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Poets say science takes away from the beauty of the stars - mere

globs of gas atoms. I too can see the stars on a desert night,

and feel them. But do I see less or more? The vastness of the

heavens stretches my imagination - stuck on this carousel my

little eye can catch one - million - year - old light. A vast

pattern - of which I am a part... What is the pattern, or the

meaning, or the why? It does not do harm to the mystery to

know a little about it. For far more marvelous is the truth than

any artists of the past imagined it. Why do the poets of the

present not speak of it? What men are poets who can speak of

Jupiter if he were a man, but if he is an immense spinning

sphere of methane and ammonia must be silent?
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Chapter 1
Introduction

The Standard Model of fundamental introduction is the theory that describes reality

at the smallest scales which can be currently probed by experiments. It has been

formulated by S. Glashow, A. Salam and S. Weinberg in the 1960’s as a gauge the-

ory based on the SU(2)L ×U(1)Y groups which unifies electromagnetism and weak

interactions [1–3]. The electromagnetic and weak force, before considered as of com-

pletely different nature, are now shown to be two sides of the same coin, with weak in-

teractions being “weak” because they are mediated by massive particles, theW and the

Z bosons, unlike electromagnetism, which is mediated by the massless photon. Gauge

theories, however, forbid their mediators to have a mass, since any mass term in the

Lagrangian would explicitly break gauge invariance. The mechanism which allows

gauge bosons to acquire a mass was formulated in the same decade by P. W. Higgs,

R. Brout, F. Englert, G. Guralnik, C. Hagen and T. Kibble [4–9]. This mechanism con-

sists in adding to the Standard Model Lagrangian a new scalar doublet field, charged

under the SU(2)L×U(1)Y group, and interacting with the gauge bosons in a gauge in-

variant manner. This new field has the remarkable property of having a non-vanishing

vacuum expectation value, which is not SU(2)L×U(1)Y-symmetric. Once the theory

is expanded around this vacuum expectation value, mass-terms for the weak gauge

boson appears. This mechanism does not explicitly break gauge invariance, since the

interactions of the scalar doublet with the gauge fields do not violate it, and is known

as the spontaneous symmetry breaking mechanism. Besides giving mass to Standard

Model particles, this mechanism predicts the existence of an new scalar state, called

the Higgs boson.

In the same period, the last ingredient was added to the Standard Model, which

consisted in formulating also the strong interactions, those relevant for binding the

nucleons (protons and neutrons), as a gauge theory, Quantum Chromo-Dynamics
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(QCD), based on the SU(3) group. This formulation, which was driven by some as-

tonishing results in experiments which were probing nucleons with highly-energetic

electrons, was proposed by M. Gell-Mann, H. Fritzsch, D. Gross, F. Wilczek and

H. D. Politzer [10–13], and considers hadrons as bunches of partons, quarks and glu-

ons.

After the inclusion of strong interactions, the Standard Model has remained the same

for almost forty years, obtaining more and more confirmations of its validity by var-

ious experiment, where the parameters of the theory have been measured with as-

tonishing precision. However, people had to wait until 2012 when the last missing

confirmation of the validity of the Standard Model was found. Until then, no evidence

of the existence of the Higgs boson was found: on July 4th 2012 the two experiments

at the Large Hadron Collider at the CERN (Geneva), ATLAS and CMS, claimed the

observation of a new particle, with mass of about 125GeV and with properties com-

patible with these predicted for the Higgs boson [14,15]. This claim was based on data

acquired on both the 7TeV and 8TeV runs, with about 5fb−1 of integrated luminosity

per run per experiment. At present, one year later, after the end of the 8TeV run with

the integrated luminosity exceeding 20fb−1, data seems to point towards the fact that

these new particle has indeed the right characteristics to be considered as the Higgs

boson [16–18].

These great achievements would not have been possible without the enthusiastic work

of thousands of people, either involved in building and running the accelerator and the

experiments, or in providing the best possible theoretical predictions for the various

production channels of the Higgs boson, and for the corresponding backgrounds.

As the LHC is a hadron collider, strong interactions dominate the scene. First of all,

processes mediated by strong interactions represent an overwhelming background for

all kind of searches, their typical rates being orders of magnitude larger than those

of any electro-weak process (see also Fig. 1.1). Second, even for processes driven

by electro-weak reactions, thousands of hadrons originating from the remnants of the

colliding protons typically accompany the event. And finally, as observables can only

be computed in perturbation theory, typically identifying the expansion parameter

with the strong coupling αs ≃ 0.1, QCD can induce sizable corrections to observ-

ables. While this last point has not been an issue for the discovery of the Higgs boson,

as it happened exploiting channels with a clear mass-peak signature, it does affect the

determination of the properties of the new particle.

In the last years lots of efforts have been spent in order to have computations that

include QCD corrections, at least at the first non-trivial order (called next to leading
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Figure 1.1: Cross-sections for the most important processes at hadron colliders. Image

from [19]

order, NLO). One result of these efforts is the amazing precision to which the cross-

section of all Higgs production processes can be computed, see Fig. 2.3 in the text.

In parallel to these efforts, lot of work have also been done towards providing event

simulations which are as much realistic as possible, giving a picture of the final state

in terms of hadrons, rather than in terms of partons as typical for perturbative compu-

tations.

These efforts have lead to the possibility of computing NLO observables for virtually

any process, in an automatic way, with a realistic simulation of the final state, the only

limitation being the computing time.

In this thesis I will present the state-of-the-art predictions for the second most im-

portant Higgs boson production channel, called vector-boson fusion (VBF). The to-
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tal cross-section of this process is now known including NNLO QCD corrections

(i.e.corrections up to the second non-trivial order in αs) as well as electroweak NLO

corrections. For more differential observables, I will present the computation of NLO

corrections with a fully hadronic simulation of the final state.

In Chapter 2 I will introduce the Standard Model of fundamental interactions, with

particular focus on the role of the Higgs boson in originating particle masses. Chap-

ter 3 will be devoted to the presentation of VBF, the topic of this thesis. In Chapter 4

I will detail the computation of NNLO QCD corrections to the total cross-section of

VBF, with the main result of reducing the residual theoretical uncertainties down to

few percents in the whole scanned mass range. Once these corrections are combined

with NLO electroweak corrections, VBF can be considered to be the best known total

cross-section at the LHC. After the computation of the total cross-section, I will turn to

the computation of more exclusive observables: in Chapter 5 I will present the com-

putation of NLO corrections to many different observables, with a fully differential

hadronic description of the final state.

This thesis is based on the following publications

• [20] P. Bolzoni, F. Maltoni, S. Moch, and M. Zaro, Higgs production via

vector-boson fusion at NNLO in QCD, Phys.Rev.Lett. 105, 011801 (2010),

arXiv:1003.4451,

• [21] P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro, Vector boson fusion

at NNLO in QCD: SM Higgs and beyond, Phys.Rev. D85, 035002 (2012),

arXiv:1109.3717,

• [22] S. Frixione, P. Torrielli, and M. Zaro, Higgs production through vector-

boson fusion at the NLOmatched with parton showers, Submitted to Phys. Lett.

B (2013), arXiv:1304.7927,

on the results in the VBF sections of the CERN Yellow Reports

• [23] LHC Higgs Cross Section Working Group, S. Dittmaier et al., Handbook

of LHCHiggs Cross Sections: 1. InclusiveObservables, (2011), arXiv:1101.0593,

• [24] LHC Higgs Cross Section Working Group, S. Dittmaier et al., Handbook

of LHC Higgs Cross Sections: 3. Higgs Properties, (in preparation) (2013),

and on the conference proceedings [25–27].
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Chapter 2
The Higgs boson in the Standard

Model

In this first chapter I will present a brief introduction to she Standard Model (SM)

of strong and electroweak interactions. I will first introduce in Sec. 2.1 the gauge

structure of the interactions, and the particle content of the SM, building, in Sec. 2.2,

the SM Lagrangian. As I will show, gauge symmetries require all particles to be

massless, and this is in neat contrast with the experimental observation of massive fer-

mions (e.g. the top quark) and massive gauge bosons. This is the so-called “problem

of masses”. In order to solve the problem of masses, i.e.to allow mass terms in the

Lagrangian without breaking gauge invariance, in the 1960’s, P. W. Higgs, R. Brout,

F. Englert, G. Guralnik, C. Hagen and T. Kibble have proposed a mechanism [4–9]

in which gauge symmetries are spontaneously broken by the introduction of an extra

field. This field, called the Higgs field, has a vacuum-expectation-value which breaks

gauge symmetries, therefore allowing gauge bosons to acquire a mass. I will explain

this mechanism in Sec. 2.3. After giving mass to gauge bosons, the remnant of the

Higgs field is a scalar particle, the Higgs boson.

Almost fifty years after the hypothesis of its existence, and several particle-physics ex-

periments looking for it, the Higgs boson has finally been discovered [14, 15] by both

the ATLAS and CMS experiments at the Large Hadron Collider (LHC) at the CERN. I

will terminate this chapter by presenting in Sec. 2.4 the main production mechanisms

at the LHC.
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2.1 The SM before electroweak symmetry breaking

The Glashow-Weinberg-Salam electroweak theory [1–3] which describes the electro-

magnetic and weak interactions between quarks and leptons, is a gauge theory based

on the symmetry group SU(2)L×U(1)Y . Combinedwith QuantumChromo-Dynamics

(QCD) the theory of strong interactions based on the SU(3)C group [10–13], it pro-

vides a unified framework to describe these three forces of nature. This framework is

the Standard Model. The model, before introducing the electroweak symmetry break-

ing mechanism discussed in Sec. 2.3, has two kind of fields: matter and gauge fields.

2.1.1 The matter content of the SM

The SM matter fields consist in three generations of left-handed and right-handed chi-

ral Dirac fermions, classified into the two families of quarks and leptons. Left handed

fields are in doublets with respect to the weak isospin group SU(2)L, while right-

handed are singlets.

Leptons of the first, second and third family are respectively called of “electronic”,

“muonic” and “tauonic” flavor. Each leptonic family consist in one electrically charged

lepton, with relative charge Ql = −1, (called electron, muon and tau), and one neutral,

massless particle: the neutrino. Right handed neutrinos completely decouple in the

SM, and therefore will not be considered in what follows.

Each of the three families of quarks consist in an up- and down-type quark. Up and

down quarks have relative electric charge respectively Qup = 2/3, Qdown = −1/3. Un-
like leptons, quarks are charged under the strong interactions, and they are triplets in

the SU(3) gauge group. The three up type quarks are called up (u), charm (c) and top

(t), and the three down type down (d), strange (s) and bottom (b).

I will dub Li and Qi the left-handed lepton and quark isospin doublets of the i-th

family,

L1 =

(
νe
e−

)

L

, Q1 =

(
u

d

)

L

,

L2 =

(
νµ
µ−

)

L

, Q2 =

(
c

s

)

L

,

L3 =

(
ντ
τ−

)

L

, Q3 =

(
t

b

)

L

, (2.1)
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and ui
R
, di

R
, ei

R
, νi

R
the right-handed up-type quark, down-type quark, charged leptons

and neutrinos

u1R = u
R , d1

R
= dR , e1R = e

−
R , ν1R = νeR ,

u2R = c
R , d2

R
= sR , e2R = µ

−
R , ν2R = νµR ,

u3R = t
R , d3

R
= bR , e3R = τ

−
R , ν3R = ντR . (2.2)

The upper and lower component of each doublet have respectively isospin I fL = ±1/2,
while right-handed singlets have I fR = 0. The hypercharge (i.e.the charge with respect

to the U(1)Y group) depends on the electric and isospin charge as

Y f = 2Q f −2I f . (2.3)

Right handed neutrinos, which have zero isospin, electric charge and hypercharge, are

completely decoupled in the SM, and will not enter in what follows.

2.1.2 The gauge content of the SM

The SM gauge fields are spin-one bosons that mediate the gauge interactions. In the

electroweak sector, there is the field Bµ corresponding to the generator Y ofU(1)Y and

the three fields Wa
µ corresponding to the generators Ia of SU(2)L. These generators

can be written in terms of the Pauli matrices as

Ia =
1

2
τa . (2.4)

These generator obey the commutation relations

[
T a,T b

]
= iǫabcTc ,

[
T a,Y

]
= [Y,Y] = 0 . (2.5)

For what concerns strong interactions, gauge fields are an octet of gluon fields Ga
µ

corresponding to the eight generators of the SU(3)C group (the Gell-Mann matrices

ta) which obey the relations

[
ta, tb

]
= i f abctc , (2.6)

in terms of the SU(3)C structure constants f abc, and which are normalized such that

Tr
(
ta
)
= 0 , Tr

(
tatb

)
=
1

2
δab . (2.7)
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The field strengths are

Ga
µν = ∂µG

a
ν −∂νGa

µ +gs f
abcGb

µG
c
ν , (2.8)

Wa
µν = ∂µW

a
ν −∂νWa

µ +g2ǫ
abcWb

µW
c
ν , (2.9)

Ba
µν = ∂µB

a
ν −∂νBa

µ , (2.10)

with gs, g2 and g1 the coupling constants respectively of SU(3)C, SU(2)L, U(1)Y .

2.2 The SM Lagrangian and the problem of masses

After having presented the SM fields, I now turn to discuss their interactions. The mat-

ter fields ψ are minimally coupled to gauge fields by means of the covariant derivative

Dµ which is defined as

Dµψ =

(
∂µ− ig2TaW

a
µ − ig1

Y f

2
Bµ

)
ψ. (2.11)

In the case of quarks, the extra term -igstaG
a
µ corresponding to the strong interactions

has to be added, while for right-handed fermions the isospin term has to be dropped.

The SM Lagrangian, without mass terms for fermions and gauge bosons is then given

by

LSM = −1
4
Ga
µνG

µν
a −

1

4
Wa
µνW

µν
a −

1

4
BµνB

µν+ (2.12)

+L̄iiDµγ
µLi + ē

R
i iDµγ

µeRi + Q̄iiDµγ
µQi + ū

R
i iDµγ

µuRi + d̄
R
i iDµγ

µdRi ,

and is invariant under local SU(3)C ×SU(2)L×U(1)Y gauge transformations for fer-

mions and gauge fields. In the case of the electroweak sector, for instance, one has

L(x) → L′(x) = exp
(
iαa(x)T

a+ iβ(x)Y
)
L(x) ,

R(x) → R′(x) = exp(iβ(x)Y)R(x) ,

Wa
µ(x) → W′aµ(x)−

1

g2
∂µα

a(x)− ǫabcαb(x)Wc
µ(x) ,

Bµ(x) → B′µ(x)−
1

g1
∂µβ(x) . (2.13)
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Up to now, gauge fields and fermions have been kept massless. Since experimen-

tally weak gauge bosons have been proved to be massive, a mass term of the form
1
2M

2
V
WµW

µ should appear in the Lagrangian. However such a term will violate the

×SU(2)L×U(1)Y gauge invariance. In the simpler case of quantum electro-dynamics

(QED), the U(1)EM gauge invariance indeed forces the photon to be massless. The

presence of masses is troublesome also in the fermionic sector, since a mass term of

the form −mψ̄RψL couples the right and left handed fermions, which carry different

U(1)Y and SU(2)L charges.

As said, experimental evidences show that weak bosons and fermions do have a mass,

and this has forced people in the scientific community to look for a mechanism to

generate mass terms without breaking gauge invariance. Such a mechanism has been

found more than forty years ago, and is known as the Higgs-Brout-Englert-Guralnik-

Hagen-Kibble mechanism of spontaneous symmetry breaking [4–9], or simply as the

Brout-Englert-Higgs (BEH) mechanism. I will explain the BEH mechanism in the

following section, applying it explicitly to the case of the SM.

2.3 The BEH mechanism

2.3.1 The Goldstone theorem

The starting ingredient for understanding the BEH mechanism is the Goldstone theo-

rem [28–32].

Consider the Lagrangian for a simple real scalar field ψ,

L = 1

2
∂µφ∂

µφ−V(φ), with V(φ) =
1

2
µ2φ2+

1

4
λφ4 . (2.14)

Such a Lagrangian is invariant under the reflexion symmetry φ→ −φ since no cubic

terms are present. If the mass terms µ2 is positive, the potential V(φ) is also positive

(if also λ > 0), and the minimum of the potential is obtained for

〈0|φ|0〉 = φ0 = 0 . (2.15)

In this case, L is simply the Lagrangian for a scalar field of mass µ.
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In the opposite case, if µ2 < 0, the potential V(φ) has no more a minimum at φ = 0.

Asking its derivative to be zero one has

∂V

∂φ
= µ2φ+λφ2 = 0 , (2.16)

Which is solved for

〈0|φ|0〉 = φ0 = ±
√
−µ

2

λ
≡ v . (2.17)

v is called the vacuum expectation value (vev) of the scalar field φ. In this case, to

obtain the correct interpretation of L one has to expand around one of the mimima

v by defining a rescaled field σ = φ− v. In terms of σ the new Lagrangian (up to

constants) is

L = 1

2
∂µσ∂

µσ− (−µ2)σ2 −
√
−µ2λσ3 − λ

4
σ4 , (2.18)

corresponding to a scalar field ofmassm2 =−2µ2 with cubic and quartic self-interactions.
The presence of a cubic interaction breaks the reflexion symmetry present in the origi-

nal Lagrangian. However, the second Lagrangian has been obtained by simply resca-

ling, the φ field appearing in the first, so the correct formulation of the above sentence

is that the original reflection symmetry is no more manifest in the new Lagrangian,

because the choice of vacuum state broke it. This is the simplest example of a sponta-

neously broken symmetry.

In the previous example, the original symmetry of the Lagrangian was a discrete sym-

metry. A slightly more complicated case is the that of a continuous symmetry. Con-

sider the Lagrangian for four real scalar fields φi, i = 0,1,2,3

L = 1

2
∂µφi∂

µφi−
1

2
µ2 (φiφi)−

1

4
λ (φiφi)

2 . (2.19)

This Lagrangian is invariant under the (continuous) transformations

φi(x)→ Ri jφ j(x) , (2.20)

for any (orthogonal)matrix R belonging toO(4), the rotation group in four dimensions.

As for the single scalar field, in the case µ2 < 0, the minimum of the potential occurs

for

φiφi = −
µ2

λ
≡ v2 . (2.21)
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Unlike the single scalar field case, where the minima were a discrete set, now they are

a four-dimensional sphere.

I rewrite now the Lagrangian expanding the fields around the minimum

φmin = (v,0,0,0) , (2.22)

and defining σ = φ0− v and φi = πi, for i = 1,2,3. In terms of σ and of the three πi the

Lagrangian becomes

L =
1

2
∂µσ∂

µσ− 1

2

(
−2µ2

)
σ2 −λvσ3− λ

4
σ4 +

+
1

2
∂µπi∂

µπi−
λ

4
(πiπi)

2 −λvπiπiσ−
λ

2
πiπiσ

2 . (2.23)

This Lagrangian corresponds to a massive field σ, as for the previous case, but with

in addition three massless scalar fields πi. These πi fields enjoy an O(3) symmetry,

which is the leftover of the original O(4).

Since the number of generators of O(N) is N(N −1)/2, three out of the six generators

of the original O(4) correspond to broken symmetries. Indeed the choice of the mini-

mum in Eq. (2.22) breaks the three generators corresponding to rotations that mix the

first component with the others, but not those that act only on the last three compo-

nents. For each broken generator the corresponding massless πi field has appeared.

The Goldstone theorem [28–32], states exactly what has been proved: for any spon-

taneously broken continuous symmetry, the theory must contain a massless particle,

called the Goldstone boson.

2.3.2 The BEH mechanism in an abelian theory

The Goldstone theorem is valid for global symmetries. I will now consider what

happens in the case of a local U(1) symmetry. Consider the Lagrangian for a complex

scalar field coupled to an electromagnetic field Aµ:

L = −1
4
FµνF

µν+DµφD
µφ∗−V(φ) , (2.24)

where the electromagnetic covariant derivative is defined as

Dµ = ∂µ− ieAµ (2.25)

and the scalar potential is

V(φ) = µ2φ∗φ+λ
(
φφ∗

)2 . (2.26)
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This Lagrangian is invariant under the local U(1) transformation

φ(x) → exp(iα(x))φ(x) , (2.27)

Aµ → Aµ−
1

e
∂µα(x) . (2.28)

The case µ2 > 0 corresponds to the QED Lagrangian for a charged scalar particle with

mass µ and quartic self-interaction. The opposite case, µ2 < 0 the field φ acquires a

vev, with the potential minimum at

〈φ〉 =
√
−µ

2

2λ
≡ v
√
2
. (2.29)

As before the physical Lagrangian is obtained by rescaling the field φ. In this case it

is more convenient to introduce two real fields φ1, φ2 defined as

φ =
1
√
2
(v+φ1(x)+ iφ2(x)) , (2.30)

in terms of which the new (rescaled) Lagrangian is

L=−1
4
FµνF

µν+
1

2

(
∂µφ1

)2
+
1

2

(
∂µφ2

)2−v2λφ21+
1

2
e2v2AµA

µ−evAµ∂µφ2 .(2.31)

Some interaction terms, which are not relevant for the discussion, have been omitted.

In the new Lagrangian a photon mass term has appeared, corresponding to a photon

mass MA = ev = −eµ/λ, as well as a mass term for φ1 (Mφ1 = −
√
2µ), while no mass

term appears for φ2.

However, in this form, the Lagrangian in Eq. (2.31) has one extra degree of freedom

with respect to the original one in Eq. (2.24), because the photon is now massive,

thus with three possible polarization states instead of two. Therefore, one degree of

freedom in Eq. (2.31) has not to be physical. The same conclusion can be drawn by

noticing the presence of the bilinear term evAµ∂µφ2 which has to be eliminated. U(1)

gauge symmetry comes to help: in Eq. (2.30), the field φ2 appears as imaginary part

of φ. It can be eliminated by a U(1) gauge transformation with parameter α = arg(φ).

This choice of gaugemakes φ2 disappear from the Lagrangian Eq. (2.31), only leaving

the physical degrees of freedom. It is called unitary gauge, and can be interpreted as

the photon absorbing the Goldstone boson as its longitudinal polarization state, thus

becoming massive. The original U(1) symmetry is not apparent any longer, and it is

said to be spontaneously broken. This is the BEH mechanism [4–9], through which

gauge bosons masses are generated.
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2.3.3 The BEH mechanism in the SM

After having discussed the case for an abelian theory, I extend the discussion to the

case of the SM Lagrangian Eq. (2.13). After spontaneous symmetry breaking, one

should obtain the correct mass pattern in the electroweak sector, i.e.massive W± and

Z bosons and a massless photon. Since the three massive bosons would incorporate

at least three degrees of freedom in their longitudinal polarization state, the simplest

choice for the scalar field is to have a complex SU(2)L doublet

Φ =

(
φ+

φ0

)
, (2.32)

with hypercharge YΦ = 1. The Lagrangian for the dynamic of the scalar doublet is

LS = (DµΦ)
†DµΦ−µ2Φ†Φ−λ(Φ†Φ) . (2.33)

As in the previous sections, the µ2 < 0 case has to be considered. Since electromag-

netism must not be broken, the vev acquired by Φ should correspond to the neutral

component:

〈0|Φ|0〉 =


0
v√
2

 , (2.34)

with, as usual

v =

√
−µ

2

λ
. (2.35)

Introducing the rescaled fields θi, i = 1,2,3 and H, theΦ doublet can be written as (the

dependence on x of all fields is understood)

Φ =


θ2+ iθ1

1√
2
(v+H)− iθ3

 . (2.36)

As learned from the abelian case discussed in Sec. 2.3.2, not all the fields in Eq. (2.36)

are physical. Indeed, since three degrees of freedom will be acquired by the massive

weak bosons, the three θi fields can be eliminated by a suitable gauge transformation,

so that, in the unitary gauge, one has

Φ =
1
√
2

(
0

v+H

)
. (2.37)
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The masses for the weak bosons are generated by the kinetic term in Eq. (2.33):

∣∣∣DµΦ
∣∣∣2 =

∣∣∣∣∣∣

(
∂µ− ig2

τa

2
Wa
µ − ig1

1

2
Bµ

)
Φ

∣∣∣∣∣∣
2

= (2.38)

=
1

2

∣∣∣∣∣∣∣


∂µ− i

2

(
g2W

3
µ +g1Bµ

)
−i g22

(
W1
µ − iW2

µ

)

−i g22
(
W1
µ + iW

2
µ

)
∂µ+

i
2

(
g2W

3
µ −g1Bµ

)

(

0

v+H

)∣∣∣∣∣∣∣

2

=

=
1

2
(∂µH)2+

1

8
g22(v+H)2

∣∣∣W1
µ + iW

2
µ

∣∣∣2+ 1

8
(v+H)2

∣∣∣g2W3
µ −g1Bµ

∣∣∣2 .

In particular, from Eq. (2.38) two mass terms arise: one, which corresponds to the

first two components of the Wµ field, and the second which corresponds to a linear

combination ofW3
µ and Bµ.

