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CHAPTER 1

Introduction

A quest for an enhanced understanding, an endeavour for the simplest

explanation. This is a major theme in Physics at the beginning of the

twenty-first century. In this long and arduous search, the successes of

high energy physics are among the most significant contributions to Sci-

ence. This is especially true with the discovery of the Brout-Englert-

Higgs boson at the Large Hadron Collider. Beyond the technological de-

velopements followed by progress in the fundamental sciences, advances

in physics seem to contribute to discoveries in mathematics, and con-

versely. Namely, this virtuous circle between physics and mathematics

appears to bring significant improvement in both fields since Newton’s

work.

Up to now, quantum field theories are the relevant frameworks to de-

scribe the physics of the smallest constituents of matter that we know

and of their non-gravitational interactions. However, from the intuitive

point of view, these theories are particularly complicated to present in

a non expert language. Furthermore, the interpretation of quantum me-

chanics is still subjected to a controversial debate in order to reach a
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2 1. Introduction

broad consensus, against or in favour of its orthodox version. On the

other hand, a fully consistent mathematical formulation of all the as-

pects of quantum field theories has still to be completely defined.

Actually, an essential cornerstone to the modern approach towards the

unification of quantum interactions is the gauge invariance principle. The

dominant framework available for the study of gauge theories remains a

specific approximation: the perturbative approach, which is at the origin

of the major phenomenological successes of gauge theories. Nonetheless

important questions cannot be answered in the perturbative framework.

While extremely elegant and powerful techniques were developed in the

context of supersymmetric Yang-Mills theory and M-theory, in the ab-

sence of supersymmetry the understanding of non-perturbative effects

still requires the developement and the improvement of alternative tech-

niques. This is why efforts are pursued in lattice gauge theories, or based

on functional equations.

At first sight, the title of the thesis could raise an understandable ques-

tion: Isn’t Quantum ElectroDynamics (QED) a well-known theory? In-

deed, quantum electrodynamics is the quantum field theory which is the

best verified experimentally, among all gauge theories, so that it may

appear as thoroughly understood. To put it into perspective, this im-

pression is only justified if the perturbative behaviour of the theory is

considered in 3 + 1 dimensions. Incidentaly, non-perturbative questions

remain to be answered in presence of strong electromagnetic fields, such

as Schwinger pair production in an electric field and vacuum birefrin-

gence in a strong magnetic field.

The present work intends to explore non-perturbative aspects of low di-

mensional formulations of quantum electrodynamics. Concerning the

1 + 1 and 2 + 1 dimensional situations, even tough they may not be of

direct relevance for the phenomenology of high energy physics, these low

dimensional versions of QED can still excite the curiosity of theoreti-

cians, as well as condensed matter physicists. Although interesting for

their own sake, these theories provide also valuable playgrounds to study

more realistic quantum field theories, as for example quantum chromody-

namics. Besides their formal relationship with high energy physics, the

theories considered here share many features with the effective models of
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quasi-particles in some two-dimensional materials of interest. Notewor-

thy examples of such behaviours are graphene or specific strong topolog-

ical insulators.

The outline of the thesis is:

• Chapter 2 gives an overview of both classical and quantum electro-

dynamics in 1 + 1 dimensions, which sheds light on the important

features that will be emphasized in the solution presented in Chap-

ter 3. After the review of the role of topological degrees of freedom

in the pure quantum electrodynamics, the exact solution of mass-

less QED1+1, namely the Schwinger model, is briefly described.

• Chapter 3 gives an account of the solution for the Schwinger model

on the manifold R×S1, with a specific emphasis on the role of large

gauge transformations rendered manifest by the compactification

of space into a circle. The consequence is that the topological

gauge degree of freedom is singled out and its role in the dynamics

is displayed, especially in relation with the axial anomaly. Further-

more, it is possible to apply in the case of this model a quantisation

free of gauge fixing. A fermion field dressed by a photon cloud is

introduced in line with a suggestion by Dirac. Thanks to the fac-

torization of the local gauge transformations and gauge degrees of

freedom, the description concentrates on the dynamics of “compos-

ite” fermion fields in interplay with the topological gauge degree of

freedom. Finally, the exact solution of the model is recovered pro-

viding some new understanding of its non-perturbative properties.

• Chapter 4 is dedicated to the study of massless quantum electro-

dynamics in 2 + 1 dimensions on the manifold R × R2 with one

electron species. After a review of the main features of the the-

ory, the factorization of the local gauge symmetry and the gauge

degrees of freedom is performed in parallel with the technique ex-

posed in Chapter 3, and the dynamics of dressed fermion fields is

considered. We explore the structure of the vacuum state, using

a variational procedure. An ansatz for the lowest energy state is

suggested, inspired by the BCS (Bardeen-Cooper-Schrieffer) theory
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of superconductivity. Its wave function is determined by solving

a non linear integral equation. Subsequently, the dynamics of the

pseudo-particles propagating in the condensate is described and an

argument in favour of their confinement is given. Eventually, the

effect of the condensate on the propagation of the physical electro-

magnetic degrees of freedom is examined.

• Chapter 5 gives an account of the case of massless relativistic fer-

mions on a plane in a constant perpendicular magnetic field, which

is shown to be a non trivial problem. The question of a vacuum

condensation due to the magnetic field is addressed.

• Chapter 6 includes a conclusion and discusses the perspectives of

the work.

Finally, some useful technical informations are gathered in the appen-

dices A and B, while the reader can find a concise exposition of the other

research work done in the appendix C.

Throughout the document an implicit choice of units is made such that

~ = c = 1.
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CHAPTER 2

General features of QED1+1

This chapter is dedicated to the study of massless quantum electrody-

namics in one space and one time dimensions. After a succint glimpse

of the classical dynamics in section 2.1, sections 2.2 and 2.3 deal with

the quantum dynamics of QED1+1 in the absence and in the presence of

dynamical matter, respectively.

2.1 Brief overview of classical electrodynamics

on the line

As an instructive preamble, we review the typical features of classical

electrodynamics in 1 + 1 in the absence of dynamical matter, where the

space topology is the one of a line. The language of this preliminary

section is intended to be “heuristic” and follows references [1, 2]. The

intuition gained from the classical physics will provide clues to interpret

better the more rigorous study of the quantum theory with and without

interactions, that will follow.

7



8 2. General features of QED1+1

Notational conventions include the Levi-Civita tensor ǫµν being defined

by ǫ01 = +1, and the Minkowski metric taken to be ηµν = diag (1,−1).

In D = 2 space-time dimensions, the gauge coupling constant e has

dimension [e] = M1 in units of mass, while the gauge and matter fields

have mass dimensions [Aµ] =M0 and [ψ] =M1/2. The case of fermionic

dynamical matter will be considered in section 2.3, while the following

introductory analysis will include only static point-like matter sources.

The classical action of electrodynamics on the line, in the presence of a

pointlike charge is

Sclass =

∫
dt

∫
dx{−1

4
FµνF

µν +
1

2

eθ

2π
ǫµνF

µν − ej0A0}, (2.1)

where j0(x) = ρ(x) = δ(x − x0) is the charge density of a static charge

at the point x = x0. The θ-term in 1+1 dimensions ∝ ǫµνF
µν , which is

reminiscent of the QCD θ-term, plays a subtle role in the classical and

quantum formulations of this simple model, as will be made clear in the

sequel. The electric field E1 = F01 has to satisfy the Maxwell equations

∂1E
1(x) = eδ(x − x0), ∂0E

1 = 0, (2.2)

and, consequently, has to be constant in space and in time, away from

the point-like charge, as illustrated in Figure 2.1. The presence of the

charge is responsible for a jump in the electric field, as a consequence

of the integration of the Gauss law : E1(x) = eθ(x − x0) + const. In

a sense, the discontinuity of the electric field accross the charge tells us

that θE = 2πE(x)/e may be intuitively considered as a constant angle,

jumping by a multiple of 2π across a charge. Hence, we understand

that the θ angle in the classical action can be interpreted instinctively

as the analogue of a “background electric field”. A first comment about

this simple classical theory is that the Coulomb potential behaves ∝ |x|,
so that the electrostatic energy increases with the distance. It is often

claimed that this feature is a strong argument in favour of confinement

of static electric charges at the classical level. Nevertheless, the same

question in the quantum theory, with massive or massless dynamical

matter, remains intriguing from this point of vue. A second comment
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E1

x

Figure 2.1: A typical electric field configuration due to the presence of

two opposite point electric charges is schematically illustrated.

concerns the energy density of classical configurations of the electric field,

as we shall clarify shortly. The energy density associated to a solution

of the equations of motion E1(x) is

H =
1

2
(E1(x)− eθ

2π
)2. (2.3)

Allowing for a finite number of pointlike charges, we find that, in order

to minimize the energy density, the asymptotic behaviour of the electric

field should be E1(x) → eθ/2π as x → ±∞. Because opposite charges

produce opposite jumps in the electric field, this means that the total

charge has to vanish. This is an heuristic argument in favour of confine-

ment, as long as θ 6= π. In the peculiar situation θ = π, the electric field

may behave as E1(x) → e or E1(x) → 0 as x → ±∞, so that a single

point-like charge can minimize the energy density.

After these simple considerations and cursory glance at the classical sit-

uation, we can proceed to the study of pure quantum electrodynamics,

in a more rigourous language.

2.2 Pure quantum electrodynamics on the circle

Before treating the interacting case, we will review, as a first study of the

quantum theory, the case of pure gauge QED on S1×R where the length
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of the spatial circle is L > 0. The features that we want to emphasize

are made manifest by the compactification and the study will follow the

Hamiltonian constraint analysis as advocated by Dirac [3].

As a matter of fact, this system provides a very simple example where the

dynamics resides essentially in the “topological” sector, as will be shortly

demonstrated. We take here the opportunity to study the quantum

theory on the circle, rather than on a line, in order to highlight the role

of this topological sector, which will be of decisive importance when we

will investigate the interacting case in Chapter 3.

The crucial step is the decomposition of the spatial component of the

gauge field into the sum of its Fourier zero-mode and k-modes A1(t, x) =

a1(t) + ∂1φ(t, x). The Wilson loop degree of freedom

a1(t) =
1

L

∫ L

0
dxA1(t, x), (2.4)

will play a predominant role, as can be guessed from the Gauss law which

requires in 1 + 1 dimensions that the electric field is constant in space.

The pure gauge classical action in presence of a topological θ term has

the simple expression

S0 =

∫
dt

∫ L

0
dx{−1

4
FµνF

µν +
1

2

( eθ
2π

)
ǫµνF

µν}, (2.5)

where the gauge field obeys periodic boundary conditions. The presence

of the topological density proportional to θ can be interpreted as the

effect of an homogeneous electric field.

The associated Lagrangian

L0 =
L

2
(ȧ21 + 2

eθ

2π
ȧ1) +

∫ L

0
dx

1

2
(∂1φ̇− ∂1A0)

2 (2.6)

mainly describes the dynamics of the electric field on the circle. Under

a gauge transformation, the gauge potential transforms as A′
µ(t, x) =

Aµ(t, x) +
1
e∂µα(t, x). The gauge parameter α(t, x) = α0(t, x) + 2πxℓ/L

can be decomposed in terms of a periodic function α0(t, x) = α0(t, x+L)

and an integer ℓ ∈ Z, corresponding to the winding number. In the
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Hamiltonian formalism, the conjugate momenta are

∂L0
∂ȧ1

= L(ȧ1 +
eθ

2π
) = p1, (2.7)

∂L0

∂φ̇
= −∂1(∂1φ̇− ∂1A0) = πφ. (2.8)

The classical observation that Ȧ0 is absent from the Lagrangian gives

us a primary constraint π0 = 0, with {A0(x), π0(y)} = δS1(x − y). It

reminds us that A0 plays the role of Lagrange multiplier for the Gauss

law ∂1E
1 = 0, where the electric field is E1 = F01. Poisson brackets are

given by {a1; p1} = 1, {φ(t, x);πφ(t, y)} = δS1(x− y), where the variable

p1(t) may be considered as an electric field constant in space. Hence, the

classical Hamiltonian is easily obtained,

H0 =
1

2L
(p1 − eθL

2π
)2 +

∫ L

0
dx{−1

2
πφ∆

−1πφ +A0πφ}. (2.9)

A consistent time evolution of the constraint π0 = 0, requires {H0, π0} =

0. This consistency requirement results in a secondary constraint which

is nothing else than the Gauss law πφ = 0. The natural conclusion is

that the Gauss law, generating the local gauge transformations, helps us

to eliminate from the formulation the k-modes of A1(t, x). The relevant

quantities are therefore a1(t) and its conjugate momentum p1(t), which

are “global”, i.e. independent of the coordinate x. The gauge symmetry

transforms the zero-mode by a shift

a1(t) → a′1(t) = a1(t) +
2πℓ

eL
, ℓ ∈ Z. (2.10)

Such a transformation is not infinitesimally generated and is called a

“large gauge transformation”.

Reducing the dynamics to the non-trivial degrees of freedom, we find the

curious result for the Hamiltonian

Hred =
1

2L
(p1 − eθL

2π
)2, (2.11)

which is effectively the Hamiltonian of a classical particle on a “dual

circle” of length 2π/eL, and where the length L somehow plays the role

of a mass.
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It is a simple exercise to proceed to the quantisation of the system,

by introducing operators â1 and p̂1 verifying the Heisenberg algebra

[â1; p̂
1] = i. The eigenstates of the canonical operators are |a1〉 and

|p1n〉, with â1|a1〉 = a1|a1〉 and p̂1|p1n〉 = p1n|p1n〉, n ∈ Z. Their overlap has

to take the form

〈a1|p1n〉 =
√
eL

2π
exp ineLa1, p1n = eL(n+

θ0
2π

) (2.12)

where θ0/2π ∈ [0, 1[ is an holonomy parametrizing the inequivalent rep-

resentations of the Heisenberg algebra on the circle1. The appearance of

this parameter is a pure quantum mechanical effect.

The “momentum” eigenstates provide an orthonormal basis 〈p1m|p1n〉 =

δn,m. In “position” space, the momentum operator can be represented by

−i∂a1 + eLθ0/2π. Hence the unitary operator, associated to the winding

number ℓ ∈ Z, realizing the corresponding large gauge transformation,

is given by

Û(ℓ) = exp i
2π

eL
ℓ(p̂1 − θ0

2π
eL), (2.13)

and verifies Û(ℓ)â1Û
†(ℓ) = â1 + 2πℓ/(eL), while the composition law

Û(ℓ)Û (k) = Û(ℓ + k) is natural. For that reason, one may interpret a

gauge transformation in a “topological context” as being a shift in the

coordinate of a point, sending a point to an equivalent one on the line.

Nevertheless, the “momentum” eigenstates are left invariant by a large

gauge transformation Û(ℓ)|p1n〉 = |p1n〉. The quantum Hamiltonian is

straightforwardly given by

Ĥred =
1

2L
(p̂1 − eθL

2π
)2. (2.14)

Therefore the gauge invariant states |p1n〉 are also the energy eigenstates,

corresponding to states with a quantised value for the electric field. The

spectrum of the Hamilton operator is readily obtained,

Ĥred|p1n〉 =
1

2L

(
neL− (θ − θ0)

2π
eL
)2

|p1n〉. (2.15)

1A more general discussion can be found in [4].
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Undoubtedly the relevance of the appearance of θ0/2π in the spectrum

of the quantum Hamiltonian has to be addressed. We may observe that

setting θ0 = θ removes the θ angle from the spectrum. The interpretation

of the gauge invariant eigenstates |p1n〉 is that they correspond to states

where the electric field is constant in space, but takes a quantised value.

The minimal absolute value of the electric field is reached in the state

|p10〉 and corresponds to p10 = eLθ/2π, that is to say the value of the

homogeneous electric field associated to the θ angle.

These conclusions are valid in absence of dynamical matter.

2.3 The Schwinger model on a line

After the overview of the properties of pure QED1+1, our attention is

inevitably drawn to the interacting case. The purpose of this preliminary

study is to review the exact solution of massless QED1+1 on R × R [5],

while the next chapter will be focused on the more elaborate solution of

the same theory on the manifold R× S1, with a particular emphasis on

the role of large gauge transformations2. The solution outlined here relies

on the bosonization method, which seems to be one of the most natural

formulations. The discussion is inspired by the article [6] and the book

[7], while the conventions follow reference [8]. Besides these references,

many inspiring research works have been carried out, for example, in

various gauges [9, 10], or at finite temperature [11], while the Schwinger

model may also be used as a test-bed to investigate techniques relevant

to QCD3+1 as for instance in [12].

In the expression hereafter for the Lagrangian density of the massive

or massless Schwinger model, a possible choice for the Clifford-Dirac

algebra of γµ matrices (µ = 0, 1) is taken to be given by γ0 = σ1 and

γ1 = iσ2, the chirality matrix then being γ5 = γ0γ1 = −σ3, while the σi

(i = 1, 2, 3) stand of course for the usual Pauli matrices. The complex

2Chapter 3 will provide a favourable framework in order to study the influence of

a θ angle.
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coordinates and the (anti-)holomorphic derivatives

z = −i(x− t), ∂z = − i

2
(∂t − ∂x), (2.16)

z̄ = i(x+ t), ∂z̄ = − i

2
(∂t + ∂x), (2.17)

with t = x0 and x = x1, will prove themselves useful.

Because it is a common thread of our work, the analysis of the model

will follow the Hamiltonian approach, starting from the Lagrangian of

massless QED1+1

L = −1

4
FµνF

µν +
1

2
iψ̄γµ∂µψ − 1

2
i∂µψ̄γ

µψ − eψ̄γµAµψ. (2.18)

At first sight it would appear that the classical theory will lead to an

interacting quantum field theory for the dynamics of photons and elec-

trons. It is however surprising that the exact solution describes a free

massive pseudo-scalar. Before pursuing further, it is interesting to men-

tion that, although a fermion can be bosonized in 1 + 1 dimensions, the

associated boson does not correspond to the massive pseudo-scalar of the

Schwinger model.

Quantisation requires first to determine the constraints of the classical

formulation. After a straightforward Hamiltonian analysis, the Hamilto-

nian action readily follows3

S =
∫
dt
∫
dx
{

∂0A
1π1 +

1

2
iψ†∂0ψ − 1

2
i∂0ψ

†ψ −H

−A0φ+ ∂1(A
0π1)

}
(2.19)

where π1 = F01 = −E is the momentum conjugate to A1, while A0 has

to be considered as a Lagrange multiplier for the first-class constraint

φ = ∂1π1 + eψ†ψ. (2.20)

Furthermore, the Hamitonian density is

H =
1

2
π21 −

1

2
iψ†γ5∂1ψ +

1

2
i∂1ψ

†γ5ψ − eA1ψ†γ5ψ. (2.21)

3All the indices are euclidian.
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The dynamics is encoded in the Poisson and Dirac brackets, respectively

given by

{A1(x, t), π1(y, t)} = δ(x− y), (2.22)

{ψα(t, x), ψ†
β(, y)} = −iδαβδ(x− y), (2.23)

so that the constraint φ, namely the Gauss law, is first class. In the quan-

tum theory, Poisson brackets are replaced by commutators and Dirac

brackets by anticommutators, at the reference time t = 0,

[A1(x), π1(y)] = iδ(x− y), (2.24)

{ψα(x), ψ†
β(y)} = δαβδ(x− y). (2.25)

In order to formulate the bosonized form of the quantum Hamiltonian,

still to be defined, we introduce the chiral fermions verifying γ5ψ± =

±ψ±, with

ψ±(x, t) =
1± γ5

2
ψ(x, t). (2.26)

Namely, these chiral fermions may be understood as coherent states of

chiral bosons, with the help of the bosonization formulas,

ψ±(x, t) =
( µ̃
2π

)1/2
: e±i

√
4πϕ±(x,t) :, (2.27)

ψ†
±(x, t) =

( µ̃
2π

)1/2
: e∓i

√
4πϕ±(x,t) :, (2.28)

where µ̃ > 0 is a mass scale needed for dimensional reasons, since the

theory is not defined on a circle. The normal ordering prescription will

be defined below. The chiral bosons are imagined as left and right prop-

agating waves, namely as functions of z and z̄, and may be expanded in

plane waves as follows4

ϕ+(x, t) = ϕ(z) =

∫

k>0

dk

2π

1

2k
[b+(k)e

−kz + b†+(k)e
kz], (2.29)

ϕ−(x, t) = ϕ̄(z̄) =

∫

k>0

dk

2π

1

2k
[b−(k)e

−kz̄ + b†−(k)e
kz̄], (2.30)

4The operator ϕ̄ is not the hermitian conjugate of ϕ.
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where we have defined b†±(k) = b±(−k), and with the only non vanishing

commutators [b±(k), b
†
±(k

′)] = 2πδ(k − k′). Hence, the Fock vacuum is

defined as verifying b±(k)|0〉 = 0 and, as a consequence, the prescription

: : will merely order creators to the left of annihilators.

As a result, chiral fermions can be associated to the following holomor-

phic and anti-holomorphic fields ψ+(x, t) = ψ(z) and ψ−(x, t) = ψ̄(z̄),

where ψ̄ is not the Dirac conjugate of ψ.

It is customary to choose to normalize the expectation values in the Fock

vacuum of the chiral fields as

〈ϕ(z)ϕ(z′)〉 = − 1

4π
ln[µ̃(z − z′)], (2.31)

〈ϕ̄(z̄)ϕ̄(z̄′)〉 = − 1

4π
ln[µ̃(z̄ − z̄′)], (2.32)

where the scale µ̃ has been introduced for dimensional consistency. Be-

cause the quantum Hamiltonian includes products of operators defined

at the same points, it may be divergent and, therefore has to be defined

by preserving gauge invariance. To do so, the point-splitting technique is

particularly appropriate in order regularise the short distance divergen-

cies in the fermionic bilinears. Hence we need to evaluate, for instance,

the operator ψ†
±(x, 0)ψ±(x, 0) at the reference time t = 0, by the inser-

tion of a Wilson line

ψ†
±(x+ ǫ, 0)eie

∫ x+ǫ
x

A1(y)dy ψ±(x, 0) (2.33)

in the limit where ǫ → 0. The calculation can be performed, following

reference [8], with the help of the property

: eiαϕ(z) : : eiβϕ(z
′) :=: eiαϕ(z)+iβϕ(z′) : e−αβ〈ϕ(z)ϕ(z

′)〉. (2.34)

The limit of the bilinears in (2.33) at the reference time t = 0, when

ǫ → 0, is taken after the subtraction of the singular terms in ǫ, so that

we obtain

N [ψ†(x, 0)γ5ψ(x, 0)] = −eA
1(x)

π
+

1√
π
∂1[ϕ+(x, 0) − ϕ−(x, 0)]. (2.35)

Similarly, the fermionic kinetic term can be defined thanks to the same

technique, after the subtraction of the divergent small distance terms,
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yielding the result

1
2N [−iψ†(x)γ5∂1ψ(x) + h.c.]

=
(
∂1ϕ+(x)

)2
+
(
∂1ϕ−(x)

)2 − 1
2π

(
eA1(x)

)2
. (2.36)

Hence, the Hamiltonian operator is ordered in a bosonic formulation by

a gauge invariant procedure, that is to say,

Ĥ =
1

2
π21 +

(
∂1ϕ+

)2
+
(
∂1ϕ−

)2
+

(eA1)2

2π
− eA1

√
π
∂1[ϕ+ − ϕ−], (2.37)

while the Gauss constraint in the bosonic form reads

φ̂ = ∂1π1 +
e√
π
∂1[ϕ+ + ϕ−]. (2.38)

For convenience, it is useful to define the rescaled fields ϕ̃± =
√
4πϕ±,

and to introduce the mass parameter µ = |e|/√π. After the completion

of a square, the quantum Hamiltonian can be recast in the form

Ĥ =
1

2
π21 +

1

2

(∂1π1
µ

)2
+

1

2
µ2
(
A1 − 1

2e
∂1[ϕ̃+ − ϕ̃−]

)2
+ φ′, (2.39)

where φ′ = (φ/2µ)2−φ∂1π1/µ2 is a pure constraint. Hence, it is natural

to introduce the following definition of a Bose field and its conjugate

momentum:

Φ = − 1

µ
π1, ΠΦ = µ

(
A1 − 1

2e
∂1[ϕ̃+ − ϕ̃−]

)
. (2.40)

As a result, the Hamiltonian becomes the one of a free boson of mass

µ = |e|/√π,

Ĥ =
1

2
π2Φ +

1

2

(
∂1Φ

)2
+

1

2
µ2Φ2 + φ′. (2.41)

Finally, with the help of the definitions (2.40), the canonical commutator

may be easily checked

[Φ(x),ΠΦ(y)] = iδ(x − y), (2.42)

while the other non vanishing commutators are obtained straightfor-

wardly. Since the equivalence between the Hamiltonian of the original

formulation and the Hamiltonian of the massive pseudo-scalar is now

self-evident, canonical quantisation can be pursued using, for example,

the projector approach of reference [6], in order to make use of the con-

straint φ to project the dynamics onto the physical Hilbert space.
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2.4 Conclusions

Summarising, although the examples of the pure classical and quantum

QED1+1 are admitedly elementary, they can provide a valuable intuition

for the themes exposed in the next chapter. On the contrary, the less

trivial dynamics of QED1+1 already teaches us a lesson. As a matter of

fact, in the Schwinger model, the perturbative intuition is misleading.

Namely, it is one of the few models (in the absence of supersymme-

try) whose non-perturbative solution is known. As announced in the

preamble, the dynamics of massless QED1+1 is that of a free massive

boson, which intuitively describes the propagation of a bound state of

the electric field in interaction with the fermions, rather than a massive

photon. Nevertheless, in the presence of massive fermions, no exact solu-

tion has been formulated. To be specific, it seems that some features of

the massive theory can be described by treating the fermion mass term

in perturbation theory, or by considering semi-classical solutions of the

bosonized formulation [2].

Our interest in the Schwinger model will be focused on its massless ver-

sion in order to take advantage of its solution. The main purpose of

the next chapter will be to uncover the role in the interacting theory of

the “Wilson loop degrees of freedom” as discussed in section 2.2, which

are essential in the absence of dynamical matter. As long as space-time

has the topology R × R, the study of the role of the gauge zero-mode

(2.4) would give the feeling of looking for a needle in a haystack. This

is why we shall compactify space into a circle, in order to single out

the gauge zero-mode from the other “quantum field degrees of freedom”.

Eventually, the compactification of space will be advantageous in order

to address the question of the role of a θ-term5 in the Lagrangian, whose

form is analogous to the θ-term of QCD.

5Actually, in the massless model, the parameter θ should not modify the physical

content of the quantised system.



CHAPTER 3

Topology and the exact solution of massless QED1+1

3.1 Introductory aspects and the Dirac dressed

electron field

Important aspects of the approach described in this chapter have to be

emphasized: to begin with, the originality of the research presented here

lies in the description of the interplay between the fermionic field and the

gauge field. Fermions are not completely integrated out of the theory to

leave an effective action for the gauge field accounting for the presence

of the fermionic excitations in a way similar to the Euler-Heisenberg ac-

tion. On the contrary, the gauge and matter sectors are quantised and

treated on an equal footing. Our attention is focused on a particular

type of gauge transformations called: “large gauge transformations”. Be-

cause these gauge transformations cannot be generated from infinitesimal

transformations, they have an intrinsic non-local character. In the litera-

ture, many investigations focus on the properties of interesting non-local

observables, named Wilson loops. More precisely, the quantity associ-

19
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ated to a closed path C

exp ie

∫

C
Aµdx

µ, (3.1)

namely an abelian Wilson loop, furnishes a gauge invariant1 extended

observable which provides useful information on the non-perturbative

features of the gauge theory. However arguments based on the calcu-

lation of Wilson loops very often consider a “pure gauge” theory in the

absence of matter fields [13], or include matter as pointlike “static exter-

nal” particles which are considered as being heavy.

Because of the low dimensional character of the Schwinger model and the

compactification of space into a circle, it is possible to remove from the

gauge sector the space dependent part of the gauge potential to keep a

time dependent global degree of freedom. This global “quantum mechan-

ical” degree of freedom is the analogue of the Wilson loop of the gauge

field calculated on the circle. This mode, constant in space, is called the

“zero-mode” and has a peculiar transformation law under a large gauge

transformation. We will emphasize the fundamental importance of this

dynamical zero-mode, in interplay with the fermionic sector of the the-

ory.

Incidentaly, the qualifier “topological” is associated to the “zero-mode”,

as defined in (2.4) in the case of a circle, because of its relevance in the

description of topological field theories, in canonical quantisation. In

particular, the Hamiltonian formulation of the pure Chern-Simons the-

ory on a three-manifold R×Σ, where Σ is compact, gives an illustration

of a theory formulated as an equivalent quantum mechanical problem for

the “zero-modes” [14].

Furthermore, the role of the zero-mode dynamics was often considered

in models of spontaneous supersymmetry breaking [15, 16]. In this con-

text, the “QFT degrees of freedom” are factorized in the so-called Born-

Oppenheimer approximation. The resulting effective action only ac-

counts for the dynamics of a finite number of degrees of freedom. How-

ever, in this work, we interest ourselves in the interrelationship between

1The exponential in (3.1) is taken in order to make the expression gauge invariant.

In a non-abelian gauge theory, a trace over the matrices of the representation is needed

to have a gauge invariant expression.
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the fermionic field and the “gauge variant” Wilson loop
∫
C eAµdx

µ.

The second important aspect of the analysis performed concerns the way

fermions are treated. As is well known, in QED the quantum excitations

of the Dirac spinor field are associated to the electrons and positrons.

However, the asymptotic electron states used in perturbation theory are

considered as free electrons in the absence of the electromagnetic inter-

action. The identification of the physical asymptotic electrons with the

fields appearing in the QED Lagrangian is not straightforward. Indeed,

this fact is puzzling because we know from Nature that the electrons al-

ways carry with them a Coulomb electric field, which can be considered

as a “dressing” of the electron appearing in the free Dirac equation. A

single electron wave function as it appears in the free Dirac equation

is certainly not gauge invariant, because these transformations act as

A′
µ(t, x) = Aµ(t, x) +

1
e∂µα(t, x) and ψ′(t, x) = exp (−iα(t, x))ψ(t, x).

The necessity to design a way to create simultaneously an electron and

its surrounding “Coulomb cloud” was first studied by Dirac in [17]. A

first attempt to conceive a gauge invariant formulation of a single elec-

tron is to attach a infinite tail (or string) to the electron. To be more

precise, we can define the dressed fermion in 3 + 1 dimensions by

ψγ(x) = exp
[
ie

∫ x

−∞
dℓiAi

]
ψ(x), (3.2)

where γ is a contour going from x to infinity2. The construction may

be understood as an electron-positron pair, linked by a Wilson line, and

where the positron has been pushed to infinity, as represented in figure

3.1.

Hence the newly defined field is gauge invariant, if the gauge transfor-

mation reduces to the identity at infinity. The contour γ inevitably

introduces an arbitrariness in the definition. By decomposing the gauge

potential into the sum of its longitudinal and transverse components

Ai = AiL + AiT with ∂iA
i
T = 0, it is possible to remove the dependence

on the path γ. We find that the longitudinal component is a gradiant

2This discussion follows reference [18].
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~x
γ

Figure 3.1: An intuitive view of a string of electric field linking an elec-

tron to an anti-electron positioned at infinity is pictured.

AiL = ∂iα, with α = ∆−1(∂jA
j). The result of the decomposition is the

factorization of the dependence on the path in the dressing factor

exp
[
ie

∫ x

−∞
dℓiAi

]
= exp

[
ie

∫ x

−∞
dℓiAiT

]
exp

[
ieα(x)

]
, (3.3)

which suggests a way to define the dressing in a path independent man-

ner, i.e. by omitting the first factor on the rhs of (3.3). Hence the dressed

fermion field is defined by the non local and manifestly gauge invariant

expression

χ(~x) = exp
[
ie
∂iA

i

∆

]
ψ(~x), (3.4)

where 1/∆ denotes the Green function of the Laplacian in three space

dimensions, as given by

(
1

∆
f)(~x) = − 1

4π

∫
d3yi

f(~y)

|~x− ~y| . (3.5)

As a consequence of this definition, motivated by the requirement of

gauge invariance, we can show that an electric field has been attached

to the fermion field. Although heuristic, a simple and eluminating ar-

gument [18] shows that the electric field associated with such a dressed

electron is a Coulomb field in 3 + 1 dimensions. The extended and long

ranged nature of the Coulomb field is reflected in the non-local feature of

the dressing. In a canonically quantised electrodynamics, it is is straight-

forward to calculate the commutator

[Ei(~y), χ(x)] =
e

4π

xi − yi

|~x− ~y|3χ(x), (3.6)
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where we used the fact that the electric field is the momentum conjugate

to the gauge potential: [Ai(~x);Ej(~y)] = δijδ(3)(~x − ~y). This result can

be interpreted as follows. Let us imagine that we have an eigenstate of

the electric field Ei(~y)|E〉 = E i(~y)|E〉. Therefore we find that the state

χ(~x)|E〉 is also an eigenstate of the electric field operator,

Ei(~y)χ(~x)|E〉 =
[
E i(~y) + e

4π

xi − yi

|~x− ~y|3
]
χ(~x)|E〉, (3.7)

which means that the electric field, at the position ~y, associated to the

dressed fermion field is the Coulomb field of a pointlike charge at rest at

the position ~x.

The solution to the Schwinger model presented in this work will treat

the fermion field as the dressed field (3.4) as advocated by Dirac. It

constitutes an important feature of the approach.

The outline of the present chapter is as follows. In the next section, the

Hamiltonian formulation of the model is reviewed. Section 3.3 considers

its canonical quantisation in careful detail in the fermionic formulation,

by paying due attention in particular to large gauge transformations,

namely the topological modular symmetries of the dynamics, an issue

which to the best of the author’s knowledge is new in the literature as

well as the new understanding while our approach provides for some of

the non-perturbative properties of the Schwinger model. These physical

consequences are addressed in the following sections 3.4 to 3.5. Some

concluding remarks are provided in section 3.8, with other useful consid-

erations being detailed also in Appendix A.

