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Introduction

High energy particle physics is a search for the fundamental description

of nature. Our current understanding of nature and fundamental inter-

actions are formulated in a theory called the Standard Model. Since the

beginning of the 60s, with the quark† model and the electroweak theory,

the Standard Model has been established and developed. Many of the

predictions by the theory have been verified by experimental measure-

ments with high precision. For example, the prediction of the Higgs

boson, which is the key element to explain the masses of elementary

particles, has already been confirmed by the high energy experiments.

The existence of a Standard Model scalar boson was observed by both

the CMS and ATLAS experiments operating at the Large Hadron Col-

lider (LHC) at CERN during the Run1 data taking. The triumph of high

energy particle psychics in 2012 was this observation which brought the

Nobel Price in Physics‡ to François Englert and Peter W. Higgs in 2013.

Apart from this observation, the LHC experiments did not find any sign

of particles belonging to physics Beyond the Standard Model, then the

question is “Is that all in nature?”

†Gell-Mann has introduced the name “quark”, as a reference to the novel

Finnegans Wake by James Joyce (“Three quarks for Muster Mark!”)
‡“for the theoretical discovery of a mechanism that contributes to our understand-

ing of the origin of mass of subatomic particles, and which recently was confirmed

through the discovery of the predicted fundamental particle, by the ATLAS and CMS

experiments at CERN’s Large Hadron Collider” [1]
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2 Introduction

There are still many open questions awaiting to be answered. For exam-

ple: why is there a matter-antimatter asymmetry in the universe? what

is the dark matter and dark energy? is unification of forces possible?

Moreover, how can gravity fit into this model?

The attempts to answer these questions are formulated in various the-

ories Beyond the Standard Model. Many possible scenarios have been

thought as possible candidates. In particular, Grand Unification and

Extra Dimensions models, answering some of the questions mentioned

above in different aspects, predict the existence of new heavy neutral

particles at the TeV scale.

To search for these particles, detectors based on cutting-edge technolo-

gies have been developed and used in the past Tevatron and current

experiments at the LHC which are world-wide collaborations. The di-

muon decay channel is a clean final state to search for new particles

at high mass. The searches conducted in Tevatron experiments, at the

center-of-mass energy of 1.96 TeV in proton-antiproton collisions and in

the LHC experiments at 7 and 8 TeV in proton-proton collisions, did

not find any significant deviations from the expected background in the

di-muon mass spectrum.

The possible explanations of the lack of the observation could be that

either nature does not include such extra particles, or the interactions of

such exotic particles and their decays to Standard Model particles could

be weaker than the predictions. More sensitive analysis methods can

improve the sensitivity of the search methods used and they can also

help to clarify these points.

This thesis is mainly focused on the development and investigations of a

potentially more sensitive analysis method than the commonly adopted

ones, based on the use of a Matrix Element Method, in the search for

di-muon resonances with high-mass (&200 GeV/c2). The thesis will

also present a novel method for measuring the amount of material in a

tracking detector. These methods have been validated and applied to the

collision data gathered during 2010 and 2011 with the CMS experiment

at the LHC.
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Chapter 1 will be a brief description of the Standard Model and the re-

view of some of the theories that attempt to extend the Standard Model.

The theoretical predictions for the background and signal models in the

di-muon final state will be given. The main physical quantities which

can be used as observables in an experimental measurement will be dis-

cussed as well. Chapter 2 will be the description of the experimental

set-up. The CMS experiment and the sub-systems of the detector that

are used to reconstruct the muons will be described. Chapter 3 is the

presentation of a new method for the improvement of the material de-

scription and measurement of the material distribution of the CMS inner

tracker. The method and the obtained results with the collision data

will be presented.

Finally, the last three chapters (4, 5 and 6) will focus on a likelihood

analysis technique based on the Matrix Element Method, applied to the

search for narrow resonances in the di-muon channel. The statistical

approach and the treatment of nuisance parameters will be explained in

detail. After the comprehensive validation studies of this new technique

with Monte Carlo generated events, the implementation of the method

and the obtained results with CMS 7 TeV collison data, in terms of a

local significance and an upper limit for the considered search region of

the invariant mass, will be presented.

The thesis will conclude with a summary of the obtained results of the

studies and of the possible improvements for future searches for the

upcoming LHC Run2 data taking.





Chapter 1
The Standard Model and

Beyond

1.1 The Standard Model

The physics of the subatomic particles and their interactions are estab-

lished in the theoretical framework called the Standard Model (SM). It

incorporates three fundamental forces of nature: the electromagnetic,

weak and strong forces. The SM is the relativistic quantum field the-

ory where each particle is described by a field (for more information see

[2, 3]). The interactions between elementary particles are represented

in the SM Lagrangian by local gauge invariance. A Lagrangian is a

mathematical formulation of dynamics, and it determines the equation

of motion.

The SM, from a theoretical point of view, is defined on the basis of gauge

symmetries [3]. All the particles and their interactions are described by

certain groups of symmetry transformation. The SM is a gauge theory

with a symmetry group of

SU(3)C × SU(2)L × U(1)Y

5
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The SU(3)C symmetry group defines the Quantum Chromo-Dynamics

(QCD) theory that describes the strong interactions, where C refers

to color quantum numbers. Quarks are the objects described by this

group with three possible color states. The group of SU(2)L×U(1)Y is

the Electroweak (EWK) theory describing the Quantum Electodynamics

(QED) and the weak interactions where the fermions are the objects

represented by the group. In SU(2)L, the conserved quantum number

is the weak isospin T, and L stands for the left-handed fermions. In

U(1)Y , the conserved quantum number is the weak hypercharge which

is indicated as Y.

The theory leads to the gauge bosons which are the mediators of the

three forces. All force carriers are “bosons” having an integer spin: the

electromagnetic force carrier is the photon γ, the weak interaction is

mediated by W± and Z (more specifically Z0) bosons and the strong

force is carried by gluons g. The gravitational force, which is expected

to have a hypothetical force carrier, the graviton with spin 2, is not

included in the SM.

The elementary constituents of matter are leptons and quarks. They

are categorized as “fermions” with half-integer spin. The quantum num-

bers of fermions determine how they interact. All fermions can interact

weakly, the fermions that have electrical charge interact electromagnet-

ically, the color charged fermions have strong interactions. Leptons are

the fermionic elementary particles which can only interact electroweakly.

Neutrinos are electrically neutral leptons which can interact weakly and

recent experimental evidence of neutrino oscillation experiments [4, 5]

show that they have non-zero mass values. The consequences of non-zero

neutrino masses and their implications are not discussed in this thesis.

All fermions are divided into three categories each composed of two

quarks and two leptons described as “generations”. As a consequence

of symmetry transformation under charge conjugation-parity and time

so-called “CPT invariance”, each particle is further associated to an

anti particle which transforms under CPT. Figure 1.1 and 1.2 show the

fundamental particles and a schematic drawing of the interactions.
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Fig. 1.1: The elementary particles described by the SM.

Fig. 1.2: The elementary particles and their interactions, which

are shown as continuous lines.
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The Lagrangian of the electroweak model in the SM does not include

the masses of bosons. This is un-natural to describe the real world, since

the only vector boson observed in nature that does not have a mass is

the photon. The addition of mass terms to the SM Lagrangian violates

the local gauge invariance and spoils the renormalizability of the theory

[6]. The bosons and fermions acquire their masses via the mechanism of

spontaneous symmetry breaking. As today the mechanism is also known

as BEH (Brout–Englert–Higgs) mechanism. The detailed description

of this mechanism can be found in references [7, 8]. A scalar field is

introduced into the theory to provide the symmetry breaking which leads

to the prediction of a scalar particle, the Higgs boson.∗ The existence

of such scalar particle is already observed by the CMS and ATLAS

experiments at the LHC [9, 10]. The combined analysis performed by

CMS using the high mass resolution channels of H → γγ and H → ZZ∗

gives a mass measurement of mH = 125.03+0.26
−0.27(stat.)+0.13

−0.15(syst.) [11].

After the symmetry breaking, W and Z bosons gain masses and the

relation between their masses is

MZ = MW / cos θW

where θW is called the Weinberg or electroweak mixing angle. The latest

experimental measurement performed by CMS [12] gives a measurement

of

sin2 θW = 0.2287± 0.0020(stat)± 0.0025(syst). (1.1)

In the SM, the scalar H field gives masses to fermions via Yukawa inter-

actions with the fermion field. After the spontaneous symmetry break-

ing, a Yukawa interaction leads to a fermion mass of mf = gfυ/
√

2 in

which gf is the interactions strength and υ is the vacuum expectation

value of the H field. The SM contains a number of Yukawa couplings

to fix the fermion masses. The model itself does not explain the wide

range of the couplings (see reference [6, p.284]).

∗Throughout this thesis the Higgs boson will be indicated as H.
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1.1.1 The Drell-Yan Production at Hadron Colliders

Hadrons (or mesons) are bound state of three (or two) quark composi-

tions. A proton, for example, is made of two up and one down quark.

It is not possible to free a quark from a proton and observe it sep-

arately since the quarks are held together by strong forces inside the

proton. On the other hand, it is possible to let the quarks (and gluons)

inside hadrons to interact by colliding them at high energies. At high

energy hadron collisions, a particular process can occur due to high en-

ergetic quark-antiquark annihilation. A quark and an anti-quark from

the colliding beams can annihilate to produce a lepton pair in the hard

scattered collisions. This process is first pointed out by Drell and Yan

[13], and therefore it is called the Drell-Yan production.

The lowest order Drell-Yan (DY) production can happen by the neutral

current which leads to the production of a neutral Z or a virtual photon.

Let us describe this process in the following section, as it is the main

irreducible background process to the physics process of our interest,

which is described in the section after. The material in the following

section is mostly compiled from the ref.[6].

1.1.1.1 Cross section of pp→ γ∗/Z → l+l− at the LHC

In proton-proton collisions, the production cross section σDY for pro-

ducing a lepton pair via the Drell-Yan process will be the sum of the

sub-processes of qq̄ → γ∗/Z → l+l−. Considering the fact that the par-

ton content of the proton is encoded in the Parton Distribution Functions

(PDF) [14], the resulting cross section therefore should be weighted with

the PDF†. By summing over all quark-antiquark combinations one can

obtain the total cross-section

†Throughout the thesis the abbreviation of PDF in capital letters is referring to

Parton Distribution Functions inside the proton. Another abbreviation of “pdf ” is

also used which refers to probability density functions and for distinction it will be

indicated by small letters as pdf.
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Fig. 1.3: Lepton pair production via quark-antiquark annihilation

in the Drell-Yan model [6].

σDY =
∑
q

∫
dx1dx2fq(x1)fq̄(x2)σ̂qq̄→γ∗/Z→l+l− , (1.2)

where σ̂qq̄→γ∗/Z→l+l− indicates the partonic cross section of the produc-

tion of lepton pairs.

The partonic sub-process cross section depends on the energy (ŝ) avail-

able in the hard scattering and is given by [6]

σ̂qq̄→γ∗/Z→l+l−(ŝ) =
4πα2

3ŝ

1

Nc

(
Q2
q − 2QqVlVqχ1(ŝ) + (A2

l + V 2
l )(A2

q + V 2
q )χ2(ŝ)

)
,

(1.3)

where α and Nc are the electromagnetic coupling constant [15] and the

color averaging factor, respectively. If p1 and p2 are the four-momenta

of the incoming quarks, ŝ is defined as ŝ = (p1 +p2)2 and by momentum

conservation it is equal to the invariant-mass squared of leptons. The

terms χ1(ŝ) and χ2(ŝ) are defined by

χ1(ŝ) = κ
ŝ(ŝ−M2

Z)

(ŝ−M2
Z)2 + Γ2

ZM
2
Z

, (1.4)

χ2(ŝ) = κ2 ŝ2

(ŝ−M2
Z)2 + Γ2

ZM
2
Z

, (1.5)
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Fig. 1.4: The lowest order Feynman diagram of lepton pair pro-

duction in the Drell-Yan process.

where MZ and ΓZ are the mass and the full width of the Z boson, and

κ is equal to

κ =

√
2GFM

2
Z

16πα
. (1.6)

The equation 1.3 has specific features of dependence of the energy at

the hard scattering.

• Far below the Z mass pole, the process is dominated by qq̄ →
γ∗ → l+l−. The partonic cross-section for this process is given by

σ̂qq̄→γ∗→l+l−(ŝ) =
4πα2

3ŝ

1

Nc
Q2
q . (1.7)

In general, because the incoming quark and antiquark have a spec-

trum of the collision energies of
√
ŝ, it is appropriate to take the

differential cross section of the production of lepton pairs. Thus,

the differential cross section for the production of a lepton pair

with an invariant mass of M via the Drell-Yan process at leading

order is equal to

dσ̂

dM2
=
σ0

Nc
Q2
qδ(ŝ−M2), σ0 =

4πα2

3M2
. (1.8)
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The square of the qq̄ collision energy ŝ is related to the overall

proton collision energy by ŝ = (p1 + p2)2 = x1x2s. Using this

relation, the total differential cross section is

dσ

dM2
=

∫ 1

0
dx1dx2

∑
q

{fq(x1)fq̄(x2)+(q ↔ q̄)}× dσ̂

dM2
(qq̄ → l+l−).

(1.9)

The q̄q addition is indicated by q ↔ q̄. The double-differential

cross-section, using the definition of x1 =
√
M2/s exp (y), x2 =√

M2/s exp (−y) and rapidity as

y =
1

2
ln

(
x1

x2

)
, (1.10)

will be given by

d2σ

dM2dy
=

σ0

Ncs

[∑
q

Q2
q{fq(x1)fq̄(x2) + (q ↔ q̄)}

]
. (1.11)

Therefore, by measuring the double-differential cross section of

lepton pairs of M in rapidity, one can give the direct measure-

ment of the quark-antiquark distribution inside the proton, thus

confirming the parton model (see ref. [16]).

• On the Z pole, the cross section is dominated by the production

of a neutral Z boson

σ̂ ∝ ŝ2

(ŝ−M2
Z)2 + Γ2

ZM
2
Z

, (1.12)

which has a shape of a Breit-Wigner resonance with the width ΓZ
(see eq. 1.15).

1.1.1.2 Z Boson Production and Decay Properties

In neutral currents, i.e. producing a Z boson or a photon, the

couplings of the fermions to the Z boson are given by vector and

axial-vector couplings as
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Fermions Qf Vf Af

u,c,t 2/3 (1/2 - 4/3sin2 θW ) 1/2

d,s,b -1/3 (-1/2 +2/3 sin2 θW ) -1/2

νe, νµ, ντ 0 1/2 1/2

e,µ,τ -1 (-1/2 + 2 sin2 θW ) -1/2

Tab. 1.1: Couplings of fermions to the Z boson [6].

Vf = T 3
f − 2Qf sin2 θW ,

Af = T 3
f ,

(1.13)

where T 3
f is the third component of the weak isospin and Qf is the

charge of the fermion in units of the positron electric charge e ‡.

The couplings are summarized in table 1.1.

The partial decay widths of Z bosons to fermion-antifermion can

be calculated at leading order electroweak perturbation theory.

The invariant matrix element squared for this process summed

(averaged) over final (initial) polarization is given by

∑
|M |2 =

8

3

GFM
4
Z√

2
(|Vf |2 + |Af |2). (1.14)

The total decay width is the sum of all partial widths

Γ(Z) =
∑
f

Γ(Z → ff̄). (1.15)

The final result for the partial width of the Z is

Γ(Z → ff̄) = NC
GFM

3
Z

6
√

2π
(|Vf |2 + |Af |2) (1.16)

where NC is the color normalization factor which is 1 for leptons

and 3 for quarks. The GF is the Fermi coupling constant [17]. Us-

ing the partial widths of Z, the branching ratios can be calculated

‡The relation between e and weak SU(2) charge gW is e = gW sin θW
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Decay Process Coupling Branching Ratio

Z → νeν̄e, νµν̄µ, ντ ν̄τ 1/2 3× 6.8%

Z → e+e−, µ+µ−, τ+τ− 1/4 +(1/2 -2 sin2 θW )2 3× 3.4%

Z → uū, cc̄ 3[1/4 +(1/2 - 4/3sin2 θW )2] 2× 11.8%

Z → dd̄, ss̄, bb̄ 3[1/4 +(1/2 - 2/3sin2 θW )2] 3× 15.2%

Tab. 1.2: Z boson decays to fermion-antifermion [6].

for various fermion-antifermion decay modes as shown in table 1.2.

The total width and mass of Z boson are measured to be [17]

ΓZ = 2.4955± 0.0009 GeV for MZ = 91.1874± 0.0021GeV/c2.

(1.17)

At hadron colliders one can usually detect the decays of Z to

charged leptons efficiently. Although the hadronic decay modes

of Z are enhanced compared to the leptonic decay modes, there is

a large QCD background production of two-jet. The fraction of the

partial width of Z decays to neutrinos is experimentally measured

by subtracting the detectable part from the total width.

• Around the Z mass, there will be interference of a Z and a photon.

Therefore, the cross section will be related to interference term

σ̂ ∝
ŝ(ŝ−M2

Z)

(ŝ−M2
Z)2 + Γ2

ZM
2
Z

. (1.18)
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A proton consists of three valence quarks, sea quarks and gluons, there-

fore in proton-proton collisions not only the valence quarks but also

gluons and sea quarks can participate to the interactions where each

constituent carries a fraction of the momentum of the colliding proton.

In figure 1.3 these fractions for interacting quarks are indicated by x1

and x2. The PDF for the colliding partons are given at a factorization

scale µ2, for a momentum transfer of Q2. The choice of PDF, therefore,

will have an effect on the cross section for Drell-Yan process. For clarity,

the total cross section can be written as

σDY =
∑
q

∫
dx1dx2fq(x1, µ

2)fq̄(x2, µ
2)

× σ̂qq̄→γ∗/Z→l+l−(x1P1, x2P2, Q
2, µ2).

(1.19)

Figure 1.5 shows the analytical parametrization of the parton distribu-

tion functions [12] using the CTEQ6 [18] parton distribution functions.

1.1.1.3 Higher Order Corrections

The perturbative QCD, QED and weak corrections can be considered

among the additional effects on the total cross section. To take into

account the higher order QCD corrections, the cross section should be

modified with additional terms as

σ =
∑
q

∫
dx1dx2fq(x1)fq̄(x2)

×
(
σ̂0 + aσ̂1 + a2σ̂2 + ...

)
qq̄→γ∗/Z→l+l− ,

(1.20)

with a = αS(M2)/2π. Currently, the cross section for Drell-Yan produc-

tion can be calculated up to and including σ̂2 terms, at so called next-to-

next-to-leading order (NNLO). Using the NNLO predictions, the events

that are generated at leading order (LO) can be scaled to higher order
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Fig. 1.5: Analytical parameterization of the parton distribution

functions xf(x,Q2) at Q=100 GeV using the cteq6 numerical com-

putation for the various quarks, antiquarks, and the gluon [12].
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with the scale factors obtained, often called the “k-factor”. QED cor-

rections are model independent and can include initial and final state

radiation. The pure weak corrections are small for the Z production

[19].

In most cases it is assumed that colliding partons have a negligible trans-

verse momentum relative to the direction of incoming proton beams.

Therefore, leptons produced in the DY process are expected to be back-

to-back in the transverse plane. However, partons inside proton have

a fraction of momentum of protons and can be boosted in the trans-

verse direction. Therefore the produced leptons are expected to have,

on average, a small boost on the transverse plane. Additionally, the

leading order DY cross-section can receive additional contributions from

qq̄ → g+ γ∗/Z and qg → q+ γ∗/Z which makes di-muon events to have

a high transverse momentum.

1.1.1.4 Experimental Measurements

Drell-Yan production of lepton pairs have been studied by the CMS [20,

21] and ATLAS [22, 23] experiments. Figure 1.6 shows the invariant-

mass spectrum in the di-muon channel obtained by CMS [20] normalized

to the Z resonance region. As can be seen, the measurements are in very

good agreement with NNLO predictions by FEWZ [24] shown as blue

line at the statistically dominated low-mass region.

Similarly, figure 1.7 shows the obtained invariant-mass distribution in

the di-electron decay channel by the ATLAS experiment [23].
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Fig. 1.6: The Drell-Yan invariant mass spectrum in the dimuon

channel, normalized to the Z resonance region 1/σZ ∗ dσ/dM , mea-

sured by the CMS experiment [20]. The obtained spectrum and the

prediction at NNLO calculations are shown.

