),=mVB(5)),

pµc = (<eVC(5),<eVC(6),=mVC(6),=mVC(5)).
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Sub-routine Summary

VVTCXX computes the amplitude of the ggtA vertex.

JVTCXX computes the off-shell vector current J made from the interactions
of a Vector gluon and an auxiliary Tensor boson by the ggtA vertex.

UVVCXX computes the off-shell tensor current U for the auxiliary tensor tA,
made from two flowing-out Vector gluons by the ggtA vertex.

TTTXXX computes the amplitude of the tAtAT vertex.

UTTAXX computes the off-shell non-propagating tensor current U, made
from the flowing-out graviton Tensor and the auxiliary Tensor
by the tAtAT vertex.

UTTBXX computes the off-shell graviton tensor current U, made from the
two flowing-out auxiliary Tensors by the tAtAT vertex.

Table B.1: Summary of the HELAS sub-routines introduced for the implementation
of the 5-point vertex in MADGRAPH extracted from [114].

The input TC(18) is a complex 18-dimensional array which contains the wavefunc-
tion of the Tensor boson:

Tµ+1,ν+1 = TC(4µ+ ν + 1), (B.3)

and its four-momentum as

pµ = (<eTC(17),<eTC(18),=mTC(17),=mTC(17)),

The output VERTEX is a complex number in units of GeV:

VERTEX = −GT GC2 Tµν Gµν,ρλσδ V
ρ
AV

σ
BV

λ
CV

δ
D (B.4)

with Gµν,ρσλδ given on Table 3.1, and we use the notation

V µA = VA(µ+ 1), V µB = VB(µ+ 1),

V µC = VC(µ+ 1), V µD = VD(µ+ 1). (B.5)

In order to insert automatically 5-point vertices in MADGRAPH, we introduce non-
propagating colourless tensor boson tA as an auxiliary particle. With tA the portion
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of the 5-point vertex with color structure fabef cde can be reduced automatically. Af-
ter introducing particle tA, several new HELAS subroutines were added. They are
summarized on Table B.1, and can be called on the following way:

VVTCXX

This subroutine computes the amplitude of the ggtA vertex,

CALL VVTCXX(VA, VB, TC, GC, VMASS , VERTEX)

VMASS represents the vector gluon mass which is zero (although it does not play any
role here, we keep it as an input argument in accordance with the subroutine VVTXXX,
for convenience of MADGRAPH). What we compute here is

VERTEX = GC ηµρηνσT
µνV ρAV

σ
B . (B.6)

JVTCXX

This subroutine computes an off-shell vector current J made from the interactions of a
Vector gluon and an auxiliary Tensor boson by the ggtA vertex, and should be called
as

CALL JVTCXX(VC, TC, GC, VMASS, VWIDTH , JVTC)

The input VC(6) is the wavefunction and momentum of the gluon. The output
JVTC(6) gives the off-shell vector current multiplied by the gluon propagator, which
is expressed as a complex six-dimensional array:

JVTC(α+ 1) = −GC
q2

ηαµV
αTµν , (B.7)

and

JVTC(5) = V(5) + TC(17), (B.8)

JVTC(6) = V(6) + TC(18). (B.9)

Here the momenta q are

qµ = (<eJVTC(5),<eJVTC(6),=mJVTC(6),=mJVTC(5)).
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UVVCXX

This subroutine computes an off-shell tensor current U for the auxiliary tensor tA,
made from two flowing-out Vector gluons by the ggtA vertex, and should be called as

CALL UVVCXX(VA, VB, GC, VMASS, XM, XW , UVVC)

The inputs XM and XW are two dummy arguments for which we keep them in ac-
cordance with the subroutine UVVXXX. The output UVVC(18) is a complex 18-
dimensional array:

Tαβ = GCV αA V
β
B (B.10)

for the first 16 components of UVVC, and

UVVC(17) = VA(5) + VB(5), (B.11)

UVVC(18) = VA(6) + VB(6). (B.12)

TTTXXX

This subroutine computes the amplitude of the tA tAT vertex, called as

CALL TTTXXX(TC, T1C, T2C, GT, VERTEX)

The inputs T1C(18) and T2C(18) are complex 18-dimensional arrays which con-
tain the wavefunction and momenta for the auxiliary tensors. What we compute here
is

VERTEX = GTTµνT ρλ1 Tσδ2 Gµν,ρσλδ, (B.13)

with T1,2 defined from T1C(18) and T2C(18) as in equation (B.3).