The conclusions of this chapter have been published in the paper [19],

which has been selected by the editors of Journal of Physics A for inclu-

sion in the “Highlights of 2012” collection.
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3.2 Hamiltonian formulation

The starting point of the analysis is the QED Lagrangian density in its

explicitly self-adjoint form,

L = −1

4
FµνF

µν

+
1

2
iψγµ(∂µ + ieAµ)ψ − 1

2
i(∂µ + ieAµ)ψγ

µψ − µψψ,

(3.8)

with ψ = ψ†γ0, where ψ, Aµ, Fµν = ∂µAν − ∂νAµ and µ ≥ 0 de-

note the Dirac spinor field, the gauge field, the field strength tensor,

and a fermionic mass term, respectively. This theory having a cou-

pling constant of strictly positive mass dimension is perturbatively super-

renormalizable. Infrared divergencies inherent to such a theory are reg-

ularised in our case by having compactified space into a circle of circum-

ference L, with the further consequence of a discretization of momentum

space implying a countable set of quantum modes for the fields. Given

the cylindrical spacetime topology which breaks the symmetry under

Lorentz boosts but not under spacetime translations, the boundary con-

ditions of the fields in the spatial circular direction are taken to be

Aµ(t, x+ L) = Aµ(t, x), ψ(t, x+ L) = exp (−2iπλ)ψ(t, x), (3.9)

where λ ∈ [0, 1[ is a fermionic holonomy parameter.

The U(1) gauge symmetry of the model acts through the transformations

A′
µ(t, x) = Aµ(t, x) +

1
e∂µα(t, x) and ψ′(t, x) = exp (−iα(t, x))ψ(t, x),

where α(t, x) is an arbitrary spacetime dependent continuous rotation

angle (defined mod 2π). In addition to the infinitesimally generated

“small gauge transformations” continuously connected to the identity

transformation with α(t, x) = 0, spatial compactification brings to the

fore the topologically non trivial group of “large gauge transformations”.

The distinction between these classes of transformations is made ex-

plicit by expressing the arbitrary function α(t, x) through the decom-

position α(t, x) = α0(t, x) + 2πxℓ/L in terms of a periodic function

α0(t, x) = α0(t, x + L) and an integer ℓ ∈ Z, the so-called (additive)
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S1 U(1)

Figure 3.2: The winding number represents the number of times the

spatial circle is wound onto the gauge group.

winding number of the “large gauge transformation”. This group of inte-

gers is the fundamental or first homotopy group π1(S
1) which classifies

the mappings S1 → U(1), as illustrated in figure 3.2.

“Small gauge transformations” form the local gauge group, i.e., they

are connected to the identity. These transformations are generated by

exponentiation of the parameter α(t, x) = α0(t, x) with ℓ = 0. If the

holonomy of the gauge transformation around the circle, namely ℓ ∈ Z,

does not vanish, we are dealing with a large gauge transformation. One

of the purposes of this work is to emphasize the topological difference

between these two classes of gauge transformations and especially the

consequences of large gauge transformations. This is done by considering

the “modular group”, namely the quotient of the full gauge group by

the local gauge group. For the present system the modular group is

isomorphic to the additive group Z of the winding number ℓ. It will be

shown that complete gauge invariance under all gauge transformations

may conveniently be enforced by requiring separately invariance under

the local gauge group and the modular group.

One may take advantage of these considerations to distinguish the var-

ious sectors on which these gauge transformations act. From the point

of view of the spatial S1 which is a compact manifold, let us apply a

Hodge decomposition of the gauge field of which the time component is
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a 0-form and the space component a 1-form. Hence,

A0(t, x) = a0(t) + ∂1ω1(t, x), (3.10)

A1(t, x) = a1(t) + ∂1φ(t, x), (3.11)

where the periodic functions ω1(t, x) and φ(t, x) do not include a spatial

zero-mode, i.e., these 1- and 0-form fields do not include a space indepen-

dent component, while a0(t) and a1(t) are the corresponding harmonic

forms. Similarly a Hodge decomposition also applies to the gauge pa-

rameter 0-form,

α0(t, x) = β0(t) + ∂1β1(t, x),

where once again the 1-form β1(t, x) does not include a (spatial) zero-

mode. In terms of this separation of variables, gauge transformations

of winding number ℓ and parameter α(t, x) = α0(t, x) + 2πxℓ/L act as

follows on the Hodge components of A0(t, x),

{
a′0(t) = a0(t) +

1
e∂0β0(t),

ω′
1(t, x) = ω1(t, x) +

1
e∂0β1(t, x),

while for A1(t, x),

{
a′1(t) = a1(t) +

2πℓ
eL ,

φ′(t, x) = φ(t, x) + 1
e∂1β1(t, x).

A noticeable fact is that the modular transformation of winding num-

ber ℓ is found to act in the gauge sector only as a shift in the zero-mode

a1(t) which is itself invariant under any local gauge transformation. Fur-

thermore the Hodge decomposition in (3.11) allows one to “dress” the

fermionic field with the longitudinal gauge field as follows

χ(t, x) = exp (ieφ(t, x))ψ(t, x). (3.12)

This redefinition of the Dirac spinor is reminiscent of Dirac’s construction

[17] of a “physical electron” carrying its own “photon cloud” so that this

composite object be gauge invariant. The boundary condition for the
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dressed fermion is still given by the holonomy condition of parameter λ,

χ(t, x+L) = exp (−2iπλ)χ(t, x). However gauge transformations of the

redefined spinor simplify as,

χ(t, x)′ = exp (−iβ0(t)) exp (−2iπℓ
x

L
) χ(t, x), (3.13)

showing that a local gauge transformation induces only a time depen-

dent but space independent phase change exp (−iβ0(t)) of the “compos-

ite” fermionic field. A space dependent gauge transformation of χ(t, x)

is associated now to the modular group only, whose topologically non

trivial action multiplies χ(t, x) by exp (−2iπℓx/L). In other words mod-

ular transformations, which account for the topological features of the

compactified theory and its gauge symmetries, act only on the following

degrees of freedom,

χ′(t, x) = exp (−2iπℓ
x

L
) χ(t, x), a′1(t) = a1(t) +

2πℓ

eL
, ℓ ∈ Z.

These different field redefinitions making manifest a separation of the

gauge degrees of freedom into local and topological ones, imply the fol-

lowing expression for the action of the theory,

S =
∫
dt

{1
2
Lȧ21 − ea0

∫

S1

dxχ†χ− ea1

∫

S1

dxχγ1χ

+

∫

S1

dx
(1
2
iχ†∂0χ− 1

2
i∂0χ

†χ+
1

2
iχγ1∂1χ− 1

2
i∂1χγ

1χ

−µχχ− 1

2
(∂0φ− ∂1ω1)∂

2
1(∂0φ− ∂1ω1)

+e(∂0φ− ∂1ω1)(χ
†χ)′

)}
,

where the notation (χ†χ)′ stands for the quantity shown in parenthesis

but with its spatial zero-mode subtracted (and where as usual a dot

above a quantity stands for the time derivative of that quantity).

Given the existence of gauge symmetries, the identification of the Hamil-

tonian formulation of this system must rely on the methods of con-

strained dynamics [3]. The momenta canonically conjugate to all degrees

of freedom are (here Grassmann odd derivatives for the spinor compo-

nents are left-derivatives, while L0 is the total quantity in curly brackets
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in the above expression for the action),

p0 =
∂L0

∂ȧ0
= 0,

π1 =
∂L0

∂ω̇1
= 0,

p1 =
∂L0

∂ȧ1
= Lȧ1,

πφ =
∂L0

∂φ̇
= −△ (∂0φ− ∂1ω1) + e(χ†χ)′,

ξ1 =
∂L0

∂χ̇
= −1

2
iχ†,

ξ2 =
∂L0

∂χ̇† = −1

2
iχ,

with ξ†1(t, x) = −ξ2(t, x). For two of the degrees of freedom one may

express their velocity in terms of their conjugate momentum, namely

ȧ1(t) = p1(t)/L and ∂0φ(t, x) = ∂1ω1(t, x)−△−1(πφ(t, x)−e(χ†χ)′(t, x)).
Here the symbol △−1 denotes the Green function of the spatial Lapla-

cian on the circle, ∆ = ∂21 , again not including the spatial zero-mode.

Since πφ does not include a zero-mode the action of △−1 in the pre-

vious expression for ∂0φ is well defined. However since the Hessian of

the Lagrange function for the other degrees of freedom possesses null

eigenvectors, there exist primary phase space constraints. Clearly these

primary constraints are p0(t) = 0, π1(t, x) = 0, ξ1(t, x) + iχ†(t, x)/2 = 0

and ξ2(t, x) + iχ(t, x)/2 = 0.

Since the canonical Hamiltonian is readily identified to be given as,

H0 =
1

2L
(p1)2 + ea0

∫

S1

dxχ†χ+ ea1

∫

S1

dxχγ1χ+

+

∫

S1

dx
{
− 1

2
iχγ1∂1χ+

1

2
i∂1χγ

1χ+ µχχ

+∂1ω1πφ −
1

2
(πφ − e(χ†χ))′ △−1 (πφ − e(χ†χ))′

}
.

a consistent time evolution of the primary constraints must consider as

primary Hamiltonian the following total quantity

H1 = H0 + λ0p
0 +

∫

S1

dx
[
λ1π

1 + (ξ1 +
1

2
iχ†)λ̃1 + λ̃2(ξ2 +

1

2
iχ)
]
,(3.14)
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where (λ0(t), λ1(t, x)) and (λ̃1(t, x), λ̃2(t, x)) are Grassmann even and

Grassmann odd would-be Lagrange multipliers, respectively. Requiring

a consistent time evolution of the primary constraints generated through

the (Grassmann graded) Poisson brackets by this primary Hamiltonian

implies the following further conditions,

{p0,H1} = −e
∫

S1

dxχ†χ = 0,

{π1,H1} = ∂1πφ = 0,

{ξ1 +
1

2
iχ†,H1} = 0,

{ξ2 +
1

2
iχ,H1} = 0.

In actual fact, the last two conditions imply equations for the Grassmann

odd multipliers λ̃1 and λ̃2 which are thereby uniquely determined. The

other two conditions however, define secondary constraints, the first of

which, namely e
∫
S1 dxχ

†χ = 0, is the zero-mode of the ordinary Gauss

law. A consistent time evolution of these new constraints requires to

include them in a secondary Hamiltonian which is to generate time evo-

lution,

H2 = H1 + eλ3

∫

S1

dxχ†χ+

∫

S1

dxλ13∂1πφ, (3.15)

where λ3(t) and λ13(t, x) are would-be Lagrange multipliers enforcing the

secondary constraints. It is readily checked that no further constraints

are then generated from H2. A consistent time evolution of physical

states is ensured.

According to Dirac’s classification the set of constraints decomposes into

first and second class constraints. In the case under study, p0 = 0 and

e
∫
S1 dxχ

†χ = 0 are first class while ξ1 +
1
2 iχ

† = 0 and ξ2 +
1
2 iχ = 0 are

second class constraints. First class constraints always generate gauge

symmetries. Second class constraints on the other hand, indicate that

some degrees of freedom are unnecessary and may be reduced through

the introduction of the associated Dirac brackets. In the present case

Dirac brackets act in the fermionic sector only, and are given as,

{
χα(t, x), χ

†
β(t, y)

}
D
= −iδα,βδS1(x− y)exp

(
−2iπ

(x− y)

L
λ

)
, (3.16)
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where λ is the fermionic holonomy while δS1(x− y) stands for the Dirac

δ-function defined over the spatial circle S1, and α, β = 1, 2 are spinor

indices.

The first-order action associated with the Hamiltonian formulation is

thus defined by the first-order Lagrange functional

L = ȧ0p
0 + ȧ1p

1 − λ0p
0 − ea1

∫

S1

dxχγ1χ− e(a0 + λ3)

∫

S1

dxχ†χ

− p21
2L

+

∫

S1

dx
{
∂0ω1π

1 + ∂0φπφ − ∂1ω1πφ − λ13∂1πφ − λ1π
1

+
1

2
iχ†∂0χ− 1

2
i∂0χ

†χ+
1

2
iχγ1∂1χ− 1

2
i∂1χγ

1χ− µχχ

+
1

2
(πφ − e(χ†χ)′)△−1 (πφ − e(χ†χ))′

}
.

However some of the first class constraints, namely p0 = 0 and π1 = 0,

appear because some of the degrees of freedom are in actual fact already

Lagrange multipliers for some of the other first class constraints, namely

in the present case A0(t, x) = a0(t) + ∂1ω1(t, x) is the Lagrange multi-

plier for Gauss’ law which is the first class constraint generating small

gauge transformations of parameter α0(t, x). In such a situation one may

use the freedom in choosing the Lagrange multipliers for such superfluous

first class constraints without affecting the actual gauge invariances of the

system, and thereby determine a more “fundamental" or basic Hamilto-

nian formulation [3]. First let us make the choice λ0(t) = ȧ0(t) and then

replace a0(t) + λ3(t) by a0(t). Consequently the sector (a0, p
0) decou-

ples altogether from the dynamics, with the new variable a0(t) being the

Lagrange multiplier for the first class constraint e
∫
S1 dxχ

†χ = 0. Like-

wise the choice λ1(t, x) = ∂0ω1(t, x) and then applying the redefinition

−λ13(t, x) + ω1(t, x) → λ1(t, x) shows that the sector (ω1, π
1) decouples

as well, with the new quantity λ1(t, x) being the Lagrange multiplier

for the first class constraint ∂1πφ = 0. Given these redefinitions the
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Hamiltonian formulation is specified by the first order Lagrangian

L = ȧ1p
1 − 1

2L
(p1)2 − ea0

∫

S1

dxχ†χ− ea1

∫

S1

dxχγ1χ

+

∫

S1

dx
{
∂0φπφ +

1

2
iχ†∂0χ− 1

2
i∂0χ

†χ+
1

2
iχγ1∂1χ− 1

2
i∂1χγ

1χ

+λ1∂1πφ − µχχ+
1

2
(πφ − e(χ†χ))′ △−1 (πφ − e(χ†χ))′

}
.

However, since the sector (φ, πφ) contributes only linearly and quadrati-

cally to this action, it may easily be reduced as well through its equations

of motion, which read,

{
∂0φ = −△−1 (πφ − e(χ†χ)′) + ∂1λ

1,

∂0πφ = 0,

with the constraint ∂1πφ = 0, and where πφ does not include a zero-mode.

Hence one has πφ(t, x) = 0 while the pure gauge degree of freedom φ(t, x)

is determined from ∂0φ = e∆−1(χ†χ)′ + ∂1λ
1.

Upon this final reduction, the Hamiltonian formulation of the system

consists of the phase space variables (a1(t), p
1(t);χ(t, x), χ†(t, x)) with

the Poisson-Dirac brackets

{a1(t), p1(t)} = 1,
{
χα(t, x), χ

†
β(t, y)

}
D

= −iδα,βδS1(x− y)exp (−2iπ
x− y

L
λ),

subjected to the single first class constraint e
∫
S1 dxχ

†χ = 0 of which the

Lagrange multiplier is a0(t), and a dynamics deriving from the Hamilto-

nian first-order action

S =
∫
dt
{
ȧ1p

1 +
∫
S1 dx

(
1
2 iχ

†∂0χ− 1
2 i∂0χ

†χ
)

−H − ea0
∫
S1 dxχ

†χ
}
,

where the first class Hamiltonian H is given by,

H =
(p1)2

2L
+

∫

S1

dx{χγ1(−i∂1 + ea1)χ+ µχχ

−1

2
e2(χ†χ)′ △−1 (χ†χ)′}. (3.17)
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Note how the very last four-fermion contribution to H stands for the

instantaneous Coulomb interaction, even though no gauge fixing pro-

cedure has been enforced, but rather a parametrization of the degrees

of freedom which factorizes the physical from the gauge dependent de-

grees of freedom. The remaining gauge invariances of the system in the

present formulation consist of the space independent small gauge trans-

formations with parameter α0(t, x) = β0(t) which are generated by the

single remaining first class constraint, e
∫
S1 dxχ

†χ = 0, as well as the

modular transformations of winding numbers ℓ ∈ Z, acting as follows on

the phase space variables,

a′1(t) = a1(t) +
2πℓ

eL
,

p1
′
(t) = p1(t), (3.18)

χ′(t, x) = exp (−iβ0(t)) exp (−2iπℓ
x

L
) χ(t, x).

In particular the first class constraint, merely the space integrated Gauss

law, requires physical states to carry a vanishing net electric charge. In

addition however, physical states need also to be modular invariant, a

restriction which is intrinsically of a purely topological character involv-

ing the gauge harmonic form a1(t) as well as the winding numbers of the

gauge symmetry group.

3.3 Canonical quantisation

Canonical quantisation of the system in the Schrödinger picture (at

t = 0) proceeds from its basic Hamiltonian formulation of the previ-

ous section. It is necessary to consider a mode expansion of the dressed

spinor χ(t = 0, x), which is taken in the form,

χ(x) =

√
~

L

∑

m∈Z

(
d†−m
bm

)
exp (2iπ

x

L
(m− λ)), (3.19)

with the anti-commutation relations {d−m, d†−n} = δm,n = {bm, b†n}.
Note that the mode indices m,n ∈ Z also label the momentum eigen-

values 2πm/L of the fermion total momentum operator. For example
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bm and d†−m both carry momentum (−2πm/L). A particle and anti-

particle interpretation of the sectors (bm, b
†
m) and (dm, d

†
m), respectively,

is warranted by considering the mode expansion of the total electric

charge, Q =
∫
S1 dxχ

†(x)χ(x) (the specific definition and expression of

this composite operator is provided below). This choice of mode expan-

sion translates also into the following anti-commutation relations for the

spinor field,

{χα(x), χ†
β(y)} = δα,β

~

L

∑

m

exp (2iπ
x− y

L
(m− λ)),

which are in direct correspondence with their classical Dirac bracket

counterparts. Similarly, the zero-mode of the gauge sector, (a1, p
1), is

quantised by the Heisenberg algebra,
[
â1, p̂

1
]
= i~, â1 and p̂1 needing to

be self-adjoint operators as well.

In terms of the above mode expansion the fermionic bilinear contribution

to the first class Hamiltonian (3.17), namely H = (p1)2/(2L)+H0+HC ,

takes the form

H0 =

=

∫

S1

dxχγ1(−i∂1 + eâ1)χ

=
∑

m

[
(2π

m− λ

L
+ eâ1)(b

†
mbm − d−md

†
−m) + µ(d−mbm + b†md

†
−m)

]
,

while the instantaneous Coulomb interaction energy becomes,

HC = κ
∑

ℓ 6=0

1

ℓ2

∑

m,n

(d−nd
†
−m + b†nbm)δm,n+ℓ

∑

p,q

(d−qd
†
−p + b†qbp)δp,q−ℓ,

with κ = e2L/(2(2π)2). To establish the last expression the following

representation of the Green function of the spatial Laplacian is used,

(△−1g)(x) =
−1

L

∫

S1

dy
∑

ℓ 6=0

exp (2iπ(x − y) ℓL)

(2πℓL )2
g(y).

Note that a specific ordering prescription for these composite operators

H0 and HC is implicit at this stage. An explicit ordering prescription

and complete definition of composite operators is to be given hereafter.
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A consistent quantisation should also implement the action of all remain-

ing gauge transformations, in correspondence with the classical transfor-

mations (3.18), through the adjoint action of specific quantum operators.

The action of the modular transformation of winding number ℓ is

Û(ℓ) â1 Û
†(ℓ) = â1 +

2π
eLℓ, Û(ℓ) p̂1 Û †(ℓ) = p̂1,

Û(ℓ) bm Û
†(ℓ) = bm+ℓ, Û(ℓ) d−m Û

†(ℓ) = d−m−ℓ, (3.20)

with the corresponding quantum modular operator of winding number

ℓ ∈ Z given as,

Û(ℓ) = exp
{
2iπℓ

(1
e

p̂1
L

− θ0
2π

+
1

L

∫

S1

dx : xχ†(x)χ(x) :
)}
. (3.21)

The actual meaning of the ordering prescription, “ : :”, is specified below.

The arbitrary new constant parameter θ0, which is defined mod 2π, arises

as follows. The quantum unitary operators, Û(ℓ), realising modular

transformations involve a priori an arbitrary phase factor that may be

winding number dependent. However since the modular group is additive

in the winding number, the choice of phase should be consistent with the

group composition law, Û(ℓ1) Û(ℓ2) = Û(ℓ1 + ℓ2). The general solution

to this requirement implies that the phase factor be linear in the winding

number, hence the θ0 parameter as the arbitrary linear factor in ℓ. In

actual fact, θ0 may be viewed as defining a purely quantum mechanical

degree of freedom [4, 20], and is the analogue for the present model of

the θ vacuum angle in QCD.

Similarly small gauge transformations act as follows

bm → exp (−iβ0)bm, d−m → exp (iβ0)d−m,

while the corresponding quantum generator, namely the total electric

charge Q which is the first class constraint for these local symmetries

and of which the exponential, when multiplied by a factor proportional

to β0, determines the unitary operator of which the adjoint action induces

these finite transformations, is defined hereafter.

What is most remarkable indeed about these modular transformations

is that in the fermionic sector they map spinor modes of a given elec-

tric charge and of all possible momentum values into one another. In
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other words, modular symmetries, which are characteristic of the topo-

logical properties of a gauge invariant system, induce transformations

connecting the infrared and the ultraviolet, namely the large and the

small distance properties of a gauge invariant dynamics. This observa-

tion remains totally relevant in the context of non-abelian Yang-Mills

theories as well, coupled to charge matter fields. Physical consequences

of such modular symmetries are presumably far reaching, and deserve to

be fully explored especially since they are intrinsically of a topological

hence non-perturbative character.

Obviously composite quantum operators need to be carefully defined in

order to preserve the modular gauge symmetry in a manifest way (see

(3.20); that a regularisation prescription also preserves in a manifest way

gauge invariance under local small transformations is readily checked).

Let us first consider the bilinear fermion contributions to the first class

Hamiltonian H, which need to be properly defined to ensure both finite

matrix elements and a ground state of finite energy, given that bm and

dm are taken to be annihilators of a fermionic Fock vacuum, with b†m and

d†m acting as creators. Making the choice3 of a gaussian regularisation

with energy cut-off Λ, the bilinear fermion contributions to the first class

Hamiltonian become,

∑

m

{ (
2π
L (m− λ) + eâ1

) (
b†mbm − d−md

†
−m
)
+ µ

(
d−mbm + b†md

†
−m
)}

×exp
(
− 1

Λ2

(
2π
L (m− λ) + eâ1

)2)
.

This choice of regularisation prescription ensures that this bilinear op-

erator has finite matrix elements while it remains manifestly invariant

under all modular gauge transformations (3.20). A further subtraction

to be discussed hereafter, still needs to be applied to this expression,

in order that eventually the regulator may be removed while leaving a

well defined composite operator H0. Let us note that the mass term

couples left- and right-moving modes. This fact will make possible to

smoothly redefine what will be the creators and annihilators of left- and

right-moving particles.

3Other regularisation choices have been considered, and shown to lead to the same

final conclusions.
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In order to diagonalize this regularised operator, let us consider the sector

of modes (bm, b
†
m) ≡ (b, b†) and (d−m, d

†
−m) ≡ (d, d†) for any given m ∈

Z. For definiteness the corresponding fermionic Fock space is spanned

by the Fock vacuum |0, 0〉 and the states |1, 0〉 = b†|0, 0〉, |0, 1〉 = d†|0, 0〉
and |1, 1〉 = d†b†|0, 0〉. The contribution of that sector to the above

bilinear operator is thus of the following form,

h = β(b†b− dd†) + α(b†d† + db),

with β = (2πL (m − λ) + eâ1)exp {−(2πL (m − λ) + eâ1)
2/Λ2} and α =

µexp {−(2πL (m−λ)+eâ1)2/Λ2}. This operator h has 4 orthonormalized

eigenstates listed in Table 3.1, in which ψ∓ = −(β ±
√
β2 + α2)/α so

that ψ+ψ− = −1.

Table 3.1: Eigenstates and eigenvalues of h.

State Eigenvalue

|ψ+〉 = |0,0〉+ψ+|1,1〉√
1+ψ2

+

√
α2 + β2

|1, 0〉 and |0, 1〉 0

|ψ−〉 = |0,0〉+ψ−|1,1〉√
1+ψ2

−
−
√
α2 + β2

In any given m sector, the state |ψ−〉 is thus the minimal energy eigen-

state. One may consider two pairs of fermionic creators and annihilators

defined by

B†
± =

b† + ψ±d√
1 + ψ2

±

, D± =
d− ψ±b†√
1 + ψ2

±

,

whether for the index “+” or the index “−”. These B and D operators

and their adjoints obey two separate fermionic Fock algebras whether

for the index “+” or the index “−”, namely {B†
±,m, B±,n} = δm,n and

{D†
±,−m,D±,−n} = δm,n. The operators B+ and D+ (resp., B− and

D−) annihilate the state |ψ+〉 (resp., |ψ−〉). Given these definitions, h

acquires two separate though equivalent expressions,

h = −
√
α2 + β2

(
B†

+B+ −D+D
†
+

)
=
√
α2 + β2

(
B†

−B− −D−D
†
−
)
.
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Among these two possibilities, in the sequel let us choose to work with

the operators defined with the “−” index, of which B− and D− thus

annihilate the ground state in the fermionic sector m, |ψ−〉,

B−|ψ−〉 = 0 = D−|ψ−〉.

Henceforth the index “−” will thus be suppressed, with (Bm, B
†
m) and

(D−m,D
†
−m) acting truly as annihilators and creators of fermionic Fock

algebras of which the Fock vacuum is the state |ψ−〉. Note however that

all these quantities involve also the gauge zero-mode operator â1.

We may now rewrite all the quantities of interest in terms of the original

variables,

√
α2 + β2 = [(

2π

L
(m− λ) + eâ1)

2 + µ2
]1/2

e−
1
Λ2 (

2π
L
(m−λ)+eâ1)2 ,

and

ψ− = −
2π
L (m− λ) + eâ1

µ
+

1

µ

√
(
2π

L
(m− λ) + eâ1)2 + µ2.

It is convenient to introduce a rotation angle, so that cosφ− = 1/
√

1 + ψ2
−

and sinφ− = ψ−/
√

1 + ψ2
−.

Consider now the limit where µ tends to zero. First, if 2π
L (m−λ)+eâ1 6= 0

the limit µ→ 0 implies

lim
µ→0

(
b†m
d−m

)
=

(
cosφ− sinφ−
− sinφ− cosφ−

)(
B†
m

D−m

)
,

with the following specific values,

cosφ− =

{
1 if 2π

L (m− λ) + eâ1 > 0;

0 if 2π
L (m− λ) + eâ1 < 0;

sinφ− =

{
0 if 2π

L (m− λ) + eâ1 > 0;

1 if 2π
L (m− λ) + eâ1 < 0.
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If however 2π
L (m − λ) + eâ1 = 0 the “mixing angle” is of π/4 radians in

the massless limit,

lim
µ→0

(
b†m
d−m

)
=

(
1√
2

1√
2

−1√
2

1√
2

)(
B†
m

D−m

)
.

It is rather obvious that one may readily express all these results in terms

of the Heaviside step function, Θ(x), with the value Θ(0) = 1/2 as it

turns out to be convenient for our purposes. However care needs to be

exercised, as the sequel will illustrate. It is also useful to note that

Θ
(2π
L

(m− λ) + eâ1
)
= Θ(m+ â),

with the notation â = eâ1L/(2π)−λ. Under a large gauge transformation

of winding number ℓ, â transforms as â → â + ℓ. Finally we are in the

position to make the following crucial identifications,

limµ→0 cosφ− =
√

Θ(m+ â), limµ→0 sinφ− =
√

Θ(−m− â).

The above transformations “à la Bogoliubov” redefine creators and anni-

hilators for Fock algebras through linear transformations. By construc-

tion this definition behaves “covariantly” under modular transformations,

and may be written in a compact way as,

b†m = B†
m

√
Θ(m+ â) +D−m

√
Θ(−m− â), (3.22)

d−m = D−m
√

Θ(m+ â)−B†
m

√
Θ(−m− â). (3.23)

while d†−m and bm are the adjoint operators of the previous expressions.

It is recalled also that B
(†)
m and D

(†)
−m involve an implicit dependence on

â. The dependence on â of these definitions, with a spectral flow in the

eigenvalues of that operator, may be interpreted as a dynamical “Fermi

surface" in one dimension.

With the help of this definition, the electric charge operator reads,

Q =

+∞∑

m=−∞

(
b†mbm + d−md

†
−m
)
=

+∞∑

m=−∞

(
B†
mBm +D−mD

†
−m
)
.
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An ordered expression of the gauge invariant regularised charge operator

is, with α̃ = 2π/(LΛ2),

: Q :
α̃→0
=

+∞∑

m=−∞
(B†

mBm −D†
−mD−m + 1)e−α̃(m+â)2 ,

where the divergent contribution independent of â may be subtracted

while no further finite contribution in â arises. The reader will find a

detailed discussion of the technical result concerning the subtraction of

infinities in (A.1) of the Appendix. In order to prove that no additional

term depending on â is generated by the normal ordering procedure the

Poisson resummation formula is used, leading to

+∞∑

m=−∞
Θ(m+ â)e−α̃(m+â)2 α̃→0

=
1

2

√
π

α̃
+

+∞∑

n=−∞,n 6=0

e2iπnâ

2πin
, (3.24)

+∞∑

m=−∞
Θ(−m− â)e−α̃(m+â)2 α̃→0

=
1

2

√
π

α̃
+

+∞∑

n=−∞,n 6=0

e2iπnâ

−2πin
. (3.25)

The subtraction consists in removing the contribution in 1
2

√
π/α̃ while

no other infinite term remains. Eventually the normal ordered expression

is given by

: Q̂ :â=
+∞∑

m=−∞
(B†

mBm −D†
−mD−m), (3.26)

which is the definition of the quantum U(1) charge operator. The normal

ordering prescription, : :â, depends on â in such a manner that this oper-

ation respects all gauge symmetries including modular transformations.

The regulator has safely been removed. As expected this operator is the

generator of the U(1) local gauge transformation,

B†
m → exp (iβ)B†

m, D†
−m → exp (−iβ)D†

−m.

We may follow a similar analysis towards a quantum definition of the

fermion bilinear contributions to the first class Hamiltonian in the mass-
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less limit4,

Hbil =
2π

L

+∞∑

m=−∞
(m+ â)(b†mbm − d−md

†
−m).

With the help of the relations (3.22) and (3.23), the regularised normal

ordered expression is,

: Hbil :â=
2π

L

+∞∑

m=−∞
|m+ â|(B†

mBm +D†
−mD−m − 1)e−α̃(m+â)2 .

Given the normal ordering contribution, the spectrum of : Hbil :â includes

an infinite contribution when the regulator is removed. However we are

not allowed to simply subtract this (regularised) contribution since it

also involves a dependence on â, which is brought about by the choice

of a modular invariant regularisation. The finite â dependent part may

be computed after careful subtraction of the divergent contribution for

â = 0. Once again the Poisson resummation formula is used to isolate

and extract the â dependent finite contribution. Given (A.7) in the

Appendix, one finds

−
+∞∑

m=−∞
|m+ â|e−α̃(m+â)2 α̃→0

= −
[ 2

2α̃
− 2

+∞∑

n=−∞,n 6=0

e2iπnâ

(2πn)2

]
.

The only divergence in 2/(2α̃) and which is independent of â, is sub-

tracted before removing the gaussian regulator. Thus finally the defini-

tion of this gauge invariant operator is,

: Ĥbil :â =
2π

L
(â− ⌊â⌋ − 1

2
)2 − π

6L

+
2π

L

+∞∑

m=−∞
|m+ â|(B†

mBm +D†
−mD−m), (3.27)

where it is noted that the additional â dependent part is the Fourier

series of a periodic potential given by

+∞∑

n=−∞,n 6=0

e2iπna

(2πn)2
=

1

2
(a− ⌊a⌋ − 1

2
)2 − 1

24
, (3.28)

4A discussion of the modular invariant definition of this specific operator, in the

context of the Schwinger model in the limit e → ∞, is available in [21].
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and where ⌊a⌋ denotes the “integer part” of a, i.e., the largest integer less

or equal to a. The quantum operator is bounded from below and is mani-

festly invariant under small as well as modular gauge transformations. It

is also relevant to address a well-known feature of the massless classical

theory, namely its invariance under global chiral transformations,

b†m → exp (iβ)b†m, d†−m → exp (iβ)d†−m,

a symmetry which implies that the dynamics does not couple the left-

and right-moving modes. The corresponding classical conserved charge

is the axial charge, which in the quantised theory takes the form,

Q5 =
+∞∑

m=−∞
(b†mbm − d−md

†
−m)

=

+∞∑

m=−∞

{
sign(m+ â)(B†

mBm −D−mD
†
−m)

+δm+â,0(B
†
mD

†
−m +D−mBm)

}
.

The last expression uses the identity Θ(m+a)−Θ(−m−a) = sign(m+

a) where “sign” is the sign function whose value in 0 is taken to be

sign(0) = 0. Furthermore the notation δm+â,0 stands for a generalized

Kronecker symbol of which the indices may take continuous values, such

that its value vanishes unless the two indices are equal in which case

the symbol takes the value unity. Once again the normal ordered form

for the regularised operator Q5 needs to be considered. The Poisson

resummation formula allows to isolate divergent contributions in (3.24)

and (3.25), leading to,

+∞∑

m=−∞
(Θ(m+ a)−Θ(−m− a))e−α̃(m+a)2

α̃→0
=

1

2
(

√
π

α̃
−
√
π

α̃
) +

+∞∑

n=−∞,n 6=0

e2iπna

iπn
.