Fig. 1.7: Invariant-mass distribution of electron pairs in data ob-

tained by the ATLAS experiment [23]. The results are compared

to the summed signal and background predictions. The Drell-Yan

signal is predicted from PYTHIA simulation.
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Fig. 1.8: The inverse coupling constants of SM which represent the

electromagnetic, weak and the strong couplings, respectively [25].

1.2 Beyond the Standard Model Theories

Although the Standard Model can explain well the electroweak and

strong interactions, it is widely believed that it is not the ultimate the-

ory that can explain everything at the fundamental level. Behind this

belief, unexplained experimental and cosmological observations lie. For

example, the Dark Matter and Dark Energy of the universe, matter-

antimatter asymmetry, and the experimentally observed non-zero neu-

trino masses are not incorporated in the theoretical framework of the

SM. Although the gravitational force is very weak at the short range

at which QCD and elecroweak interactions occur, the theory can not

be complete without gravity included. Solving the hierarchy problem

between the low and high energy scale (mEW /MPl ∼ 10−17) is another

compelling issue.

If we draw the evolution of the values of the coupling constants of the

fundamental interactions with the energy scale at which they would ap-

ply, there is an energy around which all three coupling constants are

nearly but not totally equal, as can be seen in figure 1.8. Grand Uni-

fication Theories (GUTs) (see for example [26, 27]) aim to achieve a

successful unification of the three gauge coupling constants at the high

energy scale around ΛGUT ∼ 1015 GeV. The promising aspect of these

theories is that three forces are combined into one coupling constant, cor-
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responding to only one large gauge group which unifies the SM forces.

Subsequently, the large group is broken at lower energies to the SM

gauge groups.

Grand Unification Theories are promising candidates for physics beyond

the SM. Many of these GUTs predict the existence of new particles at

the TeV scale, which might be light enough to be accessible at the LHC

collider. Also various other theoretical models predict the existence

of such extra neutral gauge bosons which are explained briefly in the

following sections.

1.2.1 Extra Gauge Bosons: Z′ Models

There is a large literature on this subject where each model describes the

different aspects. For simplicity, three classes of extended gauge theories

predicting extra neutral gauge bosons can be considered: GUT inspired

E6, left-right symmetric models and more generic extension models.

• Large E6 Groups: It is an effective model which originates from

the breaking of a larger E6 group to the SM symmetry [19] as

E6 → SO(10)× U(1)ψ → SU(5)× U(1)χ × U(1)ψ

The breaking of this group down to the SM symmetry, implies

the existence of a gauge boson that is a mixture of two additional

neutral gauge bosons:

Z ′(θ) = Zψ cos θ′ + Zχ sin θ′ (1.21)

The mixing angle θ′ is usually chosen to be 0 and π/2, which

corresponds to a pure Zψ and Zχ, while the choice of arctan
√

3/5

leads to a Zη in superstring inspired models.

• Left-Right Symmetric Models (LRM): This model is based

on the GUT inspired SO(10) group breaking to intermediate sym-

metries [28], for example
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SO(10)→ SU(3)C × SU(2)L × U(1)Y × U(1)χ

→ SU(3)C × SU(2)L × SU(2)R × U(1)B−L

The first chain of the breaking symmetry leads to the SM Z boson

and an additional Zχ as discussed above, while the second term

leads to a right-handed gauge boson and an additional neutral

current [28].

• Generic U′(1) Extension: The SM can be extended by an extra

gauge group. The gauge group of a typical Z′ model predicting a

single extra Z′ boson is considered to be

SU(3)C × SU(2)L × U(1)Y × U ′(1)

where the SM is extended by an additional gauge group of U′(1).

The U′(1) gauge group could be broken at the TeV scale giving

rise to a massive Z′ gauge boson with couplings to SM fermions.

In this case it might be possible to detect such a particle at the

LHC collider.

In pp colliders, the production cross-section of a Z′ decaying to

two muons can be given by [29]

σ(pp→ Z ′ → µ+µ−) =
π

48s

[
cuwu(s,M2

Z′) + cdwd(s,M
2
Z′)
]
,

(1.22)

where wu,d are parts of the hadronic structure functions and do

not depend any couplings. The coefficients cu and cd are given by

cu,d = g2
z(z

2
q + z2

u,d)×BR(Z ′ → µ+µ−), (1.23)

where gz is the gauge coupling of U ′(1), and zq and zu,d are the

couplings of quarks to Z′ .

A benchmark model used in new vector boson searches is the so-

called Sequential Standard Model (SSM) or Standard Model like
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Z′ model. This model assumes that the Z′ couplings to fermions

are the same as those of the Z boson. The model, by itself, is not

gauge invariant [28] however it is often used as benchmark signal

model in experimental searches because of its simplicity and for

the comparison of the experimental results with respect to different

signal models being tested.

1.2.2 Extra Dimension Models

There is a number of theories predicting extra space dimensions differing

in the number or type (flat or warped):

• ADD Model: It is proposed by Arkani-Hamed, Dimopoulos and

Davali [30] to solve the hierarchy problem without supersymmetry.

The model unites gravity and other interactions at the weak energy

scale. The weakness of the gravitational force on distances & 1mm

is explained by new compact spatial dimensions (≥ 2) larger than

the weak scale. The gravitons are allowed to propagate in the

extra dimensions while the SM fields are localized in 4-dimensions

at the weak scale.

• Kaluza-Klein Excitations: The simplest case of Extra Dimen-

sion models predict a single extra dimension of a radius R, im-

plying the existence of Kaluza-Klein excitations [31] of the states

that can propagate in the bulk§ with a mass of ∼ n/R, where n

indicates the extra dimensions n = 1,... . If only gravitons are

allowed to propagate then it will be possible to probe the graviton

experimentally. However, if the SM gauge bosons are also allowed

to propagate, R−1 should be larger than O(TeV) (R . 10−17 cm).

• Warped Extra Dimensions: The Randal-Sundrum (RS) mod-

els predict warped extra dimensions [32]. The SM fields are lo-

calized in the brane. The RS gravitons (G) are predicted in the

mode of Gn: the lightest graviton is massless and mediates the

§Bulk is a hypothetical hyper-dimensional space that can include surfaces called

branes. Our four-dimensional universe is assumed to be on a brane in the bulk.
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gravity. The rest of the modes are massive resonances. There are

two parameters left free in the model. They are the mass of the

graviton and k/MPl, where k is the coupling constant and MPl is

the Planck Mass ∼ 1018 GeV where gravity becomes as strong as

the gauge interactions.

The mass and the width of the n’th resonance is given by

mn = xnke
−kπR, Γn = ρmnxn

(
k

MPl

)
,

where ρ is a constant and depends on the open decay channel

modes and xn is the n-th Bessel function. The main processes

producing the graviton resonances are qq̄ → Gn and gg → Gn.

The graviton can decay to l+l−, γγ, qq̄, gg. The lightest graviton

resonances may be accessible at the LHC colliding energies.

1.2.3 Observables Sensitive to BSM Signals

At hadron colliders, the direct production of a Z′ (or a graviton reso-

nance) can be probed in the decay channels to fermion pairs. The most

promising channel for the search is pp → Z ′ → l+l−, in which Drell-

Yan production will be the dominant background as it gives the same

final state. The decay to quark-antiquark will suffer from the extremely

high background arising from di-jet production in QCD processes, thus

lowering the sensitivity of an experimental search. The expected model

parameters which can be used as observables, in the same time assum-

ing that a resonance is found the first measurements to be performed,

are the total cross section times the branching fraction of the leptonic

decay channel, total width of the resonance, the spin, the parity and the

forward-background asymmetry.

As a starting point, in case an excessive number of events is observed

anywhere in the invariant mass spectrum of lepton pairs, the cross-

section times branching fraction (σZ′×BR) for a given Z′ model can be

measured by counting the excessive number of events with the measured

invariant mass around the resonance mass (MZ′). The total width (ΓZ′)
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(a) (b)

Fig. 1.9: The integrated luminosity to reach the 5σ discovery for

various GUT inspired Z ′ models as a function of Z ′ mass in the

di-muon channel shown in (a). The same reach for ZΨ and ZALRM
models predicted with ±1σ theoretical errors bands are shown in

(b) [33].

of the resonance can be measured as well by fitting the invariant mass

distribution around MZ′ . In case of an absence of signal events (if no

resonance is observed), the cross section times branching fraction can be

constrained for the considered benchmark Z′ models.

Assuming the narrow-width approximation of the Z′ leptonic decays,

where the detector resolution dominates the mass resolution and the

production cross section defined by equation 1.22, can be considered, in

which the production of the Z′ depends on the Z′ mass together with the

two other parameters cu and cd. These parameters can be determined

or constrained via experimental measurements.

Another observable sensitive to a Z′ signal is the forward-backward asym-

metry (AlFB) of produced lepton pairs which can be used to distinguish

between the Z′ models. As advocated in reference [34] the rapidity dis-
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tribution (Yll) of lepton pairs might also provide extra information on

the couplings of Z′ which might help to separate the benchmark models

used to test. It should be noted that the maximum sensitivity can be

achieved by using all or as many possible observables together.

1.3 Experimental Searches for High Mass Res-

onances

Evidence for the production of mentioned particles, arising in the the-

ories beyond the Standard Model, has been searched for long at the

Tevatron experiments CDF [35] and D0 [36], as well as the LHC ex-

periments. The searches for such extra particles are mostly conducted

as direct searches for a “resonance bump” in the di-lepton invariant

mass spectrum, which would appear on top of the smooth background

mostly given by the production of the Drell-Yan process. Figure 1.9

shows the discovery potential of CMS, where such peak-search approach

is adopted, for various Z′ models in the di-muon channel at the design

luminosity and collision energy.

No significant deviations in the observations from the Standard Model

predictions have been found so far. Figure 1.10 shows the upper limits on

the cross-section×branching ratio set by the ATLAS experiment [37, 38]

for GUT inspired E6 models and the sequential standard model at 7

TeV collision data in di-muon and combined lepton channels, respec-

tively. Figure 1.11 shows the invariant mass distribution of di-muon

events obtained by the CMS experiment [39, 40], which is also compat-

ible with the expectations from the standard model processes. In this

case, upper limits (at 95% CL) were set on the ratio of the production

cross-section×branching fraction of some Z′ models to that of the Z bo-

son which is shown is figure 1.12. The lower limit (at 95% CL) on the

mass of the sequential standard model Z′ , resulting from the search in

the di-muon channel, is nearly 2.8 TeV/c2. The current mass limits set

by LHC experiments are the most stringent limits up to date.
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(a) (b)

Fig. 1.10: Upper limits at 95% CL on σ×BR performed by the

ATLAS experiment [37, 38] (a) for Z ′SSM and the two E6-motivated

Z ′ models in the di-muon channel with 7 TeV collision data and

(b) for Z ′ SSM production for the di-muon and di-electron channels

combined with 8 TeV collision data.
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Fig. 1.11: The invariant mass spectrum of dimuon events per-

formed by the CMS experiment [39, 40] (a) at 7 TeV and (b) at 8

TeV collision data.
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Fig. 1.12: Upper limits on the production ratio Rσ of cross section

times branching fraction into lepton pairs for various BSM signal

production relative to the Z bosons by the CMS experiment [39, 40]

(a) at 7 TeV and (b) at 8 TeV collision data.

1.4 Motivation of the Research

The di-muon final state is experimentally advantageous to study. It

is a relatively clean final state and represents a clean signature in the

detector. Therefore, these types of events are ideal for discovering BSM

signatures in high energy physics experiments.

The current CMS analysis in which only the distribution of the invariant

mass of di-muon events is used, does not show any significant evidence

for new phenomena. A more powerful method could help increasing the

sensitivity of this search. Our aim is to improve the analysis methods

in terms of the sensitivity of the detection of a possible BSM signal, as

well as the performance of the reconstruction techniques used.

We investigate the use of a “Matrix Element Method” to search for a

heavy resonance in the di-muon final state. Instead of the invariant mass

of di-muon events as used by peak-search approaches, the full event kine-

matic information which contains all the measured particles and their

measured properties in the event is used as observables in the analy-

sis. Throughout the thesis, in order to be sensitive to a large group of

theoretical models predicting new resonances, the narrow width approx-

imation is used. This means that the natural width of the resonance is



28 1. The Standard Model and Beyond

assumed to be significantly smaller than the experimental mass resolu-

tion of the experiment. Furthermore, a spin-1 hypothesis is considered

for the Sequential Z′ model, as the main benchmark model to test. A

possible sensitivity gain in the analysis will be very useful for current

and future searches for heavy resonances which are predicted by various

theoretical models, as few of them briefly described in this chapter.

This thesis will also describe a new technique to measure from data the

amount of material encountered by particles produced at the collision

point. The knowledge of this amount of material is one of the funda-

mental ingredients of the measurement of the particle momentum with

tracking detectors.



Chapter 2
The CMS Experiment at the

LHC

2.1 The LHC Project

The Large Hadron Collider (LHC) at CERN is the world’s most power-

ful particle accelerator among the high energy particle physics collider

machines. Based on superconducting technology, it accelerates particles

in a circle of 27km underground and is designed to collide proton beams

at the center of mass energy of up to 14 TeV with a target luminosity

of 1034cm−2s−1. It can also collide heavy lead (Pb) ions up to 2.8 TeV.

The aim of the project is to prove the existence of SM Higgs particle and

reveal physics beyond the SM by testing the current understanding of

nature at the high energy frontiers. LHC has two high general purpose

detectors called ATLAS and CMS.

2.2 The CMS Detector

The Compact Muon Solenoid (CMS) is a multi-purpose operating de-

tector at the LHC at CERN. It is constructed at one of the interacting

points of the proton beams at the collider. One of the main features

29



30 2. The CMS Experiment at the LHC

Fig. 2.1: Overall schematic view of CMS detector.

of the CMS detector is a superconducting solenoid providing a high

magnetic field up to around 4T providing a large bending power for

the reconstruction of muon momentum. Overall schematic view of the

CMS detector is shown in figure 2.1 [15]. From in to out of the detec-

tor respectively, the pixel and silicon detector for the tracking system,

the pre-shower and the electromagnetic calorimeter can be seen. Then

the hadronic calorimeter is placed. After the magnet, the muon system

covers the barrel and the endcap of the detector.

The CMS detector requirements to accomplish the physics programme

are good muon identification and muon momentum resolution together

with good track reconstruction for charged particles in the inner tracking

system. A good electromagnetic energy resolution in the reconstruction

of photon and electrons, good jet reconstruction, an accurate missing

transverse energy reconstruction and the overall geometric coverage are

the key factors of the detector design.

The total proton-proton cross section at
√
s =14 TeV is expected to be

roughly 100 mb. At the design luminosity the general purpose detectors

will provide around 109 inelastic scattering events/s [15]. This leads

to an incredible experimental challenge of selecting the “interesting”

events among all collisions. The large flux of particles coming from the

interaction point requires high granularity and good detector response
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in time.

The coordinate system of CMS is centered at the collision point. The y-

axis is vertically pointing upward and x-axis is pointing to the center of

the LHC. Hence, the z-axis lies along the beam direction. The azimuthal

φ angle is measured from the x-axis in x-y plane. The polar angle θ is

measured from the z-axis in z-y plane. The pesudorapidity is defined

as η = −lntan(θ/2). By the definition of the coordinate system, the

momentum of the charged particles are measured in the vertical plane

transverse to beam direction denoted as pT . The other components of

the physical quantities can be measured kinematically.

Particle identification is a crucial part of the building an experiment.

It plays a main role in the structure and the geometry of the detector

design. Depending on the physics goals to achieve, different layout for

the detector can be chosen in order to have the optimal performance

on the type of particles to be reconstructed with the detector system.

There are different techniques used in the calorimetry as well as the

tracking. Although the technology used can be different in the detectors,

the main principles are the underlying psychics processes which affect

the performance of the detector. The calorimeters measure the energy

deposited by the traversing particle due to the generated electromagnetic

and hadronic showers. The main principle of tracking is the curving the

path of the electrically charged particle with a strong magnetic field so

that calculation of the curvature will allow to measure the particle’s

momentum.

2.3 The CMS Superconducting Magnet

The superconducting solenoid magnet is one of the distinctive features

of the CMS detector. It has two main components: one is the coil

solenoid and the other part is the return yoke. To accomplish the good

measurement of the muon momentum resolution and an efficient inner

tracking, a strong bending power and therefore a strong magnetic field is

necessary. The CMS coil solenoid is 13m in length and 5.9m in diameter

and allows a muon detection up to 2.4 in η [41]. The 4T magnetic field
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is an optimal choice to enable a good inner tracking. The occupancy

of the outer tracker in the barrel is reduced by the strong field. This

also reduces the flux of charged particles reaching to the electromagnetic

calorimeter.

The magnetic flux is returned by an iron yoke. The CMS iron yoke in

designed to saturate the magnetic flux generated by the magnet coil. It

is composed of 6 disks and 5 barrel wheels. The muon chambers are

interleaved between the iron plates of the yoke. The thick iron yoke

allows not only good muon identification by absorbing the hadrons, but

also helps fast triggering.

2.4 The CMS Tracking System and Track Re-

construction

2.4.1 Tracker Layout

The CMS tracking system is designed to provide a precise measurement

of trajectories of charged particles. It covers the interaction point, the

center of CMS and extends to a length of 5.8m and a 2.5m in diame-

ter. In order to measure the charged tracks accurately at the nominal

luminosity, the tracking system is built with high granularity and fast

response to differentiate each bunch crossing. However, the technologies

used in the tracking system pay off with the requirement of powerful

cooling and electronic systems. The amount of material required for

optimal operation of detector, placed within the tracking system, will

directly affect the amount of interactions with the detector material.

Therefore, the chances of a deteriorated, inaccurate measurement of

trajectories will be increased.

The requirements of the detector having high granularity, fast response

and radiation hardness makes the choice of the tracking system being

made out of silicon. The tracking system consists of inner pixel and

outer silicon detection layers. The pixel detector is made out of three

barrel layers and two endcap disks. The silicon strip tracker is composed
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Fig. 2.2: Schematic drawing of the CMS tracking system where

each line represents the detection modules.

of 10 layers in the barrel 3 plus 9 disks in the endcap region of detector.

The acceptance of tracking system extends up to |η| < 2.5. Figure 2.2

shows the schematic view of the CMS tracking system. The single lines

represent the single modules while double lines represent the detection

modules providing stereo hits.

The inner pixel tracking system surrounds the CMS interaction point

at a very close radius of 4.4 to 7.3 cm and 10.2 cm in cylindrical layers

along the beam pipe. The silicon tracking system has different subsys-

tems called Tracker Inner Barrel (TIB), Tracker Outer Barrel (TOB)

and Inner Disks (TID) and Endcap (TEC). The tracker has a complete

symmetrical view with respect to the x-y plane of the CMS detector.

The pixel detector delivers high precision space-points with resolutions

of 15-20 µm. The first two layers of TIB and TOB and the first two

disk of TID as well as 1,2 and 5 disks of TEC are mounted with sec-

ond layers of detector modules to improve the detector resolution. The

strip pitch is 80 µm on layers 1 and 2 and 120 µm on layers 3 and 4

in the TIB, leading to a single point resolution of 23 µm and 35 µm,

respectively. Outer barrel of tracker (TOB) provides 6 measurements

with single point resolution of 53µm (in the first 4 layers) and 35 µm (in
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layers 5 and 6), respectively. In addition, the modules in the first two

layers and rings, respectively, of TIB, TID, and TOB as well as rings 1,

2, and 5 of the TECs carry a second micro-strip detector module which

is mounted back-to-back with a stereo angle of 100 mrad in order to

provide a measurement of the second coordinate (z in the barrel and r

on the disks). The tracker assembly ensures approximately 9 hits in the

range of η < 2.4 in the silicon strip tracker while providing more hits in

the transition region of barrel-endcap.

2.4.2 Track Reconstruction and Performance

The main principle of track reconstruction is based on the idea of build-

ing a trajectory of particle using digitized hits (clustered signals) in the

electronic readout, given detector set-ups. The track reconstruction is

performed by the reconstruction algorithms implemented in the CMS

software framework called CMSSW [42]. The CMS standard track re-

construction algorithm is performed by the combinatorial track finder

(CTF) [43] in a number of iterations providing the final track parameters

and corresponding uncertainties in the form of a 5×5 covariance matrix.

Parameters describing a track are chosen to be d0, z0, φ, cot θ and the

transverse momentum pT . These parameters are defined at the point of

closest approach to the beam axis where d0 and z0 define the coordinate

of the impact point in the transverse and longitudinal directions, φ and

θ are the azimuthal angle and θ the polar angle, respectively.

