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toni d’avoir accepté de faire partie de mon jury de thèse.
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Introduction

Our current understanding of the fundamental laws ruling the dynamics of the

elementary matter building blocks is encoded in the Standard Model of elemen-

tary particles (SM). Even though its physical reality has been experimentally

confirmed many times, this should not be the end of the story. Among the

several indications supporting this statement, the strongest one might be that

the SM does not include gravity yet, as Einstein’s theory of General Relativity

seems to be incompatible with the quantum field descriptions we have regard-

ing the three other fundamental interactions identified so far. Even so, as the

SM will certainly reveal itself as an inevitable piece of a unified theory of all

fundamental interactions, yet to be discovered if existing at all, it is important

to address its internal issues such as:

• the unexplained hierarchies observed in the fermion mass spectrum and

the mixing matrix,

• the SM hypothesis of massless neutrinos, which is not only at variance

with neutrino mixing observations but could also cover up CP violating

phenomenon relevant for successful baryo- and lepto-genesis explanations,

• the SM inability to accommodate possible Dark Matter which, if present,

would constitute 25% of the Universe’s content,

• the strong CP problem [1], which is still a problem as we do not yet un-

derstand why experimental measurements constrain the apparently free

θQCD parameter to lie below the 10−10 level.

These unanswered questions drove physicists to consider alternative theories

referred to as New Physics (NP) models within which some (but not all) SM

weakness(es) could be overcome. For instance, supersymmetric (SUSY) models

provide Dark Matter candidates while the strong CP problem might be solved

by the Peccei-Quinn mechanism [2]. These are two possible alternatives among
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many others, which are all characterized by their own phenomenology and

enlarged particle spectrum. In SUSY we find super-partner particles, the axion

is predicted by the Peccei-Quinn mechanism, Kaluza-Klein excitations appear

in Extra-Dimension models and technicolor models predict the existence of

strongly interacting techniquarks. To unravel and/or discriminate between

such NP scenarios, strategies must be set up. They basically fall into two

categories: direct and indirect searches.

Direct searches, pursued at the LHC for instance, consist in trying to directly

produce and observe new degrees of freedom. Unfortunately, no direct obser-

vation of particle beyond the SM has been confirmed so far. However, these

negative results have already set strong constraints on various NP models.

Indirect searches tend to detect NP by measuring its possible quantum effects.

For instance, NP could manifests itself in flavor changing neutral K- or B-

meson decay branching fractions through virtual loop contributions involving

new degrees of freedom. By comparing their SM predictions with experimental

measurements, we hope to identify tensions that could signal something beyond

the SM is at play. Yet, in order to be efficient, these observables must satisfy

several criteria. As we are testing the SM at the one-loop level, they must

be precisely predicted in the SM. If not, NP contributions could be buried in

uncertainties. Ideally, these observables should be highly suppressed or even

forbidden in the SM. Indeed, the SM mechanism, responsible for the suppres-

sion or the prohibition of a particular process, may not be a feature of the NP

model under consideration. Finally, and for obvious reasons, these observables

should be either measured or measurable in a near future.

In this indirect hunt, the radiative b→ sγ and µ→ eγ transitions have received

considerable attention. Since both are neutral flavor changing transitions, they

are loop suppressed in the SM. While the suppression of the former is not so

effective, Br(B̄ → Xsγ)th = 3.15(23) · 10−4, the latter is extremely suppressed

as it proceeds through neutrino mixing effects, in fact, Br(µ→ eγ)th < 10−40.

The former is known to NNLO precision in the SM [3], and has been measured

accurately at the B factories [4], Br(B̄ → Xsγ)exp = 3.55(26) · 10−4 with

Eγ > 1.6 GeV. It is now one of the most constraining observables for NP

models. The latter is so small in the SM that its experimental observation

would immediately point toward the presence of NP [5]. Further, most models

do not suppress this transition as effectively as the SM, with rates within reach

of the current MEG experiment at PSI [6].

In view of the expected high luminosities of several K decay experiments start-

ing in the next few years, such as NA62 at CERN, K0TO at J-Parc, and

KLOE-II at the LNF, new effective strategies to constrain or signal NP may
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open up. In the Kaon sector, one of the golden targets is the K+ → π+νν̄

decay mode, which, in the SM, is exclusively driven by s → dZ penguin and,

therefore, very precisely predicted: Br(K+ → π+νν̄)th = 8.25(64) · 10−11.

Incidentally, one of the main purposes of the second phase of the NA68 ex-

periment is to record O(100) events in order to reach a ten percent precision

on Br(K+ → π+νν̄)exp. This would represent a great improvement compared

to the current Br(K+ → π+νν̄)exp = 1.73+1.15
−1.05 · 10−10 measurement extracted

from the seven events recorded by the E787-949 experiments at BNL [7]. If

such a precision is achieved, the K+ → π+νν̄ would constitutes a perfect probe

for NP in the s→ dZ penguin.

In principle, an other powerful probe for NP is the ε′ parameter. Indeed,

this observable, which quantifies the small amount of direct CP violation in

K → ππ decays, is loop induced and well measured: Re(ε′) = (2.5± 0.4) · 10−6

with ϕε′ ≃ π/4. Furthermore, it has the advantage to probe the SM directly

at the amplitude level rather than at the branching one. Sadly, its ability

to constrain NP is quite limited by our current theoretical control over the

electroweak and QCD penguins hadronic dynamics, which is not good enough

to resolve precisely the destructive interference occurring between the s → dg

and the s→ d{Z, γ} penguins in ε′. Yet, with the s→ dZ transition controlled

by K+ → π+νν̄ in a near future, the situation could be further improved if we

manage to control the s → dγ transition independently of ε′th. Supplemented

with such orthogonal correlations, ε′th could eventually become a good probe

for the s→ dg penguin only.

The main purpose of the present work is, therefore, a complete and most up-

dated analysis of the best observables (other than ε′th) giving a direct access

to the s → dγ transition, both in and beyond the SM. This analysis is not

only profitable to the s → d{Z, γ, g} penguins disentanglement in ε′, it is also

complementary to the b → sγ and µ → eγ studies. Indeed, as shown in the

following table, these three radiative decays are complementary from the point

of view of their respective SM suppression and sensitivity to hadronic effects:

SM suppression Hadronic effects Experiment

Br(b→ sγ)inc 3.15(23) · 10−4 small: Eγ > 1.6 GeV 3.55(26) · 10−4

Br(s→ dγ)exc ∼ 10−6 large: Eγ < 0.2 GeV which mode?

µ→ eγ < 10−40 absent < 1.2 · 10−11

Since in the SM, the s→ dγ transition is more suppressed than the b→ sγ one,

we naively expect the former to be more efficient to constrain NP effects (in

its own flavor sector). However, this suppression argument overlooks hadronic

uncertainties, which are very important in s → dγ and under good control
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in b → sγ. Consequently, two issues have severely hampered the s → dγ

ability to probe NP up to now. First, the s → dγ decay takes place deep

within the QCD non-perturbative regime, and thus requires control over the

low-energy hadronic physics. Second, these hadronic effects strongly enhance

the SM contribution, to the point that identifying a possible deviation from

NP is very challenging both theoretically and experimentally. To circumvent

these difficulties is one of the goal of the present thesis.

In chapter 2, we demonstrate that a good theoretical control over the hadronic

dynamics of s→ dγ is now reached. In particular, these effects, handled within

Chiral Perturbation Theory (ChPT), involve local interactions which were un-

known up to now. Thanks to our improved NLO computations combined with

recent experimental results concerning the K+ → π+π0γ decay obtained by

NA48 [8], we are now able to extract these problematic contributions directly

from experiment. As a matter of fact, we provide the first experimental extrac-

tion of a previously unknown local term which intervenes in several K → ππγ

decays and we find it to be small, as expected.

The most promising observables to probe the s → dγ high energy dynamics

and thereby possible NP effects, are then identified. Those are the radiative

K decay CP asymmetries in the case of real emissions and the CP violating

contributions to theKL → π0ℓ+ℓ− decay modes in the case of virtual emissions.

While the current experimental situation regarding these observables will surely

benefit from forthcoming high luminosity K experiments, we have, for the time

being, systematically improve their SM predictions. The theoretical control

over these CP violating observables is now achieved, in and beyond the SM,

by using a systematic and original parametrization of the hadronic penguins in

terms of the well measured ε′exp parameter.

This parametrization procedure does not suffer from the hadronic uncertainties

encountered in ε′th, except in one place where it actually serves our purpose.

Indeed, our updated analysis of the CP asymmetries inK → γγ decays reveals a

new phenomenological relation between one of these measurable CP parameter

and the pure QCD penguin contribution to ε′. This simple link is particularly

interesting as it suggests a way to eventually resolve the destructive interference

at play in ε′.

In chapter 3, the correlations between rare and radiative K decays as well as

ε′, established in chapter 2, are exploited to quantify the possible impact of

NP on the s → dγ process. Subsequent strategies, which differ from usual

parameter scan procedures, are then suggested to resolve possible interference

among various NP sources. Doing so, a special care is taken to minimize model

dependencies and fine-tuning. The NP scenarios considered there are organized
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into three broad classes within which each NP source is bounded once turned

on one at a time. The discriminatory informations on possible NP which could

be gained from our results concerning the s → dγ are also highlighted on a

model dependent basis.

In chapter 4, the relevance of the experimental information we have about ε′ is

illustrated in another (almost) independent context. Namely, a novel method

to estimate the electroweak corrections affecting θQCD is suggested. Contrary

to previous complementary but controverted attempts, this new method uses

ε′ to express the physical quantum corrections to θQCD in a simple and direct

way.

The main results of the present thesis have already been presented in the fol-

lowing publications:

• [9] P. Mertens and C. Smith, The s → dγ gamma decay in and beyond

the Standard Model, JHEP 1108 (2011) 069 ,

• [10] J.-M. Gérard and P. Mertens, Weakly-induced strong CP-violation,

Phys. Lett. B 716 (2012) 316 ,

as well as in a conference proceeding [11].
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Chapter 1
The standard model

As far as we know, two types of elementary matter particles exist: the leptons

and the quarks. It is also believed and experimentally confirmed that their dy-

namics emerge from a symmetry principle, the gauge principle [12–16], applied

on the group

GSM
.
= SU(3)C ⊗ SU(2)L ⊗ U(1)Y ,

which constitutes the cornerstone of the SM. The strong interactions are en-

coded in the SU(3)C factor while the electroweak interactions emerge from the

SU(2)L ⊗ U(1)Y one. According to this picture, the dynamics of a particle

ψ is determined by its transformation law under GSM or, equivalently, by its

membership to a given multiplet of GSM. In the SM, fermions are organized

into chiral multiplets. In the lepton sector, they are defined as

LI
.
=

(
νℓI

ℓI

)
L

, EI
.
= ℓIR , (1.1)

where I runs over the three known lepton flavors (I = e, µ, τ) and where, by

construction, there is no right-handed neutrino. In the quark sector, we find

six different flavors organized as

QI
.
=

(
uI

dI

)
L

, U I
.
= uIR, DI .

= dIR , (1.2)

with (u1, u2, u3) = (u, c, t) and (d1, d2, d3) = (d, s, b). The gauge transforma-

tion properties of these multiplets are specified by their covariant derivatives

Dµψ =
(
∂µ − igssψT

aGaµ − iglψτ
kW k

µ − ig′yψBµ
)
ψ ,
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ψ Q U D L E

sψ 12×2 1 1 02×2 0

lψ 1 0 0 1 0

yψ
1
6 2×2

2
3 − 1

3 −1
2 2×2

−1

Tab. 1.1: SU(3)C ⊗SU(2)L⊗U(1)Y charges of the SM chiral multiplets

in gs, g and g′ unit.

where ψ stands for any of the five chiral multiplets introduced in Eqs.(1.1)

and (1.2) and where the various charges (s, l, y)ψ are given in Tab.(1.1). The

SU(3)C and SU(2)L generators are respectively given by T a
.
= λa/2 and τk =

σk/2 where λa denote the Gell-Mann matrices and σk the Pauli matrices.

The gluons, the weak-isospin and the hypercharge gauge boson fields are, for

their part, represented by Gaµ, W
i
µ and Bµ, respectively. Following the gauge

principle, the fermion-gauge boson interactions are encoded in GSM-invariant

Lagrangian:

L = ψiγµDµψ + pure gauge terms , (1.3)

where weak and electromagnetic forces are still unified. To disentangle them,

L may be decomposed into charged and neutral current interactions as

L = LCC + LNC + LQED + kinetic terms .

The charged current interactions described by

LCC =
g√
2
W †
µ

[
uIγµγLd

I + νℓIγ
µγLℓ

I
]
+ h.c. (1.4)

are driven by the complex gauge bosonWµ = (W 1
µ+ iW

2
µ)/

√
2, while QED and

weak Neutral Current (NC) interactions are obtained once the weak rotation(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
where sin θW

.
= sW = g′/(g2+g′2)1/2 and the conditions defining the electrical

charge in |e| unit,

|e| = g sin θW = g′ cos θW and Qψ = lψτ
3 + yψ , (1.5)

are imposed. As a result, LQED is completely disentangled from the Z driven

NC interactions encoded in

LNC =
|e|

sin θW cos θW
Zµψγµ

[
τ3 − sin2 θWQψ

]
ψ . (1.6)
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As such, the SM electroweak sector suffers from a very bad drawback: its gauge

symmetry forbids the Wµ and Zµ to acquire masses while it is experimentally

observed that [17]

MW = 80.385(15) GeV and MZ = 91.1876(21) GeV .

A similar problem appears in the fermionic sector as chirality flipping mass

terms, needed to account for the experimental measurements [17]

mτ = 1776.82(16) MeV and mt = 173.5(1) GeV ,

for instance, explicitly break the electroweak gauge symmetry. These clear

discrepancies demonstrate that the SU(2)L ⊗U(1)Y gauge symmetry must be

broken.

In the SM, the required electroweak symmetry breaking is insured by the Brout-

Englert-Higgs (BEH) mechanism [18–21], which describes how the ground state

of the theory is responsible for the spontaneous symmetry breaking

GSM → SU(3)C ⊗ U(1)em , (1.7)

where U(1)em is the unbroken electromagnetic gauge symmetry defined in ac-

cordance with the electric charge assignments of Eq.(1.5). This kind of sym-

metry breaking mechanism not only preserves the gauge symmetry of the in-

teraction laws and, thereby, their description in terms of gauge invariant La-

grangians, it also guaranties that the SM is renormalizable [1,22]. The minimal

ingredient required to achieve this symmetry breaking is the gauge invariant

introduction of a complex weak-isospin scalar doublet Φ. While its dynamic is

governed by LΦ = |DµΦ|2 − V (Φ), its coupling to the fermions are governed

by the Yukawa Lagrangian

LY = −QΦYdD −QΦ̃YuU − LΦYℓE + h.c. , (1.8)

with Φ̃
.
= iσ2Φ

∗ and where the Yukawa couplings Yd,u,ℓ are arbitrary matrices

defined in the flavor space. In order for the spontaneous symmetry breaking

to occur, the scalar potential V (Φ) must be chosen to provide Φ its vacuum

expectation value (vev). The most general gauge symmetric and renormalizable

potential being given by V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2, we can conclude that if

µ2 < 0 and λ > 0, Φ acquires a non vanishing vev

⟨Φ⟩ = (0 v/
√
2)T with v

.
=
√
−µ2/λ ,

which is invariant under the action of U(1)em. Accordingly, the Goldstone

theorem [23] implies the existence of three massless scalar fields ωi parametrized

as

Φ(x) =
1√
2
(0 v + h(x))

T
eiτ

iωi(x) , (1.9)
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which, thanks to the gauge invariance of the Lagrangian, may be rotated away

to provide the missing longitudinal degree of freedom of the weak gauge bosons.

The corresponding masses, originating from the Φ kinetic term, read

MW =
g

2
v and MZ =

MW

cos θW
, (1.10)

while the unbroken U(1)em still protects the photon from a mass as, in fact,

Mγ < 10−18 eV, see Ref. [17]. Using the experimental gauge boson masses

together with the conditions of Eq.(1.5) and αem ≃ 1/137, Eq.(1.10) indicates

that the spontaneous electroweak symmetry breaking should occur around v ≃
250 GeV.

Contrary to the ωi fields, the extra scalar degree of freedom h(x) appearing

in Eq.(1.9) can not be gauged away. This degree of freedom, called the Higgs

boson, is a striking prediction of the BEH mechanism and its tree-level mass

is predicted to be

mh =
√
2λv .

Until fairly recently we had no direct theoretical information about it as we did

not know λ. The situation has changed since the fourth of July 2012. On that

day, the two CERN experiments dedicated to the Higgs boson hunt, namely

ATLAS and CMS, announced the discovery of a resonance around 125 GeV

consistent with the SM Higgs boson [24, 25]. Since then, evidences in favor of

the SM Higgs have gotten stronger even though a lot of its properties must

still be carefully measured before we can be sure it is the Higgs boson. In

particular, most of its couplings to fermions are not accurately measured yet.

1.1 Flavor structure

The SM fermion-gauge sector enjoys an accidental flavor symmetry: any flavor

rotation of a given chiral multiplet will remain unnoticed. The only place where

a non trivial flavor structure enters the SM is the Yukawa sector which reads

LY = − 1√
2
(v + h)

[
dLYddR + uLYuuR + ℓLYℓℓR + h.c.

]
,

once the ωi are gauged away. As the Yukawa couplings are arbitrary (complex)

matrices, flavor symmetry breaking effects emerge from LY. In particular,

because they are proportional to vY, fermion mass terms call for fermion fields

rotations

uR,L → V uR,LuR,L, dR,L → V dR,LdR,L, ℓR,L → V
ℓ
R,LℓR,L (1.11)
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that render the full Yukawa interactions diagonal:

LY = −
(
1 +

h

v

)[
dLmddR + uLmuuR + ℓLmℓℓR + h.c.

]
,

provided that

mℓ
.
=

v√
2
V
ℓ†
L YℓV

ℓ
R = diag(me,mµ,mτ ) ,

mu(d)
.
=

v√
2
V
u(d)†
L Yu(d)V

u(d)
R = diag(mu(d),mc(s),mt(b)) .

The structure of Higgs couplings to the fermion is now explicit: they are propor-

tional to the physical fermion masses. Consequently, the scalar-fermion sector

develops a highly hierarchical flavor structure as the fermion mass spectrum

covers several orders of magnitude. For instance, we observe that

mu

mt
≃ 1.3 · 10−5,

mµ

mt
≃ 6.1 · 10−2,

mt

v
≃ 1√

2
.

This is not the only place where a non trivial flavor structure emerges. The

rotations in Eq.(1.11) affect the fermion-gauge sector as well. Yet, these rota-

tions have only a limited impact on the flavor structure of this sector. Indeed,

as they are unitary, the V
u,d,ℓ
R,L matrices leave the (γ and Z driven) neutral

currents diagonal in the flavor space. As a result, there is no tree-level Flavor

Changing Neutral Current (FCNC) in the SM. This restriction, proper to the

SM and referred to as the Glashow-Iliopoulos-Maiani or GIM mechanism, was

suggested in Ref. [26] as a generalization of the work of Cabibbo [27]. The flavor

structure of charged current interactions of Eq.(1.4) is, for its part, affected:

under the rotations defined in Eq.(1.11) these currents become

LCC → g√
2
W †
µ

[
uV γµγLd+ νℓγ

µγLℓ
]
+ h.c. , (1.13)

where the unitary matrix

V
.
= V u†L V dL =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Historically, this

matrix was introduced to account for CP violating effects. Its ability to provide

a single source for such effects is, however, conditional to the existence of a third

family of quark (the bottom and top quarks) predicted in Ref. [29]. Indeed, the

unitarity of the CKMmatrix allows for CP violation only if the number of quark

family is at least equal to 3. In that case, this matrix may be parametrized
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Fig. 1.1: Current CKMFitter (ρ̄, η̄) confidence region at 1σ. Figure taken

from Ref. [28].

by three Euler angles and one complex phase eiδCKM . For example, in the

Wolfenstein parametrization we may write

V =

 1− λ2/2 λ Aλ3(ρ̄− iη̄)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ̄− iη̄) −Aλ2 1

+O(λ4) , (1.14)

where the various parameters are extracted from experimental data. Several

groups are dedicated to that purpose and, according to the CKMFitter group

[28], A ≃ 0.80 and λ ≃ 0.22, while

ρ̄ ≃ 0.14 and η̄ ≃ 0.34 .

These values are obtained from several measurements which, as shown in

Fig.(1.1), are quite consistent. In particular, in the usual phase convention

where Vub ∝ e−iδCKM the angle

δCKM ≃ tan−1

(
η̄

ρ̄

)
≃ 67◦ (1.15)

clearly demonstrates the existence of CP violation in the weak interactions.

1.2 CP violation

To prepare the ground for forthcoming developments, we review the main as-

pects of the CP violation phenomenon in the context of the neutral kaon (or

K) system. This system consists in a subset of the SU(3) octet (π,K, η) made
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out of the two pseudo-scalar particles K0 ∼ ds̄ and K0 ∼ sd̄. These strong

eigenstates are CP conjugate of each other,

CP K0 = −K0 and CP K0 = −K0 , (1.16)

but differ from the mass eigenstates, which are expanded over the CP eigen-

states defined by K1(2)
.
= (K0 ∓K0)/

√
2 as

KS(L) =
1

(1 + |ε̄|2)−1/2
(K1(2) + ε̄K2(1)) ,

where the mixing parameter ε̄ is related to the weak phase of the matrix element

M
.
= A(K0 → K0). The first experimental confirmation for a non-zero ε̄ goes

back to Ref. [30] whilst current semi-leptonic K decays measurements indicate

that

2Reε̄ = (3.32± 0.06) · 10−3 .

This result has important consequences. Let us consider KL meson decays

for instance. Since ε̄ ̸= 0, this particle is described as a mixture a CPeven

state, K1, and a CPodd state, K2. KL may therefore decay into a CPeven state

either via its CPeven component or via its CPodd component. Both transitions

are CP violating: the former process is allowed because the mixing matrix

element M carries a CP violating phase and the latter proceeds through the

direct CP violating decay amplitude A(K2 → CPeven). These two different

CP violating mechanisms are referred to as indirect CP violation (ICPV) and

direct CP violation (DCPV), respectively. Let us now develop these concepts

in the context of the K → ππ decays in more detail.

In order to be consistent with unitarity, the description of K → ππ decay

amplitudes has to take into account the strong ππ re-scattering. If Ss represents

the S-matrix of strong interaction, these phases are the asymptotic phase shifts

defined by

⟨ππI |Ss|ππI⟩
.
= ei2δI with I = 0 or 2 . (1.17)

In Eq.(1.17), we assume isospin invariance and the ππ state is decomposed into

its isospin components ππI . In principle, to fully re-construct the phases δI
we have to expand Ss to all orders in perturbation. Such a task is, a priori,

impossible to achieve using perturbative techniques. A commonly used solution

to overcome this issue consists in unitarizing the isospin decay amplitudes as

A(K0 → ππI)
.
=
√

3/2AIe
iδI .
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In other words, the strong phases δI are factorized out from the amplitude

(the weak phases being kept in AI) and are fitted from experiment. If so, the

following decompositions arise

A(K0 → π+π−) = A0e
iδ0 +A2e

iδ2/
√
2 , (1.18a)

A(K0 → π0π0) = A0e
iδ0 −

√
2A2e

iδ2 , (1.18b)

A(K+ → π+π0) = (3/2)A2e
iδ2 , (1.18c)

which, thanks to the CPT theorem, fix automatically the K0 decay amplitudes

to be

A(K0 → ππI) =
√

3/2A∗
Ie
iδI .

Focusing now on the KL decays into ππ states, i.e., CPeven states, we introduce

the following physical ratios

η+−
.
=
A(KL → π+π−)

A(KS → π+π−)
≃ ε+

ε′

1 + ω√
2
e−iδ02

, (1.19a)

η00
.
=
A(KL → π0π0)

A(KS → π0π0)
≃ ε− 2ε′

1−
√
2ωe−iδ02

, (1.19b)

which are, here, linearly parametrized in terms of the ε and ε′ parameters,

properly defined below, and

δ02
.
= δ0 − δ2 and ω

.
=

ReA2

ReA0
.

In Eqs.(1.19), ε appears as a common contribution to both η+− and η00 since it

originates from the CPeven component of KL. As such, it measures the amount

of indirect CP violation in KL → ππ decays. In fact, since by definition

ε
.
=
A(KL → ππ0)

A(KS → ππ0)
,

it turns out that ε and ε̄ are indeed intimately related through

ε
.
=

ε̄+ iξ0
1 + iε̄ξ0

≃ ε̄+ iξ0 where ξ0
.
=

ImA0

ReA0
. (1.20)

Consequently and contrary to ε̄, ε is a physical parameter: it does not depend

on the overall phase of the K0 wave function. This can be observed either from

the definition of ε, given in terms of physical amplitudes, or from Eq.(1.20)

where the K0 phase dependence of ε cancels in the combination ε̄ + iξ0. The

remaining ε′ pieces in Eqs.(1.19) measure for their parts non-mixing induced



1.2. CP violation 9

CP violation, i.e., direct CP violation. Experimentally, both parameters are

rather precisely determined [17]:

|ε|exp = (2.228± 0.011) · 10−3, Re (ε′/ε)exp = (1.65± 0.26) · 10−3 , (1.21)

while the current strong phases fits provide [31]

ϕε′
.
= −δ02 + π/2 = (42.3± 1.5)◦ ,

which is accidentally very close to the ε phase measured to be ϕε = (43.51 ±
0.05)◦. From theK → ππ decay widths and given the smallness of CP violation

effects it is also possible to extract the following information:

ω ≃ 1/22 .

The dominance of ∆I = 1/2 transitions over ∆I = 3/2 transitions, known as

the ∆I = 1/2 rule, is due to the strong interaction dynamics. However, our

limited ability to handle these effects at low energy have hampered a precise

theoretical computation of ω. In fact, the theoretical descriptions of the CP

violation parameters

ε = eiϕε sinϕε

(
ImM12

∆MK
+ ξ0

)
(1.22)

and

Re (ε′/ε) = − ω√
2|ε|

ξ0 (1− Ω) , (1.23)

where

Ω
.
=

1

ω

ImA2

ImA0
, (1.24)

are not in perfect agreement with experiment either. These discrepancies may

be appreciated by comparing the experimental measurements in Eqs.(1.21) with

their corresponding current theoretical determinations:

|ε|th = (1.81± 0.28) · 10−3 , (1.25)

taken from Ref. [32] and

Re

(
ε′

ε

)
th

= 1.9+1.1
−0.9 · 10−3 , (1.26)

taken from [33,34]. Regarding ε, the main theoretical issues are the calculation

of the A0 and M12
.
= ⟨K0|H∆S=2

W |K0⟩ matrix elements (the weak effective
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Fig. 1.2: Summary of the αs(Q) measurements versus the energy scale

Q. Figure taken from Ref. [17].

Hamiltonian H∆S=2
W is introduced in Eq.(1.30)). In the case of ε′, both A0 and

A2 (see the definition of Ω in Eq.(1.24)) amplitudes are equally important. The

theoretical investigation of these parameters is a perfect starting point to our

journey across the dynamics of FCNC in and beyond the SM. In particular,

this will allow us to present the main difficulties we will have to face during

our forthcoming study of s→ dγ.

1.3 Flavor Changing Neutral Currents

In the SM, flavor violating processes are governed by the weak interaction.

More precisely, only charged W exchange processes are able to produce flavor

violating transitions through the CKM matrix, see Eq.(1.13). Yet, in order to

get a complete description of these processes it is crucial to take into account

QCD effects as well. Unfortunately, these effects are as important as they

complicate the analysis of FCNC. The fundamental reason being that QCD is

not perturbative at low energy.

Due to quantum corrections, the strong coupling constant gs is subject to

renormalization: in a SU(NC) version of QCD with NF quark flavors a one-

loop perturbative computation shows that the strong coupling constant is given

by

αs(Q)
.
=
g2

4π
=

4π

β0 ln(Q2/Λ2
QCD)

with β0 = 11
NC
3

− 2
NF
3

, (1.27)
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where ΛQCD is determined once αs(Q) is measured at a given energy scale Q.

The current world average measurement, αs(MZ) = 0.1184(7), combined with

many other measurements shown in Fig.(1.2), confirms the running behavior

of αs predicted by the SU(3)C version of QCD. As a consequence, quarks are

asymptotically free [35,36]: the more the energy increases or, equivalently, the

more distances decrease, the less quarks feel strong interaction to the point

where they become asymptotically free as limQ→+∞ αs(Q) = 0. On the other

hand, the limit limQ→0 αs(Q) makes no sense since αs(Q) is computed through

perturbative methods, which are meaningful as long as αs(Q) is small enough.

We simply don’t know, from perturbative methods, how αs(Q) behaves at

energies below 1 GeV. This particular scale set the border between two different

regimes of QCD.

Above, the QCD coupling constant is small enough for perturbative techniques

based on quark and gluon description to apply. Below, we invoke the con-

finement conjecture to explain why quarks bound together to form hadrons

and we rely on non-perturbative techniques to make computations. This is, of

course, of high relevance regarding FCNC processes where physical observables

generally involve hadronic states such as pions, kaons or B-mesons. When con-

sidering such flavor violating processes, two different regimes must therefore be

taken into account: the short distances or high energy dynamics described in

terms of quarks and gluons and the low energy or long distances dynamics de-

scribed in terms of hadrons. While the former is handled by usual perturbative

methods, the latter requires the use of alternative methods.

1.3.1 At short distances

To illustrate the problem let us consider the Z-penguin diagrams displayed on

Fig.(1.3.a) that produce the ∆S = −1 local operators

QZq,i = 4
GF√
2

αem
π

λiC0(xi)(s̄γ
µγLd)(q̄γµγqq) with xi

.
=

m2
i

M2
W

, (1.28)

once the up-type quark ui and the W boson are integrated out1. The CKM

factors depend on the flavor of the quark which runs into the loop and appear

in the form of the product λi
.
= V ∗

isVid, while the Inami-Lim function C0 results

from the loop integration [37]. Even though it is one specific example, it turns

1We defined γq
.
= eq

[
γR + (1− sin−2 θW )γR

]
, eq being the electric charge of the q quark

in |e| unit and the Fermi constant has been introduced as

GF /
√
2

.
= g2/8M2

W .

.
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Fig. 1.3: FCNC represented by the Z penguins in the SM (a) and beyond

(b).

out that all the FCNC are loop induced in the SM. This particular feature,

proper to the SM, has important consequences on FCNC:

• They are non trivially suppressed. Their suppression is not only due to

the product of the loop factor with the relevant coupling constant, αem in

the case of the Z-penguin, it is also conditional to the Inami-Lim functions

abilities to break the GIM mechanism. In a world where mu = mc = mt,

the GIM mechanism would be fully effective since the unitarity of the

CKM matrix, that guaranties λu + λc + λt = 0, would force the sum of

the Z-penguins, as defined above, to vanish. FCNC inherit, therefore,

the strong hierarchy observed in the quark mass spectrum, through the

Inami-Lim functions, as well as in the CKM matrix, through the CKM

factors λi. Note that, in the particular case of the Z-penguin, C0(x) scales

like x as x→ ∞ and like x logx as x→ 0.

• While being CP conserving at long distances, they produce CP viola-

tion at short distances. This statement depends, of course, on the CKM

matrix parametrization. Following the standard parametrization, where

the CP violating phase enters the CKM entries as in Eq.(1.14), we have

Imλu = 0. In this particular convention, the CP violating components

of the FCNC are generated by heavy quark flavors loops (such as the

charm- and top-quark because Imλc = −Imλt ̸= 0 ) whilst the up-quark

loop is CP conserving.

• They provide well designed probes for NP as large enhancements com-

pared to their very suppressed SM predictions can be expected. Even if

NP tree-level induced FCNC are forbidden, they might still reveal non

SM contribution appearing as

C0(x) → C0(x) + δC0 ,

where the perturbation represents, for instance, a SUSY contribution to

the Z-penguin depicted by a green cross in Fig.(1.3.b). In that case, the

flavor violation originates from the squarks non-diagonal mass matrix.
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The FCNC efficiency to unravel NP is, however, conditional to their accurate

predictability in the SM at both short and long distances. Their proper and

systematic treatment at short distances proceeds through the Operator Product

Expansion (OPE) leading to the construction of effective weak Hamiltonians

of the form [38]

Heff =
GF√
2

∑
i

Ci(µ)Qi(µ) ,

where the effective operators Qi are weighted the by Wilson coefficients Ci.

The latter encode all the QCD and EW corrected evolution of the Wilson

coefficient taken at µ ≃ MW , where they are related to simple Inami-Lim

functions, down to lower µ scales. This perturbative approach does not only

include the sequential integration of degrees of freedom heavier than µ, but also

takes into account renormalization group effects inherent to the running of αs.

It is important to notice that at a given energy scale µ the Wilson coefficients

appear as mere effective coupling constants while the process dependencies

appear at the matrix element level. Namely, if we are interested in a A(i→ f)

decay amplitude, the effective Hamiltonian formulation tells us that

A(i→ f) = ⟨f |Heff |i⟩ =
GF√
2

∑
i

Ci(µ)⟨f |Qi(µ)|i⟩ , (1.29)

where the process dependent matrix elements ⟨f |Qi(µ)|i⟩ are still to be evalu-

ated and where the Wilson coefficients are determined regardless of what i and

f stand for.

|∆S| = 2 processes As a first example, we consider the |∆S| = 2 effec-

tive Hamiltonian responsible for s̄d → sd̄ transitions, which is of particu-

lar relevance for ε. Around the 1 GeV scale, only one effective operator

Q∆S=2 .
= (s̄γµγLd)(s̄γ

µγLd) matters and enters the corresponding effective

Hamiltonian as [38]

H∆S=2
W =

GF
(4π)2

M2
W

[
λ2cηcScc + λ2tηtStt + 2λcλtηctSct

]
×

×b(µ)Q∆S=2(µ) ,

(1.30)

where Sij are Inami-Lim functions and where the functions ηib(µ) equal one if

QCD is turned off. These corrections are given at NLO in Ref. [38] while NNLO

improvements of ηct and ηcc may be found in Refs. [39] and [32], respectively.

In the context of ε, a direct use of Eq.(1.30) leads to the theoretical prediction

|ε| = κεCεB̂K |Vcb|2λ2η̄
(
|Vcb|2|(1− ρ̄)ηttStt + ηctSct − ηccScc

)
(1.31)

= (1.81± 0.28) · 10−3 according to [32] , (1.32)
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where κε accounts for both ϕε and ξ0 and where Cε is a numerical constant. For

more details, see Ref. [40]. The non-perturbative parameter B̂K parametrizes,

for its part, the hadronic matrix element

B̂K
.
=

3

2
b(µ)

⟨K0|Q∆S=2(µ)|K0⟩
F 2
KM

2
K

,

where FK andMK denote the decay constant and the mass of the neutral kaon,

respectively. The low value of Eq.(1.32) has generated some concerns about

possible NP contributions needed to accommodate its experimental determi-

nation [40, 41] quoted in Eq.(1.21). It should, however, be noticed that this

theoretical prediction relies on improving results from both K and B sector

and on partial long distances computations. In particular, the CKM entry Vcb
is not well known as it may currently sit somewhere in between 38.7 · 10−3

and 42.6 · 10−3, see Ref. [17]. Since Vcb enters ε at the fourth power, it has

a huge impact on |ε|th. In our opinion and for the time being, |ε|th does not

point towards an NP manifestation. In fact, using the 2013 updated inputs

used by the CKMFitter collaboration given in Ref. [28] where, in particular,

the inclusive value |Vcb| = (41.15 ± 0.33 ± 0.59) · 10−3 is stable under the fit,

we actually find

|ε|th = (1.96± 0.25) · 10−3 ,

which is in better agreement with the experimental measurement. While Lat-

tice determinations of the non-perturbative B̂K parameter seem to converge

right below its upper bound predicted at Large-NC [42,43], i.e. B̂K = 3/4, we

must also wonder about the long distances contributions to ε estimated by κε
(for a review see e.g. Ref. [44]). These corrections originate, in particular, from

the |∆S| = 1 parameter ξ0 defined in Eq.(1.24) whose estimation remains very

challenging.

|∆S| = 1 processes Following the OPE approach, the study of ξ0 as well

as ε′ starts with the construction of the H∆S=1
W effective Hamiltonian, which

encodes the |∆S| = 1 short-distance dynamics. Around µ ≃ 1 GeV, it is

expanded over ten effective four-quark operators:

H∆S=1
W = 4

GF√
2

10∑
i=1

Ci (µ)Qi (µ) . (1.33)

The first two represent QCD corrected current-current operators [45,46]

Q1 = (s̄αγµγLuβ)(ūβγ
µγLdα) and Q2 = (s̄γµγLu)(ūγ

µγLd) ,
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where Greek indexes stand for color. The next four operators

Q3 = (s̄γµγLd)(q̄γ
µγLq) , Q4 = (s̄αγµγLdβ)(q̄βγ

µγLqα) ,

Q5 = (s̄γµγLd)(q̄γ
µγRq) , Q6 = (s̄αγµγLdβ)(q̄βγ

µγRqα) ,

where a sum over the light flavors q = u, d, s is understood, emerge from the

Fierz decomposition of the QCD penguin operator [47], while the last four,

given by

Q7 =
3

2
(s̄γµγLd)(q̄eqγ

µγRq) , Q8 =
3

2
(s̄αγµγLdβ)(q̄βeqγ

µγRqα) ,

Q9 =
3

2
(s̄γµγLd)(q̄eqγ

µγLq) , Q10 =
3

2
(s̄αγµγLdβ)(q̄βeqγ

µγLqα) ,

correspond to the Fierz decomposition of the EW penguins. To these ten

operators correspond ten Wilson coefficients conventionally decomposed as

Ci(µ)
.
= λuzi(µ) − λtyi(µ), which are calculable perturbative quantities as

long as µ is above the 1 GeV scale. They can be found at various scales in

Ref. [38], for instance.

A straightforward application of this |∆S| = 1 operator product expansion in

the context of the K → ππ decay amplitudes leads to the usual expressions for

ξ0 ≃ − GF√
2ReA0

Imλty6(µ)⟨Q6(µ)⟩0

and

ε′

ε
≃ GFω

2|ε|ReA0
Imλt

[
y6⟨Q6⟩0 −

1

ω
y8⟨Q8⟩2

]
, (1.36)

where only the dominant contributions have been kept. These are the QCD

⟨Q6(µ)⟩0
.
= 4⟨ππ0|Q6(µ)|K0⟩ and EW ⟨Q8⟩2

.
= 4⟨ππ2|Q8|K0⟩ penguins contri-

butions. In order to get precise predictions for both ε and ε′, these hadronic

matrix elements (together with other sub-leading contributions) are still to

be evaluated. This is in fact a huge problem as nobody knows how to deal

with such non-perturbative quantities. Two main kinds of attempts have been

offered so far: effective approaches (such as 1/NC-expansion or Chiral Pertur-

bation Theory) or Lattice calculations. While the QCD penguin remains a

big challenge for all these non-perturbative approaches (for a review see e.g.

Ref. [48]), some recent progress in Lattice calculation regarding the determi-

nation of ⟨Q8⟩2, published in Ref. [49], should be noticed. Yet, a further com-

plication occurs in ε′: a destructive interference appears between two poorly

known quantities, which, unfortunately, turn out to be of similar size. On the

one hand, the EW contribution to ε′, naively expected to be suppressed with
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Fig. 1.4: The flavor-changing electromagnetic currents in the Standard

Model.

respect to the QCD one, is enhanced by the ∆I = 1/2 rule, see the ω−1 factor in

Eq.(1.36), and, on the other hand, isospin breaking effects tend to confuse the

QCD contribution as it should in fact be re-scaled as ⟨Q6⟩0 → ⟨Q6⟩0(1−Ωiso)

in ε′ where, according to Ref. [50], Ωiso = 0.06± 0.08.

In conclusion, even though the evaluation of hadronic matrix elements is im-

proving, the current situation is such that precise theoretical determination of

ε and ε′ are still out of reach. However, we will show in the present thesis that

phenomenological links with radiative kaon decays might be used to improve

the current situation.