Furthermore the series corresponds to the following Fourier expansion,

provided a is non integer (see appendix A),

+∞∑

n=−∞,n 6=0

e2iπna

iπn
= 1− 2(a− ⌊a⌋). (3.29)
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However one needs to specify what the rhs of (3.29) means when a is an

integer. If the series in the lhs of (3.29) is summed symmetrically, its

value vanishes. Hence for the sake of consistency, the final and complete

expression for (3.29) reads,

+∞∑

n=−∞,n 6=0

e2iπna

iπn
= 1− 2(a− ⌊a⌋+ 1

2
I(a)),

where I(a) stands for the discontinuous function which vanishes for all

real values of a except when a is an integer, a ∈ Z, in which case I(a)

takes the value unity. It is also useful to keep in mind the property

⌊−a⌋ = −⌊a⌋−1+I(a). Thus finally the fully gauge invariant expression

of the axial charge, which remains now well defined in the absence of a

regulator, is

: Q̂5 :â = 2(â− ⌊â⌋)− 1 + I(â)

+
+∞∑

m=−∞

[
sign(m+ â)(B†

mBm +D†
−mD−m) (3.30)

+δm+â,0(B
†
mD

†
−m +D−mBm)

]
.

This operator indeed generates global axial U(1)A transformations, for

m+ â 6= 0,

B†
m → exp (iβ)B†

m, D†
−m → exp (iβ)D†

−m

(for m+ â = 0 an additional contribution arises because of the spectral

flow properties in â of these operators).

Finally, let us point out that even though the Coulomb interaction con-

tribution to the first class Hamiltonian has not been considered explicitly

so far, the reason for this is that a simple consideration of the expres-

sion (3.20) for that operator ĤC in terms of the fermionic modes readily

shows that in the given form, it does not suffer quantum ordering am-

biguities nor divergences since no contribution with ℓ = 0 is involved in

either of the two factors being multiplied in the sum over ℓ.
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3.4 Modular invariant operators and the axial

anomaly

All potential divergences in the operators of interest having been sub-

tracted consistently and in a manifestly modular invariant manner, let

us first now focus our attention on the global symmetry of the mass-

less classical theory, namely its axial symmetry. As is well-known these

transformations are no longer a symmetry of the quantised dynamics

because of a mechanism that involves the “topological” zero-mode sector

which, in the present formulation, is clearly identified. The gauge in-

variant composite operators having been constructed so far include (the

Casimir vacuum energy (−π/(6L)) is henceforth ignored in the total first

class Hamiltonian),

: Ĥ :â =
(p̂1)2

2L
+

2π

L
(â− ⌊â⌋ − 1

2
)2

+
2π

L

∑

m

|m+ â|(B†
mBm +D†

−mD−m)+ : ĤC :â,(3.31)

: Q̂5 :â = 2(â− ⌊â⌋ − 1

2
) + I(â) + q5, (3.32)

: Q̂ :â =
∑

m

(B†
mBm −D†

−mD−m), (3.33)

where

q5 =
∑

m

[
sign(m+ â)(B†

mBm +D†
−mD−m)

+δm+â,0(B
†
mD

†
−m +D−mBm)

]
, (3.34)

while the gauge invariant total momentum operator of the system may

be shown to be given as,

: P̂ :â=
∑

m

2π

L
(m+ â)(B†

mBm −D†
−mD−m). (3.35)

Since the B and D operators and their adjoints depend on the operator

â1 through the operator â = eâ1L
2π − λ, the B and D’s do not commute
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with the conjugate momentum of â1, namely p̂1. A direct calculation

finds,

[p̂1, B†
m] = −i

eL

2π
δ(m + â)D−m, [p̂1,D−m] = i

eL

2π
δ(m+ â)B†

m, (3.36)

as well as the corresponding adjoint relations (here, δ(m + â) stands

for the usual Dirac δ function). These results use the definitions (3.22)

and (3.23) and the identity between distributions, ∂x
√

Θ(x) = δ(x)/
√
2,

given the choice Θ(0) = 1/2. From these commutation relations it easily

follows that : Ĥ :â commutes with : Q̂ :â. However, the same is not

true for the axial charge operator for which the calculation requires the

evaluation of the commutator
[
p̂1, : Q̂5 :â

]
. By differentiation of (3.29)

and making use of (3.36), one finds,

:
[
p̂1, : Q̂5 :â

]
:â= −2i

eL

2π
, (3.37)

and in turn finally,

:
[
: Ĥ :â, : Q̂5 :â

]
:â= :

[(p̂1)2
2L

, : Q̂5 :â
]
:â= −2i

ep̂1

2π
. (3.38)

Since this relation expresses the quantum equation of motion for the

axial charge in the Heisenberg picture, one observes that this charge is

no longer conserved, hence suffers a “quantum anomaly”. It is noticeable

that this anomaly finds its origin only in the topological sector (â1, p̂
1).

The physical interpretation and consequences of this result have been

discussed in the literature [2, 22]. Namely, the equation (3.38) is the

analogue of the non-conservation of the axial current

∂µj
µ
5 =

e

2π
ǫµνFµν , (3.39)

derived in the covariant formalism.

3.5 Modular invariant bosonization

Rather than wanting to diagonalize the gauge invariant Hamiltonian for

physical states, it is possible to show that the theory describes in fact
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the dynamics of a free massive (pseudo)scalar boson of mass m > 0 on

the physical space, in the form,

: Ĥ :â =
1

2
: Π(0)†Π(0) :â +

1

2
m2 : Φ†(0)Φ(0) :â +

+
1

2

∑

k 6=0

:
{
Π†(k)Π(k) + (m2 + (

2πk

L
)2)Φ†(k)Φ(k)

}
:â .

The normal ordering prescription, : :â, for the fields (Φ(k),Π(k)) will be

specified hereafter. As usual the scalar bosonic theory is defined by

H =

∫

S1

dx
1

2

{
Π†(x)Π(x) + Φ†(x)(−∂21 +m2)Φ(x)

}
,

with Φ(x) = 1/
√
L
∑

k Φ(k)e
i 2πkx

L and Π(x) = 1/
√
L
∑

k Π(k)e
i 2πkx

L ,

Π(x) being the momentum canonically conjugate to Φ(x) and k ∈ Z.

Let us now define the Fourier k-modes (k 6= 0) for the boson and its

conjugate momentum in terms of the fermionic modes as [9, 10],

Φ(k) = 1√
2ik

√
L
2π : (j1(k) + j2(k)) :â

Π(k) = 1√
2

√
2π
L : (j1(k)− j2(k)) :â,

where j1(k) =
∑

m b
†
m+kbm and j2(k) =

∑
m d−(m+k)d

†
−m. Note that for

k 6= 0 these operators are involved in the contributions to the Coulomb

interaction energy.

These definitions ensure that the k-modes Φ(k) and Π(k) fulfil the fol-

lowing necessary properties, Φ†(k) = Φ(−k) and Π†(k) = Π(−k). For

k 6= 0 the operators j1(k) and j2(k) may be expressed in terms of the B

and D operators and their adjoints. Actually normal ordering of jj(k)

(j = 1, 2) is only required for k = 0. As long as k 6= 0, no ordering am-

biguity arises. By extension of the ordering procedure described in the

previous sections, henceforth the normal ordered form, denoted : Ô :â,

of an operator Ô made of a product of b(†)’s and d(†)’s is given by the

normal ordered form with respect to the B(†) and D(†) operators upon

the appropriate substitutions. However since intermediate steps in cal-

culations or partial contributions to quantities may produce divergent

quantities, it should be wise to regularise expressions before performing

computations.
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It being understood that the operators jj(k) are defined as has just been

described, namely jj(k) ≡: jj(k) :â, an explicit evaluation finds that

these operators obey the following closed algebra,

: [j1(k), j1(ℓ)] :â = ℓδk+ℓ,0, (3.40)

: [j2(k), j2(ℓ)] :â = −ℓδk+ℓ,0, (3.41)

: [j1(k), j2(ℓ)] :â = 0. (3.42)

Let us establish here the first of these results. To compute the commu-

tator (3.40) consider the case when k and ℓ have opposite signs (if they

have the same sign it is easy to prove that the commutator vanishes),

and introduce the gaussian regularisation procedure to handle potential

divergences,

[j1(k), j1(−ℓ)] =
[∑

m

b†m+kbme
−α̃(m+â)2 ,

∑

n

b†nbn+ℓe
−α̃(n+â)2], (3.43)

for k, ℓ > 0. Using the anti-commutation relations, in normal ordered

form (3.43) becomes,
∑

m,n

(: b†m+kbn+ℓ :â δm,n− : b†mbn :â δm+k,n+ℓ)e
−α̃(m+â)2e−α̃(n+â)

2
.

When substituted in terms of the B, D operators, in the limit α̃ → 0

this last expression reduces to,
∑

n

exp [−2α̃(n + â)2](Θ(−n− k − â)−Θ(−n− â))δk,ℓ
α̃→0
= −kδk,ℓ,

which is indeed the result in (3.40). And from the commutation relations

(3.40) to (3.42), it readily follows that bosonic k-modes (Φ(k),Π(k))

(k 6= 0) do indeed obey the Heisenberg algebra as it should,

[Φ(k),Π(ℓ)] = iδk+ℓ,0, k, ℓ 6= 0. (3.44)

Let us now tackle the bosonized version of the Hamiltonian, by showing

that it indeed reproduces the expression (3.31). The k-mode part of the

bosonic Hamiltonian is

1

2

∑

k 6=0

:
{
Π†(k)Π(k) + (

2πk

L
)2Φ†(k)Φ(k)

}
:â

=
1

2

2π

L

∑

k 6=0

:
(
j†1(k)j1(k) + j†2(k)j2(k)

)
:â .



3.5. Modular invariant bosonization 47

Using the commutation relations (3.40) and (3.41) one finds,

1
2

∑
k 6=0 : {Π†(k)Π(k) + (2πkL )2Φ†(k)Φ(k)} :â (3.45)

= 2π
L

∑
k>0

∑
m,n : {b†m+kbmb

†
n−kbn + d−(m−k)d

†
−md−(n+k)d

†
−n} :â

= 2π
L

∑
k>0

∑
m,n : {b†m+kbmb

†
nbn+k + d†−(m+k)d−md

†
−nd−(n+k)} :â .

A little algebra shows that the sum over the range of values when m 6= n

vanishes on account of the anti-commutation properties of the b
(†)
m and

d
(†)
m operators. Only the diagonal m = n terms remain and provide the

normal ordered expression,
∑

k>0

∑

m

:
(
b†m+kbmb

†
mbm+k + d†−(m+k)d−md

†
−md−(m+k)

)
:â . (3.46)

Substituting now for the B
(†)
m and D

(†)
m operators and using their anti-

commutation relations, (3.46) becomes in an explicitly normal ordered

form,
∑

k>0

∑

m[
(B†

m+kBm+kD
†
−mD−m +D†

−(m+k)D−(m+k)B
†
mBm

)
×

×
(
Θ(m+ k + â)Θ(−m− â)

)
(3.47)

−
(
B†
m+kBm+kB

†
mBm +D†

−(m+k)D−(m+k)D
†
−mD−m

)
×

×
(
Θ(m+ k + â)Θ(m+ â) + Θ(−m− k − â)Θ(−m− â)

)
(3.48)

−(B†
m+kBm+k +D†

−(m+k)D−(m+k))(B
†
mD

†
−m +D−mBm)×

×1
2Θ(m+ â+ k)δm+â,0 (3.49)

+(B†
mBm +D†

−mD−m)(B
†
m+kD

†
−(m+k) +D−(m+k)Bm+k)×

×1
2Θ(−m− â)δm+k+â,0 (3.50)

+(B†
m+kBm+k +D†

−(m+k)D−(m+k))Θ(m+ k + â)Θ(m+ â) (3.51)

+(B†
mBm +D†

−mD−m)Θ(−m− k − â)Θ(−m− â)
]
. (3.52)

The first eight lines (3.47) to (3.50) are quadrilinear in the B(†) and D(†)

operators while the last two lines (3.51) and (3.52) are bilinear. They

need to be handled differently.
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The quadrilinear terms combine to give

−1

4
(Q̂2 + q25) +

∑

m

1− δm+â,0

2
(B†

mBm +D†
−mD−m) +

1

4
I(â), (3.53)

with the help of (3.33) and (3.34), as may be checked by writing out

(3.53) explicitly.

Factorizing the sum over the index k, the bilinear terms in (3.51) and

(3.52) may be written as,

∑

m

[Nm+kΘ(m+ k + â)Θ(m+ â) +NmΘ(−m− k − â)Θ(−m− â)]

=
∑

m

Nm[Θ(m+ â)Θ(m+ â− k) + Θ(−m− â)Θ(−m− â− k)],

(3.54)

where Nm = (B†
mBm+D†

−mD−m). Let us focus on any one of the terms

in the series in curly brackets for any specific value of m ∈ Z, in which

Nm is multiplied by the following series,

∑

k>0

[Θ(m+ a)Θ(m+ a− k) + Θ(−m− a)Θ(−m− a− k)]. (3.55)

If m + a = 0 this latter quantity vanishes explicitly since Θ(−k) = 0

for k > 0. Consider then the case when m + a 6= 0. Making use of the

identity

+∞∑

k=1

θ(x− k) = ⌊x⌋ − 1

2
I(x), (3.56)

which applies only for x > 0, one finds,

Θ(m+ a)
∑

k>0

Θ(m+ a− k) = Θ(m+ a)

(
⌊m+ a⌋ − 1

2
I(a)

)
,

and

Θ(−m− a)
∑

k>0

Θ(−m− a− k) = Θ(−m− a)

(
⌊−m− a⌋ − 1

2
I(a)

)
.
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However since one has,

⌊m+ a⌋ = m+ ⌊a⌋, ⌊−(m+ a)⌋ = −⌊m+ a⌋ − 1 + I(a),

the series (3.55) takes the form,

Θ(m+ a)
(
m+ ⌊a⌋ − 1

2I(a)
)

+Θ(−m− a)
(
−m− ⌊a⌋ − 1 + I(a)− 1

2I(a)]
)
,

or equivalently,

Θ(m+ a)
(
m+ a− a+ ⌊a⌋ − 1

2I(a)
)

+Θ(−m− a)
(
−m− a+ a− ⌊a⌋+ 1

2I(a)
)
− θ(−m− a).

Using now the fact that Θ(−m − a) = (1 − sign(m + a))/2 the series

(3.55) finally takes the following expression when m+ a 6= 0,

|m+ a| − sign(m+ a)
(
a− ⌊a⌋+ 1

2I(a)
)
− 1

2 (1− sign(m+ a))

= |m+ a| − 1
2 − sign(m+ a)

(
a− ⌊a⌋ − 1

2 + 1
2I(a)

)
. (3.57)

Since the series (3.55) vanishes when m+a = 0, the complete expression

may be written by subtracting from the above result its value when

m+ a = 0, producing the final expression for the series (3.55),

|m+ a| − 1

2
− sign(m+ a)

(
a− ⌊a⌋ − 1

2
+

1

2
I(a)

)
+

1

2
δm+a,0, (3.58)

valid for any m ∈ Z and any a ∈ R.

Substituting this identity in (3.54), one finally obtains for the sum of

(3.51) and (3.52),

1

2

∑

m

δm+â,0Nm +
∑

m

(|m+ â| − 1

2
)Nm

−(â− ⌊â⌋ − 1

2
+

1

2
I(â))

∑

m

sign(m+ â)Nm. (3.59)

Then the sum of (3.59) and (3.53) leads to the following expression for

the k-mode contribution (k 6= 0) to the bosonic Hamiltonian,

2π

L

(∑

m

|m+ â|Nm − (â− ⌊â⌋ − 1

2
+

1

2
I(â))

∑

m

sign(m+ â)Nm

−1

4
(Q̂2 + q25) +

1

4
I(â)

)
.(3.60)
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Obviously this last expression includes the fermionic bilinear contribu-

tion to the Hamiltonian in (3.31). Furthermore (3.60) gives also a clue

for the zero-mode part of the bosonized Hamiltonian. Let us complete a

square as follows,

2π

L

(∑

m

|m+ â|Nm −
(
â− ⌊â⌋ − 1

2
+

1

2
I(â) +

1

2
q5

)2

+
(
â− ⌊â⌋ − 1

2
+

1

2
I(â)

)2 − 1

4
Q̂2 +

1

4
I(â)

)
, (3.61)

with q5 given in (3.34) and where the contribution in Q̂2 vanishes for

the physical states. Indeed this last relation applies since one has the

property

(a− ⌊a⌋ − 1

2
+

1

2
I(â))q5

= (a− ⌊a⌋ − 1
2 +

1
2I(â))

∑
m sign(m+ a)Nm,

given the expression in (3.29) and the fact that the product of δm+â,0

with the first factor in this last expression vanishes identically. Likewise

by direct expansion, one finds,

(
â− ⌊â⌋ − 1

2
+

1

2
I(â)

)2
+

1

4
I(â)

=
(
â− ⌊â⌋ − 1

2

)2
+
(
â− ⌊â⌋ − 1

2

)
I(â) +

1

4
I(â) +

1

4
I(â)

=
(
â− ⌊â⌋ − 1

2

)2
.

We may now complete the bosonization procedure and define the missing

pieces in the bosonized formulation. One needs to identify the bosonic

conjugate momentum zero-mode, Π(0). The result (3.61) provides this

identification through,

1

2
Π(0)†Π(0) =

2π

L

(
â− ⌊â⌋ − 1

2
+

1

2
I(â) +

1

2
q5

)2
=

π

2L

(
: Q̂5 :â

)2
,

hence one defines,

Π(0) = ±
√
π

L
: Q̂5 :â . (3.62)
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To sum up we have established the following identity, which is valid for

physical states only with Q̂ = 0,

1
2 : Π(0)†Π(0) :â +

1
2

∑
k 6=0 :

(
Π†(k)Π(k) + (2πkL )2Φ†(k)Φ(k)

)
:â

= 2π
L

(
â− ⌊â⌋ − 1

2

)2
+ 2π

L

∑
m |m+ â|(B†

mBm +D†
−mD−m).

Finally the Coulomb interaction Hamiltonian provides the mass term for

the boson,

1

2

∑

k 6=0

m2 : Φ(k)†Φ(k) :â

= e2L
2(2π)2

∑
k 6=0 :

(:j†1(k):â+:j†2(k):â)(:j1(k):â+:j2(k):â)
k2 :â,

hence the identification m2 = e2/π. And the very last piece of the puzzle

is the zero-mode of the boson, Φ(0), provided by,

1

2
m2Φ†(0)Φ(0) =

(p̂1)2

2L
,

which leads to Φ(0) =
√
πp̂1/(e

√
L). The choice of sign for this quantity

is correlated to that of the conjugate momentum zero mode, Π(0). By

choosing the minus sign for the square root in (3.62), one then also

obtains the proper Heisenberg algebra for the boson zero-modes,

:
[
Φ(0) , Π(0)

]
:â=

π

eL
:
[
p̂1 , − : Q̂5 :â

]
:â= i. (3.63)

The axial anomaly thus proves to be central in establishing the correct

commutation relation in the zero-mode sector of the bosonized fermion.

In conclusion, when restricted to the space of physical quantum states of

total vanishing electric charge, Q̂ = 0, the total first class Hamiltonian,

whether expressed in terms of the original fermion modes or the bosonic

ones given by

Φ(0) =
√
π p̂1

e
√
L
, Φ(k 6= 0) =

1√
2ik

√
L

2π
: (j1(k) + j2(k)) :â,

Π(0) = −
√

π
L : Q̂5 :â, Π(k 6= 0) =

1√
2

√
2π

L
: (j1(k)− j2(k)) :â,

determines the same quantum theory and physical content.
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3.6 Vacuum state of the interacting theory

For the sake of completeness, the vacuum structure of the Schwinger

model is succintly examined. This question was addressed previously by

Azakov [23], comparing the functional to the Hamiltonian approach at

finite temperature, while the Hamiltonian formulation was more recently

reviewed in [24, 25] at zero temperature.

For convenience, the bosonic zero-mode sector will be represented on

wave functions with â1 acting as a multiplicative operator and p̂1 as a

derivative operator.

Until now, the fermionic operators were not represented on a Hilbert

space. In order to understand the complete vacuum structure of the

Schwinger model, the first step is to specify how the fermionic Fock

vacuum is constructed. It is defined customarily by the condition

bm|0〉 = 0 = d−m|0〉 (3.64)

for any integer m. The Bogoliubov transformation introduced previously

in (3.22) and (3.23) can be implemented thanks to the adjoint action of

a unitary operator

U(a)bmU†(a) = Bm, U(a)b†mU†(a) = B†
m (3.65)

U(a)d−mU†(a) = D−m, U(a)d†−mU†(a) = D†
−m (3.66)

where the operators Bm = Bm(m + a), D−m = D−m(m + a) and their

adjoints are implicitly functions of the combination m + a. The trans-

formation is explicitly given by

U(a) = exp
{
−
∑

m

π

2
Θ(−m− a)[b†md

†
−m − d−mbm]

}
. (3.67)

By construction, the Bogoliubov operator (3.67) is invariant under the

gauge transformations Û(ℓ)U(a)Û †(ℓ) = U(a) for ℓ ∈ Z. In consequence,

the state annihilated by Bm = Bm(m+ a) and D−m = D−m(m + a) is

the modular invariant vacuum

U(a)|0〉. (3.68)
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The fermionic vacuum being specified, it may be related to the exact

vacuum of the Schwinger model. To do so, it is necessary to identify

the creators and annihilators of the (pseudo)scalar boson in terms of the

fermionic operators. The Fourier decompositions of the (pseudo)scalar

boson and its conjugate momentum

Φ(x) =
1√
L
Φ(0) +

1√
L

∑

k 6=0

Φ(k)e2iπkx/L, (3.69)

Π(x) =
1√
L
Π(0) +

1√
L

∑

k 6=0

Π(k)e2iπkx/L, (3.70)

have to be written in terms of creators and annihilators of a boson with

dispersion relation ωn =
√

|2πnL |2 +m2, so that their Fock state can

be defined in the zero-mode and k-mode sector. Considering first the

k-mode sector, the commutation relations of the Fourier modes of the

boson [Φ(k); Π(ℓ)] = iδk+ℓ,0 for k, ℓ ∈ Z, suggest to define the gauge

invariant bosonic operators, for n > 0,

An = 1√
2ω0

n

[Π(−n)− iω0
nΦ(−n)], A†

n =
1√
2ω0

n

[Π(n) + iω0
nΦ(n)],

A−n = −1√
2ω0

n

[Π(n)− iω0
nΦ(n)], A†

−n =
−1√
2ω0

n

[Π(−n) + iω0
nΦ(−n)],

with ω0
n = |2πnL |, verifying the Fock algebra

[An, A
†
m] = δn,m = [A−n, A

†
−m].

The construction of the above bosonic Fock operators is a first step

towards the definition of the creators and annihilators of the massive

(pseudo)scalar. The reason for this intermediate definition is that it

allows to relate the fermionic Fock state to the complete vacuum state.

Indeed, in terms of the fermionic operators, we have

An = j1(−n)√
n
, A†

n =
j1(n)√
n
,

A−n = j2(n)√
n
, A†

−n =
j2(−n)√

n
,
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for n > 0. Writing the bosonic oscillators in terms of Bm(m + a),

D−m(m+ a) and their adjoints, it is straightforward to show

AnU(a)|0〉 = 0 = A−nU(a)|0〉, (3.71)

that is to say, the An’s annihilate the fermionic vacuum (3.68). Since the

above bosonic Fock operators are associated to creators and annihilators

of a massless bosons, a bosonic Bogoliubov transformation is still nec-

essary to introduce the creators and annihilators of the massive boson.

The creators and annihilators of the boson of mass m = e/
√
π are given

by

an = 1√
2ωn

[Π(−n)− iωnΦ(−n)], a†n =
1√
2ωn

[Π(n) + iωnΦ(n)],

a−n = −1√
2ωn

[Π(n)− iω0
nΦ(n)], a†−n =

−1√
2ωn

[Π(−n) + iωnΦ(−n)],

with the dispersion relation ωn =
√

|2πnL |2 +m2. The transformation be-

tween the massless and massive oscillators is given by the adjoint action

of a unitary operator

an = B†AnB, a†n = B†A†
nB,

a−n = B†A−nB, a†−n = B†A†
−nB,

while the unitary operator B is

B = exp
{
−
∑

n>0

ηn(A
†
−nA

†
n −A−nAn)

}
, (3.72)

with the parameters ηn obtained by solving the implicit equation

tanh ηn =

√
ω0
n/ωn −

√
ωn/ω0

n√
ω0
n/ωn +

√
ωn/ω0

n

. (3.73)

Hence, if |Ω〉 is a general state annihilated by An and A−n for n > 0,

then a state annihilated by an and a−n for n > 0 is given by

B†|Ω〉. (3.74)
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The vacuum state is not yet completely determined since the zero mo-

mentum modes have been considered. In the zero-mode sector, the cre-

ator and annihilator of the massive (pseudo)scalar are

a0 =
1√
2m

(
Π(0)− imΦ(0)

)
, a†0 =

1√
2m

(
Π(0) + imΦ(0)

)
, (3.75)

so that the quantum Hamiltonian (3.40) takes the familiar form

: Ĥ :a= m(a†0a0 +
1

2
) +

∑

k 6=0

ω(k)(a†kak +
1

2
). (3.76)

The state, denoted by |Ω〉, can be determined by considering a suitable

linear combination of the states U(a)|0〉 for a fixed, which are annihilated

by An and A−n for n > 0. The condition determining |Ω〉 is furnished by

the zero-mode sector, because B† and B commute with Φ(0) and Π(0).

Indeed, the state |Ω〉 has to satisfy

(
Π(0)− imΦ(0)

)
|Ω〉 = 0 =

(
Q̂5 +

i√
π
p̂1
)
|Ω〉. (3.77)

In order to solve this differential equation, we first introduce the “fiducial”

state defined by the limit

U(0+)|0〉 = lim
ǫ→0+

U(ǫ)|0〉 =
∏

m<0

d†−mb
†
m|0〉, (3.78)

as well as the mutually orthogonal states, obtained by the action of a

modular transformation Û(ℓ) given in (3.20) and (3.21),

Û(ℓ)U(0+)|0〉, ℓ ∈ Z, (3.79)

which have the explicit expression,

Û(n)U(0+)|0〉 = e−inθ0
∏

0≤m<n
d†−mb

†
mU(0+)|0〉, n > 0,(3.80)

Û(−n)U(0+)|0〉 = einθ0
∏

−n≤m<0

bmd−mU(0+)|0〉, n > 0.(3.81)

Then, fixing one sector ℓ ∈ Z and a generic wave function fℓ(a), it is

possible to solve
(
Q̂5 +

i√
π
p̂1
)
fℓ(a)Û(ℓ)U(0+)|0〉, (3.82)
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for 0 < a < 1, using the conjugation relation (3.63). Indeed, the solutions

of (3.77) in each sector ℓ ∈ Z may be glued in order to preserve the

modular symmetry. Hence, a gauge invariant solution to the condition

(3.77) is given by the superposition
∑

ℓ

fℓ(a)Û (ℓ)U(0+)|0〉, (3.83)

provided that the wave functions obey fℓ(a + 1) = fℓ+1(a), so that the

solution in each sector ℓ has to satisfy the boundary condition fℓ(1) =

fℓ+1(0) as claimed in [10]. Using the property

: Q̂5 :a U(0+)|0〉 = 2
(
a− 1/2

)
U(0+)|0〉, a ∈ R \ Z, (3.84)

the equation (3.82) may be solved in the domain 0 < a < 1. Since the

boundary condition is satisfied by fℓ(a) = f(a + ℓ), the solution of the

differential equation is the Gaussian

f(a) = Ne−
2π
2eL

√
π(a−1/2)2 , (3.85)

where N is a normalization. Consequently, the gauge invariant solution

to (3.77) is

|Ω〉 = N
∑

ℓ∈Z
e−

2π
2eL

√
π(a+ℓ−1/2)2e−iℓθ0Ûf (ℓ)U(0+)|0〉, (3.86)

where we have factorized the quantum modular operator (3.21) as follows

Û(ℓ) = exp
{
2iπℓ

(1
e

p̂1
L

− θ0
2π

)}
Ûf (ℓ). (3.87)

As a consequence, the lowest energy state of the interacting theory is

given by

B†|Ω〉. (3.88)

The norm squared of the vacuum state is obtained by computing

||B†|Ω〉||2 = |N |2
∫ 1

0
da
∑

ℓ

e−
2π
eL

√
π(a+ℓ−1/2)2 . (3.89)

In conclusion, the vacuum state of the Schwinger model is found to have

a “periodic” structure, which is a consequence of the invariance under the

modular gauge transformations. The ground state of the pseudo-scalar

boson is non trivially expressed in the fermionic state space.
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3.7 Adding a theta term

A natural extension of this low dimensional model is the inclusion of

a “theta” term, which is the analogue of the topological θ term in four

dimensional QCD, by adding the following contribution to the original

Lagrangian density of the Schwinger model,

Lθ =
e

2

θ

2π
ǫµνF

µν , (3.90)

where the parameter θ has mass dimension M0. The entire analysis

of constraints can be carried through once again in a manner similar

to what has been done previously, leading to the following first class

quantum Hamiltonian corresponding to the one in (3.31),

: Ĥ :â =
1

2L
(p̂1 − eL

θ

2π
)2 +

2π

L
(â− ⌊â⌋ − 1

2
)2

+
∑

m

2π

L
|m+ â|(B†

mBm +D†
−mD−m)+ : ĤC :â . (3.91)

The shift by a term proportional to θ in the contribution of the gauge

zero-mode conjugate momentum p̂1 is also observed in the axial anomaly,

:
[
: Ĥ :â , : Q̂5 :â

]
:â = :

[(p̂1 − eLθ/2π)2

2L
, : Q̂5 :â

]
:â (3.92)

= −i
e2

π
L

(
p̂1

eL
− θ/2π

)
. (3.93)

Given this observation which applies to the model with a massless fermion,

it should be clear that all previous considerations remain valid in terms

of the shifted conjugate momentum, (p̂1−eLθ/(2π)), which still defines a

Heisenberg algebra with the gauge zero mode â1. Note that the introduc-

tion of the shifted variable affects the modular transformation operators

Û(ℓ) only by a redefinition of the arbitrary phase factor θ0 as θ0 → θ0−θ,
with no further consequence. Hence, in the massless fermion model, the

introduction of the θ term does not lead to a modified gauge invariant

physical content of the quantised system. It still is equivalent to a theory

of a free (pseudo)scalar bosonic field of mass m = |e|/√π > 0.
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3.8 Conclusions

In order to better understand the relevance and physical consequences

of the topological sectors of gauge invariant dynamics, the present work

developed a careful analysis of the Schwinger model in its fermionic

formulation on a compactified spacetime with the cylindrical topology,

within a manifestly gauge invariant formulation without resorting to any

gauge fixing procedure. Among different reasons for considering a spa-

tial compactification, one feature proves to be central to the discussion,

namely that of large gauge or modular transformations which capture

the topologically non trivial characteristics of the dynamics. Through

proper regularisation a quantisation that remains manifestly invariant

under modular transformations is feasible, and allows at the same time

a clear separation between locally gauge variant and invariant degrees of

freedom and globally gauge variant and invariant degrees of freedom, the

latter being acted on by modular transformations only. Spatial compact-

ification brings to the fore all the subtle aspects related to the topological

sectors and their dynamics of the model.

What proves to be a most remarkable fact indeed, which remains rel-

evant more generally for any non-abelian Yang-Mills theory coupled to

charged matter fields in higher spacetime dimensions as well, is that the

topologically non trivial modular gauge transformations act by mixing

the small and large distance and energy scales of the dynamics, a feature

which is intrinsically non-perturbative as well and thus cannot be cap-

tured through any perturbation theory that includes gauge invariance

under small gauge transformations only.

To the author’s best knowledge such an analysis of the Schwinger model

has not been available in the literature so far. Besides recovering the

well known result that as soon as the gauge coupling constant of the

electromagnetic interaction is turned on this theory is in actual fact

that of a free spin zero massive particle in two dimensions, rather than

a theory of electrons and positrons coupled to photons, the analysis

provides an original insight into the role played by topology and modular

invariance in a mechanism leading to the confinement of charged particles
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in an abelian gauge theory. The fact that the chiral anomaly also finds its

sole origin in the purely topological gauge sector is clearly made manifest

through the considered separation of variables which is devoid of any

gauge fixing procedure whatsoever. And finally the bosonization of the

massless fermion is done at the operator level in terms of the fermionic

modes rather than through vertex operators of the boson, by paying due

care and attention to the contributions of the topological sector which

again are crucial for the quantum equivalence between the two theories.

In particular a manifestly modular invariant bosonization of the fermion

degrees of freedom has been achieved.
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CHAPTER 4

Fermion condensation in QED2+1

4.1 Brief overview and motivations

In Chapter 3 we studied the non-perturbative aspects of massless QED1+1.

The same technique of factorization of the local gauge symmetries, the

gauge degrees of freedom and the dressing of the electron field can be

applied to QED2+1. Nevertheless, the dynamics in the gauge sector is

richer and more complex so that we do not expect to find an exact so-

lution to the quantum field theory in interaction. Notwithstanding, an

approximation will be developed in this chapter based on techniques sim-

ilar to those one explained in Chapter 3. Before describing the obtained

results, this section aims at emphasing various features attracting inter-

est in QED3, from the high energy physics point of view as well as from

the condensed matter perspective.

Being a toy model of more realistic high energy physics models, quan-

tum electrodynamics in two space dimensions has attracted interest for

many years. Among the different aspects of this quantum field theory,

61
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a striking property of pure QED2+1 is that the electromagnetic degrees

of freedom can be compactly expressed in terms of a scalar. This proce-

dure is called dualization of a U(1) gauge field and is often used in the

context of supersymmetric gauge theory in 3 spacetime dimensions. The

classical action

Sclass =

∫
dt

∫
d2xi{−1

4
FµνF

µν}, (4.1)

gives rise to the equations of motion ∂µF
µν = 0, while the Bianchi

identity ∂µǫ
µνρFνρ = 0 is trivially satisfied. The peculiar expression of

the Bianchi identity is the source of the dualization, which introduces a

scalar degree of freedom thanks to the relation

∂µφ = ǫµνρF
νρ. (4.2)

The dualization is a relativistic covariant procedure. Therefore the dual

scalar obeys the equation of motion of a free massless scalar �φ = 0,

where � = ∂2t −∆. To be more precise we should mention that the gen-

eral principle of the abelian duality is to write the Bianchi identity as the

equation of motion of the dual theory. Incidentally, a similar procedure

is available in 1 + 1 dimensions where the duality relation involves two

scalar fields, ǫµν∂
µφ = ∂ν φ̃. Similarly, in 3+1 dimensions, the duality

exchanges the fields strength tensor Fµν by ∗Fµν . Although it might

seem an elegant mathematical procedure, duality renders the coupling

to matter, AµJ
µ, non-local, when expressed in terms of the dual scalar.