The track reconstruction is performed in many steps. These steps can

be summarized briefly as following;

• Local reconstruction: It starts from clustering signals recorded

on individual electronic channels as a result of the passage of

charged particle in the silicon and pixel detectors. For each of

these clusters a 2 dimensional position of the crossing point and

the associated uncertainty are estimated.

• Seed generation: Initial “seeds”, which are estimate of the track

parameters (particle momentum and position) and associated un-

certainties, is provided at this step either externally (from the
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muon system for example) or internally from the innermost track-

ing layers. In the latter case seeds are constructed out of either

triplets of hits in the tracker or pairs of hits with an additional

constraint from the beamspot or a pixel vertex.

• Pattern recognition: Starting from a seed provided, additional

hits from the various detection layers of the detector and compati-

ble with the trajectory of a charged particle, are added to the can-

didate track. To explain briefly: the seed is propagated outward,

to the next detection layer where compatible hits are searched for.

As a compatible hit is found, its spatial information is added to

update the track parameters and the uncertainties. This search

continues until either the boundary of the tracker is reached or no

more compatible hits are found. If more than a compatible hit is

found, as many track candidates are created and the procedure is

continued for each of them.

• Final track fitting: Having associated a set of hits to a track

candidate, a final fit is performed with the aim of obtaining an

estimate of the track parameters and their uncertainties at every

detection layer and at the interaction vertex. These estimates are

obtained by reproducing the procedure outlined in the previous

step in the inward direction. At every detection layer the outward

and inward states are weighted averaged to obtain the final esti-

mate of the track parameters and uncertainties at the considered

detection layer (or at the interaction point). Such a weighted aver-

age is proved to be mathematically equivalent to a full χ2 global fit

to all measured positions using a model that includes the particle

energy loss, the deflection in the magnetic field and the change in

trajectory resulting from the interactions with the detector mate-

rials. This alternative equivalent procedure is called the Kalman

Filter [44].

• Track selection: After applying the final quality cuts, fake tracks

are removed. Fake tracks are identified as those that share a large

number of hits with other candidates and/or that have a very large

fit χ2.
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Fig. 2.3: The resolution of track parameters for single muon tracks

having 1, 10 and 100 GeV/c of transverse momentum. The reso-

lution of transverse momentum (left), transverse impact parameter

(middle), longitudinal impact parameter (right) are shown as a func-

tion of η [45].

For muons having a transverse momentum between 1 and 100 GeV/c the

tracking efficiency is higher than 99% in the full coverage of the tracker.

Figure 2.3 shows the expected resolution of muon tracks having 1, 10

and 100GeV of transverse momentum [45].

2.5 The CMS Muon System and Muon Recon-

struction

2.5.1 Overview of the Muon System

Muon reconstruction plays a central role in the CMS detector as it ap-

pears in the middle of the experiment name. Good muon momentum

measurement is a crucial part of many Standard Model measurements

and the searches for BSM physics which involves muons in the final state,

for example the measurement of the properties of Higgs particle in the

four lepton final state, for H decaying to ZZ, then decaying to leptons.

The proper identification and the accurate measurement of muons can

lead to a potential discovery of BSM physics. The CMS detector has the

aim of a good muon momentum measurement and muon identification

as well as fast muon triggering.
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The muon system of CMS naturally follows the cylindrical shape of

the coil solenoid. Three types of gaseous muon detection systems are

mounted on CMS. These are;

• Drift Tube (DT) Chambers: Standard rectangular shape DTs

are mounted mostly in the barrel region where the neutron in-

duced background is small. They cover a pseudorapidity region

of |η| <1.2 and consist of 4 layers of stations. The DT system is

designed to measure muon position in r-φ plane and z direction.

Figure 2.4 shows the layout of the CMS DT muon system in the

vertical plane [45].

• Cathode Strip Chambers (CSC): The endcap region of the

muon system between |η| 0.9 and 2.4 is equipped with fast response

cathode strip chambers. These detector region is expected to have

a high hit occupancy during the LHC data taking which are mostly

due to beam radiation (photons and neutrons). The 4 stations of

cathode strip chambers in the endcap run radially to provide a

measurement in r-φ.

• Resistive Plate Chambers (RPC): In order to provide redun-

dancy both at the trigger and offline level, the barrel and endcap

muon system are equipped with another complementary system

consisting of resistive plate chambers. RPCs provide a fast time

response and resolution with a large coverage in the rapidity range

of |η| <1.6.

Apart from the muon subsystems, a sophisticated optical align-

ment system measures the muon sub-detector positions with re-

spect to each other and to the inner tracker to optimize the mo-

mentum resolution.

The different technologies used in the CMS detector makes the detector

to be divided in tree regions:the barrel, which covers |η| <0.9, the overlap

or transition region in 0.9< |η| <1.2, and the endcap region of detector,

which covers 1.2< |η| <2.4. In figure 2.5 overall layout of one quarter

of the CMS detector is shown, together with muon system [46]. The
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Fig. 2.4: The vertical layout of the CMS barrel muon DT chambers

in one of the 5 wheels [45]. A representative trajectory of a muon is

drawn as well.

motivation of the geometrical division of the detector regions can be

clearly seen.

2.5.2 Muon Reconstruction

The efficiency of reconstruction of charged muon tracks is high with the

CMS detector. Energy loss of muons in the silicon tracker is mostly

through ionization. Their energy loss via Bremsstrahlung is generally

negligible at low momentum. However, it becomes important for muons

produced with an initial energy higher than 100 GeV. Multiple Coulomb

scattering with the nuclei of the detector material is the main respon-

sible for deflections in the trajectory of charged particles. The effect of

multiple scattering is fully included during the pattern recognition in

the Kalman filter.

The CMS muon reconstruction is based on combination tracks recon-

structed separately in the inner tracker and outer muon system. Tracks
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Fig. 2.5: The overall layout of one quarter of the CMS detector

with the barrel and endcap muon system shown [46].

are thus reconstructed separately in the tracker and muon system. The

full reconstruction can be divided in these parts:

1. Tracker Muon Reconstruction (inside-out): All tracker tracks

with pT >0.5GeV/c and having a total momentum greater than

2.5 GeV are considered as possible muon candidates. The track pa-

rameters are extrapolated to the muon system taking into account

the effects of the detector set-up. If at least one muon segment is

found to match the extrapolated track then the track is identified

as a “tracker track” [46].

3. Standalone Muon Reconstruction: A track reconstructed with

information from just the muon detectors is called “standalone

muon track”.

2. Global Muon Reconstruction (outside-in): A “global muon”

is the result of fitting the hits belonging to a track reconstructed

in the inner tracker and those associated with a standalone muon.

The two tracks must be compatible with the trajectory of a single

particle. The global track reconstruction can help to improve the

reconstruction of muon tracks with a pT higher than 200GeV/c by

using the more precise information from tracker system.
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Most of the times the muons having sufficiently high momentum

are reconstructed either as tracker track or global muon or both.

If both reconstruction algorithms fail then the muon track is re-

constructed as Standalone Muon. 1% of the collision muons are

reconstructed standalone only [47].

The default muon momentum assignment in CMS uses the following

algorithm, called “sigma-switch”. The algorithm uses the momentum

measured by the global muon reconstruction if pT >200 GeV/c and the

charge to momentum ratio agrees within 2σ with the momentum mea-

surement of the tracker-only reconstruction. In other cases the tracker-

only reconstruction is chosen.

The resolution of the momentum measurements for muons in the trans-

verse momentum region below 200 GeV/c is dominated by the measure-

ments from the inner tracker. At high-pT the extended fit with the muon

system is used to improve the resolution.

2.5.3 Muon Identification

In order to identify muons with high efficiency and purity, different cri-

terias are applied on the reconstructed muon tracks:

Soft Muon Identification: A Tracker Track is required to fulfill a certain

criteria when matching to a muon segment in x and y coordinates. The

soft muon selection is mostly used in the analyses where low-momentum

tracks are required.

Tight Muon Identification: The muon track should be reconstructed by

the global muon reconstruction algorithm by requiring the χ2/d.o.f of

the fitted track to be less than 10. At least one muon chamber hit

should be used in the muon reconstruction. Additionally, the muon

track should be recontracted as a tracker track which matches to two

hits in the muon stations. More than 10 tracker hits including at least

one from pixel should be used in the Tracker Track. The transverse

impact parameter of track with respect to the primary vertex should be

less than 2mm.
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Particle-Flow Muon Identification: This identification algorithm is based

on the so-called the particle-flow algorithm [48], which uses information

from the all detector systems of the experiment to identify all the parti-

cles. Starting from these particles, higher-level reconstructed quantities,

like jets, missing transverse energy and tau-jets are also identified. The

particle-flow muon identification identifies on one side isolated muons

and on the other muons in jets.

2.5.4 Performance of the CMS Muon Reconstruction

The muon reconstruction and identification efficiencies are studied by

CMS with a tag-and-probe technique [49] for the high and low-pT mo-

mentum region using J/Ψ and Z decays to di-muons. Figure 2.6 shows

the muon identification efficiencies for the barrel (upper) and endcap

(lower) regions of the detector with different identification algorithms.

As muon momentum increases, identification efficiency approaches a

plateau close to 100%. The muons identified as tight muons in gen-

eral have an efficiency of more than 96% for pT above 20 GeV/c. The

dependency of the plateau efficiency on the pseudorapidity of muon is

shown in figure 2.7 for muons having a pT >20GeV using a tag-probe-

method with Z→ µ+µ− events.

Figure 2.8 shows the invariant mass distribution of di-muon events for

low-mass values [46]. The low-mass di-muon resonances are clearly sep-

arated.

2.5.5 High-pT Muon Reconstruction Algorithms

The accuracy of the muon momentum measurement can significantly

worsen for the high momentum muons. The radiative energy loss occur-

ring mostly in the calorimeters and in the return yoke is not negligible.

The radiative process can give rise to the electromagnetic showers in

the muon system and therefore increase the number of hits in the muon

chambers. Moreover radiative energy losses are not taken into account

in the track fit. Because of these effects muon momentum measurement
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Fig. 2.6: Muon identification efficiencies obtained for data in com-

parison to simulation with a tag-and-probe method as a function of

the reconstructed muon-pT . The efficiency of Soft Muons (left), PF

muons (middle) and Tight Muons (right) are shown with respect to

barrel and overlap (upper) and endcap (lower) region of the detector

[49].

Fig. 2.7: Muon identification efficiencies relative to the tracker

track obtained with a tag-and-probe method as a function of the

pseudorapidity of muon. The efficiency of Soft Muons (left), PF

muons (middle) and Tight Muons (right) are shown [49].
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Fig. 2.8: Invariant mass distribution of di-muon events collected

by the CMS detector during the 2010 Runs. A good mass resolution

on Υ∗ can be seen clearly [46].

described in the previous sections can be significantly biased. Therefore

special algorithms are used for measuring the high momentum muon

tracks.

• Tracker-Plus-First-Muon-Station (TPFMS): This algorithm refits

the global-muon track with just the innermost muon chamber ig-

noring all other hits produced in the muon system.

• The Picky Fit: The algorithm uses the hits in the global-muon

track and refits the track using only hits in the muon chambers

that are compatible with the extrapolated trajectory in order to

reduce bias using extra hits contaminated by the showers.

• Tune-P: This algorithm is also called “Cocktail” and uses the com-

bination of the above fits to improve the momentum assignment

of tracks. It takes the measurement associated with the track with

the lowest χ2. In high-pT muon reconstruction usually Picky or

TPFMS algorithms are chosen for the momentum assignments.

Cosmic muons are used to determine the performance of the detector for

the high-pT momentum range by CMS [46]. Figure 2.9 shows the result
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Fig. 2.9: The results of the momentum resolution performance by

the CMS experiment [46]. The figure on the left shows the width of

q/pT relative residuals according to various fitting algorithms, while

the figure on the right shows the RMS of the same distributions.

of the measured performance. The figure shows the relative resolution

measured with different fitting algorithms, for the tracker-only, global,

sigma-switch and the Tune-P, respectively. The best performance is

obtained from Tune-P algorithm which fits the 350< pT <2000 GeV/c

transverse momentum region with a 6.2% in the resolution. Therefore

the physics analyses performed with high-pT muons require final track

parameters provided by the Tune-P algorithm.



Chapter 3
Measurements of the CMS

Inner Tracker Material

As described in chapter 2, the material in the detector is necessary for

the detection of the particles coming from the colliding protons. On

the other hand, the interactions with the sensitive or passive detector

material can deteriorate the resolution of the track momentum measure-

ment. In any case the knowledge of the distribution of material within

a tracking detector is a fundamental ingredient for the measurement of

the momentum of charged tracks based on the bending of the trajectory

in a magnetic field. In this chapter, after describing the interactions of

traversing particles with the detector material, we present a novel tech-

nique to measure the distribution of the material in the inner tracker

volume, using the reconstructed particle tracks. The description of this

new method will be followed by the presentation of the results obtained

with collision data on the inner tracker of the CMS detector.

45



46 3. Measurements of the CMS Inner Tracker Material

3.1 Interactions of Particles with Detector Ma-

terial

The particles that traverse the detector material can undergo a number

of interactions. Charged particles will lose their energy by elastic elec-

tromagnetic (or Coulomb) scattering with the electrons of the traversed

media, also referred to as ionization energy loss, they can also be scat-

tered via the same interaction by the nuclei of the atoms constituting

the detector material. This latter interaction, commonly referred to as

multiple scattering, results in negligible energy loss, but in significant

changes in the particle trajectory. Hadrons can experience in addition

nuclear interactions, in which case the initial particle is lost while a

number of secondary particles will emerge from the interaction point.

Let us describe in detail the main processes that can occur while muons

traverse the detector medium.

Ionization Energy Loss: The ionization energy loss of muons and any

other charged particles heavier than the electron when traveling through

material is given by the “Bethe” formula [17] that provides the mean

energy loss in a unit material length (MeV/ g−1 cm2) as:

−
〈
dE

dx

〉
= Kz2Z

A

1

β2

[
1

2
ln

2mec
2β2γ2Tmax
I2

− β2 − δ(βγ)

2

]
. (3.1)

Here, Z is the atomic number of the absorber material, A is the atomic

mass of the absorber, δ(βγ) is the density effect correction to the ion-

ization energy loss, me × c2 is the electron mass times speed of light

squared. The term Tmax describes maximum kinetic energy that can

free a electron in a single collision, and I is mean excitation energy.

In figure 3.1, the mean energy loss as a function of the muon momentum

is shown. Note that as the muon momentum increases beyond several

hundreds of GeV, the radiative losses become the more dominant pro-

cesses.
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Fig. 3.1: Stopping power for positive muons in copper as a function

of the muon momentum [17].

Multiple Coulomb Scattering: A charged particle traversing a ma-

terial is deflected due to Coulomb scattering from nuclei. Figure 3.2

illustrates the scattering of a particle from a single layer. The projected

angular distribution of the scattering is approximately Gaussian with a

standard deviation θ0, given by [17]

θ0 =
13.6MeV

βcp
z
√
x/X0 (1 + 0.038 ln(x/X0)) , (3.2)

where p is the momentum, βc velocity and z is the charge number of

the incident particles. In the equation, x/X0 is the material thickness in

radiation length units. Radiation length is the scale length for describing

high-energy electromagnetic cascades in the longitudinal direction. It is

the mean distance over which a high-energy electron losses all but 1/e

of its energy in a given material.

In case of a particle traversing multiple layers of material or the mixtures

of them, it is found to be more accurate if equation 3.2 is applied for

total material, once x and X0 are known for overall thickness [17].

Radiative Losses at High Energy: At sufficiently high energy the

radiative processes become dominant over ionization. For muons travers-
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Fig. 3.2: Schematic view of the multiple scattering for an incident

particle on the plane. Related parameters are shown as well.

ing iron, for example, this limit occurs at several hundreds GeV. These

processes are characterized by small cross sections, hard spectra, large

energy fluctuations, and the associated generation of electromagnetic

and (in the case of photonuclear interactions) hadronic showers [17].

Figure 3.3 shows the average energy loss of muons in different materi-

als. Each line shows energy loss due to processes like Bremsstrahlung,

electron-positron direct production or photonuclear interactions. Energy

loss due to ionization in iron is shown as well. It should be noted that

an optimal choice of detector material is necessary to limit the multi-

ple scattering, Bremsstrahlung, electron-positron direct production and

nuclear interactions in order to limit to the maximum possible extent

perturbations to the particle trajectories due to detector material.

3.2 Material Effects in Track Reconstruction

An efficient and precise momentum reconstruction of charged particles

produced in the collision is necessary to improve the accuracy of exper-

imental measurements. During the reconstruction of events, the knowl-

edge of the material effects must be used. Inaccurate knowledge of the

material description can bias measurements of the energy and direction

of the particles and therefore can change the reconstructed event topol-

ogy, since the events used in the analysis are built from the reconstructed
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Fig. 3.3: The average energy loss of a muon in hydrogen, iron, and

uranium as a function of the muon energy [17].

particles.

When simulating events, the detector effects must be taken into account

as well. An adequate simulation of all these effects requires the accurate

description of the material knowledge. CMS uses Geant4 [50] detector

simulation to take all these effects into account during the propagation of

particles in the detector volume. In figure 3.4, the material distribution

(material budget) in the inner CMS tracker detector, as assumed in the

simulation, is shown in units of radiation length. A simplified version

of this material distribution is assumed in the software algorithms that

perform track reconstruction.

Indeed, because of the high occupancy in the tracker detector and be-

cause of the many combinations of hits that must be checked against the

hypothesis of having been generated from the same particle, the track

reconstruction would be computationally highly time consuming, even

significantly higher than the full simulation of events in the detector.

For these reasons, unlike in the simulation of particle propagation in the

detection volume with Geant4, for reconstruction, the detailed distri-

bution of the detector material is replaced by a simplified model. The



50 3. Measurements of the CMS Inner Tracker Material

Fig. 3.4: The material distribution of the CMS tracker in units of

radiation length as a function of pseudorapidity [51].

model attributes all the materiel existing between two detection layers,

only to the (assumend infinitely thin) innermost detection plane. This

model also highly simplifies the estimation of energy loss and multiple

scattering. The energy loss is accounted by means of the Bethe for-

mula, while the multiple scattering effect is introduced in the form of

equation 3.2, by assuming the deflection angle is Gaussian distributed.

In order to measure the distribution of material in the tracker detector

different methods are used. For example, the methods based on extract-

ing the number of photon conversions and nuclear interactions in the

tracking volume are the most commonly used techniques. We propose

a new technique that exploits the deflections experienced by particles

as a consequence of the multiple scattering. In practice, by analyzing

the collision events, the method checks the consistency between the real

detector material distribution and the one assumed at the track recon-

struction stage. Given that the latter is derived from the simulated

detector setups, conclusions on the accuracy of the simulated setup can

also be inferred. In the following section, after introducing the com-

mon techniques used in CMS, the proposed new method and the results

obtained on the CMS inner tracker detector will be presented.
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3.3 Photon Conversion and Nuclear Interaction

Techniques

Photon conversion is a pair of oppositely charged electron-positron cre-

ated in a secondary vertex. In early phase of CMS data taking, up to

70% of photons traversing the tracker material creates soft e+e− pairs

mainly coming from π0 decays which are very unlikely to reach the elec-

tromagnetic calorimeter. Due to strong magnetic field, the pairs open

in the transverse plane and therefore it becomes possible to detect such

signals especially close to innermost tracker layers thanks to dedicated

algorithms implemented in the track reconstruction software (for more

details see [52]).

The material distribution of Silicon Tracker varies between 0.1-1.5 in-

teraction length. Therefore, large number of nuclear interactions with

tracker material is expected in each event due to interaction of charged

or neutral hadrons traversing the tracker. Nuclear interactions, as im-

plemented in the software, are reconstructed when two or more charged

tracks are originated from the same secondary vertex with an invariant

mass above few hundreds of MeV.

The number of photon conversions and nuclear interactions depends on

the amount of material placed in the detector and therefore can be used

to probe the material distribution. Assuming a negligible contribution

from fake tracks (misreconstructed tracks), the number of reconstructed

photon conversion Nconv in a given volume is given by [52]

Nconv ∝ εconv.〈
P

X0
〉.fgeom

where εconv is the reconstruction efficiency and 〈 PX0
〉 is the average con-

version probability (P ∼ 7/9). The geometrical correction factor fgeom
represents the initial flux in a detector volume. Similar formula is writ-

ten for nuclear interactions Nn.i. and is given by [52]

Nn.i. ∝ εn.i..〈
1

λI
〉.fgeom
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Fig. 3.5: Material distribution versus radius as estimated using

reconstructed photon conversions from data. The plot at the bot-

tom shows the material distribution implemented in simulation in

average X−1
0 per bin [52].