Radiative |∆S| = 1 processes In order to generalize H∆S=1
W to include

radiative processes, we have to supplement it with the single photon penguin

of Fig.(1.4.a). When QCD is turned off, and ms,d ≪ mu,c,t, this is achieved by

adding the local effective interactions of dimension greater than four

Hγ
eff = C±

γ Q
±
γ + C±

γ∗Q±
γ∗ + h.c. (1.37)

to H∆S=1
W . The magnetic and electric operators are defined by

Q±
γ =

Qde

16π2
(s̄Lσ

µνdR ± s̄Rσ
µνdL)Fµν , (1.38a)

Q±
γ∗ =

Qde

16π2
(s̄Lγ

νdL ± s̄Rγ
νdR) ∂

µFµν , (1.38b)

where 2σµν = i[γµ, γν ] and Qd = −1/3 is the down-quark electric charge. For

a real photon emission only the magnetic operators contribute. Indeed, in this

particular case, the electric operators are proportional to ∂µFµν = 0. The

corresponding Wilson coefficients are [38]

Qd(C
+
γ ± C−

γ ) =
√
2GFλiD

′
0 (xi)md(s) , (1.39)

and

Qd(C
+
γ∗ + C−

γ∗) = −2
√
2GFλiD0 (xi) , Qd(C

+
γ∗ − C−

γ∗) ≃ 0 , (1.40)
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where D
(′)
0 are two new Inami-Lim functions detailed in Ref. [38], for instance.

While D0(x) breaks GIM logarithmically both for x→ ∞ and x→ 0, D′
0(x) is

suppressed for light quarks. However, QCD corrections significantly soften the

quadratic GIM breaking of D′
0(x) in the x → 0 limit [51–53], and exacerbate

the logarithmic one of D0(x) [54], making light-quark contributions significant

for both operators. The evolution of these Wilson coefficients in the context

of the s → dγ effective Hamiltonian is not known. The reason being that

the community has focused on s → d transitions, relevant for non-radiative

kaon decays, for which, Q±
γ(∗) operators are irrelevant [55]. Yet, numerically,

to account for the large QCD corrections, the well known Wilson coefficient

of the magnetic operator in b → sγ can be used for ImC±
γ , since the CKM

elements for the u, c and t contributions scale indeed similarly. With ms(2

GeV) = 101+29
−21 MeV [17] and C7γ(2GeV) ≃ −0.36 from Ref. [38], we shall,

therefore, use2

ImC±
γ (2 GeV)SM

GFmK
= ∓

√
2
C7γ(2GeV)

Qd

ms(2 GeV)

mK
Imλt

= ∓0.31(8)× Imλt , (1.41)

to be compared to ∓0.17 Imλt with only the top quark. In view of the large

error on ms, the LO approximation is adequate. For ReC±
γ , contrary to the

situation in b→ sγ, the top quark is strongly suppressed as Reλc ≈ −Reλu ≫
Reλt. With the light quarks further enhanced by QCD corrections, an estimate

is delicate. Naively rescaling the above result gives

ReC±
γ (2 GeV)SM

GFmK
≃ Reλc

Imλc
×

ImC±
γ (2 GeV)SM

GFmK
≃ ∓0.06 . (1.42)

Evidently, one should not take this as more than a rough estimate of the order

of magnitude of the c quark and high-virtuality u quark contributions. In any

case, we will be mostly concerned by CP-violating observables in the following,

so we will not be using Eq.(1.42).

With the help of the standard QED interactions, the Hγ
eff operators also con-

tribute to processes with more than one photon, where they compete with the

effective operators directly involving several photon fields. For example, for

two real photons, the dominant operators are

Q±
γγ,|| = (s̄LdR ± s̄RdL)FµνF

µν , Q±
γγ,⊥ = (s̄LdR ± s̄RdL)Fµν F̃

µν , (1.43)

with F̃µν = εµνρσFρσ/2. In the SM, the additional quark propagator in the

two-photon penguin induces an x−1 GIM breaking by the loop function (see

2For convenience, the same normalization by GFmK will be adopted throughout this

work. Also, if not explicitly written, the C±
γ are always understood at the µ = 2 GeV scale.
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Fig.1.4.b). Hence, the c and t-quark contributions are completely negligible

compared to the u-quark loop. Therefore, whenever it contributes, the dou-

ble photon penguin represents an irreducible CP-conserving long-distance SM

background for the SD processes. Indeed, NP effects in these operators should

be very suppressed since they are at least of dimension seven. The same is true

for transitions with more than two photons, with the NP (up-quark loop) even

more suppressed (enhanced). Therefore, those will not be considered here.

1.3.2 At long distances

Having presented the short-distance dynamics of the FCNC considered in this

work, it is time to wonder about their challenging long-distance dynamics.

Since the QCD confinement is such that colored quark always bound into

hadrons, qq̄ bound states called mesons or qqq bound states called baryons,

the question is: how to go from a description of QCD based on quarks and

gluons to a description based on hadronic states ?

Strong sector For the lightest meson spectrum made of u, d and s quark

one of the possibilities, which will be the one used in the present work, is to

rely on Chiral Perturbation Theory (ChPT). This effective description is based

on the approximate global chiral symmetry of QCD. In the massless or chiral

limit, the QCD Lagrangian truncated to the u, d and s quarks enjoys a global

U(3)L ⊗ U(3)R chiral symmetry acting in the (u, d, s) flavor space defined by

ψL,R → gL,RψL,R with gL,R ∈ U(3)L,R .

Beyond the classical level, this chiral symmetry is too large since, even in the

chiral limit, anomalous quantum effects break it into SU(3)L⊗SU(3)R⊗U(1)V
[56–58]. In the following we will leave aside the vectorial U(1) associated with

the baryon number as it will not concern us. On the other hand, some aspects of

the U(1)A anomaly will be investigated in chapter 4. The remaining SU(3)L⊗
SU(3)R chiral symmetry is still too large as it would imply a parity degenerated

hadronic spectrum. The non observation of such a spectrum suggests that

SU(3)L⊗SU(3)R is, in fact, spontaneously broken into its vectorial subgroup,

SU(3)V . In the context of the BEH mechanism, the spontaneous breaking of

the electroweak symmetry is insured by the Higgs field vev. In the present case,

no particular field seems to play the same role. Yet, the required spontaneous

symmetry breaking might as well be produced by the vev of a composite fields,

represented by composite operators Oa (one for each broken axial generator

QaA). Of course, in order to preserve all the unbroken symmetries, the operators
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Oa are not arbitrary: they must be Lorentz and color singlets. The simplest

choices are obviously the axial densities Oa .
= ψγ5λ

aψ and a condition for the

spontaneous chiral symmetry breaking to actually happen might be

⟨0|
[
QaA,Ob

]
|0⟩ = −2

3
δab⟨0|ψψ|0⟩ ̸= 0 .

This condition is, indeed, fulfilled if QaA|0⟩ ≠ 0, which is the explicit manifesta-

tion of a spontaneous symmetry breaking. In conclusion, the quark condensates

⟨0|uu|0⟩ = ⟨0|dd|0⟩ = ⟨0|ss|0⟩ ̸= 0

might play the role of the order parameter (or vev) of the chiral symmetry

breaking. If so, the Goldstone theorem predicts the existence of eight massless

scalar particles sharing the quantum numbers of the broken axial generators

QaA. These Golstone Bosons (GB) ϕa fields are collected in a unitary matrix

[59,60], which transforms under SU(3)L ⊗ SU(3)R as

U(ϕ) → gRU(ϕ)g†L ,

where ϕ
.
=
∑
a ϕ

aλa is a generic SU(3) matrix. Without loss of generality, U

may be expanded as

U = 1 +
∞∑
n=1

an

(
i
√
2
ϕ

F

)n
where F is normalized such that a1 = 1. The remaining expansion parameters

are restricted by the unitarity of U to assume the following values

a2 = 1/2, a3 = b, a4 = b− 1/8, · · · ,

where the real parameter b is arbitrary and, therefore, not physical. It indicates

the freedom we have for the U matrix parametrization [61, 62]. For instance,

the usual exponential parametrization is recovered for b = 1
6 . The key point

here is that we have at our disposal an octet of light pseudo-scalars, namely,

the three pions (π±, π0), the four kaons (K±,K0,K0) and the η, which might

be considered as the GB of the spontaneous chiral symmetry breaking of QCD

and, which enter the U matrix as

ϕ =

 π0 + η8√
3

√
2π+

√
2K+

√
2π− −π0 + η8√

3

√
2K0

√
2K− √

2 K0 − 2√
3
η8

 . (1.44)

The dynamics of these GB is described by an effective Lagrangian whose con-

structing rules are simple [63,64]: it must contain all the terms allowed by the
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assumed symmetry, here SU(3)L ⊗ SU(3)R, built from the relevant asymp-

totic states, here U . This Lagrangian produces then the most general S matrix

compatible with analyticity, perturbative unitarity, cluster decomposition and

underlying symmetries. Given the unitarity of U , the simplest term we can

construct is f2⟨∂µU∂µU†⟩ where f is an undetermined mass scale and ⟨· · ·⟩ de-
notes the trace over flavors. Expanding it up to O(ϕ2), canonical kinetic terms

emerge for all the ϕa if f = F/
√
2 and the corresponding effective Lagrangian

reads

Ls =
F 2

4
⟨∂µU∂µU†⟩ . (1.45)

This Lagrangian is too minimal: it does not include SU(3)V breaking mass

terms present in the fundamental QCD Lagrangian and it does not contain all

possible chiral invariant operators. As the number of such operators is infinite,

we will come back to this issue once a classification scheme will be introduced.

For now, let us handle the former issue.

Ls can be generalized in a generic way by gauging its SU(3)L ⊗ SU(3)R sym-

metry in order to introduce the external fields ℓµ, aµ and s transforming as

ℓµ → gLℓµg
†
L + igL∂µg

†
L, rµ → gRrµg

†
R + igR∂µg

†
R, s→ gRsg

†
L .

These external sources enter Ls either through the covariant derivative

∂µU → DµU
.
= ∂µU − irµU + iUℓµ

or as extra terms collected in the generalized effective Lagrangian

L(2)
s =

F 2

4
⟨DµUD

µU† + χ†U + U†χ⟩ with χ
.
= 2B0s . (1.46)

It is now a child-play to introduce the required SU(3)V breaking mass term

by freezing the external field s to diag(mu,md,ms). This explicit symmetry

breaking will be effective provided that the mass parameter B0 ̸= 0. This

condition is, in fact, insured by the spontaneous chiral symmetry breaking

pattern introduced above. Indeed, because the density ψ
j
ψi is obtained from

the variation of the mass term of the fundamental QCD Lagrangian as ψ
j
ψi =

−δL/δsij , its effective realization is given by

ψ
j
ψi → −δL

(2)
s

δsij
= −F

2

2
B0

[
U + U†]ij , (1.47)

from which the simple relation

B0 = −⟨0|ψψ|0⟩
F 2

̸= 0 (1.48)
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follows. The corresponding pseudo-scalar mass spectrum can be carried out

from the non derivative quadratic terms in ϕ of L(2)
s with the result

m2
π± = 2m̂B0, m2

π0 = 2m̂B0 +O((mu −md)
2) , (1.49a)

m2
K± = (mu +ms)B0, m2

K0 = (md +ms)B0 , (1.49b)

whilst the η8 mass fullfilled the Gell-Mann-Okubo relation

m2
η8 =

1

3

(
4m2

K −m2
π

)
+O(mu −md) . (1.50)

The external fields introduced above allow the calculation of other hadronic

currents as well. For instance, the left- and right-handed hadronized quark

currents are obtained from the following variations

JµL
.
=
δL(2)

s

δℓµ
= i

F 2

2
DµU†U , (1.51a)

JµR
.
=
δL(2)

s

δrµ
= i

F 2

2
DµUU† . (1.51b)

In particular, we may now evaluate the following transition matrix

⟨0|JµA(0)|ϕ
a(p)⟩ .= ⟨0|JµL(0)− JµR(0)|ϕ

a(p)⟩ .= i
√
2Fpµ , (1.52)

where the meaning of F is now explicit: it represents the decay constant of the

pseudo-scalar ϕa, which is unique and may be identified with the pion one, i.e.,

F = Fπ = 92.3 MeV . (1.53)

Let us now address the second issue of Ls by noting that the mass spectrum and

decay constants found so far are valid at the leading order (LO) in the chiral

expansion. This expansion constitutes a power counting scheme in which all

possible terms entering the strong effective Lagrangian are classified according

to their dimension p2n, where p indicates one power of derivative or (equiva-

lently) one power of mass. Since they are derived from the L(2)
s , which involves

at most O(p2) operators, the mass spectrum in Eqs.(1.49) and (1.50), as well

as the decay constant given in Eq.(1.53), are O(p2) or LO results. However, in

principle, we cannot discard chiral symmetric terms like ⟨DµUD
µU†⟩2, which

involve four derivatives nor terms built from the field strength tensors

FµνX
.
= ∂µxν − ∂νxµ − i [xµ, xν ] with x = ℓ, r ,

which due to the Lorentz invariance, will be of at least O(p4). In fact, any

hadronic amplitude may be expanded in power of p up to a given order pdχ
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where dχ
.
= 2n is called the chiral dimension of the amplitude. It has been

shown by Weinberg that the chiral dimension of an amplitude built up from a

connected L-loop diagram with Vd vertices of order pd is [63]

dχ = 2 + 2L+
∑
d

(d− 2)Vd ,

where d assumes only non zero natural even values because of Lorentz invari-

ance3. Consequently, dχ = 2 amplitudes are built up from tree-level diagrams

involving O(p2) vertices only, while dχ = 4 amplitudes originate from either

one-loop diagrams with only O(p2) vertices or tree-level diagrams involving one

O(p4) vertex.

As p2 scales typically like m2
K,π in ChPT, an expansion in this parameter seems

to be appropriate. Yet, to get an naive idea of the relative size of O(p4) and

O(p2) contributions, we may easily realize that a one-loop amplitude will drag

a typical (4πFπ)
−2 loop factor. Taking the typical energy scale of this loop

amplitude at or below mK , the natural energy scale for a ChPT calculation,

the chiral expansion parameter is

m2
K

(4πFπ)2
≃ 20% .

Even though this estimate is quite naive, as it does not even take into account

possible large chiral logarithms, it shows that O(p4) corrections might indeed

be important. It is even more true as some amplitudes start at that order. It

is, therefore, desirable to extend L(2)
s up to O(p4) by supplementing it with all

possible O(p4) operators.

The O(p4) effective QCD Lagrangian is divided into two distinct sectors. The

first contains a minimal set of O(p4) chirally invariant operators derived in

Ref. [65] and presented in App.B.1. The structure of these effective operators

is dictated by the chiral counting rules and the chiral symmetry properties

of the underlying theory. The renormalized counter-terms Li, which multiply

these operators, cannot be computed from first principles. Instead, they have

to be fixed experimentally, exactly like the O(p2) constants F . The correspond-

ing NLO mass spectrum and decay constants are analyzed in App.C.1. The

second sector is particular since it originates from a parity symmetry mismatch

between the fundamental QCD Lagrangian and its effective realization. As this

Lagrangian will only play a minor role in the present work, we refer the reader

to App.B.2 and Refs. [66, 67] for further details.

3Note that the chiral dimension of χ is 2, see Eq.(1.46) and (1.48).
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Electroweak sector The effective description of the EW interaction follows

the exact same lines already used to construct the strong effective Lagrangian.

The only difference here is that, by nature, the EW interaction violates the

chiral symmetry. Consequently, at low energy, they are represented by hadronic

operators which share the chiral symmetries of the corresponding weak effective

Hamiltonian. In the context of this thesis, we are interested in the |∆S| = 1

interactions given in Eq.(1.33) and the radiative |∆S| = 1 interactions given in

Eq.(1.37). Let us first investigate the four-quark weak operators.

By inspecting the chiral structure of the operators in Eq.(1.33), we conclude

that the |∆S| = 1 effective Hamiltonian belongs to the U(3)L ⊗ U(3)R direct

sum

(8L, 1R)⊕ (27L, 1R)⊕ (8L, 8R) . (1.54)

The first two pure left-handed multiplets embody the current-current, the QCD

penguin and the EW operators Q9 and Q10, while the third multiplet encodes

the EW penguin operators Q7 and Q8. Note also that the effective Hamiltonian

in Eq.(1.33) satisfies an additional symmetry [68] called the CPS symmetry

which combines the CP symmetry and the exchange of the d and s quarks. This

symmetry will be implicitly taken into account in the following. In App.B.3 it

is shown that by matching their chiral structures, the four-quark weak current-

current and penguin operators are represented at LO by [61,62]

L8 = F 4G8⟨λ6LµLµ⟩ , (1.55a)

L27 =
F 4

18
G

1/2
27 (⟨λ1Lµ⟩⟨λ4Lµ⟩+ ⟨λ2Lµ⟩⟨λ5Lµ⟩−

− 10⟨λ6Lµ⟩⟨λ3Lµ⟩+ 18⟨λ6Lµ⟩⟨QLµ⟩+

+
5F 4

18
G

3/2
27 (⟨λ1Lµ⟩⟨λ4Lµ⟩+ ⟨λ2Lµ⟩⟨λ5Lµ⟩+

+ 2⟨λ6Lµ⟩⟨λ3Lµ⟩) ,

(1.55b)

Lew = F 6e2Gew⟨λ6U†QU⟩ , (1.55c)

where Lµ
.
= U†DµU and G27 ≡ G

3/2
27 = G

1/2
27 in the isospin limit. If QCD was

perturbative down to the hadronic scale, the low-energy constants G8, G27 and

Gew could be computed from the Wilson coefficients at that scale. However, the

ChPT scale is too low for this to be possible. Instead, the low-energy constants

are fixed from experiment, especially from K → ππ branching ratios, see e.g.

Ref. [69]. The corresponding O(p4) Lagrangians are presented in Eqs.(B.16),

(B.17) and (B.18) of App.B.3.2. These Lagrangians are not the most general

ones but they are complete enough in the context of the present work.
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Regarding radiative decays, if L8, L27, or Lew contribute at three-level, it is

only through bremsstrahlung amplitudes [70–72]. The dynamics is therefore

trivial at O(p2) because Low’s theorem [73] shows that such emissions are

entirely fixed in terms of the non-radiative amplitudes. Thus, the non-trivial

dynamics corresponding to the low-energy tails of the photon penguins arise at

O(p4), where they are represented in terms of non-local meson loops, as well as

additional O(p4) local effective interactions, which are detailed in App.B.3.2.

The set of interactions included within ChPT is complete, in the sense that all

the possible effective interactions with the required symmetries are present at

a given order. So, it may appear that at O(p4), once the weak interactions in

Eq.(1.55) are added to the strong dynamics of Eq.(1.46), and including the weak

counter-terms presented in Eq.(B.16), (B.17) and (B.18), there is no more need

to separately include the SD electromagnetic operators of Eq.(1.37). All their

effects would be accounted for in the values of the low-energy constants. In-

deed, these constants should sum up the physics taking place above the mesonic

scale, i.e. the hadronic degrees of freedom just above the octet of pseudoscalar

mesons [74, 75] as well as the quark and gluon degrees of freedom above the

GeV scale [76, 77]. This actually holds for Q±
γ∗ , but not for Q±

γ . Indeed, only

the former have the same chiral structures as the weak counter-terms. When-

ever Q±
γ∗ contribute, so do the weak counter-terms, but Q±

γ can contribute to

many modes where the weak counter-terms are absent (see Tab.2.1 in the next

chapter). The Q±
γ operators must therefore appear explicitly in the effective

theory.

Before going through their hadronization, let us first notice that the mismatch

between the effective weak Lagrangians of Eqs.(1.55) and Q±
γ operators has

an important dynamical implication since the weak counter-terms reflect the

chiral structures of the meson loops built on the Q1,...,10 operators at O(p4).

While the meson loops can genuinely represent the low-energy tail of the virtual

photon penguin, i.e. the log(xu) singularity of the D0(x) function, they never

match the chiral representation of Q±
γ . The meson dynamics lacks the required

ms,d chirality flip at O(p4), relying instead on the long-distance dynamics, i.e.

momenta. One can understand this phenomenon as the low-energy equivalent

of the known importance of the Qc2 = (s̄c)V−A ⊗ (c̄b)V−A contribution to b→
sγ [51–53]. Clearly, s→ dγ has to be even more affected than b→ sγ by QCD

corrections since the photon is never hard (q2γ < m2
K). So for s→ dγ, the Qu2 =

(s̄u)V−A⊗ (ūd)V−A contribution, represented through Q1,...,10, corresponds to

a whole class of purely long-distance processes, often including IR divergent

bremsstrahlung radiations. They are not suppressed at all, contrary to the

naive expectation from D′
0(x) → x as x→ 0, but instead dominate most of the
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radiative processes4. Furthermore, the meson loops are always finite at O(p4),

except for K1 → π+π−π0γ(γ) [70]. This means that not only the SD part of

the magnetic operators decouples, but also to some extent the intermediate

QCD degrees of freedom. By contrast, the weak counter-terms combinations

occurring for the modes induced by Q±
γ∗ are always scale dependent, somewhat

reminiscent of the factorization of the low-energy part of the virtual photon

penguin. From these observations, we can reasonably expect that whenever a

finite combination of weak counter-terms occurs for a process with only real

photons, it should be significantly suppressed. Indeed, not only the divergences

cancel among the weak counter-terms, but also the large Q±
γ∗ contribution

embedded into them (this was already noted using large NC arguments in

Ref. [79]), as well as the resonance effects describing the purely strong structure

of the photon. As our analysis of K+ → π+π0γ in Chapter 2 will show, this

suppression is supported by the recent experimental data, see Eq. (2.9).

Let us now tackle the chiral realization of the tensor currents in Q±
γ which starts

at O(p4) since two derivatives are needed to get the correct Lorentz structure.

Further, it cannot be entirely fixed but involves specific low-energy constants.

By imposing charge conjugation and parity invariance (valid for QCD), the

antisymmetry under µ ↔ ν, and the identity iεαβµνσµν = 2σαβγ5, only two

free real parameters aT and a′T remain (parts of these currents were given in

Refs. [80, 81])

q̄IσµνγLq
J = −iF

2

2
aT
(
DµU

†DνUU
† −DνU

†DµUU
†−

−iεµνρσDρU†DσUU†)JI+
+
F 2

2
a′T ((F

L
µν − iF̃Lµν)U

† + U†(FRµν − iF̃Rµν))
JI ,

(1.56a)

q̄IσµνγRq
J = −iF

2

2
aT
(
DµUDνU

†U −DνUDµU
†U+

+iεµνρσD
ρUDσU†U

)JI
+

+
F 2

2
a′T (U(FLµν + iF̃Lµν) + (FRµν + iF̃Rµν)U)JI .

(1.56b)

Numerically, we will use the lattice estimate [82]

BT (2 GeV) = 2mKaT = 1.21(12) . (1.57)

Being derived from a study of the ⟨π|s̄σµνd|K⟩ matrix element, SU(3) correc-

tions are under control. A similar estimate of B′
T = 2mKa

′
T is not available

4By comparison, though the Inami-Lim function C0(x) for the Z penguin scale like D′
0(x)

in the x → 0 limit, this behavior survives to QCD corrections, and the light-quark contribu-

tions are very suppressed, see Ref. [78].
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yet. Instead, we can start from ⟨γ|ūσµνγ5d|π−⟩ and invoke the SU(3) sym-

metry. Ref. [83], through a study of the V T correlator, gets a′T = B0/M
2
V

and thus B′
T = 2.7(5), assuming the standard ChPT sign conventions for the

matrix elements. Another route is to use the magnetic susceptibility of the

vacuum, ⟨0|q̄σµνq|0⟩γ . From the lattice estimate in Ref. [84], we extract using

a′T = −χTB0/2 the value B′
T (2 GeV) = 2.67(17). Both techniques give sim-

ilar results though their respective scales do not match. In addition, sizeable

SU(3) breaking effects cannot be ruled out since there is no Ademollo-Gatto

protection for the tensor currents. So, to be conservative, we shall use

B′
T (2 GeV) = 2mKa

′
T = 3(1) . (1.58)

At O(p4), the magnetic operators contribute to decay modes with at most two

photons. With the chiral suppression expected for higher order terms, decays

with three or more (real or virtual) photons should have a negligible sensitivity

to Q±
γ , hence are not included in our study. Note finally that since in the SM

the local operators sum up the short-distance part of the real photon penguins,

the factor ms,d ∼ O(p2) in Eq.(1.39) are not included in the bosonization.

Instead, they are kept as perturbative parameters in the Wilson coefficients

C±
γ , to be evaluated at the same scale as the form factors BT and B′

T .

Let us conclude this chapter by summarizing the anatomy of the s→ dγ process

in the SM and beyond by the Fig.(1.5).
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Chapter 2
s → dγ in the SM

From general considerations developed in chapter 1, the best windows to probe

the s → dγ decays are, in the present chapter, identified. These observables

are then analyzed in details in the SM and beyond. Particular attention is paid

to their sensitivity to short-distance effects and, thereby, to possible NP con-

tributions. In the presence of NP, new mechanisms could produce the s → dγ

transition. Since the NP energy scale is presumably above the electroweak

scale, these effects would simply enter into the Wilson coefficients of the same

effective local operators (1.37). This is the shift we want to extract phenomeno-

logically. In this respect, the magnetic operators are, a priori, most sensitive

to NP for two reasons. Firstly, the electric transition is essentially left-handed

and the magnetic operators are very suppressed in the SM because right-handed

external quarks (s, d)R are accompanied by the chiral suppression factor ms,d.

These strong suppressions may be lifted in the presence of NP, where larger

chirality flip mechanisms can be available. Secondly, the magnetic operators

are formally of dimension five and are thus, a priori, less suppressed by the

NP energy scale than the dimension six electric operators. Sizeable NP effects

could, therefore, show up, as will be quantitatively analyzed in chapter 3.

2.1 Phenomenological windows

TheK decay channels where the electromagnetic operators contribute are listed

in Tab.(2.1), together with their CP signatures. For the electric operators, at

least one of the photons needs to be virtual, i.e. coupled to a Dalitz pair ℓ+ℓ−.
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⊥ || –

K2 → γγ a′
T ReC+

γ ImC−
γ –

K2 → π0γγ a′
T ImC−

γ ReC+
γ –

K+ → π+γγ 3aT + a′
T C−

γ C+
γ –

K2 → π0π0γγ a′
T ReC+

γ ImC−
γ –

K2 → π+π−γγ aT , a
′
T ReC+

γ ImC−
γ –

K+ → π+π0γγ aT , a
′
T C+

γ C−
γ –

K2 → 3π0γγ a′
T ImC−

γ ReC+
γ –

M E L

K2 → π0γ aT – – ImC+

γ(∗)

K+ → π+γ aT – – C+

γ(∗)

K2 → π0π0γ aT – – ReC−
γ(∗)

K2 → π+π−γ aT ReC+
γ ImC−

γ ReC−
γ(∗)

K+ → π+π0γ aT C+
γ C−

γ C−
γ(∗)

K2 → 3π0γ aT – – ImC+

γ(∗)

Tab. 2.1: Dominant processes where the electromagnetic operators con-

tribute, omitting the K → (nπ)γ∗γ(∗), n ≥ 0 decays. The K1 ≃ KS

processes are obtained from K2 ≃ KL by inverting real and imaginary

parts. The symbol ⊥ (||) means the photon pair in an odd (even) parity

state, i.e. a Fµν F̃
µν (FµνF

µν) coupling, and similarly, M (E) means odd

(even) parity magnetic (electric) emissions. For ππ modes, the lowest mul-

tipole is understood (i.e., ππ in a S wave for γγ modes, and a P wave for γ

modes). The last column denotes longitudinal off-shell photon emissions,

proportional to q2gαβ − qαqβ with q the photon momentum, for which the

Q±
γ∗ operators also enters. The K → 3πγ(γ) decays with charged pions

are not included since they are dominated by bremsstrahlung radiations

off K → 3π [70]. Finally, aT and a′T are the low-energy constants entering

the tensor current (1.56).

In this respect, we note that all the electromagnetic operators produce the ℓ+ℓ−

pair in the same 1−− state, so the electric and magnetic operators can only

be disentangled using real photon decays. For most of the decays in Tab.(2.1),

the LD contributions are dominant, obscuring the SD parts where NP could

be evidenced. The situation is, thus, very different from b → sγ, where the

u quark contribution is suppressed by Vub ≪ 1. However, in K physics,

the long-distance contributions are essentially CP-conserving. Indeed, CP-

violation from the four-quark operators is known to be small from Re(ε′/ε)exp.

In the SM, this follows from the CKM scalings Reλu ≫ Reλt ∼ Imλt and

Imλu = 0. So, for CP-violating observables, one recovers a situation reminis-

cent of b → sγ, with the dominant SM contributions arising from the charm
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and top quarks, both of similar size a priori. Only for such observables can we

hope that the interesting short-distance physics in Q±
γ and Q±

γ∗ emerges from

the long-distance SM background.

All the decays in Tab.(2.1) have a CP-conserving contribution and, thus, in

most cases the best available CP-violating observables are CP-asymmetries.

Since they arise from CP-odd interferences between the various decay mecha-

nisms, the dominant CP-conserving processes must be under sufficiently good

theoretical control. In addition, these CP-asymmetries being usually small,

the decay rates should be sufficiently large and not completely dominated by

bremsstrahlung radiations. Indeed, even though these radiations are under ex-

cellent theoretical control, thanks to Low’s theorem [73], they would render the

short-distance physics too difficult to access experimentally.

Imposing these conditions on the modes in Tab.(2.1), the best windows for the

electromagnetic operators are:

• Real photons: Since the branching ratios decrease as the number of pions

increases, the best candidates to constrain Q±
γ are the KL,S → γγ decays

for two real photons and the K → ππγ decays for a single real photon.

All the other modes with real photons are either significantly more sup-

pressed (see e.g. Refs. [71, 80] for a study of K → πγγ), or dominated

by bremsstrahlung contributions. By contrast, these radiations are sup-

pressed for KL → π+π−γ since KL → π+π− is CP-violating, and for

K+ → π+π0γ thanks to the ∆I = 1/2 rule. The relevant CP-violating

asymmetries are either those between KL−KS decay amplitudes, or be-

tween K+ − K− differential decay rates or finally in some phase-space

variables. This latter possibility usually requires some additional infor-

mation on the photon polarization, accessible for example through Dalitz

pairs. But, besides the significant suppression of the total rates, this

brings in the electric operators, making the analysis much more involved,

so these observables will not be considered here (see e.g. Refs. [85–88]).

• Virtual photons: The best candidates to probe the electric operators are

the KL → π0ℓ+ℓ− (ℓ = e, µ) decays, for which KL → π0γ∗[→ ℓ+ℓ−]

is CP-violating and, hence, free of the up-quark contribution (see e.g.

Ref. [89]). As detailed in Sec. 2.2.3 (see Fig.(2.4)), there are, nevertheless,

an indirect CP-violating piece from the small εK2 component of the KL

and a CP-conserving contribution from the four-quark operators with two

intermediate photons. These contributions are, however, suppressed and

under control [90,91]. The direct CP-asymmetry in K± → π±ℓ+ℓ− is not

competitive because of its small ∼ 10−9 branching ratio and because of
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the hadronic uncertainties affecting the long-distance contributions [54,

92]. With KL → π0ℓ+ℓ− sensitive to Q+
γ∗ , information on Q−

γ∗ would

also be needed to disentangle the left and right-handed currents. But

since ⟨γ|Q−
γ∗ |K0(q)⟩ ∼ qνqµFµν = 0, and with K → πγ∗γ sensitive again

to Q+
γ∗ , the simplest observables are the K → ππγ∗ and K → ππγ∗γ(∗)

modes, which are suppressed and dominated by LD contributions. For

the time being, we will, thus, only concentrate on Q+
γ∗ .

In summary, the best windows to probe for the electromagnetic operators are

the CP-asymmetries in the KL,S → γγ, KL,S → π+π−γ, and K+ → π+π0γ

decays, and the KL → π0ℓ+ℓ− decay rates. For completeness, it should be

mentioned that the magnetic operators also contribute to radiative hyperon

decays [93–95] or to the Bs → B∗
dγ transition [96], which will not be analyzed

here.

2.2 Standard Model predictions

In order to get clear signals of NP, the SM contributions have to be under good

theoretical control. We rely on the available OPE analyses for the Wilson co-

efficients in the SM [38] and concentrate on the remaining long-distance parts

of these contributions. For CP-violating observables, they originate either in-

directly from the hadronic penguins Q3 → Q10 or directly from the magnetic

operators Q±
γ . Since the former indirect contributions are suppressed, while the

C±
γ are very small in the SM, both often end up being comparable. These LD

contributions have to be estimated in ChPT. This is rather immediate for Q±
γ

given the hadronic representations (1.56), but significantly more involved for

the hadronic penguins, requiring a detailed analysis of the meson dynamics rel-

evant for each process. In addition, some free low-energy constants necessarily

enter, which have to be fixed from other observables.

Thus, the goal of this section is threefold:

1. the observables relevant for the study of Q±
γ are presented. This in-

cludes the K → ππγ rate and CP-asymmetries, the KL,S → γγ direct

CP-violation parameters, the rare semileptonic decays K → πℓ+ℓ−, and

finally, the hadronic parameter ε′,

2. the hadronic penguin contributions to the radiative decay observables are

brought under control by relating them to well-measured parameters like

ε′. In doing this, special care is paid to the possible impacts of NP in

Q3 → Q10, which have to be separately parametrized.
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3. we extract the contributions from Q±
γ , where NP could also be present,

to establish the master formulas for all the observables relevant in the

study of Q±
γ , which will form the basis of the NP analysis of the next

chapter.

2.2.1 K → ππγ

Having a detailed calculation of the K → ππγ decays, up to O(p4), in App.C.3

we focus here on their physical consequences. These radiative decays are de-

scribed by two terms, E (zi) and M (zi), which are respectively the dimension-

less electric and magnetic amplitudes [97]. Note that they do not interfere in the

rate once summed over the photon polarizations. The reduced kinematical vari-

ables z1,2 are related to the energies of the two pions and z3 = z1+z2 = Eγ/mK

is the photon energy in the K rest-frame. The electric part can be further split

into a bremsstrahlung and a direct emission term:

E(z1, z2)
.
= EIB(z1, z2) + EDE(z1, z2) , (2.1)

while the magnetic part is a pure direct emission, M
.
= MDE . When the

photon energy goes to zero, only EIB is divergent and, according to Low’s

theorem [73], entirely fixed from the non-radiative process K → π1π2, while

the direct emission terms EDE andMDE are constant in that limit. In addition,

they can be expanded in multipoles, according to the angular momentum of

the two pions [98], see Appendix C.3 for more details.

K+ → π+π0γ

For the K+ → π+π0γ decay, the standard phase-space variables are chosen as

the π+ kinetic energy T ∗
c and W 2 .

= (Pγ ·PK)(Pγ ·Pπ+)/m2
π+m2

K [98]. Pulling

out the bremsstrahlung contribution, we can write the differential rate as

∂2Γ

∂T ∗
c ∂W

2
=

∂2ΓIB
∂T ∗

c ∂W
2

(
1−2

m2
π+

mK
Re

(
EDE
eAIB

)
W 2+

+
m4
π+

m2
K

(∣∣∣∣ EDEeAIB

∣∣∣∣2 + ∣∣∣∣MDE

eAIB

∣∣∣∣2
)
W 4

)
,

(2.2)

where AIB
.
= A

(
K+ → π+π0

)
is constant while EDE and MDE are functions

of W 2 and T ∗
c . The main interest of K+ → π+π0γ is clearly apparent: AIB is

pure ∆I = 3/2 hence suppressed, making the direct emission amplitudes easier

to access. Note that the strong phase of AIB is that of the ππ rescattering in
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the I = 2, L = 0 state, as confirmed by a full O(p4) computation. This is not

trivial, a priori, since both Watson’s and Low’s theorem deal with asymptotic

states. Actually, Low’s theorem takes place after Watson’s theorem, in agree-

ment with the naive expectation from the relative strength of QED and strong

interactions.

Total and differential rates Given its smallness, we can assume the absence

of CP-violation when discussing these observables. Experimentally, the electric

and magnetic amplitudes (taken as constant) have been fitted by NA48/2 [8]

in the experimental phase-space (PS) range

PS
.
= T ∗

c ≤ 80 MeV ∪ 0.2 < W < 0.9 . (2.3)

Using their parametrization, we have

XE =
−Re (EDE/eAIB)

m3
K cos(δ11 − δ20)

= (−24± 4± 4) GeV−4 , (2.4a)

XM =
|MDE/eAIB |

m3
K

= (254± 6± 6) GeV−4 , (2.4b)

with δIJ the strong ππ rescattering phase in the isospin I and angular momen-

tum J state. The magnetic amplitude is dominated by the QED anomaly and

will not concern us here (see e.g. Refs. [99–102]). For the electric amplitude,

we obtain at O(p4):

XE =
3G8/G27

40π2F 2
πm

2
K

cos(δDE − δ20)

cos(δ11 − δ20)

[
Eloop(W 2, T ∗

c )−
m2
K Re N̄

m2
K −m2

π

]
, (2.5)

with the expression of Eloop given in Eq.(C.70). The N̄ term, given for its part

in Eq.(C.66), contains both weak counter-terms [103] and Q−
γ contributions

and reads

Re N̄
.
= (4π)2 Re(N14 −N15 −N16 −N17)−

2GF
3G8

BT
ReC−

γ

GFmK
, (2.6)

if 27-plet counter-terms are neglected or rather parametrically included into

the Ni, together with higher order momentum-independent chiral corrections.

To a good approximation, the loop contribution Eloop(W 2, T ∗
c ) is dominated by

the leading multipole Eloop1 (z3), in which case δDE = δ11 . Note that Eloop1 (z3)

is still a function of the photon energy, hence, indirectly of W 2 and T ∗
c . In our

computation of Eloop1 , we include both the L8 and L27 contributions. Indeed,

as shown in Fig.(2.1), the large ππ loop occurs only for the ∆I = 3/2 channel,

making it competitive with the ∆I = 1/2 contributions arising entirely from the
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Fig. 2.1: Basic topologies for the K → ππγ loops, with the vertices

colored according to the conventions of Fig.(1.5). The photon is to be

attached in all possible ways. However, in accordance with Low’s theorem,

most of these diagrams renormalize the O(p2) bremsstrahlung process,

leaving only genuine substracted three-point loops (thus involving at least

one charged meson) for the direct emission amplitudes. The transition is

∆I = 1/2 (3/2) when the weak vertex is K+π−η or K0π+π− (K+π−π0).

The counter-terms and Q−
γ contribute only to K+ → π+π0γ and K0 →

π+π−γ.

small πK and ηK loops. As a result, we find Eloop1 (0) = −0.25, to be compared

to −0.16 in Ref. [104]. In addition, the ππ loop generates a significant slope.

Though this momentum dependence is mild over the experimental PS, these

cuts are far from the z3 = 0 point, resulting in a further enhancement. Indeed,

over the experimental range (but not outside of it), Eloop1 is well described by

Eloop1 (W,T ∗
c )PS ≃ −0.260− 0.051W + 0.089

T ∗
c

mK
. (2.7)

Since experimentally, no slope was included, we average Eloop1 over the exper-

imental range (using the dT ∗
c dW measure to match the binning procedure of

Ref. [8]), and find⟨
Eloop1 (W,T ∗

c )
⟩
PS

= −0.280 → X loop
E = −17.6 GeV−4 . (2.8)

We checked that, in the presence of the slopes as predicted at O(p4), the fitted

values of XE and XM are not altered significantly.

Once Eloop1 is known, we can constrain the local term N̄ using the experimental

measurement of XE :

Re N̄ = 0.095± 0.083 . (2.9)

This is much smaller than the O(1) expected for the Ni on dimensional grounds

or from factorization [103], but confirms the picture described in Sec. 2.1.3. Ev-

idently, so long as the Ni are not better known, we cannot get an unambiguous
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bound on ReC−
γ . Still, barring a large fortuitous cancellation,

|ReC−
γ |

GFmK
≲ 0.1 . (2.10)

Note that this bound is rather close to our naive estimate (1.42) of the charm-

quark contribution to the real photon penguin in the SM.

Direct CP-violating asymmetries CP-violation in K+ → π+π0γ is quan-

tified by the parameter ε′+0γ , defined from the interfering terms

Re

(
EDE
eAIB

)
K±

≃ ReEDE
eReAIB

[
cos(δDE − δ20)∓ sin(δDE − δ20)ε

′
+0γ

]
, (2.11)

as [69]

ε′+0γ
.
=

ImEDE
ReEDE

− ImAIB
ReAIB

. (2.12)

To reach this form, we worked at the first order in ImAIB/ReAIB and used

the fact that, contrary to the strong phase δDE and δ20 , both ImEDE and

ImAIB change sign under CP. Since E2 has the same strong phase as AIB ,

and higher multipoles are completely negligible, we can replace EDE by the

dipole emission E1 to an excellent approximation, so that δDE = δ11 .