UTTAXX

This subroutine computes an off-shell non-propagating tensor current U, made from
the flowing-out graviton Tensor and the auxiliary Tensor by the tA tAT vertex, and
should be called as

CALL UTTAXX(TC, T1C, GT, UTTA)
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The output UTTA(18) is a complex 18-dimensional array:

TαβA = GT ησαηδβTµνT ρλ1 Gµν,ρσλδ (B.14)

for the first 16 components of UTTA, and

UTTA(17) = T(17) + T1(17), (B.15)

UTTA(18) = T(18) + T1(18). (B.16)

UTTBXX

This subroutine computes an off-shell graviton tensor current U, made from the two
flowing-out auxiliary Tensors by the tA tAT vertex, and should be called as

CALL UTTBXX(T1C, T2C, GT, TMASS, TWIDTH, UTTB)

The inputs TMASS and TWIDTH are the graviton mass and width, mT and ΓT . The
output UTTA(18) is a complex 18-dimensional array:

Tαβ = GT
−Pµα,νβ

q2 −m2
T + imTΓT

T ρλ1 Tσδ2 Gµν,ρσλδ (B.17)

for the first 16 components of UTTB, and

UTTB(17) = T1(17) + T2(17), (B.18)

UTTB(18) = T1(17) + T2(18). (B.19)

Here q is the momentum of the off-shell tensor boson given in equations (B.18) and
(B.19) as

qµ = (<eUTTB(17),<eUTTB(18),=mUTTB(18),=mUTTB(17)).

And Pµα,νβ is the polarization summation tensor (3.77) [99].

B.2 Summation over the mass spectrum

On chapter 2 it has been shown that for the ADD theory we expect to have an infinite
number of spin-2 particles couples to the SM. Because their masses lie very close to
each other experimental searches would hope to detect signs of gravity through the
sum of such states.



B.2. Summation over the mass spectrum 155

The MC simulation would therefore have to perform an extra integral (accounting for
all the KK modes of the graviton) for each point of the phase-space. The amplitude
integration over the mass density function is specified on equation (3.40).

For virtual graviton exchange, the tower of KK graviton modes leads to the summa-
tion of their propagators, which is divergent since ADD is only an effective theory. It
is possible to introduce a cutoff for the highest KK modes and replace the summation
a factor on the effective scale, as it was first proposed by Han et al [49]. This was
the method chosen for the implementation in MADGRAPH, which can be easily per-
formed by setting the graviton mass to zero and the extra dimensional scale to be the
same as the effective scale. Note however, that the propagator of the massive gravi-
ton is still employed here, and setting the mass of the graviton to zero has only been
accomplished locally aiming on executing such trick.

Nevertheless, it is more complicated for graviton emission, because it is actually nec-
essary to perform the integration described by equation (3.40). We have implemented
the integration through the introduction of new vertices and two auxiliary dummy par-
ticles x1 and x2. These are massless colourless particles, in which the first is defined
as a scalar, and the second a pseudo-tensor. MADGRAPH is subsequently modified to
include a new particle type P, which is only involved in the interaction with graviton:
x1x2T.

For generate a process (exclusively for the ADD theory) in which a spin-2 particle is
emitted, one should request for example pp → x1x2 + X , instead of pp → T + X .
The phase spaces are related by

dΦ(x1x2 +X) =
dm2

T

16π2
dΦ(T +X) . (B.20)

We can thus perform the mass integration with the help of the new HELAS subrou-
tines for the x1x2T vertex summarized in Table B.2.