If Nγ and Nhad are the number of incoming photons and hadrons, formu-

lations above, after subtracting fake tracks, for each geometrical volume

can be redefined as photon conversion (or nuclear interaction) probabil-

ity which are averaged in the counting volume.

Figures 3.5 and 3.6 show the amount of material measured for photon

conversions and nuclear interactions from data, following the procedure

mentioned above, with respect to radius of the tracker detector in a fidu-

cial volume restricted to contain Pixel detector barrel and Inner Tracker

barrel. For comparison, the material distribution, as implemented in the

simulation, per X−1
0 and λ−1

I bin are also plotted for each figure at the

bottom. Figures clearly demonstrate that material description in the

simulation is under control.

The ratio of number of photon conversion or nuclear interaction mea-

sured in data and simulation can be used for the comparison of material

distribution between the real and simulated ones. Figure 3.7 shows this

ratio for each substructure of the detector in radial bins in x axis. Over-

all agreement between data and simulation is at the level of ∼10% except

a larger discrepancy observed in the “support” region between TIB and

TOB.
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Fig. 3.6: Material distribution versus radius as estimated using

reconstructed nuclear interactions from data. The plot at the bot-

tom shows the material distribution implemented in simulation in

average λ−1
I per bin [52].

Fig. 3.7: Ratio of number of candidates for photon conversion (in

circle) and nuclear interaction (square) measured from data over

simulation in radial bins [52].
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3.4 Multiple Scattering Technique

Multiple scattering plays an important role in the momentum resolu-

tion of a reconstructed charged track. In the case of the CMS inner

tracker detector, it is the dominant effect in the momentum resolution

for tracks with pT up to 10 GeV/c, and accounts for 20 to 30% of mo-

mentum resolution at 100 GeV/c of transverse momentum [45]. The

effect of multiple scattering on the reconstructed track trajectories can

be exploited to probe the distribution of material in the tracker vol-

ume. The method is based on the standard CMS track reconstruction

algorithm. As described in chapter 2, the CMS standard track recon-

struction algorithm provides in each detection layer five estimated track

parameters, together with estimated uncertainties in the form of a five

by five covariance error matrix. The detection layers of the tracker are

the sensitive silicon detectors as sketched in figure 2.2. The five track

parameters and the associated covariance matrix will be referred as the

track state at the considered detection plane in the following text.

In order to estimate the amount of material between two given detection

planes, the track state on the starting plane (also called inner plane) is

extrapolated to the destination plane (also called outer plane) under a

certain assumption for the amount of material, which is the quantity that

is being measured. In the extrapolation, the energy loss by ionization

and the bending of the track in the magnetic field are taken into account.

Although the energy loss by ionization also depends on the traversed

material and affects the extrapolation, its effect is small compared to

that of multiple scattering.

Therefore, as long as the particle momentum is below about 10 GeV, the

uncertainty in the extrapolated track state on the destination plane is al-

most exclusively determined by the multiple scattering that the particle

experiences while traversing the material between two detection planes.

The uncertainty in the track state at the starting plane is another factor.

However, the uncertainty in the track state at the starting plane is by far

smaller than the uncertainty in the track state at the destination, thus

the multiple scattering is expected to be dominant on the uncertainty in

the extrapolated track state. Therefore the uncertainty in the extrapo-
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lated track state on the destination plane simply carries the information

on the amount of material assumed between two detection planes at the

reconstruction level.

The relevant observable that provides a direct comparison between the

assumed amount of material and the actual one is thus the standard

deviation of a Gaussian fit to the distribution of the ratio between the

residual (XD−XT ) and the uncertainty in the extrapolated track state,

which is given by

pull = (XD −XT )/∆D. (3.3)

Here XD is the central position of the extrapolated track state at the des-

tination and XT refers to the central position of the track state updated

with the measurement at the detection plane; ∆D is the uncertainty in

the extrapolated track state which is assumed to be mainly dominated

by the multiple scattering. The standard deviation of the pull distri-

bution σpull is obtained by a Gaussian fit to the pull distribution. The

σpull will be called the sigma of the pull distribution and will be indi-

cated more specifically by σpulli , where i is an index that identifies the

destination plane.

The distribution of the values of σpulli must be equal to a unit Gaus-

sian in the case the assumed amount of material coincides with the ac-

tual one. Gaussian distributions with sigma lower or larger than unity

would indicate, respectively, an overestimation or an underestimation of

the amount of material. This simple interpretation can not be strictly

adopted if the track reconstruction is performed with different mate-

rial distributions than in the actual detector setup. In fact, as already

mentioned, the material distribution assumed by the CMS track recon-

struction algorithm is a simplified one, where all material is concentrated

at the starting detector surface.



56 3. Measurements of the CMS Inner Tracker Material

3.4.1 Sensitivity of the Method

To avoid any unwanted bias, the position measurement on the desti-

nation plane and all the following measurements are not used in the

computation of the track state on the starting plane.

Although the uncertainties in the extrapolated track state can also be

affected by the uncertainties in the magnetic field, energy loss and posi-

tion (alignment) of the detector, they are assumed to have a negligible

contribution in comparison to multiple scattering effects as long as low

momentum tracks are used. The uncertainty in alignment is around 10

µm while the effect of multiple scattering, which in general dominates

the position resolution as well, is around 100-200µm. Therefore, the

method is expected to suffer little from the effects of misalignment and

other detector mis-calibrations. It should be noted that little statistics is

sufficient to extract results in the entire tracking detection volume. On

the other hand, it should be stressed that the method has no or little

sensitivity to the actual details of the material distribution between two

detection layers.

3.5 Iterative Corrections to the Track Recon-

struction Material Model

The standard track reconstruction with its assumed material model can

be tested with the multiple scattering method. If the reconstruction

model describes well the material in the detector, one assumes to have

a unit sigma of the pull distribution for each detector layer in which the

material is being measured. In case the pull distributions do not have

unit sigma, a correction factor, extracted from the pull distributions,

can be computed and applied on the material model.

However, given the fact that the value of a correction relies on the other

amount of materials (not yet corrected) to be correct, the corrections

computed in this fashion do not allow in general to achieve the unit

sigma results, though they improve the overall situation. Therefore the
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procedure is repeated iteratively until convergence to stable corrections

is obtained. Using the equations 3.2 and 3.3, the correction factors that

will be applied to the amount of material in between the layers Li and

Li+1 can be approximated to

ci = (σpulli+1 )2. (3.4)

Here σpulli+1 is observed sigma of the pull distribution in layer Li+1. The

assumptions made in the derivation of the relation are: the deviation

from the trajectory is only due to the multiple scattering of the particle

traversing this material in between the two detection planes, and the

assumption of Gaussian distributed small deflection angles in the form

of equation 3.2 where the width of the distribution is proportional to

square root of the material thickness.

The final correction factor that should be applied to the material model

is the multiplicative correction factors obtained in each iteration. We

end up having a set of factors {Ci} of

Ci = c1
i × c2

i × c3
i × ...× cni

=

n∏
j=1

cji
(3.5)

where n is the number of iterations performed. Note that i is the layer

number, not the number of iterations.

3.5.1 Feasibility Tests

In order to apply this method, there are few points that have to be ver-

ified. First is the convergence, meaning that the method should yield

stable and accurate corrections after a relatively small number of itera-

tions. The method should lead to distributions with close to unit sigma

in as small as possible number of iterations. Another point is that the

method should have little dependence on the material distribution on
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other detection layers. This condition can be satisfied as long as low

momentum tracks are used, such that the uncertainty in the extrapo-

lated track state is dominated by the multiple scattering and not by the

effect of misalignment and hit resolution at the detection layers. An-

other point that should be verified is that the initial conditions should

not affect the results.

In order to verify the conditions mentioned above, we simulated single

muon particles with opposite charge, having a momentum of 1 GeV in

all regions of the detector. We run the track reconstruction with its

simplified material model to obtain the first iteration factors, then we

continue to iteration by modifying the reconstruction material model

with the obtained factors until we converge to the unit sigma distribu-

tions on the pulls. The material in the last barrel layer is kept constant

we have no means to test this material because of the lack of accurate

position measurements further out. Figure 3.8 and 3.9 show the sigma

of the pull distributions with respect to layers of detector before and

after iterations in barrel and edcap+ region. The simulated tracks hav-

ing 1GeV momentum are used to obtain the distributions. Figure 3.10

shows the pull distribution obtained by modifying the material by a fac-

tor two in the barrel |η| < 0.6, using an ideal scenario (no misalignment).

Figure 3.11 shows the same pull distributions after the second iteration.

As it was noted before, the method should be independent from the

starting conditions. Figure 3.12 shows the standard deviation of the

residual distribution for barrel layers up to the second iteration step

starting from the standard reconstruction material. In all iteration steps,

the residual distributions do not change significantly, the only difference

is the uncertainty in the propagated track state, because of the multiple

scattering effect being dominant.

Figure 3.13 is a good way to compare the sigma of the pull distributions

obtained on barrel layers, after first and second iterations, starting from

a factor two increased tracker material. As can be seen, the convergence

is reached after a very low number of iterations. Simply two iteration

steps are enough to reach the unit sigma on the pull distributions.

The final correction factors obtained with simulated events using the
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Fig. 3.8: The sigma of the pull distributions for barrel layers, in-

cluding the ones from pixel detector, with simulated events having 1

GeV momentum before and after iterations starting from the stan-

dard material model in the reconstruction.

Fig. 3.9: The sigma of the pull distributions for endcap+ wheels,

including the ones from pixel detector, with simulated events hav-

ing 1 GeV momentum before and after iterations starting from the

standard material model in the reconstruction.
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Fig. 3.10: The pull distributions for outer barrel layers (TOB) with

simulated events. The factor two increased material model was run

during the reconstruction.
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Fig. 3.11: The pull distributions for outer barrel layers (TOB)

with simulated events after 2nd iteration. The factor two increased

material model was run initially.

Fig. 3.12: The sigma of the residual distributions for barrel layers

with simulated events, starting from the standard material model,

after 1st and 2nd iterations.
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Fig. 3.13: The sigma of the pull distributions for barrel outer

tracker layers (TOB) for simulated events, starting from factor two

increased material, after the first and 2nd iterations.

material models described above can be seen in figure 3.14, for barrel

and the plus-side end-cap region of the detector. The correction fac-

tors obtained starting from the configuration in which the inner tracker

material was increased by a factor two have been divided by a factor

two in order to ease the comparison with the same corrections obtained

starting from the nominal configuration.

The results indicate that the standard material model adopted by the

reconstruction algorithms is not adequate. The amount of material as-

sumed in the track reconstruction software should be in general reduced

by about a factor of two in order to be consistent with what assumed

in the detailed simulated set-up, implemented in Geant4, of the inner

tracker. This large bias may have escaped so far to the CMS Collabo-

ration.

The (most) possible explanation for these striking results could be the

fact that the standard track reconstruction algorithm assumes the con-

centration of all material in infinitely thin detection planes, and that the

effect of the multiple scattering is assumed to take place at the starting

detection layer, thus amplifying the effect of multiple scattering via the

large lever arm that this assumption implies. Of course, other possible
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(a) (b)

Fig. 3.14: The correction factors (Ci) after two iterations for barrel

(a) and for the ed-cap region (b) of the detector. Starting from factor

two increased and standard material model, respectively.

explanations can be that the method of calculating the correction factors

is not fully correct and (or) the assumptions made during the derivation

of the correction factors do not hold in all cases; possible biases from

previously used layers in the track state might be present as well. In any

case, the other important conclusion of these results is that regardless

of the initial material configuration, the method converges quickly and

to the same final result.

3.6 Direct Measurement with the Collision Data

We now want to check the consistency between the material distribu-

tion in the real experiment and the material distribution in the detailed

simulated setup, thus the standard track reconstruction with its simpli-

fied material distribution was run on both simulation and data. While

simulated tracks experience the material present in the simulated setup,

real reconstructed tracks experience the material of the actual detector

setup. The ratio of the σpulli values obtained on simulation and data

provides a direct comparison between the amount of material present in

the simulated and in the real setup. A ratio smaller (larger) than unity
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A B C D

0< |η| <0.6 0.6< |η| <1.3 1.3< |η| < 1.7 1.7< |η| < 2.4

1-1.1 1.6-1.8 2.4-2.7 3-3.3

Tab. 3.1: Selection of the samples of tracks according to their

pseudo-rapidity (first row) and momentum range (second row).

would indicate that the amount of material in the simulated setup is

smaller (larger) than the amount of material in the real setup.

3.6.1 Event Selection and Categorization

The collision events used to perform this measurement correspond to the

a luminosity of 1.0± 0.1nb−1 collected by CMS detector during 2010 in

stable conditions with all sub-detectors and magnet fully operating. A

good reconstructed primary vertex associated to at least four tracks and

its position within 15cm in longitudinal and 2cm in transverse plane with

respect to beam spot are required. Beam-induced background events,

producing an anomalously large number of hits in pixel detector, are

rejected in the collected events. The MC datasets are generated with

Phyhia6 and reconstructed with CMS software. Tracks having a trans-

verse (longitudinal) impact parameter with respect to the primary vertex

smaller than 0.1cm (1cm) are chosen. The collected events are catego-

rized in samples as A, B, C, D according to their momentum range and

pseudorapidity as shown in table 3.1.

The pull distributions for the TIB, TOB, TID and TEC detection planes

are in all cases well fitted by a Gaussian function. As an example, the

pull distributions for the four TIB detection layers obtained with the

tracks from sample B observed data are shown in figure 3.15. In general

the pull distributions are approximately Gaussian distributed and the

sigma of the pull distribution σpulli values are in general lower than unity,

as also observed in the case of simulated tracks (see previous section).

As discussed above, these low values are somehow expected because they

could partly be due to the simplified material model adopted in the track

reconstruction.
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Fig. 3.15: Pull distributions at the four TIB detection planes ob-

tained with tracks in sample B for observed data

The same conclusions do not hold for the distributions related to the

pixel detection planes, which seem to be better fitted by the sum of two

Gaussian curves with different widths. A possible explanation of this

feature could be the presence of zones, within the considered η ranges

and, possibly, along the φ coordinate, where the level of agreement be-

tween the assumed and actual amount of material is significantly dif-

ferent. Given that a simple Gaussian fit is not appropriate for the pull

distributions relative to the pixel detection layers, only results related

to the silicon strip detection layers are presented.

3.6.2 Systematic Effects and Sensitivity

The robustness of the technique with respect to misalignment effects

and the sensitivity to differences in the assumed and actual amount of

material can be computed with σpulli values on simulated tracks under

different conditions. The following scenarios were considered:

1. a perfectly aligned setup (ideal);
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2. a misaligned (and mis-calibrated) setup, as expected at the start-

up of the experiment (start-up);

3. the same misaligned setup, but with an assumed amount of mate-

rial at the track reconstruction level increased by 20% with respect

to the default one, which corresponds to the actual material at the

detector simulation level;

4. the same misaligned setup, but with an assumed amount of mate-

rial at the track reconstruction level decreased by 20% with respect

to the default one, which corresponds to the actual material at the

detector simulation level.

Three different ratios of the σpulli values obtained in the scenarios listed

above are shown in figure 3.16, 3.17 and 3.18. The statistical uncertain-

ties on these ratios, deriving from the uncertainty on the fitted σpulli ,

are much smaller than the size of the symbols used in the plots. In

figure 3.16 the results were obtained with sample A using the simulated

events, similarly in figure 3.17 with sample C and in figure 3.18 with

sample D, in different η slices.

These results indicate that the method is, for all barrel layers except

the first one, indeed sensitive to differences at the level of 20% between

assumed and actual amounts of material and that systematic effects

deriving from the misalignment expected at the start-up of the exper-

iment would yield smaller observed discrepancies, of the order of 5%.

The small observed value of the σpulli ratio between start-up and ideal

scenarios for the first barrel layer indicates that differences in these sce-

narios at alignment level dominate over differences in material at the

level of 20%.

The results obtained in all end-cap layers demonstrate the dependence

of the alignment at a level of 10-15%. This is expected behavior since

the alignment effect in end-cap region of the detector is more dominant

than in the barrel.

The absolute values of σpulli obtained for MC generated events are shown

in figure 3.19 for barrel |η| <0.6 region using sample A. It can be noted
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Fig. 3.16: Ratio of pull distributions obtained with simulated sam-

ple A. The circles compare the start-up and ideal scenarios. The

triangles and squares show the effect of variation of the material

by ±20% in the start-up scenario at the reconstruction level. The

detection layers on the x-axis are the destination layers.

Fig. 3.17: Ratio of pull distributions obtained with simulated sam-

ple C. The circles compare the start-up and ideal scenarios. The

triangles and squares show the effect of variation of the material by

±20% in start-up scenario at the reconstruction level. The detection

layers on the x-axis are the destination layers
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Fig. 3.18: Ratio of pull distributions obtained with simulated sam-

ple D. The circles compare the start-up and ideal scenarios. The

triangles and squares show the effect of variation of the material

by ±20% in the start-up scenario at the reconstruction-level. The

detection layers on the x-axis are the destination layers

that the default σpulli distribution are lower than unity. The effect of

changes in the material at the reconstruction level can be clearly seen.

The overall difference in the sigma of the pull distribution due to mis-

alignment is less pronounced in the barrel region of the detector than in

the end-cap.

Another very important robustness test is performed by comparing the

results obtained with different track state parameters. The CMS track

reconstruction algorithm performs the track reconstruction “inside-out”,

starting from the inner layer to outer layer until the last layer of the

detection plane is reached. Then, as also explained in chapter 2, in

order to have the most accurate measurement also at the innermost

layer, the backward propagation “outside-in” is performed as well. The

final track parameters are the result of combined track states of these

two fitting algorithms.

The results of the test are shown in figures 3.20, 3.21, 3.22 and 3.23

with respect to each η region of the detector using different samples,
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Fig. 3.19: Sigma of pull distributions obtained with simulated

sample A for the start-up and ideal scenarios together with the

effect of variation of the material ±20% in start-up scenario at the

reconstruction-level.

as explained in the figures. The figures show the ratio of the sigmas of

the pull distributions of MC events and collision data for different track

states used in equation 3.3. The inside-out track fit parameters are called

forward state and the combined result of inside-out and outside-in track

fitting is referred as updated state. In order to not bias the results by

using the subsequent hits in the updated track state, the forward track

state parameters are chosen to be used in the direct comparison with

the collision data.

It is important to check the sensitivity of the method in the measure-

ment of the material distribution. This can be verified by altering the

material and investigate the effect of this difference in the obtained dis-

tributions. For this test, the material between layer 3 and 4 in TIB

and between layer 4 and 5 in TOB, are modified by ±20%. Figure 3.24

shows this test results obtained with MC generated events. The plot

shows the ratio of the pull distribution with modified material at the

reconstruction-level. The filled circles correspond to the ratio of sigma

of pull distributions of +20% material; on the other hand, the circles

correspond to -20% material difference. The results of this performance
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Fig. 3.20: The ratio of pull distributions of simulated events to

obtained data, for the sample of A. The forward and updated track

states are tested in MC with respect to the start-up and ideal sce-

narios at the reconstruction-level.

Fig. 3.21: The ratio of pull distributions of simulated events to

obtained data, for the sample of B. The forward and updated track

states are tested in MC with respect to the start-up and ideal sce-

narios at the reconstruction-level.
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Fig. 3.22: The ratio of pull distributions of simulated events to

obtained data, for the sample of C. The forward and updated track

states are tested in MC with respect to the start-up and ideal sce-

narios at the reconstruction-level.

Fig. 3.23: The ratio of pull distributions of simulated events to

obtained data, for the sample of D. The forward and updated track

states are tested in MC with respect to the start-up and ideal sce-

narios at the reconstruction-level.
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Fig. 3.24: The ratio of pull distributions of simulated events for the

sample of A. The forward track state is used with modified material

in between two detection layers at the reconstruction-level.

test show the robustness of the method as well as its excellent sensitivity.