The first two components of the Wµ field, can be combined to obtain the chargedW±µ
fields as

W±µ =
1
√
2

(
W1
µ ∓ iW2

µ

)
, (2.39)

which therefore acquire a mass

MW =
1

2
vg2 . (2.40)

For what concerns the Z boson, it appears as the linear combination

Zµ =
g2W

3
µ −g1Bµ√
g2
2
+g2

1

, (2.41)

with a corresponding mass

MZ =
1

2
v

√
g2
1
+g2

2
. (2.42)

Starting from the four fields Bµ,W
i
µ I have obtained three massive vector bosons. One

more field remains, which do not receive any mass term from the Higgs. It is the

photon, Aµ, which can be obtained as the combination ofW3
µ and Bµ orthogonal to the

Z boson. Introducing the weak mixing angle θw, defined from

cosθw =
g2√
g2
1
+g2

2

, (2.43)
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both the Z and the photon can be obtained from the rotation

(
Zµ

Aµ

)
=

(
cosθw −sinθw
sinθw cosθw

)(
W3
µ

Bµ

)
. (2.44)

In terms of θw TheW and Z boson mass are linked by the relation

MW

MZ

= cosθw . (2.45)

2.3.3.1 Generation of fermion masses

I will now discuss the mechanism, originally introduced by Weinberg [2], through

which fermion masses can be generated in the SM without violating gauge invariance.

This can be achieved with the same scalar doubletΦ which generates the gauge boson

masses, together with its “conjugate” isodoublet Φ̃ = iτ2Φ
∗. The hypercharge of Φ̃ is

opposite to that of Φ.

For any fermionic generation, it is possible to build an SU(2)L×U(1)Y invariant La-

grangian, corresponding to a Yukawa interaction between Φ and the fermions

LF = −λeL̄ΦeR−λdQ̄ΦdR−λuQ̄Φ̃uR+h.c. . (2.46)

Replacing Φ with the rescaled expression in the unitary gauge given in Eq. (2.37) one

obtains (taking the electron case as representative)

LF = −
1
√
2
λe (ν̄e, ēL)

(
0

v+H

)
eR+ . . . = −

1
√
2
λe(v+H)ēLeR+ . . . , (2.47)

where the constant in front of ēLeR can be identified with the fermion mass

m f =
λ f v√
2
. (2.48)

2.3.4 The Higgs particle in the SM

After having explained the BEH mechanism for the generation of masses, I now in-

troduce the Higgs particle, corresponding to the field H in the Φ isodoublet.

The Higgs boson Lagrangian can be obtained from that relevant for the Φ doublet

Eq. (2.33):

LH =
1

2
∂µH∂

µH −V(H) , (2.49)
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where the potential in terms of the H field is (recalling the relation v = −µ2/λ

V(H) = −1
2
λv2(v+H)2+

1

4
λ(v+H)4 = +λv2H2+λvH3+

λ

4
H4 . (2.50)

In the potential Eq. (2.50) a mass term for H appears, corresponding to a Higgs mass

M2
H = 2λv

2 = −2µ2 , (2.51)

as well as tri- and quadri-linear Higgs self interactions.

The terms which are responsible for the interactions of the Higgs particle with the

other SM particles can be immediately derived by Eq. (2.38) and Eq. (2.47), respec-

tively for interactions with weak bosons and fermions.

The interactions between the Higgs and weak bosons are governed by the terms

LHV = 2
M2

V

v
VµV

†
µH+

M2
V

v2
VµV

†
µH

2 , (2.52)

where V =W+,Z (V† =W−,Z).

For what concerns Higgs and fermions, the relevant terms are

LHF = −
m f

v
H f̄L fR +h.c. . (2.53)

In general one can notice that the couplings between the Higgs boson and another

particle is proportional to the particle mass. Therefore the Higgs boson will interact

most with the heaviest particles in the SM (the top quark and the weak bosons).

The Feynman rules for Higgs self-coupling and interactions with bosons and fermions

are shown in Fig. 2.1.

To conclude this paragraph I want to highlight that the SM Higgs boson is the “mini-

mal solution” to the problem of fermion and boson masses, as all masses are generated

by means of a single Higgs field, and all are proportional to the Higgs field vev. Other

solutions exist, where more Higgs field come in extra doublets or in higher SU(2)I
representations, but will not be discussed in this thesis.

Before the Higgs discovery on July 4th 2012 [14, 15], the only free parameter of the

SM was the Higgs mass, related to the Higgs self-coupling constant λ by Eq. (2.51).

For what concerns the vev, it is related to the W boson mass, which is also related to
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H

V µ

V ν

= −2igµνM2
V /v

H

V µ

V ν

= −2igµνM2
V /v

2

H

H
f

f̄

= imf/v

H

H

H

= 3iM2
H/v

H H

H

= 3iM2
H/v2

H

Figure 2.1: Feynman rules for the Higgs boson in the Standard Model.

the Fermi coupling constantGF measured from the muon decay (GF = 1.1663787(6)×
10−5GeV−2 [33]). The relation

MW =
1

2
g2v =



√
2g2

2

8GF


1/2

, (2.54)

leads to v = 246GeV. After the measurements of the weak boson masses, also the

constants g1, g2 can be determined.

2.4 Higgs boson production at the LHC

In this section, I will introduce the main production mechanisms of the Higgs boson

at hadron collider, with particular focus on the LHC. As seen in the previous chapter,



18 Chapter 2. The Higgs boson in the Standard Model

the Higgs boson couples to particles with a strength which is proportional to the parti-

cle mass, the most important production mechanisms will involve the coupling of the

Higgs boson to theW and Z bosons and the top-quark.

At the LHC the Higgs boson is produced through four production mechanisms. These

mechanisms are (in order of decreasing total-rate): gluon fusion (mediated by a top-

quark loop), vector boson fusion, VH associated production (where V = W±,Z) and

tt̄H associated production (see Fig. 2.2 for representative diagrams).

An exhaustive study of the four channels will require more space than it is allowed in

this thesis and can be found e.g. in the review [34].

Figure 2.2: Representative Feynman diagrams for the four main Higgs boson production chan-

nel at the LHC. From left: gluon fusion (blue), vector-boson fusion (red), VH associated pro-

duction (green) and tt̄H associated procuction (purple).

The state-of-art predictions for the total rates of the four production channels at the

LHC
√
S = 8TeV are shown in Fig. 2.3 (from [35]). The total cross-section for gluon-

fusion is known up to next-to-next-to-leading order (NNLO) in QCD [36–42], inclu-

ding soft gluon resummation up to NNLL [43]. Efforts towards the computation of

the NNNLO total cross-section are on-going [44, 45]. Electroweak corrections have

also been computed [46, 47], and have been combined with QCD corrections in the

multiplicative scheme [48–51] (see Sec. 4.2.2 for an overview on possible QCD-EW

combinations). For what concerns VBF, the total cross-section has been computed

up to NNLO in QCD [20, 21, 52–54] including EW corrections (in the multiplicative

scheme), which have been computed in [55, 56]. As VBF is the main topic of this

thesis, details will be given later on (specially in Chapter 4 for what concerns the

computation of the total cross-section). Like VBF, VH associated production is also

known up to NNLO QCD [57–60] and NLO EW [61]. Finally tt̄H is known up to

NLO QCD [62–67].

In the last years, in parallel with the efforts in computing as accurate as possible total

rates, lot of energies have been spent in developing tools for fully differential predic-



2.4. Higgs boson production at the LHC 19

Figure 2.3: Total cross-section predictions for the Higgs boson production at the LHC
√
S =

8TeV (from [35]). The colored bands represent the theoretical uncertainties on each prediction.

tion of observables. One such tool, aMC@NLO [68], allows the user to automatically

generate the code to generate events at NLO accuracy for virtually any process in the

SM (more details will be given in Chapter 5 where VBF will be studied). These events

can be passed to a parton shower Monte-Carlo, to have a complete, fully differential

picture of the final state. To show the flexibility and the usefulness of such a tool, in

Fig. 2.4 I show the Higgs boson transverse-momentum distributions for the produc-

tion channels discussed above. These distributions are computed at NLO accuracy

and correspond to events showered with HERWIG6 [69, 70].
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Figure 2.4: Transverse momentum of the Higgs boson in the gluon fusion (blue solid), VBF

(red long-dashed), WH (green short-dashed), ZH (cyan dot-dashed) and tt̄H (magenta dotted)

production mechanism, for a MH = 125GeV Higgs boson at the LHC,
√
S = 8TeV. Each

curve corresponds to fifty-thousands events generated with aMC@NLO, including NLO and

parton-shower corrections. The MSTW 2008 parton distributions [71] have been used. Renor-

malization and factorization scales are fixed to the Higgs boson mass.
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Chapter 3
Vector boson fusion

3.1 Introduction

Vector boson fusion (VBF) is the second Higgs boson production channel in total rate

at the LHC. Although its rate is almost one order of magnitude smaller than the dom-

inant production channel, gluon fusion, VBF has played quite an important role in the

discovery of the Higgs boson, and will also be crucial for the determination of the

Higgs properties. This is because, typically, VBF events are less polluted by QCD

radiation than gluon fusion ones, and, due to the particular final state-topology, back-

grounds can be more easily suppressed by imposing appropriate selection cuts.

I will begin this chapter with Sec. 3.2, trying to define VBF in a way that is as un-

ambiguous as possible, not only at lowest order, but also in view of including higher

order QCD and EW corrections. After this, in Sec. 3.3, by looking at the VBF LO

amplitude, I will present the distinguishing features of VBF-like events, which are the

presence of two hard jets in the opposite rapidity hemispheres, and the lack of radia-

tion in the central region. I will conclude the chapter with Sec. 3.4 showing that these

features are not spoiled even if extra radiation is considered.

3.2 A working definition for VBF

In this section I will look for a definition of VBF which can be safely used in or-

der to consistently compute higher order corrections. In general, the definition of

“production-channel” is itself ambiguous, since production channels are always de-

fined on simple conventions typically based on leading-order Feynman diagrams.
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While this poses no problems at LO, it might lead to ambiguities when decays of reso-

nant states and/or higher order effects are included. Consider, as a simple example, the

class of processes which involve only the electroweak coupling αEW at the leading or-

der, such as Drell-Yan (with the decay into two jets), single-top production and Higgs

boson production via coupling with a vector boson. Most of such processes can be

easily defined at leading order considering the corresponding resonant intermediate or

final states, while some, such as VBF are (quantum-mechanically) ambiguous already

at the leading order: pp→ H j j with vector bosons in the t-channel can interfere with

pp→ HV (∗) → H j j, i.e., with Higgs associated production with a vector boson then

decaying into two jets. Such interference, however, is quite small everywhere in the

phase space and it can formally be reduced to zero by just taking the narrow width

limit. This suggests that considering the two processes distinct is a handy approxima-

tion, at least at the leading order. For all of the processes in this class, i.e., single-top

and Higgs electroweak production, aiming at a better precision by including higher-

order QCD effects creates further ambiguities as it opens up more possibilities for

interferences (one notable example is tW at NLO overlapping with tt̄ production) and

the reliability of the approximations made has to be carefully assessed.

In general two complementary approaches can be followed. The first is to consider all

interferences exactly, and introduce a gauge-invariant scheme to properly handle the

width effects. This can be consistently done at NLO order in QCD and electroweak

corrections, following well-known and established techniques, such as the use of the

complex-mass scheme [72]. This is the path followed for instance in Ref. [56] for the

calculation of QCD and electroweak effects in the order α3
EW

process pp→ H j j. The

advantage of this approach is that all interference effects are correctly taken into ac-

count in any region of phase space, including where tight cuts might create significant

enhancements. This is the only way to proceed when interference effects are simi-

lar to or larger than the corrections from higher orders. However, when such effects

are small, it offers several drawbacks. The first is the unnecessary complexity of the

calculation itself. The second is that the operational separation between the two pro-

cesses, which can be quite useful at the practical level, for example in experimental

analysis, is lost. In this context, even the definition of signal and background might

not be meaningful and the distinction possibly leads to confusion. In this case another

approach can be followed, to use a simple process definition and to systematically

check the impact of higher-order corrections and of interferences, in order to set the

ultimate practical precision that can be achieved.

Such a definition for VBF consist in defining VBF as the Higgs production for van-

ishing quark masses, through direct coupling of the Higgs to vector bosons in the

t−channel, with color-singlet exchange between the two colliding protons. A dia-

grammatic representation of this definition is given in Fig. 3.1, where no heavy-quark

loops are included in the blobs, while extra (color-singlet) vector bosons can appear
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H

V ∗

2

V ∗

1

P1

P2

X1

X2

q1

q2

Figure 3.1: Higgs production via the VBF process.

at higher orders.

The reason of such a formulation will become more clear in what follows.

3.3 The lowest order amplitude and VBF event topo-

logy

p1

p2 p4

p3

q1

q2

Figure 3.2: LO VBF Feynman diagram.
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The most relevant properties of VBF can be deduced by looking at its LO partonic

amplitude, corresponding to the diagram in Fig. 3.2. Dubbing p1, p2 (p3, p4) the

momenta of the initial-state (final-state) quarks, this amplitude can be written as (un-

derstanding the quark color indexes)

MVBF
LO = 2

(√
2GF

)1/2
M2

V

1

q2
1
−M2

V

1

q2
2
−M2

V

ū (p3)Γµū (p1) ū (p4)Γ
µū (p2) , (3.1)

where I have defined

q1 = p3− p1 , q2 = p4− p2 . (3.2)

Γµ is the Vqq̄ vertex, which for SM interactions between quarks and W and Z bosons

can be cast in the from

Γmu =
(√

2GF

)1/2
MV

(
vqγµ −aqγµγ5

)
, (3.3)

written in terms of the usual vector and axial-vector couplings of the gauge bosons to

fermions:

vq = aq =
1
√
2
, (3.4)

for theW boson, and

vq = Iq−2Qq sin
2 θw , aq = Iq , (3.5)

for the Z.

From the expression of the LO diagram Eq. (3.1) many of the distinguishing features

of VBF can be inferred. First of all, VBF is a t-channel process, with massive bosons

in the propagators. This turns into having a finite total cross-section, and in the fact

that the bulk of the cross-section corresponds to small momentum transfers Q2
i
= −q2

i
,

typically Q2
i
<∼ M

2
V
. This last fact, together with having initial states quarks usually

probed at mid-large Bjorken x, is responsible for the very peculiar VBF final state

topology: the two final-state quarks tend to travel almost in the same direction as the

corresponding initial ones, carrying a substantial fraction of the initial quark momenta.

Eventually, these two final state quarks will appear in the detector as two almost back-

to-back jets in the forward-backward region, and with a very large invariant mass

(typically some TeV at the LHC), whereas the Higgs is normally produced at central
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rapidities. A candidate VBF event from the CMS experiment, showing this feature,

is shown in Fig. 3.3. This topology makes it possible to tag on the two jets in order

to select VBF-like events, substantially reducing contamination from background or

from other production channels (e.g. Higgs production in gluon fusion in association

with jets).

Figure 3.3: Candidate VBF event (with the Higgs boson decaying to two photons) recorded

by the CMS experiment during the LHC proton-proton run at
√
S = 7TeV. The two tagging

jets (in the forward regions) are visible as tracks in the tracker detector and as energetic deposit

in the calorimeters. The two photons are visible in the central regions as energy deposit in the

electromagnetic calorimeter.

Another consequence of the final state topology is the extreme suppression of in-

terferences. Partonic channels such as uu→ Huu or ud → Hud have two diagrams

contributing, the one in Fig. 3.2 and the one which is obtained exchanging p3 with p4

(and replacing the W with a Z-boson for ud→ Hud). The reason of this suppression

can be easily understood by looking at the propagators in the case of interferences and

in the case of the square of a diagram. The propagator structure of the interferences is

PROPint f =
1

2p1 · p3+M2
V

1

2p2 · p4+M2
V

1

2p1 · p4+M2
V

1

2p2 · p3+M2
V

, (3.6)
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while the one from squared diagrams is

PROPsqr =
1

(
2p1 · p3+M2

V

)2
1

(
2p2 · p4+M2

V

)2 . (3.7)

From what I discussed before, in the squared diagram the following relations hold in

a (very) rough way

p1 ≃ p3 , p2 ≃ p4 . (3.8)

With this very rough approximation one can calculate the suppression factor or in-

terferences as roughly
(

M2
V

2p3·p4

)2
, where the denominator is the invariant mass of the

two final sate quarks (jets). As said above typical values of the invariant mass are

of O(TeV), so that one expects interferences to be suppressed at the per-cent level or

below. Indeed, this is confirmed the explicit computation.

3.4 The effect of higher order QCD corrections

× ×

Figure 3.4: Representative virtual (left) and real-emission (right) matrix-elements for factor-

izable NLO QCD corrections to VBF.

× ×

Figure 3.5: Representative virtual (left) and real-emission (right) matrix-elements for non-

factorizable NLO QCD corrections to VBF. These matrix elements vanish due to color conser-

vation.

In this paragraph, I will discuss NLO QCD corrections to VBF. In particular I will

show that such corrections do not spoil the peculiar event topology presented in Sec. 3.3.
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NLO QCD corrections to VBF (treating real and virtual corrections on the same foot-

ing) can be classified into two categories: corrections that only affect one quark line,

called factorizable corrections, and corrections that link the two quark lines, called

non-factorizable corrections. Representative matrix-elements are shown respectively

in Fig. 3.4 and in Fig. 3.5.

It is interesting to note that non-factorizable corrections vanish because of color con-

servation: this can be understood either using a group-theory argument, since they all

contain the trace of a single Gell-Mann color matrix Tr[ta] = 0, or explicitly assigning

color to the partons, as done in Fig. 3.6.

The only contribution due to non-factorizable QCD corrections comes from QCD

× = 0

Figure 3.6: Example of color flow in non-factorizable NLO QCD corrections to VBF. The

outgoing quark which radiated the gluon carries a color different than the corresponding quark

which did not radiate, making the interference to vanish.

corrections to interferences, which, anyway, are extremely small already at LO (as

explained in Sec. 3.3). Such contributions have been computed in [56] and are found

to be totally negligible, as expected.

Turning now to the factorizable corrections, it is instructive to understand whether the

real emission diagrams can alter the event topology described in Sec. 3.3. The most

interesting characteristic that was pointed is the fact of having the Higgs boson in a

region well separated from that of QCD. In principle, extra QCD emission can pollute

the central rapidity region, where the Higgs is produced.

To better understand this let us explicitly consider the case of the radiation of an extra

gluon. In order to keep things simpler, I will work in the soft approximation, where,

if k < pi is the gluon momentum, the gluon-quark-quark Feynman rule reduces to

V
µ
qqg,so f t

= 2gs T
a
i j p

µ , (3.9)

where p is the quark momentum (is the same for both quarks since k→ 0), a,µ are the

color and Lorentz index of the gluon and i, j are the color index of the outgoing and
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incoming quark respectively.

Using this expression, the matrix element for VBF plus the emission of a soft gluon

with polarization vector ǫg is (only the emission from the p1 − p3 line is considered)

MVBF
so f t = gsT

a
i j

(
p1 · ǫg
p1 · k

−
p3 · ǫg
p3 · k

)
MVBF

LO . (3.10)

Therefore, the corresponding partonic cross-section is

dσVBF
so f t = dσ

VBF
LO

αsCF

π

dk0

k0

dφ

2π
d cosθg

1− cosθ13(
1− cosθ1g

)(
1− cosθ3g

) , (3.11)

where θi j is the angle between particle i and j:

cosθi j =
~pi · ~p j∣∣∣~pi
∣∣∣
∣∣∣ ~p j

∣∣∣
. (3.12)

One can rewrite

1− cosθ13(
1− cosθ1g

) (
1− cosθ3g

) =

=
1

2




1− cosθ13(

1− cosθ1g
) (
1− cosθ3g

) + 1

1− cosθ1g
− 1

1− cosθ3g

+ (1↔ 3)



= W1 +W3 , (3.13)

such thatWi contains only the collinear divergence θig→ 0.

Interestingly, the following relation holds [73] when one averages Wi over the gluon

azimuth:

∫ 2π

0

dφ

2π
Wi =

1

1− cosθig
Θ

(
θ13− θig

)
. (3.14)

Eq. (3.14) has an extremely important physical meaning: in the soft approximation, a

gluon is emitted at small angles with respect to the particles that radiate it, or, equiva-

lently, that radiation at large angles is suppressed. This phenomenon is called angular

ordering.
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I will now show the derivation of the angular-ordering condition Eq. (3.14). In parti-

cular I will focus onW1, the proof for W3 being completely analogous. I parametrize

the three-momenta ~p1, ~p3, ~k as

~p1 =
∣∣∣~p1

∣∣∣ (0, 0, 1) , (3.15)

~p3 =
∣∣∣~p3

∣∣∣ (sinθ13, 0, cosθ13) , (3.16)

~k =

∣∣∣∣~k
∣∣∣∣
(
sinθ1g cosφ, sinθ1g sinφ, cosθ1g

)
. (3.17)

The angle θ3g is related to the gluon azimuth by the relation

cosθ3g = sinθ13 sinθ1g cosφ+ cosθ13 cosθ1g , (3.18)

and can be cast in the form

1− cosθ3g = a−bcosφ, (3.19)

with

a = 1− cosθ13 cosθ1g , (3.20)

b = sinθ13 sinθ1g . (3.21)

If I now define

z = exp(iφ) , (3.22)

the following identity holds:

I1 ≡
∫ 2π

0

dφ

2π

1

1− cosθ3g
=

1

iπb

∮
dz

(z− z+)(z− z−)
, (3.23)

where the zeros of the denominator are

z± =
a

b
±

√
a2

b2
−1 . (3.24)

Among the two zeros, only z− lies inside the unit circle, therefore one obtains

I1 =
√

1

a2−b2
=

1∣∣∣cosθ1g− cosθ13
∣∣∣
. (3.25)
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Finally the azimuthal average ofW1 can be expressed in terms of I1, obtaining

∫ 2π

o

dφ

2π
W1 =

1

2(1− cosθ1g)
[
1+ (cosθ1g − cosθ13)

]
I1 =

=


1

1−cosθ1g if θ1g < θ13

0 else
, (3.26)

which completes the proof.

What I have just shown is that, considering the case of a soft gluon, extra QCD radi-

ation in VBF is bound to be close in phase-space to the outgoing quarks. When the

exact real emission matrix-elements are considered, also including contributions with

a gluon in the initial state, no substantial modification of the radiation pattern is found.

The bottom line is that radiation in the central rapidity region, hence emitted at large

angles with respect to the quarks 1,3, is usually suppressed in VBF, and this is a direct

consequence of the fact that no color is exchanged between the protons. A comparison

of the rapidity distribution for the third jet in VBF and in Higgs production via gluon

fusion (where the two protons are color connected), is shown in Fig. 3.7, where it is

possible to appreciate the different radiation pattern.

This thesis will be devoted to present the most accurate predictions for VBF. In Chap-

ter 4 I will study the impact of NLO and NNLO QCD corrections on the VBF total

cross-section, and I will show how the theoretical uncertainties greatly reduce after

their inclusion. In Chapter 5 I will compute NLO QCD corrections to VBF matched

with parton shower. This will allow to study the impact of corrections on differential

observables, and to study with more detail the extra jet radiation pattern.
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Figure 3.7: Rapidity distribution for the third jet in VBF (black solid) and in Higgs produc-

tion via gluon fusion (red dashed), at the LHC
√
S = 8TeV, for a MH = 125GeV Higgs bo-

son. Events have been generated with MadGraph [74] and showered with HERWIG6 [69, 70].

Hadrons are clustered into jets using the anti-kT algorithm [75] as implemented in FastJet [76],

with ∆R = 0.5, pT > 20GeV. Distributions are normalized to 1.
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Chapter 4
Precise predictions for the total

VBF cross-section

The results presented in this chapter are based on [20, 21, 25–27] and on the VBF

chapter of [23, 24].

4.1 Introduction

This chapter is devoted to the presentation of the state-of-the-art predictions for the

VBF total cross-section. Lot of efforts from various groups have been spent in order

to provide predictions as accurate as possible, resulting in the VBF total cross-section

being now one of the most (if not the most) precise prediction for a total-rate at the

LHC.

In Sec. 4.2 I will first describe the details of the computation of the NNLO QCD cor-

rections published in [21,25], and show how these predictions can be further improved

by including the NLO electroweak (EW) corrections and effects due to the Higgs vir-

tuality.

I will present the results for the LHC with a center-of-mass energy
√
S = 8TeV (as

for the 2012 run) in Sec. 4.3, then move to conclusions in Sec. 4.4.
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4.2 Higher order corrections to VBF

According to the definition of VBF given in Sec. 3.2, higher order corrections can be

classified as genuine “VBF-like” contributions and “non VBF-like” ones. I will now

present the contributions belonging to each of the two classes.

“VBF-like” contributions:

• Factorizable contributions in QCD, where “factorizable” means that they can be

represented as in Fig. 3.1. This class will be evaluated exactly in Sec. 4.2.1.1,

and gives the bulk of the QCD corrections up to order α2s to a precision better

than 1%.

• Non-factorizable contributions in QCD, i.e.corrections in which colored parti-

cles (in a color-singlet state) are exchanged between the colliding protons. They

will be studied in Sec. 4.2.1.2, where they are proven to be color suppressed (of

order α2s/N
2
c ) with respect the factorizable ones, and they are estimated to con-

tribute less than 1% to the total VBF cross section.

• Electroweak corrections to diagrams in Fig. 3.1. These are relevant correc-

tions which have been calculated in Ref. [56]. Their combination with the

NNLO QCD ones has been presented in Ref. [23] and will be briefly reported

in Sec. 4.2.2.

• Higgs boson finite width effects. These effects arise from the inclusion of the

Higgs boson width in the calculation, which need to be considered specially in

the case (now excluded) of a heavy Higgs boson. This can be done according to

many schemes which give equivalent results for a light Higgs, but can sizably

differ for a heavier one. The computation of these effects for VBF is discussed

in Sec. 4.2.3.

“Non-VBF like” contributions:

• Single-quark line contributions, as calculated in Ref. [77]. These effects are

smaller than 1% in differential cross sections.

• Interferences between VBF diagrams, which are known up to NLO in QCD and

electroweak as calculated in Ref. [56]. These effects are found to be very small

already at LO, which can be easily included.