PXXXXX

This subroutine stores the helicity and momentum of the auxiliary spin-2 Pseudo-
particle for further usage, and should be called as

CALL PXXXXX(P, XM, NHEL, NST , PC)

The input P(0:3) is a real four-dimensional array which contains the four-momentum
pµ of the pseudo particle, NHEL (= ±2,±1, 0) specifies its helicity λ, NST specifies
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Sub-routine Summary

PXXXXX stores helicity and momentum of the auxiliary particles x1 and x2.

TPSXXX computes the amplitude of x1x2T vertex from a set of parameters
specified by the theory.

UPSXXX computes an off-shell graviton tensor current U, made from the flow-
ing-out auxiliary Scalar and Pseudo-particles, by the x1x2T vertex.

Table B.2: Summary of new HELAS sub-routines introduced for the implementation
of the KK mass integration in MADGRAPH/MADEVENT within the framework of the
ADD model. Table extracted from [114]

whether the boson is in the final state (NST = 1) or in the initial state (NST = -1).
XM is its mass but does not play any role here.

The output PC(18) is a complex 18-dimensional array, among which only the fol-
lowing matter, namely

PC( 1) = NHEL, (B.21)

and

(PC(17), PC(18)) = NST (P(0) + iP(3), P(1) + iP(2)). (B.22)

TPSXXX

This subroutine computes the amplitude of the x1x2T vertex, and should be called as

CALL TPSXXX(TC0, PC, SC, GP, TMASS0, TWIDTH, VERTEX)

SC(3) is a complex three-dimensional array which contains the momentum for x1.
GP(1:2) here are not coupling constant, but contain the ADD model inputs:

GP( 1) = Λ + iδ,

GP( 2) = Mlow + iMup, (B.23)

Mlow and Mup are the lower and upper limits for graviton mass integration. TMASS0
(mT0 for below) is only temporarily used and got from the MG input file
param_card.dat, while the real graviton massmT is defined as the invariant mass
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of x1 and x2, i.e.,

mT ≡ |q1 + q2|, (B.24)

with q1 and q2 are the momenta of x1 and x2.

Also note the input TC0 is indeed calculated from the other side of Feynman diagram,
and contains the polarization summation tensor Pµνρσ, which can be used to project
out the real graviton wave function, due to the relations of the 5 helicity states of the
tensor boson [99]:

Pµν,αβ(p) =
∑

λ=±2,±1,0

εµν(p, λ)εαβ(p, λ)∗, (B.25)

and

εµν(p, λ)εµν(p, λ′)∗ = δλλ′ , (B.26)

with p ≡ q1 + q2, and the helicity λ is got from the pseudo-particle’s wavefunction,
or equation (B.21).

Now we can get the true graviton tensor wave function by calling the subroutine

CALL TXXXXX(P,mT , λ,+1, TC) (B.27)

Finally, the output VERTEX is

VERTEX =
8π2

mT
ρ(mT )(p2 −m2

T0 + imT0ΓT )TµνT
µν
0

× θ(mT −Mlow)θ(Mup −mT ), (B.28)

where θ represents the Heaviside step function. In equation (B.28), we include the
mass density factor, the inverse graviton propagator, and the compensation factor for
the decay phase space.

UPSXXX

This subroutine computes an off-shell graviton tensor current U, made from the flowing-
out auxiliary Scalar and Pesudo-particles, by the x1x2T vertex, and should be called
as
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CALL UPSXXX(PC, SC, GP, TMASS0, TWIDTH, UPS)

The output UPS is a complex 18-dimensional array, which is indeed got simply by
calling inside UPSXXX

CALL TXXXXX(P,mT , λ,+1, UPS). (B.29)

and including the step functions in equation (B.28).