3.6.3 Analysis Results

The ratio of the σpulli values obtained on simulation and data for barrel

and end-cap are shown in figure 3.25 and figure 3.26, respectively. Based

on the results presented in figure 3.16 and 3.17, a systematic uncertainty

of 5% is assigned to the measurements on every detection layer, except

for the first barrel layer where a value of 10% is used. The ratio of

the σpulli values is generally close to one in all cases. Therefore it can be

concluded that the amounts of material in the real and simulated Silicon

Strip Tracker detector agree within ≈15% in both barrel and end-cap

regions.

3.7 Conclusions

We have shown a novel method to measure material distribution of a

tracking detector using the reconstructed tracks. The detailed descrip-
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Fig. 3.25: Ratio of pull distribution for the values obtained in

data and MC for barrel detection planes. The detection layers on

the x-axis are the destination layers.

Fig. 3.26: The ratio of pull distributions obtained on simulation

and data for the end-cap detection planes.
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tion of the method and all possible systematic effects are discussed. The

robustness and the sensitivity of the method are demonstrated using

the MC generated events. As shown the method is robust against all

possible detector effects and therefore sensitive to measure to material

distribution in the CMS tracking volume to an accuracy of about 10%.

The method, in principle, can improve the material description in the

standard track reconstruction algorithm. The studies with this moti-

vation are presented in detail. Based on the correction factors derived

from MC studies, the material description in the reconstruction software

is found to be not adequate. The results indicate that the material in

the reconstruction model should be decreased by factor two in order to

obtain the unit sigma of the pull distributions. However, this result is

expected to reflect not an actual lack of material, but rather an incorrect

distribution of this material arising from the simplified model adopted

in the reconstruction software.

It is found that the pull distributions used as observables in the mea-

surement are well Gaussian distributed in all cases except pixel layers.

The results of the tests show that the effect of misalignment and the

detector conditions in the observable are around 5% in the barrel and

can reach the level of 10-15% in the endcap. The material description

in the simulation and the real detector set-up agrees within 10 to 20%

in overall detector volume using the collision data.

In comparison to other methods aiming to perform similar measure-

ments, for example the reconstruction of secondary vertices resulting

from photon conversions and nuclear interactions in the tracking volume

(see ref [52]) as described in section 3.3, our method is demonstrated to

be relatively simple and data driven. It is not affected by the systematic

uncertainties as such methods suffer from. Additionally, little statistics

of reconstructed tracks are enough to give the results in overall detec-

tor volume. However it should be noted that the method has no or

little sensitivity in details of the distribution of the material between

detection layers. The results are in agreement and complementary to

these more traditional methods performed independently, and can give

feedback to the physics analysis for evaluation of the tracker related
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systematic uncertainties.





Chapter 4
The Matrix Element Likelihood

Method

The classical analysis technique, where a possible resonance is searched

in an invariant mass spectrum, is among the most common analysis

methods used in high energy physics, as described in chapter 1. Such

analysis techniques only exploit the information of the invariant mass of

the final state decay products of the resonance. On the other hand, the

more sophisticated multivariate analysis method, for example the Matrix

Element Method, uses the full kinematic information of all the measured

particles in the event, that an experiment can provide. Therefore the

Matrix Element Method, in principle, could provide a better sensitivity

for a signal searched on top of a smooth background.

This chapter presents a pure likelihood-based analysis approach with

the Matrix Element Method for a possible improvement in sensitivity

of the search for di-muon resonances. The first section of this chapter

is an introduction to the Matrix Element Method and the general de-

scription of how the likelihood function based on this method can be

constructed and used with offline reconstructed detector-level events in

an analysis. The following sections focus on the use of this method in

a statistical analysis built upon the joint pdfs of a possible signal and a

known background model.

77
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4.1 The Method

4.1.1 Introduction to the Matrix Element Method

The Matrix Element Method (or Dynamical Likelihood Method) [53, 54]

uses the probability densities of the final states observed in an exper-

iment, assuming that final states have taken place for a given parton-

level process. In order to compute this probability density function, the

uncertainties on the measurements should be taken into account. The

infinitesimal probability density can be written

dP (x, y) = Ndσ(y)/dy w(x|y)dx, (4.1)

where dσ is the parton-level differential cross section y is the set of

kinematical variables defining the event at parton level, x is the set of

kinematical variables of a given event as measured by the experiment, N

is a normalization factor and w(x|y) is so-called the transfer function,

which represents the probability density function that a parton-level

event y is observed as x by the experiment. The factor N and the

transfer function will be discussed in the detail in the following sections.

The formulation above involves the squared matrix element of a given

process, therefore the method is commonly known as the “Matrix El-

ement Method” in high energy particle physics. The method first was

successfully used in Tevatron experiments for the top quark mass mea-

surement [55]. Since then, it has been used in few other occasions, for

example, in the search for the Higgs boson in the H → ZZ∗ to four

leptons performed by CMS [56].

The method is in principle capable of exploiting the full kinematic in-

formation of all measured particles contained in observed events used as

observables. The likelihood function built with the matrix element can

also represent a powerful tool in searches for signals of physics beyond

the standard model. Once a discovery of such a signal is established,

the method can be used for the measurements of the parameters of the

new model best describing the data.
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Following sections are the discussions of how a likelihood function for

an experiment can be built using this method with detector-level recon-

structed events and the incorporation of systematic uncertainties.

4.1.2 Construction of the Likelihood Function

The likelihood function corresponding to an observed set of data, x, gives

the probability density that an underlying model, defined in terms of a

set of parameters M, yields the observed data. The likelihood is a func-

tion of the parameters M and, for the purpose of making measurements,

it can be maximized. The likelihood function is also very important

when searching for BSM physics, that is when there is no measure-

ment to be made, but rather two alternative hypotheses to be compared

(the background-only versus the background+signal). Its importance in

such situations stems from the fact that the ratio of likelihoods corre-

sponding to two alternative models is the most powerful test statistic

for separating the outcomes of the two models, as established by the

Neyman-Pearson lemma [57]. Therefore, our aim is, without requiring

any other intermediate steps, to build accurately a likelihood function

corresponding to an experimentally observed di-muon final state in the

background-only and background+signal hypotheses, and use their ra-

tios in the test statistics.

First, we show the main principles of the construction of the event like-

lihood via the underlying model parameters while taking into account

all possible effects of the experimental detector set-up. Later, we build

the likelihood for a set of events that can be observed in the experiment.

The probability of occurrence of a physics process can be given in terms

of the invariant squared matrix element |M|2 of the scattering ampli-

tudes for the underlying physics processes and the underlying model

parameters (M) at the parton level. The differential cross section a

parton-level process can be written

dσM =
(2π)4|M|2

x1x2s
dφn, (4.2)
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where dφn is the n-body phase-space element. Then, the total differ-

ential cross section summed over all initial parton states in the proton

collisions is given by

dσ =

∫
x1,x2

∑
i,j

fi(x1)fj(x2)dx1dx2dσM . (4.3)

In order to construct the likelihood function, we need the probability

density function (pdf) of the experimental outcome x, given the under-

lying model parameters M . The probability of having an experimental

outcome x, given by a theoretical parton-level final state y, resulting

from a model M , is given by

d2P (x, y|M) = dP (y|M)dP (x|y) =
1

σ

dσ

dy
dyw(x|y)dx, (4.4)

where σ is the total cross section for the process. Equation 4.4 yields to

P (x, y|M) ≡ d2P (x, y|M)

dxdy
=

1

σ

dσ

dy
w(x|y) (4.5)

The parton-level differential cross section must be intended as a result

of the integration of the parton distribution function and the matrix

element of the corresponding physics processes (see equation 4.3). The

implicit assumption is that an observed event (x ) is not the result of a

superposition of independent proton-proton collisions.

Here w(x|y) is called the transfer function and defines the probability

density function of measurements x, given a true parton-level final state

y. It carries the information of the detector resolution on individual

parton-level objects and detection efficiency.

The transfer function should satisfy the normalization condition over all

reconstructed phase space. Namely, if X and Y are the full phase space

of measured and parton-level objects, the transfer function must satisfy

the condition of
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∫
X
w(x|y)dx = 1 (for any y in Y). (4.6)

The pdf of an experimental outcome x, given M, is obtained from eq. 4.5

as

dP (x|M)

dx
≡ P (x|M) =

∫
Y

1

σ

dσ

dy
w(x|y)dy (4.7)

and satisfies the condition of

∫
X
P (x|M)dx = 1 (4.8)

which is integrated over the phase space of all possible experimental

outcomes X.

4.1.2.1 Normalization of the Likelihood Function

Having equations 4.7 and 4.8 at hand would allow in principle to con-

struct the likelihood function for a set of experimental events xi. How-

ever, the events xi used in an experimental analysis have usually un-

dergone online and offline event selections. Although analysis selection

criteria are mostly introduced with the aim of reducing the background

events, they also affect the efficiency for selecting signal events. For this

reason the parent pdf of the xi selected events must be defined only in

the reduced space, X ′ of the events that are effectively observed in the

detector and pass the analysis event selection. This fact has important

implications.

Thus the pdf in x and y for events passing the analysis selection will be

null in X − X ′ and proportional to eq. 4.5 within X ′. In other words,

we must modify the pdf in equation 4.5 as
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P (x, y|Mand x inX ′) = K
1

σ

dσ

dy
w(x|y) (for x in X ′ and y in Y )

= N
dσ

dy
w(x|y) (for x in X ′ and y in Y ),

where the factor N = K
σ can be determined by imposing the normaliza-

tion condition of

∫
X′,Y

P (x, y|Mand x inX ′)dxdy = 1,

which yields to

N =
1∫

X′,Y
dσ
dyw(x|y)dxdy

.

Now we have the problem of the integration over the full Y phase space.

In fact, because of singularities, the differential cross section for many

processes can not be integrated over the full Y . Theorists can only

safely compute perturbatively total cross sections in reduced parton-

level phase spaces. The experimental analysis selection, i.e. the fact

that the integration over the variable x is only in the reduced space

X ′, helps overcome this problem. Having the integration to restricted

visible phase-space X ′, one can make the assumption that there is a

reduced parton-level subspace Y ′ such that w(x|y) = 0 for any x in

X ′ and y in (Y − Y ′). This condition, which arises from the sufficiently

good resolution of the detector, basically guarantees that the integration

over y does not need to be performed down to very low particle energies

and for collinear partons (isolation conditions applied at reconstruction

level) , where the singularities occur. With this assumption, we write:

∫
X′,Y

dσ

dy
w(x|y)dxdy =

∫
X′,(Y−Y ′)

dσ

dy
w(x|y)dxdy +

∫
X′,Y ′

dσ

dy
w(x|y)dxdy

= 0 +

∫
X′,Y ′

dσ

dy
w(x|y)dxdy
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and the normalization factor is equal to

N =
1∫

X′,Y ′
dσ
dyw(x|y)dxdy

. (4.9)

This integral is calculable and does not suffer from theoretical singular-

ities. The choice of Y ′ is completely analysis driven. In other words,

this phase space is defined by the parton-level configurations. It should

be large enough to comprise the whole subspace of reconstructed vis-

ible objects. It is defined by parton-level requirements that are loose

enough such that the probability that a parton-level event that fails

such requirements and, at the same time, gives rise to an experimen-

tal observed event that pass the analysis selection, is 0 to an excellent

approximation.

The integration over X ′ in the denominator of the normalization factor

results in a function ε(y), that returns for any given parton-level config-

uration y, the efficiency to end up in X ′. This aspect is very often for-

gotten when the matrix element method is applied. Indeed the transfer

function w(x|y) is usually constructed in the form of a unit-normalised

resolution function that simply smears the energy and directions of the

final state partons in order to reproduce the experimental effects. The

detection efficiency and the event selection are wrongly neglected in such

an approach. The remaining integral in Y ′ can be seen as the integral of

differential cross-section weighted by this efficiency ε(y). The result is

the total cross-section times the total efficiency for a parton-level event

in Y ′ to pass the analysis selection. Therefore N will be

N =
1∫

X′,Y ′
dσ
dyw(x|y)dxdy

=
1

ε′σ′
. (4.10)

The total cross section (σ′) for a given process can be found in the

literature or computed with event generators, while the calculation of

the efficiency term (ε′) will require the full simulation, reconstruction

and emulation of the analysis selections of events generated in space Y ′.
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Using the same reasoning, the pdf of experimental, observable outcome

x, given the underlying model M, reads, replacing equation 4.7

P (x|Mand x inX ′) =

∫
Y
N
dσ

dy
w(x|y)dy

=

∫
Y ′
N
dσ

dy
w(x|y)dy +

∫
Y−Y ′

N
dσ

dy
w(x|y)dy

=

∫
Y ′
N
dσ

dy
w(x|y)dy

=
1

ε′σ′

∫
Y ′

dσ

dy
w(x|y)dy.

(4.11)

Using this pdf, we can write the likelihood corresponding to an exper-

imentally observed event x, as a function of a set of underlying model

parameters M as

L(x|M) = pdf(x|M and x inX ′) =
1

ε′σ′

∫
Y ′

dσM
dy

ε(y)w′(x|y)dy, (4.12)

where we have rewritten the full transfer function as the product of an

efficiency function ε(y), giving the probability that a parton-level event

y ends up in the space X ′, and a unit normalized transfer function that,

for convenience we indicate, in the following with the symbol w′(x|y),

to distinguish it from the full transfer function as

w(x|y) = ε(y)w′(x|y).

4.1.2.2 Full Likelihood Function with Model Parameters

In the case of two (or more) exclusive non-interfering underlying physics

processes (M1 and M2), the corresponding model pdfs must be the linear

combination of each probability using the respective total probability of

occurrence
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P (x|M1 +M2) = N1P (x|M1) +N2P (x|M2). (4.13)

If we write this formula using the relative probability of each process of

our interest in an LHC bunch crossing in terms of total cross sections,

the resulting pdf thus should be equal to

P (x|M1 +M2 and x inX ′) =
σ1ε1

σ1ε1 + σ2ε2
P (x|M1 and x inX ′)+

σ2ε2

σ1ε1 + σ2ε2
P (x|M2 and x inX ′).

(4.14)

The likelihood for a set of “n” selected events is

L({xi}|M1 +M2 and xi inX ′) =
n∏
i=1

P (xi|M1 +M2 and xi inX ′). (4.15)

4.1.3 Likelihood Function within the MadWeight Frame-

work

The main difficulty of this method is the integration in equation 4.11

over all possible phase-space elements in Y ′ for a given experimental

outcome. Thanks to the developed fast MC techniques this can be

overcome. A dedicated software called MadWeight [58] calculates the

integral in equation 4.11 for any given process that can be simulated

with the MadGraph/MadEvent [59] multipurpose event generator. The

squared matrix element provided by the generator is directly used to

calculate so-called “weights” per event. MadWeight calculates the event

weights in the following form [58]

W (x|α) =

∫
dφ(y)dq1dq2f1(q1)f2(q2)|Mα|2(y)w(x; y). (4.16)

If we look at this formulation, we can see that it is similar to the the

pdf formulation in the form of equation 4.11 with the normalization and
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definition of phase-space left to the user. Thus the weight returned by

MadWeight is

W (x|α) =

∫
dσ

dy
w(x|y)dy,

where w(x|y) is what the user has provided as the transfer function, i.e.

very often just a unit-normalised function (in which case we should write

w′(x|y).

If we re-write the likelihood function using equation 4.14 with the weights

returned by MadWeight for two non-interfering processes, we obtain

P (x|M1 +M2 and x inX ′) =
σ1ε1

σ1ε1 + σ2ε2
N ′W1(x|M1 and x inX ′)+

σ2ε2

σ1ε1 + σ2ε2
N ′′W2(x|M2 and x inX ′).

Since εσ terms are the relative probability for each process, they are the

same as the ones in the normalization terms (N ′ = 1
σ1ε1

and N ′′ = 1
σ2ε2

)

by construction of the analysis, thus they cancel out. The formulation

can thus be simplified as

P (x|M1 +M2) =
1

σ1ε1 + σ2ε2
W1(x|M1) +

1

σ1ε1 + σ2ε2
W2(x|M2).

(4.17)

The corresponding likelihood function for a set of observed events is

therefore defined as

L({xi}|M1 +M2 and xi inX ′) =
n∏
i=1

P (xi|M1 +M2). (4.18)

Note that if the transfer function has been provided as a unit-normalised

function, then one is neglecting the function ε(y) in equation 4.12.
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4.1.4 Construction of the Transfer Functions

In equation 4.12, w(x|y) = ε(y)w′(x|y) must be known for any y in Y ′

and any x in X ′. In the simplest case of a single final state object, one

can construct it with the help of MC by simulating samples of single ob-

jects events for all y values. Then the function w(x|y) can be obtained

for each x value in X ′, either in bins or as a probability density func-

tion analytically parametrized. Note that the efficiency function ε(y) in

equation 4.12 should be also accounted for.

In case of final states with non-correlated multiple objects, it is common

to factorize the transfer functions. Muon reconstruction algorithms, as

described in chapter 2, are such that for di-muon final states it is safe to

write the transfer functions as the product of two single muon transfer

functions. Thus we can write the transfer functions for the di-muon final

state as:

w′(x1, x2|y1, y2) = f(x1|y1)f(x2|y2)

w(x1, x2|y1, y2) = ε(y1)f(x1|y1)ε(y2)f(x2|y2) (4.19)

where f(x1|y1) (and f(x2|y2)) is the unit normalised resolution function

for a single muon, ε(y1) (and ε(y2)) is the efficiency. This formulation

is valid as long as the reconstruction of every individual object is not

affected by the reconstruction of any other object.

In a more complex final state, the transfer function should be written by

taking care of the correlation between final state objects, since one can

have an effect on the experimental outcome of the other. It is always

useful to check the possible additional effects due to mis-reconstruction

in the assignment of reconstructed object to partons. We will come to

this point again in the section of the validation with MC tests.



88 4. The Matrix Element Likelihood Method

4.2 Statistical Approach

Once the proper likelihood function is built, it can be used in the de-

termination of the set of unknown parameters. If we consider qq̄ →
Z → l+l−, the model M is characterized by the parameters MZ , ΓZ ,

spin and parity. This implies, for instance, one can determine each of

these underlying parameters by maximizing the likelihood function cor-

responding to a given set of observed events, once the event kinematics

are known.

If we introduce in equation 4.18 a parameter µ, which is a cross-section

modifier for a BSM process to be searched for, then the likelihood func-

tion for the signal plus background hypothesis is

L({xi};µ, S,B) =
n∏
i

(
µWS(xi;S)

µσSεS + σBεB
+

WB(xi;B)

µσSεS + σBεB

)
. (4.20)

Here, S is the abbreviation of the signal model and signal parameters,

and B is the background model and relevant model parameters in the

weight calculation. The terms WS and WB are the weights returned by

MadWeight under the signal and background assumptions, respectively,

for every selected and measured event xi.

Although the treatment of systematic uncertainties will be explained

in section 4.2.4, for now we denote as θj , a set of parameters whose

values are affected by systematic uncertainties and that will be called

nuisance parameters. In order to take into account such uncertainties,

the likelihood function in eq. 4.20 will be modified and become also a

function of the nuisance parameters L({xi};µ, θj , S,B).

The likelihood function can be used to determine the model parameters

for signal or background with observed data.
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4.2.1 Test-Statistics and Parameter Estimation

The likelihood function L({xi};µ, θj , S,B) can be used to estimate the

signal and background model parameters by finding the values of the µ

and θ parameters that maximize the likelihood. The procedure is called

the Maximum Likelihood (ML) method. For handling easier the very

small numbers involved, one typically maximizes the logarithm of the

likelihood function. The parameters that maximize the log-likelihood

are called the Maximum Likelihood Estimate (MLE). The maximum

likelihood estimators, can give biased values of parameters, especially in

a statistically small sample. Therefore the method should be checked

carefully to verify possible biases.

We begin by using the maximum likelihood method with an un-binned

data set to estimate model parameters and signal strength µ to search for

heavy di-muon resonances. The likelihood function constructed out of

signal and background pdfs can also be used to compute the significance

of the observed data with respect to the signal hypothesis and to exclude

the signal cross-section values. These tasks can require large amounts of

CPU time. In order to save time, we use the so-called “Asymptotic” for-

mulae for the Profile Likelihood Ratio (PLR) test statistic [60]. Later, we

make the comparison in the significance between the accurate numerical

calculation with toy-MC experiments and the asymptotic results. We

only employ a numerical calculation for the upper limit on the signal

strength parameter.

As anticipated earlier, in the hypothesis testing problem, the Neyman-

Pearson lemma states that, the best discriminating variable , called “test

statistic”, between two alternative hypotheses is the likelihood ratio.