• Interferences between VBF and associated WH and WZ production at NLO

in QCD and electroweak, as calculated in Ref. [56]. Also these effects can be

easily calculated at LO and are found to be completely negligible, and vanishing

in the narrow-width approximation.
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• Interferences with the top-loop mediated Higgs production, Refs. [78, 79] and

contributions calculated in Sec. 4.2.1.3. These effects are found to contribute

less than 1% to the total cross section.

• t-channel vector boson production in presence of heavy-quark loops (triangles

and boxes), see Sec. 4.2.1.3. These effects are estimated to contribute less than

1% to the total cross section.

4.2.1 QCD corrections to VBF

As has been explained in Chapter 3, QCD corrections to VBF factorize in such a way

that contributions arising from gluon exchange between the quark lines vanish. Up to

NLO this fact, together with the large suppression of interferences, allow to consider

the two quark-lines as fully independent. From this point of view, VBF is nothing

more than a double Deep-Inelastic Scattering process, where the vector bosons fuse

into the Higgs. Therefore, the long known NLO QCD corrections to DIS [80] can be

used to compute the VBF cross-section at NLO.

This has indeed been exploited in the first computation of the NLO QCD corrections

to VBF more than twenty years ago [53], and is known as the “structure function ap-

proach”.

At NNLO some extra non-vanishing contributions arise, which break the factoriza-

tion which underlies the structure function approach. An estimate (or the explicit

computation if possible) of such contributions is mandatory in order to assess if the

structure-function approach can be extended up to NNLO, and will be done in what

follows.

The factorization-violating contributions can be classified into two groups: the first

group consists in the contribution from the exchange of two gluons in a color singlet

between the protons, where the gluons can be both virtual, real-virtual and both real.

The exact inclusion of this contributions is, unfortunately, still beyond reach.

The second group of contributions consist in diagrams involving the third generation

of quarks, where the Higgs can couple to the top.

As it will be shown in Sec. 4.2.1.2 and Sec. 4.2.1.3, an estimate of these contribu-

tions suggests that they can be neglected with respect to the NNLO QCD corrections

included in the structure function approach.
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4.2.1.1 Structure function approach

The structure function approach is based on the observation that to a very good ap-

proximation the VBF process can be described as a double deep-inelastic scattering

process (DIS), see Fig. 3.1, where two (virtual) vector-bosonsVi (independently) emit-

ted from the hadronic initial states fuse into a Higgs boson.

Considering VBF as the product of two DIS processes, the total cross-section total

cross-section can be factorized as the product of the electroweak matrix elementMµρ,

i.e., V
µ
1
V
ρ
2
→ H, which in the SM reads

Mµν = 2
(√

2GF

)1/2
M2

Vg
µν , (4.1)

and the DIS hadronic tensorWµν :

dσ =
1

2S
2G2

FM
2
V1
M2

V

1
(
Q2
1
+M2

V

)2
1

(
Q2
2
+M2

V

)2

×Wµν

(
x1,Q

2
1

)
MµρM∗νσWρσ

(
x2,Q

2
2

)

×
d3PX1

(2π)3 2EX1

d3PX2

(2π)3 2EX2

ds1ds2
d3PH

(2π)3 2EH

× (2π)4 δ4
(
P1+P2−PX1 −PX2 −PH

)
. (4.2)

Here GF is Fermi’s constant and
√
S is the center-of-mass energy of the collider.

Q2
i
= −q2

i
, xi = Q2

i
/(2Pi ·qi) are the usual DIS variables, si = (Pi +qi)

2 are the invari-

ant masses of the i-th proton remnant, and MVi denote the vector-boson masses, see

Fig. 3.1. The three-particle phase space dPS of the VBF process is given in the second

line of Eq. (4.2). It is discussed in detail in App. A.

Higgs production in VBF requires the hadronic tensorWµν for DIS neutral and charged

current reactions, i.e., the scattering off a Z as well as off aW±-boson. It is commonly

expressed in terms of the standard DIS structure functions Fi(x,Q
2) with i = 1,2,3.

i.e. FV
i
with i = 1,2,3 and V ∈ {Z,W±}. Thus,

Wµν

(
xi,Q

2
i

)
=

−gµν+
qi,µqi, ν

q2
i

 F1(xi,Q
2
i )+

P̂i,µP̂i, ν

Pi ·qi
F2(xi,Q

2
i )+ (4.3)

+ iǫµναβ
Pα
i
q
β
i

2Pi ·qi
F3(xi,Q

2
i ) ,
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where ǫµναβ is the completely antisymmetric tensor and the momentum P̂i reads

P̂i,µ = Pi,µ −
Pi ·qi
q2
i

qi,µ . (4.4)

The evaluation of Eq. (4.1) and Eq. (4.3) leads to the explicit result for the squared

hadronic tensor in Eq. (4.2) in terms of the DIS structure functions [53] (see also the

review [34]) :

Wµν

(
x1,Q

2
1

)
MµρM∗νσWρσ

(
x2,Q

2
2

)
= 4
√
2GFM

4
Vi

×
F1

(
x1,Q

2
1

)
F1

(
x2,Q

2
2

) 2+
(q1 ·q2)2

q2
1
q2
2



+
F1

(
x1,Q

2
1

)
F2

(
x2,Q

2
2

)

P2 ·q2


(P2 ·q2)2

q2
2

+
1

q2
1

P2 ·q1−
P2 ·q2
q2
2

q1 ·q2

2

+
F2

(
x1,Q

2
1

)
F1

(
x2,Q

2
2

)

P1 ·q1


(P1 ·q1)2

q2
1

+
1

q2
2

P1 ·q2−
P1 ·q1
q2
1

q1 ·q2

2

+
F2

(
x1,Q

2
1

)
F2

(
x2,Q

2
2

)

(P1 ·q1)(P2 ·q2)

×
P1 ·P2−

(P1 ·q1)(P2 ·q1)
q2
1

− (P1 ·q2)(P2 ·q2)
q2
2

+
(P1 ·q1)(P2 ·q2)(q1 ·q2)

q2
1
q2
2


2

+
F3

(
x1,Q

2
1

)
F3

(
x2,Q

2
2

)

2(P1 ·q1)(P2 ·q2)

(
(P1 ·P2)(q1 ·q2)− (P1 ·q2)(P2 ·q1)

)
. (4.5)

At this stage it remains to insert the DIS structure functions FV
i
with i = 1,2,3 and

V ∈ {Z,W±}. At NLO in QCD, explicit expression have been given in Ref. [53] using

the results of Ref. [80]. For the necessary generalization beyond NLO, I will now

briefly review the basic formulae.

Thanks to the QCD factorization theorem, structure functions can be expressed as con-

volutions of the PDFs in the proton and the short-distanceWilson coefficient functions

Ci. The gluon PDF at the factorization scale µ
F
is denoted by g(x,µ

F
) and the quark

(or anti-quark) PDF by qi(x,µF) (or q̄i(x,µF )) for a specific quark flavor i. The latter

PDFs appear in the following combinations,

qs =
n f∑
i=1

(
qi + q̄i

)
, qvns =

n f∑

i=1

(
qi− q̄i

)
, (4.6)
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q+ns,i =

(
qi+ q̄i

)
−qs , q−ns,i =

(
qi − q̄i

)
−qvns , (4.7)

as the singlet distribution qs, the (non-singlet) valence distribution q
v
ns as well as flavor

asymmetries of q±ns,i. All of them are subject to well-defined transformation properties

under the flavor isospin, see e.g. [81, 82].

For the neutral current Z-boson exchange the DIS structure functions FZ
i
can be writ-

ten as follows:

FZ
i (x,Q

2) = fi(x)

1∫

0

dz

1∫

0

dyδ(x− yz)
n f∑

j=1

(
v2j +a

2
j

)
× (4.8)

×
{
q+ns, j(y,µF)C

+
i,ns(z,Q,µR,µF)+qs(y,µF)Ci,q(z,Q,µR,µF)+

+ g(y,µF)Ci,g(z,Q,µR,µF)

}
,

FZ
3 (x,Q

2) =

1∫

0

dz

1∫

0

dyδ(x− yz)
n f∑

i=1

2vi ai× (4.9)

×
{
q−ns,i(y,µF)C

−
3,ns(z,Q,µR,µF)+q

v
ns(y,µF)C

v
3,ns(z,Q,µR,µF)

}
,

where i= 1,2 and the pre-factors in Eq. (4.8) are f1(x)= 1/2, f2(x)= x. The vector- and

axial-vector coupling constants vi and ai in Eq. (4.8) are given by (see also Sec. 3.3)

v2i +a
2
i =



1
4 +

(
1
2 −

4
3 sin

2 θw
)2

u-type quarks ,

1
4 +

(
1
2 −

2
3 sin

2 θw
)2

d-type quarks ,

(4.10)

and, likewise, in Eq. (4.9),

2viai =



1
2 −

4
3 sin

2 θw u-type quarks ,

1
2 −

2
3 sin

2 θw d-type quarks .
(4.11)

The coefficient functionsCi in Eqs. (4.8)–(4.9) parameterize the hard partonic scatter-

ing process. They depend only on the scaling variable x, and on dimensionless ratios
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of Q2, µ
F
and the renormalization scale µ

R
. The perturbative expansion of Ci in the

strong coupling αs up to two loops reads in the non-singlet sector,

C+i,ns(x) = δ(1− x)+as
{
c
(1)
i,q + LMP

(0)
qq

}
(4.12)

+a2s

{
c
(2),+
i,ns + LM

(
P
(1),+
ns + c

(1)
i,q (P

(0)
qq −β0)

)
+ L2M

(
1

2
P
(0)
qq (P

(0)
qq −β0)

)

+LR β0c
(1)
i,q + LRLM β0P

(0)
qq

}
,

C−3,ns(x) = δ(1− x)+as
{
c
(1)
3,q
+ LMP

(0)
qq

}
(4.13)

+a2s

{
c
(2),−
3,ns
+ LM

(
P
(1),−
ns + c

(1)
3,q
(P

(0)
qq −β0)

)
+ L2M

(
1

2
P
(0)
qq (P

(0)
qq −β0)

)

+LR β0c
(1)
3,q
+ LRLM β0P

(0)
qq

}
,

where as = αs(µR)/(4π) and i = 1,2 in Eq. (4.12). The complete scale dependence, i.e.

the towers of logarithms in LM = ln(Q
2/µ2

F
) and LR = ln(µ

2
R
/µ2

F
) (keeping µ

R
,µ

F
), has

been derived by renormalization group methods (see, e.g. [83]) in terms of splitting

functions P
(l)
i j

and the coefficients of the QCD beta function, βl. In the normalization

of the expansion parameter, as = αs/(4π), the conventions for the running coupling are

d

d lnµ2
αs

4π
≡ das

d lnµ2
= −β0 a2s − . . . , β0 =

11

3
CA−

2

3
n f , (4.14)

with β0 the usual expansion coefficient of the QCD beta function, CA = 3 and n f the

number of light flavors.

Note, that the valence coefficient function Cv
3,ns

in Eq. (4.13) is defined as Cv
3,ns
=

C−3,ns +C
s
3,ns

. However Cs
3,ns
, 0 only at three-loop order, so that Eq. (4.13) suffices

with Cv
3,ns
=C−

3,ns
up to NNLO. In the singlet sector

Ci,q(x) = δ(1− x)+as
{
c
(1)
i,q
+ LMP

(0)
qq

}
(4.15)

+a2s

{
c
(2)
i,q
+ LM

(
P
(1)
qq + c

(1)
i,q
(P

(0)
qq −β0)+ c(1)i,g

P
(0)
gq

)

+ L2M

(
1

2
P
(0)
qq (P

(0)
qq −β0)+

1

2
P
(0)
qg P

(0)
gq

)

+ LR β0c
(1)
i,q + LRLM β0P

(0)
qq

}
,
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Ci,g(x) = as

{
c
(1)
i,g
+ LM P

(0)
qg

}
(4.16)

+a2s

{
c
(2)
i,g
+ LM

(
P
(1)
qg + c

(1)
i,q
P
(0)
qg + c

(1)
i,g
(P

(0)
gg −β0)

)

+ L2M

(
1

2
P
(0)
qq P

(0)
qg +

1

2
P
(0)
qg (P

(0)
gg −β0)

)

+ LR β0c
(1)
i,g
+ LRLM β0P

(0)
qg

}
,

where again i= 1,2 in Eq. (4.15). The quark-singlet contribution contains the so-called

pure-singlet part, Ci,q = C+
i,ns +Ci,ps, i.e. P

(1)
qq = P

(1),+
ns + P

(1)
ps and c

(2)
i,q
= c

(2),+
i,ns
+ c

(2)
i,ps

in Eq. (4.15). Note that Ci,ps , 0 from two-loop order. The DIS coefficient func-

tions c
(l)
i,k

are known to NNLO from Refs. [84–87], likewise, NNLO evolution of the

PDFs has been determined in Refs. [81, 88] and even the hard corrections at order

α3s are available [89, 90]. Accurate parameterizations of all coefficient functions in

Eqs. (4.12)–(4.16) can be taken e.g. from Refs. [89,90] and the splitting functions P
(l)
i j

are given e.g. in Refs. [81, 88] 1. All products in Eqs. (4.12)–(4.16) are understood

as Mellin convolutions. They can be easily evaluated in terms of harmonic polylog-

arithms H~m(x)/(1± x) up to weight 4, see [91], which can be evaluated using the

Fortran package [92].

For the charged current case with W±-boson exchange the DIS structure functions

FW±
i

are given by,

FW−
i (x,Q2) =

1

2
fi(x)

1∫

0

dz

1∫

0

dyδ(x− yz) 1

n f

n f∑

j=1

(
v2j +a

2
j

)
× (4.17)

×
{
δq−ns(y,µF)C

−
i,ns(z,Q,µR,µF )+qs(y,µF)Ci,q(z,Q,µR,µF)+

+ g(y,µF)Ci,g(z,Q,µR,µF)
}
,

FW−
3 (x,Q2) =

1

2

1∫

0

dz

1∫

0

dyδ(x− yz) 1

n f

n f∑

i=1

2vi ai× (4.18)

×
{
δq+ns(y,µF)C

+
3,ns(z,Q,µR,µF)+q

v
ns(y,µF)C

v
3,ns(z,Q,µR,µF)

}
,

1 Note, that with the conventions of Refs. [81, 88–90] both the pure-singlet and the gluon coefficient

functions as well as the splitting functions P
(0)
qg and P

(1)
qg in Eqs. (4.12)–(4.16) need to be divided by a factor

2n f to account for the contribution of one individual quark flavor (not the anti-quark).
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where, as above, Ci,q = C
+
i,ns +Ci,ps and, also, C

v
3,ns
= C−

i,ns up to two-loop order. The

asymmetry δq±ns parametrizes the iso-triplet component of the proton, i.e. u , d and so

on. It is defined as

δq±ns =
∑

i∈u−type

∑

j∈d−type

{(
qi ± q̄i

)
−

(
q j ± q̄ j

)}
. (4.19)

Its numerical impact is expected to be small though. The respective results for FW+

i

are obtained from Eqs. (4.17)–(4.18) with the simple replacement δq±ns→−δq±ns.

The vector- and axial-vector coupling constants vi and ai are given by

vi = ai =
1
√
2
. (4.20)

The coefficient functions in Eqs. (4.17)–(4.18) including their dependence on the fac-

torization and the renormalization scales can be obtained from Eqs. (4.12)–(4.16)

with the help of the following simple substitutions c
(2),+
i,ns
↔ c

(2),−
i,ns

, c
(2),−
3,ns
↔ c

(2),+
3,ns

and

P
(1),+
ns ↔ P

(1),−
ns and so on. Again, all expressions for the coefficient and splitting func-

tions are given in Refs. [89, 90] and [81, 88], respectively.

Eq. (4.2) with the explicit expressions for the DIS structure functions inserted provides

the backbone of the NNLO QCD predictions for Higgs production in VBF. However,

as emphasized above, the underlying factorization is not exact beyond NLO and there-

fore the non-factorizable corrections need to be estimated. This will be done in the

following.

4.2.1.2 Non-factorizable contributions

In order to assess the quality of the factorization approach, I now turn to estimate the

size of non-factorizable contributions, i.e. those contributions which come from dia-

grams involving the exchange of gluons between the two quark lines (not included in

the structure function approach).

Neglecting interferences between t- and u-channel diagrams, which are, as said, kine-

matically suppressed, this class of diagrams vanishes at NLO because of color conser-

vation, but contributes at NNLO for the first time. Here, the notion “class of diagrams”

refers to a gauge invariant, finite subset of the diagrams. Examples of non-factorizable

diagrams are shown in Fig. 4.1.

Before presenting a detailed numerical estimate of the size of the non-factorizable



42 Chapter 4. Precise predictions for the total VBF cross-section

× ×

Figure 4.1: Examples of squared matrix elements contributing at NNLO to VBF involving a

double gluon exchange between the two quark lines.

= 1

4
(N2

c − 1)

Figure 4.2: Color configurations associated to non-factorizable double-gluon exchange cor-

rections to VBF at NNLO.

= 1

4

(
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c − 1
)2

×

= 1
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N2

c − 1
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= −
1
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(

N2
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Figure 4.3: Color configurations associated to factorizable corrections to VBF at NNLO.

contributions, I briefly recall two general arguments fromRefs. [20,25] justifying their

omission.

The first argument is based on the study of the associated color factors. The possible

color configurations for factorizable and non-factorizable corrections are shown in

Figs. 4.2 and 4.3, respectively, together with the associated color factors. The color

factor appearing in the factorizable corrections is (N2
c − 1)2/4 = 16, while it is (N2

c −
1)/4 = 2 (for Nc = 3) for the double gluon exchange consisting of a double color-

traces. Hence the non-factorizable corrections are suppressed by a factor O(1/N2
c )

with respect to the leading factorizable ones.
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The second argument is based on the kinematical dependence of diagrams like those

shown in Fig. 4.1. Such contributions, see e.g., Fig. 4.1 (right), come from the in-

terference of diagrams with one or two gluons radiated by the upper quark line with

diagrams where gluons are radiated by the lower line. As explained in Sec. 3.4, angu-

lar ordering in gluon emission leads to QCD radiation close to the quark from which

it is emitted, and for the peculiar structure of VBF events, discussed in Sec. 3.3, the

two final state quarks are usually well separated in phase-space. Therefore VBF kine-

matics itself should suppress this kind of interferences.

These arguments have already been used in [93] to justify neglecting real and virtual

double gluon exchange diagrams in the computation of NLO QCD corrections for

Higgs production in VBF with an extra jet.

The arguments given before can be enforced in a more quantitative way. If the total

cross-section is expanded up to order α2s as

σNNLO = σ0

(
1+αs∆1 +α

2
s∆2

)
, (4.21)

the terms ∆i show the impact on the LO cross section of the NiLO corrections. While,

as explained above, ∆1 can be completely identified with the NLO factorizable correc-

tions, in general ∆2 receives contributions both from factorizable and non-factorizable

corrections:

∆2 = ∆
f act

2
+∆

non− f act
2

. (4.22)

The exact calculation of ∆
non− f act
2

is out of reach, but the ratio of the NNLO non-

factorizable contributions ∆
non− f act
2

, vs. the factorizable ones, ∆
f act

2
, can be estimated

as

R2 ≡
∆
non− f act
2

∆
f act

2

≃ 1

N2
c −1

R1 ≡
1

N2
c −1

∆
non− f act,U(1)

1

∆
f act,U(1)
1

, (4.23)

where ∆
f act,U(1)

1
= ∆

f act

1
/CF and ∆

non− f act,U(1)

1
denotes the “would-be” impact of the

corrections coming from non-factorizable diagrams at NLO, i.e., the class of diagrams

involving the exchange of one gluon between the two quark lines, computed as if the

color factor were non-vanishing.

In other words, ∆
non− f act,U(1)
1

can be thought of as the correction due to the gauge

invariant class of diagrams where an extra U(1) massless gauge boson is exchanged

between the two quark lines including real and virtual diagrams. The R2 ≃ R1 ap-

proximation assumes, of course, that the ratios will not dramatically change in going
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from NLO to NNLO. As there is no substantial difference in the kinematics and no

non-Abelian vertices enter at NNLO in diagrams where two gluons are exchanged in

a color singlet in the t-channel, this assumption looks quite reasonable.

The four diagrams shown in Fig. 4.4, along with the corresponding real emissions,

contribute to ∆
non− f act
1

. As the given argument only needs to provide an estimate of

the corrections and it is based on the kinematics the calculation of the tensor integrals

can be slightly simplified by considering only vector couplings of the vector boson

to the quarks. This simplification eliminates all the rank-1 five-point functions in the

computation, leaving only the scalar ones, which can be more easily reduced in terms

of scalar four-point functions [94–96]. These scalar four-point functions, together with

the four- and three-point functions coming from the Passarino-Veltmann reduction can

be evaluated by means, e.g. of the QcdLoop package [97]. The results for the virtual

contributions have been checked against the amplitude automatically generated by

MadLoop [98], where machine precision agreement has been found point by point in

the phase space.

The combination of the virtual and the real emission part, with the subtraction of the

soft divergences (no collinear divergences occur in this class of diagrams), has been

done via MadFKS [99] that automatically generates all the needed counterterms and

performs the integration over phase space. In practice, the computation of the O(αs)

part of the cross section that enters in ∆
non− f act
1

, has been obtained as the difference

of the complete NLO and the corresponding Born cross sections, and special attention

has been paid to controlling the uncertainty of the numerical integration of the real

emission contributions.

mH [GeV] σ0 [pb] ∆
non− f act,U(1)
1

∆
f act,U(1)
1

R1

100 3.06 ·10−5 3.00(4) ·10−2 8.79 ·10−2 0.34

120 2.09 ·10−5 2.90(5) ·10−2 9.22 ·10−2 0.31

150 1.19 ·10−5 2.21(5) ·10−2 9.91 ·10−2 0.22

200 4.87 ·10−6 −3.2(5) ·10−3 1.12 ·10−1 −0.03
250 2.04 ·10−6 8(4) ·10−4 1.25 ·10−1 0.01

300 8.68 ·10−7 2.7(4) ·10−3 1.39 ·10−1 0.02

Table 4.1: Non-diagonal NLO QCD corrections to VBF at the Tevatron,
√
S = 1.96TeV.

Numbers have been computed ignoring the vanishing color factors of the diagrams in Fig. 4.4.

The MRST2002 [100] NLO PDF set has been used. Renormalization and factorization scales

have been set to MW . Integration errors, if relevant, are shown in parenthesis.

In Tabs. 4.1–4.3 the results for the non-factorizable corrections ∆
non− f act
1

are shown,

for the Tevatron and for the LHC, compared with the quark-initiated factorizable ones,
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Figure 4.4: The four virtual topologies with oneU(1)-gluon exchange between the quark lines,

representing the virtual contribution to ∆
non− f act
1

.

mH [GeV] σ0 [pb] ∆
non− f act,U(1)

1
∆

f act,U(1)

1
R1

100 2.04 ·10−3 6.6(3) ·10−3 1.57 ·10−2 0.42

120 1.74 ·10−3 5.4(4) ·10−3 1.54 ·10−2 0.35

150 1.39 ·10−3 3.4(2) ·10−3 1.53 ·10−2 0.22

200 9.84 ·10−4 −3.6(3) ·10−3 1.59 ·10−2 −0.22
250 7.12 ·10−4 −1.2(2) ·10−3 1.71 ·10−2 −0.07
300 5.26 ·10−4 −4(2) ·10−4 1.85 ·10−2 −0.02
400 3.00 ·10−4 2(2) ·10−4 2.24 ·10−2 0.01

500 1.78 ·10−4 1(2) ·10−4 2.69 ·10−2 0.00

650 8.66 ·10−5 5(2) ·10−4 3.45 ·10−2 0.01

800 4.41 ·10−5 2(2) ·10−4 4.28 ·10−2 0.00

1000 1.88 ·10−5 5(2) ·10−4 5.46 ·10−2 0.01

Table 4.2: Non-diagonal NLO QCD corrections to VBF at the LHC,
√
S = 7TeV. Numbers

have been computed ignoring the vanishing color factors of the diagrams in Fig. 4.4. The

MRST2002 [100] NLO PDF set has been used. Renormalization and factorization scales have

been set to MW . Integration errors, if relevant, are shown in parenthesis.

∆
f act

1
. Both ∆

non− f act
1

and ∆
f act

1
are computed with the same color factor as the Born

term.

The numbers shown are for the ud→ udH channel with exchange of a Z-boson which

couples vectorially to quarks.