Apparently the dual formulation is therefore not advantageous to study

the theory coupled to matter. However the presence of a defect in the

classical gauge field configuration is “felt” by the dual scalar. For this rea-

son the dual scalar is considered when studying in QED3 the analogues

of the instantons, which are known to play potentially a fundamental

role in the non-perturbative regime QCD4.

Singular configurations of Aµ are central to the proof by Polyakov of the

confinement property of a specific version of QED3 in which the dual

scalar plays a role in the description of the low energy dynamics. In the

seventies, Alexander Polyakov [26] studied QED3 in euclidian space in

the absence of fermionic matter, as a limit of a Georgi-Glashow model.
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The crucial feature of his approach was that the gauge group U(1) was

considered as subgroup of a spontaneously broken SU(2) gauge symme-

try. Consequently, this version of QED was called “compact”, because it

emphasizes that the gauge group has a compact topology1, so that the

gauge potential has to be understood as an angular variable. Polyakov’s

achievement was to prove confinement of static charges due to the pres-

ence of topological defects in the gauge field. He calculated, in a weakly

coupled regime, the contribution to the euclidian partition function of a

dilute “monopole-instanton” plasma and proved the area law for the Wil-

son loop. As a confirmation, the lattice formulation of compact QED3

was also studied by Gopfert and Mack [27], which provided a detailed

proof of the confinement. Later Kogan and Kovner studied the so-called

vortex operator in compact QED2+1 in a variational setup, in the ab-

sence of matter and obtained parallel conclusions. As emphasized by the

latter authors (see [28]), the crucial feature of compact QED2+1 is the

presence of singular gauge transformations of the type

exp
i

e

∫
d2xi{∂jα(~x)Ej(~x) + α(~x)ρ(~x)}, (4.3)

where one define the planar angle2 α(~x) = Atan(x1/x2). Let us explain

why these transformations are admissible in the compact theory and how

they are related to singular configurations in the gauge field. When one

goes through the cut discontinuity in α(~x), the gauge parameter jumps

by 2π. However, in compact QED2+1, a particle has a quantised charge

q = ne and, hence, will not feel this 2π jump, as may be easily seen in

(4.3). In [29], it was made clear that the ’t Hooft operator associated to

the transformation (4.3)

V (~x) = exp
i

e

∫
d2yiǫjk

(x− y)k
(~x− ~y)2

Ej(~y), (4.4)

corresponds to the creation of a singular magnetic vortex, which can not

be distinguished from a unit operator. This is convincingly shown by

1When the gauge group is the Lie group U(1), which is compact, the quantisation

of the electric charge is automatic, i.e. all the charges are commensurate. This is not

true if the gauge group is R, which is not compact. The lattice formulations of the

two versions are different.
2The position of the cut is irrelevant. This is a consequence of charge quantisation.
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the identity

V (~x)†B(~y)V (~x) = B(~y) +
2π

e
δ(2)(~x− ~y). (4.5)

Consequently, the magnetic field is not by itself gauge invariant in com-

pact QED. In the compact theory, because all the electric charges are

integer multiples of e, the effect of the presence such a magnetic vor-

tex cannot be measured. Thanks to the presence of such “defects”, the

confinement mechanism established by Polyakov is indeed similar to the

dual superconductivity mechanism, i.e. a dual Meissner effect. In the

presence of fermionic dynamical matter, it does not seem to be possible

to study the dynamics with similar technical tools.

Undeniably, important features render this theory an interesting labora-

tory in order to develop techniques addressing non-perturbative dynam-

ics. Namely, the excellent ultraviolet behaviour of perturbative QED2+1

is remarkable. Among the primary divergent diagrams of QED3+1, only

the electron self-energy and the vacuum polarisation of QED2+1 are su-

perficially one-loop divergent. Following from gauge invariance and a

symmetric integration of the loop, both diagrams are actually finite in

dimensional regularisation. In a renowned paper [30], Jackiw and Tem-

pleton analysed the infrared divergences occuring in perturbation the-

ory in QED2+1 with massless fermions, while the excellent behaviour of

the theory in the UV is emphazised. Using a toy model treated non-

perturbatively, these authors explain how the perturbative expansion in

the coupling constant has to be completed by an expansion in logarithms

of the coupling constant, while they expect also contributions which re-

main beyond the reach of perturbation theory.

In analogy with QCD3+1, the question of spontaneous chiral symmetry

breaking was also raised in the context of QED2+1 with N flavours. Chi-

rality may be defined in 2 + 1 dimensions by considering 4-spinors, in

a reducible representation of the Lorentz group, as it is briefly summa-

rized in sections B.6, B.7 and B.8. The analysis of the Schwinger-Dyson

equations with various truncation schemes lead to a critical number of

flavours, varying slightly according to the different authors.
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On the other hand, QED2+1 unexpectedly arised as an effective theory

of recently discovered condensed matter models. Remarkably a two-

flavour version of massless QED2+1 has been shown to describe well

the low energy dynamics of graphene. Due to its cristalline structure,

the valence and conduction bands of graphene meet in two inequivalent

conical points in the fundamental cell. The conical shape of the valence

band at these “Dirac points” allows to linearize the dispersion relation

so that the quasi-particles in the material are Dirac fermions [31]. The

appearance of the two flavours is a consequence of fermion doubling, as

a result of their definition on a lattice. This could be understood as

a consequence of the Nielsen-Ninomiya theorem [32, 33], which requires

that the lattice fermions are always expected to come in pairs. The two

possible spins and “valleys” give rise to a set of four relativistic fermions,

rotated into one another by a flavour SU(4) symmetry. This picture was

confirmed by the observation of the quantum Hall plateaus. Because

of the smallness of the Fermi velocity compared to the speed of light,

the effective coupling constant in graphene is approximately 300 times

larger than in QED. The upshot is that the traditional approach based

on perturbation theory has to be questioned.

Strikingly, solid state physics can also effectively reproduce the dynam-

ics of a “undoubled” Dirac fermion in 2 + 1 dimensions. For instance, a

model discussed in [34] by Haldane is an example of a continuum limit of

a condensed matter model in a periodic magnetic field where excitations

correspond to a single Dirac fermion3. More recently, the discovery of a

new class of materials called “topological insulators” [35] has opened a

new age in condensed matter physics. Indeed, the surface of a 3D strong

topological insulator [36] exihibits a peculiar behaviour, since it is pos-

sible to tune the Fermi energy to intersect a single “Dirac point”. For

this reason, the constraint from the Nielsen-Ninomiya theorem is eluded.

The result is that the effective quasi-particle dynamics can be described

by a single Dirac field. Hence, the peculiarity of such a material would be

to realize a novel quantisation of conductance, called half-integer Quan-

tum Hall Effect, due to the relativistic Landau level structure of the

spectrum.

3This model breaks time reversal symmetry.
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4.1.1 Considerations about the running of the coupling

constant in massless QED2+1

Is QED2+1 with massless fermions asymptotically free? The question of

asymptotic freedom in QED2+1 is particularly subtle, since the coupling

constant has M1/2 dimension. From the perturbative point of view, only

two diagrams are superficially one-loop divergent. The one-loop fermion

self-energy and vacuum polarization are respectively logarithmically and

linearly divergent in power counting. However, both are finite in dimen-

sional regularisation. As a consequence, no infinite subtraction has to

be performed and therefore the bare parameters do not aquire a scale

dependence by this mechanism, as it is the case for instance in QED3+1.

The question of writing a β-function in the sense of Gell-mann and Low,

analogous to QED3+1 and QCD3+1 β-functions, is therefore delicate since

the MS or MS scheme can not be applied. As a consequence, an or-

thodox answer to the question of the existence of a β-function would be

that it simply vanishes: β = 0 in these schemes.

Nevertheless, the issue of the qualitative running of the coupling con-

stant can still be addressed in a more heuristic way. Namely, the cou-

pling constant being dimensional, its flow under scale transformations

will be non-trivial. Furthermore, the behaviour of the coupling constant

as the scale of the process varies can still be described thanks to the con-

struction of an effective running coupling constant, at least at one-loop

in perturbation theory. A definition for the non-perturbative running of

the coupling constant is discussed in [37].

As a preliminary remark and before addressing the quantum theory, the

classical evolution of the coupling constant can be considered from a

purely dimensional point of view. Since the coupling constant has a pos-

itive mass dimension, scale transformations are not symmetries of the

classical action. Therefore, the flow of the coupling constant may be

simply apprehended from an elementary analysis of the classical dimen-

sions of the fields.

To be more precise, we shall examine the classical dynamics as given by
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the Lagrangian density

L = −1

4
FµνF

µν +
1

2
iψγµ(∂µ + ieAµ)ψ − 1

2
i(∂µ + ieAµ)ψγ

µψ. (4.6)

In order to understand the flow of the coupling constant, we shall intro-

duced the scale transformations: x → eσx acting on a generic field as

follows

φ(x) → eσdφ(eσx), (4.7)

where d depends on the field considered. Therefore, the action of an

infinitesimal scale transformation on the gauge and fermion fields is

δAµ = σ(
1

2
+ xλ∂λ)A

µ, (4.8)

δψ = σ(1 + xλ∂λ)ψ. (4.9)

As a consequence, the transformation of the Lagrangian density is, up

to a total derivative,

δL = −σe(5
2
+ xλ∂λ)ψ̄γ

µAµψ. (4.10)

The transformation of the action follows thanks to an integration by

parts

δ

∫
d3xL = σ

∫
d3x

1

2
eψ̄γµAµψ = σ

∫
d3x∆. (4.11)

Defining the scale current ∂µs
µ = ∆, related to the classical energy

momentum tensor by the relation sµ = xνT
µν , we recover the well-known

relationship between the violation of scale invariance and the trace of the

energy momentum tensor

∂µs
µ = T νν = ∆. (4.12)

Next, we shall proceed in analogy with QCD, where the coupling con-

stant is scale dependent αS = αS(µ). Under an infinitesimal scale

transformation of parameter σ, the strong coupling constant is modi-

fied: gs → gs + σβ(gs). The variation of the Lagrangian is [38]

δL = σβ(gS)
∂L
∂gs

= σT νS ν , (4.13)
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which is named the trace anomaly of QCD3+1. By inspection of this for-

mula, we can identify the analogue of the β-function in classical QED2+1,

so that we find the classical β-function of the coupling constant

β(e) = −1

2
e. (4.14)

Indeed, because the value of the coupling changes under scale transfor-

mations, we should study the flow of the adimensional quantity ē(µ) =

e/µ1/2, where µ is a reference scale [39]. The β-function of ē is simply

given by the logarithmic derivative

β(ē) = µ
d

dµ

( e

µ1/2

)
= −1

2

( e

µ1/2

)
= −1

2
ē(µ). (4.15)

In conclusion, we observed that at the classical level, a β-function can

be associated to the coupling constant, as a measure of its flow under

classical scale transformations.

An alternative answer to the question of the running of the coupling con-

stant follows from the analysis of the behaviour of the effective coupling

constant in perturbation theory. At one-loop, the photon progator reads

Dµν(p) = −i
Pµν(p)

p2 −Π(p2)
− iξ

pµpν
p4

, (4.16)

with the projector Pµν(p) = ηµν − pµpν/p
2, and the one-loop polarisa-

tion Π(p2) = e2
√

−p2/16. In the Landau gauge ξ = 0, which plays a

privileged role [40], the propagator can be recast in the form

Dµν(p) = −i
Pµν(p)

p2
1

1 + e2

16
√

−p2
, (4.17)

which is suitable to guess the definition of the effective coupling constant.

Let us consider a scattering process in the t-channel or u-channel,
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with −p2 > 0, and where the exchanged photon propagator is given by

(4.17). Then, the one-loop effective coupling can be defined thanks to

e2eff = e2
1

1 + e2

16
√

−p2
. (4.18)

The consequences of this definition have to be discussed in further de-

tails4. Going to euclidian signature for convenience, we define the eu-

clidian propagator

DE
µν(pE) =

PEµν(pE)

p2E +Π(pE)
, Π(pE) = e2pE/16, (4.19)

with pE =
√
p2E . Notice that the infrared behaviour of the propagator

is ∝ 1/pE rather than ∝ 1/p2E . However, as underlined in [30, 42], the

perturbative expansion is actually a power series in the adimensional

parameter e2/pE . This is seen for instance in (4.17). Hence, the results

of the expansion should be trusted at best if pE ≫ e2.

As a result, what really matters is the value of the ratio of the coupling

constant squared with respect to the momentum scale of the process

pE. This is a guiding principle in order to build an effective coupling

constant [43, 44]. Therefore, relying on the definition of the effective

constant in QED3+1 and QCD3+1, whose relevance was emphasised in

[41], we introduce the adimensional effective structure constant at one-

loop in perturbation theory

ᾱ(pE) =
α

pE

1

1 + Π(pE)/p2E
=

α

pE + α/16
, (4.20)

where α = e2. In consequence, the flow of the adimensional structure

constant in the UV leads to an asymptotically free theory. On the con-

trary, in the IR, the effective coupling goes to a constant ᾱ(pE) → 16. In

addition, examining the effective running structure constant (4.20), we

notice that its value is indeed small when pE > e2/16, so that the scale

e2/16 plays the role of an effective “strong coupling scale”. The result is

4This definition is very useful in QED3+1 and provides the same understanding of

the running of coupling as the Gell-mann and Low definition [38,41].
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that the perturbative expansion can be trusted in the large momentum

limit, while the effective coupling grows in the IR. Since the ordinary per-

turbation theory is incomplete [30,42] and due to the qualitative growth

of the effective coupling constant, a non-perturbative behaviour of the

theory is expected at a scale roughly estimated by a perturbative argu-

ment to be close to e2/16. This simple line of reasoning motivates the

study of the low momentum regime of massless QED2+1.

To conclude this introductory section, here is a brief summary of the

results presented in this chapter. Section 4.2 deals with the classical for-

mulation of the theory. Working with a factorized gauge symmetry, we

are facing the particular case of the logarithmic confining electrostatic

potential. The Fourier transform of the x-space potential is found to be

a distribution. The relationship between this distribution and the mass-

less limit of the Fourier transform of the electrostatic potential given

a massive photon is explained section B.1 of Appendix B. Within the

Hamitonian framework, section 4.3 deals with the quantisation of the

theory and the construction of a non-perturbative approximation. In or-

der to look for a stable ground state, a fermionic coherent state, similar

to the BCS superconducting vacuum state, is constructed, inspired by

previous works in QED3+1 and QCD3+1. In section 4.4, we formulate

an integral equation for the vacuum wave function from the require-

ment of the minimization of the energy. This equation is a truncation

of a Schwinger-Dyson equation. An approximate solution to the inte-

gral equation is found, inclusive of the effects of an infinite number of

photon exchanges. The energy density of this condensate is lower than

the energy density of the Fock state, so that the Fock state is expected

to be unstable. There is a spontaneous parity violation with only one

fermion flavour, supporting a similar conclusion by Hoshino and Mat-

suyama [45, 46]. Incidentally, the question of spontaneous parity viola-

tion has also been studied in the context of multi-flavour QED3 (see for

example [47, 48]).

By analysing in section 4.5 the dynamics of the fermions in the conden-

sate, quasi-particles interpreted as constituent fermions are identified.
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The effective energy of a quasi-particle in the condensate is impacted

by its non-perturbative interactions with pairs in the new vacuum. We

observe that a state with a single charged particle is not gauge invari-

ant. The gauge dependence originates from the choice of zero value in

the electrostatic potential energy. However the energy of a particle/anti-

particle pair is not gauge dependent. The divergence of the energy at

zero momentum is a signature for the confinement of dynamical charges,

as confirmed in section 4.6. Subsequently, a Green function interpreta-

tion of the results of the variational analysis is presented in section 4.7.

Treating the residual interactions as perturbations, the analysis is in a

favour of a dynamical mass for the fermions.

By the way, in recent years, the confining property, the dynamical mass,

and related aspects of QED2+1 have been investigated with success by Y.

Hoshino within another framework relying on the study of the position

space fermion propagator [49].

Finally the effect of the condensate on the electromagnetic sector is ad-

dressed in section 4.8. In the approximation considered in the present

work, because of spontaneous parity violation due to pair condensation,

the “magnetic mode excitation” – related to the transverse electromag-

netic polarization – initially massless, appears to have a dynamically

generated mass, which is calculated within an approximation scheme

and in a perturbative setting.

At the very end, section 4.9 is devoted to conclusions.

The conclusions of the next sections have been presented in [50].

4.2 Classical Hamiltonian QED2+1

The analysis starts with the statement of the conventions chosen. In

order to appropriately describe a single fermion flavour, Dirac matrices

are chosen in terms of the Pauli matrices as follows: γ0 = σ3 and γi = iσi
for i = 1, 2, and satisfy the useful properties

Tr(γµγν) = 2ηµν , Tr(γµγνγρ) = −2iǫµνρ, (4.21)
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where the totally anti-symmetric symbol is chosen so that ǫ012 = ǫ012 =

1. The mostly minus signature is chosen for the Minkowski metric, while

an implicit choice of units is done such that ~ = c = 1. As for the

dimensional specificities, in D = 3 space-time dimensions, and in units

of mass M the gauge coupling constant e has dimension [e] = M1/2,

while the gauge and matter fields have dimensions [Aµ] = M1/2 and

[ψ] =M1.

4.2.1 Classical Hamiltonian and the Green function

The classical dynamics is given by the Lagrangian density

L = −1

4
FµνF

µν +
1

2
iψγµ(∂µ + ieAµ)ψ − 1

2
i(∂µ + ieAµ)ψγ

µψ. (4.22)

We shall apply here a factorization of the local gauge transformations

and gauge degrees of freedom, following closely the techniques explained

in [19] for the case of the Schwinger model.

In two space dimensions, the spatial gauge potential can be written5 as

the sum of a longitudinal and a transverse component

Ai(t, ~x) = ∂iφ(t, ~x) + ǫij∂jΦ(t, ~x), (4.23)

where the scalar Φ is related the magnetic field through ∆Φ = B, so

that Φ will be referred to as the “magnetic mode”. Similarly, we also

introduce the decomposition

A0(t, ~x) = a0(t) + ∂iωi(t, ~x). (4.24)

The local gauge parameter may also be decomposed as the sum of its

“global” (by which we mean throughout a space independent but yet

possibly a time dependent gauge transformation parameter) and local

components, α(t, ~x) = β0(t)+ ∂iβi(t, ~x). In order to factorize these local

gauge transformations, the fermion field is “dressed”, in a way completely

analogous to that of reference [17],

χ(t, ~x) = eieφ(t,~x)ψ(t, ~x), (4.25)

5Henceforth, all latin indices are euclidian.



4.2. Classical Hamiltonian QED2+1 73

so that the dressed fermion transforms, under gauge transformations of

general parameter α(t, ~x) = β0(t) + ∂iβi(t, ~x), only by a global (time

dependent) phase change

χ(t, ~x) → e−iβ0(t)χ(t, ~x). (4.26)

Following the study of the Hamiltonian dynamics of constrained systems,

as advocated by Dirac (see for example [3]), we give only a few details of

the constrained analysis which is analogous to the one given in [19]. From

the previous definitions, we obtain the Lagrangian action as a function

of the new configuration space variables

S =
∫
dt

{
− ea0(t)

∫

S1

dxiχ†χ+

∫
dxi
(1
2
iχ†∂0χ− 1

2
i∂0χ

†χ

+
1

2
iχγi∂iχ− 1

2
i∂iχγ

iχ− 1

2
(∂0φ− ∂iωi)∆(∂0φ− ∂iωi)

+e(∂0φ− ∂iωi)χ
†χ− 1

2
∂0Φ∆∂0Φ− 1

2
Φ∆2Φ

−eǫij∂jΦχ̄γiχ
)}
.

In order to study the Hamiltonian structure, we identify the conjugate

momenta

πΦ =
∂L0

∂Φ̇

p0 =
∂L0

∂ȧ0
= 0,

πi =
∂L0

∂ω̇i
= 0

πφ =
∂L0

∂φ̇
= −△ (∂0φ− ∂iωi) + e(χ†χ),

ξ1 =
∂L0

∂χ̇
= −1

2
iχ†,

ξ2 =
∂L0

∂χ̇† = −1

2
iχ,

where we observe that the fermion field is already in Hamiltonian form.

Subsequently, the constraint analysis can be performed in close analogy

with [19], while the first class constraints p0 = 0 and πi = 0 can be
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solved. After this straightforward analysis, the equations of motion of

the sector (φ, πφ) can be used to reduce these phase space variables from

the dynamics. Finally, we obtain the following Hamiltonian action

S =

∫
dt
{∫

d2xi
[
∂0ΦπΦ +

1

2
iχ†∂0χ− 1

2
i∂0χ

†χ]−H
}

(4.27)

where the classical expression of the Hamitonian is

H =

∫
d2xi

{
HF +HΦ +HΦχ

}
, (4.28)

with the Hamiltonian densities

HF =
1

2
χ̄(t, ~x)γi(−i∂i)χ(t, ~x) +

1

2
i∂iχ̄(t, ~x)γ

iχ(t, ~x)

−e
2

2
(χ†χ)(t, ~x)

[
∆−1(χ†χ)

]
(t, ~x), (4.29)

HΦ = −1

2
πΦ(t, ~x)

[
∆−1πΦ](t, ~x) +

1

2
(∆Φ)2(t, ~x), (4.30)

HΦχ = eǫij∂jΦ(t, ~x)(χ̄γ
iχ)(t, ~x). (4.31)

On account of the factorisation of local gauge transformations and gauge

degrees of freedom, the dynamics is still constrained by the condition

stemming from the time-dependent “global” gauge transformations with

α(t) = β0(t) which is analogous to the spatially integrated Gauss law,
∫

d2xiχ†(t, ~x)χ(t, ~x) = 0, (4.32)

which is first class and generates the remaining global gauge transfor-

mations. Examining more closely the terms in (4.28), we observe that

the Hamiltonian density HF describes the dynamics of the fermion with

its Coulomb interaction, while HΦ characterizes the dynamics of the

magnetic mode sector. The Hamiltonian density HΦχ accounts for the

interaction between the fermion current and the magnetic mode.

In order to understand the quantum theory, we first need to study the

peculiarities of the Green function of the Laplacian in two spatial dimen-

sions. A peculiarity of this 2 + 1-dimensional theory is that the Green

function of the spatial Laplacian, conveniently expressed in x-space and

verifying ∆G(~x, ~y) = δ(2)(~x−~y), is the tempered distribution defined by

G(~x, ~y) =
1

2π
ln(µ|~x− ~y|), (4.33)
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where the mass scale µ > 0 is introduced for dimensional consistency. In

classical electrostatics, this Green function is proportional to the electro-

static potential of a pointlike particle in two space dimensions. In three

space dimensions, the electrostatic potential of an infinite charged wire

would have a similar expression. The scale µ is therefore understood as

parametrizing the possible choices for a “zero of the potential”, and will

be kept arbitrary in the sequel. When the potential tends to a constant

at spatial infinity, it is allowed to choose this constant to be zero. On

the contrary, because the logarithmic Coulomb potential is confining, the

remaining gauge freedom µ has to be considered at all steps of the cal-

culation. In p-space, the presence of µ can be interpreted as an infrared

regulator, as we shall see.

Because the Green function is divergent at large as well as at small

distances, we may expect to encounter also infrared divergences in the

quantum formulation of the theory. We will pay special attention to the

classical large distance divergence of the Green function. The inverse of

the Laplacian is obtained by the convolution integral

(∆−1f)(~x) = 〈G(~x, ·), f(·)〉 =
∫

dyi
1

2π
ln(µ|~x− ~y|)f(~y). (4.34)

Adding a constant to (4.33), amounts to redefining µ by a multiplicative

constant. For technical reasons, we should like to express the Green

function in Fourier space. However the Fourier transform of the Green

function is not a function, but rather a distribution. The naive expression

for the Fourier transform, namely ∝ 1/|~p|2, would indeed fail to converge

in the infrared region. After a careful integration, one finds the identity

1

2π
ln(

eγ

2
µ|~x− ~y|) = Gǫ(~x, ~y)−

1

2π
ln(ǫ/µ), (4.35)

where γ is the Euler constant6. Here we have defined

Gǫ(~x, ~y) =

∫

|~p|<ǫ

d2pi

(2π)2
−1

|~p|2 (e
i~p.(~x−~y) − 1)

+

∫

|~p|>ǫ

d2pi

(2π)2
−1

|~p|2 e
i~p.(~x−~y), (4.36)

6This integration is performed with the help of
∫∞
0

ln yJ1(ay)dy =

(−1/a)(ln(a/2) + γ), where J1 is a Bessel function of the first kind.
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where ǫ > 0 can take any value. The above is an exact result involv-

ing the arbitrary parameter ǫ playing the role of a cut-off which makes

the integral convergent close to the infrared singularity at p = 0. The

last definition (4.36) depends on the free parameter ǫ because we have

2π∂ǫGǫ(~x, ~y) = −1/ǫ. This dependence is, however, cancelled by the

logarithmic term in (4.35).

4.2.2 The Hadamard finite part

In order to relate the discussion of the previous section to the mathemat-

ical theory of distributions, we will use here variables without physical

dimensions. Restoring physical dimensions is straightforward.

In a renowned work [51], Hadamard introduced very useful generalized

functions, among them the so-called Hadamard finite part P 1
x2 , which

is related to the more popular Cauchy principal value P 1
x by the “weak”

derivative

d

dx
P 1

x
= −P 1

x2
. (4.37)

This definition of the finite part is valid for functions of one variable, but

it may be generalized to functions of two variables.

Following [52], it is interesting to introduce here a two-dimensional ver-

sion of the finite part of 1/x2, by defining its action on a test function

φ,

(P 1

|~p|2 , φ) =
∫

|~p|<1
d2pi

φ(~p)− φ(~0)

|~p|2 +

∫

|p|>1
d2pi

φ(~p)

|~p|2 , (4.38)

where the presence of the value 1 in the bounds of the integration domain

is conventional. Let us denote the Fourier transform of the Green func-

tion of the Laplacian as F [G](~p). We can now show that the generalized

function −P 1
|~p|2 is the “generalized” Fourier transform of the Green func-

tion, by proving that the Hadamard finite part solves −|~p|2F [G](~p) = 1.

To do so we calculate
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(|~p|2P 1
|~p|2 , φ) = (P 1

|~p|2 , |~p|
2φ)

=

∫

|~p|<1
d2pi

|~p|2φ(~p)− [|~p|2φ(~p)]|0
|~p|2 +

∫

|p|>1
d2pi

|~p|2φ(~p)
|~p|2

=

∫
d2piφ(~p) = (1, φ) (4.39)

giving the solution F [G](~p) = −P 1
|~p|2 . This relation rephrases the results

found in (4.35) and (4.36). Hence, the upshot is that the apparent IR

divergent “Coulomb” propagator in p-space, proportional to 1
|~p|2 has not

to be considered as a function. On the contrary, it should be understood

as a generalized function, that is to say the Hadamard finite part P 1
|~p|2 .

In the sequel we will see that in the absence of IR divergences, this last

prescription reduces to the usual multiplication by the function 1
|~p|2 .

Although instructive, the previous mathematical treatment could ob-

scure one’s physical intuition. It may be enlightening to relate the

Hadamard finite part representation of the Fourier space Green func-

tion to a more usual treatment of the infrared singularities. As is often

done, a “ad hoc” mass term could be included for the photon to consider

then the p-space Green function 1
|~p|2+µ2 . The massless limit of the mas-

sive Green function could provide a more intuitive picture. B.1 explains

how the Hadamard representation is recovered from the zero-mass limit

of the massive Green function.

4.3 Quantum Hamiltonian and ordering prescrip-

tion

The careful and detailed definition of the Coulomb Green function will

prove to be most relevant to the understanding of singularities in the

quantum theory. Given the classical formulation, a quantum version

can be formulated. Following the correspondence principle, classical

(graded) Poisson brackets are replaced by quantum commutators or anti-
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commutators. This formal quantisation should be performed in both the

fermionic and the bosonic sectors of the theory.

4.3.1 Magnetic sector

As pointed out previously, the field Φ(t, ~x) is related to the magnetic

field by the identity ∆Φ = B. In order to quantise this sector, we decide

to expand the magnetic mode and its momentum conjugate in terms of

the plane wave Fock modes as follows, at the reference time t = 0,

Φ(0, ~x) =

∫
d2ki

2π
√
2

−i

|~k|3/2
[
φ(~k)ei

~k.~x − φ†(~k)e−i~k.~x
]
, (4.40)

πΦ(0, ~x) =

∫
d2ki

2π
√
2
(−|~k|3/2)

[
φ(~k)ei

~k.~x + φ†(~k)e−i~k.~x
]
, (4.41)

where the creators and annihilators satisfy [φ(~ℓ), φ†(~k)] = δ(2)(~ℓ − ~k),

in order that fields obey the Heisenberg algebra [Φ(0, ~x),ΠΦ(0, ~y)] =

iδ(2)(~x − ~y). In a familiar way, the bosonic Fock algebra is represented

in a Fock space, with the annihilators satisfying φ(~ℓ)|0〉 = 0. Since the

quantisation procedure introduces ordering ambiguities, we decide to de-

fine the normal ordered form of a composite operator, in the magnetic

sector, as the operator written with all φ†’s to the left of all φ’s. There-

fore, the normal ordered “magnetic” Hamiltonian, associated to a “free”

field,

ĤΦ =

∫
d2xi :

{
− 1

2
πΦ(0, ~x)

[
∆−1πΦ](0, ~x) +

1

2
(∆Φ)2(0, ~x)

}
: (4.42)

may be expanded in modes as follows:

ĤΦ =

∫
d2ki|~k|φ†(~k)φ(~k). (4.43)

Treating ĤΦ as the free Hamiltonian and the other terms as interactions,

considered in perturbation theory, we define the interaction picture field

as

ΦI(t, ~x) = eiĤΦtΦ(0, ~x)e−iĤΦt. (4.44)
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Using customary techniques, the free magnetic mode propagator, i.e. in

absence of interaction, can be computed, producing the Feynman prop-

agator

〈0|TΦI(x0, ~x)ΦI(0,~0)|0〉 =
∫

d3k

(2π)3
e−ik0x0+i~k.~x

|~k|2
i

(k0)2 − |~k|2 + iǫ
.(4.45)

The p-space propagator is illustrated by a curly line,

being a useful representation of the momentum space two-point function

of the gauge invariant and physical magnetic mode. Incidentally, after

the elimination of the longitudinal gauge mode, the spatial gauge po-

tential is AiT = ǫij∂jΦ. Using this last identity and translational invari-

ance, we recover the transverse photon propagator Dij(x0 − y0, ~x− ~y) =

〈0|TAiT (x0, ~x)A
j
T (y

0, ~y)|0〉 with

Dij(x0, ~x) = i

∫
d3k

(2π)3
e−ik0x0+i~k.~x δij − kikj/~k2

(k0)2 − |~k|2 + iǫ
(4.46)

as follows from the identity ǫimkmǫjnkn = ~k2δij − kikj (for a reference

concerning Coulomb gauge QED2+1, see [40]).

4.3.2 Fermionic sector

In order to quantise the fermion sector, the classical spinor field is ex-

panded in the basis of solutions of the free Dirac equation. The classical

solutions to the Dirac equation in 2 + 1 dimensions are constructed in

terms of the spinors

u(kµ) =

(
k2+ik1√
k0−m√
k0 −m

)
, v(kµ) =

(
k2+ik1√
k0+m√
k0 +m

)
, (4.47)
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normalized as u†(kµ)u(kµ) = v†(kµ)v(kµ) = 2k0 > 0 and where kµ =

(k0, ~k). In the massless limit, the Dirac spinors u(kµ) = v(kµ) are degen-

erate so that the mode expansions of the fields at xµ = (x0, ~x) become

χ(xµ) =
∫

d2ki

2π
√
2k0

[
b(~k)e−ik.x + d†(~k)eik.x

]
u(~k), (4.48)

χ†(xµ) =
∫

d2ki

2π
√
2k0

[
b†(~k)eik.x + d(~k)e−ik.x

]
u†(~k), (4.49)

where the last two expressions have to be evaluated at k0 = |~k|, whereas

k.x = k0x0 − ~k.~x stands for the Minkowski inner product. Quantisation

is performed at the reference time x0 = 0. Following from the algebra of

classical Dirac brackets, in the quantised theory the fermionic creators-

annihilators have to verify {b(~p), b†(~q)} = δ(2)(~p − ~q) = {d(~p), d†(~q)},
while the fermionic Fock vacuum |0〉 is chosen to be annihilated by b(~p)

and d(~p). Let us consider an operator AB, bilinear in b, d and their

adjoints. Its contraction is defined to be,

AB = 〈0|AB|0〉 (4.50)

while its normal ordered form, where the creators are positioned to the

left of all annihilators, is given by

: AB := AB −AB. (4.51)

With the help of these notations, the Hamiltonian operator is defined

by a normal ordered form of the classical expression, where each charge

density factor χ†χ is also written in the normal order on its own:

Ĥ =

∫
d2xi

{1
2
: χ̄(t, ~x)γi(−i∂i)χ(t, ~x) : +

1

2
: i∂iχ̄(t, ~x)γ

iχ(t, ~x) :
}

+ĤC (4.52)

where

ĤC = −e
2

2

∫
d2xid2yi(: χ†χ :)(0, ~x)G(~x, ~y)(: χ†χ :)(0, ~y). (4.53)

The Green function of the Laplacian G(~x, ~y) is given by (4.33). Gauss’

law constraint, which involves the charge operator

Q̂ =

∫
d2xi : χ†(0, ~x)χ(0, ~x) :, (4.54)



4.3. Quantum Hamiltonian and ordering prescription 81

annihilates the physical, i.e. gauge invariant quantum states, Q̂|phys〉 =
0, that is to say, the physical states should contain an equal number of

fermions and anti-fermions, so that these states are electrically neutral.