Plugging Eq.(2.11) in Eq.(2.2), we get the differential asymmetry, which can

be integrated over the phase-space according to various definitions. Still, no

matter the choice, these phase-space integrations tend to strongly suppress the

overall sensitivity to ε′+0γ since the rate is dominantly CP-conserving [69]. For

example, NA48/2 [8] use the partially integrated asymmetry

aCP (W
2) =

∂Γ+/∂W 2 − ∂Γ−/∂W 2

∂Γ+/∂W 2 + ∂Γ−/∂W 2

=
−2m2

π+m2
KXEW

2 sin(δDE − δ20) ε
′
+0γ

1 + 2m2
π+m2

KXEW 2 +m4
π+m4

K(|XE |2 + |XM |2)W 4
,

(2.13)

where the dependences ofXE andXM on T ∗
c are dropped, which is a reasonable

approximation within the considered phase-space. Combining the experimental

values of XE and XM with sin(δ11 − δ20) ≃ sin(7◦) ≃ 0.12, taken from Refs. [8,

105], it turns out that aCP (W
2) ≲ 0.01ε′+0γ over the whole W 2 range. Clearly,

integrating over W 2 to get the total rate charge asymmetry (or the induced

direct CP-asymmetry inK± → π±π0 [106]) would suppress the sensitivity even

more. Because of this, the current bound is rather weak [8]

sin(δDE − δ2)ε
′
+0γ = (−2.5± 4.2)× 10−2 . (2.14)
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Fig. 2.2: Fractions of QCD and electroweak penguins in ε′. The absence

of electroweak penguins corresponds to Ω = 0. Destructive interference oc-

curs for values between 0 and 1 (with a singularity at 1 since it corresponds

to a complete cancellation between both types of penguins). Current anal-

yses in the SM favor a limited destructive interference, i.e. Ω ∈ [+0.2,+0.5]

(see e.g. Refs. [33, 40,107]).

Actually, thanks to the fact that XE < 0, there is an alternative observ-

able, which is not phase-space suppressed. Defining ∂2Γ±
DE = ∂2Γ± − ∂2Γ±

IB ,

and integrating over T ∗
c , the direct emission differential rates ∂Γ+

DE/∂W
2 and

∂Γ−
DE/∂W

2 vanish at slightly different values of W 2, so we can construct the

asymmetry,

a0CP =
W 2
∂Γ+

DE/∂W
2=0

−W 2
∂Γ−

DE/∂W
2=0

W 2
∂Γ+

DE/∂W
2=0

+W 2
∂Γ−

DE/∂W
2=0

= − tan(δDE − δ2)ε
′
+0γ . (2.15)

The zeros are around W 2 ≃ 0.16, i.e. within the experimental range 0.2 <

W < 0.9. Of course, it remains to be seen whether the experimental precision

needed to perform significant fits to the zeros of ∂Γ±
DE/∂W

2 is not prohibitive.

Let us analyze the prediction for ε′+0γ in the SM. At O(p4), discarding (for now)

the counter-terms and the electromagnetic operators, we obtain (see App.C.3)

ε′+0γ(z3) =

√
2|ε′|
ω

f(z3,Ω) (2.16)

with

f(z3,Ω) =
−1

1 + ωh20(z3)
− Ω

1− Ω

ωδh20(z3)

1 + ωh20(z3)
, (2.17)
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where h20(z3)
.
= h2(z3)/h0(z3) is the ratio of the G27 and G8 loop functions, en-

hanced by the ππ contributions to the former, while δh20(z3)
.
= δh2(z3)/h0(z3)

is the ratio of the Gew and G8 loop functions and is O(1). The parameter Ω,

defined in Eq.(1.24) represents the fraction of electroweak versus QCD penguins

in ε′,

ε′ =
eiϕε′

√
2
ξ0ω(Ω− 1) . (2.18)

As shown in Fig.(2.2), a conservative range is Ω ∈ [−1,+0.8]. Values between

[+0.2,+0.5] are favored by current analyses in the SM, but large NP cannot be

ruled out. A crucial observation is that, contrary to ε′, ε′+0γ is rather insensitive

to Ω, because ωδh20(z3) is suppressed by ω, so that f(z3,Ω) ≃ −2/3. Varying

Ω in the large range [−1,+0.8], as well as including the potential impact of the

weak counter-terms, subject to the constraint Eq.(2.9), does not affect ε′+0γ

much. To get an estimate of the possible impact of higher order corrections

affecting ε′+0γ , let us include the counter-terms N̄ in Eq.(2.16), so that

ε′+0γ(z) =

√
2|ε′|
ω

f(z,Ω, δN ) , (2.19)

where

f(z,Ω, δN ) =
1 + ωΩ(h20(z) + δh20(z))− Im δN
(Ω− 1)(1 + ωh20(z)− Re δN )

− 1

Ω− 1
− 1 , (2.20)

with

Re δN =
1

h0(z)

√
2m2

K

m2
K −m2

π

Re N̄ ,

Im δN =

√
2

h0(z)

m2
K

m2
K −m2

π

ξ−1
0 Im N̄ .

(2.21)

Parametrically, N̄ accounts for all the O(p4) counter-terms, as well as for the

momentum-independent parts of higher order effects. To proceed, some as-

sumptions have to be made on its weak phase. From the experimental data,

we know that Re N̄ is of the typical size expected for O(p6) corrections instead

of O(p4). Since both Q6 and Q8 contribute at O(p6) through two-loop graphs,

N̄ receives, a priori, contributions from all the penguin operators, besides the

current-current operators. On the other hand, the electromagnetic operators

are too small to affect Re N̄ , allowing their impact to be pulled out and treated

separately. So, inspired by the O(p4) loop result, we parametrically write:

N̄ = b ((1− a)A0 + aA2 + iδa ImA2) , (2.22)
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with b ∼ O(p6)/O(p4). Assuming the corrections parametrized in terms of A0

and A2 are of the same sign as at O(p4), we take a ∈ [0, 1] to span from the pure

QCD penguin to the pure electroweak penguin scenario, and a ≈ (1 + ω)−1 ≈
0.95 if the O(p4) scaling between the G8 and G27 contributions survives at

O(p6). In a way similar to what happens at O(p4), the parameter δa allows for

additional Q8 contributions in the imaginary parts. Since at O(p4), it emerges

entirely from K → πη and K → KK vertices, and misses the K → ππ vertex

and its associated loop, we expect δa≪ 1. With this,

Im δN
Re δN

=
(1− a) + (a+ δa)ωΩ

(1− a) + aω
. (2.23)

By varying Ω ∈ [−1, +0.8], a ∈ [0, 1], |δa| ≤ 0.1 and Re N̄ within 1σ of the

range (2.9), we get the final and conservative prediction

ε′+0γ(Q3,...,10) = −0.55(25)×
√
2|ε′|
ω

= −0.64(31)× 10−4 , (2.24)

using Re(ε′/ε)exp = (1.65 ± 0.26)× 10−3 [17]. The slight growth of ε′+0γ with

z3 is negligible compared to its error. Since it is based on the experimental

value of |ε′|, and given the large range allowed for Ω, this estimate is valid even

in the presence of NP in the four-quark operators. This is the first example

where the experimental information about ε′ is extremely important!

The stability of this prediction actually means that even a precise measurement

of ε′+0γ would not help to understand the physical content of ε′, which would

require measuring Ω. However, it may help to unambiguously distinguish a

contribution from Q−
γ ,

ε′+0γ(Q
−
γ ) =

ImEDE(Q
−
γ )

ReEDE
=

BT
20π2

GF /G27

F 2
π (m

2
K −m2

π)XE

ImC−
γ

GFmK

= +2.8(7)
ImC−

γ

GFmK
,

(2.25)

where we used the experimental determination of ReEDE given in Eq.(2.4).

So, the magnetic operator is competitive with the four-quark operators already

in the SM as Eq.(1.41) implies that

ε′+0γ(Q
−
γ )|SM = +1.2(4)× 10−4 . (2.26)

Consequently, a significant cancellation occurs in the SM, which, by summing

Eq.(2.24) and Eq.(2.26), translates into the following prediction

ε′+0γ |SM = 0.5(5)× 10−4 . (2.27)



40 Chapter 2: s → dγ in the SM

This result is still far below the current bound on ε′+0γ derived from Eq.(2.14),

in such a way that it leaves ample room for NP effects, i.e.,

ImC−
γ

GFmK
= −0.08± 0.13 . (2.28)

KL → π+π−γ

For this mode, the large ππ loop is present in both the ∆I = 1/2 and ∆I = 3/2

channel, see Fig.(2.1). Therefore, including the latter does not change the

picture for the total rate as, in the present case, the ∆I = 1/2 suppression

is not dynamically compensated. On the other hand, the situation for the

CP-violating parameter ε̄′+−γ , defined from [69]

ε̄′+−γ
.
= η+−γ − η+− , (2.29)

where

η+−γ
.
=
A(KL → π+π−γ)EIB+E1

A(KS → π+π−γ)EIB+E1

, η+−
.
=
A(KL → π+π−)

A(KS → π+π−)
, (2.30)

is altered significantly. The restriction to the dipole terms originates in their

dominance in the KS decay. The parameter η+−γ is then purely CP-violating

since the KL → π+π−γ dipole emissions violate CP. The direct dipole emission

amplitudes EL,S1 forKL,S → π+π−γ are functions of the photon energy z3 only,

and can be written as

ES1 = ReE+− , EL1 = i ImE+− + ε̄ReE+− . (2.31)

Parametrizing the CP-violating IB amplitude as ELIB = η+−E
S
IB , including

the strong phases but working to leading order in ω and in the CP-violating

quantities [69],

ε̄′+−γ = ei(δ
1
1−δ

0
0)
mKz1z2

e
√
2

ReE+−

ReA0

(
ε′ + i

(
ImA0

ReA0
− ImE+−

ReE+−

))
. (2.32)

As stated in Ref. [69], ε̄′+−γ is a measure of direct CP-violation. The z1z2
momentum dependence comes from the bremsstrahlung amplitude ESIB , which

we write in terms of the K → ππ isospin amplitudes, using A(KS → π+π−) =√
2A0+A2. Over the K0 → π+π−γ phase-space, z1z2 is the largest when E∗

γ is

at its maximum (and the bremsstrahlung at its minimum), but always strongly

suppresses the asymmetry since z1z2 ≲ 0.030. Following Ref. [108], to avoid

dragging this phase-space factor, we define the direct CP-violating parameter

ε′+−γ

ε′+−γ
.
=
ε̄′+−γ

z1z2
=
η+−γ − η+−

z1z2
. (2.33)
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Experimentally, this parameter has been studied indirectly through the time-

dependence observed in the π+π−γ decay channel [109] (using material in the

beam to regenerate KS states), which is sensitive to the interference between

the KL → π+π−γ and KS → π+π−γ decay amplitudes. Importantly, the

experimental parameter η+−γ used in Ref. [109] (also quoted by the PDG [17])

is not the same as the one in Eq.(2.29) but requires additional phase-space

integrations. Following Ref. [108] in order to perform this integration, the

experimental measurement η̃+−γ = (2.35± 0.07)× 10−3 translates into

|ε′+−γ | < 0.06 . (2.34)

Theoretically, the E+− amplitude can be predicted at O(p4) in ChPT, with the

result (neglecting the counter-terms and electromagnetic operators for now)

ImE+−

ReE+−
=

ImA0

ReA0

1 + ωΩ(h′20(z3) + δh′20(z3))

1 + ωh′20(z3)
, (2.35)

where h′20(z3) and δh′20(z3) are ratios of loop functions (see Appendix C.3).

Due to the fact that the ππ loop is allowed in the ∆I = 1/2 channel, h′20(z3) ≃
1/
√
2 ≪ ω−1 while δh′20(z3) is tiny and can be safely neglected. Plugging this

in ε′+−γ , the sensitivity to Ω disappears completely

ε′+−γ(Q3,...,10) = iei(δ
1
1−δ

0
0)
mK

e
√
2

ReE+−

ReA0
|ε′|
(
ei(δ

2
0−δ

0
0) − 1

)
. (2.36)

As for ε′+0γ , there is no possible way to learn something about ε′ by measuring

ε′+−γ . Besides, note that ε′+−γ is suppressed by the ∆I = 1/2 rule through its

proportionality to |ε′|, contrary to ε′+0γ in Eq.(2.24).

The same combination of counter-terms occur for K0 → π+π−γ and K+ →
π+π0γ. The bound in Eq.(2.9) shows that this combination is of the same

order of the πK and ηK loops, which are much smaller than the ππ loop, and

it can, therefore, be safely neglected. As a result, we finally predict

ε′+−γ(Q3,...,10) ≃
m2
K

(4πFπ)2
h0(z3/2)× |ε′| × e−iπ/3

= −1.5(5)× 10−6 × e−iπ/3 ,

(2.37)

with h0(z3/2) ≃ −4
√
2Rehππ (−z3) ≃ −2.2, δ20 − δ00 ≃ −45◦, and δ11 − δ20 ≃

7◦. We conservatively added by hand a 30% error to account for the chiral

corrections to the loop functions. This result is an order of magnitude below

the bound derived in Ref. [69] because, having kept track of the G8, G27, and

Gew contributions, we could prove that ε′+−γ(Q3,...,10) is suppressed by the

∆I = 1/2 rule. As for ε′+0γ , this estimate is valid even in the presence of NP
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in the four-quark operators, since it is independent of Ω and takes Re(ε′/ε)exp
as input.

With ε′+−γ(Q3,...,10) extremely suppressed, ε′+−γ becomes sensitive to the pres-

ence of the Q−
γ operator, even in the SM. Its impact on ESDE is negligible given

the bound (2.10) but ELDE receives an extra contribution, so that

ε′+−γ(Q
−
γ ) =

−GF /G8

6(2π)2
BT

m4
K

F 2
π (m

2
K −m2

π)

ImC−
γ

GFmK
eiϕγ

≃ 0.2
ImC−

γ

GFmK
eiϕγ ,

(2.38)

with ϕγ
.
= δ11 − δ00 + π/2 ≃ 52◦ and G8 < 0 in our conventions. With the SM

value (1.41) for ImC−
γ , this gives

ε′+−γ(Q
−
γ )SM = +8(3)× 10−6 × eiϕγ , (2.39)

which is about five times larger than ε′+−γ(Q3,...,10), but still very small com-

pared to ε′+0γ . The current measurement (2.34) requires

| ImC−
γ |

GFmK
< 0.3 , (2.40)

which is slightly looser than the bound (2.28) obtained from the direct CP-

asymmetry in K+ → π+π0γ.

2.2.2 KL,S → γγ

CP-violating asymmetries for K → γγ can be defined through the parameters

η⊥γγ =
A(KS → (γγ)⊥)

A(KL → (γγ)⊥)
= ε+ε′⊥ , η||γγ =

A(KL → (γγ)||)

A(KS → (γγ)||)
= ε+ε′|| , (2.41)

if the conventions of Ref. [69] are adopted. Experimentally, these CP-violating

parameters could be accessed through time-dependent interference experiments,

i.e. with K0 or K̄0 beams [110–112], so the photon polarization need not be

measured using the suppressed decays with Dalitz pairs.

Let us parametrize the K0 → γ(k1, µ)γ(k2, ν) amplitudes as

A(K0 → (γγ)||) =
A

||
γγ√
2

× (αemGFmK)× (kν1k
µ
2 − k1 · k2gµν) , (2.42a)

A(K0 → (γγ)⊥) =
A⊥
γγ√
2

× (αemGFmK)× iεµνρσk1,ρk2σ , (2.42b)
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Fig. 2.3: The transition K → γγ in the SM, with the vertices colored

according to the conventions of Fig.(1.5). The meson loop produces the

γγ|| state, while the meson poles produce the γγ⊥ state thanks to the QED

anomaly. The direct Q±
γ contributions produce both γγ|| and γγ⊥ final

states.

so that the direct CP-violating parameters are expressed as

ε′||,⊥ = i

(
ImA

||,⊥
γγ

ReA
||,⊥
γγ

− ImA0

ReA0

)
. (2.43)

We can fix |A||
γγ | = 0.133(4) and |A⊥

γγ | = 0.0800(3) from the KL,S → γγ decay

rates [17], which are dominantly CP-conserving. In ChPT, A
||
γγ originates from

a π+π− loop and A⊥
γγ is induced by the π0, η, η′ meson poles together with

the QED anomaly, see Fig.(2.3) and Appendix C.3 for more details.

Two-photon penguin contributions

In the absence of the electromagnetic operators, K0 → γγ is induced by the

two-photon penguin. The parameters ε′||,⊥ are then generated indirectly by

the Q3,...,10 contributions to the weak vertices in Fig.(2.3), and directly by the

two photon penguins with c and t quarks (see Eq.(1.43)). However, as said in

chapter 1, these short-distance contributions are suppressed by the quadratic

decoupling of the heavy modes in the two-photon penguin loop [69]:

|ReA||,⊥
γγ |c,t

|ReA||,⊥
γγ |u

< 10−4 , (2.44)

which in turn implies

|ε′||,⊥|c,t ≃
| ImA

||,⊥
γγ |c

|ReA||,⊥
γγ |u

<
Imλc
Reλc

× 10−4 ≃ 10−7 . (2.45)

This contribution will turn out to be negligible both for ε′⊥ and ε′||.

With regards to the long-distance contribution, let us start with ε′||. Since A
||
γγ
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is mainly1 induced by a ππ loop, CP-violation comes entirely from the K0 →
π+π− vertex, as is obvious adopting a dispersive approach or using Eq.(C.26)

in the safe limit where Gew = 0. By using A (KS → π+π−) =
√
2A0 + A2

(without strong phases), we recover the result of Ref. [113]

ε′||(Q3,...,10) = i
ImA0

ReA0

(√
2 + ωΩ√
2 + ω

− 1

)
=
ε′e−i(δ

2
0−δ

0
0)

1 + ω/
√
2
. (2.46)

As it is the case for ε′+0γ and ε′+−γ , ε
′
|| is insensitive to Ω, so this expression

remains valid in the presence of NP. Also, being suppressed by the ∆I = 1/2

rule, the tiny value |ε′||(Q3,...,10)| ≃ 4× 10−6 is obtained.

The situation is different for ε′⊥. It was demonstrated in Ref. [114] that only

the Q1 operator has the right structure to generate A⊥
γγ through the QED

anomaly. Then, ImA⊥
γγ = 0 since current-current operators are CP-conserving

(proportional to λu), leaving ε
′
⊥ as a pure and ∆I = 1/2 enhanced measure of

the QCD penguins

ε′⊥(Q3,...,10) = −iξ0 = i

√
2|ε′|

ω(1− Ω)
. (2.47)

One may be a bit puzzled by the appearance of ImA0 in this K → γγ observ-

able. Actually, this originates from the very definition of ε in the K → ππ

system. It is the choice made there to define a convention-independent physi-

cal parameter, which renders it implicitly dependent on K → ππ amplitudes.

Besides, Eq.(2.47) is clearly only valid in the usual CKM phase-convention,

contrary to Eq.(2.43), which is convention-independent. For example, if the

Wu-Yang phase convention ImA0 = 0 is adopted [115], then ⟨γγ|Q1|KL⟩ gets
a non-zero weak phase, since Imλu ̸= 0, while ε′⊥ stays the same.

Evidently, given the current information on the Q6 contribution to ε′, it is not

possible to give a precise prediction for ε′⊥. With Ω ∈ [−1,+0.8], ε′⊥ spans an

order of magnitude:

5× 10−5 < −iε′⊥(Q3,...,10) < 7× 10−4 . (2.48)

A value of a few 10−4 is likely as Ω ∈ [+0.2,+0.5] is favored in the SM, see

Fig.(2.2).

This result is different from earlier estimates [113], obtained before the structure

of the KL → γγ amplitude was elucidated in Ref. [114]. Further, from that

analysis, we do not expect that the residual Q6 contributions in K2 → γγ

1In fact, both ππ and KK loops are present though the latter are suppressed by Gew, see

Eq.(C.26).
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could alter Eq.(2.47), especially given its large ∆I = 1/2 enhanced value (2.48).

Indeed, the origin of the vanishing of the K2 → γγ amplitude at O(p4) is now

understood as the inability of SU(3) ChPT to catch the Q1 contribution at

leading order. But once accounted for, either through higher order counter-

terms or by first working within U(3) ChPT, this Q1 contribution is seen to

dominate the K2 → γγ amplitude.

Though only ten times smaller than ε, measuring ε′⊥ would prove to be very

challenging. Still, any information would be extremely rewarding: with its

unique sensitivity to the QCD penguins, it could be used to finally resolve the

physics content of ε′. Further, it would also help in estimating ε precisely, since

the term iξ0 enters directly ε′⊥ [40,116].

Electromagnetic operator contributions

The magnetic operators Q±
γ contribute to K → γγ as

A||,⊥
γγ → A||,⊥

γγ +
2Fπ

9πmK
B′
T

C−,+
γ

GFmK
. (2.49)

Given the good agreement between theory and experiment for the KS,L → γγ

rate, we require that their contributions are less than 10% of the full amplitude,

giving

|ReC±
γ |

GFmK
≲ 0.3 . (2.50)

The stronger bound (2.10) from K+ → π+π0γ, thus, shows that the impact of

Q±
γ on the total rates is negligible (assuming |ReC+

γ | ≃ |ReC−
γ |).

Plugging Eq.(2.49) in Eq.(2.43), the Q±
γ contribution to the direct CP-violation

parameters are

|ε′||(Q
−
γ )| ≃

1

3

| ImC−
γ |

GFmK
, |ε′⊥(Q+

γ )| ≃
1

2

| ImC+
γ |

GFmK
. (2.51)

In the SM, |ε′||(Q
−
γ )| ≃ 1.4× 10−5 is nearly an order of magnitude larger than

ε′||(Q3,...,10), Eq.(2.46). On the contrary, the SM contribution |ε′⊥(Q+
γ )| ≃

2×10−5 is too small to compete with ε′⊥(Q3,...,10), Eq.(2.47). In the absence of

a significant NP enhancement, ε′⊥, thus, remains a pure measure of the QCD

penguins.
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2.2.3 Rare semileptonic decays

The KL → π0ℓ+ℓ− decays are sensitive to several FCNC currents. In the

SM, both the virtual and real photon penguins, as well as the Z penguins

can contribute (together with their associated W boxes), see Fig.(2.4). Since

NP could, a priori, affect all these FCNC in a coherent way, they have to be

accounted for. Further, to separately constrain the Z penguins, we include the

rare K → πνν̄ decays in the analysis. So, in the present section, we collect

the master formula for the KL → π0e+e−, KL → π0µ+µ−, K+ → π+νν̄ and

KL → π0νν̄ decay rates, starting from the effective Hamiltonian

Heff = −GFαem√
2

(Cν,ℓ Qν,ℓ + CV,ℓ QV,ℓ + CA,ℓ QA,ℓ) + h.c. , (2.52)

where

QV,ℓ = s̄γµd⊗ ℓ̄γµℓ , (2.53a)

QA,ℓ = s̄γµd⊗ ℓ̄γµγ5ℓ , (2.53b)

Qν,ℓ = s̄γµd⊗ ν̄ℓγµ(1− γ5)νℓ , (2.53c)

and where a sum over the leptonic flavors ℓ = e, µ, τ is understood. As Q±
γ∗

are implicitly included in QV,ℓ, Heff should be complemented by Q±
γ operators

only to account for radiative processes

Electric operators and SM predictions

Thanks to the excellent control on the vector currents (1.51), the branching

ratios for K → πνν̄ are very precisely predicted:

Br
(
K+ → π+νℓν̄ℓ

)
= 0.1092(5) · 10−11 × r2us × |ων,ℓ|2 , (2.54a)

Br
(
KL → π0νℓν̄ℓ

)
= 0.471(3) · 10−11 × r2us × (Imων,ℓ)

2 , (2.54b)

with rus = 0.225/|Vus| and ων,ℓ = Cν,ℓ/10
−4. Since experimentally, the neu-

trino flavors are not detected, the K → πνν̄ rate is the sum of the rates into

νe,µ,τ .
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As shown in Fig.(2.4), the situation for KL → π0ℓ+ℓ− is more complex be-

cause the indirect CP-violation KL = εK1 → π0γ∗[→ ℓ+ℓ−] [54] and the

CP-conserving contribution KL → π0γγ[→ ℓ+ℓ−] [90, 91] have to be included:

Br(KL → π0ℓ+ℓ−) =
(
Cℓdirr

2
us + CℓintāSrus + Cℓmixā

2
S + Cℓγγ

)
·10−12 (2.55)

where

Cedir = 2.355(13) (ω2
V,e + ω2

A,e) , Cµdir = 0.553(3)ω2
V,µ + 1.266(12)ω2

A,µ ,

Ceint = 7.3(2) [−7.0(2)] ωV,e , Cµint = 1.73(4) [−1.74(4)] ωV,µ ,

Cemix = 12.2(4) [11.5(5)] , Cµmix = 2.81(6) ,

Ceγγ ≃ 0 , Cµγγ = 4.7(1.3) ,

with ωX,ℓ = ImCX,ℓ/10
−4. These coefficients are sensitive to the KS → πℓ+ℓ−

amplitude, which is entirely dominated by the virtual photon penguin:

A(K1(P ) → π0γ∗(q)) =
eGF
8π2

WS (z)
(
q2Pµ − qµP · q

)
, (2.56)

with

WS (z) = aS + bSz +Wππ
S (z) , (2.57)

where z = q2/M2
K0 . As detailed in Ref. [54], the only assumption behind the

parametrization of the WS(z) form-factor is that all the intermediate states

other than ππ are well described by a linear polynomial in z and, thus, can be

absorbed in the unknown constants aS and bS . The ππ loop function Wππ
S (z),

the only one to develop an imaginary part, was estimated including both the

phenomenological KS → π+π−π0 vertex (i.e., including slopes), and the phys-

ical π+π− → γ∗ vertex (i.e., with its VMD behavior). Because KS → π+π−π0

is dominantly CP-violating, and bS is of higher order in the chiral expansion,

the leading term aS dominates.

Given the current error on the KS → π0ℓ+ℓ− rates, setting bS/aS = 0.4 and

keeping only quadratic terms in a2S , give reasonable predictions for the KL

rates. However, in preparation for better measurements, we prefer to system-

atically account for the momentum dependence of the form-factor in extracting

the coefficients of the master formula in Eq.(2.55). To this end, and contrary

to previous parametrizations, it is not convenient to use aS as the parame-

ter entering Eq. (2.55), because this necessarily overlooks the other terms of

WS(z). The alternative parameter āS entering Eq.(2.55) and defined in Ref. [9]

is found to be given by āS = 1.25(22).

Importantly, if there is some NP, it would enter through ωi only, all the rest is

fixed from experimental data [89]. The theoretically disfavored case of destruc-

tive interference between the direct and indirect CP-violating contributions is

indicated in square brackets [79,90].



2.2. Standard Model predictions 49

In the SM, the QCD correctedWilson coefficients ωSM
ν,ℓ are very precisely known.

Though ωSM
ν,τ is slightly different than ωSM

ν,e(µ) owing to the large τ mass, the

standard phenomenological parametrization employs a unique coefficient,

ωSM
ν = −λtXt + λ̄4 Reλc(Pc + δPu,c)

2π sin2 θW × 10−4
= 4.84(22)− i1.359(96) , (2.58)

valid for ℓ = e, µ, τ , with Xt = 1.465(16) [117], Pc = 0.372(15) [118–120],

δPu,c = 0.04(2) [78] (with λ̄ = 0.2255). The difference ωSM
ν,e(µ)−ω

SM
ν,τ is implicitly

embedded into the definition of Pc, up to a negligible 0.2% effect [38]. With

the CKM coefficients from Ref. [28], the rates in the SM are, thus,

Br(K+ → π+νν̄)SM = 8.25(64) · 10−11 ,

Br(KL → π0νν̄)SM = 2.60(37) · 10−11 .
(2.59)

ForKL → π0ℓ+ℓ−, the Wilson coefficients are ImCi = Imλtyi with y
SM
A,ℓ(MW ) =

−0.68(3) and ySMV,ℓ (µ ≃ 1 GeV) = 0.73(4) [38]. Using again the CKM elements

from Ref. [28] gives the rate

Br(KL → π0e+e−)SM = 3.23+0.91
−0.79 · 10−11 [1.37+0.55

−0.43 · 10−11] , (2.60a)

Br(KL → π0µ+µ−)SM = 1.29+0.24
−0.23 · 10−11 [0.86+0.18

−0.17 · 10−11] . (2.60b)

The errors are currently dominated by that of āS . These predictions can be

compared to the current experimental results

Br(K+ → π+νν̄)exp = 1.73+1.15
−1.05 × 10−10 [7] ,

Br(KL → π0νν̄)exp < 2.6× 10−8 [121] ,

Br(KL → π0e+e−)exp < 2.8× 10−10 [122] ,

Br(KL → π0µ+µ−)exp < 3.8× 10−10 [123] .

(2.61)

At 90% CL, this measurement of Br(K+ → π+νν̄) becomes an upper limit

at 3.35 × 10−10 [7, 124]. Improvements are to be expected in the future, with

J-Parc aiming at a hundred SM events for KL → π0νν̄, and NA62 at a similar

amount of K+ → π+νν̄ events. The KL → π0ℓ+ℓ− modes are not yet included

in the program of these experiments, but should be tackled in a second phase.

Magnetic operators in K0 → π0ℓ+ℓ−

Only the Q+
γ operator occurs in the K0 → π0ℓ+ℓ− decays:

A(K0(P ) → π0γ∗(q))Q+
γ
= − eGF

24
√
2π2

BT
C+
γ

GFmK

(
q2Pµ − qµP · q

)
. (2.62)
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For KS → π0ℓ+ℓ−, this contribution is CP-conserving and parametrically in-

cluded in aS since it is fixed from experiment. If we require that there is no

large cancellations, i.e. that the Q+
γ operator accounts for, at most, half of

|aS | ≃ 1.2, we get [9]

|ReC+
γ |

GFmK
≲ 3|āS |

2BT
≃ 1.5 . (2.63)

This bound is nearly an order of magnitude looser than the one derived from

KL → γγ in Eq.(2.50).

For KL → π0ℓ+ℓ−, the whole effect of Q+
γ is to shift the value of the vector

current [89,125]:

ωV,ℓ×10−4 = ImCV,ℓ+
Qd

2
√
2π

BT (0)

f+ (0)

ImC+
γ

GFmK
≃ ImCV,ℓ−

1

21.3

ImC+
γ

GFmK
, (2.64)

where we assume the slopes of BT (z) and f+ (z) are both saturated by the

same resonance (which is a valid first order approximation). The relative sign

between the Q+
γ and QV,ℓ contributions agrees with Ref. [125].

In the SM, ImCV,ℓ ≃ 0.99× 10−4 and | ImC+
γ |/GFmK ≃ 4× 10−5, so the shift

is negligible. However, in case there is some NP, it quickly becomes visible. In

the absence of any other NP effects (which is a strong assumption, as we will

see in the next chapter), the current experimental bounds (2.61) imply

KL → π0e+e− ⇒ −0.018 <
ImC+

γ

GFmK
< +0.030 , (2.65a)

KL → π0µ+µ− ⇒ −0.050 <
ImC+

γ

GFmK
< +0.063 , (2.65b)

at 90% confidence and treating all theory errors as Gaussian. This is about

an order of magnitude tighter than the bound (2.28) on ImC−
γ derived from

K+ → π+π0γ.

2.2.4 Virtual effects in ε′/ε

Up to now, the photon produced by the electromagnetic operators was either

real or coupled to a Dalitz pair, but it could also couple to quarks. At the

level of the OPE, such effects are dealt with as O(αem) mixing among the

four-quark operators, and sum up at µ ≃ 1 GeV in the Wilson coefficients of

Eq.(1.33). The non-perturbative tail of these mixings are computed as QED

corrections to the matrix elements of the effective operators between hadron
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Fig. 2.5: The virtual effects from Q±
γ on ∆S = 2 observables (reversed

diagrams are understood) and on ε′ from K0 → π+π−. Red vertices stand

for the SM transitions (which are not necessarily local, see for example

Fig.(2.3) ), while green vertices are induced by Q±
γ .

states. Currently, only the left-handed electric operator (i.e., the virtual photon

penguin) is included in the OPE [38] and in the K → ππ matrix elements

and observables [50]. The magnetic operators are left aside given their strong

suppression in the SM.

Magnetic operators in hadronic observables

In the presence of NP, the magnetic operators could be much more enhanced

than the electric operators, so their impact on hadronic observables must be

quantified. Though, in principle, we should amend the whole OPE (i.e., initial

conditions and running), we will instead compute only the low-energy part of

these corrections. Indeed, the photon produced by Q±
γ can be on-shell, so the

dominant part of the mixing Q±
γ → Q1,...,10 is likely to arise at the matrix-

element level. In any case, the missing SD contributions do not represent the

main source of uncertainty. Indeed, the meson-photon loops induced by Q±
γ

are UV-divergent, requiring specific but unknown counter-terms. So, at best,

the order of magnitude of the LD mixing effects can be estimated. To this

end, the loops are computed in dimensional regularization and only the leading

log(µ/mπ) or log(µ/mK) is kept, with µ ≃ mρ. Let us start with the impact

of Q±
γ on ε′. The third diagram of Fig.(2.5) induces a correction to η+− (see

Eq.(1.19a)) and, thereby, discarding strong phases for simplicity

|Re(ε′/ε)|γ
Re(ε′/ε)exp

≃ 3αem
256π3

BT
GF
|G8|

log(mρ/mπ)

|ε|Re(ε′/ε)exp
| ImC−

γ |
GFmK

≃ 2
| ImC−

γ |
GFmK

. (2.66)

The photon loop is IR safe since Q−
γ does not contribute to the bremsstrahlung

amplitude in K0 → π+π−γ. Let us stress again that this is only an order

of magnitude estimate. Besides the neglected SD mixings, unknown effects, of

similar size than the contribution in Eq.(2.66), are necessarily present to absorb

the divergence. Plugging in the bound on ImC−
γ obtained from the measured
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K+ → π+π0γ direct CP-asymmetry, Eq.(2.28),

(ε′+0γ)
exp ⇒ |Re(ε′/ε)|γ

Re(ε′/ε)exp
= (16± 26)% . (2.67)

So, even in the presence of a large NP contribution to Q−
γ , the impact on ε′

remains smaller than its current theoretical error in the SM.

For completeness, let us also compute the contribution of the magnetic oper-

ators to the ∆S = 2 observables, for which perturbative QED corrections are

significantly suppressed. At long distance, the magnetic operators contribute to

⟨K̄0|HW |K0⟩ through the transitions K0 → πγ∗ → K̄0 and K0 → γγ → K̄0,

see Fig.(2.5). Neglecting the momentum dependences of the K → γγ and

K → πγ∗ vertices and keeping only the leading log(mρ/mπ), we obtain

µ12
.
=

⟨K̄0|Hγ
eff |K0⟩

∆M exp
K

= (a⊥γγ + aπγ)
C+
γ

GFmK
+ a||γγ

C−
γ

GFmK
, (2.68)

with (see Eq.(2.42) for the definition of Aiγγ and Eq.(2.57) for that of aS)

|aiγγ | ≃
α2
em

72π3
B′
T

G2
Fm

4
KFπ

∆M exp
K

|Aiγγ | log(mρ/mK) ≃ 7× 10−6 |Aiγγ | , (2.69a)

|aπγ | ≃
αem
512π5

BT |aS |
G2
Fm

4
πmK

∆M exp
K

log(mρ/mπ) ≃ 8× 10−7 . (2.69b)

Even though they are not of the same order, it turns out that, numerically,

aπγ ≃ aγγ . This is due to the fact that a K0 → π0γ∗ vertex is absent at leading

order, and because the momentum scale in the aπγ loop is entirely set by the

pion mass instead of the transferred momentum of O(mK), as it is the case in

aγγ . With such small values for aγγ and aπγ , neither ∆MK(Q±
γ ) ∼ Reµ12 nor

ε(Qγ) ∼ Imµ12 can compete with the non-radiative ∆S = 2 processes, even in

the presence of NP in Q±
γ .

Gluonic penguin operators

In complete analogy with the electromagnetic operators, gluonic FCNC are

described by effective operators of dimensions greater than four. For instance,

the chromomagnetic operators producing either a real or a virtual gluon are

Hγ
eff = C±

g Q
±
g +h.c. , Q±

g =
g

16π2
(s̄Lσ

αβtadR± s̄RσαβtadL)Gaαβ . (2.70)

The chromoelectric operators Q±
g∗ , whose form can easily be deduced from

Eq.(1.38b), contribute only for a virtual gluon.
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Fig. 2.6: The gluonic penguin in the SM.

In the SM, both Q±
g and Q±

g∗ arise from the diagram shown in Fig.(2.6). As

for Q±
γ , the former are suppressed by the light-quark chirality flips, hence,

completely negligible, but the chromoelectric operators are sizeable and enter

into the initial conditions for the four-quark operators [38]. They are, thus,

hidden inside the weak low-energy constants, together with the hadronic virtual

photon and Z penguins (see Fig.(1.5)).

The chromomagnetic operators are not included in the standard OPE, since

they are negligible in the SM [55]. But, being of dimension-five, they could

get significantly enhanced by NP. This would have two main effects. First,

through the OPE mixing2, Q±
g generate Q±

γ . When both arise at a high-scale

µNP ≳ MW , assuming only the SM colored particle content, neglecting the

mixings with the four-quark operators, and working to LO [125]:

C±
γ (µc) = η2

[
C±
γ (µNP ) + 8(1− η−1)C±

g (µNP )
]
,

C±
g (µc) = ηC±

g (µNP ) ,
(2.71)

where

η
.
= η(µNP ) =

(
αs(µNP )

αs(mt)

)2/21(
αs(mt)

αs(mb)

)2/23(
αs(mb)

αs(µc)

)2/25

. (2.72)

Numerically, η(µ) = 0.90, 0.89, 0.88 for µ = 0.1, 0.5, 1 TeV, respectively. In-

directly, all the bounds on C±
γ can, thus, be translated as bounds on C±

g .

However, there is another more direct impact of Q±
g on phenomenology since

it contributes to K → ππ, hence to ε′ [125]

Re(ε′/ε)g =
11

64π2

ω

|ε||ReA0|
m2
πm

2
K

Fπ(ms +md)
ηBG ImC−

g ≃ 3BG
ImC−

g

GFmK
, (2.73)

with, neglecting ∆I = 3/2 contributions, |ReA0| =
√
2Fπ(m

2
K −m2

π)|ReG8|
and Fπ = 92.4 MeV. The hadronic parameter BG parametrizes the departure

2The Q±
γ → Q±

g mixings are not included in Eq.(2.71), even though they become relevant

if C±
γ ≫ C±

g . However, such effects are presumably LD-dominated, and thus were already

included in Eq.(2.66) together with Q±
γ → Q1,...,10.
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of ⟨(ππ)0|Q−
g |K0⟩ from the chiral quark model, and presumably lies in the

range 1 → 4 [125]. Given that the SM prediction for Re(ε′/ε) is rather close

to Re(ε′/ε)exp [33], but its uncertainty is itself of the order of Re(ε′/ε)exp, we

simply impose that |Re(ε′/ε)g| ≤ Re(ε′/ε)exp, which gives,

| ImC−
g |

GFmK
≲ 5× 10−4 . (2.74)

For comparison, imposing that |ReA0|g is at most of the order of |ReA0|exp

gives the much looser constraint |ReC−
g |/GFmK ≲ 10. Note, however, that

the bound (2.74) is not to be taken too strictly. First, the BG parameter is

set to 1, but could be slightly smaller or bigger. Second, Q±
g is not the only

FCNC affecting Re(ε′/ε) (see Fig.(1.5)). This bound could get relaxed in the

presence of NP in the other penguins. This will be analyzed in more detail in

the next chapter.