AppendixC
ALOHA

Automatic Libraries Of Helicity Amplitudes for
Feynman diagram computations

ALOHA is a package for the automation of the HELAS (HELicity Amplitude Subrou-
tines) library [101] corresponding to the Feynman rules of any in quantum field theory
Lagrangian.

From the input given by the Universal FeynRules Output (UFO) [157], ALOHA pro-
duces the complete set of routines, wave-functions and amplitudes, that are needed
for the computation of Feynman diagrams. The code is written in Python, but the
output language can be chosen by the user between Python, C++ and Fortran.
Here, we present how ALOHA works, and show a sample application implemented in
the MADGRAPH 5 framework for theories containing spin-2.

159
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C.1 Introduction

We have seen that due to the numerous quantity of possible BSM theories that could
show up at the LHC, extensive efforts are being made to automate the process of
going from the Lagrangian of a new theory, to simulating events that can be then
compared with data. ALOHA is one important piece of that process with the ability to
automatically create helicity amplitude routines necessary for calculating the matrix
element associated with any new model. Such an ability will be useful to many groups
writing custom generators, however, at present the greatest impact is on the recently
released MADGRAPH 5 suite [92].

Helicity amplitudes methods [165, 166, 167, 168, 169, 170, 171] are a powerful way to
evaluate the squared matrix element of any process. Several Monte-Carlo (MC) event
generators, matrix-element based, use such routines already at the initial stage of the
calculation.

The HELAS [101] library has been a particularly successful implementation of an
helicity amplitude method for tree-level processes. Amplitudes are generated by ini-
tializing a set of external wavefunctions using their helicity and momenta. These
wavefunctions are combined based on the particle interactions in the Lagrangian to
determine the wavefunctions of the internal lines (propagators). Once all of the wave-
functions are determined, they are combined to calculate the complex number corre-
sponding to the amplitude for the diagram. These amplitudes can then be added and
squared to give the required result. The set of routines needed to calculate amplitudes
for the SM at tree-level was released in the original HELAS and successfully em-
ployed for many phenomenological studies thereafter.

C.2 Automation of the method

ALOHA basically uses the same strategy as these of HELAS. These routines consists
of three categories:

External particle routines: Wavefunction routines corresponding to each exter-
nal leg of a Feynman diagram. They are computed for a given momentum and
helicity. The type of the particle must be given as an input. The choices are:
vector, scalar, tensor or incoming/outgoing fermion.
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Wavefunction/Off-shell routines: The propagator wave function, which is gen-
erated when one leg of a vertex has no associated external wave-function. These
routines return both the internal wavefunction and the momentum of the propa-
gator.

Amplitude/On-shell routines: The amplitude routines, which is computed af-
ter all the legs of a diagram are associated to a wave-function. These can be
used to compute the matrix-element of the diagram by the associated amplitude
routines.

To illustrate how ALOHA works from the beginning, let us start with the one example
of vertex produced by the UFO. The UFO output for the e+e−γ vertex is:

FFV = Lorentz(name = ‘FFV’,

spins = [ 2, 2, 3 ],

structure = ‘Gamma(3,2,1)’)

The spins attribute contains the list of spins of each particle (present in the vertex)
in the 2*S+1 scheme1. The structure property collects the analytical expression
for the Lorentz structure in the vertex. The arguments of the Lorentz object refer to
the particle associated with each index of the object. The list of available objects and
the Python convention for different indices are explained in Table C.1.

The UFO convention requires that:

i. positive indices are linked to the particle numbers;

ii. all Lorentz indices should be listed before spin indices;

iii. all repeated indices should be summed with the appropriate matrix;

iv. and all momenta should be incoming.

From a given UFO model structure, ALOHA creates the analytical expression linked
to the associated HELAS routine by contracting the expression with a set of wave-
functions.

Now, we exemplify how ALOHA works by relating a particular vertex produced by
ALOHA and HELAS. The structure shown in the FFV python object introduced above
is Gamma(3,2,1).