The general expression for the likelihood ratio to calculate the signifi-

cance that includes the nuisance parameters can be given by the PLR

as

λ(µ) =
L({xi};µ, ˆ̂

θ)

L({xi}; µ̂, θ̂)
. (4.21)

The single hat indicates the value that maximizes the likelihood when
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all the parameters are left free, while a double hat indicates the value of

the parameter that maximizes the likelihood where one or more param-

eters, which are those indicated without hats, in the likelihood are set

to certain values. Actually, the test-statistic, as defined in the asymtotic

formulae of ref [60], is

q(µ) = −2lnλ(µ). (4.22)

But, in terms of discriminating power, this one is completely equivalent

to the one in equation4.21, given that q(µ) is a monotonous function of

λ(µ).

4.2.2 P-value and the Maximum Significance

The aim of the analysis is to discover a (positive) BSM signal in the

available set of events by rejecting the alternative background-only hy-

pothesis, which corresponds to µ = 0. The test-statistics defined in

eq. 4.22 thus takes the form

q(0) = −2ln
L({xi};µ = 0, B,

ˆ̂
θ)

L({xi}; µ̂, S,B, θ̂)
. (4.23)

The test is based on the background-only hypothesis against the alter-

native signal+background hypothesis. Note the dependence of q(0) on

µ̂. If the likelihood is maximized at negative values of µ that does not

bring any information about the test. It could be an under fluctuation of

data with respect to values expected in the background-only hypothesis.

Therefore the test statistics will be redefined as

q(0) =

{
−2lnλ(µ = 0) µ̂ ≥ 0

0 µ̂ < 0
(4.24)

To verify the presence of a signal in the data, one has to compute the so-

called “p-value” of the test. This number represents the probability that
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a given hypothesis yields a value of the test statistics as or more extreme

than the one computed on the observed data. Using the test-statistics

definition, the p-value reads

p− value =

∫ ∞
q(0)obs

f(q(0)|0) dq(0), (4.25)

where q(0)obs is the observed test statistics, f(q(0)|0) is the pdf of

the test-statistics q(0) distribution obtained in background-only experi-

ments.

In particle physics the common approach is to convert the p-value to

an equivalent significance, basically to a “z-score” which is defined as

the number of standard deviations in the upper-tail probability of a

standard Gaussian distribution. It can be constructed as a double-sided

and a one-sided tail probability. In our analysis we use the one-sided

tail probability distribution. One can give the results in terms of a p-

value or a z-score by converting one to another. Z=5σ means 5 standard

deviations observed from the expectation and usually claims a discovery.

The p-value of such an observation corresponds to p = 2.87.10−7.

An approximate solution for calculation of significance can be found in

Asymptotic approach [60]. It is proven that, under certain assumptions

according to Wilk’s [61] theorem the test statistic is asymptotically χ2

distributed. In this case, the significance is directly linked to the size of

the likelihood ratio as

z − score = Z =
√
q(0). (4.26)

4.2.3 Upper Limit on the Parameter of Interest

In case of observed data showing compatibility with the background-only

hypothesis, thus rejecting the alternative signal+background hypothesis,

one would be interested in setting an upper-limit on the parameter of

interest. To compute an upper limit on the signal strength, we consider

the test-statistics q(µ) in equation 4.22, for hypothesized µ values to be
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tested with the observed data set. For setting an upper limit the proper

test statistic is:

q(µ) =

{
−2lnλ(µ) µ̂ ≤ µ
0 µ̂ > µ

(4.27)

where λ(µ) is the profile likelihood ratio as defined in the equation 4.21.

If the observed data set shows incompatibility with tested µ values, in

this case µ̂ > µ, the test will be equal to zero. One needs to quan-

tify the level of disagreement of the observed data with hypothesized

µ value. This time the pdf of the test statistics values under the sig-

nal+background hypothesis is needed, f(q(µ)|µ), and one must find the

value of µ corresponding to a given probability, called the confidence

level of the exclusion, that a signal+background experiment would have

given an outcome as or more incompatible than the outcome of the real

experiment. The relevant p-value is in this case given by the following

expression:

pµ =

∫ ∞
q(µ)obs

f(q(µ)|µ) dq(µ). (4.28)

A standard 95% Confidence-Level (CL), namely a one-sided confidence

interval (upper limit) is obtained by solving for pµ = 0.05. The com-

putation of equation 4.25 and 4.28 requires the sampling distribution of

the test statistics. Both integrals can be calculated to an approxima-

tion, the solutions exist in the literature with the Asymptotic approach

[60].However, in our analysis we obtain the upper limit on the µ signal

strength with a Monte Carlo technique, by generating the number of toy

experiments.

4.2.4 Treatment of Systematic Uncertainties

It is important to check the analysis with respect to all possible effects

of instrumental and theoretical uncertainties. There are many sources

of uncertainties affecting the fitted model parameters. For example, the
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underlying theoretical model description and measured physical quanti-

ties are known within uncertainties.

In order to account for all systematic effects, a hybrid Bayesian- Fre-

quentest approach is followed [62]. The systematic uncertainties are

modeled via so-called “nuisance parameters” [63], assuming that the

information on these uncertainties are available in the form of prior dis-

tributions. The prior pdfs corresponding to each nuisance parameter are

then introduced as multiplicative factors in the likelihood function.

The “log-normal” pdfs [64] are used to describe the nuisance param-

eters. A log-normal distribution is obtained with a random variable

whose logarithm follows a normal distribution. A pdf for the log-normal

distribution is

P (ψ) =
1√

2πσ2

1

ψ
exp

(
−(lnψ − µ)2

2σ2

)
. (4.29)

The p-value computation is performed using a Monte Carlo method of

generating samples of toy experiments which referred also as toy-MC

experiments. Each toy-MC experiment is generated using a given set

of nuisance parameters each extracted from its pdf. The uncertainty

in the nuisance parameters is effectively taken care by varying the MC

data set in each toy experiment. In principle, having an ensemble of

toy experiments in which each is characterized by values of the nuisance

parameters extracted from the estimated pdfs will be approximating the

effects of the systematic uncertainties.

The approximate and numerical solutions are used in the computation

of discovery significance while the computation of the upper limit at the

desired confidence interval (95% CL) is performed numerically.

Since the determination of nuisance parameters depends on the relevant

measurements and underlying dynamics of the analysis, the effect of

nuisance parameters on the observables will be discussed in chapter 6.

After the discussion of all possible sources of systematic uncertainties,

the likelihood function with nuisance treatment and the likelihood fitting

procedure will be presented therein.





Chapter 5
Validation of the Method with

Monte-Carlo Generated Events

In order to use the likelihood-based analysis method described in the

previous chapter in an experimental measurement or in a search anal-

ysis, a detailed validation is necessary. Therefore, this chapter will be

dedicated to validation studies. A possible sensitivity gain that the ma-

trix element approach could bring in comparison to a classical analysis,

in which a peak is searched for in a smooth background, is investigated

in depth.

The first section is dedicated to the validation of the likelihood function

defined in the previous chapter with simulated signal and background

events. As described in chapter 1, a benchmark model would be a nar-

row, high-mass Z ′ resonance decaying to two muons. The main back-

ground to this signal process is Drell-Yan production. Therefore all vali-

dation studies were carried out using the signal events pp→ Z ′ → µ+µ−,

and the Drell-Yan background events leading to the same final state.

We consider the generic Sequential Standard Model as the main signal

model to test. After describing how the underlying model parameters

can be estimated using the maximum likelihood method in section 5.2,

we compare the classical peak-search and matrix-elements-based analy-

sis approaches using toy-MC experiments. Only statistical uncertainties

95
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are discussed in this chapter.

5.1 MC Event Generation, Selection and Nor-

malization

As described in chapter 4, the likelihood can be written in the form

of equation 4.12, where the definitions of Y ′ and X ′ should be estab-

lished by considering the analysis requirements. Throughout the valida-

tion studies we assume a sequential standard model Z ′ with a mass of

1TeV/c2. Given the model, the width of the resonance is taken to be

3% of its mass and a width of 30 GeV is assumed for the signal.

The MadGraph MC generator is used for fully exclusive signal and

background event production. As described before, Y ′ should be loose

enough that any event outside will never end up in X ′. Considering a

signal of 1TeV/c2 mass, the 600-1400 GeV/c2 invariant mass range is

chosen at generator level for the Y ′ space, while restricting the analysis

selection range to the 800-1200 GeV/c2, which is driven by the mass

resolution of the detector.

The simulation of detector effects in an experimental set-up is highly

CPU demanding. In addition, the maximization of the likelihood func-

tion can also be CPU expensive if the number of parameters in the like-

lihood is high. In order keep the CPU demands within reasonable levels,

we consider a limited set of model parameters and we apply simplified

simulation of detector effects on the generated events.

A 5% smearing on the muon energy is introduced on the generated MC

events. Since the CMS muon detection system extends up to |η| =2.4,

generated muons were restricted to |η| <2.4, and a minimum of 20

GeV/c of transverse momentum is required. The transfer functions are

built accordingly, to include the detector energy smearing effect on the

parton-level generated particles. In other words, the muon energy trans-

fer function is parametrized as a function of the generated muon energy

in the form of a Gaussian distribution with a width equal to 5% of its

mean value. Because of the extremely good particle direction resolution



5.1. MC Event Generation, Selection and Normalization 97

)2Mass Hypothesis (GeV/c
940 960 980 1000 1020 1040 1060

Sε ×
Sσ

0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120

Fig. 5.1: The σS × εS normalization factor used in the likelihood

normalization with respect to the signal mass hypothesis.

of the CMS detector, the η and φ of the produced muons are left to be

the same as at the generator level during the smearing. In practice, the

Dirac delta function is assumed for the η and φ angle transfer functions.

In the analysis selection, 45 GeV/c of transverse momentum is required

on the muon transverse momentum after smearing the muon energy.

Opposite charge is also required when pairing the smeared objects. By

restricting the analysis selection to muon pairs with an invariant mass

in the range 800-1200 GeV/c2, we make sure that the probability that

events outside the generator-level space are selected in the analysis is

with excellent approximation equal to zero.

Figure 5.1 shows how the normalization term σS × εS changes with re-

spect to the considered signal mass hypothesis by introducing the analy-

sis selections on smeared signal events. Here, σS is the signal production

cross-section in Y ′ and εS is the efficiency of selecting a set of signal

events fulfilling the analysis requirements.

Figure 5.2 shows the logarithm of the likelihood value log-L(x;M) as a

function of the signal mass hypothesis of 900, 980 and 1100 GeV/c2.
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(a) (b)

Fig. 5.2: Logarithm of the likelihood function for signal mass hy-

potheses of 900, 980 and 1100 GeV/c2 (a) with background events

and (b) with signal events.

5.2 Parameter Estimation

We use the maximum likelihood method with unbinned data set to es-

timate the model parameters and signal strength µ. Equation 4.20 for

a number of events “n” (smeared MC events or observed data) can be

re-written in terms of the signal and background event fractions rather

than event rates as

L({xi}; fS , S,B) =
n∏
i

(
fSWS(xi;S)

σSεS
+

(1− fS)WB(xi;B)

σBεB

)
, (5.1)

where fS is the signal fraction and equals to:

fS =
µσSεS

µσSεS + σBεB
. (5.2)

For the purpose of validation, we use a set of selected signal and back-

ground events distributed in the invariant mass range 800-1200GeV/c2.

In each set of event, called pseudo experiment, the signal fraction is

fixed to 20%, though different number of events are used for testing the

method.
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Fig. 5.3: Logarithm of the likelihood functions with respect to the

signal fraction under different signal mass hypotheses. This proce-

dure is followed to find the (best) estimates of the signal fraction

(fS) and the signal mass (MS) values.

In the likelihood maximization, the signal fraction is estimated with re-

spect to different signal mass hypothesis. The values of the resonance

mass (MS) and the signal fraction (fS) that maximize the likelihood

function are taken to be the estimated parameter values in the experi-

ment. Figure 5.3 shows the values of the likelihood function as a function

of the signal fraction, under different signal mass hypotheses adopted in

a single experiment. The signal events used in the pseudo experiment

are distributed around the resonance mass of 1TeV. The best estimates

for fS and MS correspond to the ones having the highest (maximum)

value of the log-likelihood, which are called the estimated (or sometimes

fitted) values. As can be seen, for this pseudo experiment the best esti-

mate for MS is compatible with the input signal mass value of 1TeV.

The results obtained with this matrix element method are now compared

to those obtained with a classical peak-search approach as it is the cur-

rent analysis approach of the CMS experiment [65] to check whether a

sensitivity gain is possible. In the classical approach the observed in-

variant mass distribution is compared to the ones expected under the
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background-only and signal+background hypotheses. Figure 5.4 shows

the invariant mass distribution of a very large number of simulated sig-

nal and background events after smearing. Fits to these distributions,

obtained with RooFit [66] data modeling package, are also shown on

figure 5.4 and are used as models of the background and signal shapes.

The signal model PS is chosen to be a Breit-Wigner function convolved

with a Gaussian function, while the chosen background model PB con-

sists of an exponential function. The signal and background models are

defined as

PS(m) = Gauss(m;MS , σS)⊗ Breit-Wigner(m;MS ,Γ), (5.3)

PB(m) = N expammb, (5.4)

where m is the invariant mass of the di-muon events, MS ,ΓS , σS are the

signal mass (mean), width of the signal and the standard deviation of the

Gaussian function that describe the signal model. In equation 5.4, N is

the normalization factor, which does not have any impact on the shape,

a and b are the two parameters that are determined by the fit which

describe the background model. The values of the fitted parameters for

signal and background models are shown on figure 5.4 separately.

The likelihood function built for the peak-search analysis for signal+

background model is

L({mi}; fS ,MS ,ΓS , σS , a, b) =

n∏
i

(fSPS(mi;MS ,ΓS , σS)+

(1− fS)PB(mi; a, b)).

(5.5)

In order to test the sensitivity of the methods, we estimate the model

parameters with both analysis techniques for the same set of toy-MC

experiments. Figure 5.5 shows the estimated signal fractions obtained

in 400 pseudo experiments containing each 20 background and 5 signal

events. The points indicate the mean of the estimated signal fractions
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Fig. 5.4: The signal and background event distributions where

fitted shape pdfs for each distribution are shown in blue curves and

are used for modeling the signal and background.

for each mass hypothesis. The error bars indicate the RMS of each

distribution, and therefore can tell about the sensitivity of the parameter

estimation with both analysis methods. It can be seen that the likelihood

estimators correspond to the correct signal fraction at the correct mass

value with both analysis methods.

5.3 Hypothesis Testing

The two analysis approaches are compared in terms of a possible sen-

sitivity gain. The procedure described in chapter 4 is adopted where

the likelihood function for the matrix element approach is the one in

equation 4.20 and for the peak-search approach in equation 5.5 are used

in the profile likelihood ratio test statistics. The q(0) test statistics is

calculated to obtain the z-score according to the asymptotic approach

(see eq. 4.26) for two analyses.

Figure 5.6 shows the mean of estimated significance (z-score) as a func-
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Fig. 5.5: The estimation of signal fraction with respect to hypoth-

esized signal mass points used in the signal model (for details see

text). The figure on the left-hand side (a) shows the result obtained

with the shape analysis, while the figure on the right-hand side (b)

is the result of the Matrix Element Likelihood Method .

tion of fixed hypothesized signal mass points obtained in 400 pseudo

experiments containing each 20 background and 5 signal events. The

error bars indicate the RMS of each distribution, the statistical errors

on the points are small (upto 5% of RMS) and not shown on the figures.

The significance obtained with the matrix element approach is found to

be 10% higher than the one obtained in the peak-search analysis at the

expected signal mass, thus, the sensitivity of the method is found to be

improved approximately by 10%. On the other hand, the widths of the

significance distributions at any given mass value are the same in both

analyses.

In an experiment, one does not know a priori the signal mass and the

signal event rate, since our knowledge of these parameters are limited by

the description of the theoretical models being tested. Therefore, a scan

in the parameter space is usually necessary for the measurements. If we

perform the analysis with a simultaneous unbinned likelihood fit with

respect to the hypothesized signal mass points and signal fraction, we
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Fig. 5.6: The mean significance (z-score) with respect to hypoth-

esized signal mass points. The figure on the top-left (a) shows the

result with the shape analysis while the figure on the top-right (b)

is the result obtained with the Matrix Element Likelihood Method

The figure on the bottom-left is the results of both analyses shown

together whereas the figure on the bottom-right is the ratio of the

mean significance of Matrix Element Likelihood Method to peak-

search analysis approach.



104 5. Validation of the Method with Monte-Carlo Generated Events

would estimate both parameters at the same time for a given data set.

Therefore, in another test, we compute the results with both analysis

approaches by taking the signal mass and the signal fraction as the

parameters of interest in the likelihoods. Figure 5.7 shows the obtained

results for the estimation of the (best) signal mass MS with the Matrix

Element Likelihood Method using different sets of statistical samples as

indicated on the figure.

Figure 5.8 shows the estimated signal fractions in the simultaneous fits

for different toy-MC experiments using different statistical samples; fig-

ures 5.11 and 5.12 show the results obtained in the simultaneous fits with

the shape analysis for the estimation of signal mass and signal fraction.

Maximum likelihood estimators can be biased, although the bias is ex-

pected to vanish in the limit of large samples. From figure 5.8 we can see

this bias effect. Clearly the results are biased when the low statistical

samples are used while fitting. Hence, the simultaneous estimation of

the parameters in the likelihood fit tends to give biased estimates for the

signal fraction. This bias effect is more pronounced in the low-statistic

experiments. As shown in figure 5.5, the results obtained with fixed

mass hypotheses show no bias in such a test. In figure 5.9, the mean es-

timated signal fraction, obtained in the simultaneous fit, is plotted as a

function of the type (named “set-up” in the label of the horizontal axis)

of pseudo-experiments corresponding to the four different types used for

the results of figure 5.8. The error bars are the RMS of each distribution.

It can be seen that the result of the low statistics in the estimation of

the mean signal fraction is more biased than the one obtained in higher

statistical samples. This shows that if the statistic is increased suffi-

ciently, the likelihood estimator tends to give more accurate results; the

effect depends on the sample size, as expected.

Figure 5.10 is a good way of visualizing the estimated parameters. The

distribution is obtained by performing 100 toy-MC experiments com-

posed of 20 signal and 80 background events. As can be seen, the mean

estimated values of the distribution for the signal fraction and the cor-

responding estimated mass value are in agreement with the expected

input values.
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Fig. 5.7: The results of simultaneous fits for the estimation of the

best mass with different sets of statistical samples using the Matrix

Element Likelihood Method : (a) for toy-MC experiments of 20

background and 5 signal events, (b) for toy-MC experiments of 40

background and 10 signal events, (c) for toy-MC experiments of 80

background and 20 signal events, (d) for toy-MC experiments of 160

background and 40 signal events. The red dotted lines indicate the

Gaussian fits to each distribution obtained. The error bars indicate

the statistical uncertainties.
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Fig. 5.8: The results of simultaneous fits for the estimation of the

signal fraction with different sets of statistical samples using the

Matrix Element Likelihood Method : (a) for toy-MC experiments

of 20 background and 5 signal events, (b) for toy-MC experiments of

40 background and 10 signal events, (c) for toy-MC experiments of

80 background and 20 signal events, (d) for toy-MC experiments of

160 background and 40 signal events. The red dotted lines indicate

the Gaussian fits to each distribution obtained.
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Fig. 5.9: Mean of the estimated signal fraction in the simultaneous

fits with different set of toy-MC experiments used with the Matrix

Element Likelihood Method . The x-axis refers to the four types of

toy-MC experiments performed in the simultaneous fits with differ-

ent statistical samples (see fig. 5.8).