46 Chapter 4. Precise predictions for the total VBF cross-section

mH [GeV] σ0 [pb] ∆
non− f act,U(1)
1

∆
f act,U(1)
1

R1

100 5.63 ·10−3 4.0(4) ·10−3 6.34 ·10−3 0.63

120 4.97 ·10−3 3.1(3) ·10−3 5.76 ·10−3 0.54

140 4.42 ·10−3 2.8(3) ·10−3 4.94 ·10−3 0.56

150 4.17 ·10−3 2.4(3) ·10−3 4.62 ·10−3 0.51

155 4.06 ·10−3 1.7(3) ·10−3 4.51 ·10−3 0.37

160 3.95 ·10−3 1.5(3) ·10−3 4.39 ·10−3 0.33

165 3.84 ·10−3 8(2) ·10−4 4.28 ·10−3 0.18

170 3.74 ·10−3 10(3) ·10−5 4.20 ·10−3 0.02

175 3.64 ·10−3 −8(3) ·10−4 4.08 ·10−3 −0.21
180 3.54 ·10−3 −1.3(2) ·10−3 3.87 ·10−3 −0.35
185 3.45 ·10−3 −3.4(4) ·10−3 3.86 ·10−3 −0.89
190 3.36 ·10−3 −2.8(3) ·10−3 3.82 ·10−3 −0.73
195 3.27 ·10−3 −2.5(3) ·10−3 3.74 ·10−3 −0.67
200 3.19 ·10−3 −2.6(2) ·10−3 3.74 ·10−3 −0.71
210 3.03 ·10−3 −1.6(3) ·10−3 3.62 ·10−3 −0.43
230 2.75 ·10−3 −7(5) ·10−4 3.40 ·10−3 −0.21
250 2.50 ·10−3 −9(2) ·10−4 3.32 ·10−3 −0.26
300 1.99 ·10−3 −5(2) ·10−4 3.21 ·10−3 −0.14
400 1.32 ·10−3 2(2) ·10−4 3.98 ·10−3 0.05

500 9.17 ·10−4 3(2) ·10−4 5.32 ·10−3 0.06

650 5.59 ·10−4 6(2) ·10−4 7.98 ·10−3 0.07

800 3.57 ·10−4 2(2) ·10−4 1.11 ·10−2 0.01

1000 2.06 ·10−4 3(1) ·10−4 1.63 ·10−2 0.02

Table 4.3: Non-diagonal NLO QCD corrections to VBF at the LHC,
√
S = 14TeV. Numbers

have been computed ignoring the vanishing color factors of the diagrams in Fig. 4.4. The

MRST2002 [100] NLO PDF set has been used. Renormalization and factorization scales have

been set to MW . Integration errors, if relevant, are shown in parenthesis.

Looking at the numbers in Tabs. 4.1–4.3, an interesting fact can be pointed (not strictly

related with the estimate of the non-factorizable corrections). ∆
non− f act
1

displays a dis-

continuity, with sudden change of sign, at around mH = 180GeV = 2MZ , i.e., the

threshold of the h→ ZZ process, which is due to the use of the zero-width approxima-

tion for the Z-bosons in the loop propagators, cf. also Refs. [101, 102]. A consistent

inclusion of Z-boson width effects, which is beyond the scope of this analysis, would

smoothen the discontinuity.

The results of Tabs. 4.1–4.3 show an R1 always well below unity. Once the O(1/N2
c )

color suppression in Eq. (4.23) is taken into account, one finds an upper bound on
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R2 < 10%. As the impact of ∆
f act

2
on the total cross-section is at the 1% level, the

contribution of the non-factorizable corrections, omitted in the structure-function ap-

proach can be estimated to be at most at the per-mil level, hence completely negligible.

Finally, it is interesting to note that ∆
non− f act
1

decreases with increasing Higgs boson

masses mH , so that, as expected from the fact that the Higgs boson acts as a “kinema-

tical de-correlator” between the two jets, the size of the non-factorizable corrections

becomes totally negligible for mH > 300 GeV.

4.2.1.3 Contributions from heavy-quark loops

Besides the non-factorizable corrections discussed above, the other class of diagrams

which is not included in the structure function approach consists in diagrams in which

the Higgs boson can couple to heavy quarks appearing in loops.

Following the definition of VBF given in Sec. 4.1 these contributions are classified in

the strict sense as “non-VBF” processes. However these effects are genuinely new at

NNLO and can be quite easily estimated or even exactly computed.

Three different classes of such contributions exist: the square-modulus of one-loop

diagrams with no extra radiation requiring a quark-gluon initial state, Fig. 4.5; the

interference of one-loop diagrams with an extra parton in the final state, Fig. 4.6,

with the VBF real tree-level diagrams; finally the interference of two-loop diagrams,

Fig. 4.7, with VBF diagrams at the Born level. Each of the three classes of loop

diagrams has no soft/collinear divergences and is gauge invariant, thus can be treated

independently.

Such contributions appear only for neutral weak currents. Moreover, in both boxes

and triangles only the axial coupling of the Z-boson to the quarks survives, so that a

mass-degenerate quark doublet gives zero contribution. Therefore only the top and

bottom quarks need to be considered.

t/b t/b

Figure 4.5: Next-to-next-to-leading order QCD corrections due to heavy-quarks (t/b) loops:

pure one-loop diagrams contributing through their modulo squared.
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Figure 4.6: Next-to-next-to-leading order QCD corrections due to heavy-quarks (t/b) loops:

one-loop plus extra parton diagrams interfering with VBF NLO real corrections.

Figure 4.7: Next-to-next-to-leading order QCD corrections due to heavy-quarks (t/b) loops

two-loop diagrams interfering with VBF LO diagrams.

4.2.1.3.1 Quark-gluon initiated contributions via the square of one-loop dia-

grams The first contribution to be considered is the one given by the diagrams

shown in Fig. 4.5. A simple estimate [20] obtained in the limit mb → 0, mt → ∞,
where only the contribution from the triangle is parametrically relevant, associates to

this class an effect of less than one per-mil of the total cross section [25, 27]. By it-

self this result is non-trivial given that the contributions of the diagrams in Fig. 4.5

are proportional to the quark-gluon parton luminosity, which is potentially large, es-

pecially at LHC. Thus, based on considering the triangle alone, it can be argued that

contributions from the heavy-quark loops in Fig. 4.5 can be safely neglected.

It is interesting to investigate to which extent the conclusion above is confirmed by

a complete calculation of these contributions. The corresponding one-loop diagrams

are known since long time [103,104] (see also [59]), although in a different kinematic

regime (i.e., time-like) for the Z-boson. The contribution of these diagrams to Higgs

boson production in VBF are shown in Fig. 4.8, where the sum of the triangle and the

box, the triangle and the box alone and the limit mt →∞ at
√
S = 7TeV and 14TeV

for the LHC and
√
S = 1.96TeV for the Tevatron have been plotted. The pole mass

values mb = 4.62GeV, mt = 174.3GeV have been used. The numbers for the LHC
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mH [GeV] σLO σtri+box σtri σbox σ∞
tri+box

100 1.49 4.09 ·10−4 2.04 ·10−4 1.70 ·10−4 3.40 ·10−4
120 1.22 3.75 ·10−4 1.84 ·10−4 1.65 ·10−4 3.12 ·10−4
150 9.19 ·10−1 3.23 ·10−4 1.58 ·10−4 1.53 ·10−4 2.73 ·10−4
200 6.01 ·10−1 2.43 ·10−4 1.22 ·10−4 1.27 ·10−4 2.20 ·10−4
250 4.09 ·10−1 1.69 ·10−4 9.49 ·10−5 9.87 ·10−5 1.78 ·10−4
300 2.87 ·10−1 1.00 ·10−4 7.42 ·10−5 6.85 ·10−5 1.45 ·10−4
400 1.52 ·10−1 3.47 ·10−5 4.62 ·10−5 2.16 ·10−5 9.76 ·10−5
500 8.58 ·10−2 2.07 ·10−5 2.93 ·10−5 8.64 ·10−6 6.67 ·10−5
650 3.95 ·10−2 1.10 ·10−5 1.53 ·10−5 2.75 ·10−6 3.85 ·10−5
800 1.93 ·10−2 6.12 ·10−6 8.20 ·10−6 1.00 ·10−6 2.25 ·10−5
1000 8.00 ·10−3 2.89 ·10−6 3.71 ·10−6 2.97 ·10−7 1.12 ·10−5

Table 4.4: Values of the contributions to the total NNLO VBF cross-section due to the heavy-

quark loop diagrams shown in Fig. 4.5 at the LHC,
√
S = 7TeV. The MSTW2008 [71] NNLO

PDF set has been used. The LO cross-section, computed with LO PDFs, is also shown for

comparison. Renormalization and factorization scales have been set to MW . Integration errors

are below the 1% level. Cross-sections are in pb.

mH [GeV] σLO σtri+box σtri σbox σ∞
tri+box

100 5.08 2.02 ·10−3 9.86 ·10−4 1.05 ·10−3 2.01 ·10−3
120 4.29 1.88 ·10−3 9.18 ·10−4 9.99 ·10−4 1.90 ·10−3
150 3.40 1.65 ·10−3 8.24 ·10−4 9.44 ·10−4 1.76 ·10−3
200 2.40 1.31 ·10−3 6.88 ·10−4 8.06 ·10−4 1.55 ·10−3
250 1.76 9.44 ·10−4 5.76 ·10−4 6.46 ·10−4 1.37 ·10−3
300 1.33 6.05 ·10−4 4.85 ·10−4 4.82 ·10−4 1.21 ·10−3
400 8.09 ·10−1 2.52 ·10−4 3.48 ·10−4 1.94 ·10−4 9.66 ·10−4
500 5.25 ·10−1 1.71 ·10−4 2.55 ·10−4 9.52 ·10−5 7.72 ·10−4
650 2.97 ·10−1 1.11 ·10−4 1.64 ·10−4 4.02 ·10−5 5.62 ·10−4
800 1.80 ·10−1 7.59 ·10−5 1.09 ·10−4 1.93 ·10−5 4.14 ·10−4
1000 9.82 ·10−2 4.76 ·10−5 6.53 ·10−5 8.05 ·10−6 2.79 ·10−4

Table 4.5: Values of the contributions to the total NNLO VBF cross-section due to the heavy-

quark loop diagrams shown in Fig. 4.5 at the LHC,
√
S = 14TeV. The MSTW2008 [71] NNLO

PDF set has been used. The LO cross-section, computed with LO PDFs, is also shown for

comparison. Renormalization and factorization scales have been set to MW . Integration errors

are below the 1% level. Cross-sections are in pb.

corresponding to the various scenarios in Fig. 4.8 are reported in Tabs. 4.4–4.5. From

these numbers one can see that the limit mt →∞, mb → 0 is a good estimate of the
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upper bound of the integrated cross section. In this case it has been verified that, as

reported also in [103], the contribution of the box goes to zero.

Moreover, specially for large mH , the triangle alone is also an upper bound, while for

small mH it approximates the total cross-section within a factor of 2.

The numbers shown have been obtained by two independent computations of the

squared amplitude, and also agree point-by-point in phase space with the results of

the code automatically generated by MadLoop [98]. The upshot is that the exact com-

putation corroborates the findings of [20] that the impact of the diagrams in Fig. 4.5

on the VBF Higgs production cross section is always below the per-mil level of the

Born contribution, and therefore can be safely neglected.

The exact result for the VBF cross section in the quark-gluon channel at NNLO allows

for a comparison with the Higgs-Strahlung case. In this case a sizable destructive

interference between the triangle and the box diagrams takes place [59, 104], while

this does not happen for VBF (see also the plots in Fig. 4.8). It is instructive to find the

origin of such a different behavior of the triangle and the box diagrams contributions

in an s-channel process [104] compared to a t-channel one (cf. Fig. 4.8). To this

aim it is useful to define the relative phase angle φ between the triangle and the box

amplitudesMtri andMbox by

|Mtri+Mbox|
2 = |Mtri|

2+ |Mbox|
2+2|Mtri||Mbox|cos φ. (4.24)

Recall that in the s-channel case in the large-mt limitMtri andMbox are real and op-

posite in sign thus implying φ ∼ π [104]. This remains true for the crossed amplitudes

in the t-channel case of Fig. 4.8 because, due to unitarity, the asymptotic behavior in

the large-mt limit remains the same. However, for finite top-quark masses away from

large-mt limit, both Mtri and Mbox acquire an imaginary part above the threshold√
S ≃ 2mt in the s-channel process. This is due to the gluon-gluon scattering process

opening to real top-quark pair-production. Thus,Mtri andMbox become complex

numbers pointing in almost opposite directions in the complex plane. and resulting

in a strong destructive interference between them, see [104]. The different findings in

the VBF case can now be easily understood: in the t-channel process of Fig. 4.5 only

Mbox can develop an imaginary part due to an intermediate real top-quark pair while

Mtri remains real. As a net resultMtri andMbox are likely to be almost orthogonal

in the complex plane thus suppressing the interference term in Eq. (4.24).

Finally, compared to the Higgs-Strahlung process, i.e., the associated production of

Higgs and a Z-boson in the gluon-fusion channel, the NNLO corrections in VBF from

the heavy quarks are by far less important [59]. This difference has also a simple phys-

ical explanation, because in the Higgs-Strahlung this contribution proceeds through a
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gg initiated s-channel, whereas VBF has the vector boson in the t-channel. The s-

channel propagator enhances the small x-region where the gluon luminosity steeply

rises. In the crossed case, i.e., in VBF, the dominant contribution to the cross sec-

tion comes from effective parton momentum fractions 〈x〉 ∼ 0.05, where the gluon

luminosity is not large yet.

4.2.1.3.2 One-loop plus extra real parton diagrams The next contributions to be

studied are those coming from diagrams in Fig. 4.6 in the qq-channel and the crossed

qg one. These diagrams feature one initial (final) state on-shell gluon attached to

the heavy-quark loop, together with the Z-boson and a time-like (space-like) off-shell

gluon. The overall contribution of this class of diagrams is estimated by computing

only the triangles, yet keeping the mt and mb finite. This choice is justified by the fact

that triangles are parametrically leading, in particular for large values of mH and, as

shown in Sec. 4.2.1.3.1, provide an approximate estimate for the total contribution,

although reasonably close to the presumed true value. Furthermore the limit mt →∞
can be computed, and (as shown in Sec. 4.2.1.3.1) is expected to behave as an upper

upper bound for the cross-section. Indeed it is found to be quite close (≃ 20%) to

the values computed for the triangle only. As for the contributions in the previous

paragraph, the triangle diagrams as in Fig. 4.6 have already been computed before in

other kinematic regimes (in the context of Z-boson decay into hadrons [105] or hadro-

production [106]), but never with a space-like Z-boson.

As an additional simplification, consider only the parton channel with the extra gluon

in the final state is considered, i.e., the reaction qq′→ qq′Hg, the other parton channels

having similar or smaller impact. This latter assumption is supported by the previous

studies of Z-boson hadro-production [106], where it was shown that the entire class of

diagrams in Fig. 4.6 is heavily suppressed with respect to the two-loop ones of Fig. 4.7

considered below in Sec. 4.2.1.3.3.

The necessary expressions for the interference of the one-loop diagrams with the tree-

level ones have been computed analytically using Mathematica and FeynCalc [107]

and have been put into MadGraph [108, 109] for the phase-space integration. The

respective numbers for the contribution to the VBF total cross-section of the process

qq′→ Hqq′g due to the heavy-quark triangle in Fig. 4.6 at the LHC, at
√
S = 7TeV

and 14TeV are given in Tab. 4.6. Again, these contributions are totally negligible

compared to the LO VBF cross-section, and also about one order of magnitude smaller

than the ones studied in Sec. 4.2.1.3.1.

4.2.1.3.3 Two-loop diagrams Finally, it is the turn of the two-loop contributions

of Fig. 4.7 where the heavy-quark loop is attached via two gluons to the light-quark

line originating from one of the protons. These diagrams interfere with the Born VBF
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mH [GeV] σLO σ
1 loop+glu

tri

100 1.49 5.10 ·10−5
120 1.22 4.02 ·10−5
150 9.19 ·10−1 2.89 ·10−5
200 6.01 ·10−1 1.74 ·10−5
250 4.09 ·10−1 1.11 ·10−5
300 2.87 ·10−1 7.41 ·10−6
400 1.52 ·10−1 3.53 ·10−6
500 8.58 ·10−2 1.84 ·10−6
650 3.95 ·10−2 7.72 ·10−7
800 1.93 ·10−2 3.52 ·10−7
1000 8.00 ·10−3 1.34 ·10−7

mH [GeV] σLO σ
1 loop+glu

tri

100 5.08 2.66 ·10−4
120 4.29 2.20 ·10−4
150 3.40 1.67 ·10−4
200 2.40 1.11 ·10−4
250 1.76 7.62 ·10−5
300 1.33 5.48 ·10−5
400 8.09 ·10−1 3.02 ·10−5
500 5.25 ·10−1 1.82 ·10−5
650 2.97 ·10−1 9.21 ·10−6
800 1.80 ·10−1 5.12 ·10−6
1000 9.82 ·10−2 2.54 ·10−6

Table 4.6: Values of the contributions to the total NNLO VBF cross-section due to the heavy-

quark triangle plus gluon emission diagrams shown in Fig. 4.6 at the LHC, at
√
S = 7TeV

(left) and
√
S = 14TeV (right). The MSTW2008 [71] NNLO PDF set has been used. The LO

cross-section, computed with LO PDFs, is also shown for comparison. Renormalization and

factorization scales have been set to MW . Integration errors are below the 1% level. Cross-

sections are in pb.

amplitudes. The effective coupling to the light-quark line singles out the iso-triplet

component of the proton in the squared matrix elements, since only the axial part of

the Z-boson coupling contributes for non-degenerate heavy-quarks in the loop. That

is to say, this class of diagrams is proportional to the (non-singlet) distribution δq−ns of
Eq. (4.19), which is generally small.

In analogy to the previous Sec. 4.2.1.3.2, the aim is to have an estimate of the size of

the contributions of Fig. 4.7 rather than their exact impact. Therefore, one can restrict

to the two-loop triangle diagrams, also given the fact that the two-loop double box in

Fig. 4.7 is currently unknown for the required VBF kinematic configuration and its

computation would be a tremendous task in itself.

The two-loop triangles for the qq̄Z vertex have been computed in [105] for the case

mb = 0 and mt , 0, see also [106]. Rather compact results in terms of harmonic poly-

logarithms [91] (see [92] for numerical routines) for all kinematic configurations have

been obtained in [110] and the latter expressions have been used to compute the num-

bers shown in Tab. 4.7 for the LHC at
√
S = 7TeV and 14TeV. Again, a comparison

of the cross section numbers in Tab. 4.7 for the reaction qq′→Hqq′ at NNLO in QCD

mediated by the two-loop triangle with the LO cross-section shows that such contri-

butions are below the per-mil level.
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In ending this discussion of heavy-quark loop contributions I briefly remark that, of

course, the diagrams shown in Figs. 4.5–4.7, also contribute in heavy-quark DIS, if

the full neutral-current reactions are considered, i.e., both γ and Z-boson exchange at

high Q2. Currently available DIS data on heavy-quark production, however, is usually

taken at Q2 values where these contributions are not relevant. Their existence is an

issue, though, to be recalled in the definition of variable-flavor number schemes, see

e.g., [111].

mH [GeV] σLO σ
2 loop

tri

100 1.49 8.38 ·10−4
120 1.22 7.08 ·10−4
150 9.19 ·10−1 5.60 ·10−4
200 6.01 ·10−1 3.90 ·10−4
250 4.09 ·10−1 2.81 ·10−4
300 2.87 ·10−1 2.06 ·10−4
400 1.52 ·10−1 1.18 ·10−4
500 8.58 ·10−2 7.08 ·10−5
650 3.95 ·10−2 3.52 ·10−5
800 1.93 ·10−2 1.84 ·10−5
1000 8.00 ·10−3 8.18 ·10−6

mH [GeV] σLO σ
2 loop

tri

100 5.08 2.30 ·10−3
120 4.29 2.01 ·10−3
150 3.40 1.67 ·10−3
200 2.40 1.25 ·10−3
250 1.76 9.63 ·10−4
300 1.33 7.60 ·10−4
400 8.09 ·10−1 4.99 ·10−4
500 5.25 ·10−1 3.44 ·10−4
650 2.97 ·10−1 2.10 ·10−4
800 1.80 ·10−1 1.35 ·10−4
1000 9.82 ·10−2 7.91 ·10−5

Table 4.7: Values of the contributions to the total NNLO VBF cross-section due to the two-

loop trinagle diagram shown in Fig. 4.7 at the LHC, at
√
S = 7TeV (left) and

√
S = 14TeV

(right). The MSTW2008 [71] NNLO PDF set has been used.The LO cross-section, computed

with LO PDFs, is also shown for comparison. Renormalization and factorization scales have

been set to MW . Integration errors are below the 1% level. Cross-sections are in pb.

4.2.2 One-loop electroweak corrections

I will now briefly discuss the one loop electroweak corrections to VBF, and explain

how they can be combined with the (NNLO) QCD ones. The detailed computation of

such corrections can be found in [55, 56] and is beyond the scope of this thesis.

In [55, 56] the NLO EW and NLO QCD corrections have been computed and have

been implemented in the public computer code HAWK [112]. The full computation

of the O(α2sαEW )×Born corrections being impossible, one has to establish a safe way

to combine NNLO QCD corrections and NLO EW ones.

If one calls

σ
QCD

NNLO
= σ0 +αsσ

QCD

1
+α2sσ

QCD

2
(4.25)
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the total cross-section up to NNLO in QCD and

σEW
NLO = σ0 +αEWσ

EW
1 (4.26)

the total cross-section up to NLO EW, the combined NNLO QCD and NLO EW total

cross-section can be defined as

σNNLO+EW = σ
EW
NLO+αsσ

QCD

1
+α2sσ

QCD

2
= σ

QCD

NNLO
+αEWσ

EW
1 . (4.27)

This combination, which is exact and does not include any spurious term in the calcu-

lation, is called the “additive” scheme.

However, to be completely consistent, this scheme implies that all terms are computed

with exactly the same parameters (EW parameters, PDF, scale choices,. . . ) and set-

tings, request that can be difficult (or at least error-prone) to be fulfilled when different

codes are used.

An alternative approach to the combination is the so-called “multiplicative” scheme.

This approach is mainly driven by the hypothesis that EW and QCD corrections fac-

torize to a very good approximation at NLO and NNLO. In this scheme the combined

cross-section is defined as

σNNLO+EW = σ
QCD

NNLO

1+
αEWσ

EW
1

σ0

 . (4.28)

With respect to the additive scheme, the multiplicative one is more practical: since

most of the PDF/scale dependence cancels in the ratio
αEWσ

EW
1

σ0
, it loosens the con-

straint of having the same parameters in the two codes, at the cost of introducing

spurious terms of order αEWαs and αEWα
2
s . Anyway, as far as the total cross-section

is concerned, an excellent agreement is found between the two schemes and, as the

multiplicative one is the most practical, it will be used in the following.

4.2.3 Off-shell effects

The last class of corrections I want to discuss is the one that involves effects due to the

fact that the Higgs boson is an unstable particle.

Consider the production of a particle P by an initial state I decaying to a final state

X: the roughest way to compute the cross-section of this process is simply to multiply
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the cross-section for the production of I → P and the branching-ratio for the decay

P→ X. This is the so-called zero-width approximation (ZWA):

σZWA
I→P→X = σI→P (mP)BrP→X, (4.29)

where σI→P (mP) is the production cross-section computed with P on shell.

As said, this is the roughest way, and neglects effects due to the virtuality of P2. These

effects affect both the decay and the production cross-section, however they are of or-

der ΓP/mP, so they are quite small for a narrow particle. If this approximation may be

correct for a light Higgs (mH < 300GeV), it completely breaks down for a heavy one,

as in this case the width becomes comparable to its mass.

The expression for the total cross-section which includes these effects is

σOFF
I→P→X =

∫
dQ2QΓ(Q)

π
σI→P (Q)

((
Q2−m2

P

)2
+m2

PΓP(mP)
2
)−1
BrP→X(Q),(4.30)

which, since

lim
ΓP→0

((
Q2−m2

P

)2
+m2

PΓP(mP)
2
)−1
=

π

mpΓP(mp)
δQ2−m2

P , (4.31)

reduces to the ZWA if the width is small enough. The interesting fact about σOFF

is that the expression Eq. (4.30) is equivalent to computing the cross-section for the

production of the final state X retaining only the diagrams with P in the s-channel.

However, as soon as P goes off-shell, gauge invariance can be broken. Indeed, gauge

invariance is guaranteed only for the full process I → X. While usually at LO gauge

invariance is kept, it can be a serious problem when higher order corrections are taken

into account. In order to preserve gauge invariance for QCD, extra radiation should be

included both in the production and in the decay, including all possible interferences.

However, for colorless resonances, interferences between production and decay aris-

ing from QCD corrections usually vanish because of color conservation, so in the end

gauge invariance is not an issue in the case of QCD corrections. Conversely, for EW

corrections, this is not a priori true. In addition, the appearance of the width in the

denominator can spoil cancellations due to relations between parameters which are

usually crucial to ensure gauge invariance.

2The factorization into production and decay is not correct in quantum-mechanics. This is because it

neglects interferences between different polarization states of P. However, since the topic of this thesis is

the scalar Higgs boson, quantum mechanics effects due to interferences of different helicity states will play

no role in this case and will not be mentioned in the text.
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To this aim, the so-called complex-mass scheme (CMS) [113, 114] has been devel-

oped: gauge invariance is ensured by promoting masses as complex quantities, de-

fined as the location of the poles in the complex p2 plane, where p is the momentum

flowing in the propagator. These complex masses need to be introduced everywhere

in the Feynman rules, for example in the weak mixing angle

cos2 θw =
s2
W

s2
Z

, (4.32)

which is derived from the ratio of the complex masses of the gauge vectors,

s2V = m
2
V − imVΓV . (4.33)

In the case of the Higgs boson, the CMS needs to be further dug [115]: if the Higgs

propagator ∆H is written as

1

∆H (s)
= s−m2

H +S HH (s,mH ,mX) , (4.34)

in terms of the renormalized mass mH and self energy S HH (mX symbolically repre-

sents the masses of any other particle (W,Z, t, . . .), its complex pole sH is defined as the

complex solution of the equation

sH −m2
H +S HH (sH ,mH ,mX) = 0 . (4.35)

Indeed, in the CMS, all the masses appearing as argument of the self-energy S HH have

to be replaced by the corresponding complex poles.