2.3 Conclusions

In this chapter, the s → dγ process has been thoroughly studied. The best

phenomenological windows are the direct CP-violating parameters in radia-

tive K decays for real photon emissions, and the rare KL → π0e+e− and

KL → π0µ+µ− decays for the s → dγ∗ transition. For all these observables,

a sufficiently good control over the purely long-distance SM contributions has

to be achieved to access the short-distance physics, where NP effects could

be competitive. So, in this chapter, the SM predictions were systematically

reviewed, with the results:

1. K+ → π+π0γ We included the ∆I = 3/2 contributions, which were

missing in the literature, and found that they enhance the loop ampli-

tude by about 50%. As a result, the recent NA48 measurement [8] of

the direct-emission electric amplitude can be well-reproduced without

the inclusion of significant counterterm contributions. With regards to

direct CP-violation, we identified an observable, Eq.(2.15), which is not

phase-space suppressed and could, thus, help increase the experimental

sensitivity to ε′+0γ . Thanks to the improved experimental and theoreti-

cal analyses (using ε′), the prediction for ε′+0γ in the SM is under good

control, though a large cancellation between the Q3,..,10 (four-quark op-

erators, see Eq.(1.33)) and Q−
γ (magnetic operator, see Eq.(1.37)) contri-

butions limits its overall precision, ε′+0γ = 5(5)× 10−5.
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2. K0 → π+π−γ The inclusion of the ∆I = 3/2 contributions, to-

gether with the experimental extraction of the counter-terms from K+ →
π+π0γ, permits to reach a good accuracy. Contrary to previous analyses,

we found that the Q3,..,10 contribution to the direct CP-violating param-

eter ε′+−γ is suppressed by the ∆I = 1/2 rule and negligible against that

of Q−
γ . Altogether, the very small value ε′+−γ = 0.8(3)×10−5 is obtained

in the SM.

3. K0 → γγ For the direct CP-violating parameter ε′||, we confirmed the

computation of Ref. [113] for the Q3,...,10 contribution. However, that of

Q−
γ was missing, and lead to a factor five enhancement to ε′|| ≃ 1.4 ×

10−5 in the SM. For the parameter ε′⊥, the situation changes completely

compared to Ref. [113]. Indeed, the anatomy of KL → γγ has been

clarified in Ref. [114], where the absence of QCD penguin contributions

at leading order was proven. As a result, we got the striking prediction

that ε′⊥ is a direct measure of these QCD penguins, ε′⊥(Q3,...,10) = −iξ0,
while the Q+

γ contribution is much smaller in the SM. So, this ∆I = 1/2-

enhanced observable could resolve the QCD versus electroweak penguin

fraction in ε′ (to which ε′+0γ , ε
′
+−γ , and ε

′
|| have essentially no sensitivity),

and could improve the theoretical prediction of ε.

4. Re(ε′/ε) We have computed the long-distance part of the magnetic

operator contribution to ε′, as well as to ∆MK and ε. While it is (as

expected) negligible for the last two, it could, a priori, be sizeable for

ε′ if Q−
γ is enhanced by NP. Even though this contribution cannot be

predicted accurately, and the short-distance part is lacking, we proved

that the recent NA48 bound [8] on ε′+0γ ensures that it does not exceed

about 30% of Re(ε′/ε)exp, and, thus, for the time being, can be neglected.



56 Chapter 2: s → dγ in the SM



Chapter 3
s → dγ beyond the SM

In most models of New Physics, new degrees of freedom and additional sources

of flavor breaking offer alternative mechanisms to induce the FCNC transitions.

The goal of the present chapter is to quantify the possible phenomenological

impacts of NP in the dimension-five magnetic operators Q±
γ of Eq.(1.37). As

discussed in detail in the previous chapter, CP-conserving processes are fully

dominated by the SM long-distance contributions. So, throughout this chapter,

we concentrate exclusively on CP-violating observables, from which the short-

distance physics can be more readily accessed along with possible signals of

NP.

The cleanest observables to identify a large enhancement of Q±
γ are the direct

CP-asymmetries in K → ππγ and K → (γγ)||, which would then satisfy

1

3
|ε′+0γ(Q

−
γ )| ≃ 5|ε′+−γ(Q

−
γ )| ≃ 3|ε′||(Q

−
γ )| ≃

| ImC−
γ |

GFmK
. (3.1)

Indeed, the contributions from the four-quark operators (QCD and electroweak

penguins) are small and under control,

3ω

2
√
2
|ε′+0γ(Q3,...,10)| ≃

5

2
|ε′+−γ(Q3,...,10)| ≃ |ε′||(Q3,...,10)| ≃ |ε′| , (3.2)

with ω = 1/22.4. By using the experimental ε′ value, these estimates are in-

dependent of the presence of NP in Q3,...,10. On the other hand, the KS,L →
(γγ)⊥ asymmetry is very sensitive to Ω, representing the ratio of the elec-

troweak to the QCD penguin contributions in ε′:

ε′⊥(Q3,...,10) = −iξ0 = i

√
2|ε′|

ω(1− Ω)
, |ε′⊥(Q+

γ )| ≃
1

2

| ImC+
γ |

GFmK
. (3.3)
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So, knowing the impact of Q+
γ , the asymmetry ε′⊥ can be used to extract the

otherwise inaccessible QCD penguin contributions to ε′.

The experimental information on these four asymmetries is, however, limited

with only the loose bound (2.14) on ε′+0γ and (2.34) on ε′+−γ currently available.

Therefore, to get some information on Q±
γ , two routes will be explored.

First, we can use the KL → π0ℓ+ℓ− decay rates, for which the experimental

bounds are currently in the 10−10 range. As shown in Fig.(3.1), these modes

are rather sensitive to Q+
γ once | ImC+

γ |/GFmK is above a few 10−3. In the

absence of any other source of NP, the experimental bounds (2.61) give

KL → π0e+e− ⇒ −0.018 <
ImC+

γ

GFmK
< +0.030 , (3.4a)

KL → π0µ+µ− ⇒ −0.050 <
ImC+

γ

GFmK
< +0.063 . (3.4b)

To compare with the direct CP-asymmetries (3.1), sensitive to Q−
γ , we first

need to study how NP could affect the relationship between Q+
γ and Q−

γ . If

the SM relation C+
γ ≃ −C−

γ survives, the direct CP-asymmetries could be rel-

atively large, with for example −8% < ε′+0γ < 5% from KL → π0e+e−. Then,

since NP can enter inKL → π0ℓ+ℓ− through other FCNC, by affecting the elec-

troweak penguins for example, we must also study their possible interferences

with Q+
γ , and quantify how broadly the bounds (3.4) could get relaxed.

A second route is to use ε′. Indeed, in many NP models, the magnetic opera-

tors Q±
γ are accompanied by chromomagnetic operators Q±

g , which contribute

directly to ε′,

Re(ε′/ε)g ≃ 3BG
ImC−

g

GFmK
, (3.5)

with BG a hadronic bag parameter of O(1), a priori. If the Wilson coeffi-

cients of Q±
γ and Q±

g are similar, the current measurement Re(ε′/ε)exp imposes

strong constraints, and would naively imply that the direct CP-asymmetries in

Eq.(3.1) are at most of O(10−3). However, not only the relationship between

Q±
g and Q±

γ is model-dependent but, as for KL → π0ℓ+ℓ−, many other FCNC

enter in ε′ and their possible correlations with Q±
g must be analyzed.

The only way to relate the NP occurring in the various FCNC is to adopt a

specific picture for the NP dynamics. Evidently, this cannot be done model-

independently. Instead, the strategy will be to classify the models into broad

classes and, within each class, to stay as model-independent as possible. In

practice, these classes are in one-to-one correspondence with the choice of basis
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Fig. 3.1: The sensitivity of the KL → π0ℓ+ℓ− decays to the mag-

netic penguin operator Q+
γ , in the absence of any other source of NP.

These curves are actually parabolas, but blown out to emphasize the small

ImC+
γ /GFmK region (whose SM value is in the 10−5 range). The horizon-

tal lines signal the experimental bounds on KL → π0ℓ+ℓ−. The contours

stand for 90% confidence regions given the current theoretical errors in

Eq.(2.55). Their apparent thinning as | ImC+
γ | increases is purely optical,

except just below 10−2 where the Q+
γ contribution precisely cancel out

with the SM one in the vector current (positive DCPV–ICPV interference

is assumed).
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made for the effective semileptonic FCNC operators. Once a basis is chosen,

bounds on the Wilson coefficients of these operators are derived by turning

them on one at a time. In this way, fine-tunings between the chosen operators

are explicitly ruled out. This is where the model-dependence enters [126].

On the other hand, the magnetic operators are kept on at all times, since it

is precisely their interference with the semileptonic FCNC which we want to

resolve. Note that the alternative procedure of performing a full scan over

parameter space is (usually) basis independent, but we prefer to avoid that

method as the many possible fine-tuning among the semileptonic operators

would obscure those with the magnetic ones. Further, we will see that with

our method, it is possible to get additional insight because the bounds do

depend on the basis and, thus allow discrimination among the NP scenarios.

3.1 Model-independent analysis

The most model-independent operator basis is the one minimizing the interfer-

ences between the NP contributions in physical observables [126]. It is the one

in Eq.(2.52), which we reproduce here for convenience:

HPheno = −GFαem√
2

(Cν,ℓ Qν,ℓ + CV,ℓ QV,ℓ + CA,ℓ QA,ℓ)+

+ C±
γ Q

±
γ + h.c. ,

(3.6)

The four-fermion operators, defined in Eqs.(2.53), do not interfere in the rates

since they produce different final states, while Q+
γ and Q−

γ have opposite CP-

properties (see Tab.(2.1)). On the other hand, Q±
γ and QV,ℓ ∋ Q±

γ∗ involve an

intermediate photon, hence, necessarily interfere. Note that the coefficients in

Eq.(3.6) are understood to be purely induced by the NP: the SM contributions

have to be added separately.

Given the current data, the bounds on the CP-violating parts of the Wilson

coefficients are

K+ → π+π0γ −160 < ρ ImC−
γ < 80

KL → π0e+e−
−14 < ImCV,e − ρ ImC+

γ < 8

⊕
[−10 < ImCA,e < 11 ∧ −8 < ρ ImC+

γ < 14]

KL → π0µ+µ−
−29 < ImCV,µ − ρ ImC+

γ < 24

⊕
[−16 < ImCA,µ < 18 ∧ −24 < ρ ImC+

γ < 29]

K+ → π+νν̄ −14 < ImCν,ℓ < 17 (ℓ = e⊕ µ⊕ τ)

, (3.7)
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where all the numbers are in unit of 10−4 and where ρ−1 .
= 21.3GFmK from

Eq.(2.64). The symbol ⊕ stands for the exclusive alternative, since CA,ℓ and

CV,ℓ are not turned on simultaneously for example, while ∧ means that the

bounds are correlated, i.e. the coefficients fall within an elliptical contour in

the corresponding plane. For comparison, ImCSM
V,ℓ , ImCSM

A,ℓ and ImCSM
ν,ℓ are all

around 10−4. For the magnetic operators, the SM value in Eq.(1.41) implies

ρ ImC±,SM
γ ≃ ∓0.015 Imλt ∼ O(10−6).

For the neutrino modes, NP is separately turned on in each ImCν,ℓ, ℓ = e, µ, τ .

Assuming leptonic universality would decrease the bound by about
√
3 since all

three Cν,e = Cν,µ = Cν,τ would simultaneously contribute. The direct bounds

on ImCν,ℓ from KL → π0νν̄ are currently not competitive. The experimental

bound on the K+ → π+νν̄ mode is, therefore, used setting ReCν,ℓ = 0. The

maximal value for KL → π0νν̄ can then be predicted:

Br(KL → π0νν̄) < 1.2× 10−9 , (3.8)

which corresponds to a saturation of the Grossman-Nir Bound [127] (including

the isospin breaking effects in the vector form-factor, but forbidding a destruc-

tive interference between the CP-conserving SM and NP contributions since

ReCν,ℓ = 0). This is more than an order of magnitude below the current

experimental limit, but about 50 times larger than the SM prediction.

For KL → π0ℓ+ℓ−, the bound on the vector current is less strict than on the

axial-vector current because of the interference with the indirect CP-violating

contribution. The theoretically favored case of positive DCPV-ICPV interfer-

ence is assumed here as relaxing this assumption would not change the numbers

much. Finally, the impact of Q−
γ on ε′ is neglected as it is estimated to be be-

low 30% of its experimental value given the bound from K+ → π+π0γ, see

Eq.(2.67).

To resolve the bound in the vector current and, thereby, disentangle C+
γ and

CV,ℓ, one is forced to specify at which level a destructive interference becomes

a fine-tuning, see Fig.(3.2). This introduces some model-dependence since a

specific NP model could generate Q±
γ and QV,ℓ (or Q±

γ∗) coherently. In this

respect, it should be noted that the basis of four-fermion operators in Eq.(3.6)

is not complete. It lacks the scalar, pseudoscalar, tensor and pseudotensor

four-fermion operators. Naively, all these operators produce the lepton pair in

different states and do not interfere in the rate [89]. Introducing large NP in

any of them would, thus, render the bounds (3.7) weaker. There is, however,

one exception. In KL → π0ℓ+ℓ−, the tensor operators,

QT,ℓ = s̄σµνd⊗ ℓ̄σµνℓ , (3.9)
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Fig. 3.2: The band in the ImCV,ℓ − ImC+
γ plane allowed by the KL →

π0ℓ+ℓ− experimental bounds. The degree of fine-tuning is represented

by the lighter areas, where | ImCV,ℓ − ρ ImC+
γ |/|ρ ImC+

γ | < 1/r, r =

2, 5, 10, 30. Assuming ImC+
γ = − ImC−

γ , ε
′
+0γ could, thus, reach itsK+ →

π+π0γ experimental bound for r ≳ 5.

do produce the leptons in the same 1−− state as QV,ℓ and Q+
γ [89]. So, ef-

fectively, QT,ℓ can be absorbed into QV,ℓ. But then, owing to their similar

structures, it is not impossible that Q±
γ and QT,ℓ are generated simultaneously

and, thus, that Q±
γ is tightly correlated to this effective QV,ℓ.

In the next two sections, several NP scenarios are considered, in order to inves-

tigate under which circumstances the bounds on C+
γ and CV,ℓ can be resolved.

Of course, ultimately, better measurements of the direct CP-asymmetries are

the cleanest option to get to C±
γ . But before pushing for an experimental effort

in that direction, it is essential to have a more precise idea of their maximal

sizes under a large spectrum of NP scenarios.

Hadronic current and Minimal Flavor Violation

The NP scenarios are organized into two broad classes according to the way the

leptonic currents of the effective operators are parametrized. Before entering

that discussion, let us first consider their hadronic parts, whose generic features

transcend the various scenarios.
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Only the vector current s̄γµd enters in Eq.(3.6) because the axial-vector current

s̄γµγ5d drops out of theK → πνν̄ andKL → π0ℓ+ℓ− hadronic matrix elements.

It would, therefore, be equivalent to replace s̄γµd by the SU(2)L ⊗ U(1)Y
invariant forms Q̄γµQ and D̄γµD. By contrast, the magnetic operators require

an extra Higgs doublet field to reach an SU(2)L invariant form:

Q±
γ ∼ (Q̄σµνDΦ± D̄σµνQΦ∗)Fµν . (3.10)

After spontaneous electroweak symmetry breaking, this operator collapses to

that in Eq.(1.38a). Consequently, if the NP respects the SU(2)L⊗U(1)Y gauge

symmetry, Q±
γ and semileptonic operators are equally suppressed by the NP

scale as they are all of dimension six. However, the magnetic operators are, a

priori, much more sensitive to the electroweak symmetry breaking mechanism,

so that the scaling between the two types of operators cannot be assessed

model-independently. Its phenomenological extraction is, thus, important and

could help discriminate among different models.

The effective operators in Eq.(3.6) induce the s → d flavor transition, whilst

the leptonic currents (or the photon) are flavor diagonal. Model-independently,

the underlying gauge symmetry properties of an operator does not preclude

anything about its flavor-breaking capabilities. However, the situation changes

if we ask for the NP to have no more sources of flavor breaking than the SM.

This is the Minimal Flavor Violation hypothesis [128–132]. For the operators

at hand, it implies that the hadronic currents scale as

Q̄Iγµ(YuY
†
u)
IJQJ ,

D̄Iγµ(Y
†
dYuY

†
uYd)

IJDJ ,

Q̄Iσµν(YuY
†
uYd)

IJDJ ,

(3.11)

with Yd =
√
2md/v, Yu =

√
2V †mu/v. The CKM matrix V is put in Yu so

that the down-quark fields in the operators of Eq.(3.6) are mass eigenstates.

Also, we limit the MFV expansions to the leading sources of flavor-breaking

(i.e., minimal number of Yu,d) for simplicity.

Under MFV, the NP operators acquire many SM-like properties. First, D̄γµD

is doubly suppressed by the light quark Yukawa couplings and is, thus, not

competitive with Q̄γµQ. Second, the chirality flip in Q̄IσµνDJ comes from the

external light quark masses and are, thus, significantly suppressed. Finally, the

s→ d transitions become correlated to the b→ d and b→ s transitions since

v2(Y†
uYu)

IJ ≃ m2
tV

∗
3IV3J . (3.12)

Of course, this correlation is not always strict as additional terms in the MFV

expansion can be relevant. Still, it drives the overall scale of the observables in

each sector.
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We do not intend to perform a full MFV analysis here. Instead, our goal is

to quantify, under the MFV ansatz, the maximal NP effects Q±
γ could induce

given the current situation in b → sγ. From Eqs.(3.10), (3.11) and (3.12),

discarding ms(d) against mb(s), we get

Q±
γ |dIR→dJL

∼ C7γ(µEW ) (Q̄Jσµν(YuY
†
uYd)

JIDI) H Fµν (3.13)

such that

Q±
γ |s→d

Q±
γ |b→s

∼ V ∗
tsVtd ms

V ∗
tsVtb mb

. (3.14)

The flavor-universality of the Wilson coefficient C7γ(µEW ) embodies the MFV

hypothesis. The NP shift still allowed by b→ sγ is [133]

δC7γ(µEW ) = [−0.14, 0.06] ∪ [1.42, 1.62] , (3.15)

for constructive and destructive interference with the SM contributions. The

latter has a lower probability and would require significant cancellations among

the NP effects in B → Xsℓ
+ℓ−. From Eq.(1.41), and including the LO QCD

reduction [38], such a shift can be written in our conventions as

ImC±
γ

∣∣
MFV

GFmK
−

ImC±
γ

∣∣
SM

GFmK
≃ ±2

3
Imλt δC7γ(µEW ) . (3.16)

For comparison, the SM prediction is ∓0.31(8) × Imλt. So, there would be

no visible effects for δC7γ(µEW ) ∈ [−0.14, 0.06] and at most a factor four

enhancement for δC7γ(µEW ) ∈ [1.42, 1.62].

This is hardly sufficient to push any of the asymmetries within the experimen-

tally accessible range, while the impact on KL → π0ℓ+ℓ− would be buried in

the theoretical errors, see Fig.(3.1). However, it is well-known that MFV is

particularly effective for K physics since it suppresses the NP contributions by

the small V ∗
tsVtd ∼ 10−4. This is proved to be the best place to test MFV as a

deviation with respect to the strict ansatz (3.14) could lead to visible effects.

3.2 Tree-level FCNC

The basis of operators in Eq.(3.6) maximally breaks the SU(2)L⊗U(1)Y sym-

metry. Neutrinos are completely decoupled from the charged leptons, and the

vector and axial-vector operators (as well as Q+
γ and Q−

γ ) maximally mix cur-

rents of opposite chiralities. To be specific, the SU(2)L ⊗ U(1)Y invariant
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basis [134] is, after projecting the hadronic currents of semileptonic operators

on their vector components,

HGauge = −GFαem√
2

(CL,ℓ QL,ℓ + C ′
L,ℓ Q

′
L,ℓ + CR,ℓ QR,ℓ)+

+ CL,Rγ QL,Rγ + h.c. ,

(3.17)

where

QL
.
= s̄γµd⊗ L̄γµL , Q′

L
.
= s̄γµd⊗ L̄γµσ

3L , QR
.
= s̄γµd⊗ ĒγµE ,

QLγ =
Qde

16π2v
s̄Rσ

µνdLΦ∗ Fµν ,

QRγ =
Qde

16π2v
s̄Lσ

µνdR ΦFµν ,

and where a sum over the leptonic chiral multiplet flavors ℓ = e, µ, τ is under-

stood. It is related to the phenomenological basis (3.6) through the transfor-

mations Cν,ℓ
CV,ℓ
CA,ℓ

 =
1

2

 1 1 0

1 −1 1

−1 1 1

 CL,ℓ
C ′
L,ℓ

CR,ℓ

 ,

(
C−
γ

C+
γ

)
=

1

2

(
1 −1

1 1

)(
CRγ
CLγ

)
,

(3.18)

for each ℓ = e, µ, τ . As in Eq.(3.6), the SM contributions are not encoded into

HGauge and have to be added separately.

The HGauge basis represents a class of models where the four-fermion effective

operators arise entirely from some high-scale SU(2)L ⊗ U(1)Y invariant tree-

level interactions. It is characterized by the correlations it imposes among the

phenomenologically non interfering operators inHPheno. A well-known example

of model within this class is the MSSM with R-parity violating couplings [135–

138], but more generic leptoquark models are also of this form [139]. Note

that in these two cases, the QR,Lγ operators, nevertheless, arise only at the loop

level since both the photon and the Higgs (see Eq.(3.10)) have flavor-diagonal

couplings at tree-level.

The HGauge basis completely decouples the three leptonic flavors. This is ade-

quate because generic leptoquark couplings do not respect leptonic universality.

Actually, one would expect that lepton-flavor violating (LFV) operators should

arise, inducing in particular K → (π)eµ, which corresponds to an s+µ→ d+e

transition. Those modes are very constrained experimentally, with bounds

often lower that for lepton-flavor conserving (LFC) modes. So, if LFV and
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LFC couplings have similar sizes, there can be no large effects in the LFC

modes. However, to relate the LFC and LFV couplings is far from immediate

and requires some additional inputs on the dynamics (see e.g. Refs. [140–142]

for studies within MFV). In the present work, we, therefore, concentrate ex-

clusively on LFC decay channels. Still, let us emphasize again that leptonic

universality is not expected to hold in the present scenario.

Adopting the SU(2)L ⊗ U(1)Y invariant basis, the Wilson coefficients of the

semileptonic operators in Eq.(3.17) are turned on one at a time while either CLγ
or CRγ is kept on. The bounds are then completely resolved and rather strict:

KL → π0e+e− −20 <

− ImCL,e
⊕

ImC ′
L,e

⊕
ImCR,e

< 24 ∧ −14 < ρ ImC+
γ < 19

KL → π0µ+µ− −33 <

− ImCL,µ
⊕

ImC ′
L,µ

⊕
ImCR,µ

< 37 ∧ −30 < ρ ImC+
γ < 36

K+ → π+νν̄ −28 <

ImCL,ℓ
⊕

ImC ′
L,ℓ

< 34 with ℓ = e⊕ µ⊕ τ

, (3.19)

with all numbers in units of 10−4. Indeed, CLγ and CRγ cannot grow unchecked

since the bounds from KL → π0(ℓ+ℓ−)1−− would then require a large interfer-

ence with CL, C
′
L, or CR . But these Wilson coefficients also contribute either

to the neutrino modes (via Qν,ℓ) or to the axial-vector current (via QA,ℓ), which

are separately bounded since non-interfering. So, CL, C
′
L, or CR have maximal

allowed values and so do CLγ and CRγ . The slight asymmetries between mini-

mal and maximal values are due to the SM contributions. As in Eq.(3.7), ⊕
denotes exclusive alternatives and ∧ means that the bounds are correlated. For

example, both ImCL,ℓ and ImC+
γ cannot reach their maximal values simultane-

ously, but rather should fall within the elliptical contour in the ImCL,ℓ–ImCγ
plane, see Fig.(3.3). Looking at these contours, the bound from KL → π0e+e−

is clearly tighter than that from K+ → π+νν̄, but KL → π0µ+µ− is less

constraining (except of course for CR,µ). Thus, as long as leptonic univer-

sality is not imposed, CL,µ and C ′
L,µ are only bounded by K+ → π+νν̄, and

KL → π0νν̄ can reach is maximal model-independent bound (3.8). Still, even if

K+ → π+νν̄ limits C
(′)
L,µ, the KL → π0µ+µ− rate can always reach its current

experimental limit either through CR,µ or with the help of Q+
γ .
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Fig. 3.3: Tree-level FCNC scenario, with CL,Rγ together with either C ′
L,

CL, or CR turned on. The diagonal bands show the model-independent

limits of Fig.(3.2).

The comparison of these bounds with Eq.(3.7) illustrates the consequence of

introducing some model-dependence. A scenario with tree-level FCNC is com-

pletely bounded by the data. Further, both QL,Rγ contribute to all the decays

in Tab.(2.1), since C−
γ = +(−)C+

γ when C
R(L)
γ is turned on. Thus, we give in

Eq.(3.19) the bounds on ImC+
γ , which directly translates as maximal values

for all the direct CP-asymmetries in Eqs.(3.1) and (3.3). Since leptonic univer-

sality holds for Q±
γ , the tightest bound from KL → π0e+e− must be satisfied,

i.e.

−0.03 <
ImC+

γ

GFmK
< 0.04 . (3.20)

This represents only a slight extension of the range (3.4), obtained in the ab-

sence of NP but in Q±
γ .

Scalar or tensor four-fermion operators are not included in Eq.(3.17), even

though they could arise from leptoquark exchanges. The reason is that they

cannot alter the bounds (3.19) if we write them in SU(2)L ⊗ U(1)Y invariant

forms. The only four-fermion operators able to interfere with the vector ones

are QT,ℓ of Eq.(3.9), but they must be replaced here by

QLT,ℓ = s̄σµνd⊗ L̄σµνE, QRT,ℓ = s̄σµνd⊗ ĒσµνL . (3.21)
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Each of these operators has a pseudotensor piece s̄σµνd ⊗ ℓ̄σµνγ5ℓ, which is

the only current able to produce the lepton pair in a 1+− state [89]. There

is, thus, no entanglement, and QLT,ℓ and QRT,ℓ are both directly bound by the

total KL → π0ℓ+ℓ− rate. Hence numerically, the bounds are similar to those

in Eq.(3.19), and Eq.(3.20) is not affected.

3.3 Loop-level FCNC

For a given lepton flavor, the HGauge basis maximally couples the semileptonic

operators, while the HPheno basis maximally decouples them. An intermediate

picture emerges if the NP generates FCNC only at the loop level. This can be

due to some discrete symmetries (like R-parity) or to some generalized GIM

mechanism. By construction, most NP models are of this type, for example

the MSSM (see Sec. 3.3), little Higgs [143–145], left-right symmetry [108,146],

fourth generation [147, 148], some extra dimension models [149],..., because

the loop suppression of the FCNC naturally allows for the NP particles to be

lighter, hopefully within range of the LHC.

An appropriate basis to study this scenario is derived from the situation in the

SM. Indeed, the NP should induce the quark flavor transition s → d, but the

lepton pair is flavor-diagonal and could still be produced by SM currents, i.e.,

γ and/or Z bosons. So, in the absence of new vector interactions, the SM basis

is adequate:

HPB = −GFαem√
2

(CZ QZ +CA QA +CB QB) +CL,Rγ QL,Rγ +h.c. , (3.22)

with (s2W
.
= sin2 θW = 0.231)

Z penguin : QZ
.
= s2WQL + (1− s2W )Q′

L + 2s2WQR , (3.23a)

γ∗ penguin : QA
.
=
s2W
4

(QL −Q′
L + 2QR) , (3.23b)

W boxes : QB
.
= −3

2
QL − 5

2
Q′
L . (3.23c)

In the presence of NP at the loop-level, it is natural to use the SM-like QL,Rγ
operators of Eq.(3.17) since the chirality flip is, a priori, different for the L→ R

and R → L transitions. Indeed, even though the drastic SM scaling CLγ ∼
ms ≫ CRγ ∼ md needs not survive in the presence of NP, it is nevertheless

expected that (CLγ + CRγ )/(C
L
γ − CRγ ) is of O(1).

The QL, Q
′
L and QR operators are never independent in this scenario, even

before the electroweak symmetry breaking takes place. Indeed, though there
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is a one-to-one correspondence between the Wµ
3 penguin and Q′

L, the B
µ pen-

guin generates both QL and QR with a fixed (“fine-tuned”) relative coefficient.

Combined with Eq.(3.18), the transformation back to the phenomenological

basis is Cν,ℓ
CV,ℓ
CA,ℓ

 =
1

2

 1 0 −4

4s2W − 1 s2W 1

1 0 −1

 CZ
CA
CB

 , (3.24)

while the QL,Rγ operators are related to the Q±
γ as in Eq.(3.17). In the SM

without QCD, the semileptonic coefficients are directly given in terms of the

Inami-Lim functions as (beware that the SM contributions are not included in

HPB, which parametrizes only the NP contributions) [38]

CSM
{A,Z,B} = − λt

πs2W
{D0(xt), C0(xt), B0(xt)} , (3.25)

so the HPB basis coincides with Penguin-Box expansion of Ref. [150]. Note

that lepton universality is strictly enforced to match the physical picture of

NP entering only for the s → d penguins, but this can easily be lifted. Also,

(pseudo)scalar or (pseudo)tensor operators are not introduced, as none of the

SM penguins can produce them.

In the SM, only specific combinations of the electroweak penguins and boxes

are gauge invariant [150]. Those combinations are precisely those entering

into Cν,ℓ, CV,ℓ, and CA,ℓ, since their operators are directly producing different

physical states. Of course, by construction, the HGauge basis (3.17) is also

gauge invariant. To check this starting with the SM expressions (3.25) requires

extending the basis of Eq.(3.22) first to differentiate the boxes according to the

weak isospin state of the lepton pairs [150]

QB,±1/2
.
=

1

2
(QL±Q′

L) ⇔
(
QB
Q′
B

)
=

(
−4 1

−1 1

)(
QB,+1/2

QB,−1/2

)
. (3.26)

The combination QB occurs in Eq.(3.23) because its Wilson coefficient is sep-

arately gauge invariant, see Ref. [150], while Q′
B is redundant once the gauge

is fixed (we work in the t’Hooft-Feynman gauge).

So, if one insists on gauge invariance, the HPB basis collapses either onto

the HPheno or on the HGauge basis. Still, using directly the HPB basis for

parametrizing NP makes sense as its operators encode different physics [150,

151]. Indeed, the dominant NP contribution in the Z penguin effectively comes

from a dimension-four operator after electroweak symmetry breaking [152],

while the γ∗ penguin is of dimension six. The box operator QB is there to
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complete the basis, but is rather suppressed in general. Finally, the mag-

netic operators QL,Rγ are separately gauge-invariant, of dimension five after the

electroweak symmetry breaking, and require a chirality flip mechanism. Con-

sequently, it is only if there is a new gauge boson, and a corresponding new

penguin not necessarily aligned with the SM structures, that significant fine-

tunings between the HPB operators could arise. This will be dealt with in the

next section.

Coincidentally, the HPB basis is rather close to the model-independent basis

HPheno because 4s2W ≃ 1. Indeed, QZ essentially drops out from the vector

current, leaving QA and Q+
γ completely entangled inKL → π0(ℓ+ℓ−)1−− , while

the QB and QZ pair is fully resolved through the non-interfering Cν,ℓ and CA,ℓ
contributions to K → πνν̄ and KL → π0(ℓ+ℓ−)1++,0−+ . The main difference

between the HPB and HPheno bases is in the magnetic penguins, since the

former relates Q+
γ and Q−

γ through (CLγ + CRγ )/(C
L
γ − CRγ ) ∼ O(1).

Turning on CZ , CA, and CB one at a time while keeping CR,Lγ on, the bounds,

in units of 10−4, are

KL → π0e+e−

−14 < (s2W /2) ImCA − ρ ImC+
γ < 8

⊕

−20 <

ImCZ
⊕

− ImCB

< 24 ∧ −8 < ρ ImC+
γ < 14

KL → π0µ+µ−

−29 < (s2W /2) ImCA − ρ ImC+
γ < 24

⊕

−33 <

ImCZ
⊕

− ImCB

< 37 ∧ −24 < ρ ImC+
γ < 29

K+ → π+νν̄ −15 <

ImCZ
⊕

−4 ImCB

< 21

. (3.27)

As before, ∧ denotes a contour in the corresponding plane within the quoted

extremes, while ⊕ is the exclusive alternative. Comparing with Eq.(3.7), the

presence of QZ or QB in the vector current has no impact on the range for

ImC+
γ . The bounds from K+ → π+νν̄ are more strict because leptonic univer-

sality is now imposed. This actually enables to combine all the modes, so that

ImCZ is best constrained by KL → π0e+e− together with K+ → π+νν̄, and

ImCB entirely by K+ → π+νν̄ thanks to the factor −4 in Eq.(3.24). The pho-

ton operators QA and Q±
γ are unconstrained at this level, so let us investigate

how to resolve this ambiguity within the present scenario.
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Hadronic Electroweak penguins

The photon and the Z boson are also coupled to quarks and, thus, affect ε′.

If NP generates the QZ and QA operators entirely through these SM gauge

interactions, we must impose

Re(ε′/ε)NP ≃ πs2W Im [11.3× CZ + 3.1× CA + 2.9× CB ] . (3.28)

This simplified formula is obtained from Ref. [33] by parametrizing the NP

contributions to the OPE initial conditions at MW in terms of CZ,A,B , setting

the bag factors to their large NC values and taking ms(mc) = 121 MeV. We

do not include the Q−
γ contribution to ε′ since the experimental bound (2.28)

implies that it is below 30% of Re(ε′/ε)exp, see Eq.(2.67). It should be clear

that this formula is only a rough estimate. Deviations with respect to the

strict large NC limits are likely, even though the coefficients of CZ and CA are

most dependent on B
3/2
8 , which is better known than B

1/2
6 (see Ref. [33]). To

account simultaneously for this uncertainty and that of the SM contribution,

we conservatively require |Re(ε′/ε)NP| < 2Re(ε′/ε)exp.

Even if rather imprecise, the constraints from Re(ε′/ε) are currently tighter

than those coming from rare decays for CZ and CA. Numerically, turning on

one semileptonic operator at a time, Eq.(3.28) imposes (all numbers are in units

of 10−4)

Re(ε′/ε) ⇒ | ImCZ | < 4 ⊕ | ImCA| < 15 ⊕ | ImCB | < 16 . (3.29)

As shown in Fig.(3.4), for such values, the contributions to CV,ℓ are tiny. Thus,

the maximal values for ImC+
γ are the same as without any other NP sources, see

Eqs.(3.4), which requires thatKL → π0e+e− saturates its current experimental

limit. Since lepton universality holds, the KL → π0µ+µ− rate is smaller but

tightly correlated to KL → π0e+e−, see Fig.(3.4). Concerning K → πνν̄, if

one assumes that CB ≪ CZ , as in the SM, then K → πνν̄ is strongly limited

by ε′:

CA = CB = 0 ⇒
{

0 < Br(KL → π0νν̄) < 16× 10−11 ,

7× 10−11 < Br(K+ → π+νν̄) < 12× 10−11 .
(3.30)
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However, the current K+ → π+νν̄ experimental limit can be saturated when

CB ≃ CZ , in which case KL → π0νν̄ could reach the model-independent upper

limit of Eq.(3.8)

Br(KL → π0νν̄) ≃ 4.3(Br(K+ → π+νν̄)− Br(K+ → π+νν̄)SM)

< 1.2× 10−9 .
(3.31)

With ε′ so constraining, even a slight cancellation among the electroweak pen-

guins could have a significant outcome for ImC+
γ . This could occur in most

models since the HPB operators are usually not independent but arise simulta-

neously. Indeed, the intermediate loop particles are, in general, coupled to both

the γ and Z bosons. Let us stress that, as previously mentioned, we do not

expect a fine-tuning among these electroweak penguins. At most, we expect

some cancellations because their SU(2)L-breaking properties are significantly

different. Still, it is worth investigating this possibility. Let us, therefore, relax

the one-operator-at-a-time procedure.

Once Eq.(3.28) is added to K → πνν̄ and KL → π0ℓ+ℓ−, the system is suffi-

ciently constrained and the bounds can be resolved even when all the semilep-

tonic operators are turned on simultaneously

Re(ε′/ε) | ImCA + 3.9 ImCZ | < 19

K+ → π+νν̄ −15 < ImCZ − 4 ImCB < 21

KL → π0e+e− −32 < ImCZ < 35 ∧ −14 < ρ ImC+
γ < 18

KL → π0µ+µ− −49 < ImCZ < 53 ∧ −30 < ρ ImC+
γ < 35

, (3.32)

where all the bounds are in units of 10−4. We indicate the main source driving

each bound, but it should be clear that all the experimental constraints are

entangled, and all are necessary to get a finite-size area in parameter space.

Interestingly, these bounds are not very different from those derived on the

SU(2)L⊗U(1)Y operators of Eq.(3.17). The reason is that Re(ε′/ε) in Eq.(3.28)

imposes the tight correlation CA ≃ −4CZ , upon which CZ , CA, and CB are all

ultimately bound by the rare decays through Cν,ℓ and CA,ℓ, exactly like CL,

C ′
L, and CR were (see Eq.(3.18)). Still, the origin of the observed correlations

among Cν,ℓ, CA,ℓ and CV,ℓ in these two scenarios is obviously very different. It

comes directly from the assumed NP dynamics when using the HGauge basis,

but is entirely driven by the sensitivity of Re(ε′/ε) to electroweak penguins

when using the HPB basis.

If the electroweak operators are induced by SM-like Z and γ∗ penguins, such

a tight CA ≃ −4CZ correlation is rather unlikely given the intrinsic differences



74 Chapter 3: s → dγ beyond the SM

between those FCNC (dim-4 versus dim-6). So, when

rZA
.
=
CA + 4CZ
CA − 4CZ

≪ 1 , (3.33)

one would rather conclude that a non-standard FCNC, not aligned with the SM

penguins, is present. Since CA+4CZ is the gauge-invariant combination driving

the vector coupling (which is known to dominate in ε′ [150], as is obvious in

Eq.(3.28)), one would need a new enhanced penguin, not coupled to the vector

current or not coupled to quarks.

The experimental signature for this scenario requires disentangling CA and CZ .

Since the experimental K+ → π+νν̄ bound can be saturated with the help of

CB only, it has no discriminating power in rAZ . The maximal attainable value

for ImC+
γ and, thus, for the CP-asymmetries, is not very sensitive to rZA

either, see Fig.(3.5). On the contrary, the correlation between KL → π0e+e−

and KL → π0µ+µ− shown in Fig.(3.5) could signal such a scenario. Indeed,

on the one hand, without fine-tuning, one is back to the situation shown in

Fig.(3.4) where both rates are saturated by a large Q+
γ contribution in their

vector current when they deviate from their SM predictions. While, on the

other hand, as rAZ decreases, more and more of the model-independent region

in the KL → π0e+e−–KL → π0µ+µ− plane gets covered.
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QCD penguins

If SU(3)C ⊗U(1)em remains unbroken at the low scale, the FCNC loops must

involve intermediate charged and colored particle(s). The photonic penguin is,

thus, necessarily accompanied by the gluonic one. Further, if NP enhances sig-

nificantly the chromomagnetic operators Q±
g (defined in Eq.(2.70)), the mag-

netic operators Q±
γ are then directly affected through the RGE (2.71). So,

C±
g (µNP ) act as lower bounds for C±

γ (µc). The opposite cannot be asserted

from Eq.(2.71), since the O(αem) mixings Q±
γ → Q±

g are missing. However,

those mixings are presumably long-distance dominated, hence have to be dealt

with at the matrix-element level. For instance, in the case of ε′, the Q−
γ con-

tribution is subleading even when ImC−
γ saturates the experimental limit on

the K+ → π+π0γ CP-asymmetry, see Eq.(2.67). As such, the mixing effects

do not forbid a large splitting C±
γ (µc) ≫ C±

g (µc).

Still, owing to their similar dynamics, C±
γ (µNP ) and C

±
g (µNP ) may have similar

sizes. If so, since Q−
g contributes to ε′, both magnetic operators are tightly

bounded

| ImC−
γ |

GFmK
≃

| ImC−
g |

GFmK
≲ 5× 10−4 , (3.34)

if we require |Re(ε′/ε)g| < Re(ε′/ε)exp and set BG = 1. This is extremely

constraining and would rule out any effect of the magnetic operators in rare

decays or in CP-asymmetries.