This constraint may be connected with the problem of the divergences at

large distances which is a typical concern in 2+1 dimensional gauge the-

ories. Let us explain how with an elementary argument. It is noteworthy

that the classical electrostatic energy of a single pointlike charge is in-

frared divergent due to the logarithmic behaviour of the Green function.

However, the electrostatic potential of a system made of two opposite

pointlike charges is well behaved at large distances, because it is propor-

tional to

lnµ|~x− ~x1| − lnµ|~x− ~x2| = ln
|~x− ~x1|
|~x− ~x2|

, (4.55)

where ~x1 and ~x2 are the positions of the two opposite charges. This

classical argument strongly suggests that gauge invariant states should

not suffer difficulties in the infrared region. Accordingly, when ĤF acts

on a gauge invariant state, namely a state with a vanishing total charge,

the result is not affected by the transformation G(~x, ~y) → G(~x, ~y) + cst,

given the specific ordering of the charge density operators in the Coulomb

Hamiltonian.

Thus, when we consider states containing an equal number of particles

and anti-particles, we may simply substitute the naive expression for the

Green function

G(~x, ~y) =

∫

(∞)

d2pi

(2π)2
−1

|~p|2 e
i~p.(~x−~y), (4.56)

apparently infrared divergent, in the formula for the quantum Hamilto-

nian ĤF . We may expect that no gauge dependence will occur due to the

specific ordering prescription, provided that ĤF acts on physical states.

However this will not be true in the case of a single charged particle or

anti-particle, as will be seen in the next section.
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4.4 Fermion condensate in massless QED2+1

Because a non trivial vacuum structure is expected from the classical

features of the theory, we would like to investigate the possibility of a

pair condensation mechanism in the vacuum. The approach followed here

puts forward an expression of a trial state which is likely to provide a sat-

isfactory approximation of the exact vacuum state. The developements

are somehow inspired by the microscopic theory of low temperature su-

perconductivity. We will try to argue that the choice is sufficiently flexi-

ble to provide a consistent approximation of the non-perturbative nature

of the vacuum state. The freedom introduced by the trial state is associ-

ated to a “wave function” which is to be determined through a procedure

of minimization of the total energy, in the presence of the Coulomb inter-

action. Interestingly, a very similar variational procedure, non explicitely

Lorentz covariant, was very recently undertaken by Reinhardt et al. in

the case of Hamiltonian QCD3+1 in the Coulomb gauge [53,54], opening

the door to a novel approach. This “Hartree-Fock” procedure has the

avantage to provide a consistent framework to the approximation.

By the way, a different strategy to probe the non-perturbative effects

could rely on the functional formulation of quantum field theory. From

this point of view, the problem would be to find a solution to the

Schwinger-Dyson equations, with a specific truncation scheme and gauge

fixing. Although these ideas might seem unrelated, we show that the

problem to find a wave function minimizing the energy gives rise to an

integral equation which can be formulated as Schwinger-Dyson equation

for the fermion propagator.

Inspired by the techniques developped in [55–58], which resulted in a

successful description of non-perturbative properties of the pion [59] and

in a close analogy with the Bardeen-Cooper-Schrieffer ground state of a

superconductor, we now introduce the coherent superposition

|Ψ〉 = 1

N(Ψ)
exp [−

∫
d2xid2yi Ψ̃(|~x− ~y|) : χ̄(~x)χ(~y) :]|0〉, (4.57)

where Ψ̃(|~x|) is a function describing the distribution in space of conden-

sate pairs. Because of its convenience, it is advantageous to write the
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previous definition in momentum space. To do so, we perform a Fourier

transform and find the expression

|Ψ〉 = 1

N(Ψ)
exp

∫
d2pi Ψ(|~p|)b†(~p)d†(−~p)|0〉, (4.58)

containing an arbitrary number of fermion/anti-fermion pairs of oppo-

site momenta. Accordingly, it is guaranteed that the wave function is

invariant under the spatial translations. The associated dimensionless

wave function in momentum space Ψ(p) = Ψ(|~p|) is chosen to be in-

variant under rotations in the plane. Because this function is complex

valued, we can express it as the product of a modulus and a phase:

Ψ(p) = |Ψ(p)|exp iφ(p) where p = |~p|. The purpose of our analysis is

to determine if the dynamics triggers a pair condensate, whose profile is

described by the wave function Ψ(p) in p-space.

As a means to compute the normalization of the trial state, the integral

over the momenta may be discretized, allowing to express the exponen-

tial as an infinite product. The normalisation of each of these factors

may then be calculated individually and the continuum limit be taken

subsequently. For the sake of completeness, the normalization of the

coherent superposition of pairs

N(Ψ) =
∏

pi

√
1 + |Ψ(p)|2, (4.59)

may be computed, the continuous product being approximated by a dis-

cretization of the momentum space into a lattice. For further use, let us

define the functions of p = |~p|

α(p) =
1√

1 + |Ψ(p)|2
, β(p) =

Ψ(p)√
1 + |Ψ(p)|2

, (4.60)

which can be associated to an angle Θ(p) defined by the relations cosΘ(p) =

α(p) and sinΘ(p) = |β(p)|. Consequently, the trial state (4.58) may be

formulated as a product of normalized factors

|Ψ〉 =
∏

pi

[
α(p) + β(p)b†(~p)d†(−~p)

]
|0〉. (4.61)
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These definitions allow to better interpret the trial state as a fermionic

“coherent state”. In order to investigate its content in terms of fermionic

components, we naturally remark now that the following identities:

b(~p)|Ψ〉 = Ψ(p)d†(−~p)|Ψ〉, d(−~p)|Ψ〉 = −Ψ(p)b†(~p)|Ψ〉, (4.62)

are somehow reminiscient of the property of the canonical coherent states,

which are eigenstates of the annihilation operator. This property enjoins

us to define a Bogoliubov transformation of the creators and annihilators

B(~p) = α(p)b(~p)− β(p)d†(−~p), (4.63)

B†(~p) = α(p)b†(~p)− β∗(p)d(−~p), (4.64)

D(−~p) = α(p)d(−~p) + β(p)b†(~p), (4.65)

D†(−~p) = α(p)d†(−~p) + β∗(p)b(~p), (4.66)

which verify B(~p)|Ψ〉 = 0 = D(−~p)|Ψ〉 and satisfy the Fock algebra

{B(~p), B†(~q)} = δ(2)(~p − ~q) = {D(−~p),D†(−~q)} while all other anti-

commutators vanish. In a similar fashion, the inverse relations are pro-

vided by

b(~p) = α(p)B(~p) + β(p)D†(−~p), (4.67)

b†(~p) = α(p)B†(~p) + β∗(p)D(−~p), (4.68)

d(−~p) = α(p)D(−~p)− β(p)B†(~p), (4.69)

d†(−~p) = α(p)D†(−~p)− β∗(p)B(~p). (4.70)

Because the states created by B† and D† carry the same electric charge

as the ones created by b† and d† and diagonalize the fermionic Hamilto-

nian HF up to some residual Coulmb interactions, the former states can

be regarded as physical fermionic particles excited over the condensate.

Consequently it is useful to define a new ordering prescription associ-

ated to the condensate |Ψ〉 of any operator Ô, to be denoted by : Ô :Ψ,

such that all B† and D† operators are positioned to the left of all B

and D operators. Technical tools developped in [56] can simplify the

computations dramatically, as we shall outline briefly.

Considering a bilinear operator AB in these fermionic creation and an-

nihilation operators, one may change the ordering prescription thanks to
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the formula

: AB : = : AB :Ψ +ÂB, ÂB = 〈Ψ|AB|Ψ〉 − 〈0|AB|0〉 (4.71)

which will be used in the sequel in order to calculate the necessary matrix

elements. Given the definition of the Bogoliubov operators, the mode

expansions of the fermionic fields at xµ = (0, ~x) are modified. Thus, a

substitution gives readily the following expansions:

χ(0, ~x) =
∫

d2ki

2π
√
2k0

[B(~k)N1(k)u(~k) +D†(−~k)N2(k)u(−~k)]ei~k.~x,

χ†(0, ~x) =
∫

d2ki

2π
√
2k0

[B†(~k)u†(~k)N †
1(k) +D(−~k)u†(−~k)N †

2(k)]e
−i~k.~x.

For simplicity, the following matrices, whose definition are specific to the

representation chosen for the Dirac matrices,

N1(k) = α(k) + β∗(k)γ0, N †
1(k) = α(k) + β(k)γ0, (4.72)

N2(k) = α(k) − β(k)γ0, N †
2(k) = α(k) − β∗(k)γ0, (4.73)

are introduced. Being equipped with suitable tools, we may now envisage

to compute the average kinetic and interaction energy of the state |Ψ〉.
Since we work in a space of infinite volume the most favourable state will

be the one minimizing the energy per unit volume. More precisely, we

would like to calculate the energy density of the coherent state (4.58),

as given by

E =
〈Ψ|ĤF |Ψ〉
(2π)2δ

(2)
(p)(0)

, (4.74)

where (2π)2δ
(2)
(p)(0) is the spatial “volume” and δ

(2)
(p)(p) the Dirac delta

function in momentum space, in order to find the best wave function

Ψ(p) minimizing this ratio. The computation of the energy density of the

condensate requires the use of the Wick theorem to evaluate the product

of normal ordered factors appearing in the Coulomb Hamiltonian

: χ†
α(~x)χα(~x) : G(~x, ~y) : χ

†
β(~y)χβ(~y) := (4.75)

: χ†
α(~x)χα(~x)G(~x, ~y)χ

†
β(~y)χβ(~y) : + : χ†

α(~x)χα(~x)G(~x, ~y)χ
†
β(~y)χβ(~y) :

+ : χα(~x)χ
†
α(~x)G(~x, ~y)χβ(~y)χ

†
β(~y) : +χ

†
α(~x)χα(~x)G(~x, ~y)χ

†
β(~y)χβ(~y)
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where the fields have been implicitly expressed at x0 = 0 = y0. It is

necessary to compute the mean value of the last operator in the vacuum

state |Ψ〉. To do so, following [55, 60], we may take advantage of the

newly defined ordering prescription and express these same operators in

the order : :Ψ, so that the calculation of the matrix elements is made

simpler. Making use of the relation (4.71), we find

〈Ψ| : χ†
α(0, ~x)χβ(0, ~y) : |Ψ〉 = ̂

χ†
α(0, ~x)χβ(0, ~y) (4.76)

〈Ψ| : χα(0, ~x)χ†
β(0, ~y) : |Ψ〉 = ̂

χα(0, ~x)χ
†
β(0, ~y) (4.77)

and

〈Ψ| : χ†
α(0, ~x)χα(0, ~x)χ

†
β(0, ~y)χβ(0, ~y) : |Ψ〉

=
̂

χ†
α(0, ~x)χβ(0, ~y)

̂
χα(0, ~x)χ

†
β(0, ~y), (4.78)

where α and β denote the spinor components. For conciseness, useful

formulas to calculate the above expressions can be found in B.2. Theses

results lead to the average energy

〈Ψ|ĤF |Ψ〉 = (2π)2δ
(2)
(p)(0)

∫
d2ki

(2π)2
2|~k| |Ψ(k)|2

1 + |Ψ(k)|2 + 〈Ψ|ĤC |Ψ〉, (4.79)

where the infrared finite mean interaction energy of the condensate is7

〈Ψ|ĤC |Ψ〉 =
− e2

2

∫
d2xid2yi 〈Ψ| : χ†

α(0, ~x)χα(0, ~x) : G(~x, ~y) : χ
†
β(0, ~y)χβ(0, ~y) : |Ψ〉

= − e2

2 (2π)
2δ

(2)
(p)

(0)
∫

d2kid2ℓi

(2π)4
−1

(~ℓ−~k)2

{
1

(1+|Ψ(k)|2)(1+|Ψ(ℓ)|2) ×

×
[
− 2|Ψ(k)||Ψ(ℓ)| cos φ(ℓ) cos φ(k)

+ℓ̂.k̂
(
|Ψ(ℓ)|2 + |Ψ(k)|2 − 2|Ψ(ℓ)||Ψ(k)| sin φ(ℓ) sinφ(k)

)]

+1
2 − 1

2 ℓ̂.k̂
}
. (4.80)

The expression of this mean interaction energy deserves some comments,

because its finiteness is not self-evident. Indeed, the last line of (4.80),

7A term proportional to ℓ̂× k̂ was omitted in this expression. The reason is that

it was shown to vanish after the integral over the relative angle between ~k and ~l.
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involving the factor of 1
2 − 1

2 ℓ̂.k̂ is an infinite constant, corresponding

to the term completely contracted in the last line of (4.75) and which

may be understood as a quantum fluctuation of the vacuum energy. It is

divergent in the ultraviolet but not in the infrared as one can see from the

limit ~k → ~ℓ, so that we choose to regulate it by introducing a momentum

cut-off Λ > 0,

−e
2

2
(2π)2δ

(2)
(p)(0)

∫

|~k|<Λ

d2ki

(2π)2

∫

|~ℓ|<Λ

d2ℓi

(2π)2
−1

(~ℓ− ~k)2
(
1

2
− 1

2
ℓ̂.k̂), (4.81)

In presence of the regulator and since this contribution is independent of

the condensate wave function Ψ(p), we can safely subtract (4.81) from

the Hamiltonian. This contribution is proportional to the bubble dia-

gram

where the exact meaning of this pictorial representation is given in terms

of the Feynman rules listed in B.5.

Regarding the other terms in (4.80), the apparent singularity of the in-

tegral at ~k = ~ℓ, where a denominator vanishes, is resolved because the

denominator appropriately goes to zero at the same time. The infrared

finiteness of the mean Coulomb energy and its independence of the pa-

rameter µ are specifically due to the choice of ordering prescription in

the definition of the Coulomb interaction, which is crucial.

As it happens, the mean energy depends on both the modulus and the

phase of the condensate wave function. However, simple considerations

about the interaction energy can provide information about the influence

of the phase of the wave function on the magnitude of the interaction.

In order to minimize the energy density, we would like to make the

interaction energy (4.80) as negative as possible. A possibility is to re-

quire, separately, a stationary variation with respect to the phase and
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to the modulus of the wave function. We may first consider to choose

the optimal phase of the condensate φ(p) to minimize the Coulomb en-

ergy. Varying 〈Ψ|ĤF |Ψ〉 with respect to φ(p), requires to take simply

sinφ(p) = 0 or cosφ(p) = 0 for any p > 0. Examining (4.80), we notice

that, because ℓ̂.k̂ ≤ 1, the best choice is to maximize cosφ(p), so that

we take φ(p) = 0, leading to a real wave function for the fermion con-

densate. Consequently, we decide to write in the sequel Ψ(p) = |Ψ(p)|
to simplify the expressions.

4.4.1 Integral equation

Having formulated the expression of the expected energy density of the

condensate, a necessary condition for finding an extremum of that quan-

tity is given by the stationary variation of the energy density

δ

δΨ(p)

〈Ψ|ĤF |Ψ〉
(2π)2δ

(2)
(p)(0)

= 0, (4.82)

with respect to the wave function Ψ(p). Dealing with the functional

derivative in the case p 6= 0, the resulting nonlinear integral equation

reads

pΨ(p) = e2

8π2

∫ d2qi

(~q−~p)2 [(1 −Ψ(p)2) Ψ(q)
1+Ψ(q)2

+ q̂.p̂ Ψ(p)Ψ(q)2−1
Ψ(q)2+1

].(4.83)

Owing to the invariance of the wave function under spatial rotations, the

angular integral may be performed explicitly, with the help of formulas

given in B.3, so that the integral equation simplifies to

pΨ(p) = α

∫ +∞

0
dq
[
q
1−Ψ(p)2

|p2 − q2|
Ψ(q)

1 + Ψ(q)2

+
Ψ(p)

2p
(−1 +

p2 + q2

|p2 − q2|)
Ψ(q)2 − 1

Ψ(q)2 + 1

]
. (4.84)

where α = e2/4π. The non-perturbative features of the modelled phe-

nomenon are reflected by the nonlinearity of the integral equation.

Notably, the integration converges in a neighbourhood of q = p thanks

to a cancellation of the two terms in the rhs of (4.84). The reason for
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the convergence at q = p finds its origin in the choice of ordering pre-

scription made for the Coulomb Hamiltonian. Although obtaining an

explicit analytical solution of the equation may be arduous, a property

of the solution can be found without effort. Actually, one may readily

guess that, in order to ensure the convergence of the integral in the limit

p → 0, the wave function should verify Ψ(0) = 1. The solution of the

linearized equation is expected to have a very different behaviour close to

p = 0. The mathematical literature dealing with integral equations does

not provide a suitable analytic method to find a solution to this kind of

very non-linear equation with a singular kernel. As a consequence, we

shall look for a numerical solution.

A possible concern about the integral equation could be the existence

of solutions as the value of the coupling constant varies. To discuss

the dependence on the parameter α, one can try to understand how

the equation depends on the typical scale of the problem. In fact, it

is possible to express the integral equation in terms of dimensionless

variables, using x = p/α and y = q/α,

xψ(x) =

∫ +∞

0
dy
[
y
1− ψ(x)2

|x2 − y2|
ψ(y)

1 + ψ(y)2

+
ψ(x)

2x
(−1 +

x2 + y2

|x2 − y2|)
ψ(y)2 − 1

ψ(y)2 + 1

]
, (4.85)

where, in terms of the wave function appearing in (4.83), ψ(x) = Ψ(αx).

The conclusion is that, whatever the value of α, we have only one equa-

tion to solve, which does not depend on α. Actually, a solution to (4.85)

is only a function of the argument x = p/α. As a consequence, the

required function Ψ(p) solving (4.84) is then simply obtained by the for-

mula Ψ(p) = ψ(p/α). Contrary to the case of QED3+1, the rescaled

solution Ψ(λp) with λ > 0 does not obey the same equation as Ψ(p), i.e.

equation (4.84). It is only a solution in a theory where e2 is changed to

e2/λ. Therefore Ψ(λp) is not a stationary point of the energy (4.79).

In actual fact, nothing guarantees that the physical solution is Ψ 6= 0,

rather than Ψ = 0. However, we could wonder if the condensate is

energetically more favourable compared to empty Fock vacuum. If a

non trivial solution to (4.84) exists, its energy density will be negative
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and hence lower than the energy density of the Fock vacuum |0〉, as we

shall briefly show. The substitution of the integral equation (4.83) in

the formula for the energy density E = 〈Ψ|ĤF |Ψ〉/(2π)2δ(2)(p)(0) given by

(4.79), where the infinite constant (4.81) has been subtracted out, gives

the negative value

E =
e2

2

∫
d2kid2ℓi

(2π)4
−1

(~ℓ− ~k)2

Ψ(k)Ψ(ℓ)

(1 + Ψ(k)2)(1 + Ψ(ℓ)2)
(Ψ(k)k̂ −Ψ(ℓ)ℓ̂)2.

Since this energy density is less than the energy density of the Fock

vacuum, we may expect that the Fock vacuum will be unstable to decay

into the condensate state.

4.4.2 Numerical solution

A numerical iteration procedure can produce an approximate solution to

the integral equation (4.85), written in the form

ψ(x) = O[ψ](x) (4.86)

where O denotes the nonlinear integral operator which can be read from

(4.85). The numerical recipy consists in finding the best trial function to

solve the integral equation. An analytic formula for the wave function

depending on a series of parameters was guessed and the values of the

parameters were determined by an optimization procedure minimizing

the squared difference between the trial function and the rhs of (4.85)

evaluated on a lattice of points. The approximate solution is illustrated

in Fig. 4.1.

4.4.3 Spontaneous parity violation

In the literature, reliable arguments support the absence of parity viola-

tion (or a parity anomaly) at the perturbative level [61,62], given massless

fermions in the bare Lagrangian8. Nonetheless, it is not unexpected that

8Actually, the bilinear χ̄(x)χ(x) violates parity and time reversal, while it preserves

charge conjugation.
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Figure 4.1: The figure compares the trial function (continuous line) with

the value of the integral on the rhs of (4.85) (dots), as a function of

x = p/α.

non-perturbative effects may dynamically break this discrete symmetry,

as claimed already in [45]. Incidentally, the question of spontaneous par-

ity violation has also been studied in the context of multi-flavour QED3

(see for example [47]).

The expectation value of the parity odd operator : χ̄(x)χ(x) : is van-

ishing in the Fock vacuum |0〉. However, the same is not true for the

pair condensate |Ψ〉. The expectation value in the condensate may be

calculated with the help of (B.13) leading to

〈Ψ| : χ̄(0, ~x)χ(0, ~x) : |Ψ〉 = −
∫

d2pi

(2π)2
2Ψ(p)

1 + Ψ(p)2
(4.87)

= −(
e2

4π
)2
∫ +∞

0

dy

π

yψ(y)

1 + ψ(y)2
. (4.88)
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A quadrature using the numerical approximation for the condensate wave

function gives the following result for the order parameter

〈Ψ|χ̄χ|Ψ〉 ≈ −3.2 · 10−2
( e2
4π

)2
. (4.89)

Hence we conclude that the vacuum |Ψ〉, which is energetically more

favoured, violates parity, as a straightforward consequence of the def-

inition of the coherent state. Incidentally, the reader will notice that

because 〈0| : χ̄(0, ~x)χ(0, ~x) : |0〉 = 0, we have

〈Ψ|χ̄(0, ~x)χ(0, ~x)|Ψ〉 = 〈Ψ| : χ̄(0, ~x)χ(0, ~x) : |Ψ〉. (4.90)

4.5 Definition of the Hamilton operator of the

quasi-particles

The full quantum Hamiltonian is not yet thoroughly specified. Actually,

it may be written completely in terms of the Bogoliubov operators, and

should be defined so that its matrix elements are finite. Given that the

wave function Ψ(p) is real, one finds the exact result

ĤF =
∫
d2pi ω(p)[B†(~p)B(~p) +D†(−~p)D(−~p)] + 〈Ψ|ĤF |Ψ〉+

+2
∫ d2p

1+Ψ(p)2

{
pΨ(p)− e2

8π2

∫ d2qi

(~q−~p)2
[
(1−Ψ(p)2) Ψ(q)

1+Ψ(q)2
+

+q̂.p̂ Ψ(p)Ψ(q)2−1
Ψ(q)2+1

]}
[B†(~p)D†(−~p) +D(−~p)B(~p)]

+ : ĤC :Ψ, (4.91)

where the dispersion relation for the quasi-particles is given by the ex-

pression

ω(p) = p1−Ψ(p)2

1+Ψ(p)2

+ e2

2 P
∫ d2q

(2π)2
4Ψ(p)Ψ(q)+p̂.q̂(1+Ψ(q)2Ψ(p)2−Ψ(p)2−Ψ(q)2)

(~p−~q)2(1+Ψ(p)2)(1+Ψ(q)2)
. (4.92)

The Coulomb interaction Hamiltonian : ĤC :Ψ may not be put into a

simple form. Examining the quantum Hamiltonian more closely, the new

bilinear terms in the first line of (4.91) result from the reorganization of
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the whole Hamiltonian given in (4.52) and (4.53) as a sum of terms in

the normal ordered form associated to the condensate, : :Ψ. Hence, this

reorganization generates diagonal terms multiplied by a new dispersion

relation ω(|~p|) as well as off-diagonal terms. As a consequence of the

integral equation (4.83), the off-diagonal terms in the expression for ĤF ,

which are of the type B†(~p)D†(−~p) or D(−~p)B(~p), vanish so that we

can interpret the function ω(p) as the energy of an excitation of one

“constituent” fermion or “quasi-particle”, B†(~p)|Ψ〉 or D†(−~p)|Ψ〉. The

energy dispersion relation of a quasi-particle may be rewritten as the

sum of a finite and a gauge dependent contribution (the latter being

potentially divergent),

ω(p) = p
1−Ψ(p)2

1 + Ψ(p)2
(4.93)

+
e2

2

∫
d2qi

(2π)2
4Ψ(p)Ψ(q)− 2p̂.q̂(Ψ(p)2 +Ψ(q)2)

(~p − ~q)2(1 + Ψ(p)2)(1 + Ψ(q)2)
(4.94)

+
e2

2
P
∫

d2qi

(2π)2
p̂.q̂

(~p− ~q)2
(4.95)

where the contribution (4.93) is the “corrected” linear dispersion relation

of a relativistic fermion with an asymptotic linear behaviour at large mo-

menta, while the term (4.94) is a pure effect of the presence of the pair

condensate. Actually, the integral (4.94) is convergent whenever p > 0,

but diverges for p = 0.

In order to unravel the low momentum behaviour of the dispersion re-

lation, a closer analysis of the behaviour of this integral at p → 0 is

required. We decide to perform the angular integration and to use a

limited series expansion of the solution for the wave function

Ψ(k) = 1 + Ψ′(0)k + . . . (4.96)

where k = q or k = p is in the interval [0, η], while η is estimated by

looking at the numerical solution. To be more specific, we find that the

linear approximation is valid when η ≈ 0.1α = 0.1(e2/4π). In order to

study the singular contribution as p → 0, we limit the radial integral in

(4.94) to the range |~q| ∈ [0, η]. The integration can then be performed

and the result shows that the divergent contribution of (4.94) behaves
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like

e2

4π

{
1− ln 2 + ln(

p+ η

2p
)− Ψ′(0)2

4
η2 + . . .

}
(4.97)

where the dots mean that we neglected terms vanishing in the limit

p→ 0. The result of this approximation is that in the small p region the

leading (divergent) behaviour of (4.94) is

e2

2

∫
d2qi

(2π)2
4Ψ(p)Ψ(q)− 2p̂.q̂(Ψ(p)2 +Ψ(q)2)

(~p− ~q)2(1 + Ψ(p)2)(1 + Ψ(q)2)
∼p≪η

e2

4π
ln(

η

2p
). (4.98)

Therefore, the conclusion is that the influence of the condensate induces

a divergent contribution to the energy dispersion relation in the infrared

region.

In order to understand the origin of the term (4.95), it may be instructive

to come back to the ordering prescription chosen for the definition of

the Coulomb Hamiltonian of the form − e2

2 ρ∆
−1ρ with ρ = χ†χ. In the

quantum Hamiltonian, each charge density factor was ordered separately,

i.e. we chose to define the Hamitonian as follows : ρ : ∆−1 : ρ : which

had the advantage to remove the gauge dependence.

As may be observed from (4.75), the difference between this prescription

and the choice to order the whole expression : ρ∆−1ρ : is the sum of

a constant term (full contraction) and two bilinear terms. Considering

only the two bilinear terms in (4.75), a straightforward calculation gives

− e2

2

∫
d2xid2yi

[
: χ†

α(~x)χα(~x)G(~x, ~y)χ
†
β(~y)χβ(~y) :

+ : χα(~x)χ
†
α(~x)G(~x, ~y)χβ(~y)χ

†
β(~y) :

]

= e2

2

∫
d2pid2qi

p̂.q̂

(~p− ~q)2

[
b†(~p)b(~p) + d†(−~p)d(−~p)

]
, (4.99)

which is exactly the extra contribution in b†(~p)b(~p) + d†(−~p)d(−~p) re-

maining when Ψ(p) is sent to zero in the expression for (4.91). This

means that the term in (4.95) is only a consequence of the choice of

ordering in the definition of ĤC in (4.53) and hence is not caused by

the presence of the condensate. In fact, the operator (4.99) has to be

understood as the “finite part” and is proportional to the diagram
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where the wavy line is associated to the instantaneous “photon” propa-

gator (similar to the Coulomb gauge photon) as explained in B.4. Inci-

dentally, we may now notice that an infrared divergence appears if we

made the choice of the naive Green function as in (4.56). However the

Fourier transform of the Green function is actually given by the finite

part

e2

2
P
∫

d2qi

(2π)2
p̂.q̂

(~p− ~q)2
(4.100)

as explained before. We find

e2

2

∫
|~p−~q|>µ

d2qi

(2π)2
p̂.q̂

(~p−~q)2 + e2

2

∫
|~p−~q|<µ

d2qi

(2π)2
p̂.q̂−1
(~p−~q)2

= e2

4π

[
ln 2p

µ + ln 2− 1
]

(4.101)

where p = |~p| and q = |~q|. The details of the calculation leading to

(4.101) are given in B.4. The scale µ is related to the scale present in

the logarithm in the Coulomb Green function in x-space. The relation

between the scales is given by (4.35).

Without further ado, we may now study the small p behaviour of the

dispersion relation, by summing (4.97) and (4.101), to note that the

divergent contributions coming from the logarithms cancel each other.

This is confirmed by the numerical evaluation of the dispersion relation

as plotted in Fig. 4.2.

To disentangle this situation, we may decide to separate the contribution

coming from the condensate and the one originating from the self-energy

as follows

ω(|~p|) = ω0(|~p|) + σ(|~p|), (4.102)

with

σ(|~p|) = e2

2
P
∫

d2qi

(2π)2
p̂.q̂

(~p− ~q)2
. (4.103)
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Figure 4.2: The “renormalized” dispersion relation in unit of α = e2/4π,

where we chose µ = 0.1e2/4π.

The contribution from the condensate causes a low momentum diver-

gence of the energy as we explained before. This behaviour is illustrated

in Fig. 4.3, where the rise of the energy as p → 0 is viewed as the sig-

nature of the confinement of charges. This will be made clear when we

will study the energy of a state made of a pair of opposite charges.

0.2 0.4 0.6 0.8 1.0
p�Α
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2.0

Ω0HpL�Α

Figure 4.3: The dispersion relation ω0 (thick line) in units of α = e2/4π.

The dashed line represents the contribution of the term (4.94) to the

dispersion relation.
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In conclusion, we found that the contribution to the dispersion relation

coming from the interaction with the condensate and the contribution

coming from the self-energy had the exact opposite behaviour at small

momentum. Hence a complete screening of the low momentum diver-

gence is observed. The result is that ω(0) takes a finite value, which

depends on the scale µ. This is not unexpected since the self-energy

takes into account the interaction of the particle with its own Coulomb

potential which is µ-dependent. By the way, a similar screening of di-

vergencies is described in [63], based on a different treatment.

The dependence on µ is the fingerprint of the confining electrostatic po-

tential, and is justified in the expression for the energy of a single charged

particle because, by itself a state composed of a single charged particle is

not gauge invariant. Nevertheless, in complete analogy with the classical

situation, we will show hereafter that the mean energy of a particle/anti-

particle pair is independent of µ and it is neither UV divergent, nor IR

divergent. In section 4.7, we will show that we can understand ω0(p) as

the energy at a pole of the fermion propagator dressed by the Coulomb

interaction.

4.6 Residual Coulomb interactions

As a matter of fact, the energy of a state composed of a single charged

particle depends on the scale µ present in the Coulomb Green function.

The reason for this observation is that such a state is not physical. On

the contrary, a charge neutral state is physical and should have a gauge

invariant energy. The goal of this section is to show that a bound state

of the form

|f〉 =
∫

d2kif(|~k|)B†(~k)D†(−~k)|Ψ〉, (4.104)

has a finite Coulomb energy. The pair state can be interpreted as a

positronium, at rest in the “center of mass” frame. As a perspective,

once the value for the bound state energy is established, a “Schrödinger”
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equation can be derived from the variation

δ

δf∗(k)
〈f |Ĥ0|f〉
〈f |f〉 = 0, (4.105)

where the magnetic mode sector is ignored and considering a simplified

Hamiltonian

Ĥ0 = ĤK+ : ĤC :Ψ, (4.106)

with

ĤK =

∫
d2piω(|~p|)[B†(~p)B(~p) +D†(−~p)D(−~p)]. (4.107)

The solution of this integral equation would provide the wave function

f(|~p|) and the energy of the lowest excitation of the bound state. For in-

stance, the numerical procedure could involve a Gauss-Laguerre quadra-

ture method, which leads to a non-trivial problem, even in absence of a

pair condensate. However we leave this possibility for future work.

In order to evaluate the energy of the bound state and before calculating

the Coulomb interaction energy, a first trivial result is

〈f |ĤK|f〉
(2π)2δ

(2)
(p)(0)

=

∫
d2ki

(2π)2
2ω(|~k|)|f(k)|2 (4.108)

where we decide to explicitly single out two terms in the dispersion re-

lation

ω(|~k|) = ω0(|~k|) +
e2

2
P
∫

d2qi

(2π)2
k̂.q̂

(~k − ~q)2
, (4.109)

which corresponds to a separation of the µ-dependent parts contributing

to the dispersion relation.

4.6.1 Calculation of the residual Coulomb interactions

In order to compute the residual Coulomb interactions given by : ĤC :Ψ,

we will provide the details essential to obtain the necessary expressions.
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A little algebra shows that

: χ†(~x)χ(~x) :=
∫

d2kid2ℓi

(2π)2
√

2|~k|2|~ℓ|
ei(
~ℓ−~k).~x

{
M1(~k, ~ℓ)B

†(~k)B(~ℓ)−M2(~k, ~ℓ)D
†(−~ℓ)D(−~k)

+M3(~k, ~ℓ)B
†(~k)D†(−~ℓ) +M4(~k, ~ℓ)D(−~k)B(~ℓ)

}
(4.110)

where we have defined the following functions of the wave function of

the condensate

M1(~k, ~ℓ) = u†(~k)u(~ℓ)[α(k)α(ℓ) + β(l)β(k)]

−u†(~k)u(−~ℓ)[α(k)β(l) + α(ℓ)β(k)]

M2(~k, ~ℓ) = u†(~k)u(~ℓ)[α(k)α(ℓ) + β(ℓ)β(k)]

+u†(~k)u(−~ℓ)[α(ℓ)β(k) + α(k)β(ℓ)]

M3(~k, ~ℓ) = u†(~k)u(~ℓ)[α(k)β(ℓ) − α(ℓ)β(k)]

+u†(~k)u(−~ℓ)(α(k)α(ℓ) − β(k)β(ℓ)]

M4(~k, ~ℓ) = u†(~k)u(~ℓ)[α(ℓ)β(k) − α(k)β(ℓ)]

+u†(~k)u(−~ℓ)[α(k)α(ℓ) − β(k)β(ℓ)].