1In the case of a fermion, the first particle is considered as an incoming fermion and the second as an
outgoing fermion. For interactions containing more than two fermions, the convention is that the vertex
should be defined for a given fermion flow. The outgoing fermion follows directly its associated incoming
fermion.
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Elementary Lorentz structures

Charge conjugation matrix: Cab C(a,b)

Epsilon matrix: εµνρσ Epsilon(µ,ν,ρ,σ)

Gamma matrices: (γµ)ab Gamma(µ, a, b)

Gamma5 matrix: (γ5)ab Gamma5(a,b)

(Spinorial) Kronecker delta: δab Identity(a,b)

Minkowski metric: ηµν Metric(µ,ν)

Momenta of particle N : pµN P(µ,N)

Right chiral projector:
(

1+γ5
2

)
ab

ProjP(a,b)

Left chiral projector
(

1−γ5
2

)
ab

ProjM(a,b)

Sigma matrices: (σµν)ab Sigma(µ,ν,a,b)

Scalar wavefunction: φN Scalar(N)
Spinor wavefunction: ψaN Spinor(a,N)
Vector wavefunction: εNµ Vector(µ,N)

Spin2 wavefunction: Tµ,νN Spin2(µ,ν,N)

Table C.1: The greek indices stands for lorentz indices while the lower case latin
indices stands for spin indices. The indices N stands for the label of the particle.

Amplitude/On-shell routine

The associated amplitude routine, which was previously named IOV by the HELAS con-
vention, is now:

Spinor(2) * Gamma(3,2,1) * Spinor(1) * Vector(3)

which correspond to the analytical expression:

FFV_0(ψ1, ψ2, ε3µ, g) = g ∗ ū2γ
µv1εµ. (C.1)

The analytical module of ALOHA expands Eq. (C.1) component by component. The
result is written to a C++, Python or Fortran file, language chosen by the user.
For instance, the Fortran output would be:

C This File is Automatically generated by ALOHA

C The process calculated in this file is:

C Gamma(3,2,1)

C
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SUBROUTINE FFV1_0(F1,F2,V3,COUP,VERTEX)

IMPLICIT NONE

DOUBLE COMPLEX F1(*)

DOUBLE COMPLEX F2(*)

DOUBLE COMPLEX V3(*)

DOUBLE COMPLEX COUP

DOUBLE COMPLEX VERTEX

VERTEX=COUP*((F2(1)*((F1(3)*((0,-1)*V3(1)+(0,1)*V3(4)))

$ +(F1(4)*((0,1)*V3(2)+V3(3)))))+((F2(2)*((F1(3)*((0, 1)

$ *V3(2)-V3(3)))+(F1(4)*((0,-1)*V3(1)+(0,-1)*V3(4)))))

$ +((F2(3)*((F1(1)*((0,-1)*V3(1)+(0,-1)*V3(4)))+(F1(2)

$ *((0,-1)*V3(2)-V3(3)))))+(F2(4)*((F1(1)*((0,-1)*V3(2)

$ +V3(3)))+(F1(2)*((0,-1)*V3(1)+(0,1)*V3(4))))))))

END

The convention for the naming of ALOHA’s routines is denoted by NAME_X, where
NAME is the name provided by UFO and X is either 0 for an amplitude routine or the
number corresponding to the off-shell particle for a wavefunction routine.

Wavefunction/Off-shell routines

To produce the necessary off-shell routines, ALOHA loops over the list of particles
and replaces the on-shell wavefunction with a propagator. For particle 1, the incoming
spinor is replaced by a propagator, computing2:

Spinor(2)*Gamma(3,2,1)*SpinorPropagator(1)*Vector(3)

which is analogous to:

FFV_1(ψ2, ε3µ, g,m1,Γ1) = g ∗ ψ̄2 γ
µ · i 6 p+m1

p2 −m2
1 + im1Γ1

ε3µ. (C.2)

FFV_1 is the wavefunction of the first spinor, and would be FOV in the original
HELAS language. The momentum for the propagator is computed by using con-
servation of momentum at the vertex.