The presence of the other FCNC could significantly alter this bound. So,

let us again turn on all the penguin operators but freeze the relation among

the magnetic ones to be given by | ImC+
γ | = 1.5| ImC−

g |. We also neglect

the chromoelectric operators (the usual QCD penguins), as their impact is

less important [33]. Then, using Eq.(3.28) with Eq.(3.5), the bounds can be

resolved except when ε′ and KL → π0ℓ+ℓ− just happen to depend on the same

combination of ImCA and ImC+
γ,g, which occurs for ImC+

γ ≃ −3 ImC−
g (with

BG = +1).

In this scenario, the driving force is the cancellation between the two largest

contributions to ε′, i.e. between ImC−
g and Im(4CZ + CA). The electroweak

operators are not fine-tuned, except for the ImCZ−ImCB correlation imposed

by the rare decays, which stays as in Fig.(3.5). So, in this scenario, large effects

are possible in K → πνν̄ thanks to QB and QZ , while KL → π0ℓ+ℓ− receive

sizeable contributions in both their vector and axial-vector currents. Contrary

to the situation without Q±
g , these latter decays can no longer be used to probe

the cancellations in ε′, since they do not directly depend on the chromomagnetic

operators.
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Actual numbers for the bounds on the Wilson coefficients would not make

much sense here, because the fine-tuning in Re(ε′/ε) reaches horrendous values

before the rare decay constraints can kick in. As shown in Fig.(3.6), individual

contributions to Re(ε′/ε) can be as large as 10%. Instead, let us freeze the

situation and set the Q−
g contribution to Re(ε′/ε) at 2 × 10−2. As shown in

Fig.(3.6), this requires a large but not impossible 90% cancellation between the

electroweak and the gluonic penguins.

To uniquely identify this cancellation, the best strategy relies on the direct

CP-asymmetries (see Fig.(3.6)). The first step is to exploit the RGE constraint

C±
γ (µc) ≳ C±

g (µc), which implies that the asymmetries in Eq.(3.1) are all at

the percent level

ImC−
γ

GFmK
≳

ImC−
g

GFmK
≃ Re(ε′/ε)g

3BG
≃ 10−2 . (3.35)

Since ε′+0γ , ε
′
+−γ , and ε

′
|| are mostly insensitive to the hadronic penguin fraction

in ε′, they would cleanly signal the presence of NP in Q−
γ . The second step

derives from the pure ∆I = 1/2 nature of the chromomagnetic operator. Since

it enters only in K → ππ0, its presence would be felt in ε′⊥ (see Eq.(3.3)), in

addition to that ofQ+
γ . So, using Eq.(3.5) and enforcing | ImC+

γ | = 1.5| ImC−
g |,

we can write

|ε′⊥/ε|g =
√
2

ω
Re(ε′/ε)g ≃ 0.65 , |ε′⊥/ε|γ =

1

4|ε|
Re(ε′/ε)g ≃ 2.2 , (3.36)

with BG = +1. By contrast, electroweak penguins contribute mostly to the

K → ππ2 amplitude and have, thus, a negligible impact on ε′⊥ compared to

Q−
g . So, in principle, by combining ε′⊥ with ε′+0γ , ε

′
+−γ , or ε

′
||, it is possible to

put into evidence NP in both Q±
γ and Q−

g . Of course, this whole program is

very challenging experimentally, but completing the first step may be feasible,

since Q−
γ could push ε′+0γ and ε′+−γ up to less than an order of magnitude

away from their current limits.
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Minimal Supersymmetric Standard Model

The MSSM with R-parity is a particular implementation of the loop-level

FCNC scenario discussed in the previous section. All the bounds derived there

are, thus, not only valid, but could become tighter. Indeed, the various FCNC

could be more directly correlated once the NP dynamics is specified. In ad-

dition, the MSSM introduces only a finite number of new sources of flavor-

breaking through its soft-breaking squark mass terms and trilinear couplings.

The most important correlation is that between the gluonic and photonic pen-

guins, as analyzed in detail in Refs. [81,125]. Both can be generated by gluino-

down squark loops, so that [153]

C±
γ (mg̃) =

παs(mg̃)

mg̃

[
(δDLR)21 ± (δDRL)21

]
F (xqg) , (3.37a)

C±
g (mg̃) =

παs(mg̃)

mg̃

[
(δDLR)21 ± (δDRL)21

]
G(xqg) , (3.37b)

with

F (xqg) ≃ F (1) =
2

9
, G(xqg) ≃ G(1) = − 5

18
, (3.38)

where xqg = m2
q̃/m

2
g̃, mq̃(g̃) is the squark (gluino) mass and where F (xqg) and

G(xqg) are loop functions. The chirality flips are induced by the SU(2)L break-

ing trilinear term AD, parametrized through the mass insertions (δDRL)21 =

(δDLR)
∗
12. At the low-scale, the Wilson coefficients obey

C±
γ (µc) =

(
η
F (xqg)

G(xqg)
+ 8(η − 1)

)
C±
g (µc) ≃ −1.6C±

g (µc) . (3.39)

In the absence of any other supersymmetric contributions to ε′, this leads to

the tight constraint [154–156]

Re(ε′/ε) ⇒
| ImC−

g (µc)|
GFmK

≲ 5×10−4 → | Im(δDRL)21,12| ≲ 2×10−5 . (3.40)

Before discussing how this bound could get relaxed by NP effects in the other

FCNC, let us consider the MFV prediction for δDRL, to get a handle on the “min-

imal” size of C±
γ,g. The flavor symmetry-breaking of AD imposes an expansion

at least linear in the Yukawa couplings [128–132]

AD ∼ A0(a01+ a1YuY
†
u + ...)Yd , (3.41)

with Yd =
√
2md/vd, Yu =

√
2V †mu/vu, vu,d the vacuum expectation values

of the H0
u,d Higgs boson, A0 setting the SUSY breaking scale, and ai some free
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O(1) parameters (which can be complex [157, 158]). In that case, (δDLR)IJ ∼
mdJ/md̃ ∼ 10−4, and no visible deviations could arise in ε′ or in the other

CP-violation parameters in Eq.(3.1). Turned around, this means that these

observables are particularly sensitive to deviation with respect to MFV. As a

matter of fact, this framework is only one particular realization of the flavor

sector of the MSSM. It is motivated in part by its rather natural occurrence

starting from universal soft-breaking terms at the high scale and in part by

the tight constraints in the b → s, d or ℓ → ℓ′ sectors. It would, therefore, be

interesting to confront it to experimental information about the s → d sector

as well.

Before exploiting the analysis of Sec.3.3, there is another important correlation

arising in the MSSM. The ∆S = 2 observables can be induced by the same

source of flavor-breaking as the magnetic operators. One derives for mg̃ = 500

GeV [154–156]:

∆MK ⇒
√
Re(δDRL)

2
21 < 3× 10−3 →

|ReC±
γ |

GFmK
≲ 0.1 , (3.42a)

ε⇒
√
Im(δDRL)

2
21 < 4× 10−4 →

| ImC±
γ |

GFmK
≲ 0.01 . (3.42b)

The absence of a large cancellation among the supersymmetric contributions,

such as processes where the flavor-breaking originates from the SU(2)L con-

serving squark masses (most notably δDLL), is explicitly assumed. At this stage,

we want to point out that the bounds on ReC±
γ obtained from radiative decays

are competitive with that from ∆MK :

K+ → π+π0γ ⇒
|ReC−

γ |
GFmK

≲ 0.1 → |Re(δDRL)21| < 3× 10−3 , (3.43a)

K0 → γγ ⇒
|ReC+

γ |
GFmK

≲ 0.3 → |Re(δDRL)21| < 10−2 , (3.43b)

assuming C+
γ ≃ ±C−

γ . Compared to the bound from ∆MK , radiative decays

directly constrain Re(δDRL)21, and there can be no weakening through interfer-

ences among SUSY contributions, since only Q±
γ enter.

Let us consider the bound from ε as the maximal allowed value for ImC±
γ .

We can now directly connect the present MSSM scenario to that discussed in

Sec.3.3, since the bound (3.42b) matches that in Eq.(3.35). Given the con-

straint (3.39), which also matches that of Sec.3.3, such values for ImC±
γ,g are

only possible provided there is a large electroweak-gluonic penguin cancellation

in ε′, of about 90% of their respective contributions, see Fig.(3.6).

This cannot be excluded, a priori, even though the electroweak penguins are

not directly correlated with gluonic penguins in the MSSM. With the SU(2)L
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conserving mass insertions δDLL limited by the ∆S = 2 observables, electroweak

penguins arise essentially from the flavor-breaking in the up-squark sector. In-

deed, when AU = A0Yu + ..., the quadratic combination of mass-insertion

(δULR)13(δ
U
LR)

∗
23 gets significantly enhanced by the large top mass [159]. This

scenario was analyzed in detail e.g. in Refs. [125, 160], where significant de-

viations with respect to the SM were found to be possible for K → πνν̄. In

particular, the box diagram was found to be sizeable in Ref. [161]. Though

these scenarios concentrated on the low to moderate tanβ
.
= vu/vd regime,

the situation is similar at large tanβ. Indeed, on one hand, C±
γ,g and, thus,

Re(ε′/ε)g could reach larger values even under MFV, since Yd = md/vd gets

enhanced. On the other hand, however, the charged Higgs contribution to the

electroweak penguins can kick in, making them sensitive to the flavor-breakings

in the δDRR sector1.

Altogether, there can be two different situations in the MSSM:

• If there is a large cancellation between gluonic and electroweak penguins

in ε′, large enhancements are possible in the rare decays. This is the

scenario of Sec.3.3. The K+ → π+νν̄ mode can saturate its current

limit, and KL → π0νν̄ can reach the model-independent bound (3.31).

The KL → π0e+e− can also saturate its experimental bound, while lep-

tonic universality then limits KL → π0µ+µ− to about 40% of its current

(looser) bound. As in Sec.3.3, the direct CP-violating parameters in ra-

diative K decays could reach the percent level, see Fig.(3.6), and would

be the cleanest signatures for this scenario.

• On the contrary, if there is no large cancellation in ε′, say not beyond

about 10%, then C±
γ are indirectly limited by the tight correlation (3.39)

and all the direct CP-violating parameters would be small, presumably

beyond the experimental reach. Further, a fine-tuning between the Z

and virtual γ penguins able to push rZA in Eq.(3.33) to small values

is not possible. Both are driven by the same mass insertions, with the

generic result CZ > CA (see e.g. Ref. [160]). So, this corresponds to

the first scenario of Sec.3.3, characterized by the bounds (3.29). The

K+ → π+νν̄ and KL → π0νν̄ could still be very large if the boxes are

sizeable (CZ ≃ CB), but KL → π0e+e− and KL → π0µ+µ− cannot

because C+
γ ≃ −1.6C±

g is too small to enhance them (see the red areas

in Fig.(3.4d)).

1At large tanβ, Higgs mediated penguins could also appear. Those are embedded in

helicity-suppressed scalar and pseudoscalar semileptonic operators. We refer to Ref. [89] for

an analysis of their possible impact.
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In summary, to probe for a possible large electroweak and QCD penguin can-

cellations in ε′, the K → πνν̄ are useful only if the scaling between box and

penguins is known. However, telltale signatures would be large enhancements

of KL → π0e+e− and KL → π0µ+µ−, as well as large CP-violating parameters

in radiative K decays.

3.4 Conclusions

In this chapter, the possible NP impacts on the s→ dγ process were analyzed.

The direct CP-violating parameters in radiative decays offer the cleanest ac-

cesses to s → dγ, since they are free from any competing NP effect (except

ε′⊥) once the Q3,...,10 contributions are fixed in terms of Re(ε′/ε)exp. However,

these parameters are not yet tightly bounded experimentally. By contrast, the

KL → π0ℓ+ℓ− decays are sensitive to both s → dγ and s → dγ∗ processes,

as well as to many other possible FCNC, but are already tightly bounded ex-

perimentally. So, to resolve the possible interferences among NP contributions

and, thereby, assess how large the CP-violating parameters could be, several

scenarios were considered. The main discriminator was chosen as the assumed

NP dynamics, which translates as a choice of basis for the effective four-fermion

semi-leptonic operators. To summarize each scenario:

1. Model-independent The basis (3.6) is constructed so as to minimize the

interferences between the NP contributions in physical observables [126].

Its main characteristic is the entanglement of the magnetic operator Q+
γ

with the semileptonic operator QV,ℓ = s̄γµd⊗ ℓ̄γµℓ, since they both pro-

duce the ℓ+ℓ− pair in the same 1−− state. So, if these two interfere

destructively, the CP-violating parameters in radiative decays could be

large. For example, if there is an 80% cancellation between Q+
γ and QV,e

in KL → π0e+e−, ε′+0γ could saturate its current experimental limit

−22(36)% [8], see Fig.(3.2). By comparison, a strict enforcement of the

MFV hypothesis would suppress all these CP-violating parameters down

to the 10−4 range. This shows the power of these parameters in exhibiting

deviations with respect to MFV.

2. Tree-level FCNC The basis (3.17) assumes that the NP is invariant

under SU(2)L⊗U(1)Y and generates the semileptonic operators through

tree-level processes. The main characteristic is the strong correlation be-

tween K → πνν̄, KL → π0(ℓ+ℓ−)1−− and KL → π0(ℓ+ℓ−)1++,0−+ for

a given lepton flavor but the absence of leptonic universality. This is
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sufficient to resolve the entanglement between Q+
γ and QV,ℓ. The CP-

violating parameters are then bounded by KL → π0e+e−, see Fig.(3.3),

with e.g. |ε′+0γ | ≲ 11%. Also, each rare decay can saturate its experimen-

tal bound, though all cannot simultaneously be large but for KL → π0νν̄,

which must satisfy its model-independent bound (3.8).

3. Loop-level FCNC / electroweak penguins only The basis (3.22)

provided by the SM electroweak penguin and box operators is adequate

when the FCNC originates entirely from loop processes. The main char-

acteristic of this scenario is the entanglement of the s→ dγ and s→ dγ∗

photon penguins in KL → π0(ℓ+ℓ−)1−− . However, once in this basis, it

is natural to allow the photon and Z to couple also to quarks, bringing ε′

into the picture. Then, the only way to have sizeable effects in rare decays

is to allow for a large box operator to fine-tune the electroweak penguins,

so as to avoid the large vector current contribution in ε′, or to allow for

Q±
γ to be large. The main issue is, thus, to resolve the fine-tuning in

ε′. Indeed, if it is extreme, one would conclude that the chosen basis is

inadequate, and NP is not aligned with the Z or γ penguins. While the

direct CP-violating parameters are rather insensitive, and could reach a

few percents, at most, the correlation between the KL → π0e+e− and

KL → π0µ+µ− modes can be used to signal such a fine-tuning in ε′, see

Fig.(3.5).

4. Loop-level FCNC / electroweak and chromomagnetic penguins

When generated at loop level, the magnetic operators are always ac-

companied by the chromomagnetic operators since the SU(3)C ⊗U(1)em
quantum numbers must flow through the loop. Their relative strength,

however, cannot be assessed model-independently. If one forces the two

to be of similar strengths, the main characteristic of this scenario is the

tight fine-tuning required by ε′ between the gluonic and the electroweak

penguins, see Fig.(3.6). To resolve this, rare decays are rather ineffective

but the direct CP-violating parameters are perfectly suited, since they

directly measure Q±
γ . The parameter ε′⊥ is particularly interesting, con-

sidering that it is also directly sensitive to the ∆I = 1/2 chromomagnetic

operator Q−
g through its dependence on ξ0.

5. Loop-level FCNC / MSSM The main characteristic of the MSSM

is the strict correlation between the magnetic and chromomagnetic pen-

guins, Eq.(3.39). Depending on the level of fine-tuning between gluonic

and electroweak penguins in ε′, this scenario collapses either to scenario

3 or 4. In the former case, both magnetic penguins have to be small

due to the fact that they are correlated, and the MSSM further forbids
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the specific fine-tuning between the electroweak penguins required by ε′.

As a result, the rare decays are tightly constrained, see Fig.(3.4), with

the possible exception of K → πνν̄ if the box amplitudes are exception-

ally large. It should be stressed, though, that the cancellation between

the gluonic and electroweak penguins required in ε′ needs not be ex-

treme to leave room for sizeable supersymmetric contributions to both

KL → π0ℓ+ℓ− and direct CP-violating parameters, see Fig.(3.6). Finally,

radiative decays were found to provide a competitive bound on Re δD12,

see Eq.(3.43).



Chapter 4
Weakly-induced strong

CP-violation

In the SM, both the electroweak gauge interactions and the Higgs self inter-

actions turn out to be CP-invariant. Yet, in absence of any flavor theory, the

most general Yukawa interactions of the Higgs field with three generations of

quarks are responsible for two independent CP-violating phases. The first one,

eiδCKM , preserves parity (P) whilst the second one, eiθQFD , preserves charge con-

jugation (C). Indeed, these phases are rooted in the complex up (and down)

quark mass matrices Mu(d) : induced by the Higgs field frozen at its vacuum

expectation value, these matrices can always be polar decomposed into Her-

mitian ones multiplied by a global phase [162], but are neither symmetric nor

Hermitian.

As a matter of fact, the δCKM and θQFD angles are not observables by them-

selves. On the one hand, the unitarity of the three-by-three Cabibbo-Kobayashi-

Maskawa (CKM) mixing matrix allows nine independent parametrizations in

terms of Euler rotations such that flavour physics only implies the lower bound

[163]

δCKM ≳ π

200
. (4.1)

In particular, in the usual CKM matrix parametrization, we saw in Eq.(1.15)

that δCKM ≃ 74(π/200). On the other hand, the axial anomaly in strong gauge

interactions is such that nuclear physics only requires the upper bound [164,165]

θ
.
= θQFD + θQCD ≲ 10−10 (4.2)
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with θQFD, the argument of det(MuMd) in Quantum Flavour Dynamics (QFD)

and θQCD, the coefficient in front of the GµνG̃
µν term in Quantum Chromo

Dynamics (QCD) [166].

The striking hierarchy between Eq.(4.1) and Eq.(4.2) suggests that δCKM ̸= 0

and θ = 0 at the classical level. A natural way to implement such a scenario

would be to impose the parity invariance on the full Lagrangian. However, in

the SM, C and P discrete symmetries are explicitly broken by the gauge sector

such that quantum corrections to the θ parameter are expected to arise at the

second-order in the electroweak interactions. In the past, two complementary

short-distance attempts to estimate ∆wθ within the SM have been suggested.

The first one [167] was based on loop corrections for the light quark masses,

leading to

∆wθQFD ≃ 10−16 at O(G2
Fα

3
s) , (4.3)

while the second one [168] has considered the induced gluon pseudo-strength

field to get

∆wθQCD ≃ 10−19 at O(G2
Fαs) . (4.4)

In this chapter, we estimate ∆wθ through the physical η(′) → ππ hadronic

decays and find rather

∆wθ ≃ 10−17 at O(G2
F ε

′) (4.5)

once again with ε′, the penguin-induced CP-violation parameter in K → ππ

decays.

4.1 η(′) → ππ from strong interactions

At low energy, all the basic aspects of strong interactions are encapsulated in

the truncated O(p2) effective Lagrangian [56–58]

Ls =
F 2

4
⟨∂µU∂µU†⟩+ LMs + Lθs , (4.6)

which is the U(3)L×U(3)R generalization of the strong effective Lagrangian of

Eq.(1.46) that includes a O(p0, N−1
C ) axial UA(1) breaking term weighted by

the mass parameter m0 in

LMs =
F 2

4

[
⟨µ2(U + U†)⟩+ m2

0

4NC
⟨lnU − lnU†⟩2

]
(4.7)
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and encodes effectively the presence of the θ-term as

Lθs = iKθ
F 2

4

[
−⟨U − U†⟩+ ⟨lnU − lnU†⟩

]
. (4.8)

An important consequence of this extension is that an extra GB emerges from

the spontaneous symmetry breaking U(3)L × U(3)R → U(3)V . This is, of

course, the reason why, in this 1/NC extension, we may identify the η′ as a

new GB with an anomalously large mass due to the m2
0 symmetry breaking

term in Eq.(4.7) by including a new singlet scalar field η0 in ϕ, defined in

Sec.(1.3.2), as

ϕ→ ϕ+

√
2

3
η013×3 . (4.9)

It is worth recalling some of the main properties of this extended Lagrangian.

Mass spectrum and mixing from LM
S

On the one hand, and as previously mentioned, the vacuum expectation value

of the µ2 matrix field is proportional to the real and diagonal light quark mass

matrix and provides the pions and kaons with a mass:

µ2
u = µ2

d = m2
π and µ2

s = 2m2
K −m2

π . (4.10)

As such, it breaks the flavour SU(3) symmetry but preserves its isospin sub-

group SU(2)I in the limit µ2
u = µ2

d. On the other hand, the colour-suppressed

operator proportional to m2
0 in Eq.(4.7), responsible for the breaking of the

anomalous axial U(1)A, allows us to consider η0 as the ninth GB of the U(3)

multiplet ϕ in the large-NC limit [169]. However, since η8 and η0 mix, it

is suitable to introduce the single mixing angle φ which relates the SU(3)

eigenstates (η8, η0) and the mass eigenstates (η, η′) in the isospin limit as(
η

η′

)
=

(
cosφ − sinφ

sinφ cosφ

)(
η8
η0

)
with − π

4
< φ <

π

4
. (4.11)

We then obtain the following O(p2) mass spectrum for the iso-singlet states

m2
η′ =

1

3

(
4m2

K −m2
π − 2

√
2(m2

K −m2
π) cotφ

)
(4.12a)

m2
η =

1

3

(
4m2

K −m2
π + 2

√
2(m2

K −m2
π) tanφ

)
, (4.12b)

with the mixing angle φ and the scale parameter m0 intimately related through

tan 2φ = 2
√
2

[
1− 3

2

3

NC

m2
0

m2
K −m2

π

]−1

. (4.13)
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Interestingly, the Eqs.(4.12) allow for two mass degeneracies :

1) mη′ = mπ when m2
0 = 0 or φ = +35.3◦ ,

2) mη = mK when m2
0 = 3(m2

K −m2
π) or φ = −19.5◦ .

(4.14)

The first one (mη′ = mπ), at the source of the so-called U(1)A problem [170],

requires a non-vanishing m0 parameter. More precisely, in order to reproduce

the η′(958) mass we should set m0 = 817 MeV or equivalently φ ≃ −20◦ if

the physical masses for K(498) and π(135) are imposed in Eq.(4.12a). This

particular mixing angle turns out to be very close to the one at which the

second degeneracy (mη = mK) occurs. However, m2
η almost fulfills the Gell-

Mann-Okubo (GMO) mass relation of Eq.(1.50). So, to reproduce exactly

the mass of η(548) one should rather impose a mixing angle close to zero in

Eq.(4.12b). In other words, the physical mass spectrum for η(548), η′(958),

K(498) and π(135) cannot be simultaneously reproduced within the truncated

frame adopted here. This can be nicely quantified by the φ-independent upper

bound [171,172]

m2
η −m2

π

m2
η′ −m2

π

< 2−
√
3 ≃ 0.27 , (4.15)

which calls for a 20% correction to be compatible with the measured ratio 0.33.

To accommodate the full nonet mass spectrum, higher-order operators such as

⟨µ2(U − U†)⟩⟨lnU − lnU†⟩ ∋ ⟨ϕ⟩ η0 (4.16)

have to be considered [172]. Yet, this O(p2, N−1
C ) operator along with O(p4, 1)

ones will not be considered in this chapter since the effective Lagrangian in

Eq.(4.6) is restricted to the leadingO(p2, 1) andO(p0, N−1
C ) terms, respectively.

CP-violating interactions from Lθ
S

The full effect of the strong θ angle is encoded into Eq.(4.8), which contains

no linear term in ϕ and whose derivation might be found in Refs. [173–175],

for example. At this level, any strongly induced P- and T-violating observable

quantity will, thus, depend on the constant factor Kθ rather than on the θ

parameter itself. Consequently, in the SM, the first and simplest manifestation

of a non-zero θ is the occurrence of C-conserving two-body decays among which

solely η(′) → ππ on-shell decays are allowed by energy conservation. The

corresponding strong amplitudes are purely ∆I = 0 and read

A(η′ → ππ)s =
Kθ√
3F

(
sφ +

√
2 cφ

)
(4.17a)
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A(η → ππ)s =
Kθ√
3F

(
cφ −

√
2 sφ

)
, (4.17b)

having set sφ = sinφ and cφ = cosφ for short. By comparing the subsequent

prediction Γ(η → π+π−) ≃ 2.6 |Kθ|2 GeV−3, obtained for the phenomenolog-

ical mixing angle φ ≃ −20◦, with the experimental limit Br(η → π+π−) <

1.3 × 10−5 [17], we infer the upper bound |Kθ| ≲ 2.6 × 10−6 GeV2. As a

consequence, Kθ is small enough to be approximated by [162,173]

Kθ
.
=
m2
π

2
θ , (4.18)

in the realistic limit where µ2
u = µ2

d ≪ µ2
s,m

2
0.

The (η, η′) mass eigenstates being complementary in the trigonometric sense,

see Eq.(4.11), we conclude that the relation

A(η → ππ) = A(η′ → ππ)|φ→φ+π
2
, (4.19)

fulfilled by Eqs.(4.17), constitutes a good cross-check for our forthcoming com-

putations. Note also that the mixing angle dependences appearing in Eqs.(4.17)

are specific to the single anomalous term (LθS ∋ ⟨ϕ3⟩) appearing at order

O(p0, N−1
C ). In principle, other mixing angle dependences can be induced.

For example, the P- and T-violating operator going along with the O(p2, N−1
C )

one in Eq.(4.16), namely

⟨U + U† − 2⟩⟨lnU − lnU†⟩ ∋ ⟨ϕ2⟩ η0 , (4.20)

generates pure sinφ (cosφ) contribution to A(η(′) → ππ)s. This observation

will be of some relevance in our confrontation with the weak interaction con-

tributions to these decay processes.

4.2 η(′) → ππ from weak interactions

Such CP-violating, but flavour-conserving, weak processes require a two step

change of flavor [176]. At low energy, the |∆S| = 1 weak interactions involving

the GB are also ruled by the chiral U(3)L⊗U(3)R transformations acting on the

U field. These interactions are encoded in the O(p2) effective weak Lagrangians

of Eq.(1.55). Besides these contributions known to saturate the K → ππ decay

amplitudes in the isospin limit, the current-current operator of Eq.(B.13) given

by

L(2)
8s = F 4Gs⟨λ32Lµ⟩⟨Lµ⟩+ h.c. , (4.21)
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(a) (b)

Fig. 4.1: The O(p2) topologies generating (a) possible tadpole amplitudes

and (b) two-body decay amplitudes. Blue disks stand for O(p2) weak

vertices as in Fig.(1.5).

is proper to U(3) as it is proportional to the flavour singlet η0 field. For an

analysis of this extra operator see Ref. [114].

In order to generate ∆S = 0 and CP-violating amplitudes from the |∆S| = 1

weak Lagrangian, successive ∆S = ±1 and ∆S = ∓1 transitions must interfere

so that any such amplitude assumes the following structures

A(i→ f)w =
∑
I ̸=J

AIJ(i→ f) Im(G∗
IGJ ) . (4.22)

Among the second-order weak amplitudes in Eq.(4.22), tadpole-like ones repre-

sented in Fig.(4.1a) vanish trivially. Indeed, any inclusion of a current-current

LI Lagrangian (I ̸= s, ew) in the η(′) → K vertex generates an amplitude

proportional to the square of the incoming four-momentum. Considering now

the two-body decays generated by the non-local topologies of Fig.(4.1b), we

obtain, in the isospin limit, the tree-level weak η′ amplitudes

A(η′ → π+π−)w =
4

3
√
3
F 3α(m2

η′)

[
5I8,27 sφ−

− (4I8,27 − 9I8,s − 6I27,s)
√
2 cφ

]
,

(4.23a)

A(η′ → π0π0)w =
4

3
√
3
F 3α(m2

η′) [6I8,27 + 9(I8,s − I27,s)]
√
2 cφ , (4.23b)

where

α(p2)
.
= p2

(
p2 −m2

π

p2 −m2
K

)
(4.24)

and

II,J
.
= Im(G∗

IGJ ) . (4.25)

The complete computation is detailed in Appendix.(C.4). As explicitly checked,

the weak η → ππ amplitudes fulfil the complementary relation mentioned in
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Eq.(4.19), namely they are deduced from Eqs.(4.23) after replacing sφ by cφ and

cφ by−sφ. In principle, we should also include the effect of the L(0)
ew Lagrangian,

explicitly given in Eq.(C.95). However, these effects can be neglected as far as

the η(′) → ππ decays are concerned. Indeed, the neutral η(′) → π0π0 decay

amplitudes are not affected, while the charged ones are affected by less then

ten percent, namely, using the results of Appendix C.4 we found that

A(η′ → π+π−)w −A(η′ → π+π−)w|Gew=0

A(η′ → π+π−)w
= (−6.1 to 9.1)% . (4.26)

The main reason is that, contrary to the CP-violating parameter ε′ propor-

tional to the ratio of GI effective couplings, the CP-violating η(′) → ππ decay

amplitudes are proportional to their product. So, here there is no possible ε′-

like ∆I = 1/2 enhancement to compensate for the naive αem/αs suppression

factor.

4.3 From δCKM to θQCD

As proved in the previous section, weak interactions do contribute to the P-

and T- violating η(′) → ππ decays at second-order. Therefore, within the SM,

these weak corrections contribute to the Kθ parameter or, equivalently, to the

strong θ term. In this section, we show how this can be achieved assuming

again both the isospin and large-NC limits. To begin with, let us have a first

look at the GI effective coupling constants. Below the charm mass scale, the

QCD-induced |∆S| = 1 effective Hamiltonian approximatively reads

H|∆S|=1
W (µ < mc) ≃

GF√
2

λu [z1(µ)Q1(µ) + z2(µ)Q2(µ)]+

+ [λu z6(µ)− λt y6(µ)]Q6(µ)}+ h.c. .

(4.27)

In principle, it should be possible to assign the CKM phase to the GI couplings.

However, to do so, we first have to include the long-distance (LD) evolution

down to the hadronization scale µhad lying well below one GeV where perturba-

tive QCD breaks down. Fortunately, Chiral Perturbation Theory supplemented

with the 1/NC expansion allows us to go from the quark-gluon picture to the

meson one to get [76,77]

H|∆S|=1(µhad) ≃
GF√
2

{x1Q̂1 + x2Q̂2 + x6Q̂6}+ h.c. , (4.28)

with

Q̂1 = (Lα)23(L
α)11, Q̂2 = (Lα)13(L

α)21, Q̂6 = (LαL
α)23 . (4.29)
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In other words, no additional chiral structures appear beyond the one already

present in weak effective Lagrangian, since the product of quark currents fac-

torizes into a product of meson ones at the hadronization scale. At this scale,

we, thus, have a one-to-one formal correspondence between the GI effective

couplings and the xi (SD plus LD) coefficients [114]:

G8 ≃ GF√
2

[
−2

5
x1 +

3

5
x2 + x6

]
, (4.30a)

G27 ≃ GF√
2

[
3

5
(x1 + x2)

]
, (4.30b)

Gs ≃
GF√
2

[
3

5
x1 −

2

5
x2

]
. (4.30c)

Within this matching approach, the CP-violating II,J elements defined in

Eq.(4.25) arise then exclusively from quark Q1,2−Q6 interference (i.e., λu−λt
interference) such that the subdominant 27− s contributions are real:

I27,s = 0 . (4.31)

Let us now use the strong amplitudes given in Eq.(4.17) as a guideline to

identify the weak contributions to the Kθ parameter. The exhibited isospin

symmetry between charge and neutral pion final states might be enforced on

the η → ππ amplitudes:

A(η → π+π−)w = A(η → π0π0)w =
4

3

√
2

3
F 3α(m2

η) [2I8,27 + 3I8,s] , (4.32)

if and only if we assess a specific mixing angle, i.e.,

tanφ = − 1

2
√
2

or φ = −19.5◦ , (4.33)

as has been done in Ref. [176]. However, this phenomenological angle is rather

problematic here, since the A(η → ππ)w amplitude proportional to Im(x∗6x1)

would then develop a pole (see Eqs.(4.14) and (C.94)). Moreover, it would also

imply A(η′ → π+π−)w ̸= A(η′ → π0π0)w. So, we find more appropriate to

isolate the ∆I = 0 component of the η(′) → ππ weak amplitudes:

A(η′ → ππ)0w =
4

3
√
3
F 3α(m2

η′)

[
10

3
I8,27(sφ +

√
2 cφ)−

− (4I8,27 − 9I8,s)
√
2 cφ

]
,

(4.34a)

A(η → ππ)0w =
4

3
√
3
F 3α(m2

η)

[
10

3
I8,27(cφ −

√
2 sφ)+

+ (4I8,27 − 9I8,s)
√
2 sφ

]
,

(4.34b)
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leaving aside their ∆I = 2 components explicitly given by

A(η → π+π−)2w = −2 A(η → π0π0)2w

=
20

9
√
3
F 3α(m2

η) I8,27 (cφ + 2
√
2 sφ)

(4.35)

in the case of η → ππ. A direct identification based now on the mixing angle

dependence of Eqs.(4.17) provides then the O(G2
F ) corrections to the strong P-

and T- violating amplitudes :

∆wA(η
′ → ππ) =

40

9
√
3
F 3 I8,27 α(m

2
η′) (sφ +

√
2 cφ) , (4.36a)

∆wA(η → ππ) =
40

9
√
3
F 3 I8,27 α(m

2
η) (cφ −

√
2 sφ) . (4.36b)

Note that the pure sinφ (cosφ) component of A(η(′) → ππ)0w will affect con-

tributions induced by a strong operator like the one given in Eq.(4.20).

Still, contrary to what is predicted by the strong amplitudes in Eqs.(4.17), the

coefficients in front of the mixing angles in Eqs.(4.36) do not match exactly if

the η and η′ physical masses are enforced :

α(m2
η) = 1.62 GeV2 ̸= 1.23 GeV2 = α(m2

η′) . (4.37)

In other words, a 30% splitting in the effective ∆wKθ factor is obtained if the

physical mass spectrum for the η(548), η′(958), K(498) and π(135) states is

imposed. However, we have already noted that this assumption is not allowed

in the truncated theory adopted here. Besides, α(p2) turns out to be rather

unstable against p2 variations around the physical value ofm2
η. For illustration,

allowing the η mass to be equal to the GMO prediction, i.e., 570 MeV, we obtain

α(m2
88) = 1.30 GeV2, namely a value closer to α(m2

η′). For these reasons, we use

the less sensitive ∆wA(η
′ → ππ) amplitude to conclude that weak interactions

shift θ by the amount

∆wθ =
2

m2
π

∆wKθ =
80

9

α(m2
η′)

m2
π

F 4 I8,27 . (4.38)

From the formal correspondence relations given in Eq.(4.30), we have in addi-

tion that

I8,27
.
= Im(G∗

8G27) =
3

10
G2
F Im [x∗6 (x1 + x2)] , (4.39)

with the x1,2,6 coefficients defined at the hadronization scale, namely around

mK,π. So, at this stage, either we exploit information from the SD evolution to

infer an upper bound on ∆wθ or we extract these coefficients from the available

data to get an estimate of it.
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An upper bound on ∆wθ

Let us leave aside LD evolution effects by directly matching the Hamiltonians

given in Eqs.(4.27) and (4.28). As far as the Q6 penguin operator is concerned,

that won’t do any harm since the µ dependence of its Wilson coefficient (almost)

cancels the one of the corresponding hadronic matrix element [177]. We then

obtain

x6 ≃ −4
( mK

1 GeV

)2 m2
K

[ms +md]2
[VudV

∗
us z6 − VtdV

∗
ts y6] , (4.40)

with

z6(1 GeV) ≃ −0.02 , y6(1 GeV) ≃ −0.10 (4.41)

obtained by using the naive dimensional reduction scheme [38], and

(ms +md)(1 GeV) ≃ 131 MeV , (4.42)

by letting the lattice quark masses given in Ref. [178] evolve down to the GeV

scale. Regarding the Q1 + Q2 combination, what we know from perturbative

QCD is that its Wilson coefficient smoothly decreases as µ is decreasing (see

the ∆I = 1/2 rule). Therefore, by imposing

x1 + x2 < (z1 + z2)(1 GeV)× VudV
∗
us , (4.43)

where

(z1 + z2)(1 GeV) ≃ 0.76 , (4.44)

we can infer the upper bound

I8,27 ≲ 0.32×G2
F × J(δCKM) . (4.45)

The necessity for the CKM phase to appear only through the Jarlskog invariant

[179]

J(δCKM)
.
= Im(V ∗

tsVtdV
∗
udVus) (4.46)

explains, a posteriori, why one has to go to the second-order in the weak inter-

actions to induce a correction to the physical strong θ parameter. Such would

not be the case if other sources of CP-violation beyond the SM were consid-

ered [167]. Taking J = (2.91+0.19
−0.11) × 10−5 from Ref. [17], we then infer the

rather conservative bound

∆wθ < 6× 10−17 . (4.47)
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An estimate of ∆wθ

To this end, let us first extract the G8,27 effective couplings from the isospin

decomposition of the K → ππ decay amplitudes. Following Ref. [180], the

measured K → ππ decay widths are well reproduced if

|G8|exp = 0.77 GF , |G27|exp = 0.044 GF and (δ2−δ0)exp = 47.5◦ . (4.48)

To go further and extract the imaginary part of G8,27 we need to consider

the CP-violating observable ε′. It turns out [107] that ε′ is theoretically well

reproduced in the isospin limit, provided we compute the hadronic matrix

elements in the large-NC limit, i.e., at the hadronization scale. It is, therefore,

legitimate to expect a rather consistent and reliable estimate for I8,27. As a

matter of fact, we have at our disposal a CKM convention-independent direct

CP-asymmetry, namely

Re(ε′) =
1√
2
Im

(
A2

A0

)
sin(δ2 − δ0) , (4.49)

from which using the usual isospin amplitudes, defined in Eqs.(C.71), we roughly

get

I8,27 ≃ G2
F × Re(ε′) , (4.50)

in the limit where ImG8 ≫ ImG27 and where Gew is set to zero. To be more

precise, we have to take into account the fact that the electroweak penguins

interfere destructively with the strong one in ε′ [180]. Including their leading

effect, we can extract I8,27 either from ε′:

I8,27 = (1.7 to 2.8)×G2
F × Re(ε′) . (4.51)

or from Re(ε′/ε) as done in Appendix C.4. The two extraction methods produce

results that are in good agreement as the latter give the more conservative

estimation I8,27 = (1.5 to 3.9)×G2
F ×Re(ε′). Taking Re(ε′) = (2.5±0.4)×10−6

from Ref. [17], we obtain

∆wθ = (2.0 to 4.6)× 10−17 , (4.52)

while using Re(ϵ′/ϵ) we rather find

∆wθ = (2.3 to 5.2)× 10−17 , (4.53)

both values being compatible with the upper bound given in Eq.(4.47).
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4.4 Conclusion

The strong CP problem, i.e., the smallness of θ, is a long-standing one [181]

and scenarios going beyond the SM have been suggested to bring it to an

issue [182]. However, the status of this parameter within the SM itself is

already a subject of some controversy. In this chapter, we have presented a

coherent way to estimate weak interaction corrections to the strong θ term. In

the frame of a large-NC Chiral Perturbation Theory, we considered the physical

η(′) → ππ amplitudes. Compared to the previous quark-gluon estimates given

in Refs. [167] and [168], our hadronic approach provides a direct access to

the parameter θ
.
= θQFD + θQCD rather than to its un-physical θQFD and

θQCD components. We, thus, overcome phase convention issues as well as αs
power counting problems. Concerning this latter point, our final result given in

Eq.(4.5) is qualitatively compatible with the one of Ref. [168] given in Eq.(4.4)

although, quantitatively, it rather agrees with the numerical result of Ref. [167]

given in Eq.(4.3). An important point, not addressed in this work, is the

possibility of infinite weak corrections to θ as suggested in Ref. [167]. This

would, however, require the study of the η(′) → ππ decay amplitudes beyond

the tree-level approximation considered here.



Conclusions

The undefeated Standard Model is the best theory we have to describe the

most elementary pieces of matter identified so far. This is even more true as

its scalar sector, which has been hidden from us for sixty years, finally appears

to be in agreement with the recent discovery of a scalar resonance at the LHC.

And yet, physicists keep on trying to find something beyond. There are two

main reasons for that. Firstly, we hope to open the doors of new uncharted

territories waiting to be understood. Secondly, many problems are not yet

successfully answered by the Standard Model.