The peculiarity of the Higgs boson, with respect to other particles (e.g. the vector

bosons), can be understood by considering its branching ratios: even for a light Higgs,

below the WW threshold, the branching ratio into four fermions is comparable with

that in a pair of b quarks. In terms of the Higgs boson self-energy, this means that cuts

from 1-loop diagrams and from 3-loop diagrams are equally important.

Therefore the extraction from the Higgs boson lineshape of the on-shell mass and

width is not as simple as it would be in the case of the W (or Z) boson, where the

predominant decay mode is into two massless fermions. In the case of theW, on-shell

quantities are simply related to the real and imaginary part of the complex pole. If it

is parameterized as

s2W = µ
2
W − iµWγW , (4.36)
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then one has

µ2W = m
2
W OS −Γ2W OS + . . . , γW = ΓW OS

1−
1

2

Γ2
W OS

m2
W OS

+ . . . , (4.37)

where the ellipses denote higher order contributions.

In the case of the Higgs boson, due to the non-perturbativity of its self-energy, the

expansion is more complicated [115], and on-shell quantities are ill-defined. This can

be understood from the definition of the on-shell width (or analogously from that of

the on-shell mass)

ΓOSH mOS
H = ImS HH, OS + . . . , (4.38)

and from the fact that the bosonic part of the Higgs boson self-energy is gauge-

parameter dependent at lowest order. This is possible since in a gauge theory only

the complex pole of the propagator is gauge independent.

The preferred way to include off-shell effects for the Higgs boson is to write its prop-

agator as

1

∆H (s)
= s− sH , (4.39)

with

sH = µ
2
H − iγHµH , (4.40)

where µH is treated as an independent parameter (set equal to the Higgs mass) and γH
is obtained from the relation

µHγH = ImS HH (sH ,S X) , (4.41)

where sX replaces the correspondingmass in all parameters, and fixing the renormali-

zation scale to µH .

To solve Eq. (4.41), the HTO code [116] is used.
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4.3 Results for the
√
S = 8TeV LHC

In this chapter I will present the results for the total cross-section of VBF. In particular,

I will focus on results computed for a center-of-mass energy
√
S = 8TeV, correspond-

ing to the LHC run during 2012. Results for
√
S = 7,14TeV can be found in [21, 23].

Ref. [21] also contains results for the
√
S = 1.96TeV run at the Tevatron.

The values for the SM parameters used in the computation are those recommended by

the Higgs Cross-Section Working Group (HXSWG) [35]:

MW = 80.398GeV, ΓW = 2.089GeV ,

MZ = 91.188GeV, ΓZ = 2.496GeV ,

GF = 1.166×10−5GeV−2 . (4.42)

In the first plot, shown in Fig. 4.3.1, I present results including only QCD corrections,

up to NNLO. This helps in understanding the behaviour of the perturbative series,

and how much such behaviour is affected by the choice of renormalization and fac-

torization scale. Three choice of reference scales are presented, each one with the

corresponding theoretical uncertainty band obtained by varying independently the re-

normalization and factorization scales around the reference scale µREF :

µR = xR µREF , µF = xF µREF . (4.43)

Since there is not any special prescription about the variation range of the scale factors

xR,F , I have considered two possible ranges, one smaller, used by the HXSWG [23,24]

1/2 < xR,F < 2 , (4.44)

and one larger, corresponding to a more conservative uncertainty estimate

1/4 < xR,F < 4 . (4.45)

In the DIS-inspired structure function approach, the most natural scale choice is to

set the scales equal to Q, the virtuality of the vector boson attached to each proton.

This scale choice corresponds to the curves in the upper frame of Fig. 4.3.1, and to the

ratios in the first inset. From this inset, one can appreciate the very good convergence

of the perturbative series: the effect of NLO corrections is to increase the total rate of

6% in the whole scanned mass range; NNLO corrections have a very tiny effect on
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the total rate, but their inclusion lead in a stabilization of the theoretical uncertainties

at the ±2−3% level if scales variations of up to a factor 4 are considered. Almost no

change in the NNLO cross-section is observed when scales are varied by a factor of 2,

witnessing for an almost flat scale dependence.

This scale choice, which, as said, looks the most natural in the approach that I pre-

sented for the computation, however is not suitable for being implemented in fully dif-

ferential codes: as soon as an extra radiated particle is explicitly considered, it makes

impossible to define unambiguously “the virtuality of the vector boson attached to

each proton” in terms of the momenta of the external particles. Furthermore, in view

of the inclusion of the EW corrections obtained from HAWK, as this code does not

allow to choose a variable reference scale, a fixed scale has to be used.

Two possible fixed scales looks most natural: the Higgs mass, or the mass of the vec-

tor bosons. The second choice, although non related to any of the external particle,

is the one that most reproduces the Q choice. This can be understood from the fact

that, because of the t-channel propagators, the largest part of the contribution to the

cross-section comes from virtualities smaller than or of the order of the mass of the

vector-boson in the propagator. The behaviour of the total VBF cross-section with

this scale choice (µREF = MW ) is shown in the second inset of Fig. 4.3.1, where it is

compared with the NNLO prediction obtained choosing Q as reference scale. As can

be observed by comparing the first two insets, the behaviour of the perturbative series,

as well as the residual theoretical uncertainties are similar in the two cases, and com-

plete agreement is found between the two NNLO predictions. The third inset shows

results with the Higgs mass as reference scale, which shows a worse behaviour of the

perturbative series at large Higgs masses (where also large uncertainties still affect the

NNLO computation), confirming the fact that VBF is mostly governed by low scales.

I now turn to discuss results which include EW corrections and off-shell effects, com-

puted in the complex-pole scheme. These results, which have also been published

in [24], represent the best available prediction for the total cross-section of VBF. They

are shown in Fig. 4.3.2. In this figure, the main frame shows three curves: the red

curve is the NNLO prediction already shown before. The green curve includes Higgs

off-shell effects on top of the NNLO QCD corrections, and the blue curve also incor-

porates electroweak corrections as computed with HAWK. The lower inset shows the

same curves normalized to the NNLO prediction, together with the contribution from

EW corrections alone (in orange, not shown in the main frame).

All predictions have been computed using the NNLO MSTW 08 PDF set, fixing re-

normalization and factorization scale to MW . The low mass range (100 < MH < 300)

of the lower inset is expanded in Fig. 4.3.3.

The impact of EW corrections can be sizable, depending on the mass range consid-

ered. For a light Higgs boson, below the VV thresholds, EW corrections are negative
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and fairly constant (−4%). When theWW and ZZ thresholds are crossed, their impact

slightly softens, but starts to slowly grow again (in magnitude) until the tt̄ threshold is

reached. From the tt̄ threshold the behaviour changes, as EW corrections start a trend

that will eventually bring them positive after MH = 500GeV, with an almost-linear

growth up to the end of the explored mass-range (1TeV), where their impact reaches

the 25% of the total cross-section.

Turning to the impact of off-shell corrections, their effect is positive in the entire

mass range, and generally grows with the Higgs boson mass. As expected, for large

masses, off-shell effects are quite important ( 15%). It is however surprising to see

visible effects also at low masses, below the VV thresholds. For a 125GeV Higgs,

even if the narrow width approximation is supposed to be correct, being the width

of the Higgs boson almost five order of magnitudes smaller than the Higgs boson

mass (Γ(MH = 125GeV) = 4.07MeV), off-shell effects are already visible, account-

ing for a 1−2% correction on the total rate. This has been understood and explained

in details (for the gluon-fusion production channel) in [117]. When the Higgs bo-

son propagator is incorporated in the computation, to account for off-shell effects, it

enters with the Higgs boson width, sampled at the Higgs boson virtuality Q, in the nu-

merator (check Eq. (4.30)). Therefore off-shell effects are sampled proportionally to

Γ(Q2)/
∣∣∣M2

H
− sH

∣∣∣2. While normally the denominator damps contributions away from

the pole, if the width grows fast enough with the virtuality, as it does for the Higgs

boson, this is not the case any longer. This explains why one has visible effects due

to the Higgs boson off-shellness even in a region where, naively, the narrow-width

approximation is expected to be accurate.

Scale uncertainties are not significantly affected by the inclusion of off-shell effects.

I conclude this chapter discussing the residual theoretical uncertainties on the total

cross-section. I have already discussed the uncertainties estimated by varying the re-

normalization and factorization scales, which are at the 2−3% level in the whole mass

range. The impact of these variations can be used to estimate the size of the next terms

in the perturbative series.

The other source of theoretical uncertainties is related to the choice of parton distribu-

tion functions (PDFs). As PDFs are a non-perturbative ingredient of the computation

and have to be extracted by previous data, the way they are determined can bias, or

at least affect the prediction. All the main PDF collaborations have delivered sets

including NNLO QCD evolution, which can be used to obtain consistent NNLO pre-

dictions. Results with the most recent NNLO sets are shown in Fig. 4.3.4. These

sets are HERAPDF 1.5 [118, 119], ABM 11 [120], JR 09 [121, 122], MSTW 08 [71],

NNPDF 2.1 [123] and CT 10 [124]. From the plot one can appreciate the fact that all

central sets lie in a band not wider than 5% of the total cross-section for almost all
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the mass range, while the width of the error bands envelope ranges from 7% at low

masses to 15% at large masses.

4.4 Conclusion

In this chapter I have presented the state-of-art predictions for the VBF total cross-

section. A large part of this chapter has been spent in studying NNLO QCD correc-

tions to the total cross-section. After having classified the possible contributions, I

have shown that the numerically dominant part comes from contributions that can be

computed in the structure-function approach.

Since in this approachQCD corrections are completely separated from the weak boson

which fuse into the Higgs, it can be generalized to the production of new fermiophobic

scalar and vectorial resonances, both neutral or charged. The interested reader can find

some benchmark result in [21, 26]. The formulae corresponding to Eq. (4.5) for the

case of a scalar resonance with anomalous coupling to vector bosons or for a vector

resonance can be found in App. B.

I continued the chapter presenting results for the
√
S = 8TeV LHC: NLO corrections,

even if rather small, are important in order to get the correct total rate, while the main

effect of the inclusion of the NNLO is the reduction of the renormalization and fac-

torization scale dependence at the 2−3% level, in the whole range of the Higgs boson

mass.

The computation of the total cross-section has been improved by including NLO EW

corrections and off-shell effects. The former are computed using the public, third-

party code HAWK, while the latter have been obtained by including the Higgs boson

propagator in the complex-pole scheme in the computation. These non-QCD correc-

tions are mandatory in order to claim an accuracy on the total rate at the level of few

percents, and their inclusion make the VBF total cross-section being possibly the most

precisely known LHC cross-section.

To conclude, I want to stress that the validity of the structure function approach at

NNLO, together with modern NNLO subtraction techniques [125], pave the way to

the fully differential (parton level) computation of VBF. This would be a spectacular

result, as no 2→ 3 hadronic process is known at NNLO yet.

The code used to compute NNLO corrections in the structure function approach can

be run on-line from the web-interface [126].
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Figure 4.8: Contribution of the heavy-quarks (t/b) loops to the total NNLO VBF cross sec-

tion, at the LHC with
√
S = 7TeV (top-left),

√
S = 14TeV (top-right) and at the Tevatron,√

S = 1.96TeV. Numbers are computed with the MSTW 2008 [71] NNLO PDF set. The renor-

malization and factorization scales have been set to MW .
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Figure 4.3.1: Total cross-section predictions for VBF at the LHC,
√
S = 8TeV, at LO

(red), NLO (green) and NNLO (blue) in QCD. Bands correspond to the independent vari-

ations of renormalization and factorization scales around the reference value in the range

µREF/4 < µR,F < 4µREF . The main frame shows prediction obtained setting µREF = Q where Q

is the virtuality of the vector boson. The first inset shows the curves in the main frame rescaled

to the NNLO prediction. The second and third insets show respectively predictions obtained

with µREF = MW and µREF = MH , rescaled to the NNLO curve obtained with µREF = Q. In the

insets, the darker (lighter) bands (LO bands are not shown) correspond to scale variations in the

range µREF/4 < µR,F < 4µREF (µREF/2 < µR,F < 2µREF ). The LO, NLO and NNLO MSTW

2008 pdf sets [71] have been used (consistently with the order of the cross-section).
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Figure 4.3.2: Impact of off-shell effects and EW corrections on the total cross-section for VBF

at the LHC,
√
S = 8TeV. The curves in the main frame represent the total rate at NNLO in QCD

(red), on top of which off-shell effects have been added in the complex pole scheme (CPS), with

(blue) or without (green) electroweak corrections. The lower inset shows the ratio of the curves

in the main frame over the NNLO prediction (with the same color pattern). The orange curve

(absent in the main frame) shows the impact of EW corrections alone, without off-shell effects.

Numbers have been computed with the NNLOMSTW 08 PDF set [71], setting renormalization

and factorization scales to MW .
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Figure 4.3.3: Impact of off-shell effects and EW corrections on the total cross-section for VBF

at the LHC,
√
S = 8TeV, in the low-mass range. Curves are rescaled to the NNLO prediction

(in red), and represent off-shell effects with (blue) or without (green) electroweak corrections,

and electro-weak corrections alone (orange). Numbers have been computed with the NNLO

MSTW 08 PDF set [71], setting renormalization and factorization scales to MW .
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Figure 4.3.4: Comparison between NNLO predictions for the total VBF cross-section obtained

with different PDF sets, shown as ratios over MSTW 2008 [71]. The upper plot shows results

obtained with the HERAPDF 1.5 [118,119], ABM11 [120] and JR 09 [121,122] sets. The lower

plot shows results obtained with MSTW 08 [71] (68% CL), NNPDF 2.1 [123] and CT 10 [124].

Bands (or dashed lines for MSTW 08) correspond to the estimate of PDF uncertainties. The

NNLO set delivered by each collaboration has been used. Scales are fixed to MW .
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Chapter 5
Simulating VBF at hadron colliders

The results presented in this chapter are based on [22] and on the VBF chapter of [24].

5.1 Introduction

In the previous chapter I discussed how to obtain very precise predictions for the total

VBF cross-section. However, an accurate knowledge of the total cross-section is not

useful if a comparable accuracy is not achieved also on differential observables: first

of all, because the total cross-section is never directly measured at experiments: what

is actually measured is the cross-section within some given cuts, either dictated by the

finite acceptance of the detector (so-called acceptance cuts) or imposed to better distin-

guish the signal over the background (the selection cuts). On top of the cross-section,

usually some specific observables are measured, like the transverse momentum of a

jet or the invariant mass of two particles. Higher order corrections need to be included

also in the prediction of these observables.

Furthermore, the distance between the few partons taking part to the theoretical de-

scription and the large number of hadrons that usually populate events at hadron col-

liders has to be reduced in order to achieve a higher degree of realism. This is done by

passing the parton-level events to a parton shower Monte Carlo (PSMC), which will

add extra QCD radiation to the events and cluster the partons into hadrons.

The two aspects, of including higher order corrections in fully differential programs,

and of using such programs to generate events which are suitable for being showered,
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need to be carefully put together. On one hand, one has to cancel the IR singularities

that typically affect the ingredients (real-emission and virtual matrix-elements) of a

NLO computation in a way which is suitable for being integrated numerically (in 4 di-

mensions). Process-independent approaches have been developed to this aim, such as

the dipole [127,128], FKS [129,130] and antenna [131,132] subtraction schemes. On

the other hand, matching a NLO prediction with PSMCs requires some care, in order

not to double count configurations generated by the shower and by the real-emission

matrix-element. Two methods to match predictions at NLO QCD with parton showers

have been developed: POWHEG [133, 134] and MC@NLO [135].

This chapter will be structured as follows: the first part Sec. 5.2 will be devoted to

introduce the FKS subtraction scheme, which is employed both in POWHEG and

MC@NLO. I will continue introducing how a PSMC works in Sec. 5.3, and present-

ing, in Sec. 5.4, issues related with matching NLO computations to parton showers

and the basics of the MC@NLO and POWHEG methods. Finally in Sec. 5.5 I will

present results for VBF at the LHC.

5.2 The FKS subtraction scheme

The computation of a NLO cross-section is built from two main ingredients: the con-

tribution coming from the interference of loop and born diagrams, V, known as vir-

tual matrix-element and the contribution R coming from the real radiation of an extra

massless particle:

dσNLO = dΦn (B+V+dΦ1R) , (5.1)

with n the number of final-state particles. These two contributions, the real-emission

and the virtual matrix element, are in general separately non-finite, while their sum is

finite, according to the Kinoshita-Lee-Nauenberg (KLN) theorem [136,137]. In brief,

this theorem relies on the fact that, in the singular limit when the extra particle ac-

counted for in the real-emission matrix-element becomes soft and/or collinear to any

other particle, the final state configuration cannot be distinguished from the config-

uration without radiation. This configuration is considered, at the same order in the

coupling constant, by the virtual matrix-element.

Typically, when one uses dimensional regularization to control these singularities, di-

vergences manifest as poles in the dimensional regularization parameter ε, when the

loop momentum or the extra particle in the real-emission matrix-element is integrated:

V = −C2

ǫ2
− C1

ǫ
+V f in , (5.2)
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∫
dΦ1R =

C2

ǫ2
+
C1

ǫ
+R f in . (5.3)

The analytic integration of the extra particle phase-space becomes impossible, or at

least very difficult, as soon as the number of final-state particles starts to grow. On top

of this, an exclusive description of the final state requests to explicitly consider also

effects which are due to the radiation of an extra particle.

In order to perform a numerical integration, finite (four dimensionsional) n and n+1

body contributions are needed, which will be integrated independently. To achieve this

one has to subtract the divergent part from the real-emission matrix-element before

performing the integration, by introducing suitable counterterms C such that (in four

dimensions) the integral

∫
dΦ1 (R−C) (5.4)

converges. This implies

∫
dΦ1C =

C2

ǫ2
+
C1

ǫ
+C f in . (5.5)

Typically C is not zero only close to the singular limit, where “close” is specified by

some cuts on energy and angles (it will become more clear in the following). This

makes it possible to choose C such that the integral in Eq. (5.5) can be done analyti-

cally, such that the NLO cross-section can be written as

dσNLO = dΦn

(
B+V+

∫
dΦ1C+dΦ1 (R−C)

)
=

= dΦn

(
B+V f in+C f in+dΦ1 (R−C)

)
=

= dΦn

(
B+V f in+C f in

)
+dΦn+1 (R−C) . (5.6)

In the last line of Eq. (5.6) the n- and n+ 1-body integrals are separately finite. The

choice of a specific structure for the counterterms C and the prescription to practically

obtain the NLO cross-section is called the “subtraction scheme”. I will now turn to

explain the choice originally presented in [129] by Frixione, Kunszt and Signer, refer-

ring to it as to the FKS subtraction.

5.2.1 Notation

In this section I will briefly introduce the notation that I will use in presenting the FKS

subtraction. I will focus on the case of a hadronic scattering process, but all definitions
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can be simply adapted to the case of leptonic or lepto-hadronic initial states, as well as

of a decay. As done previously, I will assume the born and real-emission kinematics

to correspond respectively to n and n+1 final-state particles. Focusing to the case of

QCD corrections, I will call n0 the number of non-strongly interacting particles, nH,

and nL respectively the number of massive and massless strongly interacting particles.

Born and real configuration can differ only by one unit of nL. Therefore:

nRL = nBL +1 , (5.7)

n = nBL +nH +n0 , (5.8)

n+1 = nRL +nH +n0 . (5.9)

A partonic subprocess P is defined by a list of particle identitiesIk with the convention
of putting first initial-state particles, then strongly interacting particles (first massless,

then massive ones), finally non strongly interacting particles:

P = (I1,I2,I3, . . . ,I2+nL︸          ︷︷          ︸
nL

,I2+nL+1, . . . ,I2+nL+nH︸                      ︷︷                      ︸
nH

,I2+nL+nH+1, . . . ,I2+nL+nH+n0︸                              ︷︷                              ︸
n0

) .

(5.10)

The sets of n and n+1-body subprocesses will be denoted as Pn and Pn+1.
A given n-body subprocess can always be related to at least one n+1-body subprocess,

and vice-versa1. If i and j are two strongly interacting particles, with i massless and

in the final state (3 < i < 2+ nL, 1 < j < 2+ nL + nH) one can define, starting from a

process P ∈ Pn+1, the processes P❈i, P j⊕i,❈i (when they exist). P❈i is simply obtained

removing i from the list of particles, P j⊕i,❈i removing both i and j, and replacing j with

the parton which enters the (Ii,I j,Ii⊕ j) QCD vertex. Even if in some cases P❈i and

P j⊕i,❈i may coincide, the use of two different notations is justified by the fact that they

are associated to different singularities of the real-emission process P.

The processes P❈i, P j⊕i,❈i are called the underlying born processes of P.

5.2.2 Ingredients

I will now list the amplitudes that are needed in order to have a full computation of a

NLO cross-section. Once this amplitudes are provided, they can be put together using

the formulae in Sec. 5.2.3.

The amplitudes needed for a full NLO computation are born amplitudes AB(P), the

1This is not strictly true as in some peculiar cases some real-emission subprocesses are not related to

any born process because they are finite, e.g. the real subprocess qq̄→ Hg does not reduce to the born

subprocess gg→ H.
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virtual (loop) amplitudes AV(P) and the real emission amplitudes AR(P). For the first

two classes P ∈ Pn, while for the last class P ∈ Pn+1. From now on, I will assume it is

understood which class of processes P belongs to.

From these amplitudes the terms entering the short-distance cross-sections are com-

puted, which are defined as

B(P) = 1

2s

∑

CH

|AB(P)|2 , (5.11)

Bkl(P) =
1

2s

∑

CH

AB(P) Q(Ik) ·Q(Il) AB(P)∗ , (5.12)

V(P) =
1

2s

∑

CH

2Re
(
AB(P)AV(P)

∗) , (5.13)

R(P) = 1

2s

∑

CH

|AR(P)|2 . (5.14)

In all expressions explicitly sum (average) over color and helicities of final (initial)

state particles, and include the flux factor (s is the partonic center-of-mass energy de-

fined as s = 2k1 · k2).
It can be instructive to spend somewords aboutBkl, the so-called “color-linked borns”.

These matrix-elements correspond to the born amplitude B with color-factors corre-

sponding to the exchange of an extra gluon between external legs k and l, and will

enter the counterterms for soft singularities. The color-operatorsQ(I) which enter the
definition depend on the nature of k and l.

One practical way to generate the color-linked born is the following:

• Consider the born amplitude AB, with colors of the external particles fixed, as a

sum of Feynman diagrams, which are written as a product of a Lorentz part Di

and a color-algebra part C
a1,...,anC
i

A
a1,...,anC
B =

∑

i

C
a1,...,anC
i

Di , (5.15)

where nC = 2+nH+nL is the number of colored particles.

The color-algebra part typically corresponds to an expression involving genera-

tors of the color group SU(3) in different representations (i.e. ta and f abc), and

carries indexes for each colored external particle.
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• The inclusion of the color structure corresponding to the exchange of a gluon

between two legs will only affectCi. In particular, one has to compute the inter-

ference between A
a1,...,anC
B and the modified (color-linked) amplitude A

a1,...,anC ; kl

B
which accounts, in its color-algebra, for the exchange of a gluon between legs k

and l2. The new color coefficients will be written as

C
a1,..., anC ; kl

i
=C

a1, ..., ak→ak0
, al→al0

, ..., anC
i

Q(Ik)ak0 ,ag,akQ(Il)al0 ,ag,al , (5.16)

where ak0 , al0 are dummy indexes and

Q(I = q)a,b,c = −tbca , (5.17)

Q(I = q̄)a,b,c = tbac , (5.18)

Q(I = g)a,b,c = i f abc , (5.19)

(the definition can be trivially extended in the case of new representations of the

color group).

• Once the color-linked amplitude is available, the color linked borns can be sim-

ply obtained as

Bkl(P) =
1

2s

∑

CH

2Re
(
AB(P)A

kl
B(P)

∗) , (5.20)

where the color-indexes of the external particles are understood.

The final formulae of the FKS subtraction method, which will be given in Sec. 5.2.3,

will only involve non-divergent quantities. The explicit proof of the cancellation of

soft and collinear singularities that arise in the intermediate steps of the computation

is given in the original FKS paper [129].

In a generic computation, the finiteness of the partonic cross-section is usually a con-

sequence of having imposed kinematic cuts on final state particles. In general, these

cuts will be equivalent to ask to have either nB
L
or nB

L
+1 jets in the final state, to be re-

constructed with an arbitrary algorithm. This condition, together with other possible

kinematic cuts, is understood to be included in all matrix-elements in Eqs. (5.11)–

(5.14), in the sense that if the condition is not fulfilled the matrix element is zero.

With such a definition, B, Bkl and V are guaranteed to be finite, whereas R will still

diverge in the soft and collinear limit. These divergences are subtracted by means of

2Strictly speaking one would have to compute the interference between the amplitude which accounts for

the radiation of a gluon from leg k and the amplitude which account for the radiation from leg l. However,

the two approaches are completely equivalent, and the one presented here has the advantage of re-using the

color-informations of the born.
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the counterterms.

In order to classify these divergences, for any given real-emission process P ∈ Pn+1
the following set of pairs (called FKS pairs) is introduced:

PFKS (P) = {(i, j) : 3 ≤ i ≤ nL +nH +2, j ≤ nL+nH +2, i , j,

R(P)→∞ if ki · k j→ 0
}
. (5.21)

In words, a pair of particles belongs to the FKS pairs if these particles can generate soft

or collinear singularities in the real-emission matrix element. The first element, i, is

called the FKS parton, and has to be a final state particle, while the second, j, is called

its sister. PFKS (P) takes into account all the singularities of the real-emission matrix-

element which can arise after having imposed kinematic cuts; each of such pairs will

correspond to a set of soft and/or collinear counterterms, which, once combined with

the real-emission matrix-element, will result in a finite contribution to physical ob-

servables. Each of these finite contributions can be computed independently from the

others, and integrated with numerical methods.