For the sake of completeness, we also give the following results

u†(~k)u(~ℓ) =
√
|~k|.|~ℓ|(1 + k̂.ℓ̂+ iℓ̂× k̂), (4.111)

u†(~k)u(−~ℓ) =
√
|~k|.|~ℓ|(1− k̂.ℓ̂− iℓ̂× k̂). (4.112)

We shall now consider the interactions involving only one pair. Among

all the possible Coulomb interactions, we find that the only terms con-

tributing to (4.105) are

− e2

2

∫
d2xid2yi

[
: (: χ†(~x)χ(~x) : G(~x, ~y) : χ†(~y)χ(~y) :) :Ψ

]
1P

= − e2

2 P
∫ d2ℓid2kid2pi

(2π)2
−1
|~p|2

2√
2|~ℓ|2|~k|2|~ℓ+~p|2|~k−~p|{

−M1(~k,~k − ~p)M2(~ℓ, ~ℓ+ ~p)×

×B†(~k)D†(−(~ℓ+ ~p))D(−~ℓ)B(~k − ~p) (4.113)

+M3(~k,~k − ~p)M4(~ℓ, ~ℓ+ ~p)×
×B†(~k)D†(−(~k − ~p))D(−~ℓ)B(~ℓ+ ~p)

}
. (4.114)
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The following useful matrix element of the residual Coulomb Hamiltonian

can be separated in two terms, corresponding to the first and second

terms, respectively (4.113) and (4.114),

〈f |(: ĤC :Ψ)1P |f〉
(2π)2δ

(2)
(p)(0)

= T1 + T2, (4.115)

where T1 corresponds to the one Coulomb photon exchange inside the

pair

and where T2 is associated to the annihilation

of the pair into a Coulomb photon. We choose to study only the contribu-

tion of T1, because T2 is independent of the choice of zero of the potential

µ. The inclusion of T2 in the discussion is nonetheless straightforward.

We find a result with a potential IR divergence at ~k = ~ℓ, however the

integration is considered as the “finite part”,

T1 =
e2

2
P
∫

d2ℓid2ki

(2π)4
−1

(~k − ~ℓ)2
f∗(|~k|)f(|~ℓ|)×

×
[
1 + ℓ̂.k̂ − 2

ψ(ℓ)2 + ψ(k)2 − 2ℓ̂.k̂ψ(ℓ)ψ(k)

(1 + ψ(ℓ)2)(1 + ψ(k)2)

]
. (4.116)

In the last equation (4.116), we have split the contribution coming from

the pair condensate from the one already present in the Fock vacuum.

The need for the “finite part” introduces a µ dependence in the expres-

sion. One may notice that the contribution coming from the condensate

in (4.116) vanishes when ~k = ~ℓ, while the term 1 + ℓ̂.k̂ is divergent if
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we set µ = 0. The equation (4.116), when evaluated with Ψ(p) = 0,

is completely analogous to the formula found in [55] which analysed a

similar situation in 3+1 dimensions in the so-called Limited Fock Space

Approximation. However, in 3 + 1 dimensions, no infrared divergence

is expected when ~k = ~ℓ because the double angular integration makes

the singularity integrable. In this case the IR singularity behaves like

ln |k+lk−l |.
Considering the sum of the kinetic and interaction mean energies, we

find

E = 〈f |ĤK |f〉
(2π)2δ

(2)
(p)

(0)
+ T1 =

∫
d2ki

(2π)2
2ω0(|~k|)|f(k)|2 +

+ e2

2

∫
d2ℓid2ki

(2π)4
−1

(~k−~ℓ)2

{
f∗(|~k|)f(|~ℓ|)×

×
[
1 + ℓ̂.k̂ − 2ψ(ℓ)

2+ψ(k)2−2ℓ̂.k̂ψ(ℓ)ψ(k)
(1+ψ(ℓ)2)(1+ψ(k)2)

]
− 2ℓ̂.k̂|f(|~k|)|2

}
. (4.117)

where the potentially divergent terms in the second term of (4.109) and in

(4.116) have cancelled each other. The result is that the finite part is not

needed to render the value of the integral infrared finite. We emphasize

once more that the mean energy is now independent of the scale µ.

Remarquably, from the contribution of the dispersion relation, only the

term ω0(k), which is pictured in Fig. 4.3, remains. The divergence at

k → 0 of ω0(k) is a signature of confinement, since it forces the wave

function f(k) to vanish at small momentum. We can symmetrize the

last term in (4.117) and using the identity,

|f(k)|2 + |f(ℓ)|2 = |f(k)− f(ℓ)|2 + f∗(l)f(k) + f∗(k)f(ℓ) (4.118)

we may reformulate the energy of the pair state as

E =
∫

d2ki

(2π)2 2ω0(|~k|)|f(k)|2 + e2

2

∫
d2ℓid2ki

(2π)4
−1

(~k−~ℓ)2

{
f∗(k)f(ℓ)×

×
[
1− ℓ̂.k̂ − 2ψ(ℓ)

2+ψ(k)2−2ℓ̂.k̂ψ(ℓ)ψ(k)
(1+ψ(ℓ)2)(1+ψ(k)2)

]
− ℓ̂.k̂|f(k)− f(ℓ)|2

}
.(4.119)

This result allows us to conclude that the energy of a state made of a

pair of opposite charge particles is indeed independent of the choice of

zero of the potential. Therefore we confirm here that the energy of a

gauge invariant state is perfectly infrared finite and gauge independent.
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By the same token, the examination of the energy of a pair state (4.119)

confirms the confinement scenario. Since the potential energy between

the constituent fermions 2ω0(|~p|) is divergent at ~p = ~0, a likely and rea-

sonable assumption is that the wave function of the pair, f(|~p|), vanishes

in order to solve the bound state equation

(2ω0(k) −E)f(k) + e2

2

∫
d2ℓi

(2π)2
−1

(~k−~ℓ)2 ×

×
{
f(ℓ)

[
1− ℓ̂.k̂ − 2ψ(ℓ)

2+ψ(k)2−2ℓ̂.k̂ψ(l)ψ(k)
(1+ψ(ℓ)2)(1+ψ(k)2)

]

−ℓ̂.k̂[f(k)− f(ℓ)]
}
= 0, (4.120)

obtained from (4.105). The study of the energy levels of this bound state

necessitates the numerical solution of this eigenvalue integral equation.

Beforehand, the interaction with the magnetic mode should be probably

included in the variational principle in order to get a more consistent

approximation. The numerical resolution of this equation is left open for

future work.

4.7 Green function interpretation

4.7.1 Schwinger-Dyson equation

The Hamilton formalism has made clear that a variational procedure

was an appropriate way to obtain the structure of the fermionic vacuum.

As a complementary point of view on the condensation mechanism, we

may understand the integral equation (4.83) as a (truncated) Schwinger-

Dyson equation [57]. More precisely, the idea is to choose an ansatz for a

p-space propagator, and to identify the relationship between a Schwinger-

Dyson equation and the integral equation for the wave function. To do

so, let us introduce the following formula for the fermion propagator in

the condensate

S(3)(p0, ~p) =
i

/p− Σ(p) + iǫ
(4.121)

with the parametrization Σ(p) = |~p|A(p) + ~p.~γB(p). The functions

A(p) = A(|~p|) and B(p) = B(|~p|) depend only on the modulus of ~p.
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When we substitute the parametrization in the Feynman propagator, we

obtain

S(3)(p0, ~p) = i
p0γ0 − ~p.~γ(1 +B(p)) + |~p|A(p)

(p0)2 − |~p|2(A2(p) + (1 +B(p))2) + iǫ
. (4.122)

As a consequence, the calculation of the equal time propagator in the

condensate

S(~p) =

∫
dp0

2π
S(3)(p0, ~p) (4.123)

allows one to the obtain a relation between the wave function of the

condensate and the functions A(p) and B(p). More precisely, we find

the relation between the wave function of the condensate and the ansatz

functions

1

2

A(p) + p̂.~γ(1 +B(p))√
A2(p) + (1 +B(p))2

=
1

2

[ 2Ψ(p)

1 + Ψ(p)2
+

1−Ψ(p)2

1 + Ψ(p)2
p̂.~γ
]
, (4.124)

by integrating (4.123) using the parametrization (4.122) and identifying

the result with the equal time propagator obtained from (B.14). This

allows to identify

A(p)

1 +B(p)
=

2Ψ(p)

1−Ψ(p)2
. (4.125)

In order to fully understand A(p) and B(p) in terms Ψ(p), we need to

study the following Schwinger-Dyson equation

−iΣ(~p) =

∫
d3q

(2π)3
i

(~p − ~q)2
(ieγ0)S(3)(q)(ieγ0), (4.126)

which can be pictorially represented as

=
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where the Feynman rules for the associated diagrammatic formulation

are listed in the B.5. The corresponding integral equation may be rewrit-

ten

pA(p) + ~p.~γB(p) =
e2

8π2

∫
d2qi

(~q − ~p)2

[ 2Ψ(q)

1 + Ψ(q)2
+

1−Ψ(q)2

1 + Ψ(q)2
q̂.~γ
]
,(4.127)

with p = |~p| and where the integral should be understood as the Hadamard

finite part. If we multiply (4.127) by

N1(~p) =
(1 +B(p)) + p̂.~γA(p)√
A2(p) + (1 +B(p))2

=
1−Ψ(p)2

1 + Ψ(p)2
+ p̂.~γ

2Ψ(p)

1 + Ψ(p)2
,(4.128)

and take the trace, we obtain the integral equation (4.83), as could have

been anticipated,

4pΨ(p) =
e2

2π2

∫
d2qi

(~q − ~p)2
[(1 −Ψ(p)2)

Ψ(q)

1 + Ψ(q)2
+ q̂.p̂ Ψ(p)

Ψ(q)2 − 1

Ψ(q)2 + 1
],

where we used in the calculation the relation

A(p)√
A2(p) + (1 +B(p))2

=
2Ψ(p)

1 + Ψ(p)2
. (4.129)

Similarly, we can express the function A(p) in terms of the wave function

of the condensate. Taking the trace of (4.127) over the spinor indices,

we find

|~p|A(p) = e2

(2π)2
P
∫

d2qi
1

(~p− ~q)2
Ψ(q)

1 + Ψ(q)2
. (4.130)

Finally, we notice that the pole structure of (4.122) provides the energy

of the particle excitations: |~p|
√
A2(p) + (1 +B(p))2. In order to obtain

the formula for the dispersion relation, we can add ~p.~γ to (4.127) and

multiply it by

N2(~p) =
A(p) + p̂.~γ(1 +B(p))√
A2(p) + (1 +B(p))2

=
2Ψ(p)

1 + Ψ(p)2
− 1−Ψ(p)2

1 + Ψ(p)2
p̂.~γ,(4.131)

and finally take the trace. The result of this short manipulation gives

|~p|
√
A2(p) + (1 +B(p))2 = p1−Ψ(p)2

1+Ψ(p)2

+ e2

2 P
∫ d2qi

(2π)2
4Ψ(p)Ψ(q)+p̂.q̂(1−Ψ(p)2)(1−Ψ(q)2)

(~p−~q)2(1+Ψ(p)2)(1+Ψ(q)2)
, (4.132)
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which is exactly the dispersion relation ω(p) found before in (4.92). In

conclusion, we obtain that the energy of the quasi-particles created by

B† and D† corresponds exactly to the energy of the physical pole of

the propagator of the fermion field in the pair condensate. Hence this

result supports the interpretation obtained before. In order to complete

the analogy, we can reformulate the energy of the condensate in the

diagramatic expression

E = ~p.~γ −~p.~γ +i
[ ]

+

which can be readily used to obtain the Schwinger-Dyson equation (4.126).

The last term in the sum above is a constant divergent bubble diagram

that was subtracted from the Hamiltonian when we discussed the value

of the energy density of the condensate.

It should be emphasized that the approach developped here does not

rely on the dimensional regularisation used more or less implicitly in the

literature, but on the exact Fourier transform of the x-space Coulomb

Green function.

4.7.2 Two-point function

In the previous section, an ansatz technique allowed to obtain a Schwinger-

Dyson equation for the fermion propagator. However it is not clear why

the propagator obtained in this manner has a gauge dependent pole. In

order to explain this issue, it may be more instructive to understand the

origin of the “constituent” fermion propagator in the condensate from

the Fourier transform of a x-space correlation function. Indeed, the re-

lationship between the propagator found above and the approximate (or

perturbative) evaluation of a time ordered correlation function is not

cristal clear. The Green function of the equation (4.122), obtained in

the p-space in the last section, obviously exhibits a pole whose position
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is gauge dependent. The energy at the pole corresponds to the energy of

a single excitation B†(~p)|Ψ〉 or D†(−~p)|Ψ〉, in expectation value. From

this point of view, it is not a surprise since a charged state is not gauge

invariant, however we may raise the question of the mass of these con-

stituent fermions. This puzzle has its origin in the Coulomb interactions.

From a perturbative perspective, this feature can be understood as fol-

lows. The total quantum Hamiltonian can be split in

Ĥ = Ĥ0 + ĤI
C + ĤΦ + ĤI

Φχ, (4.133)

where ĤΦ is given by (4.43), and where the Hamiltonian ĤI
Φχ is obtained

thanks to the Hamiltonian density (4.31), while

Ĥ0 =

∫
d2piω0(p)[B

†(~p)B(~p) +D†(~p)D(~p)], (4.134)

ĤI
C =

∫
d2piσ(p)[B†(~p)B(~p) +D†(~p)D(~p)]+ : ĤC :Ψ, (4.135)

where the first term (4.134) is bilinear and gauge invariant, while the

second term (4.135) is also separately gauge invariant and contains a

bilinear and quadrilinear term. The reason for this separation is the

ordering prescription taken for the Coulomb Hamiltonian, which insures

that the sum of the two gauge dependent terms in (4.135) is in fact gauge

invariant, when acting in the physical state space.

In a perturbative treatment, one should consider Ĥ0 as the “free” Hamil-

tonian, whereas ĤI
C and ĤI

Φχ as the “interaction” Hamiltonians. In order

to define a gauge invariant two-point function in the condensate, we de-

cide to define the interaction picture field

χI(t, ~x) = eiĤ0tχ(0, ~x)e−iĤ0t. (4.136)

The time ordered and gauge invariant two-point function in the conden-

sate can be calculated thanks to

S(t, ~x) = 〈Ψ|χI(t, ~x)χ̄I(0,~0)|Ψ〉Θ(t)− 〈Ψ|χ̄I(0,~0)χI(t, ~x)|Ψ〉Θ(−t),

where Θ(t) is the Heaviside step function. An explicit calculation allows

to express the Fourier transform of the two-point function

S(k0, ~k) =
∫

dt d2xi eik
0t−i~k.~xS(t, ~x) (4.137)
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which is represented by a fermion line with a dark blob

and given precisely by the expression

S(k0, ~k) = i
k0γ0 − Z(k)[~k.~γ −m(k)]

(k0)2 − ω2
0(k) + iǫ

, (4.138)

with k = |~k| and

Z(k) =
1− ψ2(k)

1 + ψ2(k)

ω0(k)

k
, m(k) =

2kψ(k)

1− ψ2(k)
. (4.139)

The behaviour of the functions m(k) and Z(k) is illustrated in the figures

(4.4a) and (4.4b). As expected, the dynamical mass tends to zero at large

momentum, while the function Z(k) goes to unity. Whereas the value

m(0) is finite, we observe that Z(k) exhibits an integrable logarithmic

divergence as k → 0.
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Figure 4.4: The functions m(k), and Z(k) in units of e2/4π.

4.8 Correction to the magnetic mode propagator

While the previous sections treated the fermion sector in the sole pres-

ence of Coulomb interactions, the present section aims at examining the
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influence of the dynamics of the fermions on the propagation of the mag-

netic mode. The non-perturbative solution in the fermionic sector will

serve the zeroth-order contribution in the perturbative expansion in the

interactions with the magnetic sector.

In order to understand the effect of the fermion condensate and of parity

violation on the magnetic mode sector, it is instructive to review the one-

loop correction to the photon propagator in the absence of a condensate,

with a massless fermion. Indeed, UV divergences in perturbation the-

ory, due to the large momentum regime, will affect the magnetic mode

progator, irrespective of the presence or not of the condensate.

In relativistic covariant perturbation theory, the leading order correction

is the amputated diagram

iΠµν =

which reads

iΠµν(p) = −
∫

d3ℓ

(2π)3
e2Tr[γµ

/p+ /ℓ

(p + ℓ)2 + iǫ
γν

/ℓ

ℓ2 + iǫ
]. (4.140)

The integral is linearly divergent in power counting. While dimen-

sional regularisation provides a finite result without a divergent con-

tribution [30], we prefer here to use a cut-off regulator, because it is

more instructive in this context, but at the expense of breaking gauge

symmetry. After a Wick rotation ℓ0 → iℓ0E , and with the help of the

Feynman parameter trick, we obtain the result

iΠµν(p) = − ie2

3π2
Ληµν − ie2

16
(ηµνp2 − pµpν)

1√
−p2 − iǫ

, (4.141)

where the linearly divergent contribution in the first term is a gauge

symmetry breaking term, whereas the second term is the finite result
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also given by the dimensional regularisation procedure9. The cut-off

dependent term has to be subtracted exactly thanks to a covariant mass

counter term in the Lagrangian, leaving no ambiguous finite term in

order to preserve the Ward identity.

As a lesson from the form of the vacuum polarization contribution in

the absence of the condensate, we expect also a linear divergence in the

analogue diagram for the magnetic mode in the condensate. Namely, we

are interested in the two-point function of the magnetic mode

T 〈Ω|Φ(x0, ~x)Φ(y0, ~y)|Ω〉 (4.142)

with |Ω〉 the full interacting vacuum. Working in p-space, we decide

to perform a perturbative expansion, with the interaction Hamiltoni-

ans ĤI
Φχ and ĤI

C . Hence the Feynman rule for the vertex between the

magnetic mode and the current

is given by: eǫijpjγj, when the magnetic mode momentum (p0, ~p) is

incoming.

With the help of this Feynman rule, it is possible to formulate the first

loop correction to the free propagator. In the presence of the condensate,

the first contribution to vacuum polarization is

−iπ(p0, ~p) =

9Here, p = (p0, ~p) is the 3-vector associated to the momentum of the incoming

photon.
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where the fermion propagator in the condensate is the one given by

(4.138). The polarization modified by the presence of the condensate

can be written as the product

π(p0, ~p) = |~p|2π0(p0, ~p), (4.143)

where the quantity of interest is the loop integral

−iπ0(p
0, ~p) = (4.144)

= −
∫

d3ℓ
(2π)3

2e2 ×
{
ℓ0(p0+ℓ0)+Z(ℓ)Z(|~p+~ℓ|)[2ℓ2 sin2 θ−~ℓ.(~ℓ+~p)−m(ℓ)m(|~p+~ℓ|)]

[(p0+ℓ0)2−ω2(|~p+~ℓ|)+iǫ][(ℓ0)2−ω2(ℓ)+iǫ]

}

with ℓ = |~ℓ| and where θ is the relative angle between the loop momentum
~ℓ and the incoming spatial momentum ~p. Denoting the free magnetic

mode propagator by

D(p0, ~p) =
1

|~p|2
i

(p0)2 − |~p|2 + iǫ
, (4.145)

we can compute the full propagator as the sum of the one particle irre-

ducible diagrams

D(p0, ~p) + (D(−iπ)D)(p0, ~p) + (D(−iπ)D(−iπ)D)(p0, ~p) + . . .

= i
{
|~p|2
[
(p0)2 − |~p|2 − π0(p

0, ~p) + iǫ
]}−1

. (4.146)

Hence the investigation for a dynamical mass of the magnetic mode pho-

ton requires to solve the condition

(p0)2 − |~p|2 − π0(p
0, ~p) = 0, (4.147)

in order to find the position of a pole of order one in the resummed

propagator. If we can find a solution to (4.147) in perturbation theory,

we will be able to write a dispersion relation p0(|~p|), and will define a

running mass squared as

M2(|~p|) =
(
p0(|~p|)

)2
− |~p|2. (4.148)

As we will show, the solution verifies, to leading order in perturbation

theory,

(p0)2 = |~p|2 + e4π′(p0, ~p) ≈ |~p|2 + e4π′(|~p|, ~p), (4.149)
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where we used π0(p
0, ~p) = e4π′(p0, ~p), so that the running mass squared

is approximately given by

M2(|~p|) =
(
p0(|~p|)

)2
− |~p|2 ≈ e4π′(|~p|, ~p). (4.150)

The value that we will be interested in, is M2(0) ≈ e4π′(0,~0). Hence, due

to the technical difficulties, we shall only calculate the value of π0(0,~0).

Because the computation of π0(p
0, ~p) involves a function known only

numerically, we shall evaluate its first term in a power expansion in |~p|,

π(p0, ~p) = |~p|2
[
π0(p

0,~0) +O(|~p|)
]
. (4.151)

The expression of π0(p
0,~0) in (4.144) involves an integral over the tem-

poral and spatial loop momentum of a non explicitly covariant function,

so that Wick rotation does not seem to be appropriate. Nevertheless the

Feynman parameter technique can be used and, afterwards, the expres-

sion can be simplified thanks to the shift ℓ0 → ℓ0 − xp0. The ℓ0-integral

is convergent and can be calculated by evaluating the residue of a double

pole, leaving an integral over the spatial momentum ~ℓ. Performing the

angular integral, the result is an integral over ℓ = |~ℓ|,

−iπΛ0 (p
0,~0) =

−ie2

2

∫ 1

0
dx

∫ Λ

0

ℓdℓ

2π

−Z2(ℓ)ℓ2 − 2Z2(ℓ)m2(ℓ)

[ω2
0(ℓ)− x(1− x)(p0)2]3/2

, (4.152)

whose linear divergence was regularised with a cut-off |~ℓ| < Λ. The

divergent behaviour lies of course in the ultraviolet regime and is exactly

the same as in the absence of a condensate. Neglecting the condensate,

that is to say putting Ψ = 0, we find the exact result

−i|~p|2πΛ0 (p0,~0)
Ψ=0
= |~p|2−ie2

2

∫ 1

0
dx

∫ Λ

0

ℓdℓ

2π

−ℓ2
[ℓ2 − x(1− x)(p0)2]3/2

,

= |~p|2−ie2
√

−(p0)2

16
+ |~p|2 ie

2

2

Λ

2π
. (4.153)

Because we expect that, in the large momentum limit, the theory with

the condensate yields the same result as ordinary perturbative QED2+1,

the requirement of finiteness of this diagram gives us an unambiguous
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way to subtract the linear divergence of the same diagram in presence

of the condensate. Hence, using (4.153), the renormalization of π0(p
0,~0)

gives a finite result

−iπreg0 (p0,~0) = lim
Λ→+∞

{
− iπΛ0 (p

0,~0)− ie2

2

Λ

2π

}
, (4.154)

obtained thanks to the addition of a counter term proportional to Φ∆Φ

in the Lagrangian. Setting p0 = 0 in order to evaluate the mass of the

magnetic mode, a numerical integration yields the result

πreg0 (0,~0) = − e2

4π

∫ +∞

0
dℓ
{ℓ− ω(ℓ)

ω(ℓ)
+
ℓZ2(ℓ)m2(ℓ)

ω3(ℓ)

}

≈ 0.14
( e2
4π

)2
. (4.155)

The subtraction of the linear divergence from this one loop diagram

leaves a finite contribution proportional to e4. Other finite contributions

proportional to e4 will come from diagrams containing more loops. How-

ever, it is not excluded that two loop diagrams give rise to a divergent

dynamical mass to the magnetic mode. Among them, the potentially

problematic diagram denoted by −iπ(1)(p0, ~p),

−iπ1(p0, ~p) =

with an intermediate Coulomb propagator, could provide an additional

contribution to the mass of the magnetic mode. Because of the inter-

mediate Coulomb propagator i/|~p|2, we could expect that −iπ(1)(0,~0) =

Cst 6= 0, so that it gives rise to a pole in the dynamical mass as |~p| → 0.

However, this is not the case. The diagram is of the form

−iπ(1)(p0, ~p) = (−iκ(p0, ~p))
i

|~p|2 (−iκ(p0, ~p)), (4.156)
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where the first order in the expansion in |~p| and p0 can be found thanks

to

κ(p0, ~p) ≈ |~p|2 e
2

4π
κ0, (4.157)

with the numerical coefficient given by the quadrature

κ0 =

∫ +∞

0
ℓdℓ Z2(ℓ)

m(ℓ)− ℓm′(ℓ)/2

ω3
0(ℓ)

≈ 0.58. (4.158)

Defining π(1)(p0, ~p) = |~p|2π(1)0 (p0, ~p), we find the contribution to the mass

of this diagram to be

π
(1)
0 (0,~0) ≈ 0.34

( e2
4π

)2
. (4.159)

We may find the approximate value of the mass of the magnetic mode

by summing the contributions coming from the two diagrams considered,

i.e. M2(0) ≈ 0.48(e2/4π)2.

4.9 Conclusions

Thanks to the factorization of local gauge transformations and of gauge

degrees of freedom, as well as the dressing of the fermion field, the dynam-

ics of massless QED2+1 with one flavour of electrons could be reduced to

the interaction of a dressed fermion field with a physical magnetic scalar

mode. The decomposition of the gauge field and the factorization of

the local gauge symmetry rendered manifest the relevance of the gauge

invariant magnetic scalar, understood as the only propagating gauge in-

variant electromagnetic degree of freedom.

In the fermionic sector, a ground state of the BCS type was shown to

be energetically more favourable than an “empty” Fock state. Further-

more, the wave function of the pair condensate was found by solving an

integral equation, including non-perturbatively the effects of Coulomb

interactions. As a result, the pseudo-particle excitations above the con-

densate, namely the constituent fermions, exhibit a peculiar dispersion

relation, with a divergent behaviour at low momentum, being a signature
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for the confinement of charged states. This interpretation was confirmed

by the study of the energy of a bound state of two of these constituent

fermions.

Due to pair condensation, parity symmetry is spontaneously broken.

Hence, the propagation of the magnetic mode excitations is affected

by the interactions with the pair condensate. Starting from the non-

perturbative result for the ground state, we decided to expand in pertur-

bation the effects of the residual Coulomb interactions and the interac-

tions between the magnetic mode and the fermion current. Although the

complete loop calculation seems to be too involved, the corrections to

the magnetic mode propagator from the first relevant diagrams indicate

the dynamical generation of a mass for the magnetic mode.

Among the drawbacks of the variational approach used here, the dif-

ficulty to evaluate the accuracy of the implied approximation is a dis-

advantage. In contradistinction to a perturbative treatment, no power

expansion in a small parameter is performed to obtain the ground state.

It is the form of the pair condensate state which dictates the form of

the integral equation to be solved. Hence, in order to improve the reli-

ability of the approximation, the flexibility of the ansatz wave function

could be increased. As a perspective, it would be instructive to study

the possibility of a condensation of magnetic modes, in interaction with

condensed fermion pairs. This idea has been explored in a recent work

in the case of QCD3+1, in a “quenched” approximation of QCD3+1 [53].

Due to the factorization of the local gauge symmetry, the formulation

used in this work has lost manifest Lorentz covariance, although it re-

mains covariant under spatial translations and rotations. It is challenging

to understand how the equations are changed under a Lorentz boost. We

leave this analysis for a further work. Nevertheless, one conclusion seems

to have been established definitely by the present work. The well-known

exact solution to the Schwinger model, namely massless QED1+1, shows

that as soon as the gauge coupling constant is turned on however small its

value, massless quantum electrodynamics in two spacetime dimensions

is not a theory of interacting (and gauge non invariant) electrons and

photons, but rather is a theory of a (gauge invariant) free massive pseu-

doscalar particle, namely essentially the electric field. Likewise massless
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quantum electrodynamics in three spacetime dimensions with a non van-

ishing gauge coupling constant however small its value, is not a theory of

interacting (and gauge non invariant) electrons and photons, but rather is

a theory of a (gauge invariant) massive magnetic mode scalar interacting

with (gauge invariant) neutral paired electron-positron states. Further-

more, parity is spontaneously broken dynamically, while charged states

cannot be separed at large distances and remain confined in the neutral

paired electron-positron states.
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CHAPTER 5

Fermion condensation in 2 + 1 dimensions in a constant

magnetic field

5.1 Introduction

The aim of this chapter is to describe the influence of an external homo-

geneous magnetic field on massless fermions in 2 + 1 dimensions. As we

have seen in the last chapter, because of the attractive interactions, a

condensate of particle/anti-particle pairs is energetically more favourable

than the perturbative vacuum in massless QED2+1 in the absence of a

magnetic field. Furthermore, it is also expected from the literature that

under the effect of a constant magnetic field, the ground state charge

density is non vanishing. The pairing structure of the vacuum becomes

therefore non-trivial (for a study with two fermion flavours see [64]).

In the presence of one flavour of massive fermions, a vacuum charge

density is induced, as is well-known in the context of fermion fraction-

ization [65,66], whereas similar conclusions were obtained by computing

the effective action in QED2+1 [67–69]. However, the case of a massless

117
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fermion is intriguing. Indeed, if we compute the vacuum charge density

for a massive fermion, the charge density will only be proportional to

the sign of the fermion mass but otherwise independent of the value of

that mass. Hence, the case of a massless fermion remains ambiguous.

It is natural to wonder if there exists a quantisation where the ground

state charge density is vanishing in some way. In order to clarify this

situation, we shall study the features of the lowest energy state in the

presence of one massless fermion flavour, in the Hamiltonian formalism.

The outline of the chapter is as follows. First, section 5.2 presents the

classical solutions to the Dirac equation for one flavour of electrons in

the external field. The relevant features of the spectrum, such as the

asymmetry, will be emphasized. Next, the quantisation of the fermion

field will be performed in section 5.3. The intuitive picture about the

form of the Dirac spectrum in the absence of a magnetic field is shown to

be modified by the “zero-energy” sector. Furthermore, this zero-energy

level may contain excitations corresponding to the quantum analogue of

electrons at rest. We will take this opportunity to detail their interpre-

tation in terms of coherent states.

Subsequently, section 5.4 will address the issue of the gauge invariance of

the vacuum state in the case of massless fermions, leading to a specific

study of the vacuum structure in section 5.5. Finally, results will be

summarised in section 5.6.

Before introducing the quantum model, we shall firstly provide a brief

description of the dynamics of a classical spinless particle in a constant

magnetic field. The understanding gained from the classical analysis will

guide our intuition for the quantum dynamics.

5.1.1 Classical particle in an homogeneous magnetic field

The preliminary study of the classical dynamics of a non-relativistic

pointlike charged particle will render manifest some of the features of

the quantum version of the problem. Following references [70, 71], we
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consider the dynamics as given by the Lagrangian

L =
1

2
m~̇x2 + e~̇x. ~A(~x) (5.1)

where the symmetric gauge, Ai(~x) = −B
2 ǫijx

j is chosen for the vector

potential. Among the constants of motion, the conserved quantities,

related to the space translation symmetry,

qi = mẋi − eBǫijx
j = pi −

eB

2
ǫijx

j (5.2)

are the components of the analogue conserved momentum, while the

canonical momenta conjugate to the xi’s are

pi = mẋi − eB

2
ǫijx

j . (5.3)

This observation will be crucial in the analysis of the quantum version

of the model where the distinction between these two definitions of mo-

menta is important in order to define properly the operators associated

to spatial translations. The simple features of the classical translation

group will be complicated in the quantum model, due to the definition

of the canonical momenta pi.

Concerning the classical equations of motion, their solutions are easily

found to correspond to the cyclotron orbits of frequency ωc = B/m given

by

x1(t) =
q2
eB

+R cosωc(t− t0), (5.4)

x2(t) = − q1
eB

−R sinωc(t− t0), (5.5)

where R and t0 are integration constants. The conserved quantities qi
are indeed related to the spatial coordinates of the “guiding center” of

the cyclotron orbits, which are obviously constants of motion. This is

somehow surprising because there are built as conserved quantities asso-

ciated to magnetic translations. The conserved energy1 of the classical

solution

E =
m

2
~̇x2 =

m

2
R2ω2

c , (5.6)

1It is well-known that the Lorenz force does not work.
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is constant in time and depends only on the parameters describing the

radius of the cyclotron motion. Trivially the state of minimal energy

E = 0 is given by an electron at rest, placed arbitrarily on the plane.

On the contrary, the minimal energy states in the relativistic version of

the quantum model have an extremely rich structure.

The energy spectrum will be quantised in Landau levels in the quantum

theory. As a matter of fact, the position of the center of the orbit does

not change the value of the energy. Hence we may expect a degeneracy

related to the position of the magnetic center in the spectrum of the

quantum model, which is indeed a classical interpretation of the physical

reason for the infinite degeneracy in each Landau level. In the circular

gauge, a conserved quantity is the angular momentum, itself given by

the sum of two terms of opposite signs

Lang = x1p2 − x2p1 =
1

2eB
(q21 + q22)−

eB

2
R2, (5.7)

where we can notice that the coordinates of the magnetic center position

rMC
1 = q2/eB, rMC

2 = −q1/eB (5.8)

explicitely contribute to the conserved angular momentum with a posi-

tive sign, while the radius of the cyclotron orbit contributes with a neg-

ative sign. Hence the conserved angular momentum may be expressed

as a two-dimensional wedge product

Lang = ~rMC ∧ ~q −mωcR
2, (5.9)

where ~q plays the role of a momentum of the magnetic center in the

first term and where the second term is the expression of the angular

momentum of a particle on a circular orbit with angular frequency ωc.

This feature finds an analogue in the quantum version of the model,

where these two terms will be separately quantised in integer units.

Finally whereas it is noticeable that the classical equations of motion do

not change if we perform another gauge choice, the definition of the an-

gular momentum is however not invariant under a gauge transformation.