Similarly, for the outgoing spinor, we have:

FFV_2(ψ1, ε3µ, g,m2,Γ2) = i
6 p+m2

p2 −m2
2 + im2Γ2

· i γµ ψ2 ε3µ. (C.3)

2The propagator object is defined internally to ALOHA.
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The syntax used by ALOHA reads:

SpinorPropagator(2)*Gamma(3,2,1)*Spinor(1)*Vector(3)

which can be related to the FIV routine in the original HELAS language.

Finally, ALOHA also creates the routine associated to the off-shell vector. This routine
returns a vector wavefunction from a pair of incoming and outgoing fermion wave-
functions, and it is written by ALOHA as:

Spinor(2)*Gamma(3,2,1) Spinor(1)*VectorPropagator(3)

analogous to the analytic expression FFV_3, which would be JIO in the original
HELAS language:

FFV_3(ψ1, ψ2, g,m3,Γ3) = ψ̄2 i γµ ψ1 · −i
ηµν − pµpν

m2
3

p2 −m2
3 + im3Γ3

. (C.4)

Following the original HELAS convention, it is used the unitary gauge for massive
particles and the light cone gauge for massless particles.

External particle routines

ALOHA is not designed to create external particles routines, e.g., IXXXXX and OXXXXX
for incoming and outgoing fermions, VXXXXX for vectors, SXXXXX for scalars and
TXXXXX for spin-2 particles. These from HELAS are used. There is a relatively
small number of such routines needed, and for this reason is reasonable to use a static
library. This is incorporated into the ALOHA package, and it is available in Python,
C++ and Fortran languages.

Two additional types of special routines are needed in order to cover the full range of
routines required for any type of interaction (and model):

• Conjugate Routines: Required by the presence of majorana fermions and of
fermion flow violation [172]. In the case of the previous example, the Lorentz
expression would have to be replaced by:

C(-2,2)*Spinor(2)*Gamma(3,2,1)*
Spinor(1)*Vector(3) * C(3,-3)
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To distinguish conjugate routines from the standard ones, ALOHA adds to their
name the letter C followed by the number of the fermion pair that is conjugated.
In this case the name of the conjugate routine would be FFVC1_X with X being
either 0, 1, 2 or 3 depending on the number corresponding to the amplitude
or off-shell particle. Note that _1 (_2) returns the wavefunctions associated to
the incoming (outcoming) fermion.

• Multiple Couplings: In the UFO scheme each Lorentz structure is associated
to a single coupling. In practice, this means that some interactions are linked
to more than one Lorentz structure. However, it is convenient for the readabil-
ity and the compactness of the code to have one single routine per interaction.
Therefore, ALOHA defines a series of wrapper functions which call different
routines associated by their couplings. The name of these wrapper routines are
the concatenation of the name of the associated routines combined by an under-
score. If all of the associated routines start with the same prefix (with letter S,
F, V, T) then this prefix is only kept the first time. For example, the wrapper
function of FFV1_X and FFV2_X will be called FFV1_2_X.

In some cases, this method provides redundancy. Consider a four-Higgs-interaction.
Due to the symmetry of the Lorentz structure, the four wavefunction routines will
each have the same content. This type of symmetry is detected automatically by
ALOHA and the computation is done only once. However, in order to simplify the
work of the matrix element generator, all four routines are explicitly defined and have
their own names. The first one is computed and the remaining three are written as an
alias of the first one.

C.3 ALOHA output

The major advantage of ALOHA comes from using it in combination with a MC event
generator. To this aim, ALOHA offers two options. The first is to use ALOHA as a
standalone program. The user can call ALOHA from the shell:

./bin/aloha UFO_path[-f Fortran|Python|CPP][-o output_dir]

where UFO_path is the path to the UFO model directory, and the two possible argu-
ments are

• the language in which the routine should be written (default is Fortran).