Fig. 5.10: The results of the simultaneous fits for the estimation of

the signal mass vs. the signal fraction with 100 pseudo-experiments

based on 80 background and 20 signal events.
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Fig. 5.11: The results of simultaneous fits for the estimation of

the best mass with different sets of statistical samples using the

shape analysis: (a) for pseudo-experiments of 20 background and 5

signal events, (b) for pseudo-experiments of 40 background and 10

signal events, (c) for pseudo-experiments of 80 background and 20

signal events. The dotted blue lines indicate the Gaussian fits to

each distribution obtained. The error bars indicate the statistical

uncertainties.
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Fig. 5.12: The results of the simultaneous fits for the estimation of

the signal fraction with different sets of statistical samples with the

shape analysis: (a) for toy-MC experiments of 20 background and

5 signal events, (b) for toy-MC experiments of 40 background and

10 signal events, (c) for toy-MC experiments of 80 background and

20 signal events. The dotted blue lines indicate the Gaussian fits to

each distribution obtained.
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It is important to test the method with the background-only toy-MC

experiments to verify the sensitivity of the analysis in the scenario of

background-only events. Therefore, we make another test with 400

pseudo-experiments composed of 20 background-only events. The re-

sults of these tests can be seen in figures 5.13 and 5.14 with respect to

fixed signal mass hypothesis. It is found that the mean estimated sig-

nal fractions with matrix element approach are 10-15% lower than the

ones obtained with the peak-search analysis at low mass points, which

builds confidence in the good properties of the matrix element approach

in the sense that it does not increase the significance of an excess in both

signal+background and background-only experiments.

5.4 Other Effects

5.4.1 Effect of the MC Integrator

In the Matrix Element Method, the calculation of likelihood function re-

quires the numerical integration reported in equation 4.20. This integra-

tion is in practice not straightforward, and complicated MC techniques

are used. Therefore, we further investigate this effect of the MC integra-

tion on the fitted results. Figure 5.15 shows this effect of the integration

with the default MadWeight MC integrator, called Vegas [67], for one

pseudo-experiment of 900 backround and 100 signal events. Each point

in the x-axis corresponds to the number of integration points in the in-

tegration space. Fluctuations on the estimated significance are observed

with respect to the number of integration points. However, fluctuations

stabilize by increasing the number of points sufficiently. Therefore, we

adopt the calculation corresponding to a sufficiently high number of

phase-space points (1M). The average variation in the likelihood calcu-

lation due to integration points is observed to be less than 1%.



5.4. Other Effects 111

Mass Hypothesis
880 900 920 940 960 980 1000 1020 1040 1060 1080 1100 11200.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Mean Signal Fraction  vs. hypothesized Z' mass 

(a)

Mass Hypothesis
880 900 920 940 960 980 1000 1020 1040 1060 1080 1100 1120

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(b)

Signal mass hypothesis
900 920 940 960 980 1000 1020 1040 1060 1080 1100

M
ea

n 
si

gn
al

 fr
ac

tio
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Matrix-Element

Peak-Search

(c)

Fig. 5.13: The mean estimated signal fraction with respect to hy-

pothesized signal mass points used in the signal model with toy-MC

experiments of 20 background-only events. Figure on the upper-left

(a) shows the result obtained with the shape analysis, while the

figure on the upper-right (b) is the result of the Matrix Element

Likelihood Method , the figure on the bottom (c) shows the two

analysis results together. The error bars show the RMS of each

distribution obtained.
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Fig. 5.14: The mean significance (z-score) with respect to hypoth-

esized signal mass with toy-MC experiments of 20 background-only

events. The figure on the upper-left-hand side shows the result with

the shape analysis while the figure on the the upper-right-hand side

is the result estimated with Matrix Element Likelihood Method ,

the figure on the bottom (c) shows the two analysis results together.

The error bars indicate the RMS of each distribution.
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Fig. 5.15: Significance of the tests with respect to phase-space

integration points.

5.4.2 Effect of the Detector Inefficiency

As described in chapter 4, the normalization of the transfer functions

and therefore the detector effects are important features of the anal-

ysis. For instance any possible effect leading to an inefficiency (while

reconstructing the final state objects, thus resulting to changes in the

observables) should be taken into account in the transfer functions.

In equation 4.12, ε′ is the overall normalization factor and plays a fun-

damental role in the parameter estimation. Neglecting this term would

yield completely biased results during the parameter estimation. On the

other hand, in hypothesis testing (searches), there is no problem because

even if one neglects this term, he usually ends up with a test statistic

that is a monotonous function of the likelihood ratio, which implies that

the power of the test statistic is exactly the same as that of the likelihood

ratio. An example is the H → ZZ∗ to four lepton analysis performed

by CMS [56], which has used kD = Ws/(Ws+Wb) = 1/(1 + (εbσbLb)
(εsσsLs)

).

On the other hand the ε(y) stands for the detection efficiencies of the

final state objects and only matters if ε(y) varies over an interval cen-

tered around the experimentally measured value x and as large as a few

times the experimental resolution. A special relevant case is one where

the lepton pT selection threshold is pushed to very low values like in the
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H → ZZ∗ → 4l analysis [56]. Apart from this special case, the efficiency

function in the transfer function can be considered constant, and in this

case this factor goes out of the integration. In hypothesis testing it thus

cancels out event by event in the likelihood ratio, whereas in parameter

estimation it ends up in an overall constant multiplicative factor of the

likelihood function, which thus plays no role.

In the CMS experiment, the detection efficiencies for reconstructed muons

typically depend on η and pT of muons. In order to verify the role of

muon detection efficiencies on the analysis, we performed a simplified

test by considering an experimental detector set-up where both muons

are measured with a 60% efficiency in the end-cap and an 80% efficiency

in the barrel by taking equation 4.19 where the transfer function (equal

to a unit-normalized resolution function) multiplied by the efficiency.

Our finding is that the constant detection efficiencies with respect to

the η and pT of muons do not play any role in the parameter estimation

and in the the likelihood ratio test statistics, therefore supporting our

statements previously made.

5.5 Conclusions of the Validation

In this chapter various tests with different statistical samples were per-

formed for a search of a Z ′ vector boson as predicted by the sequential

standard model scenario. All possible effects on an experimental mea-

surement due to the detector set-up are introduced to the generated

MC events and studied separately. These effects include the resolution

of the detector, the detection efficiencies as well as the simplified analysis

selection.

The likelihood function with joint signal and background pdfs is built

accordingly, as described in chapter 4. As shown, the model parameters,

of which fitted values define the underlying theoretical model, are esti-

mated with a good accuracy even in cases where low statistics samples

are used. This is the result of the analysis method, which is a rigorous

way of constructing the likelihood function.



5.5. Conclusions of the Validation 115

The number of free parameters in the likelihood are reduced by fixing

some of the input model parameters. This procedure is necessary to

lighten the computation of the weights over a multidimensional parame-

ter space. By doing so, the estimation of signal fraction and signal mass

were correctly obtained at their expected input values. On the other

hand, a bias of possible statistical origin was seen in the simultaneous

fit for the signal fraction and the signal mass. Although a higher signal

fraction estimation than its input value is observed in the tests with low

statistics, the erroneous estimation of the signal fraction disappeared

when the number of events were increased in the samples while keeping

the input signal fraction the same. The reduction in the free parameters

during the likelihood fit, as shown in the results obtained with fixed

mass hypotheses, is used to disentangle the bias effect. Conversely, the

estimated mass values are compatible with the input in all tests.

A sensitivity gain of ≈10% in low statistics (and 20% in higher statistics)

tests is observed in comparison to the peak-search analysis, depending on

the sample size. Considering the fact that the same results are obtained

with the peak-search analysis for the estimation of the parameters in a

similar statistical approach, the analysis method is proven to be reliable.

It is found that the obtained results are also robust against MC integra-

tion techniques used during the weight calculation with sufficient inte-

gration points implemented in the MadWeight software. The role played

by the overall likelihood normalization factor and by the efficiency term

in the transfer function have also been discussed in detail.

The next chapter where this method is applied to CMS collision data,

is performed in the light of these validation results.





Chapter 6
Application Studies with CMS

Collision Data

After the description of the method and validation studies, this chap-

ter focuses on the application of the likelihood method to the collision

data gathered by the CMS detector during the LHC Run 1 at
√
s = 7

TeV. Section 6.1 is a brief description of the overall analysis strategy.

After the description of the analysis selection, an auxiliary peak-search

analysis is performed with the observed data set in order to restrict the

search region. Section 6.4 is the discussion of the application of the

method to the defined search window in the invariant mass of dimuon

events. Finally, after addressing all possible sources of systematic uncer-

tainties that can affect the measured parameters, the obtained results

in terms of a local significance and an upper-limit on the cross section

times branching fraction for the sequential standard model in the decay

channel Z ′ → µ+µ− are presented.

117
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6.1 Analysis Strategy

As described in chapter 1, classical peak-search analyses performed by

the CMS experiment did not find any evidence of a resonance signal in

the obtained invariant mass spectrum. Upper limits on the observable

parameter space were set for various BSM signal models. A different

approach with an independent analysis strategy might help to increase

the sensitivity of the search. Therefore, the Matrix Element Likelihood

Method is applied in an independent approach on the obtained di-muon

events to search for a narrow resonance.

In order to use the Matrix Element Likelihood Method , the parameter

space for signal and background should be defined. The computation of

the weights required to establish a search (or a possible signal) region

is a highly CPU expensive procedure to follow. Therefore, as a starting

point, a faster analysis method is used to narrow down the search re-

gion where the highest (possibly an interesting) excess is seen. This also

allows to construct the analysis region with confidence. Therefore we

perform a scan in the obtained invariant mass spectrum with a classical

peak-search analysis. After that, we construct the parameter space of

the analysis accordingly. Namely, X ′ will be defined at this step, taking

into the account the di-muon mass resolution at the boundaries of this

mass window; Y ′ will be established as well. It follows the computation

of weights for signal and background hypotheses, which requires the con-

struction of the TFs via the parametrization of the detector resolution.

After the discussion of all possible sources of systematic uncertainties,

the obtained results are shown.

6.2 Event Selections

The analyzed data corresponds to ∼5fb−1 of integrated luminosity of

the collision events produced by the CMS experiment during the LHC

Run1 data taking. In order to obtain the final set of events used in the

analysis, various cuts are introduced. Some of the cuts are applied on

the single-muon events while others are applied on the di-muon events.
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We apply the same selections as in the CMS analysis [68]. First of

all, the trigger of selecting events is the lowest un-prescaled single muon

trigger which have a pT > 40GeV and to be within |η| < 2.1. The events

are identified with high-purity tracks as the beam backgrounds are cut

off. A good offline reconstructed primary vertex (PV) is required; the

vertex must be associated with at least four tracks, it must be located

within |r| < 2cm, and |z| <24 cm of the nominal interaction point. This

selection is very efficient for rejecting the cosmic muon background in

an empty bunch crossing. Both muons are required to pass the “tight”

selection criteria as described in chapter 2.

Both muons must be reconstructed as “global muon” and “tracker muon”.

The Tune-P (cocktail) algorithm should be used to in the momentum

assignment. The offline reconstructed pT should be greater than 45

GeV/c. The muons transverse impact parameter should be less than

2mm. Both muons should be isolated by requiring the tracker-only iso-

lation cut to be less than 0.1. The global muon track associated with the

identified muon must have at least measurements in 9 different layers in

its fit. The global muon track must also include at least one measure-

ment from each of pixel and muon system. The tracker-muon associated

with the identified muon must be matched to segments in at least two

muon stations. A common vertex fit compatibility is required on both

muons in the events. To reduce the cosmic ray background the three-

dimensional angle between two muons should be less than π-0.02 rad.

The systematic uncertainties associated with all these requirements will

be discussed in section 6.5.

6.3 An Auxiliary Peak-Search Analysis

A peak-search analysis (see ch. 5) is performed in order to restrict the

search region on the di-muon invariant-mass spectrum obtained in the

data. The pdf for the background model is obtained from the observed

data while the signal model is described with MC events. Figure 6.1

shows the background pdf obtained by fitting the observed data: the

shape parameters are defined by an exponential function as formulated
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Fig. 6.1: The background pdf used in the description of the back-

ground shape by fitting the observed data at the low-mass region.

The fitted parameters are obtained using RooFit package.

in equation 5.4. The shape parameters are obtained by only fitting the

low-mass region of the invariant mass spectrum upto 540 GeV/c2 where

no excesses are seen. The region of the invariant mass spectrum above

540 GeV/c2 is excluded while obtaining the background shape param-

eters. The signal shape parameters, on the other hand, are described

by a Voigtian pdf (as defined in eq. 5.3) while taking the standard de-

viation equal to 50 GeV. Since the aim of the peak-search analysis is

mainly to restrict the range of the invariant-mass spectrum, where the

matrix-element analysis is performed, rather than drawing conclusions

on the parameters, a likelihood fit based on the signal+background hy-

pothesis (see eq. 5.5) has been performed alternative to background-only

hypothesis without the treatment of the systematic uncertainties.

The PLR test statistic is used in the (statistical) test where the signal

fraction is taken to be the parameter of interest. The likelihood func-

tion for the signal+background hypothesis is the one defined in eq. 5.5.

Figure 6.2 shows the result of the local significance with respect to the

signal mass hypotheses (used in the signal pdf) by the RooStats [69]

implementation of the PLR test, based on the Asymptotic formulae.
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Fig. 6.2: Observed local significance in the full mass scan with

peak-search analysis.

During the fit, the same signal width is assumed for each signal model,

and data starting from the invariant mass of 400 GeV/c2 is used. As

can be seen, three different excess regions are observed. The invariant

mass window of 800-1200 GeV/c2 is chosen to be the mass range of in-

terest where the largest excess is seen, and the matrix-element analysis

is performed with the observed di-muon events falling into this mass

window.

6.4 Application of the Method in a Narrow Mass-

Range of Interest

6.4.1 Parametrization of the Detector Resolution

The mass resolution of the di-muon events, and thereby the muon mo-

mentum reconstruction, plays a crucial role in the analysis. The mo-

mentum assignment for high-pT muons and the performance of the re-

construction algorithms have been studied by the CMS as presented in

chapter 2. Tune-P is the suggested algorithm in the muon momentum
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assignment. In order to perform the analysis, first we need to define the

TFs describing the muon momentum resolution.

The construction of TFs requires the complete description of the detector

resolution. Let us remind that the TFs are defined by assuming factor-

ization on the parameters defining the detector resolution, therefore the

analytical parametrization will be performed on single muon tracks as-

suming no correlation between two muons (see sec. 4.1.4). Additionally,

di-muon events coming from a heavy resonance decay are assumed to

be mostly in the small η region. In order to parametrize the detector

resolution, opposite-charge, back-to-back di-muon particles have been

generated in a range of pT values, from 50GeV to 700GeV/c, around

10k of events. The MC generated events were then passed through the

CMS event reconstruction software. After the reconstruction of events,

the analysis selection criteria are applied on the single-muon tracks by

requiring the momentum assignment of the Tune-P algorithm. Then, the

resolution of the reconstructed muon tracks is parametrized according

to the generated muon pT . The resolution parameter σµRes which defines

the effect of detector reconstruction on the muon tracks, is defined as

σµRes =
qGen/PGenT − qRec/PRecT

qGen/PGenT

, (6.1)

where qRec and qGen are the reconstructed and generated charge of

muons, and PRecT and PGenT are the reconstructed and generated muon

transverse momentum. The charge of the muon in the equation takes

into account the possible charge flip due to mis-recontruction of the track

curvature.

The σµRes is plotted for each generated muon pT starting from 50GeV to

700GeV/c and inspected. It is found that the core of distributions can

be fitted well with a single-Gaussian functions. The effect due to charge

flip is observed to be very small and is only seen in the far tails of the

distributions for high momentum tracks and it does not play any role in

the analytical parametrization. Therefore, the charge terms have been

dropped in the equation and the following definition is used, instead:
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σµRes =
1/PGenT − 1/PRecT

1/PGenT

. (6.2)

In figures 6.3, 6.4 and 6.5, the resolution parameter σµRes is plotted for

each generated transverse momentum in three different η regions of the

detector: barrel:|η| <0.9, barrel-endcap (transition):0.9 < |η| <1.2 and

end-cap:|η| >1.2. As can be seen, a single-Gaussian function is a good

description for the detector resolution in the barrel and transition region

of the detector. On the other hand, the resolution in the end-cap region

shows more a double Gaussian behavior. Therefore, a double-Gaussian

fit is performed for the end-cap region of detector, as shown in figure 6.5.

As can be seen from the figures of the resolution, the formalization in

eq. 6.2 is a good description of the parametrization of the detector re-

sponse for high-pT muons. The non-Gaussian tails are rather in the low-

pT bins in the plotted histograms. Since the analysis region is restricted

around 1TeV/c2 in the invariant mass, the di-moun events entering this

mass range are expected to have high-pT values. Therefore, the chosen

parametrization of resolution on the muon momentum is assumed to be

adequate.

The functions used to parametrize the dependence of the single-Gaussian

width of the 1/PT resolution distributions in figures 6.3 and 6.4 are

defined as:

σµη (
1

PT
) = a+ b(

1

PGenT

) + c

√
1

PGenT

(|η| < 0.9)

σµη (
1

PT
) = a+ b(

1

PGenT

) + c log(
1

PGenT

) (0.9 < |η| < 1.2)

(6.3)

For the endcap (|η| > 1.2), the functions that parametrize the depen-

dence of the two Gaussian widths used to fit the distributions in fig-

ure 6.5 are defined as
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σµ1 (
1

PT
) = a+ b(

1

PGenT

) + c log(
1

PGenT

)

σµ2 (
1

PT
) = a+ b(

1

PGenT

) + c log(
1

PGenT

)

(6.4)

The resolution function for the endcap region of the detector is given

by∗

N1Gauss((0, σ
µ
1 (

1

PT
)) +N2Gauss(0, σ

µ
2 (

1

PT
)), (6.5)

where N1 and N2 are the relative normalization factors. Since the nor-

malization condition is established by requiring N1 + N2 = 1, only N1

is parametrized and N2 is found by 1 − N1. Figure 6.9 shows the nor-

malization factor N1 with respect to the generated muon pT . It should

be noted that the resolution functions describing barrel and transition

region are normalized to unity.

Although for simplicity, a, b and c terms in the equations (eq. 6.3, 6.4

and 6.5) and in the histograms are given with the same name, note that

they correspond to different fitted values in each parametrization for

three different region of the detector.

Figures 6.6, 6.7 and 6.8 show the muon momentum resolution analyti-

cally parametrized as a function of 1/pT in the barrel, transition-region

and in the end-cap region of the detector. The colored lines in each fig-

ure are the functions used for fitting, the values of the fitted parameters

are shown on each figure as well.

6.4.2 Local Significance with the Asymptotic Approach

Having equation 6.3, 6.4 and 6.5) in hand, we can define the TFs

on muon momentum as w(PRecT ;PGenT , σµη (1/PGenT )) where the width is

∗Note that Gauss(0,σµ1,2( 1
PT

)) terms in the equation stand for standard Gaussian

distributions with a mean equal to zero and a width equal to σµ1 ( 1
PT

) and σµ2 ( 1
PT

).
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Fig. 6.6: The muon momentum resolution parametrization (see

eq. 6.3) for the barrel region:|η| < 0.9.

Fig. 6.7: The muon momentum resolution parametrization (see

eq. 6.3) for the transition region:0.9 < |η| < 1.2.
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Fig. 6.8: The muon momentum resolution parametrization for the

end-cap region:1.2 < |η| < 2.4. The plot in the left shows the

parametrization for σµ1 , while the plot on the right shows σµ2 (see

eq. 6.4).

Fig. 6.9: Normalization factor N1 with respect to the generated

muon pT for end-cap: 1.2 < |η| < 2.4.
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analytically parametrized in three η regions of the detector. Defined

transfer functions are used during the calculation of the event weights

for the signal and background hypotheses in all numerical computations

of the test statistics.

In figure 6.10, the local significance with the asymptotic approach for

the observed data can be seen with respect to the signal mass hypoth-

esis from 900 to 1100 GeV/c2. Each point corresponds to a different

signal mass hypothesis used in the signal model tested. The highest

significance is observed around 1050 GeV which is compatible with the

highest significance obtained by the peak-search analysis (see fig. 6.2).

On the other hand, there are few remarks need to made: First, this re-

sult is obtained with the TFs parametrized only with the core resolution

(namely single-Gaussian) functions in all three regions of the detector,

therefore should be compared directly with the numerical results where

double-Gaussian parametrization is also used to describe the tails. Sec-

ond, the scan with the peak-search analysis as shown in figure 6.2 is

only performed to narrow down the search region, the pdfs used in the

likelihood for signal and background models do not describe the real

experiment, for example the background pdf model is only obtained by

fitting the low mass region, therefore should not be compared with the

figure 6.10. Third, there is no systematic effect considered in the cal-

culations at this point, as it will be discussed in detail in the following

sections.