The next section will analyse the case of a massive spin 1/2 particle in

an homogeneous magnetic field, in the framework of the Dirac equation,

so that the model will also involve anti-particles.
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5.2 Solutions to the Dirac equation in a mag-

netic field

After the review of the classical motions, the quantum dynamics of a

single Dirac fermion can be analysed. In order to express the Dirac

equation, a choice of gauge is necessary to account for the presence of

a constant magnetic field. Because of the absence of an electric field,

we have immediately A0 = 0. The experience gained by solving the

“ordinary” non-relativistic Landau problem [72] tells us to prefer the

so-called symmetric gauge to the Landau gauge A1(~x) = −Bx2 and

A2(~x) = 0. The latter leads to a lack of normalisability and localizability

of the states, which renders the physical interpretation difficult. On the

contrary, the symmetric gauge A1(~x) = −B
2 x

2 and A2(~x) = B
2 x

1 with

B > 0, leading to normalizable and localized wave functions, circumvents

the difficulties of interpretation. The Dirac equation

[iγµ(∂µ + ieAµ)−m]ψ = 0 (5.10)

is formulated with the following representation γ0 = σ3 and γi = iσi for

i = 1, 2. In the sequel all indices are euclidian. We consider a static

solution ψ(t, ~x) = φ(~x)exp (−iEt). Hence the equation takes the form

Mφ(~x) = 0

with

M =

(
(E −m) −i(p̂1 +

eB
2 x̂

2)− (p̂2 − eB
2 x̂

1)

−i(p̂1 +
eB
2 x̂

2) + (p̂2 − eB
2 x̂

1) −(E +m)

)

where we denoted for simplicity p̂i = −i∂/∂xi. Because we expect to

obtain the eigenstates thanks to an algebraic procedure, we introduce

the same definitions for the chiral Fock operators as in the ordinary

Landau problem,

âi =
1
2

√
eB(x̂i + 2i

eB p̂i), â†i =
1

2

√
eB(x̂i − 2i

eB
p̂i) (5.11)

â± = 1√
2
(â1 ∓ iâ2), â†± =

1√
2
(â†1 ± iâ†2) (5.12)
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verifying independent bosonic Fock algebras: [âi, â
†
j ] = δij and [â±, â

†
±] =

1, while all the other commutators vanish2. The algebras can be rep-

resented thanks to the normalized Fock states |n+, n−〉 = |n+〉 ⊗ |n−〉,
where |n±〉 = (â†±)n±√

n±!
|0〉. The eigenvalue problem can be reformulated as

(
(E −m)

√
2Be a†−

−
√
2Be a− −(E +m)

)
φ(~x) = 0. (5.13)

Considering the case of positive mass m > 0 and magnetic field B > 0,

we find that the normalizable eigenstates are of two types. The solutions

in the symmetric spectrum are

φ(m)
n+,n−(~x) = NE

( √
2Be(n−+1)

−E+m 〈x1, x2|n− + 1, n+〉
〈x1, x2|n−, n+〉

)
(5.14)

with the eigenvalues satisfying E2 −m2 − 2Be(n− + 1) = 0, and where

NE is a normalisation factor. The single solution which is “unpaired” is

φ(0)n+
(~x) =

(
〈x1, x2|0, n+〉

0

)
, (5.15)

and has positive eigenvalue E = m. Of course, if we change the sign of

the mass and take m < 0, the unpaired solution has a negative energy

E = −|m|. We observe a discrete infinite degeneracy in n+ = 0, 1, 2, . . .

in both the cases E 6= 0 and E = 0. These infinitely degenerate levels

can be interpreted as “relativistic Landau levels”. A crucial observation

is that there is an asymmetry in the spectrum of the Dirac operator in

the constant magnetic field. In the sequel, only the case m = 0 will be

analysed.

Because of their infinite degeneracy in n+ = 0, 1, 2, . . . , each Landau level

is itself a Hilbert space spanned by the orthonormal basis of (localized)

solutions given above. Any state in a given Landau level may be ex-

panded in series in the orthonormal basis. The states with n− = 1, 2, . . .

and n+ = 0 can be interpreted as a “fuzzy picture” of a classical electron

2Despite the similarity of notation, the operators â1,2 are not related to the ones

of Chapter 3.
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(or positron) making a cyclotron motion of quantised radius around the

origin. Although the basis presented here is very convenient because

of its physical interpretation, one may alternatively choose to construct

another basis in each Landau level.

5.2.1 Massless limit

Since we are interested in the massless limit, we define the following

positive and negative energy solutions

〈x1, x2|φ(±)
n+,n−〉 =

(
∓〈x1, x2|n− + 1, n+〉

〈x1, x2|n−, n+〉

)
(5.16)

with the corresponding energies E±
n− = ±

√
2Be(n− + 1), where n+ and

n− are positive integers. Incidentally, this typical spectrum was mea-

sured experimentally, see for example [73, 74].

The mutually orthogonal solutions of the Dirac equation with non-zero

energy are therefore

φ(±)
n+,n−(t, ~x) = e−iE±

n− tφ(±)
n+,n−(~x) (5.17)

with ||φ(±)
n+,n−(t, ~x)||2 = 2. Moreover, these classical solutions are eigen-

states of the angular momentum operator

L̂ = x1p̂2 − x2p̂1 +
1

2
γ0 = a†+a+ − a†−a− +

1

2
γ0. (5.18)

Hence, the eigenfunctions of the total angular momentum, given by the

sum of the orbital and spin angular momentum, are specified by

L̂〈x1, x2|φ(±)
n+,n− , t〉 = (n+ − n− − 1

2
)〈x1, x2|φ(±)

n+,n− , t〉. (5.19)

To be more explicit, the wave functions [72] can be conveniently ex-

pressed with the help of

〈x1, x2|n+, n−〉 =
(−1)m√

2π

√
eBm!

(m+ |l|)!u
|l|/2eilθe−u/2L|l|

m(u), (5.20)
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which are orthonormal functions where l = n+ − n−, m = min(n−,n+),
and L

|l|
m(u) are the generalized Laguerre polynomials, while

u =
eB

2
~x2, eiθ =

x1 + ix2√
~x2

. (5.21)

Normalizable zero-modes

It is noteworthy that normalizable zero energy eigenstates exist. More

presicely, the infinitely degenerate set of orthonormal functions

φ(0)n+
(~x) =

(
〈x1, x2|0, n+〉

0

)
, (5.22)

for n+ = 0, 1, 2, . . . , spans the “lowest Landau level” (LLL). Their in-

finite degeneracy is related to the infinite magnetic flux through the

plane. In fact, their wave function correspond to concentric orbits, mu-

tually orthogonal. Nonetheless, the circular orbits are not the quantum

mechanical equivalents of the classical cyclotron motion of an electron

in a magnetic field.

Following the article [66], we remark that the matrix γ0 commutes with

the Hamiltonian in the absence of a mass term. Therefore it plays the

role of a conjugation matrix. That is to say, the static non zero energy

states are related by conjugation

γ0φ
(±)
n+,n−(~x) = −φ(∓)

n+,n−(~x), (5.23)

emphasing that a state of energy En− can be sent to a state the opposite

energy −En− . Contrary to the case of the non zero levels, the zero-modes

are self-conjugate

γ0φ
(0)
n+

(~x) = φ(0)n+
(~x). (5.24)

This peculiarity will have noticeable consequences in the (second) quan-

tised theory.
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5.2.2 Magnetic centers and magnetic translations

Because of the external magnetic field, and the gauge choice necessary to

write the minimal coupling, spatial translation invariance takes a partic-

ular form. In order to keep the dynamics unchanged, a space translation

should be accompanied by a gauge transformation. The generators cor-

responding to this simultaneous transformation are

T̂1 = p̂1 −
eB

2
x2 = i

√
eB

2
(a†+ − a+), (5.25)

T̂2 = p̂2 +
eB

2
x1 =

√
eB

2
(a†+ + a+), (5.26)

and commute with the Hamiltonian: [T̂i, Ĥ] = 0, for i = 1, 2. Their expo-

nential realizes the “non-infinitesimal” magnetic translations on the wave

functions. Indeed, the finite transformation, associated to the translation

xi → xi + ai, for i = 1, 2 leaving the dynamics invariant is

ψ(x1, x2) → e−ia1x2eB/2eia
2x1eB/2ψ(x1 + a1, x2 + a2). (5.27)

Because of the combined translation and gauge transformation, magnetic

translations do not commute with each other [T̂1, T̂2] = ieB.

In order to understand the effects of the magnetic translators, it can be

also useful to introduce the magnetic center coordinates (see for example

[71]). To do so, we write

x1 =
1√
2eB

(a− + a†− + a+ + a†+), (5.28)

x2 =
i√
2eB

(a†− − a− + a+ − a†+). (5.29)

Hence we decompose the positions as the sum of two contributions

x1 = x̂1 + η̂1, x2 = x̂2 + η̂2, (5.30)

where the magnetic center coordinates are

x̂1 =
a+ + a†+√

2eB
, x̂2 =

i√
2eB

(a+ − a†+) (5.31)
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and the cyclotron coordinates which describe the relative motion around

the guiding center are

η̂1 =
a− + a†−√

2eB
, η̂2 =

i√
2eB

(a†− − a−). (5.32)

They satisfy [x̂1, x̂2] = −i/eB and [η̂1, η̂2] = i/eB, where 1/
√
eB = ℓB

can be interpreted as a magnetic length. As an immediate consequence,

an uncertainty principle renders a simultaneous measurement of the co-

ordinates of the magnetic center impossible, while the “typical” best pos-

sible accuracy is given by the magnetic length. More explicitely, one can

translate the magnetic center using the magnetic translation operator,

as we can guess from the commutation relations: [x̂i, T̂j ] = iδij .

By the way, we can consider an alternative to span the LLL, taking

advantage of the structure of the translation group on the physical plane.

Since the φ
(0)
n+(~x) are the eigenfunctions of the angular momentum in the

LLL, other wave functions may be built in order to be eigenfunctions

of the translation operators. Strikingly, this construction may only be

achieved in a specific way that we detail here briefly.

The set of canonical coherent states

〈~x|z〉 = e−|z|2/2
∞∑

n+=0

zn+

√
n+!

φ(0)n+
(~x) (5.33)

forms a complete set of wavefunctions, which are somehow the eigen-

states of the “magnetic center position operator”. By construction, they

are the eigenstates of the operator Ẑ = (x̂1 + ix̂2)/
√
2 = ℓBa+,

Ẑ〈~x|z〉 = zℓB〈~x|z〉. (5.34)

The coherent states 〈~x|z〉 have a localized magnetic center, representing

“fat” electrons, while their “thickness” is approximately given by ℓB =

1/
√
eB. However they are not mutually orthogonal3, so that they may

not be used conveniently to perform a mode expansion of the “second

quantised” fields. Being aware of this subtlety, we can proceed to the

quantisation of the Dirac field.

3In a condensed matter context, reference [75] constructed a set of orthogonal and

localized wave functions. Constructing the relationship between this formulation and

the coherent states exposed here is an interesting and unresolved question.
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5.3 Quantisation and mode expansion

Quantisation should realize the equal time anti-commutator algebra

{ψ(t, ~x);ψ†(t, ~y)} = δ(2)(~x− ~y). (5.35)

To do so we introduce naturally the expansion as the sum over the modes

ψ(~x, t) =
∑∞

n+=0 cn+φ
(0)
n+(~x)

+
∑∞

n+,n−=0
1√
2
[bn+,n−e

−iEn− tφ
(+)
n+,n−(~x) + d†n+,n−e

iEn− tφ
(−)
n+,n−(~x)]

of the spinor field and its adjoint as given by hermitian conjugaison

ψ†(~x, t) =
∑∞

n+=0 c
†
n+φ

(0)∗
n+ (~x)

+
∑∞

n+,n−=0
1√
2
[b†n+,n−e

iEn− tφ
(+)∗
n+,n−(~x) + dn+,n−e

−iEn− tφ
(−)∗
n+,n−(~x)],

where, due to the orthonormality and completeness properties of the clas-

sical solutions, the fermionic oscillators satisfy independent Fermionic

Fock algebras

{cn+ ; c
†
n′
+
} = δn+,n′

+
, (5.36)

{bn+,n−; b
†
n′
+,n

′
−
} = δn+,n′

+
δn−,n′

−
= {dn+,n−; d

†
n′
+,n

′
−
}, (5.37)

while all the other anti-commutators vanish. Due to the conjugation

properties of the non zero energy modes, we can very simply represent

their algebra bn+,n−|0〉 = dn+,n− |0〉 = 0 and interpret the excitations

created by b†n+,n− and d†n+,n− as particles and anti-particles respectively.

The representation of the algebra for the zero-modes is not completely

straightforward and will be the topic of the next section.

5.4 Gauge invariance and fractionization

5.4.1 Ordering prescription

In order to represent the algebra of the zero-modes, the two possible

extremal states verify

cn+ |Ω−〉 = 0, c†n+
|Ω+〉 = 0, (5.38)
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for n+ ∈ N. The generator of U(1) global rotations is the total charge,

ordered in the following way

Q̂ =

∫
d2xi o[χ†(x)χ(x)] (5.39)

=
∞∑

n+,n−=0

(b†n+,n−bn+,n− − d†n+,n−dn+,n−) (5.40)

+

∞∑

n+=0

1

2
(c†n+

cn+ − cn+c
†
n+

) (5.41)

which generates global U(1) transformations

e−iαQ̂ψ(t, ~x)eiαQ̂ = eiαψ(t, ~x). (5.42)

An argument supporting the above ordering prescription follows from the

literature [65,66,76,77]. Going from the classical theory to the quantum

theory, we have to choose an ordering prescription. The prescription

denoted by o[χ†(x)χ(x)] allows actually to write the operator without

the need to subtract an infinite quantity. Hence, it is sufficient to remark

that

o[χ†(x)χ(x)] =
1

2

(
χ†(x)χ(x) − χ(x)χ†(x)

)
(5.43)

implicitly eliminates the annoying infinite contribution, as was suggested

by Jackiw [66, 76], as well as Semenoff and Niemi [65, 77]. Remarkably

this definition has the advantage to order the operator in the zero-mode

sector as well as in the non zero-mode sector. It is interesting to no-

tice that charge conjugaison exchanges the particles and anti-particles,

namely bn+,n− → dn+,n− , dn+,n− → bn+,n− and cn+ ↔ c†n+ . As a con-

sequence, the charge conjugate of Q̂ is exactly given by −Q̂, which is

what is required. This is not true if we choose another ordering prescrip-

tion than (5.43). In the non-zero mode sector, the subtraction realized

by (5.43) could be interpreted, from a condensed matter point of view,

as the subtraction of the contribution of the positive ions to the charge

charge density so that the particle-hole symmetric point is “neutral”.
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Concentrating on the zero energy level, the fermion number operator is

ordered in the sector n+ as Nn+ = 1
2(c

†
n+cn+ − cn+c

†
n+), and we observe

the well-known fermion number fractionization Nn+|Ω−〉 = −1
2 |Ω−〉 and

Nn+ |Ω+〉 = 1
2 |Ω+〉. In the sequel we will make the abuse to write |Ω−〉

for the tensor product |Ω−〉 ⊗ |0〉, where |0〉 is chosen in order to obey

bn+,n−|0〉 = dn+,n− |0〉 = 0.

As another consequence of the ordering prescription, the charge of the

zero energy states is infinite

Q̂|Ω−〉 = −∞|Ω−〉, Q̂|Ω+〉 = +∞|Ω+〉 (5.44)

The result is that we cannot choose among the states of zero energy |Ω−〉
and |Ω+〉, in order to find a ground state. Thus, the vacuum charge

induced by the magnetic field is infinite, because there is an infinite

degeneracy in the lowest energy level. For instance, we can choose to

compute the charge density in |Ω−〉 by the formula

〈ρ(~x)〉Ω− = 〈Ω−|o[χ†(x)χ(x)]|Ω−〉

=
−1

2

∞∑

n+=0

eB

2πn+!
[
eB

2
~x2]n+exp [−eB

2
~x2]

= −eB
4π

while the induced charge in |Ω+〉 is 〈ρ(~x)〉Ω+ = eB/4π. The upshot is

that we recover the famous result [65, 66]

〈j0(0, ~x)〉 = ±1

2

eB

2π
. (5.45)

Due to the selfconjugation property of the zero-modes

γ0φ
(0)
n+

(~x) = φ(0)n+
(~x) (5.46)

the order parameter ψ̄ψ takes a non vanishing value, that is to say

〈ψ̄(~x)ψ(~x)〉Ω+ = 〈ψ†(~x)ψ(~x)〉Ω+ = eB/4π. (5.47)

The reason is that only the zero-modes contribute to the expectation

value.
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5.4.2 Interpretation of the induced charge density

The above results were obtained in the absence of a mass term. Let us

study the case m 6= 0. In the presence of a mass term, the unpaired

Landau level has a non vanishing energy, E = m. If we consider the

case m > 0, the unpaired level belongs to the set of “positive energy

states”. Following the usual prescription of the “Dirac sea”, the negative

energy states should be filled and the positive energy states should stay

empty. The consequence is that we have to choose |Ω−〉 as the vacuum

state with charge density −eB/4π. In the opposite situation m < 0, the

unpaired level has a negative energy and should therefore be filled by

the Dirac sea. Hence the vacuum state should be |Ω+〉, with a charge

density eB/4π. In the limit m → 0, the ambiguity for the choice of the

vacuum state arises due to the sign ambiguity of m.

In the case m 6= 0, the results of the literature suggest to add to the

action an abelian Chern-Simons term L ∋ κ
2
e2

4π ǫ
µνρAµ∂νAρ. Choosing

the Coulomb gauge, we can define Ai = ǫij∂jΦ. As a result, the Gauss

law is modified

κ
e2

4π
∆Φ(x) + eχ†(x)χ(x) = 0 (5.48)

where ∆Φ = B. According to the sign of m, one can choose the param-

eter κ = ±1 so that the ground state can obey the Gauss law.

5.4.3 Induced angular momentum

A straightforward corollary of the induced charge density concerns the

angular momentum. If the lowest energy state is for instance chosen to

be |Ω−〉, there is an induced angular momentum density [78, 79] in this

lowest energy level. Because of the infinite degeneracy, the total angular

momentum of |Ω−〉 is infinite. The Noether theorem gives the conserved

angular momentum density

ℓ0(~x) =
i

2
ǫijxj(χ†∂iχ− ∂iχ

†χ) +
1

2
χ†γ0χ (5.49)
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In the E = 0 sector, the spin angular momentum is 1/2, so that it is

convenient to define L = a†+a+ − a†−a− + 1/2. The quantum operator

associated to the angular momentum density is

ℓ̂0(~x)|Ω−〉 = −1

2

1

2πℓ2B

{1
2
+

~x2

2ℓ2B

}
|Ω−〉. (5.50)

These comments concludes the disgression.

5.5 The level E = 0 in the massless case

This section is devoted to the study of the structure of the zero energy

level, in the case of massless fermions. The discussion begins with some

preliminary remarks.

In this section, the wave functions which are the solutions to the Dirac

equation are always formulated in position space. Because it is not con-

venient for our purposes we do not go to momentum space. Although

canonical coherent states play an ubiquitous role, we do not use them to

provide a representation of the functional space constituting the E = 0

level. Nonetheless we will define states in the quantum Hilbert space

of states which are analogues of the coherent states. To avoid possible

confusions and ambiguities, the states in the quantum Hilbert space will

be denoted by “kets” | 〉, while it can be sometimes more appropriate

to denote a function in the space of zero energy solutions of a Dirac

equation by (~x|f). We also recall the definition of the magnetic length

ℓB =
√

1/eB in natural units.

5.5.1 Mode expansion in the orthonormal basis

Because we restrict ourselves to the E = 0 level, we introduce more

convenient notations in order to reduce the complexity of the expressions.

As we know, the spinor and its adjoint, projected in the E = 0 level, can

be expanded in modes

ψ0(~x) =

∞∑

n=0

cmφm(~x), ψ†
0(~x) =

∞∑

n=0

c†nφ
∗
n(~x) (5.51)
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where φn(~x) = (~x|n) is the Fock space basis of solutions in the E = 0

energy level, and where {cn; c†m} = δn,m. The orthonormal basis of “ring

shaped” x-space functions in the E = 0 level, corresponding to the upper

component of (5.22), are given as

φn(~x) =
1√
2π

√
eB

n!
[

√
eB

2
(x1 + ix2)]nexp [−1

4
eB~x2], (5.52)

where ~x is associated to the physical spatial coordinate of the point where

the wave function is evaluated. Because the set of functions chosen for

the mode expansion is an orthonormal basis,
∫

d2xiφ∗n(~x)φm(~x) = δn,m, (5.53)

the adjoint of the fermionic field coincides with its conjugate.

As a result of the projection in the level E = 0, the anti-commutation

relations of the fields are

{ψ0(~x);ψ
†
0(~y)} =

1

2πℓ2B
e−

1
2
|z~x−z~y|2e

1
2
(z̄~xz~y−z̄~yz~x) 6= δ(2)(~x− ~y) (5.54)

where z~x = x1−ix2√
2ℓB

and z~y =
y1−iy2√

2ℓB
. We consider the charge density:

ρ(~x) = (ψ†
0(~x)ψ0(~x)− ψ0(~x)ψ

†
0(~x))/2 (5.55)

=

∞∑

n,m=0

[c†mcn −
1

2
δm,n]φ

∗
m(~x)φn(~x), (5.56)

= ψ†
0(~x)ψ0(~x)−

1

2

1

2πℓ2B
. (5.57)

As a matter of fact, the term −1/4πℓ2B = −eB/4π is the average charge

density of the vacuum state |Ω−〉, while the expected charge density of

|Ω+〉 is merely the opposite. Hence we can easily evaluate, for example,

the average charge density of c†k|Ω−〉, thanks to

〈Ω−|ckψ†
0(~x)ψ0(~x)c

†
k|Ω−〉 = |φk(~x)|2, (5.58)

which is the probability density, centered at ~x = 0, associated to the

presence of an electron zero-mode. The property {ψ0(~x), c
†
k} = φk(~x),
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which is straightforward to establish, gives the “wave function” associated

to the one-particle state

〈Ω|ψ0(~x)c
†
k|Ω〉 = φk(~x). (5.59)

We should emphasize that these wave functions are orthogonal and are

localized in space, namely φ0(~x) has a gaussian profile whereas for n > 0

they are ring-shaped.

5.5.2 Peculiarities of the state space in the E = 0 level

In the mode expansion introduced above, the point of coordinate ~x = 0

seems to play a specific role. The natural question of translation invari-

ance could be raised. We could want to introduce functions which are

the (magnetic) translations in space of the wave function (~x|0). To do

so, we recall that a coherent state in the space of solutions E = 0 is given

by

(~x|z) = e−|z|2/2
+∞∑

k=0

zk√
k!
φk(~x) (5.60)

=

√
eB

2π
e
− 1

2
|z|2+

√

eB
2
(x1+ix2)z

e−
1
4
eB~x2 (5.61)

=
1

2πℓB
e
− 1

2
|z̄−x1+ix2√

2ℓB
|2
e

1
2
(z x1+ix2√

2ℓB
−z̄ x1−ix2√

2ℓB
)
, (5.62)

where the complex variable z = y1−iy2√
2ℓB

is related to the guiding center

coordinate ~y. We can also notice that the wave function φn(~x) is the

following overlap

φn(~x) =
1√
2πℓB

(z~x|n) (5.63)

where z~x = x1−ix2√
2ℓB

. The set of canonical coherent states is overcomplete.

They are properly normalized to satisfy a resolution of the identity in

the E = 0 level
∫

d2z

π
|z)(z| = 1. (5.64)
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If we wish to obtain a state |Z〉 whose charge density is the probability

density associated to the coherent state (~x|z), we can define the state

|Z〉 = c†(z)|Ω〉 = e−|z|2/2
+∞∑

k=0

zk√
k!
c†k|Ω〉. (5.65)

It should be noted that the wave function associated to the quantum

state |Z〉 is the x-space representation of the coherent state |z), i.e.

〈Ω|ψ0(~x)|Z〉 = (~x|z), (5.66)

which is interpreted as the wave function, evaluated at a point of co-

ordinate ~x, of a localized electron zero-mode centered at the “guiding

center” in the plane associated to the complex number z in magnetic

length units. Hence the probability density of such a state is

〈Z|ψ†
0(~x)ψ0(~x)|Z〉 = |(~x|z)|2, (5.67)

with a mean charge density 〈ρ(~x)〉Z = |(~x|z)|2 − eB/4π.

In order to realize the translation in the plane of the localized electron

states, it is useful to introduce the “creator of an electron at the guiding

center coordinate z” ,

c†(z) = e−|z|2/2
+∞∑

k=0

zk√
k!
c†k. (5.68)

It should be noted that c†(z) is not an holomorphic function of z. The

creator and the associated annihilator verify the anti-commutation rela-

tion {c(z), c†(z′)} = (z|z′) = exp (−|z|2/2 − |z′|2/2 + z̄z′). This means

that the states created by c†(z) and c†(z′) for z 6= z′ are correlated. The

correlation decays on a typical length given by the magnetic length.

In order to relate the operators ψ0(~x) and c(z), we can formulate a series

of remarks. Firstly, these operators verify {ψ0(~x), c
†(z)} = (~x|z), where

the complex number zℓB = (y1 − iy2)/
√
2 can be associated to the co-

ordinate of the guiding center ~y in the physical plane. Secondly, as an

interesting consequence of the previous definitions, we may rewrite the

fields as expansions in the set of coherent states

ψ0(~x) =

∫
d2z

π
c(z)(~x|z), ψ†

0(~x) =

∫
d2z

π
c†(z)(z|~x). (5.69)
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The conclusion is that the field ψ†
0(~x) is exactly associated to the creator

of a coherent state

√
2πℓBψ

†
0(~x) = c†(z~x). (5.70)

This explains the anti-commutation relations between ψ0(~x) and its ad-

joint (5.54).

Since the states in the E = 0 level seem to be localized in space, the

way the translation symmetry is realized in this level is not self-evident.

In analogy with the definition of the magnetic translation operators in

the previous section, the following annihilation and creation operator are

introduced

a =

+∞∑

k=1

√
kc†k−1ck, a† =

+∞∑

k=1

√
kc†kck−1, (5.71)

verifying [a, a†] = N̂ where the number operator N̂ =
∑∞

n=0 c
†
ncn com-

mutes with a and its adjoint4. As a consequence of our definitions we

find the expected property

c†(z) = e−z̄a+za
†
c†0 e

z̄a−za† . (5.72)

The composition of two magnetic translation operators is

e−w̄a+wa
†
e−z̄a+za

†
= e−

1
2
(w̄z−z̄w)N̂e−(z̄+w̄)a+(z+w)a† , (5.73)

where the magnetic flux through the surface of the parallelogram drawn

in the plane by z and w is responsible for the “cocycle” factor in the

composition law.

Because of the non-commutative nature of spatial translations, the issue

of translational invariance is subtle. If the translation vectors are chosen

among a well designed lattice, they may commute with themselves. This

question is closely related to the issue of choosing a “minimal” (complete)

set of coherent states among the continous set of canonical coherent

states. We can define a lattice made of the combinaisons znm = nω1 +

4The operator a defined here is obviously different from the operator of the same

name in Chapter 1.
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mω2 where the surface of the parallelogram drawn in the complex plane

is S = Imω̄1ω2 = π. The spatial lattice is associated to the so-called von

Neumann lattice |zn,m) of canonical coherent states [80]. The physical

surface of the fundamental cell of the lattice is 2πℓ2B , because the complex

variable associated to the position of the guiding center of coordinate ~y

is z~y = (y1 − iy2)/(
√
2ℓB).

We can reformulate the translation operators in order to “hide” the pro-

jective structure (of the representation) of the magnetic group. To do

so, we notice that Im(z̄n1n2zm1m2) = π(n1m2 + n2m1). The “improved”

translation operators of a lattice vector can be defined, following [81], by

D(n,m) = (−1)(n+m+mn)N̂ e−z̄nma+znma† , (5.74)

where the additional phase factor is included to appropriately account

for the Aharomov-Bohm effect due to the magnetic field flux through

the elementary surface, so that the composition law is naturally realized

D(n,m)D(k, ℓ) = D(n+ k,m+ ℓ). (5.75)

The operator N̂ =
∑+∞

n=0 c
†
ncn is the number operator. Because the clas-

sical continuous group of spatial translations is reduced (or “broken”)

to a discrete group, we may expect momentum space to have a peri-

odic structure. The eigenstates of the translation operators in the one

particle state sector can be built easily. Let us introduce the “Fourier

transformation”

c†(θ1, θ2) =
∑

n1,n2

ei(n1θ1+n2θ2)D(n1, n2)c
†
0D

†(n1, n2) (5.76)

with the property of transforming covariantly under the lattice transla-

tions

D(k1, k2)c
†(θ1, θ2)D†(k1, k2) = e−i(k1θ1+k2θ2)c†(θ1, θ2). (5.77)

The one particle state

|θ1, θ2〉 = c†(θ1, θ2)|Ω−〉 (5.78)

is an eigenstate of the translation operator, with (θ1, θ2) ∈ [0, 2π[×[0, 2π[,

which plays the role of a Brillouin zone. This is true because the extremal
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state |Ω−〉 is invariant under the action of the translation operator, that

is to say, D(k1, k2)|Ω−〉 = |Ω−〉. The result is that the state space

becomes similar to the one of a solid state problem.

The following natural question may be raised: Is there a (one particle)

state that is invariant under the discrete lattice translations, when the

lattice is the minimal lattice? The expected candidate is |θ1 = 0, θ2 = 0〉.
Actually this candidate state vanishes identically due to the relation

∑

n,m

(−1)n+m+nm|zn,m) = 0 (5.79)

where the coherent states |zn,m) form a von Neumann lattice [81, 82].

This “no-go” property is a non trivial consequence of the analyticity

properties of the coherent states. As a conclusion, we may state that

there is no “one particle translationally invariant” state in the E = 0

level, when the lattice of translation vectors has a cell area of 2πℓ2B .

5.5.3 Gauge invariant vacua

Since the states |Ω−〉 and |Ω+〉 have a non vanishing expected charge

density, the states created over these extremal states will not be gauge

invariant, because they are charged. We shall analyse the possibility to

build a set of gauge invariant states. In order to define the physical state

space5, the required condition is that any physical states |φ〉 and |ψ〉
should verify

〈φ|Q̂|ψ〉 = 0. (5.80)

The first step is to define a “vacuum state”. Undoubtebly, the most

obvious states with an homogeneous charge density, in expectation value,

are |Ω−〉 and |Ω+〉, where

c†n|Ω+〉 = 0 = cn|Ω−〉 (5.81)

5 It is somehow in that sense that gauge invariant states are constructed in bosonic

string theory
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for any n ∈ N. In particular, they are also the only eigenstates of the

charge density. However it should not be forgotten that a linear combi-

nation of these two states has also an homogeneous charge density (in

expectation value). This clue suggests to define the following normalized

combinations:

|±〉 =
(
|Ω−〉 ± |Ω+〉

)
/
√
2, (5.82)

satisfying 〈+|−〉 = 0. Because of the property ρ(x)|Ω±〉 = ±ρ0|Ω±〉,
with ρ0 = 1/4πℓ2B , we have

ρ(x)|±〉 = −ρ0|∓〉. (5.83)

As a consequence of the last definitions, the property

〈±|ρ(x)|±〉 = 0, 〈−|ρ(x)|+〉 = −ρ0 6= 0, (5.84)

implies that we need to choose among the two orthonormal vacua in

order to build a physical state space, because |+〉 and |−〉 cannot belong

together to the set of the physical states.

5.5.4 Construction of the physical state space

The purpose is to build states verifying

〈φ|ρ(x)|ψ〉 = 0, (5.85)

or simply 〈φ|Q̂|ψ〉 = 0. Therefore, we expect to create neutral excita-

tions on the states |±〉. To follow this intuition, the following hermitian

operators are defined

γk = ck + c†k, γ̃k =
ck − c†k

i
, (5.86)

satisfying {γk, γl} = 2δk,l = {γ̃k, γ̃l} and {γk, γ̃l} = 0. For simplicity, the

excitations on the vacuum |+〉 will be first considered. In order to get

an indication of the significance of the γ operators, we compute

γk|+〉 =
(
ck|Ω+〉+ c†k|Ω−〉

)
/
√
2, (5.87)
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so that we observe that the state obtained involves a symmetric mixture

of |Ω+〉 and |Ω−〉.

From the symmetry point of vue, charge conjugation is represented by a

unitary operator C which performs the transformation b→ d and c↔ c†,
and flips the sign of the magnetic field at the same time B → −B. We

deduce that the action of the charge conjugaison on the γk and γ̃k is

Cγ̃kC† = −γ̃k, CγkC† = γk, (5.88)

while we have C|±〉 = ±|±〉.

Acting with an arbitrary sequence of γ operators, we expect that the

states obtained this way

|+〉, γk|+〉, γkγl|+〉, . . . (5.89)

and their linear combinations, are physical.

Firstly, we notice the following matrix elements of the charge density

vanish

〈+|ρ(x)γk|+〉 = 0 = 〈+|γkρ(x)γk|+〉, (5.90)

〈+|γkρ(x)γkγl|+〉 = 0 = 〈+|γlγkρ(x)γkγl|+〉, (5.91)

for k 6= l, and so on. As it can be checked thanks to a straightforward

calculation, this is true because, by construction, the diagonal matrix

elements of the charge density have to vanish, while the matrix elements

involving states with a different number of γ’s give merely zero. However

the matrix elements of the charge density operators in the states (5.89)

do not always vanish. Indeed we can also compute6

〈+|γkρ(x)γl|+〉 = 1

2

(
φ∗k(x)φl(x)− φ∗l (x)φk(x)

)
, (5.92)

so that, due to the orthogonality of the functions φn(x), the expectation

value of the charge operator vanishes

〈+|γkQ̂γl|+〉 =
∫

d2x〈+|γkρ(x)γl|+〉 = 0. (5.93)

6To do so, the identity [ρ(x); c†k] = φk(x)
∑+∞

n=0 φ
∗
n(x)c

†
n can be useful.
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Similarly, we find

〈+|γmγnρ(x)γkγl|+〉
= δn,k[φl(x)φ

∗
m(x)− φ∗l (x)φm(x)]− δm,k[φl(x)φ

∗
n(x)− φ∗l (x)φn(x)]

+δm,l[φk(x)φ
∗
n(x)− φ∗k(x)φn(x)]− δn,l[φk(x)φ

∗
m(x)− φ∗k(x)φm(x)],

for n 6= m and k 6= l, so that
∫

d2x〈+|γmγnρ(x)γkγl|+〉 = 0. (5.94)

Because we want to prove this feature more generally, we use the fol-

lowing result: in fact, the (off-diagonal) matrix element of an arbitrary

sequence of γ’s vanishes in the states |+〉 and |−〉, i. e.