• the path for the output directory (which is by default UFO_path/LANGUAGE,
where LANGUAGE can be either Fortran, Python or C++).
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The second possibility is to internally link the ALOHA code to a MC event generator.
This option is only possible for a generator written in Python, and is currently used
by MADGRAPH version 5. For each process MADGRAPH requests a set of helicity
routines, which is produced by ALOHA. This first implementation of ALOHA inside a
matrix element generator played an essential role in fully validating the package.

C.4 Checks and validation

To validate ALOHA, we use two different versions of MADGRAPH to compute val-
ues for the square of the matrix element, given a specific phase-space point of a
known process. We employ MADGRAPH version 4.4.44, which uses the original
HELAS routines, and compare the results with those from MADGRAPH version
5.1.1.0, which uses the new ALOHA routines.

The comparison is made by specifying a point of phase space and a center-of-mass
energy, after fixing properly the set of external parameters. The values for each matrix
element squared are computed, and the difference is given by ∆D:

∆D = 2× |M(ALOHA)|2 − |M(HELAS)|2
|M(ALOHA)|2 + |M(HELAS)|2 . (C.5)

Due to effects of numerical precision, one can not expect exact agreement between
the two codes. Instead, the test is considered to pass if values of the squared matrix
element computed by ALOHA and HELAS agree to at least five orders of magnitude,
i.e., ∆D ≤ 1× 10−5.

Such tests are carried out for different processes based on the Standard Model (SM),
the Minimal Supersymmetric Model (MSSM) and the Randall-Sundrum type I (RS-I)
model, the latter including spin-2 particles. Additional tests are made by checking
gauge and Lorentz invariance of each process. We observe a great agreement for all
processes, as exemplified in Table C.2 for the SM and the MSSM.

C.4.1 Spin-2 validation checks

We have seen that several models with extra dimensions have recently been pro-
posed. Examples of such theories include the Large Extra Dimensional model (or
ADD) [1,2,3] and Randall-Sundrum (RS) models [5,4]. These models contain spin-2
particles allowed to propagate through higher dimensional space-time that couple to
the SM particles in a very particular way. To complement the implementation of the
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SM processes