Using a naive point of view, the number of FKS pairs seems to grow as (nL + nH)
2.

However, it is clear that, in order to have a singularity, at least one of the two parti-

cles has to be massless, reducing the scaling to nL(nL + nH). This massless particle

will be identified, without loss of generality, with the FKS parton. On the other hand,

depending on the identities of the particles in the given process, some of the contri-

butions due to the FKS pairs will be identical, because of symmetry properties of the

matrix-element and of the phase-space. This implies a drastic reduction of the number

of independently terms actually needed in the computation. As an example, for the

process qq̄→ ng, only three independent contributions {(g,q), (g, q̄), (g,g)} survive.

5.2.3 Computing the cross-section

The cross-section at NLO for a generic process involving hadrons 1,2 in the initial

state, with momenta K1, K2 is

dσ12(K1,K2) =
∑

PB∈Pn

∫
dx1dx2 f

1
I1 (x1) f

2
I2(x2)dσ

n(PB,k1,k2)

+
∑

PR∈Pn+1

∫
dx1dx2 f

1
I1(x1) f

2
I2(x2)

(
dσn+1(PR,k1,k2)+dσ̄

n+1(PR,k1,k2)
)
, (5.22)

with

ki = xiKi . (5.23)
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The short-distance cross-sections dσn, dσn+1 and dσ̄n+1 have respectively an n-body,

(n+ 1)-body and degenerate (n+ 1)-body kinematics. The degenerate (n+ 1)-body

contribution comes from the remainders of the subtraction of initial-state singularities,

which are not canceled by the virtual matrix-elements, but by a redefinition of the

parton densities. Each of them is separately finite.

I turn to discuss these three contributions in the next three subsections.

In the discussion, I will assume renormalization and factorization scales fixed to the

same value µR = µF = µ.

5.2.3.1 (n+1)-body contributions

The short distance cross-sections dσn+1 in Eq. (5.22) are due to contributions of the

real-emission matrix-elements R with their phase-space singularities suitably sub-

tracted. The integration of the subtracted matrix-elements is the most involved from

the numerical point of view, and the difficulty increases with the number of external

legs, because of the proliferation of singularities. In the FKS formalism, this problem

is simplified by partitioning the phase-space in such a way that, in each of the regions

resulting from the partition, at most one soft and one collinear singularity are present.

This partition is achieved by introducing a set of positive-definite functions

Si j(P), (i, j) ∈ PFKS (P) , (5.24)

which obey the constraint

∑

(i, j)∈PFKS (P)

Si j(P) = 1 . (5.25)

Each of this function must go to zero in all singular regions of the phase-space, except

for the region which corresponds to parton i being soft or collinear to j.

Using Eq. (5.25) one can write

R(P) =
∑

(i, j)∈PFKS (P)

Si j(P)R(P) , (5.26)

where, thanks to the conditions imposed on the S-functions, each of the terms appear-

ing in the sum in the right-hand side will only be singular when i is soft or collinear

to j. Therefore, each term can be regarded as describing a production process with

the simplest possible divergence structure. Furthermore, these contributions are fully



5.2. The FKS subtraction scheme 75

independent from each other.

I turn now to provide the expression for the subtracted real-emission cross-section. To

this aim, I work in the center-of-mass of the two incoming partons

k1 =

√
s

2
(1,0,0,1), k2 =

√
s

2
(1,0,0,−1), (5.27)

and define in this frame, for each FKS pair, the variables ξi and yi j as

Ei =

√
s

2
ξi , (5.28)

~ki ·~k j =
∣∣∣∣~ki

∣∣∣∣
∣∣∣∣~k j

∣∣∣∣yi j . (5.29)

The interpretation of ξi and yi j is apparent from their definition: ξi is the rescaled

energy of the FKS parton, and yi j is the cosine of the angle between the FKS parton

and its sister. The soft and collinear singularity will correspond respectively to the

limits ξi → 0 and to yi j → 1. In these limits, the real-emission matrix-element will

diverge as

R ∼ 1

ξi
, if ξi→ 0 , R ∼ 1

1− yi j
, if yi j→ 1 . (5.30)

The (finite) (n+1)-body contributions in Eq. (5.22) can be written as

dσn+1(P) =
∑

(i, j)∈PFKS (P)

dσn+1
i j (P) , (5.31)

where

dσn+1
i j (P) =

(
1

ξi

)

c

(
1

1− yi j

)

δ

(
(1− yi j)ξ2i R(P)

)
S i j(P)

dΦn+1

ξi
. (5.32)

The (n+ 1) body phase-space can be written in terms of ξi and yi j (and an azimuthal

angle φi) as

dΦn+1 = ξidξi dyi j dϕi dΦ̃
i j
n . (5.33)

In Eq. (5.32) the singularities of the real-emission matrix-element have been regular-

ized by the plus-prescriptions defined as

∫ ξmax

0

dξi f (ξi)

(
1

ξi

)

c

=

∫ ξmax

0

dξi
f (ξi)− f (0)Θ(ξcut− ξi)

ξi
, (5.34)

∫ 1

−1
dyi jg(yi j)

(
1

1− yi j

)

δ

=

∫ 1

−1
dyi j

g(y)i j−g(1)Θ(δ−1+ yi j)
1− yi j

. (5.35)
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These plus-prescriptions will define the counterterms, as I will show in the following.

The parameters δ and ξcut define the boundaries of the singular region, i.e.the region in

which counterterms are subtracted from the real-emission matrix-element. The phys-

ical cross-section Eq. (5.22), as well as any infrared-safe observable will be strictly

independent on these parameters.

I will now turn to expand the plus-prescriptions in Eq. (5.32) using the definitions in

Eqs. (5.34) and (5.35). First, I rewrite Eq. (5.32) in a more compact form as

dσn+1
i j =

(
1

ξi

)

c

(
1

1− yi j

)

δ

Σi j

(
ξi,yi j

)
dξidyi j . (5.36)

Then, expanding the plus-prescriptions, I obtain

dσn+1
i j =

∫ ξmax

0

dξi

∫ 1

−1
dyi j

1

ξi(1− yi j)
[
Σi j(ξi,yi j)−Σi j(ξi,1)Θ(δ−1+ yi j)−

Σi j(0,yi j)Θ(ξcut − ξi)+Σi j(0,1)Θ(δ−1+ yi j)Θ(ξcut − ξi)
]
. (5.37)

After having expanded the plus-prescriptions, four terms have appeared. They are

called the “event” (Σi j(ξi,yi j)), the “collinear counterevent” (Σi j(ξi,0)), the “soft coun-

terevent” (Σi j(0,yi j)) and the “soft-collinear counterevent“ (Σi j(0,0)). If the matrix-

element has no collinear singularity (e.g. because j is massive), the corresponding

counterterms will vanish because of the damping factor (1− yi j) included in their def-
inition. Similarly in the case of no soft singularity.

I will conclude this subsection by giving the explicit form of the counterterms in term

of the matrix-elements introduced in Sec. 5.2.2. The major ingredient in all countert-

erms is the damped real-emission matrix-element

Ri j = (1− yi j)ξ2i R . (5.38)

In particular, the damping factors need to be canceled out analytically in order to

ensure the numerical stability of the computation. If {k} are the momenta for the

real-emission process P and {k̄} the corresponding (born-like) momenta for the born

process P❈i, the soft limit of the damped matrix-element is

lim
ξi→0
Ri j (P, {k}) = g2s

nB
L
+nH+2∑

p=1

nB
L
+nH+2∑

l=p

(1− yi j)ξ2i k̄p · k̄l
k̄p · ki k̄l · ki

∣∣∣∣∣∣∣
ξi=0

Bpl

(
P❈i, {k̄}

)
, (5.39)

if i is a gluon, otherwise it simply vanishes.

The eikonal factors which appear in Eq. (5.39) are finite at ξi = 0, since the factor ξ
2
i
in
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the numerator cancels with the factor resulting from E2
i
in the scalar product appearing

in the denominator. Furthermore Eq. (5.39) is also finite in the soft-collinear limit

(relevant if m j = 0), because of the cancellation of the factor 1− yi j in the numerator

with the corresponding factor appearing in the denominator when p = j or l = j. These

cancellations can be carried out analytically, assuring a stable behaviour of the soft

counterevent in the whole phase-space.

Turning to the collinear limit, relevant if mi = m j = 0 one obtains

lim
yi j→1
Ri j (P, {k}) = g2s

(1− yi j)ξ2i
ki · k j

∣∣∣∣∣∣∣
yi j=1

(5.40)

×
[
P0
I jIi⊕ j(z ji)B

(
Pi⊕ j,❈i, {k̄}

)
+Q0

I jIi⊕ j(z ji)B̃
(
Pi⊕ j,❈i, {k̄}

)]
.

In Eq. (5.40) P0
ba
is the Altarelli-Parisi splitting function [138], B̃ is the spin-connected

born, which accounts for the interferences of different polarization states of parti-

cle Ii ⊕I j and Q is the spin-correlated Altarelli-Parisi splitting kernel. The spin-

correlated part vanishes after the integration over ϕi. However, pointwise in the phase-

space it is non-zero and has to be included in order to have a proper local counterterm.

Finally z ji is the energy fraction carried by particle j

z ji =
E j

Ei +E j

. (5.41)

Again, the factor 1− yi j appearing in Eq. (5.40) cancels with the corresponding factor

appearing in the denominator ki ·k j, leading to a well-behaved expression in the whole
phase-space.

5.2.3.2 Degenerate (n+1)-body contributions

I turn now to the degenerate (n+1)-body contributions, denotedwith dσ̄n+1 in Eq. (5.22).

As said, these contributions are the remainders left by the subtraction of initial-state

collinear counterterms. In the case I am considering, the one of a hadronic collider,

two contributions have to be included, one per hadron:

dσ̄n+1(P) =
∑

(i,1)∈PFKS

dσ̄n+1
i1 (P)+

∑

(i,2)∈PFKS

dσ̄n+1
i2 (P) . (5.42)

The explicit form of dσ̄n+1
i j

, which has been derived in [129], is

dσ̄n+1
i1 (P;k1,k2) =

αs

2π
×
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×
{
P
0

I1⊕īI1(1− ξi)
[(
1

ξi

)

c

log
sδ

2µ2
+2

(
logξi

ξi

)

c

]
−P1

I1⊕īI1(1− ξi)
(
1

ξi

)

c

}

× B
(
P1⊕ī,❈ī; (1− ξi)k1,k2

)
dΦn (1− ξik1,k2)dξi . (5.43)

The expression for dσ̄n+1
i2

can be trivially derived from Eq. (5.43) by replacing 1→ 2.

The only care is that the born matrix-element and the phase space have now to be

computed with initial-state momenta (k1, (1− ξi)k2). Eq. (5.43) is valid if the PDFs

are given in the MS scheme, which is the standard choice for all modern sets. The

damped Altarelli-Parisi splitting-function Pab appear in the expressions, defined as

Pab(z, ǫ) = (1− z)Pab(z, ǫ) = P
0

ab(z, ǫ)+ ǫP
1

ab(z, ǫ)+ . . . . (5.44)

I also have introduced the distribution (defined in analogy with Eq. (5.34))

∫ ξmax

0

dξi f (ξi)

(
logξi

ξi

)

c

=

∫ ξmax

0

dξi
(
f (ξi) − f (0)Θ(ξcut− ξi)

) logξi
ξi

. (5.45)

5.2.3.3 n-body contributions

Finally, I turn to discuss the n-body cross-section, which, for clarity, can be decom-

posed into four terms

dσn = dσn
B +dσ

n
C +dσ

n
S +dσ

n
V , (5.46)

respectively, the born contribution, the integrated collinear and soft counterterms, and

the virtual contribution.

The born contribution is simply

dσn
B(P) = B(P)dΦn , P ∈ Pn , (5.47)

while the collinear and soft contributions can be written as

dσn
C(P) =

αs

2π
Q(P)B dΦn , (5.48)

dσn
S (P) =

αs

2π

nL+nH+2∑

k=1

nL+nH+2∑

l=k

Ekl(mk,ml)Bkl dΦn . (5.49)

I have introduced two functions, Q and E, which correspond to the finite part of the

integrated prefactors in Eqs. (5.40) and (5.39). Their explicit definition can be found
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in [99, 129]. Both functions depend on the parameters δ, ξcut, which have also been

used in the subtraction of the soft and collinear divergences. As said before, any

infrared-safe observable does not depend on these parameters, as the dependence from

the n-body contribution exactly compensates for the dependence from the (n+1)-body

one.

Finally, the virtual contribution is written as

dσn
V(P) =

αs

2π
V f in(P)dΦn , (5.50)

in terms of the finite part of th virtual contributionV, computed in the Conventional

Dimensional Regularization (CDR) scheme.

For what concerns the computation of V f in, after the first methods inspired by Pas-

sarino and Veltman [139], many efforts have been spent in the recent years developing

efficient numeric techniques [140–142] which have led to the construction several

codes [98, 143–146], with different degrees of automation and generality.

To conclude the discussion on the FKS subtraction scheme I just want to stress again

the fact that, once the necessary matrix-elements are provided, it can be applied to any

process. A completely automatic implementation of this method (the only missing

ingredient being V f in), based on MadGraph [74, 109], is available and is dubbed

MadFKS [99].

5.3 Parton shower Monte Carlos

This section will be devoted to the presentation of PSMCs. Their role, as said in the

introduction, is to fill the gap between parton-level events, where only a few final state

partons, those taking part to the hard scattering, are taken into account, and what one

observes at hadron-colliders, i.e.final states with thousands of hadrons. This is done

in two stages: in the first stage, the shower, the PSMC includes extra QCD radiation

by generating extra partons from those taking part to the hard scattering, until the non-

perturbative QCD regime is reached. In the second stage, the hadronization, partons

generated by the shower are clustered into color singlets forming the hadrons.

Sec. 5.3.1 and Sec. 5.3.2 will be dedicated respectively to the shower and hadroniza-

tion stage. In Sec. 5.3.3 I will present the most widely used PSMCs.
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5.3.1 Shower

During the shower the partons taking part to the hard scattering are evolved from the

hard scattering scale down to a scale at which QCD is no longer perturbative. The

dominant evolution comes from the emission of soft/collinear extra partons. Exploit-

ing the collinear factorization, that will be presented in Sec. 5.3.1.1, it is possible to

define a branching probability encoded by the so-called Sudakov form factor, as will

be explained in Sec. 5.3.1.2. Using this branching probability, extra parton emission

can be simulated. A slightly different approach has to be used for partons in the initial

state, and this issue will be explained in Sec. 5.3.1.3.

5.3.1.1 The collinear factorization

As said, the first action of a PSMC is to generate extra partons from those present at

the matrix-element level. This is achieved by exploiting the collinear factorization.

Consider a scattering process with n final state legs, described by the matrix-element

Mn, and the same process with one extra parton, described byMn+1. If in the latter

the angle θab between two partons a, b becomes small, then it factorizes as

lim
θab→0

|Mn+1|2 dΦn+1 = |Mn|2 dΦn
dt

t
dz

dφ

2π

αs

2π
Pc→ab(z) . (5.51)

The function Pc→ab(z) is the (unregularized) Altarelli-Parisi splitting kernel [138]. It

is universal and only depends on the identity (spin and color) of the particles a,b,c (in

Sec. 5.2 a different notation has been used).

t is called the “evolution variable”. While in this example it identifies with the vir-

tuality p2c = (pa + pb)
2 of the particle c, in general other choices, such as the relative

transverse momentum of particles a and b, or their angle, are possible. This freedom

of choice is due to the fact that in the collinear limit one has

dp2c

p2c
=
dp2

T

p2
T

=
dE2θ2

ab

E2θ2
ab

. (5.52)

The variable z is called the “energy variable”, and represent the relative energy of

particle b with respect to c:

z =
Eb

Ec

. (5.53)

The z→ 1 limit corresponds to emitting particle a with very low energy, and is there-

fore called the soft limit.
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Mn

a

c b
d

e

θ1

θ2

Figure 5.3.1: Sketch of the two extra emission configuration considered in Eq. (5.54)

This relation between n and n+1 final state particles can be easily extended to multiple

emissions. Consider for instance the case of n+2 final particles sketched in Fig. 5.3.1.

One has:

lim
θab≫θde→0

|Mn+2|2 dΦn+2 = |Mn|2 dΦn

dtab

tab
dzab

dφab

2π

αs

2π
Pc→ab(zab) ×

dtde

tde
dzde

dφde

2π

αs

2π
Pb→de(zde) . (5.54)

This means that one can approximate via m multiple splittings the leading behaviour

of the matrix elementMn+m starting fromMn. The regime of validity of this approxi-

mation is when each of the splittings is in the collinear limit, which turns into asking

the following order for the angles θi of the i-th splitting:

θ1≫ θ2 ≫ . . .≫ θm . (5.55)

It is interesting to note that each splitting probability does not depend on the previous

history of the system, so the whole process can be simulated as a Markov chain.

The angular ordering condition in Eq. (5.55) comes from the fact that the leading

contribution to the n+m-body cross-section comes from

σn+m ≃ σnα
m
s

∫ Q2

Q2
0

dt1

t1

∫ t1

Q2
0

dt2

t2
. . .

∫ tm−1

Q2
0

dtm

tm
= σnα

m
s log

m


Q2

Q2
0

 . (5.56)

Where Q0 is an infrared cutoff to separate perturbative and non-perturbative regime.

As log
(
Q2

Q2
0

)
can be large, the perturbative expansion in αs breaks down. Eq. (5.56)

shows that a PSMC can reproduce the leading-logarithmic (LL) behaviour of the total
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m+n rate.

The so-called parton shower is indeed the branching sequence from a given leg, and

describes the history of that given leg, starting from the hard subprocesses down to

the non-perturbative region characterised respectively by the scale Q2 and Q2
0
. Histo-

ries from different legs, as well as subsequent emission from one leg, are completely

uncorrelated. The parton shower indeed misses all kind of interferences between the

various legs, nevertheless it can predict the leading singularity of the matrix element.

Missing the interferences also means missing the exact description of the color flow

between the QCD particles. However, looking at the process from the point of view

of the color flow can help in justifying the approach of the parton shower. Since inter-

ferences are always suppressed by some power of the number of colors Nc, neglecting

them can be understood as working in the large Nc limit.

I turn now to a more rigorous definition of the splitting probability, which is needed

since Eqs. (5.51)–(5.54) are divergent in the collinear limit.

5.3.1.2 The Sudakov form factor

In this section, I try to give a well-defined meaning to the concept of splitting probabi-

lity. This is needed as one has to perform the parton shower as a subsequent sequence

of splitting, starting from the hard scale down to the non-perturbative cutoff.

I start defining the probability dp for the splitting of parton c into partons a,b, between

the two scales t and t+dt, knowing that no emission has occurred before. This is given

by:

dp(t) =
dt

t

∫
dz

dφ

2π

αs

2π
Pc→ab(z) . (5.57)

If now one has to define the probability ∆(Q2, t) that no emission occurred from the

scale Q2 down to the scale t, he can proceed in the following way: divide the interval

from t to Q2 into many subintervals dtk, for each of them consider the probability of

non-splitting, and take the product of all this terms:

∆(Q2, t) =
∏

k

(
1− dtk

tk

∫
dz

dφ

2π

αs

2π
Pc→ab(z)

)
=

= exp

−
∫ Q2

t

dt′

t′
dz

dφ

2π

αs

2π
Pc→ab(z)

 =

= exp

−
∫ Q2

t

dp(t′)

 . (5.58)
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The probability ∆(Q2, t) is commonly known as the “Sudakov form factor” or simply

Sudakov.

As said before, the shower just associates an history to a given event, it does not

change the probability that the event occurs. The property of unitarity is therefore

mandatory for a parton shower, and I will now prove that it holds for the definition of

probability given in Eq. (5.58). Unitarity can be reformulated as asking that

∞∑

k=0

Pk = 1 , (5.59)

where Pk is the probability of having exactly k splittings between the hard scale and

the cutoff. To compute it, one can start from the probability dPk of having k splittings,

the first at scale t1, the second at scale t2 and so on, which is simply the product of the

probability for each splitting:

dPk = ∆
(
Q2, t1

)
dp(t1) ∆

(
t1, t2

)
dp(t2) . . . ∆

(
tk−1, tk

)
dp(tk) ∆

(
tk,Q

2
0

)
. (5.60)

A remarkable property of the Sudakov is that

∆(ta, tb) = ∆(ta, tc)∆(tc, tb) , (5.61)

for ta > tc > tb. This can be understood as computing the probability of not splitting

between a and b as the product of the probabilities of not splitting between a and c

and between c and b. Using this property Eq. (5.60) simply collapses to

dPk = ∆
(
Q2,Q2

0

) k∏

i=1

dp(ti)θ(ti−1 − ti) , (5.62)

from which the probability Pk of having k splittings regardless of their scale can be

obtained integrating over ti as

Pk =

∫
dt1 . . .dtkdPk = ∆

(
Q2,Q2

0

) 1

k!


∫ Q2

Q2
0

dp(t)


k

. (5.63)

The probability of having any number of splitting is, as said, the sum of Pk, which can

be easily computed as

∑

k

Pk = ∆
(
Q2,Q2

0

)∑

k

1

k!


∫ Q2

Q2
0

dp(t)


k

= ∆
(
Q2,Q2

0

)
exp


∫ Q2

Q2
0

dp(t)

 = 1, (5.64)
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which terminates the proof.

The discussion about the Sudakov form factor up to this point has been not formally

complete, as the infra-red singularity of the unregularizedAltarelli-Parisi splitting ker-

nels at z = 1 needs to be removed for the forms factors to be defined. So far the main

focus has been given to extra emission matrix elements, which are know to be di-

vergent when the extra parton becomes soft or collinear to any of the others. This

divergence cancels with the corresponding one in the matrix element where the extra

parton is virtual.

In fact the Sudakov encloses both the approximated real-emission and the approxi-

mated virtual matrix elements, and the cancellation of divergences between the two

reflects into the unitarity of the shower.

In practice the z integration range is restricted from [0,1] to [zmin,zmax] with 0 < zmin <

zmax < 1, where the new integration bounds depend on the infra-red cutoff Q0, for a

virtuality-ordered shower as

zmin = 1− zmax =
1

2

1−

√

1−4
Q2
0

t

 . (5.65)

A similar relation holds also for pT - and angular-ordered showers.

The t dependence of the integration bounds is responsible for the inclusion of the soft

logarithms on top of the collinear ones.

5.3.1.3 Initial state radiation

The discussion which has been developed so far has taken care of the extra radiation

coming from final state legs. At a hadron collider such as the Tevatron or the LHC,

the problem of including extra radiation coming from initial state legs also appears.

The inclusion of final state radiation, carried out so far, proceeds forward in time,

evolving the hard subprocess down to the cutoff scale. Using the same approach also

for initial state radiation would mean to evolve from the proton to the hard scale, with

the result of an extremely poor efficiency in getting the right kinematic configura-

tion. The way initial state radiation is implemented in a PSMC is instead to evolve

backward in time, from the hard kinematic back to the colliding hadrons. This is per-

formed by applying the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equa-

tion [138, 147–149] to evolve backward the parton distributions. I will now derive
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these equations in a way which helps in applying them to the shower context.

The DGLAP equations regulate the evolution of parton distribution functions (PDFs)

Q2
0 Q2t t + dt

0
1

z
z
+
d
z

Figure 5.3.2: Representation of parton branching by paths in the (t,z) plane.

with respect to the process scale. The change of the PDF fa(z, t) when t is increased

between t and t+dt can be pictorially represented as in Fig. 5.3.2. Starting from a sin-

gle parton which carries the full momentum of the proton (hence z = 1) at the proton

scale, the probability that its evolution stops at the point (z, t) in the plane, is given by

the difference between the number (or probability) of evolutions arriving at this point

and the number of evolutions that from this point start. The number of evolutions

arriving at the point can be understood as the probability of having a parent parton b

with any energy z′ > z and the probability to branch into a in the interval between t

and t+dt:

d f ina (z, t) =
dt

t

∑

bc

∫ 1

z

dz′
∫ 1

0

dw fb(z
′, t)

αs

2π
Pb→ac(w)δ(z−wz′) =

=
dt

t

∑

bc

∫ 1

0

dw

w
fb

(
z

w
, t
)
αs

2π
Pb→ac(w) . (5.66)

Similarly, the number of evolutions starting from (z, t) is the probability to find a parton

b at (z, t) times the probabilities that it branches to a parton a with any energy fraction

z′ < z:

d f outa (z, t) =
dt

t

∑

bc

fb(z, t)

∫ z

0

dz′
∫ 1

0

dw
αs

2π
Pb→ac(w)δ(z

′−wz) =
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=
dt

t

∑

bc

fb(z, t)

∫ 1

0

dw
αs

2π
Pb→ac(w) . (5.67)

Therefore the variation in fa is

d fa(z, t) = d f ina (z, t)−d f outa (z, t) =

=
dt

t

∑

bc

∫ 1

0

dw
αs

2π
Pb→ac(w)

(
1

w
fb

(
z

w
, t
)
− fb (z, t)

)
=

=
dt

t

∑

bc

∫ 1

0

dw

w

αs

2π
Pb→ac(w)|+ fb

(
z

w
, t
)
, (5.68)

from which one can define the (azimuth-averaged) probability dp̂(t) of a backward

emission as

dp̂(t,z) =
d fa(z, t)

fa(z, t)
=
dt

t

∑

bc

∫ 1

0

dw

w

αs

2π
Pb→ac(w)|+

fb
(
z
w
, t
)

fa(z, t)
. (5.69)

Analogously to what has been done for final state radiation, the initial state Sudakov

is defined as

∆̂(Q2, t,z) = exp

−
∫ Q2

t

dp̂(t)

 . (5.70)

5.3.2 Hadronization

I will now briefly cover how hadronization is performed. A detailed explanation of the

underlying non-perturbative physics exceeds the aims of this thesis, and can be found

e.g. in [150, 151].