In this thesis, we have addressed issues related to both concerns from a specific

point of view, which is the typical CP violating dynamics of the Standard

Model. In a nutshell, we have prepared the ground for future experimental

studies of CP violating observables in radiative kaon decays, which, hopefully,

will indirectly signal the presence of New Physics, and we have revisited the

interplay between weak and strong interactions at play in the θQCD parameter

in an original way.

With regards to the hunt for New Physics, the news coming from the LHC

are not encouraging these days. Even though this terrestrial machine probes

the quantum dynamics of our world at the highest energy ever reached, it did

not see any new particle yet. This lack of direct discovery is frustrating but,

turned around, it might, in fact, re-enforce our interest into indirect searches.

These complementary searches, which are mainly based on rare processes, are

indeed very promising as they already provide severe constrains on possible New

Physics models and will, for sure, benefit from future developments. However,

a lot of work, both on the theoretical and on the experimental sides, is needed

for these rare processes to constitute a perfect trap for New Physics. As new

phenomena can manifest themselves through various portals, it is important to
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get control over several rare processes, which put together, provide us with a

complementary and fully constraining picture of what New Physics could be.

In this respect, we have established the cleanest Standard Model predictions

of the best observables giving access to the elementary s→ dγ process. These

results constitute the core of chapter 2. It is shown there, that we have suf-

ficient theoretical control over the s → dγ process to fully exploit the future

results that will be released by several kaon decays experiments. Besides, pro-

viding new insights into our theoretical description of the low energy Standard

Model dynamics, this process is complementary to b → sγ and µ → eγ pro-

cesses regarding the search for New Physics. We have, therefore, dedicated the

third chapter of this work to a detailed analysis showing how these particular

windows on s → dγ should be combined with other rare processes in order to

look for and/or to discriminate between New Physics effects. In other words,

we have prepared the theoretical ground for a new indirect New Physics search

direction.

This work does not only offer new opportunities in New Physics searches but

it also suggests new ways to resolve some internal Standard Model issues. One

of them being the long-standing and unfortunate lack of theoretical precision

we encounter regarding ε′. As a matter of fact, in the process of improving the

predictions of the s → dγ probes, we were able to put forward a interesting

relation between the pure QCD content of ε′ and the CP violating parameter

ε′⊥ occurring in K → γγ. Even though this parameter will be challenging to

measure, its experimental determination would be extremely rewarding as it

gives a direct access to the QCD-penguin induced parameter ξ0. This quantity

is the most problematic piece in the computation of ε′ and, to a less dramatic

extend, it also precludes a precise estimation of ε.

The second internal progress we made concerns the θ-term. As mentioned in

the introduction of the fourth chapter, the Standard Model contains in fact

two sources of CP violation. The first is the complex phase of the CKM matrix

whose phenomenological implications constitute the basic subject of the second

chapter of this work. The second source is neither θQCD nor θQFD but the

physical combination θ = θQCD + θQFD. This distinction is primordial since

θ is the only angle that is independent of the basis chosen to describe the

quark wave functions. The problem here is that, because possible solutions to

the strong CP problem are based on the hypothesis that the smallness of θ

is due to the fact that it is loop induced, it is important to understand how

radiative corrections and, in particular, weak radiative corrections affect θ.

This is indeed important as, in principle, even in the Standard Model, these

radiative corrections might be infinite.
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Previous attempts to compute these weak corrections overlooked the fact that

only θ is physical. The radiative corrections were either extracted from the

quark mass matrix and, therefore, from θQFD or they were extracted from

loop induced effective G · G̃ operators and, therefore, from θQCD. However,

the issue of combining these results has not been addressed. This is why we

have suggested a new estimation procedure that takes care of this physical

requirement. The corresponding computation is detailed in chapter 4 and has

several advantages compared to the previous attempts. Besides quantifying the

physical corrections of the physical θ angle, it is quite simple as it consists in

the computation of simple (physical) tree-level decay amplitudes.

Let us end this conclusion by stressing the fact that, the experimental deter-

mination of the direct CP violating parameter ε′ has played a crucial role in

almost all the developments presented in this work. Even though, it cannot

be precisely predicted from theory yet, its experimental determination already

gives us some control over the basic CP violating phases present in the Stan-

dard Model and beyond. Since these CP violating quantities are involved in

many other CP violating observables, numerous phenomenological links can be

established with ε′. As demonstrated in this work, some of these connections

are not only helpful, they are also gainful. This was, in essence, the guiding

force of this work.
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Appendix A
Useful formulae

A.1 The Γ(z) function

Γ(z) is a special function particularly useful to compute probability amplitudes

in Quantum Field Theories. Depending on the nature of its argument, z, its

definition may vary. For example, if z is a non zero positive natural number n

then

Γ(n) = (n− 1)! , (A.1)

while if z is a complex number, with strictly positive real part, Γ(z) may as

well be defined by

Γ(z) =

∫ ∞

0

dt tz−1e−t .

Its domain can be analytically extended over the complex plan with the excep-

tion of z = 0 and z = −n where Γ(z) has poles around which we may use the

following expansions

Γ(z − n) =
(−1)n

n!

[
1

z
+ ψ(n+ 1)

]
+O(z) ,

where the Digamma function ψ
.
= Γ′(z)/Γ(z) satisfies the following properties

ψ(1) = −γ , ψ(z + 1) = ψ(z) +
1

z
,
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with γ = 0.577 . . . the Euler-Mascheroni constant. Two of these poles, z = 0

and z = −1, where

Γ(2− d/2) = Γ(ϵ/2) = +

[
2

ϵ
+ ψ(1)

]
+O(ϵ) , (A.2a)

Γ(1− d/2) = Γ(ϵ/2− 1) = −
[
2

ϵ
+ ψ(1) + 1

]
+O(ϵ) , (A.2b)

if

ϵ
.
= 4− d→ 0 (A.3)

will be relevant below.

Basic integrals

As a first illustration of the Γ(z) utility, let us recall the integration formula of

a d-dimensional solid angle dΩd in spherical coordinates:

∫
dΩd =

∫ d−1∏
k=1

sind−1−k θkdθk =
2πd/2

Γ(d/2)
(A.4)

and the integral definition of the Beta function B(p, q),

B(p, q)
.
=

∫ ∞

0

dt
tp−1

(1 + t)p+q
=

∫ 1

0

du up−1(1− u)q−1

=
Γ(p)Γ(q)

Γ(p+ q)
, (A.5)

particularly useful to integrate ratios of polynomials.

Feynman parametrization

The gamma function also steps in the Feynman combination of denominator

as:

N∏
i=1

1

aαi
i

=
Γ(α)∏N
i=1 Γ(αi)

∫ 1

0

(
N∏
i=1

dxix
αi−1
i

)
δ(1− x)[∑N
i=1 xiai

]α ,
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with α =
∑N
i=1 αi and x =

∑N
i=1 xi where xi are Feynman parameters. In the

following, we use the following cases:

1

a1a2
=

∫ 1

0

dx
1

[xa1 + (1− x)a2]
2 , (A.6a)

1

a1a2a3
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

[xa1 + ya2 + (1− x− y)a3]
3 . (A.6b)

A.2 Dilogarithmic functions

Polylogarithms of arbitrary order s are defined by the series

Lis(z) =
∞∑
k=1

zk

ks
,

where z is a complex number such that |z| < 1. By analytic continuation it is,

however, possible to define Lis(z) for |z| ≥ 1. The dilogarithm function is the

s = 2 polylogarithm defined by

Li2(z) = −
∫ z

0

dt

t
ln(1− t) = −

∫ 1

0

dt

t
ln(1− zt)

=
∞∑
n=1

zn

n

∫ 1

0

dt tn−1 =
∞∑
n=1

zn

n2
,

where we used the expansion − ln(1 − z) =
∑∞
n=1 z

n/n valid for |z| ≥ 0. The

integral definition makes perfect sense as long as Imz ̸= 0. However, on the

real axis the logarithm has a branch cut on 1 ≤ x < +∞ where the logarithm

has to be analytically continued in order for the integral definition to make

sense. Yet, the dilogarithm itself is well defined all over the complex plan. To

illustrate this, let us consider the following functional relation

Li2(z) + Li2

(
z

z − 1

)
= −1

2
ln2(1− z) , (A.7)

valid for any complex number z. If z is real and bigger than 1, the right

hand side of Eq.(A.7) involves a logarithm evaluated on its branch cut. In

order to make sense, the logarithm should be analytically continued for Li2(z)

to acquire an imaginary part over the logarithm branch cut. It is, therefore,

worth to recall some of the properties of logarithms of complex argument. If a

and b are complex numbers, then

ln(ab) = ln(a) + ln(b) if Im(a)Im(b) < 0 ,

ln(a/b) = ln(a)− ln(b) if Im(a)Im(b) > 0 ,
(A.8)
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whereas for real and positive z and ϵ we have

ln(−z ± iϵ) = ln |z| ± iπ , (A.9)

provided that ϵ → 0. Logarithms of complex argument may be related to

reciprocal trigonometric functions. For example,

arctan z =
i

2
[ln(1− iz)− ln(1 + iz)]

= arccos
1√

1 + z2
=
π

2
− arcsin

1√
1 + z2

. (A.10)

A.3 Scalar one-loop functions

The A0 function

The simplest Passarino-Veltman scalar function A0 is defined in four and d-

dimension by

A0(m
2)

.
= − i

π2

∫
d4ℓ

ℓ2 −m2
→ (2πµ)ϵ

iπ2

∫
ddℓ

ℓ2 −m2
,

where the arbitrary mass scale µ is introduced to maintain the dimension of the

integral. In four dimensions, A0(m
2) has mass dimension two and the integra-

tion over the four momentum (pseudo-)norm is not defined such that A0(m
2)

diverges. Indeed, in the Euclidian space, reached using the Wick rotation de-

fined by the variable change

ℓ0 → iK0 and ℓi → Ki ,

A0 assumes the following form

A0(m
2) = −m2

2π2

(
2πµ

m

)ϵ [∫
dΩd

] [∫ ∞

0

dt
t1−ϵ/2

1 + t

]
,

where m2t
.
= K2 = K0K0 +KiKi > 0. Using Eqs.(A.4) and (A.5) we obtain

A0(m
2) = −m2

(
2
√
πµ

m

)ϵ
Γ(ϵ/2− 1) ,

which diverges since Γ(ϵ/2 − 1) diverges as ϵ → 0. Combining the expansion

Eq.(A.2b) with

aϵ =
∞∑
i=0

ϵi

i!
logi a = 1 + ϵ log a+O(ϵ2) , (A.11)
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this divergence is isolated as

A0(m
2) = m2

[
Dϵ + 1− log

(
m2

µ2

)]
, (A.12)

where we defined

Dϵ
.
=

2

ϵ
+ ψ(1) + log 4π =

2

ϵ
+ log 4πe−γ .

The B0 function

Another interesting scalar integral, B0, is defined in d-dimensions by

B0((p+ q)2,m2
i ,m

2
j )

.
=

(2πµ)ϵ

iπ2

∫
ddℓ

[(ℓ + q)2 −m2
i ][(ℓ − p)2 −m2

j ]
,

where without loss of generality and for further convenience, we introduced the

four momentum q, which satisfies q2 = 0. Since it has mass dimension zero,

B0 diverges. Using the parametrization of Eq.(A.6a) we may write

B0((p+ q)2,m2
i ,m

2
j ) =

(2πµ)ϵ

iπ2

∫ 1

0

dx

∫
ddℓ

[ℓ2 −∆]2
,

where

∆ = x(x− 1)p2 + xm2
j + (1− x)m2

i − 2x(1− x)p · q .

Applying the same manipulations used for A0 we find

B0((p+ q)2,m2
i ,m

2
j ) =

Γ(ϵ/2)

Γ(2)

∫ 1

0

dx

(
2
√
πµ√
∆

)ϵ
,

which, expanded around ϵ = 0 using Eqs.(A.2a) and (A.11), leads to

B0((p+ q)2,m2
i ,m

2
j ) = Dϵ−

−
∫ 1

0

dx log

[
x(x− 1)(p2 + 2p · q) + (1− x)m2

i + xm2
j

µ2

]
.
(A.13)

The usual B0(p
2,m2

i ,m
2
j ) function is then obtained from Eq.(A.13) imposing

q = 0 and satisfies

B0(p
2,m2

i ,m
2
j ) = B0(p

2,m2
j ,m

2
i ) ,

B0(0,m
2
i ,m

2
j ) =

A0(m
2
i )−A0(m

2
j )

m2
i −m2

j

,
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as well as

B0(m
2, 0,m2)− 1 = B0(0, 0,m

2) =
A0(m

2)

m2
= B0(0,m

2,m2) + 1.

The integration over the Feynman parameter x in Eq.(A.13) can be performed

analytically, see e.g. Ref. [183].

The C0 function

The first non divergent one-loop scalar function in four dimensions is called C0

and has the dimension of an inverse mass squared. In the present work we are

not interested in its most general form but in the simplified case where

C0(p
2, (p+ q)2,m2

j ,m
2
i )

.
=

1

iπ2

∫
d4ℓ

[ℓ2 −m2
i ][(ℓ + q)2 −m2

i ][(ℓ − p)2 −m2
j ]
,

with q2 = 0. Here, it is important to recall that the iϵ prescription, defined by

the pole mass shifts

m2
i → m2

i − iϵ ,

is implicitly understood. Using Eq.(A.6b) and applying the Wick rotation we

obtain

C0(p
2,(p+ q)2,m2

j ,m
2
i ) =

1

2p · q
×

×
∫ 1

0

dx

x
ln

(
x(x− 1)(p2 + 2p · q) + (1− x)m2

i + xm2
j

x(x− 1)p2 + (1− x)m2
i + xm2

j

)
.

(A.14)

To our knowledge, this integral has never been performed analytically unless

further assumptions are made. Numerical evaluations are, however, easy to

perform.

A.4 Particular one-loop functions

This section is devoted to the calculation of two kinds of loop functions, which

intervene in radiative decays. These functions are finite combinations of the

A0, B0 and C0 functions presented above and will be expressed in terms of the

reduced variables

z
.
=

2p · q
m2

, ri
.
=
mi

m
, a

.
=

z

r2i
, (A.15)
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and

βi
.
=
√
1− 4r2i , βi(z)

.
=

√
1− 4r2i

1 + 2z
.

The F function

The function F appears in decay amplitude whose final state contains at least

two photons, K → γγ being an example of such decays. It is constructed from

the C0 function

IF
.
= C0(0, zm

2,m2
i ,m

2
i ) =

1

zm2

∫ 1

0

dx

x
log [1 + x(x− 1)a] , (A.16)

obtained from Eq.(A.14) imposing p2 = 0, where z is a kinematic variable:

0 ≤ z ≤ zmax with zmax a finite real number. If we split the logarithm argument

in Eq.(A.16) as

1 + x(x− 1)a = (1− x+x)(1− x−x) ,

it is easy to realize that the numbers

x± =
2

1±
√
1− 4/a

,

related to each other as

x± =
x∓

x∓ − 1
,

are complex since the iϵ prescription gives to a an imaginary part, which can

be explicitly recovered using

a→ a+ iϵ′ ,

where ϵ′ > 0. It is as easy to notice that sign(Imx∓) = ±sign(ϵ) = ±1 whatever

the value of a. We may, therefore, use Eq.(A.8) with Eq.(A.7) to conclude that

IF = − 1

zm2
[Li2(x+) + Li2(x−)] =

1

2zm2
ln2(1− x+)

or, equivalently, that

IF =
1

2zm2
ln2

(
−
1−

√
1− 4/a

1 +
√
1− 4/a

)
. (A.17)
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The iϵ prescription now acquires its full interest. If ϵ = 0, the last expression

is undetermined for a ≥ 4, since the argument of the logarithm is negative.

However, for ϵ ̸= 0 the same argument has a positive imaginary part, say iη,

thanks to which Eq.(A.9) may be applied to find

IF
iϵ
=

1

2zm2
ln2

(
−
1−

√
1− 4/a

1 +
√
1− 4/a

+ iη

)

=
1

2zm2

[
ln

(
1−

√
1− 4/a

1 +
√
1− 4/a

)
+ iπ

]2
,

(A.18)

in the limit where η (or equivalently ϵ) is eventually sent to zero. In the

complementary case where 0 ≤ a < 4, Eq.(A.17) is perfectly well defined even

if we assume that ϵ = 0 from the beginning because
√

1− 4/a is now imaginary.

In that case, using Eqs.(A.8) we get

IF =
1

2zm2

[
i(2k + 1)π + ln(1− i

√
4/a− 1)− ln(1 + i

√
4/a− 1)

]
,

with k ≥ 0 an undetermined integer. Using Eq.(A.10), this expression further

simplifies into

IF = − 2

zm2

[
arcsin

√
a/2 + kπ

]2
. (A.19)

Of course, both Eq.(A.18) and Eq.(A.19) originate from the same number,

namely, that of Eq.(A.17). This is only when a ends up on one or an other

interval of the real axis that IF may either be given by Eq.(A.18) or Eq.(A.19).

But, if a is complex, this distinction is irrelevant so that both Eq.(A.18) and

Eq.(A.19) give the same value: the one given by Eq.(A.17). Therefore, equating

Eq.(A.19) with Eq.(A.17) anywhere in the complex plane, but on real axis,

forces k to vanish so that IF is now defined everywhere on the real axis. We

can now introduce the F function defined by

F(a)
.
= 1 + 2m2

i IF

=


1− 4

a arcsin
2 √a/2 0 ≤ a < 4 ,

1 + 1
a

[
ln

(
1−

√
1−4/a

1+
√

1−4/a

)
+ iπ

]2
4 ≤ a ,

(A.20)

and displayed in Fig.(A.1).
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Fig. A.1: The plain line tending towards 1 at infinity represents ReF(a)

whilst the dashed line tending towards zero at infinity represents ImF(a).

The hij functions

The basic loop functions appearing in K → ππγ decays are presented in this

section. These functions are given by

hij(z)
.
=

1

4z

[
f ij1 (z) + f ij2 (z) + f ij3 (z)

]
, (A.21)

where the separately finite f ijk functions are given by

f ij1 (z) = −2m2
iC0(p

2, zm2
K + p2,m2

j ,m
2
i ) , (A.22a)

f ij2 (z) =
p2 +m2

i −m2
j + zm2

K

2zm2
K

×

×
[
B0(p

2,m2
i ,m

2
j )−B0(zm

2
K + p2,m2

i ,m
2
j )
]
,

(A.22b)

f ij3 (z) = −1 +
1

p2
(A0(m

2
i )−A0(m

2
j ))−

−
m2
i −m2

j

p2
B0(p

2,m2
i ,m

2
j ) .

(A.22c)

Even though they all have a pole at z = 0, once combined together to define

hij(z), no z pole remains:

lim
z→0

hij(z) = constant . (A.23)
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Fig. A.2: On the top, we plotted hηK in plain, hπK in dashed and hKπ
in dotted line. On the bottom, are shown Rehππ > 0 in plain, Imhππ in

dashed and hKK in dotted-dashed line.

Whenmi = mj , the integration over the Feynman parameters can be performed

analytically and gives

hii(z) =
r2i
8z2

[
ln2
(
βi + 1

βi − 1

)
− ln2

(
βi(z) + 1

βi(z)− 1

)
+

+
1 + 2z

r2i

[
βi(z) ln

(
βi(z) + 1

βi(z)− 1

)
− βi ln

(
βi + 1

βi − 1

)]
− 2z

r2i

] (A.24)

where p2 = m2
K . The hij(z) with i ̸= j, defined for p2 = m2

π, are evaluated

numerically and displayed in Fig.(A.2).
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Effective Lagrangians

In this section, various effective Lagrangians used in this work are presented.

In order to shorten the notations, we define the following objects

χ±
.
= U†χ± χ†U, fµν±

.
= FµνL ± U†FµνR U,

F̃µνL(R)

.
= ϵµνρσFL(R)ρσ, f̃µν±

.
= ϵµνρσf±ρσ ,

and collect important constants in Tab.(B.1).

i ΓLi ΓNi ΓDi ΓZi i ΓLi ΓNi ΓDi ΓZi
1 − − −1/6 −3/2 10 −1/4 2/3 − −
2 − − 0 −1 11 −1/8 −13/18 − −
3 − − − − 12 − −5/12 − −
4 1/8 − 3 − 13 − 0 8/3 −1

5 3/8 3/2 1 − 14 − 1/4 −4/3 −
6 11/144 −1/4 −3/2 −3/2 15 − 1/2 4/3 −
7 0 −9/8 1 − 16 − −1/4 0 −
8 5/48 −1/2 − − 17 − 0 − −
9 1/4 3/4 − −2 18 − −1/8 − −

Tab. B.1: Specification of the renormalization constant factor ΓXi (X =

L,N,D,Z).
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B.1 Effective QCD at O(p4)

The effective strong Lagrangian at O(p4) is expended over twelve independents

operators [184]

L(4)
s = L4⟨DµU

†DµU⟩⟨χ†U + χU†⟩+ L5⟨DµU
†DµU(χ†U + χU†)⟩+

+ L6⟨χ†U + χU†⟩2 + L7⟨χ†U − χU†⟩2 + L8⟨χ†Uχ† + χU†χU†⟩+
− iL9⟨FµνR DµUDνU

† + FµνL DµU
†DνU⟩+ L10⟨U†FµνR UFLµν⟩+

+ L11⟨FRµνFµνR + FLµνF
µν
L ⟩+ L12⟨χχ†⟩+ h.c.

(B.1)

It is worth noting that all the divergences appearing at NLO can be re-absorbed

in the bare Li, appearing in L(4)
s . Using dimensional regularization, all the

strong divergences appearing at one-loop are absorbed by the bare Li as

Li = Lri (µ) + ΓLi Λ(µ) ,

with

Λ(µ)
.
=
µd−4

(4π)2

{
1

d− 4
− 1

2
(ln 4π + 1 + Γ′(1))

}
=− µϵ

2(4π)2
{Dϵ + 1} ,

(B.2)

where the ΓLi are specified in Tab.(B.1).

B.2 The Wess-Zumino-Witten Lagrangian

A nice presentation of the problem is due to Witten [67] and goes as fol-

lows. Let us call the outer parity transformation of space-time coordinates,

(x⃗, t) ↔ (−x⃗, t),P0. This external symmetry does not affect the scalar fields ϕa

contained in U such that under P0 we have ϕa ↔ ϕa or equivalently U ↔ U .

The inner parity transformation, which leaves the space-time coordinates un-

changed but acts on the pseudo-scalar field as ϕa ↔ −ϕa (or equivalently

U ↔ U†) is called (−1)NB because once applied to a state formed by NB
mesons its eigenvalue is (−1)NB . As a matter of fact, the parity transforma-

tion under which QCD remains invariant, is neither P0 nor (−1)NB but rather

P = P0(−1)NB . It is then expected from its effective representation to respect

the exact same symmetry. However, in the CP conserving limit, it is easy to

observe that L(2)
s given in Eq.(1.46) is invariant under both P0 and (−1)NB sep-

arately. In particular, its (−1)NB invariance implies that A(π0 → γγ) = 0 while
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this particular process is the dominant decay channel of the neutral pion [17]:

Br(π0 → γγ)exp = (98.823± 0.034)%.

The resolution of this paradox lies in the chiral anomaly of QCD [185]. In fact,

a non-abelian Yang-Mills theory, which contains only vector gauge fields (as is

the case of QCD) carries the non-abelian axial anomaly given by

Dµj
aµ
A =

1

(4π)2
Tr(T aF̃µνFρσ) ,

where the axial vector current is given by jaµ5 = q̄T aγµγ5q. At the effective

level, this anomaly is represented by an anomalous symmetry breaking term

which, in the context of the present work, is truncated to the Lagrangian

shifts [66,67,114]

L(2)
s → L(2)

s + L1γ
WZW + L2γ

WZW ,

where

L1γ
WZW

.
=

Nc
48π2

eϵµνρσAµ⟨∂νU∂†ρ∂σU{U†, Q}⟩ , (B.3a)

L2γ
WZW

.
=

iNc
48π2

e2ϵµνρσFµνAρ

(
⟨QQ{∂σU,U†}⟩+

+
1

2
⟨QU†Q∂σU −QUQ∂σU

†⟩
)
,

(B.3b)

where only the QED contribution is kept.

B.3 Effective |∆S| = 1 sector

In order to construct the chiral realization of the four-quark operators, we

need to determined their chiral symmetry properties first. So, if q = {u, d, s} is

considered as a U(3) triplet, the quark bilinear uij
.
= q iΓqj , where Γ stands for

any Lorentz structures, transforms as a nonet, 9 = 8 ⊕ 1, of U(3). Therefore,

as any of the four-quark operator can be represented by a symmetric direct

product uijv
k
l ∼ 9⊗9, we can conclude that they transform either as irreducible

symmetric octets or as an irreducible symmetric 27-plets of SU(3):

(8⊗ 8)S = 27S ⊕ 8S ⊕ 1S .

The singlet can be discarded as we are here interested in flavor violating oper-

ators only. The explicit construction of the 27-plet in terms of U(3) nonet is a

bit tricky.
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The 27-plet

This traceless and symmetric tensor may be written in terms of two nonets u

and v as

27ikjl =
1

4
(uijv

k
l + ukj v

i
l + uilv

k
j + ukl v

i
j)−

− 1

20

[
δij
(
⟨u⟩vkl + ukl ⟨v⟩+ uxl v

k
x + ukxv

x
l

)
+

+δkl
(
⟨u⟩vij + uij⟨v⟩+ uxj v

i
x + uixv

x
j

)
+

+δil
(
⟨u⟩vkj + ukj ⟨v⟩+ uxj v

k
x + ukxv

x
j

)
+

+δkj
(
⟨u⟩vil + uil⟨v⟩+ uxl v

i
x + uixv

x
l

) ]
+

+
1

40

(
δijδ

k
l + δilδ

k
j

) (
⟨u⟩⟨v⟩+ uxyv

y
x

)
.

(B.4)

The members of this multiplet are able to generate ∆F = 0,±1,±2 flavor

violating interactions. Here, we are interested in the most general operator O27

that generates ∆S(D) = +1(−1) transitions where S = −1 is the strangeness

of the s-quark and D = +1 is the flavor of the d-quark. We are, thus, looking

for a 27-plet operators that turns a d quark into a s̄ quark. The most general

O27 operator is given by a linear combination of the elements

273121, 27
32
22, 27

33
23

and their symmetric as all satisfy ∆S(D) = +1(−1). However, since they

belong to the same multiplet, these elements are interchangeable, i.e., O27

should be invariant under the exchange of, say, 273121 and 271321. In practice it

means that all the ∆S(D) = +1(−1) elements should appear weighted by the

same coupling, say a, in the linear combination that constitutes O27. In other

words,

O27 = a
[
2 273222 + 2 273323 + 4 273121

]
. (B.5)

In the particular case where v = u, a re-scaling of the coupling a to G27,

together with Eq.(B.4), give

O27 = G27

[
u32u

1
1 +

2

3
u31u

1
2 −

1

3
u32⟨u⟩

]
.

Under this form, O27 is general enough to describe both SU(3) and U(3) cases.

Indeed in the former case we have automatically ⟨u⟩ = 0. As a matter of fact,

the operator O27 can be further decomposed into more fundamental building
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blocks. This second decomposition is based upon the fact that u and d quarks

are members of an isospin doublet. To see this, let us write

O27 = G27s̄

[
1

2
(dūu− dd̄d) +

2

3
uūd+

1

6
d
(
ūu+ d̄d− 2s̄s

)]
, (B.6)

keeping in mind that q always connects with its immediate right-neighbor to

form a uij nonet. Recalling that s is an isospin 0 state, while ūu + d̄d is an

isospin 0 one, we observe that the isospin of the third term in Eq.(B.6) is fixed

by that of the overall d-quark, namely, I = 1/2. On the other hand, the first

two terms happen to be mixtures of I = 1/2 and 3/2 states. Indeed, the direct

isospin product 1⊗ 1
2 contains two states with definite isospin, namely,

|3/2,−1/2⟩ =
1√
3

(
dūu− dd̄d+ uūd

) .
=

1√
2
A ,

|1/2,−1/2⟩ =

√
2

3

(
dūu− dd̄d− 2uūd

) .
=

√
2

3
B ,

upon which the first two terms of Eq.(B.6) can be expanded as

1

2
(dūu− dd̄d) +

2

3
uūd =

5

9
A− 1

18
B .

Collecting the various I = 1/2 and I = 3/2 components together, we conclude

that O27 may as well be written as

O27 =

[
5

9
G

3/2
27 O3/2

27 +
1

9
G

1/2
27 O1/2

27

]
, (B.7)

with

O3/2
27

.
= u31u

1
2 + u32(u

1
1 − u22) ,

O1/2
27

.
= u31u

1
2 + u32(4u

1
1 + 5u22)− 3u32⟨u⟩ ,

where the possibility of a isospin breaking of G27 is assumed. It is sometimes

useful to write these 27-plet operators in the form a tensor contraction

OI
27 = Tij;kl uijukl , (B.8)

where

Tij;kl
.
=

[
5

9
G

3/2
27 T

3/2
ij;kl +

1

9
G

1/2
27 T

1/2
ij;kl

]
, (B.9)
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such that any 27-plet object with isospin I may be obtained from the contrac-

tion of the T I tensors with two nonets. The non vanishing components of these

tensors being

T
3/2
31;12 = T

3/2
32;11 = −T 3/2

32;22 = +1

and

T
1/2
31;12 = T

1/2
32;11 =

1

2
T

1/2
32;22 = −1

3
T

1/2
32;33 = +1 .

Another parametrization extensively used in the present work is based on the

following projection technique. If we define

(λij)ab
.
= δibδja ,

then for any 3× 3 matrix A

⟨λijA⟩ = Aij .

These projecting matrices λ can be expressed in terms of the Gell-Mann ma-

trices :

λ11 =
1√
6

(
λ0 +

√
3

2
λ3 +

1√
2
λ8

)
, λ33 =

1√
6
(λ0 −

√
2λ8) ,

λ22 =
1√
6

(
λ0 −

√
3

2
λ3 +

1√
2
λ8

)
,

λ12 =
1

2
(λ1 + iλ2), λ21 =

1

2
(λ1 − iλ2), λ13 =

1

2
(λ4 + iλ5) ,

λ31 =
1

2
(λ4 − iλ5), λ23 =

1

2
(λ6 + iλ7), λ32 =

1

2
(λ6 − iλ7) ,

(B.10)

where λ8 may also be expressed in terms of the electric charge matrix Q =

diag(2/3,−1/3,−1/3) as

λ8 = 2
√
3(Q− 1

2
λ3) .

These results are very useful to construct and understand the effective repre-

sentation of (27L, 1R) weak interactions detailed in the next section. However,

we stress the fact that many other operators with different flavor structures

can be built from Eq.(B.4). As another well known example, we find the most

general ∆S(D) = +2(−2) operators which, using the same normalization as in

Eq.(B.5), reads

O∆S=2
27 = G27

5

6
u32u

3
2 .
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B.3.1 The effective Lagrangian at O(p2)

In this section we give the hadronic realization of the effective H∆S=1 Hamil-

tonian given in Eq.(1.33). The four quarks operators are, there, products of

left- or right-handed currents. At the hadronic level, the simplest objects that

transform accordingly are the left- and right-handed currents

Lµ = U†DµU and Rµ = UDµU
† .

The (8L, 1R) component of the |∆S| = 1 effective Lagrangian is readily ob-

tained by contracting two of such left-handed current and we normalized it

as

L(2)
8 = F 4G8⟨λ32LµLµ⟩+ h.c. , (B.11)

where CP violation in allowed thanks to the complex coupling constant G8.

L(2)
8 is not the only possible octet Lagrangian at O(p2) as

L(2)
m = F 4Gm⟨λ32χ+⟩+ h.c. (B.12)

is also perfectly well suited to represent weak (8L, 1R) interactions. Even

though it eventually turns out to be irrelevant in the context of the present

work (see e.g. Ref. [186]), it can not be discarded from scratch. Another

candidate is

L(2)
8s = F 4Gs⟨λ32Lµ⟩⟨Lµ⟩+ h.c. , (B.13)

which is proper to U(3) as it involves ⟨Lµ⟩ ̸= 0 which vanishes in SU(3).

With regards to the (27L, 1R) component, we use Eq.(B.7) and the Gell-Mann

correspondence of Eq.(B.10) to find

L(2)
27 =

F 4

36
G

(1/2)
27

[
⟨λ1Lµ⟩⟨λ4−i5Lµ⟩+ ⟨λ2Lµ⟩⟨λ4+i5Lµ⟩+

+ 2⟨(9Q− 5λ3)L
µ⟩⟨λ6−i7Lµ⟩

]
+

5

36
F 4G

(3/2)
27

[
⟨λ1Lµ⟩⟨λ4−i5Lµ⟩+ ⟨λ2Lµ⟩⟨λ5+i4Lµ⟩+

+ 2⟨λ3Lµ⟩⟨λ6−i7Lµ⟩
]
+ h.c. ,

(B.14)

where we also allowed for CP violation and where the shorten notation λa±ib
.
=

λa ± iλb has been used. Note that the difference between U(3) or SU(3)

embedding is taken into account by the term proportional to electric charge
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matrix Q = λ11 − 1
313×3, which involves the trace of the left-handed current,

⟨L⟩.

We may now turn our attention to the effective electroweak interactions gen-

erated by the Q7 and Q8 operators, which transform as (8L, 8R) multiplets.

Something peculiar happens here: we may build them at O(p0) using U and

U† because U† ⊗U ∼ (3∗L ⊗ 3L, 3R ⊗ 3∗R) ∋ (8L, 8R). However, the unitarity of

U implies that U and U† must be contracted in a non trivial way. In fact, we

may write

L(0)
ew = F 6e2Gew⟨λ32U†QU⟩+ h.c. (B.15)

This form could have been already guessed from the fact thatQ8 may be written

as a density-density product, density which, at the lowest order, is represented

by the U matrix, see Eq.(1.47). The important point here is that the presence

of the electric charge matrix Q allows us to get a O(p0) hadronic operator. In

fact, QCD penguin operator Q6 is also a density-density operator. However, as

we have no Q matrix substitute at our disposal, the hadronic realization of Q6

is of O(p4) at least. Thus, even though a αem/αs suppression of the electroweak

penguin over the QCD one is expected, the former are chirally enhanced and

deserve, therefore, a careful treatment.

B.3.2 The effective Lagrangian at O(p4)

The weak SU(3) effective Lagrangian at O(p4) is expanded over 22 independent

operators among which we keep [74,187]

L(4)
8 = G8F

2[N5⟨λ32{χ+, DµU
†DµU}⟩

+N6⟨λ32DµU
†U⟩⟨U†DµUχ+⟩+

+N7⟨λ32χ+⟩⟨DµU
†DµU⟩+N8⟨λ32DµU

†DµU⟩⟨χ+⟩
+N9⟨λ32[χ−, DµU

†DµU ]⟩+ ⟨λ32(N10χ
2
+ +N12χ

2
−)⟩

+N11⟨λ32χ+⟩⟨χ+⟩+N13⟨λ32χ−⟩⟨χ−⟩+
+ i⟨λ32{N14f

µν
+ +N16f

µν
− , DµU

†DνU}⟩+
i⟨λ32DµU

†U(N15f
µν
+ +N17f

µν
− )U†DνU⟩+ h.c.

(B.16)

It is worth noting that the presence of the G8 coupling constant is purely

conventional here as it merely helps to keep track of the chiral behavior of the

various operators. As for the strong sector, all one-loop divergences appearing

at NLO can be absorbed through a renormalization of the bare Ni coefficients

as

Ni = Nr
i (µ) + ΓNi Λ(µ) ,
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with ΓNi given in Tab.(B.1).

The 27-plet Lagrangian used in the present work is taken from Ref. [183] and

is complemented by four radiative operators taken from Ref. [188]. In this

minimal basis we have

L(4)
27 = F 2Tij;kl

[
D1⟨λijχ+⟩⟨λklχ+⟩+D2⟨λijχ−⟩⟨λklχ−⟩+

+D4⟨λijU†DµU⟩⟨λkl{DµU†U, χ+}⟩+
+D5⟨λijU†DµU⟩⟨λkl[DµU†U,χ−]⟩+
+D6⟨λijU†χ+⟩⟨λklDµU

†DµU⟩+
+D7⟨λijU†DµU⟩⟨λklDµU†U⟩⟨χ−⟩+
+ iD13⟨λijf+µν⟩⟨λklDµU†DνU⟩+
+ iD14⟨λijf−µν⟩⟨λklU†DµUU †DνU⟩+
+ iD15⟨λij [U†DµU, f+µν ]⟩⟨λklU†DνU⟩+

+ iD16⟨λij [f−µν , U†DµU ]⟩⟨λklU†DνU⟩
]
+ h.c. (B.17)

with the projector tensors given in Eq.(B.9). As previously, these operators

renormalize the LO via

Di = Dr
i (µ) + ΓDi Λ(µ)

with ΓDi specified in Tab.(B.1).

Finally, we consider the NLO representation of the electroweak sector. Since

this Lagrangian is of O(p0), the corresponding NLO local terms are of O(p2).

As a consequence, none of the O(p2) local operators may contain FµνL,R. Indeed,

Lorentz invariance would require two extra partial derivatives leading to O(p4)

local interactions. The corresponding minimal Lagrangian is given by

L(4)
ew = F 4e2Gew

[
Z1⟨λ32U†{Q,χ+}U⟩+ Z2⟨λ32U†QU⟩⟨χ+⟩+

+ Z6⟨λ32{U†QU,DµU
†DµU}⟩+

+ Z9⟨λ32U†DµU⟩⟨QUDµU†⟩+
+ Z13⟨λ32U†QU⟩⟨DµU

†DµU⟩]

(B.18)

while the renormalization of the various coefficients read

Zi = Zri (µ) + ΓZi Λ(µ)

where the ΓZi constants are given in Tab.(B.1).
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Appendix C
Amplitudes in ChPT

This section contains a detailed presentation of the various amplitude calcu-

lations used in the present thesis. These rather technical results are exposed

here in order to lighten the main text where their implications and conse-

quences are analyzed in more depth. Since these computations involve numer-

ous loop diagrams, it is desirable to automatize these analytic computations

using Mathematica [189] supplemented by FeynRules [190], FeynArts [191] and

FeynCalc [192]. Before going into detail let us first introduce some conventions.

While Feynman diagrams are displayed in a neat and colored form in the main

text, here, they are drawn in black and white using the following vertex con-

ventions:

• indicates a O(p2) strong vertex obtained from Eq.(1.46).

• indicates a O(p4) strong vertex obtained from Eq.(B.1).

• indicates a O(p4) strong WZW vertex obtained from Eqs.(B.3).

• indicates a O(p2) weak vertex obtained from Eqs.(1.55) and (B.12).

• indicates a O(p4) weak vertex obtained from either Eq.(B.16),

(B.17) or (B.18).
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As several NLO calculations detailed below require to be renormalized, we

dedicate the next section to the determination of all the corresponding renor-

malization constants.

C.1 Renormalization

Renormalized masses, wave functions and decay constants, respectively denoted

by Mϕ, Φ and F rϕa
, are defined by

M2
ϕ
.
= Zmϕ m2

ϕ , (C.1a)

Φ
.
= Z

−1/2
ϕ ϕ , (C.1b)

F rϕa

.
= ZFϕa

Fϕa , (C.1c)

where mϕ, ϕ and Fϕa represent the bare masses, wave functions and decay

constants, respectively. The Zmϕ , Zm and ZFϕa
coefficients are called renormal-

ization constants. While Zmϕ and Zm are extracted from the same object, the

ϕ meson propagator, ZFϕa
is obtained from the definition of Fϕa , i.e.,

⟨0|Aµ(0)|ϕa(p)⟩
.
= i

√
2Fϕapµ , (C.2)

where the
√
2 is a conventional normalization factor used in the present work.

Mass and wave functions

Let us consider the generic case of a scalar field ϕ of bare massm. Its propagator

given by the two-point Green function

iΠ(p)
.
=

∫
d4xe−ip·x⟨0|T{ϕ(x)ϕ(0)}|0⟩

may be represented by the Dyson sum

iΠ(p) = + + + · · ·

=
i

p2 −m2 − Σ(p2) + iε
. (C.3)

Since we did not yet specify the structure of the self-energy Σ or equivalently

the structure of the underlying theory this result is quite general. All we
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know is that Σ represents one-loop one particle irreducible corrections to the

propagator of the scalar field ϕ. This is, however, sufficient to make some

important statements. First of all, it is clear from Eq.(C.3) that the pole of

the propagator has been shifted from the bare mass m. The pole mass, or

equivalently the physical mass, defined by p2 =M2 reads now

M2 = m2 +Σ(m2) + higher order corrections ,

where higher order corrections due to Σ(m2) − Σ(M2) are neglected at NLO.