Process ∆D

e+ e− → γ γ 1.512×10−7

e− ν̄e → γ W− 4.541×10−8

γ e− → νeW
− 4.545×10−8

b e− → b e− 7.310×10−8

e+ ν̄e → e+ ν̄e 3.911×10−8

e+ Z → γ e+ 5.458×10−8

νe ν̄e → e+ e− 7.164×10−8

νeW
− → γ e− 4.545×10−8

ν̄e Z → ν̄e Z < 1.0×10−10

γ g → t t 7.528×10−8

g t→ t Z 3.173×10−8

t t →W+W− 1.833×10−8

b W− → b W− 6.291×10−9

W+W− → Z Z 1.666×10−7

Z Z → e+ e− 1.162×10−7

e−W− → e−W− Z 9.767×10−8

νe Z → γ e−W+ 2.692×10−8

u ν̄e → γ u ν̄e 1.179×10−7

t ν̄e → e+ tW− 8.095×10−8

ν̄eW
+ → b b e+ 8.430×10−8

γ d→ d e+ e− 6.045×10−8

ū Z → e+ e− ū 3.816×10−8

d d̄→ H νe ν̄e 2.566×10−8

H Z → g t t 2.457×10−8

t t → u ū Z 3.962×10−8

tW− → e− t ν̄e 4.744×10−8

b t → γ b t 7.409×10−8

t Z → d d̄ t 2.224×10−8

b Z → b Z Z 8.196×10−8

W+W− → d d̄H 9.519×10−8

MSSM processes

Process ∆D

e+
RW

+ → e+
RW

+ 5.544×10−8

H2W
+ → H3W

+ 1.108×10−8

e+
LW

− → e+
L H

− 5.285×10−9

νe ν̄e → H+H− 6.214×10−9

e+
L ν̄e → e+

L ν̄e 5.987×10−8

e+ e−L → sνe ν̄e 1.792×10−9

e+ e−R → H− x+
1 6.679×10−9

e+
L e
−
L → µ+ µ− 1.984×10−9

e−L x
+
1 → H2 νe 3.028×10−8

sνe x
−
1 → νeW

− 3.714×10−8

H− sνe → νe x
−
1 1.039×10−8

e+
RH

− → e+
RW

− 7.992×10−9

x+
1 x

+
1 → x+

1 x
+
1 2.863×10−8

H2 x
−
1 → e− sν̄e 1.527×10−7

e−L W
+ → γ e− x+

1 6.045×10−7

uRW
− → g uRW

− 5.029×10−9

n1 Z → uR ū Z 8.805×10−10

γ e−L → e− sνe ν̄e 4.001×10−9

e− x+
1 → νeW

+ x−1 3.355×10−7

sν̄e x
+
1 → e+ νe ν̄e 6.548×10−8

e+ x−1 → sν̄e uR ūR 1.116×10−10

n1 sνe → νe νe ν̄e 2.176×10−9

g uL → e− e+
R u 3.677×10−10

go go→ uR ūR Z 1.089×10−7

go uR → uZ Z 1.526×10−10

ū νe → g sνe ūL 1.233×10−8

e+ uL → e+ uL Z 1.542×10−8

e−R ūR → e− g ū 2.204×10−7

e− e+
L → n1 u ū 2.122×10−8

ν̄e ν̄e → e+
L ν̄e x

−
1 4.661×10−8

Table C.2: Example of the results obtained by the validation tests for SM and MSSM
processes.
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RS processes

Process ∆D

g u→ u y < 1.0×10−10

b y → b g < 1.0×10−10

t̄ y → g t̄ < 1.0×10−10

g y → t t̄ < 1.0×10−10

g t→ t y < 1.0×10−10

g g → g y < 1.0×10−10

t̄ y → g g t̄ 9.766×10−10

g g → g g y 3.979×10−10

b g → b g y 8.009×10−10

b b̄→ b b̄ y 1.864×10−9

b̄ t̄→ b̄ t̄ y 7.411×10−10

t t̄→ b b̄ y 1.928×10−10

Table C.3: Example of the results obtained by the validation tests for RS processes.

ALOHA helicity routines, it is interesting to test and validate spin-2 routines compar-
ing it to the HELAS implementation [99].

Using FEYNRULES, we implement a reduced version of the RS model [173]: it con-
tains only the first mode of the spin-2 particle explicitly defined (which is denominated
y), which couples to SM particles. Validation tests, similar to the ones presented above
for the SM and MSSM, are performed. Approximately 500 2 → 2 and 2000 2 → 3
processes are tested, and some examples can be found in Table C.3. We obtain a full
agreement between routines obtained with the use of HELAS and ALOHA.

C.4.2 Goldstino validation checks

Similarly to what has been performed for the SM, MSSM and RS theories, a simpli-
fied SUSY theory that includes goldstino interactions has been implemented in MAD-
GRAPH/MADEVENT via the FEYNRULES package [156]. Since the goldstino is the
helicity ±1/2 component of the gravitino, it can be treated by ALOHA. A compar-
ison of the values of the matrix element squared obtained by ALOHA against these
obtained with the use of HELAS [98, 100] has been performed. A full agreement is
again obtained.
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The next step is to add the treatment of spin-3/2 particles by ALOHA, which is not
yet completed. However, since in Chapter 6 we have shown that goldstino parti-
cles are the relevant components of gravitino production at the LHC, for the phe-
nomenological studies of gravitino emission (at the LHC) it is enough that MAD-
GRAPH/MADEVENT handle goldstino particles.
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