When all the partons generated by the shower are characterized by a scale below the

cutoff Q0 the shower stops, and these partons are put on their mass-shell. In order

to give a picture of the event as close as possible as what happens in nature, these

partons need to be combined into color-singlet hadrons. The physics of hadronization

is highly non-perturbative, and to build a model to explain this phenomenon is very

delicate. Fortunately, some features of perturbative QCD come to help in this task.

The most important of these features is the color-preconfinment. In the case of

angular-ordered showers (i.e.showers in which the evolution variable t is related to the

angle of the splitting), this is most apparent: consider a quark from the hard process

which radiates gluons. Angular ordering will enforce these gluons to be close in the

phase space. Furthermore, as shown in Fig. 5.3.3 two subsequently emitted gluon can
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Figure 5.3.3: Color flow in the emission of multiple gluons off a quark line. Two subsequent

gluons can always form a color-singlet, represented as a blob in the picture.

always form a color singlet. This leads naturally to the clustering in phase-space of

color-singlet parton pairs, strongly suppressing long-range color correlations. This

approach to hadronization is known as the “cluster model”.

An alternative approach is inspired from the low-energy behaviour of QCD. At low

energies the color confinement potential of a qq̄ pair grows linearly with their distance,

and can be modeled with a sting of uniform tension. Gluons which color-connects the

two quaks can be seen as excitations (or kinks) of the string. Such a string can reach

a more energetically favorable condition if it breaks by the creation of a new qq̄ pair.

Once all strings have been created, hadrons are created starting from them as clusters.

The two approaches here discussed, the cluster and the string model, are the ones

mostly used in the available PSMCs.

5.3.3 Commonly used PSMCs

I will conclude the section on PSMCs by quickly presenting the most known imple-

mentations.

5.3.3.1 HERWIG

The two versions of the HERWIG [152] PSMC, HERWIG6 [69, 70] in Fortran and

the more modern HERWIG++ [153] in c++ are an example of angular-ordered show-

ers, where subsequent emissions are characterized by smaller and smaller angles.

In an angular-ordered PSMC the parton shower, which does not retain all the matrix-

element correlations, cannot populate the full phase-space. Some regions of the phase
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space, called dead-zones, are left without radiation. This enforces the shower to act

only in the region where it is supposed to be reliable, which is the region controlled

by the collinear approximation. The cluster model is used for the hadronization.

5.3.3.2 PYTHIA

As happens for HERWIG, two versions the Pythia PSMC, in Fortran and c++ are

available. The first is known as Pythia6 [150], the second as Pythia8 [154]. Pythia6

allows both for virtuality and pT ordered showers, while Pythia8 is only pT ordered.

Using such variables, on one hand gives a more physical interpretation of the scale

of each splitting, but on the other hand does not guarantee any longer the property

of having decreasing angles. Angular ordering is restored in Pythia6 by rejecting the

events that do not obey it. In Pythia8 no rejection is done, since angular ordering

violation effects are very small for a pT ordered shower. Pythia showers typically

populate all the phase space without dead-zones.

In both versions the string model is used for hadronization.

5.3.3.3 SHERPA

The last PSMC that I will discuss is Sherpa [155]. While HERWIG and Pythia are

based on the collinear picture to generate the shower which is done by subsequential

1→ 2 splittings, Sherpa is based on the soft picure. While in the collinear picture

the radiated parton only knows about one other particle (the one which it has to be

collinear to), a soft particle k need to know all the two pair i and j which it can

connect. This is the dipole picture [127, 128], which approximate the extra emission

matrix element by a sum of dipoles Di j,k in the leading color approximation:

|Mn+1|2 ≃
∑

i j

Di j,k = |Mn|2
∑

i j

αs

pi · p j

Ki j,k , (5.71)

where Ki j,k is in the soft limit of what the Altarelli-Parisi splitting functions are in the

collinear one.

The soft limit has the advantage of automatically ensuring the angular ordering.

Each of these splitting is now a 2→ 3 splitting, driven by a Sudakov of the form

∆
(
t,Q2

)
= exp

−
∫ Q2

t

dt

t

∫
dzαsKi j,k

 . (5.72)

Hadronization is carried out in the cluster model.
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5.4 Matching NLO computations with parton show-

ers

In the previous section I introduced PSMCs and briefly explained how they work,

adding extra emissions to the matrix-element exploiting the collinear factorization.

However in general they fail in describing correctly extra hard emissions, for which

the collinear factorization clearly breaks down; furthermore, the accuracy of observ-

ables is quite poor, since the events that are passed to the shower are computed at LO.

The first of these two limitations is solved by including higher multiplicity matrix-

elements in the simulation, in order to have the exact description of the first extra

emissions, with a suitable prescription to avoid double counting [156, 157].

The second limitation is solved by showering events generated at NLO accuracy. This

is not as simple as it may seem for at least two reasons: since the real-emission matrix-

element of a NLO calculation diverges, naive (unweighted) event generation is impos-

sible; moreover, one must avoid double counting the emission generated by the shower

and the one included by the real-emission.

This section will be devoted to describe how NLO computations can be matched to a

PSMC in two different approaches, MC@NLO [135] and POWHEG [133,134]. I will

introduce the two approaches respectively in Sec. 5.4.1 and Sec. 5.4.2. A more de-

tailed description and a general comparison of the two methods can be found in [158].

5.4.1 MC@NLO

In order to understand how NLO corrections and parton showers can be matched in

the MC@NLO framework, I start from the definition of the differential LO, NLO and

shower (MC) cross-section:

dσLO = dΦnB , (5.73)

dσNLO = dΦn (B+V+dΦ1R) , (5.74)

dσMC = dΦnBInMC(O)dO , (5.75)

whereB,V and R are respectively the Born, virtual and real-emission matrix-element

(I assume n final state legs for the Born matrix-element), In
MC

(O) is the spectrum for

observable O generated by the parton shower starting from n final state particles.
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One may be tempted to simply extend Eq. (5.77) to NLO, by writing

dσMC@NLO =
[
(B+V) dΦn I

n
MC(O)+R dΦn dΦ1 I

n+1
MC (O)

]
dO . (5.76)

This naive definition is not correct for two reasons: the first is that the real-emission

and the virtual matrix-element are divergent, therefore the n and n+ 1 body configu-

rations will not be finite. This could be regulated by an infrared cutoff, however the

generation of unweighted event will be extremely inefficient, and, at the end of the

day, one should prove the independence of results upon this cutoff. The second reason

is that some configurations in Eq. (5.76) are double counted.

Both these issues can be cured by modifying Eq. (5.76) introducing the so-called

Monte Carlo counterterms MC:

dσMC@NLO

dO
=

(
B+V+

∫
dΦ1MC

)
dΦn I

n
MC(O)+ (R−MC)dΦn dΦ1 I

n+1
MC (O) .

(5.77)

The Monte Carlo counterterm is defined as the cross-section for the first emission in

the parton shower. Its expression is

MC =

∣∣∣∣∣∣∣∣

∂
(
tMC ,zMC ,φ

)

∂Φ1

∣∣∣∣∣∣∣∣
1

tMC

αs

2π

1

2π
P
(
zMC

)
B . (5.78)

MC has the remarkable property of having the same soft and collinear singularities

as R, so it also acts as a local counterterm, allowing for numerical integration and for

the generation of unweighted events. It is process independent, only depending on the

chosen PSMC.

Finally it can be proven that Eq. (5.77) avoids double counting, and is correctly nor-

malized to the NLO rate.

To begin the proof, I expand the shower operator In
MC

(O) considering only the case of

0 or 1 emission (see also Eq. (5.62)):

InMC(O) = ∆+∆dΦ1
MC

B , (5.79)

where the arguments in the Sudakov have been dropped for simplicity. The Sudakov

form factor Eq. (5.58) written in terms of MC has the simple expression

∆
(
Q2,Q2

0

)
= exp

(
−
∫

dΦ1
MC

B

)
, (5.80)
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so that the expansion of In
MC

(O) up to order αs reads

InMC(O) = 1−
∫

dΦ1
MC

B +dΦ1
MC

B . (5.81)

It is understood that MC, as well asV and R, has one extra power of αs with respect

to B.
To conclude the proof, I simply insert the expansion Eq. (5.81) into Eq. (5.77), keeping

only the terms which are genuine NLO:

dσMC@NLO

dO
= B

(
1−

∫
dΦ1

MC

B +dΦ1
MC

B

)
dΦn+V dΦn+

∫
dΦ1 MC dΦn

+ R dΦn dΦ1−MC dΦn dΦ1 =

= B dΦn+V dΦn+R dΦn dΦ1 , (5.82)

which completes the proof.

The MC@NLO matching described so far reproduces the shape of the chosen PSMC

in the soft-collinear region, where R−MC is very small. In this region the normal-

ization takes into account also the contribution from the virtuals. In the hard region,

where MC is zero, all the observables are dominated by R, as they should.

In practice, events with n and n+ 1 final state partons, respectively called S and H

events, are generated according to Eq. (5.77). Because of the inclusion of the MC

counterterms, both samples correspond to a finite cross-section.

Given the fact that the difference R−MC can be negative, the events are unweighted

up to the sign. To deal with this, one has to compute the integrals of the S andH contri-

butions, and those of their absolute value. If I call I the integrands and J their absolute

values, then events are distributed according to J, with the sign of their weight accord-

ing to the sign of I.

The generation of negative weights is not a problem as long as enough events are gen-

erated to neglect statistical fluctuations. Indeed, all distributions are positively definite

as they should, apart from fluctuations. Negative weight only affect the efficiency, de-

fined as the number of events to be generated in order to get smooth histograms.

MC@NLO, which is born as a library of processes coded by hand [159], counts now

some 30 processes matched to HERWIG6 and HERWIG++ and a few matched to

Pythia6 Q2-ordered [160].
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Quite recently, aMC@NLO [68], has come as the automatic version of MC@NLO,

where automaticmeans that, given a process as input, the code to generate events in the

MC@NLOframework is written on the fly. aMC@NLO relies on MadGraph [74,161]

for the matrix element generation, MadLoop [98], which is based on the OPP [140]

method as implemented in CutTools [162] to compute virtual matrix-elements, and

MadFKS [99] for the computation of the counterterms and for the phase-space inte-

gration.

5.4.2 POWHEG

POWHEG is a NLO matching framework alternative to MC@NLO, with the distin-

guishing feature of having only positive-definite weights. While MC@NLO can be

seen as subtracting from the real-emission matrix element the first emission that would

be generated by the shower before showering the event, POWHEG generates itself the

hardest emission (with the largest pT ) with its own Sudakov, then it passes the event

to the shower.

Using the notation of Sec. 5.4.1, the hardest-emission LO cross-section is defined as

dσLO = dΦnB
(
∆
(
Q2,Q2

0

)
+∆

(
Q2, t

)
MC

)
, (5.83)

and corresponds to the probability of having zero emission, or an emission at scale t

following by any number of emissions at lower scale.

A naive extension at NLO of Eq. (5.83) would be

dσPOWHEG = dΦn

(
B+V+

∫
dΦ1R

) (
∆
(
Q2,Q2

0

)
+∆

(
Q2, t

) MC

B

)
, (5.84)

but it is found not to be correct, as it does not reproduce the NLO expansion (last

line of Eq. (5.82)) once expanded at O(αs). It is easy to see that the mismatch can be

traced back to terms proportional to R−MC, which suggests to introduce a modified

Sudakov factor with the replacement MC→R

∆̃
(
Q2,Q2

0

)
= exp

(
−
∫

dΦ1
R
B

)
, (5.85)

corresponding to a modified splitting probability

dp̃ = dΦ1
R
B . (5.86)
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Indeed this replacement correctly reproduces the NLO expansion at O(αs).

The POWHEG cross-section is thus defined as

dσPOWHEG = dΦn

(
B+V+

∫
dΦ1R

) (
∆̃
(
Q2,Q2

0

)
+ ∆̃

(
Q2, t

) R
B

)
, (5.87)

As the real-emission matrix element does not depend on the chosen parton-shower,

events generated by POWHEG can be passed to any PSMC, unlike those generated

by MC@NLO. However a definition of the Sudakov such as that in Eq. (5.85) ex-

ponentiates also the finite part of the real-emission matrix-element, introducing extra

higher-order contributions than those generated by the shower. Such contributions,

which, are formally higher order, can affect observables in certain kinematic configu-

rations [163].

This issue is cured by damping the real-matrix element in the Sudakov with the func-

tion

f (p2T ) =
h2

h2+ p2
T

. (5.88)

The limit h→∞ corresponds to no damping, and is the default setting in POWHEG.

POWHEG is distributed as a process library, giving also a framework to allow the

user to implement new processes, the so-called POWHEG-box [164]. Several level

of automation of this framework exist: POWHEL is an interface of POWHEG and

Helac-NLO [165], which provides the necessary contributions to automatically com-

pute a NLO cross-section. An interface exploiting MadFKS also exists [166], which

however needs the user to link virtual matrix-elements from external codes.

5.5 NLO predictions for VBF matched with parton

shower

In this section I will present predictions for VBF observables obtained in theMC@NLO

(using the automatic aMC@NLO version) and POWHEG frameworks, for a 125GeV

SM Higgs boson at the
√
S = 8TeV LHC. As the matching with the parton shower is

performed differently in the two approach, this comparison helps in better understand-

ing the possible systematics. Furthermore, for both POWHEG and aMC@NLO I will

present results obtained by the matching with HERWIG6, virtuality ordered Pythia6

and HERWIG++.

Before showing the results in Sec. 5.5.2, I will discuss in Sec. 5.5.1 the setup for

POWHEG and aMC@NLO and the cuts used in the analyse.
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5.5.1 Setup: parameters and cuts

I will now list the input parameters and cuts used in this compuatation. The values

for the SM parameters used in the computation are those recommended by the Higgs

Cross-Section Working Group (HXSWG) [35]:

MW = 80.398GeV, ΓW = 2.089GeV ,

MZ = 91.188GeV, ΓZ = 2.496GeV ,

GF = 1.166×10−5GeV−2 . (5.89)

Results are computed using the MSTW 2008 NLO pdf set [71], with errors estimated

at 68% confidence level. Renormalization and factorization scales are fixed to the W

mass. The choice of a dynamic scale choice will be discussed in App. C, and will be

shown not to have any drastic effect on all observables.

Parton level events are generated without imposing cuts3, and each sample consists

of one million events. After shower and hadronization, typical cuts used in experi-

mental VBF analyses are applied: hadrons are clustered into jets by using the anti-kT
algorithm [75] as implemented in FastJet [76], with ∆R = 0.5. At least two jets are

required, with pT > 20GeV and |y| < 4.5. Furthermore, the two hardest jets (i.e.the

two jets with the largest transverse momenta) passing these criteria are asked to have

an invariant mass m( j1, j2) > 600GeV and a rapidity separation |y( j1)− y( j2)| > 4.

The generation of VBF in aMC@NLO (in the five-flavour scheme) is simply done by

typing the following lines in the aMC@NLO shell:

import model loop_sm-no_b_mass

define p = g u c d s b u~ c~ d~ s~ b~

define p = j

generate p p > h j j $$ w+ w- z [QCD]

Note the $$ sign used not to include diagrams with a W or a Z in the s-channel.

The aMC@NLO event files store additional informations in order to obtain scale and

PDF uncertainties via reweighting, i.e.without the need of extra runs [167].

For what concerns POWHEG, the original computation of VBF [168] has been used,

as it is publicly available in the POWHEG-box.

3In order not to have numerical instabilities, at least two jets with pT > 2GeV are required in the

aMC@NLO samples. This cut is however completely irrelevant for what concerns distributions and to-

tal rates.
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In all cases, no simulation of the underlying event is performed by the PSMC.

5.5.2 Results

I will now present the results obtained for various kinematic observables. For sim-

plicity, the same format is kept for all figures: in the upper frame of each figure, the

three curves that correspond to the aMC@NLO samples are shown: black solid for

HERWIG6, red dashed for Pythia6 and blue dot-dashed for HERWIG++. Below the

plots, the first and second insets shows the ratios for the aMC@NLO and POWHEG

samples over the fixed order NLO, in order to assess the impact of the different PSMC

on the observable (same pattern as the main frame). The third inset shows the scales

(red dashed) and PDF (black solid) uncertainty band, computed from the aMC@NLO

plus HERWIG6 sample. Scale uncertainties are computed varying independently the

factorization and renormalization scale in the range

MW

2
< µR,µF < 2MW , (5.90)

while PDF errors are computedwith the Hessian method [100], as it is the prescription

for the MSTW set.

Most of the differences which will appear in the first and second insets are mainly

due to the impact of the VBF cuts on the different PSMCs. To better understand this

effect, in Tab. 5.5.1 I quote the ratios of the matched cross-section after cuts and the

fixed order NLO one (σNLO
CUTS

= 0.388(2)pb). It can be highlighted that these ratios are

all smaller than one, as typically parton showers tend to spread the radiation hardness

in the phase space, therefore slightly more events will fail the cuts. On top of this, there

is a clear pattern σHW6 > σPY6 > σHW++ both for POWHEG and aMC@NLO. These

differences are quite large, specially if compared with the size of NLO theoretical

uncertainties and/or with the NNLO effects on the total cross section. They have been

found to depend on the way extra radiation is generated by the shower, in particular on

how much of this radiation is lost because it falls outside the jet “cone”. Furthermore,

they are found to depend also on the details of the hadronization model. A more

inclusive jet definition, with larger jet radii, reduces these differences, as it is explained

in App. D.

In Fig. 5.5.4, Fig. 5.5.5 and Fig. 5.5.6 I show the transverse momentum and rapidity

respectively of the Higgs boson, and of the first and second jet. As all these observable

are computed at NLO accuracy, I expect general agreement among the two different

implementations of the parton shower matching as well as among different PSMCs.

Indeed, all NLO-matched curves are fairly compatible with each other once the ratios

in table Tab. 5.5.1 and the theoretical uncertainties in the lower insets are taken into
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HERWIG6 Pythia6 HERWIG++

aMC@NLO 0.93 0.89 0.83

POWHEG 0.92 0.86 0.83

Table 5.5.1: Ratios of matched NLO+PSMCs and fixed order NLO cross-sections in the

aMC@NLO and POWHEG formalism.

account. The comparison with the fixed-order NLO prediction, on top of the overall

normalisation effect already shown in table 5.5.1, displays a consistent action of the

shower in affecting the jet spectra, an effect which is increasingly important as one

moves downwards in the jet hierarchy (i.e. from the hardest to the softest jets); in

fact this trend will become even more evident in the case of the third jet (see later).

As a consequence of the recoil against the shower-enriched jet activity, NLO-matched

curves display harder and more central Higgs-boson distributions. For the observables

shown in these figures, PDF and scale uncertainties are generally small (typically

of the order of ±3% to ±5%), and fairly constant, with only mild increases at large

transverse momenta.

Similar consideration can be done for the azimuthal separation between the two tag-

ging jets, shown in the top plot of Fig. 5.5.7, which also show excellent agreement

between fixed order ad matched computations. This is extremely comforting, since

this observable is very sensitive to the Higgs boson properties, such as spin and parity

and therefore any theoretical uncertainty can reflect on the Higgs properties determi-

nation [169–172].

Shower effects are more important for observables such as the invariant mass or the

rapidity separation of the two hardest jets. These observable, shown in Fig. 5.5.8 can

probe extreme kinematic configurations, where the two jets lie at very large rapidities

in opposite hemispheres. As the energy of a (massless) parton is written in terms of

its pT and rapidity as4

E = pT coshy , (5.91)

a parton at the edge of the pT and rapidity region allowed by the cuts will have an

energy E ≃ 1TeV. Therefore such partons at large rapidity will typically have a trans-
verse momentum just above the cut, and, because of this, they will be very sensitive

to shower effects. This is reflected in the quite large deficit (20-30 %) at large invari-

ant mass and rapidity separation of the matched curves with respect to the fixed order

NLO one. In the same region, it is possible to see the theoretical uncertainties which

start growing, in particular at large rapidity difference. For the PDFs this corresponds

4This expression holds also for massive particles, if one replaces pT → mT =

√
p2
T
+m2.



5.5. NLO predictions for VBF matched with parton shower 97

to the larger uncertainty at x ∼ 1, whereas for the scale uncertainty this can be under-

stood as the inadequacy of the choice µR,F = MW in a region dominated by radiation

just above the 20GeV cut. Indeed, a dynamic scale choice (see App. C) cures the

growth of the scale uncertainty band, without affecting the central value.

Observables related to the third jet are more sensitive to the different matching pro-

cedures and to the effect of parton showers, because their description at the matrix-

element level is only LO. In the bottom plot of Fig. 5.5.7 the exclusive jet multiplicity

is shown. While the two-jet bin reflects the ratios in Tab. 5.5.1, the three-jet bin

shows larger deviations, with POWHEG predicting less events than aMC@NLO. The

deficit with respect to the fixed-order result in this bin ranges from 15% to 20% for

aMC@NLO, whereas it is larger, 30% or more, for POWHEG, irrespectively of the

PSMC employed. This indicates that such an effect is mainly a matching systematics

rather than being induced by different shower models. It has to be stressed, however,

that the POWHEG and aMC@NLO predictions are still compatible within scale un-

certainties, which for the 3-jet bin are about ±10%, consistently with the LO precision

of this observable. From the 4-jet bin onwards, the description is completely driven

by the leading-logarithmic (LL) accuracy of the showers and by the tunes employed,

which translates in large differences among the various generators. For such jet mul-

tiplicities, theoretical-uncertainty bands are completely unrepresentative. The fixed

order prediction for these bins is zero.

The 3-jet-bin pattern described above determines the normalisation of the third-jet

transverse-momentum and rapidity distributions, shown in figure Fig. 5.5.9. These

variables can be significantly affected by the different radiation produced by the PSMC’s.

In particular the aMC@NLO results, which are quite close to the pure NLO on av-

erage, display a ±15% dependence on the shower adopted. Conversely, the three

POWHEG predictions are slightly closer to each other; we reckon that this is a conse-

quence of the hardest emission being generated in this formalism by a Sudakov which

is independent of the actual PSMC employed, as already mentioned in the introduc-

tion. The POWHEG curves show a 30%-deficit with respect to the pure NLO, and

are more central and softer than the aMC@NLO ones. Scale uncertainties are again

compatible with the LO nature of these observables, of the order of ±10% in the whole

rapidity range, and growing from ±10% to ±20% with transverse momentum.

Before concluding this section, one more set of observables has to be considered.

Because of the peculiar radiation pattern of VBF, which prefers radiation far from

the central region, one way to reduce the contamination coming from background

processes as well as from other production channels (e.g. gluon fusion) is to reject the

event if an extra jet, called veto-jet, is found within the two hardest jets:

min(y1,y2) < yveto <max(y1,y2) . (5.92)
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The predictions for the transverse momentum and rapidity of the veto jet are shown

in figure Fig. 5.5.10. The definition in equation (5.92) implies that the more central

the third jet, the larger the probability that it be the veto jet. Since POWHEG predicts

a more central third jet with respect to aMC@NLO, the veto condition has the effect

that the two predictions for the veto jet are slightly closer to each other than for the

third jet. aMC@NLO yields visibly less central distributions, predicting larger rates

(up to 20% to 30%) with respect to the pure NLO at small transverse momentum and

large rapidity. The POWHEG predictions for the transverse momentum are softer than

aMC@NLO (with the exception of the matching to Pythia6, where shapes are simi-

lar), while rapidities are more central, with 20%- to 30%-discrepancies with respect

to the pure NLO at the edges of the spectra. As was the case for the third-hardest jet,

observables related to the veto jet are described only at LO accuracy, and affected by

large uncertainties, roughly ±15%.

5.6 Conclusion and outlook

In this chapter I have presented the results for VBF at next-to-leading order accuracy,

matched with parton shower. After having presented the principles underlying the

way parton showers work, I have shown the problems that arise when they are applied

to NLO computations. To solve these problems, two matching schemes are known,

MC@NLO and POWHEG, and have been presented.