〈+|γn1 . . . γnN
|−〉 = 0, (5.95)

as a consequence of the charge conjugation properties of |+〉 and |−〉.
Namely, it is directly shown making use of [Q̂, γk] = −iγ̃k, and thanks

to the properties ρ(x)|+〉 = −ρ0|−〉 and γ̃k|+〉 = iγk|−〉.

This means that acting with the an arbitrary sequence γ’s on the state

|+〉 and taking all the linear combinations, we obtain the physical states.

On the other hand, we may wonder if this set of states

|+〉, γk|+〉, γkγl|+〉, . . . (5.96)

which are mutually physical, is a maximal set. We should notice that,

acting with one γ̃ on |+〉, we do not get a physical state, because

〈+|γkρ(x)γ̃k|+〉 = i|φk(x)|2. (5.97)

On the other hand, it is direct to show that a state with an even number

of γ̃’s does not leave the physical state space. This is a simple conse-

quence of

γ̃kγ̃l|+〉 = −γkγl|+〉+ 2δk,l|+〉, (5.98)

which is straightforwardly generalized to an arbitrary even number of

γ̃’s. So it is also possible to show that acting with an odd number of γ̃’s

on |+〉, we never obtain a physical state. The reason is the relation

γ̃k|+〉 = iγk|−〉, γ̃k|−〉 = iγk|+〉. (5.99)
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This means that a state with an arbitrary number of γ’s and one γ̃ acting

on |+〉, can be written as a sequence of γ’s acting on |−〉.

As a conclusion, we may classify the mutually gauge invariant states

according to their parity under C.

Let us focus first on the parity even case. Using the relations (5.99),

we can show that the space spanned by the states of the same parity of

same number of γ (or γ̃) excitations are equal, so that the state space is

classified in the following sectors

|+〉 (5.100)

span{γi|+〉} = span{γ̃i|−〉}, (5.101)

span{γi1γi2 |+〉} = span{γ̃i1 γ̃i2 |+〉}, (5.102)

span{γi1γi2γi3 |+〉} = span{γ̃i1 γ̃i2 γ̃i3 |−〉}, (5.103)

. . .

where the indices i1, i2, . . . are mutually different. The space of states

generated by the linear combinations of states belonging to the subspaces

with a fixed number of γ (or γ̃) excitations is gauge invariant.

Similarly, in the parity odd sector, we can show that the state space is

divided in

|−〉 (5.104)

span{γi|−〉} = span{γ̃i|+〉}, (5.105)

span{γi1γi2 |−〉} = span{γ̃i1 γ̃i2 |−〉}, (5.106)

span{γi1γi2γi3 |−〉} = span{γ̃i1 γ̃i2 γ̃i3 |+〉}, (5.107)

. . .

where the indices i1, i2, . . . are mutually different.

It is likely that the inclusion of the effects of the Coulomb interaction

will select among the possible states |+〉 and |−〉. Indeed, the other

excitations have a higher interaction energy.
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5.6 Conclusions

In the case of many fermion flavours in 2 + 1 dimensions, it has been

argued that a constant magnetic field induces a vacuum pairing structure

of the Nambu–Jona-Lasinio type models. This phenomenon of magnetic

pairing causes a spontaneous chiral symmetry breaking, as explained

in [83, 84].

The study presented here investigated the case of only one fermion

flavour. It has been shown that the structure of the lowest energy level

of fermions in a constant magnetic field is rich. Spatial translations are

realized in the quantum theory projectively, so that the formulation of a

trial state analogous to a BCS pair condensate is non trivial. Therefore,

an analysis of the vacuum state in the presence of a constant magnetic

field, parallel to the study of Chapter 4, may not be straightforwardly

performed.

When considering a massive fermion field, as it is well-known, a non-

vanishing charge density is induced in the ground state. This conclusion

may be reached by the computation of the effective action in the func-

tional formalism [67–69]. We observed that, in order to reconcile the

theory with the gauge symmetry, a Chern-Simons term may be added to

the Lagrangian. In the functional formalism, the non-vanishing vacuum

charge density also induces the presence of a Chern-Simons term in the

effective action.

In this chapter, the analysis was restricted to the lowest Landau level

in Hamiltonian formalism. In the case of a massless fermion, it was

shown that a state with vanishing charge density, in expectation value,

can be designed. Mutually gauge invariant states were constructed, re-

lying on the definition of hermitian fermionic operators. The operators

built here from a superposition of a creator and annihilator are similar

to the Majorana fermion operators [85], which are of interest in the con-

text of superconductivity and in close relation with the representations

of the braid group. In a certain class of superconductors, the Majorana

zero-modes (or particles, for a review see [86]) are predicted to have in-

teresting consequences. Considering a finite set of hermitian fermionic
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operators {γi}i=0,...,N−1, verifying {γi; γj} = 2δij , operators realizing the

braid group are defined as

Uj,j+1 = (1 + γjγj+1)/
√
2. (5.108)

For instance, one may verify, U0,1γ0U
†
0,1 = −γ1 and U0,1γ1U

†
0,1 = γ0. The

relation between the braid group and the study presented in this chapter

is intriguing, tough speculative.

An interesting perspective of research is the inclusion of the Coulomb in-

teractions which may lift the degeneracy in the zero-mode sector. More-

over, a pairing of excitations belonging to higher Landau level is also

expected. Because the magnetic field controls the distance between the

Landau levels, a pair condensate due to the Coulomb interaction will

not be energetically favourable for a large magnetic field. On the other

hand, the energy density of a condensate of particle/anti-particles, pair-

ing among the non zero Landau levels, may be negative at low magnetic

field, and therefore be the most favourable state. This question was

already addressed by P. Cea in [87, 88], showing that the perturbative

vacuum is unstable yielding the formation of a uniform condensate. As

mentioned in [88], a vacuum state partially occupied by the zero-modes

in the lowest Landau level may be designed. In the context of the frac-

tional quantum Hall effect, there is an obvious interest for a state with an

intermediate occupation between the empty vacuum state and the filled

state. This observation raises the question of the Coulomb interactions

between the zero-modes.

To be more precise, an interesting prospect consists in the study of a

trial states of the type

|θ, φ〉 =
+∞∏

n=0

(cos θn + sin θne
iφnc†n)|Ω−〉, (5.109)

with 0 ≤ θn ≤ π and 0 ≤ φn < 2π, where each factor of the product is a

superposition of the empty and filled state. Because of the property

〈θ, φ|1
2
(c†kck − ckc

†
k)|θ, φ〉 = −1

2
cos 2θk, (5.110)
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the states of the type |θ, φ〉 correspond to partially filled zero energy

levels. The dynamics in the vacuum sector should determine the total

vacuum charge density. This perspective deserves a more detailed study.



CHAPTER 6

Conclusions and perspectives

This thesis intended to explore with non-perturbative techniques the dy-

namics of models of low dimensional quantum electrodynamics.

After the general introduction, chapter 2 laid the foundations for the

developements exposed about QED1+1. In the context of the Schwinger

model, chapter 3 highlighted the role of the topological sector of this

gauge theory, and especially in relationship with the axial anomaly. The

non-perturbative character of the large gauge transformations and their

role for the construction of the full solution were made clear. The quan-

tisation of the model followed a factorisation procedure, providing an

approach devoid of gauge fixing. To say the least, the large gauge trans-

formations have shown to be of crucial importance in order to establish

the bosonisation. Let us emphasize again that the solution – a free mas-

sive pseudo-scalar boson – has its origin in the interactions between the

fermions and the gauge field, so that the physical spectrum can be inter-

preted as the dynamics of a bound state of the fermions and the electric

field in interaction. Undeniably, the massive boson does certainly not

emanate only from the bosonization of the massless fermions. This is in

145
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contrast to the well-known equivalence between the Sine-Gordon model

and the 1 + 1-dimensional Thirring model, where the “meson” of the

first model is the bosonized fermion of the second, while the fermion can

be understood as a coherent state of bosons. On the contrary, in the

Schwinger model, the interactions responsible for the existence of the

bound state are more complex and, somehow, they defy description.

As an afterthought, we should mention that an extension of the tech-

nique to 2 + 1 dimensions was also considered during the thesis. Such

a procedure was applied formally to QED2+1 on a spatial torus with

periodic boundary conditions, and due to the technical difficulties, no

significant results could be obtained. Furthermore, the decompactifica-

tion limit of the theory defined on a compact space remains a momentous

issue, mainly because the discrete momentum space has to become a con-

tinous space, this last procedure being ill defined from the mathematical

viewpoint.

Although it seems to be a non trivial issue, a similar analysis could be un-

dertaken in QCD3+1 on a manifold R×Σ, where Σ is a three-dimensional

compact manifold.

As for chapter 4, the variational analysis of the ground state of massless

QED2+1 was however successful, leading to a solution in the form of a

pair condensate. The parity symmetry of the classical theory is dynam-

ically broken due to the vacuum structure.

As a consequence of condensation in massless QED2+1, constituent fer-

mions could be identified with a dispersion relation modified at low

momentum. The energy of a gauge invariant constituent fermion/anti-

fermions pair was studied, leading to an interpretation in favour of their

confinement. It stands to reason that the confinement property is mainly

due to the collective fermion behaviour in the vacuum, namely a non-

perturbative dynamical effect. Indeed, the account provided here goes

beyond the classical observation of the confining nature of the logarith-

mic Coulomb potential, and gave a dynamical description of the classical

intuition. Contrary to the approach of Polyakov, the research presented

here focused on the dynamics in the matter sector, in the non-compact

version of QED2+1, and therefore provides complementary insights.
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Furthermore, concerning the gauge sector, it appears here that the prop-

agation of the transverse electromagnetic degree of freedom, namely the

so-called magnetic mode, is affected by the condensate in such a way

that a finite dynamical mass is generated. Incidentally, a major asset of

QED2+1 is it excellent UV behaviour. As a result, no counterterm had

to supplement the action in order to subtract the divergences. In a sense,

it is certainly possible to envisage a similar study in a higher dimension

theory but the effects of renormalisation should be included carefully.

Regarding the quality of the approximation, the investigation followed a

variational procedure whose accuracy may not be in any simple way esti-

mated, whereas the flexibility of the ansatz is the main constraint of the

analysis. Among the questions requiring further research, the definition

of the ansatz for the pair condensate may be, in all likelihood, improved.

The inclusion of a magnetic mode condensate could refine the analysis.

As for Lorentz covariance of the ansatz, it seems that a Lorentz boots

acts on this state in a non trivial way. At the least, the solution found

here provides a first approximation of a very rich vacuum structure.

Let us disgress a little about the perspectives of this work in condensed

matter physics. From this viewpoint, the downside of the approach

is that the Coulomb potential between the particles was considered as

purely two-dimensional, namely corresponding to an interaction confined

to the plane. In contrast, the Coulomb potential in a two dimensional

material is not logarithmic but behaves rather like 1/|~p|. On the con-

trary, the version of QED2+1 exposed here is closer to an effective theory

of the high temperature superconductivity.

Finally, in chapter 5, the case of massless fermions confined in a plane

under the influence of a constant magnetic field has been analysed. As

mentioned before, it is an example of fractionization of the fermion num-

ber. Thanks to the work by Jackiw, Semenoff and Niemi, the induced

charge density in the vacuum of QED2+1 with massive fermions is an

established effect.

Dealing with the subtle case of massless fermions, in this work, the rich-
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ness of the zero-energy state structure was unravelled. Before performing

canonical quantisation, the classical field had to be expanded in an or-

thonormal basis of functions. When restricting the analysis to the zero-

energy level, the choice of basis for the expansion raised the question of

the realization of translational symmetry, since it appears that finding a

basis “equivalent” to the plane wave basis is not straightforward. Hence,

the choice was made to expand the fermion field in a set of orthonormal

functions which are localized in x-space. The fermion field projected

onto the zero-energy level was understood as a coherent state operator,

interpreted as a maximally localized electron translated in the plane.

Furthermore, at the quantum level, the fate of the classical translation

group was to be “broken” to a discrete abelian translation group, while

the full translation group is realized projectively.

In the investigation for a vacuum state preserved by the gauge symmetry,

we proposed a set of mutually gauge invariant states, realized as entan-

gled superpositions of “pure” states. Seemingly, due to the Coulomb in-

teraction, only two such states are selected as minimizing the interaction

energy, and are distinguished by their parity under chage conjugaison.

Because of their construction, the charge density, in expectation value,

of these two states vanishes.

As a matter of fact, the question of finding the lowest energy state in pres-

ence of the Coulomb interaction is very close to the issues arising in the

descriptions of the various forms of the Quantum Hall Effect. However,

a significant difference between the present work and the condensed mat-

ter procedures is that the solid state problem is always concerned with a

finite number of pseudo-particles, in comparison with the infinite num-

ber of potential excitations of a quantum field theory. As a perspective,

the developpement of an approach to the Quantum Hall Effect, similar

to the quantum field theory formulation of the article [89], would be an

appealing prospect.



APPENDIX A

Regularisation of divergent series

In order to extract finite contributions out of otherwise divergent quan-

tities, some regularisation procedure is required, for which either a gaus-

sian or a zeta function regularisation has been considered. The details

of either regularisation leading to the results quoted in the main text are

discussed in this Appendix1. For simplicity calculations are developed

hereafter when the real variable a is non integer. Extending results to

the case when a ∈ Z is discussed in the main text where appropriate.

1After completion of this work we realized that certain series obtained in this

Appendix were already available in [90]. We thank Andreas Wipf for calling this

reference to our attention.
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A.1 Divergences in the charge operators

Gaussian regularisation

The Poisson resummation formula may be used to establish the relation,

+∞∑

m=−∞
Θ(m+ a)e−α(m+a)2 α→0

=
1

2

√
π

α
+

+∞∑

n=−∞,n 6=0

e2iπna

2iπn
, (A.1)

so that the subtraction of the short distance divergence consists in re-

moving the term in (1/2)
√
π/α.

To prove this result, one applies the Poisson resummation formula to the

expression on the lhs of this relation, in terms of the function f(x) =

Θ(x+a)exp [−α(x+a)2] of which the Fourier transform is, where k ∈ R,

f̃(k) =

∫ +∞

−∞
dx e−ikxΘ(x+ a)e−α(x+a)

2
= eika I0α(k),

with the definition

I0α(k) =

∫ +∞

0
dx e−ikx−αx2 ,

so that,

+∞∑

m=−∞
Θ(m+ a)e−α(m+a)2 =

+∞∑

n=−∞
f̃(2πn). (A.2)

Quite obviously I0α(0) = 1
2

√
π
α , while for k 6= 0 the integral I0α(k) is

expressed in terms of the parabolic cylinder function D−1(z) [91],

I0α(k) =
1√
2α

exp

(
− k2

8α

)
D−1

(
ik√
2α

)
. (A.3)

Since the asymptotic behaviour of D−1(z) is known as |z| → +∞ [91],

in the small α limit one finds that I0α(k) behaves such that for n 6= 0,

I0α(2πn)
α→0
=

1

2iπn
(1 +O(α)) . (A.4)
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Consequently, one has established relation (A.1), with the further obser-

vation that the infinite series contribution on the rhs is the Fourier series

of a simple function of a, when a is non integer,

+∞∑

n=−∞,n 6=0

e2iπna

2iπn
=

+∞∑

n=1

sin(2πna)

πn
=

1

2
− (a− ⌊a⌋). (A.5)

Zeta function regularisation

A regularisation of the ζ function type2 of the same infinite series takes

the following form, with α > 0 and in the limit α→ 0,

+∞∑

m=−∞
Θ(m+ a)e−α(m+a) = e−α(a+⌊−a⌋)

(
1

1− e−α
− 1

)

=
1

α
− (a− ⌊a⌋) + 1

2
+O(α),

when using ⌊−a⌋ = −⌊a⌋ − 1 (which applies when a is non integer).

Similarly,

+∞∑

m=−∞
Θ(−m− a)eα(m+a) =

1

α
+ (a− ⌊a⌋)− 1

2
+O(α).

Hence either regularisation prescription produces the same finite contri-

bution as a function of a from the divergent series
∑+∞

m=−∞Θ(m+ a).

2This is also the regularisation used in [10,21].
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A.2 Divergences in the bilinear fermion Hamil-

tonian

Gaussian regularisation

We need also to show that

+∞∑

m=−∞
|m+ a|

α→0
=

+∞∑

m=−∞
(m+ a)

(
Θ(m+ a)−Θ(−m− a)

)
e−α(m+a)2

=
1

α
− 2

+∞∑

n=−∞,n 6=0

e2iπna

(2πn)2
+O(α). (A.6)

To make use of the Poisson resummation formula consider the function

g(x) =
(
Θ(x+ a)−Θ(−x− a)

)
(x+ a)exp [−α(x+ a)2],

of which the Fourier transform is, with k ∈ R,

g̃(k) = exp (ika)(Iα(k) + Iα(−k)),

where

Iα(k) =

∫ +∞

0
dx x exp (−ikx)exp (−αx2),

whose value is expressed in terms of yet another parabolic cylinder func-

tion [91],

Iα(k) =
1

2α
Γ(2)exp (− k2

8α
)D−2(

ik√
2α

).

Given the asymptotic behaviour of D−2(z) [91], for n 6= 0 one finds in

the limit α→ 0,

Iα(n)
α→0
= − 1

n2
,
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while for n = 0, Iα(0) =
1
2α . In conclusion, one has established that

+∞∑

m=−∞
g(m) =

+∞∑

n=−∞
g̃(2πn)

α→0
= 1

α − 2
∑+∞

n=−∞,n 6=0
exp (2iπna)

(2πn)2
= 1

α − (a− ⌊a⌋ − 1
2)

2 + 1
12 , (A.7)

which is the relation in (A.6).

Zeta function regularisation

Using a ζ function regularisation leads to the same result, namely,

+∞∑

m=−∞
|m+ a|

α→0
=

+∞∑

m=−∞
(m+ a)(Θ(m+ a)e−α(m+a) −Θ(−m− a)eα(m+a))

α→0
=

2

α2
− (a− ⌊a⌋ − 1

2
)2 +

1

12
. (A.8)

By defining

S+ =

+∞∑

m=−∞
(m+ a)Θ(m+ a)e−α(m+a),

one observes that,

S+ = − ∂

∂α

(
e−α(a+⌊−a⌋)(

1

1− e−α
− 1)

)
,

of which a Laurent series expansion in α produces,

S+ =
1

α2
− 1

2
(a− ⌊a⌋ − 1

2
)2 +

1

24
.

Similarly given

S− =

+∞∑

m=−∞
(m+ a)Θ(−m− a)eα(m+a),

this quantity takes the form

S− = − 1

α2
+

1

2
(a− ⌊a⌋ − 1

2
)2 − 1

24
= −S+.

Hence indeed the relation (A.8) has been established.
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APPENDIX B

Technical results in QED2+1

B.1 The Hadamard finite part and the photon

mass term

The Fourier transform of the x-space Green function is not a function

but a distribution. It may be more convincing to obtain the Hadamard

finite part in terms of a limiting case of a more intuitive situation. The

naive −1
|~p|2 infrared divergent p-space Green function can be regularised

using a mass regulator. If one adds a mass term in the Green function

in p-space, one finds the following x-space Green function

Gµ(x, y) =

∫
d2pi

(2π)2
−1

|~p|2 + µ2
ei~p.(~x−~y) = − 1

2π
K0(µ|~x− ~y|), (B.1)

where K0(µ|~x−~y|) is a modified Bessel function of the second kind. The

IR behaviour of Gµ(x, y) completely changes however small the value for

µ is, as illustrated in Fig. B.1. Even for a very small µ, the “potential”

Gµ(x, y) is no longer confining!
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Figure B.1: The figure compares the behaviour of the x-space Green

function in presence and absence of a mass term for the photon. The

large distance behaviours are very different.

A brutal substitution µ = 0 in the last Fourier transform gives us the

naive Fourier transform of the Green function. However we know that

the limit µ → 0 should be taken with care. Setting µ = 0 barely makes

sense. The reason for this is that when µ goes to zero, the integration

in (B.1) still involves values of ~p with |~p| < µ. In order to identify the

divergence resulting from the limit µ → 0, one may clearly separate the

safe regions of integration from the potentially divergent regions. To do

so, one introduces ǫ > µ, which will be kept constant in the limit µ→ 0.

Hence we can rewrite

Gµ(x, y) = Iǫ1 + Iǫ2, (B.2)

with

Iǫ1 =
∫ ǫ
0
pdp
2π

−1
p2+µ2

J0(p|~x− ~y|), (B.3)

Iǫ2 =
∫∞
ǫ

pdp
2π

−1
p2+µ2

J0(p|~x− ~y|). (B.4)

It is now straightforward to take the limit of the second term

lim
µ→0

Iǫ2 =

∫ ∞

ǫ

dp

2π

−1

p
J0(p|~x− ~y|), (B.5)

where J0 is a Bessel function of the first kind. One may also consider the

first term and extract its divergent contribution when µ→ 0. Integrating
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it by parts one finds

Iǫ1 =
1

2π
(−1

2
ln
ǫ2 + µ2

ǫ2
J0(ǫ|~x− ~y|) + ln

µ

ǫ
) + (B.6)

+

∫ ǫ

0

dp

2π

1

2
ln(

p2 + µ2

ǫ2
)|~x− ~y|J1(p|~x− ~y|), (B.7)

where, as before J1 denotes a Bessel function of the first kind. The second

term in the last equation is perfectly convergent when µ → 0. We have

succeeded in pinpointing the divergent contribution occuring when the

mass goes to zero. It is now completely obvious that the behaviour of Iǫ1
in the limit is

limµ→0 I
ǫ
1 = limµ→0

1
2π ln

µ
ǫ +

∫ ǫ
0

dp
2π

1
2 ln(

p2

ǫ2
)|~x− ~y|J1(p|~x− ~y|).(B.8)

The only source of divergence is the term 1
2π ln

µ
ǫ that needs to be sub-

tracted from Iǫ1 to make sense of the limit. One notices also that the

quantity that has to be added to Iǫ1 to ensure the subtraction is

− 1

2π
ln
µ

ǫ
=

∫ ǫ

µ

dp

2π

1

p
=

∫ ǫ

0

dp

2π

1

p
θ(p− µ). (B.9)

Adding this term to (B.3), and taking the limit, one finds

limµ→0 I
ǫ
1 − 1

2π ln
µ
ǫ = lim

µ→0

∫ ǫ

0

{dp
2π

−p
p2 + µ2

J0(p|~x− ~y|) + 1

p
θ(p− µ)

}

=

∫ ǫ

0

dp

2π
[
−1

p
J0(p|~x− ~y|) + 1

p
] (B.10)

Restoring now the angular integral by replacing the Bessel function by

its integral representation, the final result of this procedure is

lim
µ→0

Gµ(x, y)−
1

2π
ln
µ

ǫ
(B.11)

=
∫
|~p|<ǫ

d2pi

(2π)2
−1
|~p|2 (e

i~p.(~x−~y) − 1) +
∫
|~p|>ǫ

d2pi

(2π)2
−1
|~p|2 e

i~p.(~x−~y). (B.12)

Hence in conclusion, the Hadamard finite part can indeed be interpreted

as the limit of the Green function regularised with a mass term for the

photon. The presence of the scale ǫ is unavoidable because it is essen-

tial to help us to make sense of the limit µ → 0 which is a limit of a

dimensionful quantity. The scale ǫ is somehow a remnant of the mass

term.
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B.2 Matrix elements and contractions

Some useful matrix elements are

〈Ψ|χ†
α(0, ~x)χβ(0, ~y)|Ψ〉 =

∫ d2pi

2p0

[
p0 − (1− 2|β(p)|2)γ0~γ.~p (B.13)

−p0γ0α(p)[β(p) + β∗(p)] + ~p.~γα(p)[β(p) − β∗(p)]
]
βα

e−i~p(~x−~y)

(2π)2
,

〈Ψ|χα(0, ~x)χ†
β(0, ~y)|Ψ〉 =

∫ d2pi

2p0

[
p0 + (1− 2|β(p)|2)γ0~γ.~p

+p0γ0α(p)[β(p) + β∗(p)]− ~p.~γα(p)[β(p) − β∗(p)]
]
αβ

ei~p(~x−~y)

(2π)2
.(B.14)

The contractions needed to compute the matrix elements of the normal

ordered operators are

̂
χ†
α(0, ~x)χβ(0, ~y) =

∫ d2pi

2p0

[
2|β(p)|2γ0~γ.~p (B.15)

−p0γ0α(p)[β(p) + β∗(p)] + ~p.~γα(p)[β(p) − β∗(p)]
]
βα

e−i~p(~x−~y)

(2π)2
,

̂
χα(0, ~x)χ

†
β(0, ~y) =

∫ d2pi

2p0

[
− 2|β(p)|2γ0~γ.~p (B.16)

+p0γ0α(p)[β(p) + β∗(p)]− ~p.~γα(p)[β(p) − β∗(p)]
]
αβ

ei~p(~x−~y)

(2π)2 .

B.3 Useful integrals

The following integrals have to be computed with great care:

∫
dθ

p2+q2−2pq cos θ
= 2

|p2−q2|Atan
{ p+q
|p−q| tan θ/2

}
, (B.17)

∫
cos θdθ

p2+q2−2pq cos θ
= 1

2pq

{
− θ + 2 p2+q2

|p2−q2|Atan[
p+q
|p−q| tan

θ
2 ]
}
, (B.18)

∫ 2π
0

dθ
p2+q2−2pq cos θ

= 2π
|p2−q2| , (B.19)

∫ 2π
0

cos θdθ
p2+q2−2pq cos θ

= 2π
2pq

{
− 1 + p2+q2

|p2−q2|

}
, (B.20)

where the evaluation of the definite integrals takes into account the pres-

ence of a discontinuity in the corresponding primitives.
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B.4 The self-energy contribution to the disper-

sion relation

At equation (4.101) we found an interesting result and provide here some

details for its derivation. We had to evaluate the finite part of the prob-

lematic integral

σ(p) =
e2

2
P
∫

d2qi

(2π)2
~p.~q

|~p||~q|
1

(~p− ~q)2

= e2

2(2π)2

∫ +∞
0 dq 1q

[ ∫ 2π
0 dθ p+q cos θ√

p2+q2+2pq cos θ
− 2πH(µ− q)

]

where H(x) is the Heaviside step function. Using

∂

∂q
(

p+ q cos θ√
p2 + q2 + 2pq cos θ

) =
−pq sin2 θ

(p2 + q2 + 2pq cos θ)3/2
(B.21)

and an integration by parts (with vanishing boundary terms), we find

σ(p) =
e2

4π
ln
c

µ
+

e2

8π2

∫ +∞

0
dq ln

q

c

∫ 2π

0
dθ

pq sin2 θ

(p2 + q2 + 2pq cos θ)3/2

where c is an integration constant. One can first perform a change of

variables q = ps and then calculate the s-integral. The final result is

a function of θ, which can be integrated from 0 to 2π. The integration

constant simplifies, and the result is

σ(p) =
e2

4π
[ln(

2p

µ
) + ln 2− 1].

B.5 Feynman rules

The Feynman rules associated to the Schwinger-Dyson equations of Sec-

tion 4.7.1 are:
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α β

α β

α β

α β

= S
(3)
αβ (p)

= S
(3)
0 (p)αβ

= −iΣαβ(~p)

= i/|~q|2

= ie(γ0)αβ

where

S(3)(p0, ~p) =
i

/p− Σ(p0, ~p) + iǫ
, (B.22)

S
(3)
0 (p0, ~p) =

i

/p+ iǫ
, (B.23)

Σ(p0, ~p) = |~p|A(|~p|) + ~p.~γB(|~p|). (B.24)

B.6 Clifford-Dirac algebra

Up to unitary transformations, there exist two inequivalent irreducible

representation of the Dirac algebra for 2-spinors. One is given by

γ0 = σ3, γ
1 = iσ1, γ

2 = iσ2 (B.25)
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with

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
(B.26)

and for the “mostly minus” signature of the Lorentzian metric. Obvi-

ously no chirality matrix exist for this representation. The other non-

equivalent representation of the Clifford algebra can be obtained if one

multiplies the above matrices γµ by an overall minus sign. The rep-

resentation of the Lorentz group is nevertheless the same even if from

the Clifford point of view these two representations are not unitarily

equivalent.

A possible way to overcome these aspects is to define a reducible 4 by 4

representation combining the above two representations as

Γ0 =

(
γ0 0

0 −γ0

)
, Γ1 =

(
γ1 0

0 −γ1

)
, Γ2 =

(
γ2 0

0 −γ2

)
(B.27)

which obey the Clifford algebra
{
Γµ,Γν

}
= 2ηµν . Using these matrices

one can build a hermitian matrix commuting with all the Dirac matrices

[92]

τ3 = iΓ0Γ1Γ2 (B.28)

which takes the form

τ3 =

(
12×2 0

0 −12×2

)
(B.29)

and which can be used to project onto each of the two irreducible sub-

spaces.

Additional Features There exists two hermitian matrices which an-

ticommute with all the Γ’s:

Γ3 =

(
0 −i12×2

i12×2 0

)
; Γ5 =

(
0 12×2

12×2 0

)
(B.30)
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such that
{
Γ3,5,Γ

µ
}
= 0 and Γ2

3,5 = 14×4. When considered together

Σ1 = Γ5, Σ2 = Γ3 and Σ3 = τ3 form a representation of su(2) :

[
Σi,Σj

]
= 2iǫijkΣk (B.31)

and they square to the unit operator:

{
Σi,Σj

}
= 2δij . (B.32)

Note This SU(2) acts by rotating the two “species” of spinors into each

other.

B.7 Discrete symmetries

In 2 + 1 dimensions discrete symmetries act in a peculiar way on the

fields. Let us briefly review these transformations.

Time Reversal

A0(xi, t) → A0(xi, t)

Ai(xi, t) → −Ai(xi, t)
ψ(xi, t) → γ2ψ(xi,−t)

Parity

A0(x, y, t) → A0(−x, y, t)
A1(x, y, t) → −A1(−x, y, t)
A2(x, y, t) → A2(−x, y, t)
ψ(x, y, t) → γ1ψ(−x, y, t)
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Charge Conjugation

Aµ(x, y, t) → −Aµ(x, y, t)
ψ(x, y, t) → ψc(x, y, t) = γ2γ0ψ∗(x, y, t)

Mass terms Any fermionic mass term of the form ψ†γ0ψ breaks parity.

However combining two spinors ψ1 and ψ2 in the reducible representa-

tion, each in a different irreducible representation, allows to write down

a parity conserving mass term

mΨΨ = mΨ†Γ0Ψ = m(ψ†
1γ

0ψ1 − ψ†
2γ

0ψ2) (B.33)

with

Ψ =

(
ψ1

ψ2

)
. (B.34)

Indeed, parity acts as

ψ1(x, y, t) → −iγ1ψ2(−x, y, t), (B.35)

ψ2(x, y, t) → −iγ1ψ1(−x, y, t). (B.36)

Then mΨΨ is not parity violating.

B.8 Pseudo-chiral symmetries

A fermionic kinetic term ΨiΓµDµΨ is invariant against the two global

“pseudo-chiral” symmetries generated by Γ3 and Γ5 :

Ψ → eiαΓ3,5Ψ

Ψ† → Ψ†e−iαΓ3,5 .

A mass term mΨΨ breaks the pseudo-chiral symmetries generated by Γ3

and Γ5 but not by τ3. On the other hand mΨτ3Ψ breaks parity but not

the symmetries generated by Γ3 and Γ5.
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APPENDIX C

Additional research

C.1 Affine quantisation and the initial cosmolog-

ical singularity

The initial cosmological singularity is a question which may be addressed

in many possible theories of quantum gravity. While String Theory

and Loop Quantum Gravity are competitive frameworks to address this

issue, we suggested in [93] another approach based on an alternative

quantisation procedure. We applied the “Enhanced Affine Quantisation”

program, suggested by John Klauder [94], to a toy model of Friedman-

Lemaître-Robertson-Walker cosmology. A major feature of the work is

that it followed the proposal to quantise the affine algebra of a metric-like

variable rather than the Heisenberg algebra. Associated affine coherent

states are constructed and used in order to build a classical action con-

taining quantum corrections. The corrections to the classical dynamics

were shown to provide a potential barrier term responsible for bouncing

solutions.
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C.2 The N = 1 supersymmetric Wong equations

and the non-abelian Landau problem

The motion of a non-abelian charged particle in a classical non-abelian

gauge field is described by the Wong equations. A recent study of the

non-abelian Landau problem, i.e. a quantum particle confined to a plane

and subjected to a static and homogeneous perpendicular magnetic field,

has shown that the effects of specific choices of non-abelian gauge po-

tentials corresponding to homogeneous coloured magnetic fields could

account for the presence of spin-orbit interactions. The consequences of

having in addition a supersymmetric invariant realization of the quan-

tised system corresponding to the motion of a coloured particle in a

classical external static non-abelian gauge field are discussed in [95].

We consider the case of a particle with arbitrary spin in a unitary (ir-

reducible) representation of a compact gauge group. Furthermore, a

canonical quantisation of the classical formulation is constructed. Sub-

sequently, as a particular illustration, the spectrum of the N = 1 su-

persymmetric non-abelian Landau problem is obtained in the specific

case of a spin 1/2 particle in a non trivial static non-abelian background

magnetic field. Finally, the inclusion of an electric potential term is

discussed.
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