From this simple result we infer directly that the mass renormalization constant

at NLO is given by

Zm = 1 +
Σ(m2)

m2
. (C.4)

Furthermore, expanding Σ(p2) around an arbitrary mass scale µ2 we observe

that

Σ(p2) = Σ(µ2) + (p2 − µ2)Σ′(µ2) + Σ̃(p2) ,

where Σ̃(p2)
.
= 1

2 (p
2 − µ2)2Σ′′(µ2) + O((p2 − µ2)3) vanishes at p2 = µ2 by

definition. Here, primes indicate partial derivatives with respect to p2. A

simple dimensional analysis teaches us that the divergence of Σ(µ2) is, at most,

quadratic that of Σ′(µ2) is, at most, logarithmic whereas Σ̃(p2) turns out to be

finite. The mass scale µ, being arbitrary, we may set µ2 =M2 to obtain

iΠ(p2) =
i

(p2 −M2) [1− Σ′(M2)]− Σ̃(p2)
,

with the nice result that the possible quadratic divergence of Σ has been ab-

sorbed by the mass renormalization. The pole mass has not changed (Σ̃(M2) =

0) but the propagator still carries a potential logarithmic divergence. This is

where the wave function renormalization enters into play. Indeed, writing

iΠ(p2) =
iZ

(p2 −M2)− Σ̃(p2)
+ higher order corrections ,

where

Z =
1

1− Σ′(M2)
= 1 + Σ′(m2) + higher order corrections ,

we conclude that the remaining logarithmic diverge of the propagator, hidden

in Z, may be absorbed in the renormalization of the scalar field wave-function

defined by

ϕ→ Φ = Z−1/2 ϕ .
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To review, the mass and wave-function renormalization constants are expressed

in terms of the self-energy amplitude as

Zmϕ
.
= 1 +

Σϕ(m
2)

m2
, (C.5)

Zϕ
.
= 1 + Σ′

ϕ(m
2) . (C.6)

In ChPT, the self energies receive both loops and counter-term contribution :

−iΣ(p) .
=

= + + .

Evaluating these diagrams is straightforward and the result is expressed in

terms of the A0 one-loop scalar function defined in Eq.(A.12). In the isospin

limit (mu = md), we find

Zmπ = 1 +
1

6(4πF )2
[
A0(m

2
η8)− 3A0(m

2
π)
]
+ L′(m2

π) , (C.7a)

ZmK = 1− 1

3(4πF )2
A0(m

2
η8) + L′(m2

K) , (C.7b)

Zmη8 = 1 +
1

2(4πF )2
[
2A0(m

2
η8)− 3A0(m

2
K)
]
+

+ L′(m2
η8) +

128

9F 2
(3L7 + L8)

(m2
K −m2

π)
2

m2
η8

+

+
1

6(4πF )2
m2
π

m2
η8

[
3A0(m

2
π)− 2A0(m

2
K)−A0(m

2
η8)
]
,

(C.7c)

with the recurrent local contribution

L′(m2)
.
=

8

F 2

[
(2L6 − L4)(2m

2
K +m2

π) + (2L8 − L5)m
2
]
. (C.8)

With regards to the wave function renormalization constants, we rather find

Zπ = 1− 1

3(4πF )2
[
2A0(m

2
π) +A0(m

2
K)
]
− L′′(m2

π) , (C.9a)

ZK = 1− 1

4(4πF )2
[A0(m

2
π) + 2A0(m

2
K) +A0(m

2
η8)]−

− L′′(m2
K) ,

(C.9b)
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Induced couplings

π0 π+ π− K0 K0 K+ K− η8
a1µ a3µ a4µ a7µ a8µ a5µ a6µ a2µ

.

Tab. C.1: Pseudo-scalar meson coupling to Aµ defined in Eq.(C.12).

Zη8 = 1− 1

(4πF )2
A0(m

2
K)− L′′(m2

η8) , (C.9c)

with the common local contribution

L′′(m2)
.
=

8

F 2

[
L4(2m

2
K +m2

π) + L5m
2
]
. (C.10)

Note that since we assumed the isospin limit, the index π in Z
(m)
π stands for

π0 or π±, whilst the K index Z
(m)
K stands for K0, K0 or K±.

Decay constants

Now we turn our attention to the renormalization of the decay constants. As

stated above, the decay constant Fϕ of a pseudo-scalar field ϕ is given by

Fϕ
.
=

−i√
2

pµ

p2
⟨0|Aµ(0)|ϕ(p)⟩ . (C.11)

In SU(3)L⊗SU(3)R Chiral Perturbation theory, the axial gauge field Aµ may

be decomposed in the pseudo-scalar basis as follow

Aµ
.
=


a1µ√
2
+

a2µ√
2

a3µ a5µ

a4µ − a1µ√
2
+

a2µ√
2

a7µ

a6µ a8µ
−2a2µ√

2

 . (C.12)

This natural basis is useful because each pseudo-scalar couple to only one of

these aaµ fields according to Tab.(C.1). These couplings have two different

origins: the covariant derivative of the U

DµU = ∂µU − i {U,Aµ} , (C.13)

and the direct couplings to the gauge field strength tensors

FµνL = ∂µAν − ∂νAµ − i [Aµ, Aν ] , (C.14a)

FµνR = −∂µAν + ∂νAµ − i [Aµ, Aν ] . (C.14b)
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At LO, we recover the following identical amplitudes

⟨0|Aµ(0)|ϕa(p)⟩O(p2) = = i
√
2pµ

showing that at O(p2), all the decay constants are degenerated. At O(p4),

things get more involved since amplitudes defined in Eq.(C.11) receive both

loops and local contributions

F
O(p4)
ϕa

=
−i√
2

pµ

p2
⟨0|Aµ(0)|ϕa(p)⟩O(p4)

=
−i√
2

pµ

p2

(
+

)
.

(C.15)

Once the wave-function renormalization is applied on these O(p4) amplitudes,

the NLO decay constants get renormalized by

ZFπ = 1 +
1

2(4πF )2
[
2A0(m

2
π) +A0(m

2
K)
]
+

1

2
L′′(m2

π) , (C.16a)

ZFK = 1 +
3

8(4πF )2
[A0(m

2
π) + 2A0(m

2
K)+A0(m

2
η8)]+

+
1

2
L′′(m2

K) ,

(C.16b)

ZFη8 = 1 +
3

2(4πF )2
A0(m

2
K) +

1

2
L′′(m2

η8) . (C.16c)

C.2 K → γγ

Parametrizing this process as K0(P ) → γ(q1, µ)γ(q2, ν), the kinematics im-

poses the following relations

P = q1 + q2, q21 = q22 = 0 and P 2 = 2q1 · q2 =M2
K , (C.17)

while the most general expression of the corresponding amplitude allowed by

Lorentz and gauge invariance is given by

A(K0 → γγ) =
1√
2

[
A(P 2)(qν1 q

µ
2 − q1·q2gµν)+

+B(P 2)ϵµνρσq1ρq2σ
]
ϵ∗1µϵ

∗
2ν .

(C.18)
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Since K is a pseudo-scalar particle, the photons have either positive or negative

helicity : |++⟩ or | − −⟩1. Therefore, as a parity transformation acts only in

the momentum space, the parity transformation | + +⟩ P→ | − −⟩ suggests to

consider the equivalent state decomposition:

|γγ∥,⊥⟩ =
1√
2
(|++⟩ ± | − −⟩) with CP |γγ∥,⊥⟩ = ±|γγ∥,⊥⟩ . (C.19)

From an operator point of view, a γγ∥ state is produced by the CP even

operator FµνF
µν whereas a γγ⊥ state is produced by the CP odd Fµν F̃

µν

operator. In the momentum space it is, therefore, easy to realize that the

A amplitude in Eq.(C.18) produces the two photons with parallel helicities

(F ·F ), whereas the B term produces them with perpendicular helicities (F ·F̃ ).
Therefore, these two amplitudes do not interfere in the branching ratio.

Before computing all the possible K → γγ amplitudes, it is greatly rewarding

to analyze first how the CP properties of the two photon states intermix with

those of the K0 − K0 system. The CPT theorem is the key here because it

implies the following relations

A(K0 → γγ∥,⊥) = ∓A(K0 → γγ∥,⊥)
∗ . (C.20)

In other words, these four amplitudes are not independent as two of them may

be deduced from the other two. Explicitly, if we computed the amplitudes A
∥
γγ

and A⊥
γγ that specify completely the decay amplitude

A(K0 → γγ) =
1√
2

[
A∥
γγ(q

ν
1 q
µ
2 − q1 · q2gµν) +A⊥

γγϵ
µνρσq1ρq2σ

]
ϵ∗1µϵ

∗
2ν , (C.21)

we conclude that

A(KS → γγ∥) = N
[
ReA∥

γγ + iϵmImA∥
γγ

]
(qν1 q

µ
2 −q1 ·q2gµν)ϵ∗1µϵ∗2ν , (C.22a)

A(KS → γγ⊥) = N
[
iImA⊥

γγ + ϵmReA⊥
γγ

]
ϵµνρσq1ρq2σϵ

∗
1µϵ

∗
2ν , (C.22b)

A(KL → γγ∥) = N
[
iImA∥

γγ + ϵmReA∥
γγ

]
(qν1 q

µ
2 −q1 ·q2gµν)ϵ∗1µϵ∗2ν , (C.22c)

A(KL → γγ⊥) = N
[
ReA⊥

γγ + iϵmImA⊥
γγ

]
ϵµνρσq1ρq2σϵ

∗
1µϵ

∗
2ν , (C.22d)

where N = (1+ |ε̄|2)−1/2. Let us now compute Aγγ0
.
= A(K0 → γγ) in order to

extract the independent partial amplitudes A
∥
γγ and A⊥

γγ . Since the production

of two on-shell photons is achieved by either F · F or F · F̃ operators, both of

dimension four, we conclude that Aγγ0 starts at O(p4). The absence of O(p2)

contributions follows also from the fact that photon do not couple to neutral

1Indeed, a two photons state with opposite helicities has a non zero spin.
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particle directly, i.e., there is no K0γγ coupling at tree-level. The only chance

for this process to occur is through charged ππ or KK loops. Consequently,

potential O(p4) loop divergences cannot be absorbed in a O(p2) amplitude.

In other words, the O(p4) amplitude is finite. Note however that this does

not mean that the Aγγ0 is automatically free of local contributions. It rather

means that, a priori, local contributions, if any, appear in finite combinations.

Following the standard power counting of ChPT, O(p4) topologies consist of

either loop diagrams or tree diagrams involving one WZW vertex. In fact,

WZW vertices are the only ones able to produce the ϵµνρσ amplitudes that

generate A⊥
γγ . Tackling the loop contributions first, we get

A∥,loop
γγ = + + +

+ +

= −2αem
π

F (1− r2π)F
(
r−2
π

)
G8 (1 + δ27 − δm)+

+ 8α2
em

F 3

m2
K

[
F(1)−F

(
r−2
π

)]
Gew ,

(C.23a)

where rπ = mπ/mK , αem = e2/4π and the non-octet contributions collected

in

δ27 =
1

9G8
(G

(1/2)
27 +5G

(3/2)
27 ) and δm =

2

3

Gm
G8

(F(1)+F
(
r−2
π

)
) , (C.24)

where F
(
r−2
π

)
≃ (0.7 − 1.1i) indicates pion loops whilst F (1) ≃ −1.1 signals

kaon loops, F being the scalar loop function defined in Eq.(A.20) . It seems

that the weak mass term of Eq.(B.12) contributes here. In principle, this is

allowed because the lowest order contribution to the present process is O(p4)

(see Ref. [186]). However, A
∥
γγ is still incomplete since it does not yet take

into account the weak mass term ability to produce tadpoles. These effects are
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given by

A∥,tad
γγ = + + +

+ +

= −2αem
π

F (1− r2π)F
(
r−2
π

)
G8 (+δm) , (C.25a)

and cancel exactly the Gm term of A
∥,loop
γγ in Eq.(C.23a). The complete O(p4)

amplitude A
∥
γγ

.
= A

∥,loop
γγ +A

∥,tad
γγ is, therefore, given by

A∥
γγ = −2αem

π
F (1− r2π)F

(
r−2
π

)
G8 (1 + δ27)+

+ 8α2
em

F 3

m2
K

[
F(1)−F

(
r−2
π

)]
Gew .

(C.26)

No local counter-term contributions are found here as no tree-levelK0γγ vertex

appear at O(p4). It means that the predicted ChPT amplitude in Eq.(C.26)

will not be affected by our poor knowledge of the weak local counter-terms.

Let us now turn our attention to the perpendicular helicity amplitude A⊥
γγ ,

which also starts at O(p4) and is driven by the WZW anomalous Lagrangian

through the following pole exchange processes

A⊥
γγ = = i

2αem
π

Fm2
K×

×

[
G8 +Gm −G

(3/2)
27 + 1

9 (G
(1/2)
27 −G

(3/2)
27 )

(m2
K −m2

π)
− G8 +Gm −G

(1/2)
27

3(m2
η8 −m2

K)

]
(C.27)

where the π0 and η8 poles are clearly apparent, and where we assumed the

overall factor NC/3 to equals unity. This amplitude vanishes in the isospin

limit where G
(1/2)
27 = G

(3/2)
27 and m2

K − m2
π = 3(m2

η8 − m2
K) holds. In order

for this amplitude to differ from zero in the isospin limit we may either go at

O(p6) or in U(3), see Ref. [114].

Finally, we stress the fact that by ReA∥,⊥ and ImA∥,⊥ we refer to weak phases,

i.e., the ones driven by the Gi coupling constants. The strong phases, broad
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by the on-shell intermediate loop states are for their part included in F and do

not feel the CP transformation applied in Eq.(C.20) by definition.

C.3 K → ππ(γ)

K → ππ

Kinematic

We choose to parametrize these decay amplitudes as A(K(P ) → π(q1)π2) with

ππ = π+π−, π0π0 or π+π0 so that in the rest frame of the decaying kaon and

in the isospin limit, we have

P = q1+ q2, P 2 =M2
K , q21 = q22 =M2

π and q1 · q2 =
1

2

(
M2
K − 2M2

π

)
,

where Mi indicate kinematic (or equivalently physical) masses which are de-

generate with the bare masses mi at tree-level only. This distinction is crucial

in order for the renormalization process to work properly.

O(p2) amplitudes

At the lowest order, the K → ππ amplitudes are obtained from the following

tree-level topologies

AIJK
.
= A(KI → πJπK) = + (C.28)

and are explicitly given by

A0+− = −
√
2F

[
G8 +

1

9
G

(1/2)
27 +

5

9
G

(3/2)
27

]
(M2

K −M2
π)−

−
√
2e2F 3Gew ,

(C.29a)

A000 = −
√
2F

[
G8 +

1

9
G

(1/2)
27 − 10

9
G

(3/2)
27

]
(M2

K −M2
π) , (C.29b)

A++0 = −5

3
FG

(3/2)
27 (M2

K −M2
π) + e2F 3Gew . (C.29c)
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The second topology in Eq.(C.28) is in fact evanescent, it just cancels the Gm
contribution generated by the first topology. Moreover, these amplitudes ex-

hibit a dependence in the physical masses Mi only. Renormalizing masses at

lowest order will, therefore, be useless. Still, O(G8p
4) as well as O(G27p

4) am-

plitudes require the renormalization of both wave functions and decay constant

while for the O(Gewe
2p2) contributions, the wave function renormalization is

enough. Two different renormalization procedures are, therefore, needed:

AIJK → Z
1/2
K Zπ Z

F
KZ

F
π

2
[
F 2
π

FFK

]
AIJK , (C.30a)

AIJK → Z
1/2
K Zπ Z

F
π

3
[
Fπ
F

]3
AIJK , (C.30b)

for the G8/G
(I)
27 and Gew components, respectively. In both cases, wave func-

tions are renormalized using renormalization constants Zπ,K given in Eqs.(C.9)

while renormalization constants for decay constant are given in Eqs.(C.16). Re-

garding the Gew amplitudes, we simply substitute the bare F for Fπ, though

it is not required it allows us to express the decay amplitude in terms of a

physical decay constant Fπ. Concerning G8 and G27 amplitudes, the bare F is

replaced by the particular combination F 2
π/FK . This is not mandatory since

we could have chosen to replace F by Fπ as well. Yet, the advantage of pulling

out the factor F 2
π/FK lies in the fact that the associated factor Z

1/2
K Zπ Z

F
KZ

F
π

2

does not depend on strong counter-terms in such a way that the renormalized

amplitudes have no explicit dependence in the Li constants, see e.g. Ref. [183].

Doing so, we obtain

AIJK → ArIJK + δAIJK , (C.31)

where

Ar0+− = −
√
2
F 2
π

FK

[
G8 +

1

9
G

(1/2)
27 +

5

9
G

(3/2)
27

]
(M2

K −M2
π)−

−
√
2e2F 3

πGew ,

(C.32a)

Ar000 = −
√
2
F 2
π

FK

[
G8 +

1

9
G

(1/2)
27 − 10

9
G

(3/2)
27

]
(M2

K −M2
π) , (C.32b)

Ar++0 = −5

3

F 2
π

FK
G

(3/2)
27 (M2

K −M2
π)− e2F 3

πGew , (C.32c)

are the renormalized lowest order amplitudes whereas

δA0+− = −
√
2
m2
K

FK

[
G8 +

1

9
G

(1/2)
27 +

5

9
G

(3/2)
27

]
(1− r2π)∆−

−
√
2e2FπGew∆

′ ,

(C.33a)
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δA000 = −
√
2
m2
K

FK

[
G8 +

1

9
G

(1/2)
27 − 10

9
G

(3/2)
27

]
(1− r2π)∆ , (C.33b)

δA++0 = −5

3

m2
K

FK
G

(3/2)
27 (1− r2π)∆− e2FπGew∆

′ , (C.33c)

with

∆ =
1

12(4π)2
[
19A0(m

2
π) + 14A0(m

2
K) + 3A0(m

2
η8)
]
, (C.34a)

∆′ =
1

24(4π)2
[
53A0(m

2
π) + 22A0(m

2
K)− 3A0(m

2
η8)
]
−

− 4L5(m
2
K −m2

π) ,

(C.34b)

are divergent higher order corrections regularizing the NLO loop and counter-

term contributions computed in the next section. Notice that in these NLO

contribution we use the bare masses mi for pure convenience. Substituting the

physical massesMi for the bare masses at this order is allowed since it produced

NNLO corrections which are beyond the order at which we are working. The

same comment applies for the choice of the decay constant : in these NLO

expression we can either use FK , Fπ or F . However, once a choice is made,

it has to be applied in all NLO contributions in order for the divergences to

disappear properly.

O(p4) amplitudes

There are two types of NLO contributions to K → ππ: local counter-terms

contributions and loop contributions. The former are driven by the following

tree-level toplogies

ActIJK = + , (C.35)

which are explicitly given by

Act0+− = +
√
2
m4
K

FK

[
(1− r2π)

{
G8N8 +

1

9
G

(1/2)
27 D1/2 +

5

9
G

(3/2)
27 D3/2

}
+

+ e2
FπFK
m2
K

GewZ
(1)

]
,

(C.36a)

Act000 = +
√
2
m4
K

FK

[
(1− r2π)

{
G8N8 +

1

9
G

(1/2)
27 D1/2 −

10

9
G

(3/2)
27 D3/2

}
+

+ e2
FπFK
m2
K

GewZ
(2)

]
,

(C.36b)
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Act++0 = −m
4
K

FK

[
5

3
(1− r2π)G

(3/2)
27 D3/2 + e2

FπFK
m2
K

GewZ
(3)

]
, (C.36c)

with the various counter-term combinations defined in Eqs.(C.40). It is worth

noticing that here we kept only divergent counter-terms. More counter-terms

should, in principle, appear in these expressions. However, as they appear

in finite combinations, it is quite sufficient to hide them in the finite part of

the various counter-terms combination in Eqs.(C.40), which eventually can be

absorbed by a renormalization of the low energy coupling constantsG8, G27 and

Gew. Regarding the loop contributions, the situation is a bit more involved.

The relevant topologies are given by

Aloop
IJK = + + +

+ +

(C.37)

to which we should, in principle, add tadpole topologies. The overall effect of

these contributions being the cancellation of all Gm contributions we do not

show them explicitly even though this cancellation has been explicitly checked.

After going through all the calculations we obtain the following loop amplitudes

Aloop
0+− =

√
2

2(4π)2
m2
K

FK

[
G8F

(8)
A +

1

9
G

(1/2)
27 F

(1/2)
A +

5

9
G

(3/2)
27 F

(3/2)
A +

+ e2
FπFK
m2
K

GewE
(1)
A +m2

K

{
G8F

(8)
B +

1

9
G

(1/2)
27 F

(1/2)
B +

+
5

9
G

(3/2)
27 F

(3/2)
B + e2

FπFK
m2
K

GewE
(1)
B

}]
,

(C.38a)

Aloop
000 =

√
2

2(4π)2
m2
K

FK

[
G8F

(8)
A +

1

9
G

(1/2)
27 F

(1/2)
A − 10

9
G

(3/2)
27 F

(3/2)
A +

+ e2
FπFK
m2
K

GewE
(2)
A +m2

K

{
G8F

(8)
B +

1

9
G

(1/2)
27 F

(1/2)
B −

− 10

9
G

(3/2)
27 F

(3/2)
B + e2

FπFK
m2
K

GewE
(2)
B

}]
,

(C.38b)

Aloop
++0 =

1

2(4π)2
m2
K

FK

[
5

3
G

(3/2)
27 F

(3/2)
A + e2

FπFK
m2
K

GewE
(3)
A +

+m2
K

{
5

3
G

(3/2)
27 F

(3/2)
B + e2

FπFK
m2
K

GewE
(3)
B

}]
,

(C.38c)
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where the various recurrent loop functions are collected in Eqs.(C.41). Using

the results of Eq.(A.12) and Eq.(A.13), as well as the counter-term divergences

of Tab.(B.1), it is now easy to check that the NLO amplitudes

AIJK
.
= ArIJK + δAIJK +Act

IJK +Aloop
IJK (C.39)

are finite. Our interest in these NLO amplitudes is in fact indirect. What

really matters for us here is their implications to the radiative modes K → ππγ

analyzed in the following section.

Counter-terms and loop functions

The various counter-term combinations relevant for the K → ππ renormaliza-

tion are

N8 = 2
[
(N5 − 2N7 + 2N8 +N9)+

+ (2N5 + 4N7 +N8 − 2N10 − 4N11 − 2N12)r
2
π

]
,
(C.40a)

D1/2 = (D4 −D5 − 9D6 + 4D7)−
− 2(6D1 + 2D2 − 2D4 − 6D6 −D7)r

2
π ,

(C.40b)

D3/2 = (D4 −D5 + 4D7)− 2(2D2 − 2D4 −D7)r
2
π , (C.40c)

Z(1) =
1

3

[
Z6(1 + 2r2π)− 6Zew

]
, (C.40d)

Z(2) =
1

3
(2Z6 + 3Z9)(r

2
π − 1) , (C.40e)

Z(3) = Z6 + Z9(1− r2π)− 2Zew , (C.40f)

Zew = (Z1 + 2Z2) + (2Z1 + Z2)r
2
π . (C.40g)

Here are collected the various one-loop functions occurring in K → ππ loop

amplitudes:

F
(8)
A =

2

3

(
−1 + 4r2π

)
AK − 1

2

(
r−2
π − 1 + 2r2π

)
A8 + δFA , (C.41a)

F
(1/2)
A =

1

6

(
−15r−2

π − 19 + 46r2π
)
AK + (2r−2

π − 7+4r2π)A8+

+ δFA ,
(C.41b)

F
(3/2)
A =

1

3

(
−3r−2

π − 5 + 5r2π
)
AK − 1

4

(
r−2
π + 1 + 2r2π

)
A8+

+
1

12

(
15r−2

π − 97 + 106r2π
)
Aπ ,

(C.41c)
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δFA =
1

6

(
3r−2
π + 1− 10r2π

)
Aπ , (C.41d)

F
(8)
B =

1

9
r2π
(
−1 + r2π

)
BK88 +

1

6

(
r−2
π − 1

)
BπK8 + δFB , (C.41e)

F
(1/2)
B = r2π

(
1− r2π

)
BK88 +

2

3

(
−r−2

π + 1
)
BπK8 + δFB , (C.41f)

F
(3/2)
B =

(
1− 3r2π + 2r4π

)
BKππ +

1

12

(
r−2
π − 1

)
BπK8+

+
1

4

(
5r−2
π − 13 + 8r2π

)
BπKπ ,

(C.41g)

δFB = −
(
2− 3r2π + r4π

)
BKππ +

1

2

(
r−2
π − 5 + 4r2π

)
BπKπ , (C.41h)

E
(1)
A = −8

3
AK +

1

4

(
2− 3r−2

π

)
A8 +

1

12

(
9r−2
π − 46

)
Aπ , (C.41i)

E
(1)
B =

1

2
BKKK − BKππ +

1

4
r−2
π BπK8 +

1

4

(
3r−2
π − 8

)
BπKπ , (C.41j)

E
(2)
A =

1

2

(
r−2
π − 2

)
(AK −Aπ) , (C.41k)

E
(2)
B =

1

2
BKKK + 2

(
−1 + r2π

)
BKππ − 1

2
r−2
π BπKπ , (C.41l)

E
(3)
A = −1

6

(
3r−2
π + 10

)
AK+

1

24

(
30r−2

π − 116
)
Aπ

− 1

4

(
3r−2
π − 2

)
A8 ,

(C.41m)

E
(3)
B =

(
1− 2r2π

)
BKππ +

1

4
r−2
π BπK8 +

1

4

(
5r−2
π − 8

)
BπKπ , (C.41n)

where, for convenience, we defined

AI
.
= A0(m

2
I) and BIJK

.
= B0(m

2
I ,m

2
J ,m

2
K) . (C.42)

withA0 andB0 the one-loop scalar functions defined in Eq.(A.12) and Eq.(A.13),

respectively.

K → ππγ

Kinematic

We parametrize the three body decay amplitudes K → ππγ as follows

A(K(P ) → π(q1)π(q2)γ(q3)) , (C.43)
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with the pion pair ππ = π−π+, π0π0 or π−π0. Moreover, if the mass difference

between charged and neutral pions is neglected, we have

P = q1 + q2 + q3, P 2 =M2
K , q21 = q22 =M2

π and q23 = 0 , (C.44)

where Mi indicates, as usual, the physical mass of the particle i. While a two

body decay kinematic is completely fixed, a three body decay amplitude needs

two kinematic variables to be completely specified. The amplitudes presented

in this section are parametrized in terms of two of the following kinematic

variables:

z1
.
=
q1 · q3
M2
K

, z2
.
=
q2 · q3
M2
K

and z3
.
=
P · q3
M2
K

, (C.45)

where, in the kaon rest frame, we have

z3 =
Eγ
MK

. (C.46)

These variables are not independent since the transversality of the on-shell

photon implies that z3 = z1 + z2. In particular, we will systematically use the

relation

q1 · q2 =
1

2

[
M2
K − 2M2

π − 2z1M
2
K − 2z2M

2
K

]
=

1

2

[
(1− 2z3)M

2
K − 2M2

π

]
.

(C.47)

This parametrization in terms of zi is particularly well suited for analytic com-

putations but, in order to compare them with experimental data, alternative

parametrizations will be presented in Sec.C.3. From Lorentz and gauge invari-

ance, the most general K → ππγ amplitude reads [103,104,193]

A(K → π(q1)π2(q2)γ(q3)) =

[
E(z1, z2)

λµ

MK
+

+ iM(z1, z2)
ϵµνρσq1νq2ρq3σ

M3
K

]
ϵ∗µ(q3) ,

(C.48)

with λµ
.
= z2q

µ
1 −z1q

µ
2 and where the two terms E(z1, z2) andM(z1, z2) are the

dimensionless electric and magnetic amplitudes, respectively. Note that they

do not interfere in the rate once the sum over the photon polarizations is done,

since photons produced by E and M have opposite parity. The electric part

can be further decomposed into a bremsstrahlung (QED emission) and a direct

emission term as

E(z1, z2)
.
= EIB(z1, z2) + EDE(z1, z2) , (C.49)
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whilst the magnetic part is pure direct emission, M
.
= MDE. Indeed, QED

bremsstrahlung radiations are not able to generate a magnetic emission such

asM . Moreover, when the energy of the photon goes to zero, i.e. when q3 → 0,

only EIB is divergent and, according to Low’s theorem, entirely fixed from the

non-radiative process K → ππ, while the direct emission terms EDE and MDE

are constant in that limit. In this work we focus on the electric transition only.

Analysis of the magnetic transition can be found in Refs. [99–102]. Without loss

of generality, and for sake of simplicity, we choose to express the forthcoming

K → ππγ amplitudes in terms of the CP eigenstates K1,2 in the CP conserving

limit. The general case may be recovered going back to the strong eigenstate

basis where it is then sufficient to replace the coupling constants GI by their

complex conjugate G∗
I in K0 and K− amplitudes.

O(p2) amplitudes

At lowest order the relevant topologies are

A
(γ)
IJK

.
= A(KI → πJπKγ) = + (C.50)

where the floating photon is to be attached to all possible external charged leg.

The last topology where the photon is directly emitted from the weak vertex

is, at this order, evanescent on-shell: in final on-shell amplitudes, it disappears

in order for the gauge invariance to be fulfilled. For the sake of completeness

and to stress that at NLO these processes, contrary to the non radiative decays

K → ππ, require the renormalization of the masses we give the explicit off-shell

amplitudes. Using the following shorten notations,

∆i
.
= m2

i −M2
i (C.51)

and

G1
.
= G8 +

1

9
G

(1/2)
27 +

5

9
G

(3/2)
27 ,

G2
.
= G8 +

1

9
G

(1/2)
27 .

we obtain the following off-shell amplitudes:

A
(γ)
1+− = +

2eF
(
G1

(
2M2

K −m2
π −M2

π

)
+ 18e2F 2Gew

)
z2 (2z1M2

K −∆π)
×

×

[
λ · ϵ∗(q3) +

(z1 − z2)∆π

2z2M2
K −∆π

q2 · ϵ∗(q3)

] (C.52a)
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A
(γ)
2+− = −

2eF
(
G2 − 25

9 G
(3/2)
27

)
z2 (2z1M2

K −∆π)
∆π×

×
[
λ · ϵ∗(q3)−

(
4z1z2M

2
K − z3∆π

)
(2z2M2

K −∆π)
q2 · ϵ∗(q3)

]
,

(C.52b)

A
(γ)
++0 =− 2eF

z2(2z1M2
K −∆π)

[
∆πG2−

− e2F 2Gew
(2z3M2

K +∆K)
(2z2M

2
K +∆K +∆π)+

+
5G

(3/2)
27

9(2z3M2
K +∆K)

[
− 3(M2

K −M2
π)(2z2M

2
K+

+∆K +∆π) + 2M2
K(3z1∆K + 4z3∆π) + ∆K∆π

]]
×

×λ · ϵ∗(q3)−

− 2eF

z2(2z1M2
K −∆π)

[
− z1∆πG2+

+
e2F 2Gew

(2z3M2
K +∆K)

(z1∆K + z3∆π)+

+
5G

(3/2)
27

9(2z3M2
K +∆K)

[
3(M2

K −M2
π)(z1∆K + z3∆π)−

− 2z1z3M
2
K(3∆K + 4∆π)−∆K∆π(z1 − 3z2)

]]
×

× q2 · ϵ∗(q3) ,

(C.52c)

A
(γ)
100 = A

(γ)
200 = 0 , (C.52d)

The bare mass and the physical mass differences vanish at lowest order and

the gauge invariance is subsequently fulfilled since all the gauge symmetry vi-

olating pieces proportional to q2 · ϵ∗(q3) drop out. At NLO, on the other hand,

masses are renormalized so that m2
i ̸= M2

i in such a way that the renormal-

ized tree-level amplitudes are no more gauge invariant. Yet, as shown in the

following section, these gauge violating contributions will cancel against loop

and counter-terms induced gauge violating contributions.

We may, therefore, conclude that the K → ππγ on-shell electric amplitudes

are given at lowest order by

E1+− = E1+−
IB = − e

z1z2MK
A(K1 → π+π−) , (C.53a)

E++0 = E++0
IB = − e

z2z3MK
A(K+ → π+π0) , (C.53b)
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E2+− = E100 = E200 = 0 , (C.53c)

where the non radiative amplitudes are obtained from Eqs.(C.29). In other

words, there is only bremsstrahlung emission at lowest order and these infrared

divergent contributions (obtained taking zi → 0) are completely fixed by the

corresponding non radiative amplitudes as predicted by Low’s theorem. Note

that the bremsstrahlung emission infrared behavior make them the dominant

contributions for low energetic photons. Note also that the direct emission

starts to contribute only at NLO, since in order to produce a real photon we

need a Fµν factor, of O(p2), which has to be accompanied by two derivatives

∂µ∂ν , of O(p2) as well, in order for the Lorentz invariance to hold.

O(p4) amplitudes

At NLO, things become more involved. With regards to the counter-terms

contributions, the number of possible topology is sensitively bigger than the

one require for the non radiative mode. Indeed, we have to deal with the

following topologies:

A
(γ)ct
IJK = + + +

+ + + +

+

(C.54)

where the floating photon is to be attached to any charged external leg and

where both strong and weak NLO counter-terms step into the game. Regarding

the loop amplitudes, the situation is even worse: the number of diagrams for

one of the K+,1,2 → ππγ channel is of O(100) for charged final states (π+π0γ

or π+π−γ) and of O(20) for the neutral final state (π0π0γ). Of course, these

diagrams originate from a fewer number of basic topologies, partly obtained

from the one-loop topologies of a two body decay supplemented by one extra

external leg (attached on a vertex or either on an external or internal leg). But

one also has to take into account diagrams derived from the following generic
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topology

, (C.55)

which is the one responsible for the mass renormalization we already noted from

the tree-level amplitude and which is also connected to the last two diagrams of

Eq.(C.54), where only L4,...,8 strong counter-terms matter, see Eqs.(C.7) and

Eq.(C.8). Yet, a simplification occurs regarding the loops: it is not possible to

build a loop amplitude for which the weak vertex is a mixing term like K+π−.

This can be easily checked by inspecting all the possible topologies.

Needless to say that the final NLO K → ππγ are huge expressions. However,

it is possible to get rather compact expressions if the non-radiative amplitudes

are used. Here is how it goes:

1. the renormalization of the amplitudes in Eqs.(C.52) is performed. Re-

garding the wave functions and decay constants, we follow the same pro-

cedure as for the non-radiative amplitudes, see Eqs.(C.30). The mass

renormalization is performed directly from the off-shell amplitudes us-

ing Eq.(C.4) and Eqs.(C.7). We then end up with non gauge invariant

amplitudes

A
(γ)
IJK → A

(γ)tree
IJK = A

(γ)r
IJK + δA

(γ)
IJK , (C.56)

where the non gauge invariant contributions come from the renormaliza-

tion procedure, i.e., they are proportional to either scalar loop functions

A0 or strong counter-terms.

2. the counter-terms contributions is then added toA
(γ)tree
IJK to giveA

(γ)tree+ct
IJK ,

where all the gauge violating terms proportional to the strong counter-

terms drop out.

3. the loop contributions are finally added to obtain the complete amplitudes

A
(γ)tot
IJK

.
= A

(γ)tree+ct+loop
IJK , (C.57)

which are now fully gauge invariant and finite.

4. the corresponding electrical amplitudes are extracted from the complete

amplitudes and split into their bremsstrahlung , loop and counter-terms

component as

E
(γ)tot
IJK

.
= EIJKIB + EIJKloop + EIJKCT . (C.58)
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Doing so, we obtain

E1+−
IB = − e

z1z2MK
A1+− , (C.59a)

E++0
IB = − e

z2z3MK
A++0 , (C.59b)

E2+−
IB = E100

IB = E200
IB = 0 , (C.59c)

where the AIJK are given in Eq.(C.39), namely, the full NLO on-shell K → ππ

amplitudes that include both counter-terms and loops (which include, in partic-

ular, the strong phases arising from ππ loops). Adopting this renormalization

for the bremsstrahlung contributions, the loop contributions are given by

E++0
loop = N

[
h(z1) + g(z2)− 4A+hππ(−z3) + 2AewhKK(−z3)

]
, (C.60a)

E1+−
loop = N

[
h(z1) + h(z2)− 8A0hππ(−z3)− 4AewhKK(−z3)

]
, (C.60b)

E2+−
loop = N

[
h̃(z1)− h̃(z2)

]
, (C.60c)

E200
loop = N [g̃(z1)− g̃(z2)] , (C.60d)

E100
loop = 0 , (C.60e)

where we introduced the normalization factor

N .
= −e(m

2
K −m2

π)

8π2Fπ
, (C.61)

while the composite loop functions h and g are given by

h(z)
.
= A8hKη(z) +A0hπK(z)−A+hKπ(z) , (C.62a)

g(z)
.
= 2A+ (hπK(z) + hKπ(z)) . (C.62b)

The loop functions hij(z) are given in Ref. [104] in terms of the subtracted

three-point Passarino-Veltman function C20 and they are also explicitly given

in Eq.(A.21). The Ai are, on the other hand, defined as follow

A+ .
=

5

6
G

(3/2)
27 − 1

2
Aew , (C.63a)

A0 .
= G8 +

1

9
G

(1/2)
27 +

5

9
G

(3/2)
27 −Aew , (C.63b)

A8 .
= G8 −

4

9
G

(1/2)
27 +

5

18
G

(3/2)
27 − 3

2
Aew , (C.63c)

with

Aew
.
=

e2F 2
π

m2
K −m2

π

Gew . (C.64)
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Note that in Eqs.(C.60), h̃ and g̃ are respectively given by h and g in the limit

where Gew = 0, while E100
loop vanishes because of the combined effect of CP and

Bose symmetries. It is also worth pointing out that all the loop contributions

are finite (the f ijk (z) functions are, indeed, finite by construction, see Eq.(A.21)

and Eqs.(A.22)) and constant in the zi → 0 limit, see Eq.(A.23). As a con-

sequence, the counter-term contributions must be finite too: we, indeed, find

that

(E++0
CT , E1+−

CT , E2+−
CT ) = −2eG8M

3
K

FK
(−Ni, 2ReNi, 2iImNi) , (C.65a)

E2+−
CT = E100

CT = E200
CT = 0 , (C.65b)

where we relaxed the CP conservation limit in order to make the imaginary

part of the counter-term explicit and where the counter-term combination is

given by

Ni
.
=N14 −N15 −N16 −N17+

+
1

18G8

(
G

(1/2)
27 + 5G

(3/2)
27

)
(D13 +D14 + 3D15 −D16) ,

(C.66)

where both octet and 27-plet combinations are separately finite, see Tab.(B.1).

Since electroweak counter-term emerge from density-density operators, they al-

ways contain two derivatives power less then current-current four quark opera-

tors. Hence, Lorentz invariance forbid them to produce a real photon through

Fµν at NLO as at that order they are of O(p2) and this explains why they do

not appear in Eq.(C.66).

Multipoles expansion

In the previous section, we gave the full K → ππγ amplitudes at NLO in

ChPT. In particular, we saw that the Low’s theorem prediction holds at NLO

since we were able to fully express the bremsstrahlung amplitude in terms

of the NLO K → ππ amplitudes (see Eqs.(C.59)), which include the partial

strong phases found at that order. At the same order, the direct emissions

receive strong phases as well via their hππ dependencies (see Eqs.(C.60a) and

(C.60b)). We already mentioned in chapter 1 that a complete treatment of

strong phases is tricky within a perturbative approach. In fact, the strong

phases we found at NLO are only partial contributions expected to be corrected

at higher order. Nonetheless, one of the basic ingredients when dealing with

CP violating observable is weak and strong phases interferences. In the case of

K → ππ decays it has become usual to put the strong phases by hand through
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the so-called unitarization of the partial isospin amplitude. In a nutshell, it

amounts to consider the strong phases as parameters fitted from experiment

rather then robust theoretical numbers. In the case of K → ππ decays it is as

easy to implement as it is easy to decompose the amplitudes in their isospin

components, see Eq.(1.18). In the radiative case of K → ππγ, the strong phase

assignment procedure is more sophisticated but can still be achieved thanks to

the so-called multipole expansion.