I continued the chapter showing predictions for several VBF observables, obtained

using different parton-shower Monte-Carlos. I have shown that there is a non-trivial

interplay between the shower and hadronization details and the cuts applied to the

events, which can be seen in the O(5−10%) differences in the rate after cuts obtained

with different PSMCs. The proper way these differences have to be considered, since

they cannot be simply estimated via scale variations, may be the subject for further

studies. Once such differences are taken into account, predictions for observables de-

scribed with NLO accuracy at the parton level display small theoretical uncertainties,

up to ±5%, and show a good agreement between the two matching schemes. Differ-

ences with respect to the pure-NLO predictions result from the action of the shower

on the jet activity of the events. For quantities described with LO precision, theoret-

ical uncertainties are consistently larger, of the order of ±10% to ±15%, as well as

the discrepancy between the two matching prescriptions, with aMC@NLO generally

closer to the fixed-order NLO than POWHEG; in particular there is a visible effect in

the observables related to the third jet. Still, all results are largely compatible once

theoretical error bands are taken into account.
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In order to improve the description of these observables, one should either consider

VBF + 1 jet at NLO, which is known at fixed order [93], or, better, generate an Fx-Fx

matched [173] event sample including both 0 and 1 extra-jet.
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Figure 5.5.4: Higgs boson transverse momentum (top) and rapidity (bottom) distributions for

VBF. The main frame shows the aMC@NLO samples, matched with HERWIG6 (black solid),

virtuality-ordered Pythia6 (red dashed) and HERWIG++ (blue dot-dashed). The first (second)

inset shows the ratios of the aMC@NLO (POWHEG) distributions over the fixed-order NLO

one, with the same color pattern as the main frame. The third inset shows scale (red-dashed) and

PDF uncertainties (black solid) computed from the aMC@NLO + HERWIG6 sample. Scale

uncertainties are obtaining by varying independently the renormalization and factorization scale

in the range MW/2 < µR,µF < 2MW . The MSTW 2008 NLO PDF set has been used, with error

bands corresponding to 68% confidence level.
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Figure 5.5.5: Hardest jet transverse momentum (top) and rapidity (bottom) distributions for

VBF. The main frame shows the aMC@NLO samples, matched with HERWIG6 (black solid),

virtuality-ordered Pythia6 (red dashed) and HERWIG++ (blue dot-dashed). The first (second)

inset shows the ratios of the aMC@NLO (POWHEG) distributions over the fixed-order NLO

one, with the same color pattern as the main frame. The third inset shows scale (red-dashed) and

PDF uncertainties (black solid) computed from the aMC@NLO + HERWIG6 sample. Scale

uncertainties are obtaining by varying independently the renormalization and factorization scale

in the range MW/2 < µR,µF < 2MW . The MSTW 2008 NLO PDF set has been used, with error

bands corresponding to 68% confidence level.
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Figure 5.5.6: Second hardest jet transverse momentum (top) and rapidity (bottom) distri-

butions for VBF. The main frame shows the aMC@NLO samples, matched with HERWIG6

(black solid), virtuality-ordered Pythia6 (red dashed) and HERWIG++ (blue dot-dashed). The

first (second) inset shows the ratios of the aMC@NLO (POWHEG) distributions over the fixed-

order NLO one, with the same color pattern as the main frame. The third inset shows scale

(red-dashed) and PDF uncertainties (black solid) computed from the aMC@NLO + HERWIG6

sample. Scale uncertainties are obtaining by varying independently the renormalization and

factorization scale in the range MW/2 < µR,µF < 2MW . The MSTW 2008 NLO PDF set has

been used, with error bands corresponding to 68% confidence level.
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Figure 5.5.7: Azimuthal separation of the two hardest jets (top) and exclusive jet multiplicities

(bottom) distributions for VBF. The main frame shows the aMC@NLO samples, matched with

HERWIG6 (black solid), virtuality-ordered Pythia6 (red dashed) and HERWIG++ (blue dot-

dashed). The first (second) inset shows the ratios of the aMC@NLO (POWHEG) distributions

over the fixed-order NLO one, with the same color pattern as the main frame. The third inset

shows scale (red-dashed) and PDF uncertainties (black solid) computed from the aMC@NLO

+ HERWIG6 sample. Scale uncertainties are obtaining by varying independently the renorma-

lization and factorization scale in the range MW/2 < µR,µF < 2MW . The MSTW 2008 NLO

PDF set has been used, with error bands corresponding to 68% confidence level.
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Figure 5.5.8: Rapidity separation (top) and invariant mass (bottom) of the two hardest jets dis-

tributions for VBF. The main frame shows the aMC@NLO samples, matched with HERWIG6

(black solid), virtuality-ordered Pythia6 (red dashed) and HERWIG++ (blue dot-dashed). The

first (second) inset shows the ratios of the aMC@NLO (POWHEG) distributions over the fixed-

order NLO one, with the same color pattern as the main frame. The third inset shows scale

(red-dashed) and PDF uncertainties (black solid) computed from the aMC@NLO + HERWIG6

sample. Scale uncertainties are obtaining by varying independently the renormalization and

factorization scale in the range MW/2 < µR,µF < 2MW . The MSTW 2008 NLO PDF set has

been used, with error bands corresponding to 68% confidence level.
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Figure 5.5.9: Third hardest jet transverse momentum (bottom) and rapidity (top) distributions

for VBF. The main frame shows the aMC@NLO samples, matched with HERWIG6 (black

solid), virtuality-ordered Pythia6 (red dashed) and HERWIG++ (blue dot-dashed). The first

(second) inset shows the ratios of the aMC@NLO (POWHEG) distributions over the fixed-

order NLO one, with the same color pattern as the main frame. The third inset shows scale

(red-dashed) and PDF uncertainties (black solid) computed from the aMC@NLO + HERWIG6

sample. Scale uncertainties are obtaining by varying independently the renormalization and

factorization scale in the range MW/2 < µR,µF < 2MW . The MSTW 2008 NLO PDF set has

been used, with error bands corresponding to 68% confidence level.
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Figure 5.5.10: Veto jet transverse momentum (top) and rapidity (bottom) distributions for

VBF. The main frame shows the aMC@NLO samples, matched with HERWIG6 (black solid),

virtuality-ordered Pythia6 (red dashed) and HERWIG++ (blue dot-dashed). The first (second)

inset shows the ratios of the aMC@NLO (POWHEG) distributions over the fixed-order NLO

one, with the same color pattern as the main frame. The third inset shows scale (red-dashed) and

PDF uncertainties (black solid) computed from the aMC@NLO + HERWIG6 sample. Scale

uncertainties are obtaining by varying independently the renormalization and factorization scale

in the range MW/2 < µR,µF < 2MW . The MSTW 2008 NLO PDF set has been used, with error

bands corresponding to 68% confidence level.
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Chapter 6
Prospects

After the discovery of the Higgs-like particle at the LHC, and the conclusion of the

8TeV run, the main challenge for the scientific community is to determine the nature

of the newly discovered resonance. In particular, it is of greatest importance to assess

if this particle is the Higgs boson as predicted in the SM or not, and in the latter case

to understand which new physics scenario it is going to unveil. The measurement of

the Higgs boson spin, parity and couplings to the SM particles has now become a “hot

topic”, which demands strong commitment from both experiments and theory.

From the theory point of view, this means delivering predictions which can cover all

the possible cases (spin 0, 1, 2, . . . ) with consistent inclusion of higher orders QCD

corrections in the predictions, possibly in all production (and decay) channels. Up

to the present moment, most of the studies consider the dominant 2→ 1 production

channel and/or do not include higher order corrections or parton-shower effects.

Indeed, on top of the usual observables related to the Higgs decay products (e.g. angu-

lar correlations among the leptons), lot of information about the nature of the produced

resonance is also carried by angular correlations of the two tagging jets which accom-

pany VBF events, (partially) compensating for the smaller total rate with respect the

dominant Higgs production channel.

Because of the peculiar nature of VBF, in which QCD factors out and does not involve

the produced resonance, it should cost very little effort to study e.g. the production of

a vectorial or spin-2 resonance, providing complementary informations to the 2→ 1

case. The advantage of having a fully automated tool such as aMC@NLO, presented

in Chapter 5, allows the user to have trustful, accurate and realistic results with almost

no effort, once the relevant model file will be made available. On top of this, one could
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even easily obtain the total NNLO normalization, exploiting the structure function ap-

proach presented in Chapter 4.

Work in these directions is in progress [174].
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Appendix A
The VBF phase space in the

structure-function approach

In this appendix I briefly document the parameterization for the phase space of VBF

in the structure function approach. I will first take the most general case, which is the

production of an n-particles final state via VBF with momenta K1, . . . , Kn, then I will

specialize to the case of one particle.

In the structure function approach I can consider the proton remnants as massive par-

ticles, and integrate over their masses, which are labeled s1, s2.

I will call P1, P2 the momenta of the incoming protons, and PX1 , PX2 the momenta

of the proton remnants. The choice of kinematic variables is guided by the require-

ment to resemble the DIS kinematics as much as possible. I work in the hadronic

center-of-mass reference frame, with

P1 =
1

2

(√
S ,0,0,

√
S
)
, P2 =

1

2

(√
S ,0,0,−

√
S
)
, (A.1)

Then, the Lorentz invariant phase space for this process is (cf. Eq. (4.2)),

dPS =
∏

i=1,2

dsi
d4PXi

(2π)4
2πδ

(
P2
Xi
− si

)
dPS n (K1, . . . ,Kn) × (A.2)

× (2π)4δ4
P1+P2−PX1 −PX2 −

∑

j=1,n

K j

 .

In Eq. (A.2) the phase space of the proton remnants has been separated from the

one of the particles produced via VBF. In order to solve the kinematics, let qi be the
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momentum exchanged by each of the two protons, with the convention, as for DIS,

that the direction of qi is incoming with respect to the proton vertex (see Fig. 3.1),

qi = PXi −Pi . (A.3)

The momenta qi are parameterized in terms of the two light-like momenta Pi and the

transverse components q⊥
i
:

q1 =
2P1 ·q1
2P1 ·P2

P2+
2P2 ·q1
2P1 ·P2

P1 +q
⊥
1 , (A.4)

q2 =
2P2 ·q2
2P1 ·P2

P1+
2P1 ·q2
2P1 ·P2

P2 +q
⊥
2 . (A.5)

The Bjorken scaling variables xi for the DIS process are given by the scalar products

Pi ·qi

2Pi ·qi =
−q2

i

xi
=
Q2
i

xi
, (A.6)

where Q2
i
= −q2

i
. In analogy one can also define variables yi via the relation

2P2 ·q1 =
Q2
1

y1
, 2P1 ·q2 =

Q2
2

y2
. (A.7)

so that

yi = −
Q4
i

xiS (Q
2
i
−q⊥

i

2
)
, (A.8)

with q⊥
i
=

√∣∣∣∣q⊥i
2
∣∣∣∣.

Then, the integration measure can be expressed as

d4qi = dQ
2
i d

2q⊥i
dxi

2xi
, (A.9)

and

P2
Xi
= Q2

i

(
1

xi
−1

)
. (A.10)
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The phase space Eq. (A.2) reduces now to the following form,

dPS =
1

(2π)2

∏

i=1,2

dQ2
i d

2q⊥i
dxi

2xi
dPS n (K1, . . . ,Kn) (2π)

4δ4

q1+q2+
∑

j=1,n

K j

 ,

(A.11)

and the integrations on the transverse components can be cast in polar coordinates,

d2q⊥1 d2q⊥2 = q⊥1 dq⊥1 dϕ1 q
⊥
2 dq⊥2 dϕ2 = 2π q

⊥
1 dq⊥1 q⊥2 dq⊥2 dϕ12 . (A.12)

Themomentum-conservationcondition imposed by the Dirac delta-function in Eq. (A.11)

provides a relation between the proton remnants variables and the total energy of the

VBF products:

S VBF = (K1 + . . .+Kn)
2 = (q1+q2)

2 = (A.13)

=
1

Q2
1
Q2
2

S x1x2
(
Q2
1 −q⊥1

2
) (
Q2
2−q⊥2

2
)
+
Q2
1Q

2
2

S x1x2
−Q2

1−Q2
2−2q⊥1 q⊥2 cosϕ12.

Using this equation one can generate the phase space of the VBF-produced particles

once the proton remnants variables are fixed, simply in the same way as for the decay

of a particle.

I will finally go through the details of the case in which only one particle with mass m

and momentum K is produced via VBF. In this case one simply has

dPS 1 (K) =
d4K

(2π)4
2πδ

(
K2 −m2

)
, (A.14)

and the d4K integration can be eliminated using the momentum-conservation Dirac

delta-function, so that it is only necessary to solve the mass-shell condition imposed

by the delta-function in Eq. (A.14) (which is nothing but Eq. (A.13) with S VBF =m
2):

m2 =
1

Q2
1
Q2
2

S x1x2
(
Q2
1 −q

⊥
1
2
) (
Q2
2−q

⊥
2
2
)
+
Q2
1
Q2
2

S x1x2
−Q2

1−Q
2
2−2q

⊥
1 q
⊥
2 cosϕ12 .

(A.15)

This equation can, of course, be easily solved for cosϕ12, but in this case it would lead

to an (integrable) singularity in the Jacobian, and therefore to numerical problems.

Therefore, the choice has been to write Eq. (A.15) as a second degree equation for q⊥
2
:

Aq⊥2
2
+Bq⊥2 +C = 0 , (A.16)
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with

A =
S x1x2

(
q⊥1

2 −Q2
1

)

Q2
1
Q2
2

, (A.17)

B = −2q⊥1 cosϕ12 , (A.18)

C =
Q2
1Q

2
2

S x1x2
−
S x1x2q

⊥
1

Q2
1

+S x1x2−m2−Q2
1−Q2

2 . (A.19)

Since two solutions of q⊥2 exist for each set of parameters x1, x2, Q
2
1, Q

2
2, q
⊥
1 , ϕ, two

phase space points are evaluated. “Physical” phase space points are required to have

positive q⊥
2
and the number of rejected points can be greatly reduced if one asks

0 < Q2
2 < S x1x2

(
Q2
1
−q⊥

1
2
) [
Q4
1
−Q2

1

(
S x1x2 −m2

)
+q⊥

1
2
S x1x2

]

Q2
1

[
Q4
1
−Q2

1

(
q⊥
1
2 sin2 ϕ12+S x1x2

)
+q⊥

1
2
S x1x2

] , (A.20)

which corresponds to the positivity of the discriminant of Eq. (A.16). The other pa-

rameters are generated in the following ranges:

x1 · x2 ∈
[
m2

S
,1

]
, log x1 ∈

[
log

m2

S
,0

]
, Q2

1 ∈
[
Q2
0,

(√
S −m

)2]
,

q⊥1 ∈ [0,Q1] , ϕ ∈ [0,2π] , (A.21)

where Q0 is a technical cut set to 1GeV which prevents sampling PDFs and αs at too

low scales. It also sets the lower bound forQ2; the total cross-section has been checked

not to depend on Q0. The differential cross-section from Eq. (4.2), multiplied by the

Jacobian corresponding to Eqs. (A.20)–(A.21), is integrated using VEGAS [175].
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Appendix B
The structure function approach

and the production of new

resonances in VBF

In this appendix, I will report the expression of the contraction of the hadronic tensors

and the VV → X matrix element in the case X is a scalar with anomalous couplings to

vector bosons or a fermiophobic vector resonance.

The first case is considered in Sec. B.1, the second in Sec. B.2.

B.1 The VBF cross-section with anomalous VVH cou-

plings

The most generic structure for the VVH vertex which generalizes Eq. (4.1), has the

form [176]:

Γµν(q1,q2) = 2M
2
V

((√
2GF

)1/2
+
a1

Λ

)
gµν+

a2

Λ

(
q1 ·q2gµν−qµ2q

ν
1

)
+
a3

Λ
εµνρσq1ρq2σ,

(B.1)

Which can be rewritten as

Γµν (q1,q2) = A1gµν+A2

(
q1 ·q2gµν−qµ2q

ν
1

)
+A3ε

µνρσq1ρq2σ, (B.2)
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using the replacements

A1 = 2M2
V

((√
2GF

)1/2
+
a1

Λ

)
,

A2 =
a2

Λ
,

A3 =
a3

Λ
. (B.3)

Eq. (4.5), with the replacementMµν = Γµν (q1,q2) has now the form:

Wµν

(
x1,Q

2
1

)
MµρM∗νσWρσ

(
x2,Q

2
2

)
=

3∑

i, j=1

Ci jFi

(
x1,Q

2
1

)
F j

(
x2,Q

2
2

)
, . (B.4)

Defining

q1 ·q2 = q12, Pa ·qb = Pab, (B.5)

the non-vanishingCi j read

C11 =

(
2+

q12
2

q12 q22

)
|A1|2+6q12 Re

(
A1A

∗
2

)
+

(
q1

2 q2
2+2q12

2
)
|A2|2

+2
(
q12

2− q1
2 q2

2
)
|A3|2 , (B.6)

C12 =
1

P22


P22

2

q22
+

1

q12

(
P21−

P22

q22
q12

)2 |A1|2 +2
P22q12

q22
Re

(
A1A

∗
2

)

+P21

(
2q12−

P21 q2
2

P22

)
|A2|2+

(
2P21q12−

P21
2 q2

2

P22
− P22q1

2

)
|A3|2 ,

(B.7)

C21 =
1

P11


P11

2

q12
+

1

q22

(
P12−

P11

q12
q12

)2 |A1|2 +2
P11q12

q12
Re

(
A1A

∗
2

)

+

(
2P12q12−

P12
2 q1

2

P11

)
|A2|2+

(
2P12q12−

P12
2 q1

2

P11
− P11q2

2

)
|A3|2 ,

(B.8)
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C22 =
1

P11 P22

(
s

2
− P11 P21

q12
− P12 P22

q22
+
P11P22 q12

q12 q22

)2
|A1|2

−2
(
P12P21− q12

s

2

) (
q12

q12 q22
+

s

2P11 P22
− P21

P22q12
− P12

P11 q22

)
Re

(
A1A

∗
2

)

+2

(
q12

q12 q22
+

s

2P11P22
− P21

P22q12
− P12

P11 q22

)
εP1 P2 q1 q2 Re

(
A1A

∗
3

)

+
(q12 s−2P12P21)

2

4P11 P22
|A2|2 −

P12 P21−q12 s
P11 P22

εP1 P2 q1 q2 Re
(
A2A

∗
3

)

+

{
s

(
q12−

P21q2
2

P22
− P12 q1

2

P11
+
P12P21 q12

P11 P22

)

+
1

P11P22

[
s2

4

(
q1

2 q2
2 −q122

)
−P12

2 P21
2

]
−P11P22+2P12P21

}
|A3|2 ,

(B.9)

C33 =
q12 s−2P12P21

2P11 P22
|A1|2

+
1

2

[
s

2P11P22

(
q1

2 q2
2+q12

2
)
+q12−

P12 q1
2

P11
− P21q2

2

P22

−P12P21 q12

P11 P22

]
Re

(
A1A

∗
2

)
+

q12

2P11P22
εP1P2 q1 q2 Re

(
A1A

∗
3

)

+
q12

2

(
q12−

P12 q1
2

P11
− P21q2

2

P22
+

sq1
2 q2

2

2P11 P22

)
|A2|2

+
q1

2 q2
2

2P11P22
εP1 P2 q1 q2 Re

(
A2A

∗
3

)

+
q12

2

(
q12−

P12 q1
2

P11
− P21q2

2

P22
+
P12 P21 q1

2 q2
2

P11P22 q12

)
|A3|2 . (B.10)

B.2 The VBF cross-section for a vector resonance

Finally, I provide the formula for the total cross-section for the production of a vector

resonance in the structure function approach.

We assume the usual gauge and Lorentz invariant tri-linear vertex (in principle more

general cases can be considered [177]):

Γµ1µ2µ3 (p1, p2, p3) = g123
[
gµ1µ2

(
p
µ3
1
− pµ3

2

)
+gµ2µ3

(
p
µ1
2
− pµ1

3

)
+gµ3µ1

(
p
µ2
3
− pµ2

1

)]
,

(B.11)
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where all the momenta are taken to flow outside the vertex. Since in the processes

considered the coupling g123 can always be factorized from the total cross-section, it

will be set to unity in the following.

As in Sec. B.1, with the extra care to sum over the polarizations of the produced vector,

I have

Wµν

(
x1,Q

2
1

)∑

λ

(
Mµρ

λ M
∗νσ
λ

)
Wρσ

(
x2,Q

2
2

)
=

3∑

i, j=1

Ci jFi

(
x1,Q

2
1

)
F j

(
x2,Q

2
2

)
,

(B.12)

where I have set

Mµν
λ
= Γ

µν
ρ (q1,q2,−q1−q2) ǫρλ (−q1−q2) , (B.13)

and the non-vanishing coefficients Ci j are

C11 =
1

q12 q22

4q12 q22 q12−14q14 q22−14 q12 q24+11 q12 q122
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C21 = C12 (1↔ 2) , (B.16)
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1
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C33 =
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Appendix C
Scale choice effects on differential

observables

The results shown in Sec. 5.5 have been computed with renormalization and factor-

ization scales fixed to the W mass. Although this choice has been justified in Sec. 4.3

with arguments based on the convergence of the total cross-section, it may look as

inappropriate for describing differential observables.

In this appendix I will compare the distributions shown in Sec. 5.5 with new ones

obtained setting

µR,F =
1

2

∑

i=parton

pT i . (C.1)

This choice can be justified that, at the LO, it is the average transverse momentum of

the two final state partons.

I will not discuss all the observables which have been presented in Sec. 5.5, but only

those where effects due to the dynamic scale choice are visible. For all observables,

the choice of such a dynamic scale do not visibly change the predictions for the cen-

tral values but, in some cases, it results in a more narrow scale uncertainty band. The

observables for which this happens are the transverse momentum spectra of the two

hardest jets, and their rapidity separation. For what concerns the other observables, no

visible difference between the two scale choices is visible, neither in the central value

prediction nor in the scale uncertainty band.
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Fig. C.0.1 shows the transverse momentum of the hardest (top) and second hardest

(bottom) jet. The main effect of the scale choice Eq. (C.1) is the reduction of the scale

uncertainty band at large transverse momenta, where theW mass is too low. For what

concerns the rapidity separation of the two hardest jets, shown in Fig. C.0.2, also in

this case the dynamic scale choices has the advantage of showing narrower uncertainty

band at large rapidity separations, where, as pointed in Sec. 5.5, a fixed scale choice

is inadequate.

All effects are, however, minimal.
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Figure C.0.1: Hardest (top) and second hardest jet transverse momentum. The main frame

shows the aMC@NLO samples (matched with HERWIG6), computed setting µF,R = MW (blue

solid) and µR,F =
1
2

∑
i=parton pT i (green dashed). The first inlay shows the ratio of the two

curves over the blue one. The second and third inlay show scale (red dashed) and PDF uncer-

tainties (black solid) respectively for the blue and green curve of the first inlays. Scale uncer-

tainties are obtained by varying independently the renormalization and factorization scales by a

factor 1/2 < xR,F < 2 around the central value. The MSTW 2008 NLO PDF set has been used,

with error bands corresponding to 68% confidence level.
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Figure C.0.2: Rapidity separation between the two hardest jets. The main frame shows the

aMC@NLO samples (matched with HERWIG6), computed setting µF,R = MW (blue solid)

and µR,F =
1
2

∑
i=parton pT i (green dashed). The first inlay shows the ratio of the two curves

over the blue one. The second and third inlay show scale (red dashed) and PDF uncertainties

(black solid) respectively for the blue and green curve of the first inlays. Scale uncertainties

are obtained by varying independently the renormalization and factorization scales by a factor

1/2 < xR,F < 2 around the central value. The MSTW 2008 NLO PDF set has been used, with

error bands corresponding to 68% confidence level.
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Appendix D
Jet definition and shower effects on

the VBF cross-section after cuts

In Sec. 5.5.2 I have shown that the VBF cross-section after cuts has a non-negligible

dependence on the PSMC. This dependence was traced back to the way each PSMC

generates extra radiation, and to the possibility that the extra radiation may be lost if

it falls outside the jet cone.

It is therefore important to study how such differences depend on the given jet defini-

tion, and whether they entirely come from the shower phase or also hadronization has

a role.

To this aim, I will compute the exclusive jet multiplicities using different values for

the jet minimum pT and radius, with and hadronization enabled or disabled. Apart

for these parameters, the same cuts of Sec. 5.5 are used. Since both POWHEG and

aMC@NLO show almost the same effects when different showers are used, I will limit

myself to results obtained with aMC@NLO.

Fig. D.0.1 shows the results for the two and three jet multiplicities obtained using the

anti-kT algorithm with different values of the radius parameters ranging from 0.1 to

1.1. The histograms use the same color and line pattern used in Sec. 5.5.2: black solid

for HERWIG6, red dashed for Pythia6 and blue dot-dashed for HERWIG++. For

each value of ∆R, two sets of ratio plots are shown. In the first three plots, jets are

required to have a minimum transverse momentum of at least 20 GeV (as in the results

shown in Sec. 5.5.2), while the other plots show results for a higher jet pT threshold

(40 GeV). In each set the first and second plots show respectively the ratios over the

HERWIG6 prediction of results with and without hadronization effects. The last plot
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show, for each PSMC, the ratio of the results with hadronization over those without

hadronization. As in Sec. 5.5.2, the simulation of the underlying event is disabled.

As it could have been expected, larger values of the radius parameter reduce the dif-

ferences among the rates predicted by the different PSMCs, for both considered pT

cuts. Indeed, a larger value of the radius correspond in being more inclusive on the

extra radiation, therefore being less sensitive on the different ways this extra radiation

is generated. This can be specially seen in the two jet bin, which gives the bulk of

the total cross-section. For the three jet bin, the pattern is more complicated: the best

agreement among the three PSMC is found for a rather low value of ∆R (0.3) while

for higher values larger discrepancies are found. No easy explanation of this can be

given.

For what concerns hadronization it is very interesting to see that, while for Pythia6

and HERWIG6 effects are moderate (with the exception of the smallest values of ∆R),

for HERWIG++ they are larger, and negative. In particular one can see that these

effects account almost for the whole difference between HERWIG++ and HERWIG6.

These differences deserve further investigations in conjunction with the PSMCs au-

thors. Also hadronization effects tend to diminish for larger radii.

Effects due to the choice of a different jet clustering algorithm are found to be minor.
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Figure D.0.1: Jet multiplicity ratios for different values of the jet radius parameter ∆R and of

the jet minimum pT . Results obtained without hadronization are also shown. See the text for

details.
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