Let us recall that the parity of a photon of total angular momentum Jγ = L+S,

S = 1 being its spin and L its orbital momentum, is given by Pγ = (−1)(−1)L =

(−1)L+1 such that a photon may be in two different parity states : electrical

2J -poles with Pγ = (−1)Jγ+1 or magnetic 2J -poles with Pγ = (−1)Jγ . In the

context of K → ππγ decays, they are respectively described by the electric

amplitude E(z1, z2) and the magnetic amplitude M(z1, z2). Let us now label

the total angular momentum of the two pion states as J2π and notice that:

1. since kaons do not carry angular momentum, the angular momentum

conservation tells us that, in order for the K → ππγ decay to be allowed,

Jγ = J2π in such a way that Jγ ⊗ J2π contains 0,

2. Bose statistic imposes that, under the exchange of the two pions, the

corresponding parity given by (−1)J2π+I = +1, I being the isospin of the

two pion state.

If F (z1, z2) represents now the electric (or the magnetic) direct emission ampli-

tude for a given K → ππγ channel, we may expand it in power of δ−
.
= z1 − z2

using a simple Taylor expansion around z
.
= z3/2,

z1,2 =
z3
2

± δ−
2

= z ± δ−
2
, (C.67)

to split it in z1 ↔ z2 symmetric F+ and anti-symmetric F− components (by

collecting even and odd power terms in δ−). We, therefore, decompose the

electric direct amplitude into two terms:

A± = F∓
λµ

mK
ϵ∗µ(q3) where λµ

.
= z2q

µ
1 − z1q

µ
2 , (C.68)

which are respectively symmetric and anti-symmetric under the exchange of

the two pion as under such an exchange, z1 → z2 and λµ → −λµ. These

symmetry properties imply that the pions are in an I = 0, 2 state in A+ while

being in an I = 1 states in A−. Correspondingly, and due to Bose statistic, Jγ
is even (Jγ = 2, 4, . . . ) for A+ and odd (Jγ = 1, 3, . . . ) for A−. In conclusion,

the direct electric amplitudes can be expanded in multipoles, according to the
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angular momentum of the two pions [98]:

EDE(z1, z2)e
iδDE = E1(z3)e

iδ1 + E2(z3)e
iδ2(z1 − z2)+

+ E3(z3)e
iδ3(z1 − z2)

2 + ... ,
(C.69)

and similarly for MDE . There are several interesting features in this expan-

sion [69]:

1. for K0 decays, the odd and even multipoles produce the ππ pair in op-

posite CP states. Indeed, the 2π being a CP even eigenstate, the CP

properties of the final state are dictated by the photon one, which is

given by (−1)L,

2. when CP-conserving, the dipole emission E1 dominates over higher mul-

tipoles, which have to overcome the angular momentum barrier (in fact,

|z1 − z2| < 0.2),

3. the strong phases can be assigned consistently to each multipole, since it

produces the ππ state in a given angular momentum state,

4. if the EIB and EDE amplitudes interfere and have different weak and

strong phases, a CP-asymmetry can be generated, see Eq.(2.11).

In the context of the present work, we will focus our attention on the dipole

component E1 of K0 → π+π−γ and K+ → π+π0γ amplitudes extracted in the

following section.

Dipoles

For K → π+π0γ, the function Eloop(W 2, T ∗
c ) occurring in Eq.(C.70) is

G8E
loop(z1, z2) = Re

[
h(z1) + g(z2)− 4A+hππ (−z3)

]
, (C.70)

as obtained from Eq.(C.60a) by neglecting ReAew ≪ ReG8,27 (since Gew is

entirely generated by the electroweak penguins). The real part refers to the

weak phases only. Performing the multipole expansion and expressing the

K → PP amplitudes parametrically in terms of theK → ππ isospin amplitudes

A0 =
√
2Fπ(m

2
K −m2

π)

[
G8 +

1

9
G

1/2
27 − 2

3
Aew

]
,

A2 = 2Fπ(m
2
K −m2

π)

[
5

9
G

3/2
27 − 1

3
Aew

]
,

(C.71)
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we find

G8E
loop
1 (z3 = 2z) =

−emK

(4πFπ)2
[A0h0(z) +A2h2(z) +Aδ2δh2(z)] , (C.72)

where

h0(z) =
√
2(hKη(z) + hπK(z)) , (C.73a)

h2(z) = 4hπK(z) +
3

2
hKπ(z)− 6hππ (−2z)− 1

2
hKη(z) , (C.73b)

δh2(z) = 3hKη(z)− 6hKK (−2z) , (C.73c)

with Aδ2 = −(2/3)Fπ(m
2
K−m2

π)A
ew. For the small δh2(z) term, we can further

set ImAδ2 ≈ ImA2, since CP-violation from Q8 dominates in the ∆I = 3/2

channel. Eq.(2.16) is then found by defining (δ)h20(z3) = (δ)h2(z)/h0(z). Let

us stress that A0 and A2 are just convenient parameters to keep track of the

weak phases of G8, G27, and Gew. As such, they do not include any strong

phase. Further, the strong phase originating from hππ is discarded, as it has

already been taken care of through the multipole expansion.

Similarly, the K0 → π+π−γ direct emission amplitude occurring in Eq.(2.31)

is the dipole part of the amplitude in Eq.(C.60b),

E+−(z3 = 2z) = − 2emK

(4πFπ)2
[A0h

′
0(z) +A2h

′
2(z) +Aδ2δh

′
2(z)]−

4eG8m
3
K

Fπ
Ni ,

where

h′0(z) =
√
2(hKη(z) + hπK(z)− 4hππ (−2z)) , (C.74a)

h′2(z) = −1

2
hKη(z) + hπK(z)− 3

2
hKπ(z)− 4hππ (−2z) , (C.74b)

δh′2(z) = 3hKη(z) + 6hKK (−2z) . (C.74c)

Again, defining (δ)h′20(z3) = (δ)h′2(z)/h
′
0(z) immediately leads to Eq.(2.35).

It is worth noting that, contrary to what is generally stated, the amplitude for

KL → π0π0γ does not vanish at O(p4), but is suppressed by the ∆I = 1/2

rule. Being in addition a pure quadrupole emission, the rate is tiny

B(KL → π0π0γ)G27 = 7.3× 10−13 . (C.75)

For comparison, Ref. [103] found that, using dimensional arguments, the G8

contribution at O(p6) is of the order of 10−10, much larger but still far below

the experimental bound 2.43× 10−7.
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Fig. C.1: Representation of the phase-space in the (z1, z2) plane.

Phase space parametrisations

We saw that z1,2(,3) are well suited variables to investigate K → ππγ the-

oretically. Yet, as we will see, alternative sets of variables are more suited

for experimental investigations. From an experimental point of view, it is ap-

preciable to describe a given process in terms of measurable quantities and

in order to compare theory and experiment we must be able to go from one

parametrization to another. This is the purpose of this section.

(z1, z2) parametrization

The parametrization of A(K → ππγ) in terms of Lorentz invariant variables

z1,2 was presented in Eq.(C.45). Let us now find the range over which they

evolve. In the kaon rest frame, using the momentum conservation law, it is

easy to see that

z1,2 = a2,1 −
E2,1

MK
, (C.76)

where Ei is the energy of π(qi)
.
= πi while

a1,2
.
=

1

2

(
1 + r21,2 − r22,1

)
(C.77)

is a constant where ri
.
= Mπi/MK . Up to now, z1,2 are equivalent so, without

loss of generality, we start by looking for the extrema of z2. It is clear that

z2 reaches its maximum when E1 is at its minimum, i.e., Emin
1 = Mπ1 , such

that zmax
2 = a1 − r1. Conversely, z2 will reach its minimum when E1 hits its
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maximum. Looking at the Mandelstam variable

s
.
= (q2+ q3)

2 = (P − q1)2 =M2
π2

+2q2 · q3 =M2
K +M2

π1
−2MKE1 , (C.78)

we see that it happens when q3 = 0 so that Emax
1 =MKa1, which subsequently

leads to zmin
2 = 0. In order to find the bounds for z1 when a value of z2 is fixed,

we ask for the angle between the two pions to exist, namely, we force

cos θ =
E1E2 − q1 · q2

|q⃗1||q⃗2|
(C.79)

to satisfy

−1 ≤ cos θ ≤ +1 . (C.80)

This is performed by rewriting cos θ in terms of z1,2 using Eq.(C.76) and if the

cos θ indeed exists then

0 ≤ z2 ≤ a1 − r1 , (C.81a)

B −
√
B2 −Ar21
A

z2 ≤ z1 ≤ B +
√
B2 −Ar21
A

z2 , (C.81b)

where A = r22 + 2z2 and B = a1 − r21 − z2. The derivation of the z2 range is

not detailed because it is just simple (but boring) algebra manipulations. Note

that we could, of course, have started with z1 in which case we would have

found the same range but with 1 ↔ 2 indexes exchanged. The corresponding

phase-space displayed in Fig.(C.1) reflects, indeed, this symmetry.

(T ∗
c , Eγ) parametrization

This parametrization is interesting because it consists of the kinetic energy T ∗
c

of one of the pion, say π1, and the energy of the photon Eγ . Both variables

have a simple physical interpretation and are particularly well suited for phe-

nomenological investigations. The range for T ∗
c is easily obtained from that of

z2 since they are linearly related as

z2 = a1 − r1 −
T ∗
c

MK
, (C.82)

it follows directly from Eq.(C.81a) that

0 ≤ T ∗
c ≤MK(a1 − r1) . (C.83)

Once again, the existence of cos θ gives us the allowed range for Eγ . In the

present case, we write cos θ in terms of E1 and E2 =MK −E1 −Eγ using the
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Fig. C.2: Representation of the phase-space in the (T ∗
c , Eγ) plane.

energy conservation condition. Since E1 is fixed once T ∗
c is fixed, the condition

on cos θ can be solved following the same lines as before and it is found that

(MK − E1)
2 −M2

π2
− P 2

2(MK − E1 + P )
≤ Eγ ≤

(MK − E1)
2 −M2

π2
− P 2

2(MK − E1 − P )
, (C.84)

where E1 = T ∗
c +Mπ1 and P =

√
T ∗
c (T

∗
c + 2Mπ1). The corresponding graph-

ical representation may be found in Fig.(C.2). Finally, note that the variable

substitution (z1, z2) → (T ∗
c , Eγ) goes along with the simple Jacobian

∂2

∂z1∂z2
=M2

K

∂2

∂T ∗
c ∂Eγ

. (C.85)

(T ∗
c ,W

2) parametrization

The third and last parametrization presented here is derived from (T ∗
c , Eγ) and

is obtained by trading the photon energy for the variable

W 2 =
M2
π1

M2
K

z1z3 =
Eγ
M2
π1

(
Eγ + T ∗

c +Mπ1 −
MK

2
a1

)
. (C.86)

The relevance of this particular variable is not obvious at first but it pops up

when looking at Eq.(2.2). This variable differently weighs differently the var-

ious contributions entering the differential branching ratio of K+ → π+π0γ,

namely the bremsstrahlung , interference and direct emissions. This is particu-

larly interesting experimentally, since it allows to probe these various emissions

by setting well suited W 2 cuts. Its range is in fact easy to get because W 2 is
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Fig. C.3: Representation of the phase-space in the (T ∗
c , ,W

2) plane.

a monotonic increasing function of Eγ . So using the bounds for Eγ the corre-

sponding bound on W 2 are directly infered to be

MK(E1 − P )(MK − 2E1)
2

4M2
π1
(P − E1 +MK)2

≤W 2 ≤ MK(E1 + P )(MK − 2E1)
2

4M2
π1
(P + E1 −MK)2

(C.87)

with the same conventions as in the last parametrization. For numerical anal-

ysis, the present parametrization is the most suited since it allows simple com-

parison with experimental results, in particular regarding the experimental

cuts. We, thus, find it useful to mention the relation between zi and (T ∗
c ,W

2)

variables:

z3 =
1

2

[{
(kc + r1 − a1)

2 + 4r21W
2
} 1

2 − (kc + r1 − a1)
]
, (C.88a)

z1 =
1

2

[{
(kc + r1 − a1)

2 + 4r21W
2
} 1

2 + (kc + r1 − a1)
]
, (C.88b)

z2 = a1 − r1 − kc , (C.88c)

having introduce the dimentionless variable kc
.
= T ∗

c /MK . The corresponding

graphical representation is shown in Fig.(C.3). Note that because the relation

between z3 (or Eγ) andW
2 is non-linear, the Jacobian associated to the variable

substitution (z1, z2) → (T ∗
c ,W

2) is not one but rather

∂2

∂z1∂z2
=
MK

r21

[
4r21W

2 + (kc + r1 − a1)
2
] 1

2 ∂2

∂T ∗
c ∂W

2
. (C.89)
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C.4 η(′) → ππ

Amplitudes

As already mentioned in the text, tadpole amplitudes like

A(η(′) → ππ)tadw
.
= (C.90)

vanish trivially. Two kinds of vertices may appear here: derivative ones pro-

duced by L8,L8s or L27 or non derivative ones produced by Lm. Here, Lew
does not contribute as only neutral particles may enter the tadpole amplitude.

Furthermore, since Lm is the only interaction that may produce tadpole tran-

sitions, the amplitude will be expressed in terms of interference terms between

Gm and either G8, Gs or G27. Non interfering terms are, of course, absent as

the amplitude is CP violating. As a result, A(η(′) → ππ)tadw amplitudes are

proportional to the square of the incoming momenta. As a matter of fact, we

get

A(η′ → 0)tadw =
8F 5

√
3
p2
(
m2
K −m2

π

m2
K − p2

)[
(I27,m − I8,m)sφ+

+ (2I8,m + 3Is,m)
√
2cφ
]
,

(C.91a)

A(η → 0)tadw =
8F 5

√
3
p2
(
m2
K −m2

π

m2
K − p2

)[
(I27,m − I8,m)cφ−

− (2I8,m + 3Is,m)
√
2sφ
]
,

(C.91b)

where p denotes the incoming momentum. These amplitudes vanish once taken

on-shell since in that case p2 = 0.

So, as explained, we are lead to consider η(′) → ππ amplitudes which are

produced by the following topologies:

A(η(′) → ππ)w = + +

+ + +

, (C.92)
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which sum up to give

A(η′ → π0π0) =
4

3
√
3
F 3α(m2

η′) [6I8,27 + 9(I8,s − I27,s)]
√
2cφ , (C.93a)

A(η′ → π+π−) =
4

3
√
3
F 3α(m2

η′)

{[
9I8,s − 4I8,27 + 6I27,s)

]√
2cφ+

+ 5I8,27sφ

}
+ δ′ew ,

(C.93b)

where

α(p2)
.
= p2

(
p2 −m2

π

p2 −m2
K

)
. (C.94)

The corresponding amplitudes for η are obtained applying the complementary

relations of Eq.(4.19). The electroweak correction affecting the charged channel

reads, for its part,

δ′ew = −16πF 5

√
3

αemβ(m
2
η′)

[
(2I8,ew + 3Is,ew)

√
2cφ+

+

(
3− 4r′K + r′π
r′K − r′π

I8,ew +
2− (r′K + r′π)

r′K − r′π
I27,ew

)
sφ

]
,

(C.95)

where we introduced the notations

r
(′)
i =

m2
i

m2
η(′)

and β(p2) = p2
1

p2 −m2
K

. (C.96)

In Eqs.(C.94) and (C.96), the simple pole at the K-mass indicates that the only

relevant topology for η(′) → ππ decays is eventually the first one depicted in

Eq.C.92. Indeed, the remaining topologies cancel out once summed up, making

the O(G2
F ) amplitudes given in Eqs.(C.93) b-independent, as it should be, but

also Gm-independent. Yet, in order to get some numerical insight, we estimate

the II,J couplings in the following section.

Phenomenological II,J extraction

Following the analysis of Ref. [114], we observe that the low energy coupling

constants G8, G27, Gs and Gew find their origin in the following dominant

four-quarks operators combinations:

Q1 ⊕Q2 ⊕Q6 → G8 , (C.97)

Q1 ⊕Q2 → G27 , (C.98)

Q1 ⊕Q2 → Gs , (C.99)

αemQ8 → Gew . (C.100)
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In principle, we should extract eight numbers to completely determine all these

four couplings. Some simplifications are, however, possible. First of all, since

the current-current operator Q1,2 are CP conserving in our conventions, we set

ImG27 = ImGs = 0 . (C.101)

In addition, since the EW penguin is suppressed with respect to the QCD

penguin2 it is fare to strengthen the ReGew ≪ ReG8 hierarchy assuming

ReGew = 0 . (C.102)

Under these assumptions, it remains to determine five quantities, namely,

ReG8, ReG27, ReGs, ImG8 and ImAew . (C.103)

The first two are usually obtained from K → ππ decay branching ratios with

the corresponding strong re-scattering phase, see e.g. Ref. [180], with the result

ReG8 = 9.1× 10−12 MeV−2, ReG27 = 5.3× 10−13 MeV−2 . (C.104)

Following then [114] it turns out that using the KL → γγ decay we can extract

ReGs
ReG8

= −0.30± 0.05 , (C.105)

such that the imaginary parts of Eq.(C.103) remain to be determined. This

can be achieved using the experimental information we have about ε′. First,

in our present approximation, the K → ππ isospin amplitudes

ReA0 =
√
2F (m2

K −m2
π)

(
ReG8 +

1

9
ReG27

)
, (C.106)

ReA2 = F (m2
K −m2

π)
10

9
ReG27 , (C.107)

ImA0 =
√
2F (m2

K −m2
π)

(
ImG8 −

2

3
ImAew

)
, (C.108)

ImA2 = −2

3
F (m2

K −m2
π)ImAew , (C.109)

used in combination with the general expression of ε′ given in Eq.(1.23) imply

that

ImG8

ReG8
=

√
2|ε|
ω

Re(ε′/ε)

Ω− 1

(
1 + x

2

1− 2y
3

)
, (C.110)

2Their respective contribution to a given observable, as ε′, might however be of the same

order.
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where we defined

x
.
=

ReG27

ReG8
and y

.
=

ImAew
ImG8

. (C.111)

While x is known from Eq.(C.104), y remains unknown as long as we don’t

resolve the content of ε′. Indeed, knowing the EW penguin versus QCD penguin

fraction Ω in ε′ is equivalent to knowing y since

y
.
=

3ωΩ

−
√
2 + 2ωΩ

. (C.112)

In order to remove this last uncertainty we just assume that the isospin breaking

parameter Ω lies in the SM favored range, see Fig.(2.2)

Ω ∈ [0.2, 0.5] . (C.113)

Doing so, we conclude that:

I8,s = −(4.44± 2.44)× 10−27 MeV−4 , (C.114a)

I8,27 = +(8.62± 3.30)× 10−28 MeV−4 , (C.114b)

I8,ew = +(1.47± 1.21)× 10−25 MeV−4 , (C.114c)

Is,ew = −(4.40± 4.36)× 10−26 MeV−4 , (C.114d)

I27,ew = +(8.55± 7.53)× 10−27 MeV−4 . (C.114e)

For some reassurance in these numbers, we can compare them with the ones

obtained using the lattice determination of A2 given in Ref. [49]:

ReA2 = +(1.436± 0.265) · 10−8 GeV , (C.115)

ImA2 = −(6.83± 1.40) · 10−13 GeV , (C.116)

and their ε′-based extraction of

ImA0

ReA0
= −(1.69± 0.28) · 10−4 . (C.117)

From these quantities, we can extract the imaginary part of Aew through

ImAew
ReG27

= −5

3

ImA2

ReA2
(C.118)

and that of G8 using

ImG8

ReG8
=
(
1 +

x

2

) ImA0

ReA0
+

2x

3

ImAew
ReG27

. (C.119)
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to find

ILat8,s = −(4.24± 0.74)× 10−27 MeV−4 , (C.120a)

ILat8,27 = +(8.24± 0.06)× 10−28 MeV−4 , (C.120b)

ILat8,ew = +(1.11± 0.43)× 10−25 MeV−4 , (C.120c)

ILats,ew = −(3.33± 1.85)× 10−26 MeV−4 , (C.120d)

ILat27,ew = +(6.46± 2.52)× 10−27 MeV−4 . (C.120e)

Our predictions based on the assumption made on Ω are compatible with those

Lattice predictions; they are less precise but somehow more conservative. In

fact, using the Lattice results, we would get Ω ∈ [0.19, 0.40], which is a smaller

allowed range for Ω. Note finally that our estimation of Eq.(C.114b) is in full

agreement with our estimation based on Re(ε′) shown in Eq.(4.51).



Bibliography

[1] G. ’t Hooft, Nucl.Phys. B33, 173 (1971).

[2] R. Peccei and H. R. Quinn, Phys.Rev.Lett. 38, 1440 (1977).

[3] M. Misiak, H. Asatrian, K. Bieri, M. Czakon, A. Czarnecki,

et al., Phys.Rev.Lett. 98, 022002 (2007).

[4] D. Asner et al., Heavy Flavor Averaging Group - hep-ex/1010.1589

(2010).

[5] J. Hisano, M. Nagai, P. Paradisi, and Y. Shimizu, JHEP 0912, 030

(2009).

[6] J. Adam et al., Nucl.Phys. B834, 1 (2010).

[7] A. Artamonov et al., Phys.Rev.Lett. 101, 191802 (2008).

[8] J. Batley et al., Eur.Phys.J. C68, 75 (2010).

[9] P. Mertens and C. Smith, JHEP 1108, 069 (2011).

[10] J.-M. Gérard and P. Mertens, Phys.Lett. B716, 316 (2012).

[11] P. Mertens, 47th Rencontres de Moriond (EW) - arXiv:1205.1208

(2012).

[12] H. Weyl, Z.Phys. 56, 330 (1929).

[13] C.-N. Yang and R. L. Mills, Phys.Rev. 96, 191 (1954).

[14] S. Glashow, Nucl.Phys. 22, 579 (1961).

[15] A. Salam and J. C. Ward, Phys.Lett. 13, 168 (1964).



156 BIBLIOGRAPHY

[16] S. Weinberg, Phys.Rev.Lett. 19, 1264 (1967).

[17] J. Beringer et al., Phys.Rev. D86, 010001 (2012).

[18] F. Englert and R. Brout, Phys.Rev.Lett. 13, 321 (1964).

[19] G. Guralnik, C. Hagen, and T. Kibble, Phys.Rev.Lett. 13, 585

(1964).

[20] P. W. Higgs, Phys.Lett. 12, 132 (1964).

[21] P. W. Higgs, Phys.Rev.Lett. 13, 508 (1964).

[22] G. ’t Hooft, Nucl.Phys. B35, 167 (1971).

[23] J. Goldstone, Nuovo Cim. 19, 154 (1961).

[24] G. Aad et al., Phys.Lett. B716, 1 (2012).

[25] S. Chatrchyan et al., Phys.Lett. B716, 30 (2012).

[26] S. Glashow, J. Iliopoulos, and L. Maiani, Phys.Rev. D2, 1285

(1970).

[27] N. Cabibbo, Phys.Rev.Lett. 10, 531 (1963).

[28] J. Charles et al., Eur.Phys.J. C41, 1 (2005).

[29] M. Kobayashi and T. Maskawa, Prog.Theor.Phys. 49, 652 (1973).

[30] J. Christenson, J. Cronin, V. Fitch, andR. Turlay, Phys.Rev.Lett.

13, 138 (1964).

[31] G. Colangelo, J. Gasser, and H. Leutwyler, Nucl.Phys. B603,

125 (2001).

[32] J. Brod and M. Gorbahn, Phys.Rev.Lett. 108, 121801 (2012).

[33] A. J. Buras and M. Jamin, JHEP 0401, 048 (2004).

[34] A. Pich, 2004 ICHEP Proceedings - hep-ph/0410215 (2004).

[35] D. Gross and F. Wilczek, Phys.Rev.Lett. 30, 1343 (1973).

[36] H. D. Politzer, Phys.Rev.Lett. 30, 1346 (1973).

[37] T. Inami and C. Lim, Prog.Theor.Phys. 65, 297 (1981).

[38] G. Buchalla, A. J. Buras, and M. E. Lautenbacher,

Rev.Mod.Phys. 68, 1125 (1996).



BIBLIOGRAPHY 157

[39] J. Brod and M. Gorbahn, Phys.Rev. D82, 094026 (2010).

[40] A. J. Buras and D. Guadagnoli, Phys.Rev. D78, 033005 (2008).

[41] A. J. Buras and D. Guadagnoli, Phys.Rev. D79, 053010 (2009).

[42] J.-M. Gérard, JHEP 1102, 075 (2011).

[43] A. J. Buras, J.-M. Gérard, and W. A. Bardeen, arXiv:1401.1385

(2014).

[44] A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon,

A. Jantsch, et al., Phys.Rev. D83, 036004 (2011).

[45] M. Gaillard and B. W. Lee, Phys.Rev.Lett. 33, 108 (1974).

[46] G. Altarelli and L. Maiani, Phys.Lett. B52, 351 (1974).

[47] M. A. Shifman, A. Vainshtein, and V. I. Zakharov, Sov.Phys.JETP

45, 670 (1977).

[48] A. Pich, Nucl.Phys.Proc.Suppl. 93, 253 (2001).

[49] T. Blum, P. Boyle, N. Christ, N. Garron, E. Goode, et al.,

Phys.Rev.Lett. 108, 141601 (2012).

[50] V. Cirigliano, G. Ecker, H. Neufeld, and A. Pich, Eur.Phys.J.

C33, 369 (2004).

[51] M. A. Shifman, A. Vainshtein, and V. I. Zakharov, Phys.Rev.D18,

2583 (1978).

[52] S. Bertolini, F. Borzumati, and A. Masiero, Phys.Rev.Lett. 59,

180 (1987).

[53] N. Deshpande, P. Lo, J. Trampetic, G. Eilam, and P. Singer,

Phys.Rev.Lett. 59, 183 (1987).

[54] G. D’Ambrosio, G. Ecker, G. Isidori, and J. Portoles, JHEP

9808, 004 (1998).

[55] S. Bertolini, M. Fabbrichesi, and E. Gabrielli, Phys.Lett. B327,

136 (1994).

[56] C. Rosenzweig, J. Schechter, and C. Trahern, Phys.Rev. D21,

3388 (1980).

[57] P. Di Vecchia and G. Veneziano, Nucl.Phys. B171, 253 (1980).



158 BIBLIOGRAPHY

[58] E. Witten, Annals Phys. 128, 363 (1980).

[59] S. R. Coleman, J. Wess, and B. Zumino, Phys.Rev. 177, 2239 (1969).

[60] J. Callan, C. G., S. R. Coleman, J. Wess, and B. Zumino,

Phys.Rev. 177, 2247 (1969).

[61] J. A. Cronin, Phys.Rev. 161, 1483 (1967).

[62] B. Grinstein, S.-J. Rey, and M. B. Wise, Phys.Rev. D33, 1495

(1986).

[63] S. Weinberg, Physica A96, 327 (1979).

[64] H. Leutwyler, Annals Phys. 235, 165 (1994).

[65] J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984).

[66] J. Wess and B. Zumino, Phys.Lett. B37, 95 (1971).

[67] E. Witten, Nucl.Phys. B223, 422 (1983).

[68] C. W. Bernard, T. Draper, A. Soni, H. D. Politzer, and M. B.

Wise, Phys.Rev. D32, 2343 (1985).

[69] G. D’Ambrosio and G. Isidori, Int.J.Mod.Phys. A13, 1 (1998).

[70] G. D’Ambrosio, G. Ecker, G. Isidori, and H. Neufeld, Z.Phys.

C76, 301 (1997).

[71] G. Ecker, A. Pich, and E. de Rafael, Nucl.Phys. B303, 665 (1988).

[72] G. D’Ambrosio, G. Ecker, G. Isidori, and H. Neufeld, Phys.Lett.

B380, 165 (1996).

[73] F. Low, Phys.Rev. 110, 974 (1958).

[74] G. Ecker, J. Kambor, and D. Wyler, Nucl.Phys. B394, 101 (1993).

[75] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, Nucl.Phys. B321,

311 (1989).

[76] W. A. Bardeen, A. Buras, and J.-M. Gérard, Phys.Lett. B192,

138 (1987).

[77] J.-M. Gérard, Acta Phys.Polon. B21, 257 (1990).

[78] G. Isidori, F. Mescia, and C. Smith, Nucl.Phys. B718, 319 (2005).



BIBLIOGRAPHY 159

[79] C. Bruno and J. Prades, Z.Phys. C57, 585 (1993).

[80] D.-N. Gao, Phys.Rev. D67, 074028 (2003).

[81] G. Colangelo, G. Isidori, and J. Portoles, Phys.Lett. B470, 134

(1999).

[82] D. Becirevic, V. Lubicz, G. Martinelli, and F. Mescia, Phys.Lett.

B501, 98 (2001).

[83] V. Mateu and J. Portoles, Eur.Phys.J. C52, 325 (2007).

[84] P. Buividovich, M. Chernodub, E. Luschevskaya, and M. Po-

likarpov, (2009).

[85] L. Sehgal and M. Wanninger, Phys.Rev. D46, 1035 (1992).

[86] P. Heiliger and L. Sehgal, Phys.Rev. D48, 4146 (1993).

[87] J. K. Elwood, M. B. Wise, and M. J. Savage, Phys.Rev. D52, 5095

(1995).

[88] G. Ecker and H. Pichl, Phys.Lett. B507, 193 (2001).

[89] F. Mescia, C. Smith, and S. Trine, JHEP 0608, 088 (2006).

[90] G. Buchalla, G. D’Ambrosio, and G. Isidori, Nucl.Phys. B672,

387 (2003).

[91] G. Isidori, C. Smith, and R. Unterdorfer, Eur.Phys.J. C36, 57

(2004).

[92] D.-N. Gao, Phys.Rev. D69, 094030 (2004).

[93] P. Singer, 1996 Orsay K-Physics Workshop - hep-ph/9607429 (1996).

[94] J. Tandean, Phys.Rev. D61, 114022 (2000).

[95] G. Eilam, A. Ioannisian, R. Mendel, and P. Singer, Phys.Rev.

D53, 3629 (1996).

[96] S. Fajfer, S. Prelovsek, and P. Singer, Phys.Rev. D59, 114003

(1999).

[97] J. Good, Phys.Rev. 113, 352 (1959).

[98] N. Christ, Phys.Rev. 159, 1292 (1967).

[99] J. Bijnens, G. Ecker, and A. Pich, Phys.Lett. B286, 341 (1992).



160 BIBLIOGRAPHY

[100] G. D’Ambrosio and J. Portoles, Nucl.Phys. B533, 523 (1998).

[101] G. D’Ambrosio and D.-N. Gao, JHEP 0010, 043 (2000).

[102] L. Cappiello and G. D’Ambrosio, Phys.Rev. D75, 094014 (2007).

[103] G. Ecker, H. Neufeld, and A. Pich, Nucl.Phys. B413, 321 (1994).

[104] G. D’Ambrosio and G. Isidori, Z.Phys. C65, 649 (1995).

[105] B. Ananthanarayan, G. Colangelo, J. Gasser, and

H. Leutwyler, Phys.Rept. 353, 207 (2001).

[106] C. Dib and R. Peccei, Phys.Lett. B249, 325 (1990).

[107] A. J. Buras and J.-M. Gérard, Phys.Lett. B517, 129 (2001).

[108] J. Tandean and G. Valencia, Phys.Rev. D62, 116007 (2000).

[109] J. N. Matthews, P. Gu, P. Haas, W. Hogan, S. Kim, et al.,

Phys.Rev.Lett. 75, 2803 (1995).

[110] L. Sehgal and L. Wolfenstein, Phys.Rev. 162, 1362 (1967).

[111] B. Martin and E. de Rafael, Nucl.Phys. B8, 131 (1968).

[112] R. Decker, P. Pavlopoulos, and G. Zoupanos, Z.Phys. C28, 117

(1985).

[113] F. Buccella, G. D’Ambrosio, and M. Miragliuolo, Nuovo Cim.

A104, 777 (1991).

[114] J.-M. Gérard, C. Smith, and S. Trine, Nucl.Phys. B730, 1 (2005).

[115] T. Wu and C.-N. Yang, Phys.Rev.Lett. 13, 380 (1964).

[116] A. J. Buras, D. Guadagnoli, and G. Isidori, Phys.Lett. B688, 309

(2010).

[117] J. Brod, M. Gorbahn, and E. Stamou, Phys.Rev. D83, 034030

(2011).

[118] A. Buras, M. Gorbahn, U. Haisch, and U. Nierste, Phys.Rev.Lett.

95, 261805 (2005).

[119] A. J. Buras, M. Gorbahn, U. Haisch, and U. Nierste, JHEP 0611,

002 (2006).

[120] J. Brod and M. Gorbahn, Phys.Rev. D78, 034006 (2008).



BIBLIOGRAPHY 161

[121] J. Ahn et al., Phys.Rev. D81, 072004 (2010).

[122] A. Alavi-Harati et al., Phys.Rev.Lett. 93, 021805 (2004).

[123] A. Alavi-Harati et al., Phys.Rev.Lett. 84, 5279 (2000).

[124] K. Adcox et al., Phys.Rev.Lett. 88, 192303 (2002).

[125] A. Buras, G. Colangelo, G. Isidori, A. Romanino, and L. Sil-

vestrini, Nucl.Phys. B566, 3 (2000).

[126] M. Carpentier and S. Davidson, Eur.Phys.J. C70, 1071 (2010).

[127] Y. Grossman and Y. Nir, Phys.Lett. B398, 163 (1997).

[128] G. D’Ambrosio, G. Giudice, G. Isidori, andA. Strumia, Nucl.Phys.

B645, 155 (2002).

[129] M. Ciuchini, G. Degrassi, P. Gambino, and G. Giudice, Nucl.Phys.

B534, 3 (1998).

[130] A. Ali and D. London, Eur.Phys.J. C9, 687 (1999).

[131] A. Buras, P. Gambino, M. Gorbahn, S. Jager, and L. Silvestrini,

Phys.Lett. B500, 161 (2001).

[132] C. Smith, Acta Phys.Polon.Supp. 3, 53 (2010).

[133] T. Hurth, G. Isidori, J. F. Kamenik, and F. Mescia, Nucl.Phys.

B808, 326 (2009).

[134] W. Buchmuller and D. Wyler, Nucl.Phys. B268, 621 (1986).

[135] R. Barbier, C. Berat, M. Besancon, P. Binetruy, G. Bordes,

et al., (1998).

[136] Y. Grossman, G. Isidori, and H. Murayama, Phys.Lett. B588, 74

(2004).

[137] N. Deshpande, D. K. Ghosh, and X.-G. He, Phys.Rev. D70, 093003

(2004).

[138] A. Deandrea, J. Welzel, and M. Oertel, JHEP 0410, 038 (2004).

[139] S. Davidson, D. C. Bailey, and B. A. Campbell, Z.Phys. C61, 613

(1994).

[140] E. Nikolidakis and C. Smith, Phys.Rev. D77, 015021 (2008).



162 BIBLIOGRAPHY

[141] S. Davidson and S. Descotes-Genon, JHEP 1011, 073 (2010).

[142] C. Smith, 6th International Workshop on the CKM Unitarity Triangle

- arXiv:1012.4398 (2010).

[143] S. R. Choudhury, N. Gaur, G. C. Joshi, and B. McKellar, (2004).

[144] M. Blanke, A. J. Buras, B. Duling, S. Recksiegel, and

C. Tarantino, Acta Phys.Polon. B41, 657 (2010).

[145] T. Goto, Y. Okada, andY. Yamamoto, Phys.Lett.B670, 378 (2009).

[146] P. L. Cho and M. Misiak, Phys.Rev. D49, 5894 (1994).

[147] W.-S. Hou, M. Nagashima, and A. Soddu, Phys.Rev. D72, 115007

(2005).

[148] A. J. Buras, B. Duling, T. Feldmann, T. Heidsieck,

C. Promberger, et al., JHEP 1009, 106 (2010).

[149] A. J. Buras, M. Spranger, and A. Weiler, Nucl.Phys. B660, 225

(2003).

[150] G. Buchalla, A. J. Buras, and M. K. Harlander, Nucl.Phys.

B349, 1 (1991).

[151] A. J. Buras and L. Silvestrini, Nucl.Phys. B546, 299 (1999).

[152] Y. Nir and M. P. Worah, Phys.Lett. B423, 319 (1998).

[153] F. Gabbiani, E. Gabrielli, A. Masiero, and L. Silvestrini,

Nucl.Phys. B477, 321 (1996).

[154] S. Khalil, T. Kobayashi, andO. Vives, Nucl.Phys.B580, 275 (2000).

[155] A. Masiero, S. Vempati, and O. Vives, Les Houches 2005, Particle

physics beyond the standard model , 1 (2005).

[156] G. Isidori, Y. Nir, and G. Perez, Ann.Rev.Nucl.Part.Sci. 60, 355

(2010).

[157] G. Colangelo, E. Nikolidakis, and C. Smith, Eur.Phys.J. C59, 75

(2009).

[158] L. Mercolli and C. Smith, Nucl.Phys. B817, 1 (2009).

[159] G. Colangelo and G. Isidori, JHEP 9809, 009 (1998).



BIBLIOGRAPHY 163

[160] G. Isidori, F. Mescia, P. Paradisi, C. Smith, and S. Trine, JHEP

0608, 064 (2006).

[161] A. J. Buras, T. Ewerth, S. Jager, and J. Rosiek, Nucl.Phys. B714,

103 (2005).

[162] J.-M. Gérard, 2008 European School of HEP - arXiv:0811.0540 (2008).

[163] J.-M. Gérard and Z.-z. Xing, Phys.Lett. B713, 29 (2012).

[164] C. Baker, D. Doyle, P. Geltenbort, K. Green, M. van der Grin-

ten, et al., Phys.Rev.Lett. 97, 131801 (2006).

[165] M. Pospelov and A. Ritz, Annals Phys. 318, 119 (2005).

[166] G. ’t Hooft, Phys.Rev.Lett. 37, 8 (1976).

[167] J. R. Ellis and M. K. Gaillard, Nucl.Phys. B150, 141 (1979).

[168] I. Khriplovich, Phys.Lett. B173, 193 (1986).

[169] E. Witten, Nucl.Phys. B156, 269 (1979).

[170] S. Weinberg, Phys.Rev. D11, 3583 (1975).

[171] H. Georgi, Phys.Rev. D49, 1666 (1994).

[172] J.-M. Gérard and E. Kou, Phys.Lett. B616, 85 (2005).

[173] A. Pich and E. de Rafael, Nucl.Phys. B367, 313 (1991).

[174] P. Ramond, Front.Phys. 51, 1 (1981).

[175] P. Di Vecchia and F. Sannino, Preprint - arXiv:1310.0954 (2013).

[176] C. Jarlskog and E. Shabalin, Phys.Rev. D52, 248 (1995).

[177] A. Buras and J. Gérard, Phys.Lett. B192, 156 (1987).

[178] A. Juttner, XIV International Conference on Hadron Spectroscopy -

arXiv:1109.1388 (2011).

[179] C. Jarlskog, Phys.Rev.Lett. 55, 1039 (1985).

[180] V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, and J. Portoles,

Rev.Mod.Phys. 84, 399 (2012).

[181] R. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten,

Phys.Lett. B88, 123 (1979).



164 BIBLIOGRAPHY

[182] R. Peccei, Lect.Notes Phys. 741, 3 (2008).

[183] J. Bijnens, E. Pallante, and J. Prades, Nucl.Phys. B521, 305

(1998).

[184] J. Gasser and H. Leutwyler, Nucl.Phys. B250, 465 (1985).

[185] W. A. Bardeen, Phys.Rev. 184, 1848 (1969).

[186] R. Crewther, Nucl.Phys. B264, 277 (1986).

[187] J. Kambor, J. H. Missimer, and D. Wyler, Nucl.Phys. B346, 17

(1990).

[188] G. Esposito-Farese, Z.Phys. C50, 255 (1991).

[189] Wolfram Research Inc., Version 8.0, Champaign, IL (2010) .

[190] N. D. Christensen and C. Duhr, Comput.Phys.Commun. 180, 1614

(2009).

[191] T. Hahn, Comput.Phys.Commun. 140, 418 (2001).

[192] R. Mertig, M. Bohm, and A. Denner, Comput.Phys.Commun. 64,

345 (1991).

[193] G. D’Ambrosio, M. Miragliuolo, and F. Sannino, Z.Phys. C59,

451 (1993).