6.5 Incorporating the Systematic Uncertainties

There can be various known uncertainties that affect the measured model

parameters which can be categorized as experimental and theoretical de-

pending on their origins. This section describes how these uncertainties

are taken into account. First, all possible sources of experimental and

theoretical uncertainties will be discussed. Later, an approach based

on the generation of toy-MC data sets with nuisance parameters for

the computation of the local significance and the upper-limit will be

described.
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Fig. 6.10: Observed local significance obtained using the Matrix

Element Likelihood Method with the asymptotic approach. The

data points correspond to different signal mass hypotheses used in

the signal pdf.

6.5.1 Experimental Uncertainties

The sources of experimental uncertainties considered in the analysis are

categorized as following;

• Muon Reconstruction and Identification: Muon reconstruc-

tion and identification efficiencies vary with respect to the η of

the detection region. The tight muon identification is required by

the analysis selection on each muon. As estimated by CMS [46]

the muon reconstruction and identification efficiencies are 96.4%

in 0.0 < |η| < 1.2 and 96.0% in the 1.2 < |η| < 2.4 regions for

muons with pT > 20 GeV/c. The systematic uncertainties on

these measured values are 0.2% and 0.4%, respectively.

• Muon Momentum Resolution: As described in section 6.4.1,

the resolution on the muon transverse momentum is parametrized

with respect to the muon pT . According to the muon resolution

studies performed by CMS [46], the difference between different

track fitting procedures on the resolution is taken as an estimate

of the systematic uncertainty. This difference is found to be about
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the same in the barrel and endcap and can be described by assign-

ing a 20% systematic uncertainty to the fitted parameters that

describe the momentum resolution (see eq. 6.3 and 6.4). These

uncertainties are taken as fully correlated in the barrel, transition

and end-cap region of the detector.

• Muon Momentum Scale: The muon reconstruction algorithms

for high-pT muons are tested with cosmic muons for a possible

curvature bias. In CMS the shape of the q/pT spectrum is used to

study this effect [46]. Using the cosmic-ray muons reconstructed

with pT >200 GeV/c, a bias factor κ in the form of

q/pT → q/pT + κ (6.6)

is measured by CMS. The value of κ in data is found to be −0.20±
0.12(stat)± 0.02(syst)c/TeV.

• Muon Isolation: Muon isolation is used to discriminate muons

coming from decay of W,Z or a heavy resonance from those com-

ing from hadron decays or from hadron misidentifications. The

isolation criteria used in this analysis is the “tracker-relative” iso-

lation. The algorithm calculates the scalar sum of the pT of all

tracker tracks reconstructed in a cone centered around the muon

with a radius of ∆R =
√

(δφ)2 + (∆η)2 < 0.3 excluding the muon

pT itself. The sum is then compared to muon pT and a threshold

is set, in the relative comparison to muon pT . In the analysis, the

isolation threshold is required to be 0.1. It is found that the sys-

tematic uncertainty on the isolation efficiency is very small, 0.2%

on the single muons [70].

• Trigger: The events used in the analysis are collected by requiring

the lowest pT threshold for the un-prescaled single muon trigger

to be 40 GeV/c and |η| < 2.1. The overall trigger efficiencies,

L1+HLT, of selecting two muons, one in |η| < 2.1 and the other

in |η| < 2.4 with both muons having a pT > 45GeV/c, is predicted

to be 98% [71, p.3]. The uncertainty on the trigger is estimated to

be 1%, constant with respect to the invariant mass of the selected

di-muon events.
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• Others: The luminosity collected by the CMS detector corre-

sponds to 5.3fb−1. The uncertainty on this value is 2.2% as pro-

vided by CMS [72].

6.5.2 Theoretical Uncertainties

The uncertainties on PDF sets are one of the main sources of systematic

uncertainties on the cross sections for signal and background. A common

way to study the effect of PDF uncertainties is to change the input PDF

set to a different one, such that the effect of this difference is visible

on the observables. The difference in the variation can be assigned as

systematic uncertainty. Let us remind that the analysis is based on

the usage of weights in a likelihood formalism provided by MadWeight

software, based on the leading order matrix element calculations, while

using the events as observables. Estimating the effect of change in the

likelihood with respect to each parameter defined in the PDF sets by

varying each set of parameters within their uncertainties requires large

toy-MC generations.

Since including the PDF uncertainties with toy-MC experiments is highly

CPU demanding, another simpler approach is followed in assessment of

this effect. The determination of the effect is based on the evaluation of

the variation of the invariant mass of the di-muon events. For the com-

parison, the nominal CTEQ6L1 (LO) PDF sets changed to CTEQM

(NLO) sets via the usage of standalone LHAPDF libraries [73] during

the event generation with MadGraph. In order to study the effect of the

PDF, different set of signal and background events are generated while

varying the input PDF sets during the generation step. Figure 6.11

shows the invariant mass distribution of signal events corresponding to

CTEQ6L1 and CTEQM PDF sets at generation level, before any smear-

ing applied due to detector resolution. The effect of the uncertainty in

the momentum resolution is shown as well in figure 6.11 (b). Figure 6.11

(b) shows the invariant mass distribution of generated signal events, af-

ter introducing the detector smearing, for different input PDF sets. The

blue line corresponds to the increase of the detector resolution about 1σ

than the expected central value. As can be seen, the detector resolution
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is a dominant effect on signal events compared to varying such PDF

sets.

Similarly, figure 6.12 is plotted in the same way for the background

events. The obtained invariant mass distributions are fitted with various

exponential fits describing the background model. The fit functions are

shown in the figure corresponds to expa.mmb where m is the invariant-

mass of the dimuon events. The figure is plotted with the background

events after detector effects, while different sets of PDFs were used dur-

ing the event generation. The effect of detector resolution, in comparison

to PDFs, was varied by ±1σ, while using the nominal PDF set as in-

put. As depicted in the figure, in comparison to the detector resolution,

the differences of such PDFs have a smaller effect on the fitted shape

parameters, and therefore can be neglected, assuming that the effect of

the PDF difference, in comparison to momentum resolution, is small in

the event weights calculated for signal and background. However this

does not hold for the background cross section (σB) which appears in

the likelihood and is affected by PDF uncertainties.

As it was shown by a CMS analysis [74], a constant k-factor of 1.3 can

be taken in the mass region around 1 TeV/c2 to account for higher

order QCD effects on the Drell-Yan background. The variation of the

uncertainty on the mass-dependent k-factor is not more than few percent

in the considered invariant-mass range of 800-1200 GeV/c2. Since the

invariant mass window of the analysis is restricted to this mass range, the

same constant k-factor is applied. A constant k-factor does not require

any special care in the statistical treatment of the analysis as a cross

section scale factor is already present in the likelihood function for the

background. The effect of the k-factor is not included in the calculation

of the event weights, neither for the signal nor for the background.

In addition to the parton distribution functions inside the proton and

the k-factor correction, initial state radiation, final state radiation and

pure weak effects can be considered. These additional effects are not

studied, therefore are not included in the calculation of event weights as

well. On the other hand, the overall cross-section for background (σB)

which is explicitly present in the likelihood function will be affected by
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Fig. 6.11: The effect of the PDF difference on the signal events.

(a) At parton level without smearing with default PDF (CTEQ6L1)

sets shown in the red line and the CTEQM shown in the green

line with Breit-Wigner fits (b) After the detector smearing: the

red line is old PDF sets, the green line shows the new PDF sets

(CTEQM) and the blue line corresponds to the default PDF sets

with resolution parameters increased by 1σ with the Voigtian fits

(for the parameters see eq. 5.3).
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Fig. 6.12: The effect of PDF changes on the distribution of the

background events (see text).

these theoretical uncertainties. An overall 20% uncertainty is assigned

to the background cross section conservatively to account for all possible

theoretical uncertainties mentioned.

6.5.3 Likelihood Function with Nuisance Treatment

In order to take into account all systematic uncertainties, one must define

the nuisance parameters associated to such uncertainties and introduce

them in the likelihood function. As it is defined before (see eq. 4.20),

the likelihood function has the form of

L({xi};µ, S,B) =

n∏
i

(
µWS(xi;S)

µσSεS + σBεB
+

WB(xi;B)

µσSεS + σBεB

)
.

The parameters εS and εB are the signal and background selection ef-

ficiencies and they will be affected by the choice of event selection and

the mentioned experimental uncertainties. Therefore we need to esti-

mate the variation of the efficiencies for selecting signal and background
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events in the analysis by considering all possible sources of systematic

effects.

In order to determine variation on these efficiencies, we generate signal

events corresponding to an SSM resonance with a mass of 1050 GeV,

and background events in the 600-1400 GeV/c2 invariant mass range.

First, the generated events are smeared using the parametrized detector

resolution functions (see sec. 6.4.1). Each parameter in the momen-

tum resolution functions (in equation 6.3, 6.4 and 6.5) is considered as

a nuisance parameter distributed according to a log-normal pdf. The

momentum resolution parameters are fully correlated as discussed in

section 6.5, the random values for each parameters are drawn using a

single, auxiliary Gaussian-distributed random variable D, which is then

simply analytically transformed into lognormal (with different central

values and widths) distributed values†. For every toy experiment, the

parameters defining the resolution functions of σµη describing the barrel,

transition and end-cap region of the detector are generated following

this procedure.

Not only the resolution, but also the systematic uncertainties associated

with other detector effects are taken into account. The overall selec-

tion efficiencies for signal and background including the uncertainties

of trigger, muon reconstruction, muon isolation and analysis selection

efficiencies are evaluated using toy experiments composed of simulated

events. In each toy experiment a set of efficiency values, each corre-

sponding to one of the considered effects, is drawn from a lognormal

pdf with a central value and a width corresponding to the estimated

values. These efficiencies are then applied to all the events drawn in

order to compose the toy experiment, either at the level of the di-muon

or at that of the individual muons. Figures 6.13 and 6.14, show the dis-

tributions of the selection efficiencies of signal and background events,

respectively. These distributions are obtained from 500 toy-MC experi-

†The generation of log-normal random distribution is based on the relation of gen-

erating the random numbers from a normal distribution. Given D is a standard nor-

mal distributed random variable, then theta, defined as θ = expµ+σ.D, is a log-normal

distributed random variable where σ and µ are the parameters that characterize the

log-normal distribution.
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Uncertainties di-muon single muon

Trigger 1% -

Muon Reconstruction - 0.2% (|η| < 1.2)

- 0.4% (1.2 < |η| < 2.4)

Muon Isolation - 0.2%

Muon Momentum Resolution - 20%

Tab. 6.1: The summary of experimental uncertainties used in the

computation of signal and background selection efficiencies. Their

effects on di-muon and single-muon events are also shown.

ments each containing 10k of background or signal events. Finally, each

distribution is fitted to a log-normal function to obtain its nuisance pdf.

In this way, a 1% uncertainty on the signal selection efficiency (εS) and

10% on the background (εB) are estimated while the central values are

around 0.76 and 0.18, respectively.

In the derivation of the efficiency distribution, the effect of each sys-

tematic uncertainty can be controlled by switching it “on” and “off” in

the software. Thus, the effect of the momentum scale on the selection

efficiencies was studied separately by switching off the uncertainties on

the momentum resolution parameters. In each toy, a shift κ is chosen,

then it is is applied in the form of equation 6.6 to the muons that have

a pT >200 GeV/c. It was found that the effect of the momentum scale

on the overall efficiencies is small , � 1%, and it does not broaden up

the distribution of efficiencies. Therefore, the effect due to the momen-

tum scale is dropped and it is not introduced in the TFs during the

computation of event weights as well.

The feature of the correlation of the detector resolution parameters re-

duces the number of nuisance parameters describing the momentum res-

olution to one, which is the D variable that has a standard normal dis-

tribution with a standard deviation equal to 1. In the likelihood, D is

treated as a nuisance parameter. A possible way to accommodate the ef-

fect of momentum resolution is to vary the transfer functions. Therefore,

a scan in the parameter D during the toy-MC generation and computa-

tion of weights is performed to include these sort of uncertainties, which
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Fig. 6.13: Distribution of the signal selection efficiency (εS) for

500 toy-MC experiments. The blue line shows the log-normal fit to

the obtained distribution.
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Fig. 6.14: The distribution of the background selection efficiency

(εB) for 500 toy-MC experiments. The red line shows the log-normal

fit to the obtained distribution.
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Nuisance parameter central value uncertainty

Signal Selection Efficiency(εS) 0.76 1%

Background Selection Efficiency(εB) 0.186 10%

Luminosity 5fb−1 2.2%

Muon Momentum Resolution see TF 20%

Background Cross-Section(σB) 0.0097pb 20%

Tab. 6.2: Nuisance parameters and their uncertainties used in gen-

eration of the toy-MC data set.

will be discussed in the next section. Due to repetitive calculation of

event weights by scanning over the parameter D, which brings a com-

putational burden, a limited set of D values are considered.

The background cross section will be treated as another nuisance pa-

rameter with an uncertainty of 20% due the mentioned theoretical un-

certainties. The signal cross section, on the other hand, is one of the

parameter of interest through the signal strength modifier µ, therefore

no uncertainty is assigned to this term. Table 6.2 is the summary of the

nuisance parameters.

To summarize, the likelihood function including the nuisance parameters

discussed above is defined as

L({xi};µ, θj , S,B) =
n∏
i

(
µWS(xi;S, θk(D))

µσSεS + σBεB
+
WB(xi;B, θk(D))

µσSεS + σBεB

)
G(D)

∏
l

LN(θl),

(6.7)

where θj is the set of nuisance parameters, εS , εB, σB. G(D) is the

unit Gaussian pdf centered at 0. LN(θl) indicates the log-normal pdfs.

The θk(D), appearing in the signal and background weights, indicates

the momentum resolution parameters established by variable D, which

are a function of muon pT . In summary, the likelihood is defined as a
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function of a set of nuisance parameters, observables and the parameters

of interest.

Since the aim of the analysis is to estimate (or set an upper-limit on)

the signal cross section times branching fraction, it is important to be

protected against background fluctuations that give rise to a discovery

significance in situations where no actual signal is present in the data.

In order to take into account these possible fluctuations, a scale factor

β on the background event rate is introduced. With this modification,

the likelihood function is re-defined as:

L({xi};µ, θj , S,B) =

n∏
i

(
µWS(xi;S, θk(D))

µσSεS + βσBεB
+
βWB(xi;B, θk(D))

µσSεS + βσBεB

)
G(D)

∏
l

LN(θl).

(6.8)

Scale factor β is treated in such a way to accommodate uncertainties on

the background cross-section and the selection efficiency.

6.6 A Multiparameter Unbinned Maximum Like-

lihood Fit

The computation of the test statistics distribution requires computing

the likelihood ratio for toy-MC experiments. Each toy-MC experiment

needs to be generated according to a set of nuisance parameters which

are constrained by their pdfs. Then, for every toy, the likelihood func-

tion needs to be maximised with respect to nuisance parameters and

the parameter of interest, as detailed in section 4.2.4. In practice this

maximisation is extremely computing power expensive.

It is crucial to find an easy way of the computation of the profile like-

lihood ratio over multiple nuisance parameters. A dedicated software

has been developed to do such computations and the TMinut mini-

mization package [75] is used to perform the likelihood maximization of
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lnL(µ, θj), or the minimization -lnL(µ, θj). In most cases, the Migrad

algorithm [76] is employed. Additionally, the Simplex algorithm [77] is

also used to further improve the fit in cases where Migrad failed to find

a minimum. The data set was discarded where the fit did not converge

and no local minimum was found which happened in only few cases

among all computations.

To summarize the toy-MC generation and likelihood fitting procedure

for upper limit calculation for example: a set of toy-MC experiments

corresponding to D values chosen (-1, -0.5, 0, 0.5 and 1) as well as

randomly chosen β and other nuisance parameters, were generated by

allowing each component of data set (NS and NB) to Poisson fluctuate

at the obtained value of signal and background events‡. In figure 6.15,

for example, the distribution of generated β scale parameter can be seen.

Then, given that a likelihood maximization is needed for the computa-

tion of the experiment test statistic, the event weights were computed

with the transfer functions modified according to each D value for five

times. During the likelihood maximization, nuisance parameters are

bound in ±5σ, while the signal strength µ parameter is left free. The

PLR test statistics is calculated under the conditions of the tested hy-

potheses. The same fitting procedure was repeated in order to obtain

the distribution of the test statistics.

The discovery significance is calculated over background-only toy-MC

experiments. On the other hand, toy-MC experiments of signal and

background events are composed according to the tested signal strength

parameter µ in the calculation of the upper limit.

6.7 Results

6.7.1 Local Significance

The determination of the presence of signal events can be quantified via

the calculation of the discovery significance. The local significance is

‡In other words, NS and NB are allowed to fluctuate around < NS >=

Luminosity.σS .εS and < NB >= Luminosity.σB .εB .
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Fig. 6.15: The distribution of background scale factor (β) for 2k of

toy-MC experiments. The blue line shows the log-normal and the

red line is the Gaussian fit to the obtained distribution.

calculated via the distribution of the test statistics for a positive signal

present in the observed data.

Figure 6.16 shows the test statistics distribution of q(0) for 2k of toy-

MC experiments (blue) and observed data (red arrow). The toy-MC

experiments contain the background-only events. The computed z-score

corresponds to 1.3σ from the upper tail integral, for a signal mass hy-

pothesis of 1050 GeV. The CMS analysis [68, 78] quotes 1.2σ local signif-

icance with a peak-search analysis performed around the same invariant

mass region, with the highest excess occurring at the mass value of 1005

GeV.

6.7.2 Upper Limit on σS ×BR

For setting an upper limit, toy-MC experiments are generated with an

ensemble of signal and background events for tested µ value. Each sig-

nal and background component is allowed to fluctuate with a mean ex-

pected value that is drawn from a Poisson distribution. The PLR test
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Fig. 6.16: Test statistics distributions of a discovery generated

from background-only 2k toy-MC experiments. The red arrow cor-

responds to the observed value from data.

was performed for the ratio of the background hypothesis tested against

the signal+background for different values of µ. The test statistic dis-

tribution qµ (see eq. 4.27) is obtained for each tested value of µ. In

figure 6.17 the distribution of the test statistics and the obtained value

for observed data can be seen. The blue shade corresponds to the test

results obtained with a thousand of toy-MC experiments. The red arrow

is the observed data. The observed upper limit on the µ signal strength

is found to be 0.063. Therefore, the upper limit on the cross section

times branching fraction for a production of a sequential Z′ model is

set to 0.0034pb at the 95%C.L.

Setting a lower mass bound on this signal model with observed data

considering the full invariant mass range (≥ 200GeV ), however, requires

a large parameter scan it is not aimed in this analysis. Given that the

analysis shown here is optimized in an invariant mass window, it can be

considered as one of the future improvements.
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Fig. 6.17: Test statistics distribution for setting an upper-limit on

the µ signal strength at 95%C.L. The blue filled area corresponds to

the result of toy-MC experiments. The red arrow is observed value.





Conclusions and Outlook

The Standard Model of particle physics has proven to be a very suc-

cessful theory to describe the fundamental interactions in nature. The

discovery of a Higgs boson by the Atlas and CMS experiments at the

LHC has been the ultimate confirmation of the predictions by the the-

ory. However, this model does not answer to many open questions, for

example the hierarchy problem, the origin of the fermion generations,

quantum gravity, and the unification of the forces.

Many BSM models that address these problems predict new heavy neu-

tral gauge bosons. An experimentally and particularly appealing final

state to search for these new particles at the LHC is the di-muon fi-

nal state. However, despite various searches conducted at the collider

experiments, no evidence for such new particles has been found so far,

indicating that these particles might be heavier and produced at a lower

rate than expected.

By improving the reconstruction and analysis techniques, the sensitiv-

ity of these searches can be enhanced. This thesis presents the results

of research performed along both of these lines: a novel method for

mapping the distribution of the detector material and a matrix element

likelihood approach are developed, fully validated and applied to the

collision data. The first method aims to improve the measurement of

the material distribution in the track reconstruction, and the second is

an analysis method dedicated to the improvement of the sensitivity for

147
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a discovery of a narrow di-muon resonance.

The first method is based on the extraction of the CMS Tracker material

distribution by checking the consistency of the track reconstruction al-

gorithm, using the reconstructed tracks. The accurate knowledge of the

material mounted in the detector is of importance to the reconstruction

of the muons, hence a new method based on the track reconstruction

to probe the inner tracker material is developed to measure the actual

material distribution placed in the CMS Silicon Tracker detector. The

method is easily applicable and its accuracy is comparable to that of

more traditional methods. The method also proves to be complementary

to such traditional methods in that it suffers from different sources of

uncertainty. It has been shown that this relatively simple, data-driven

method can provide results for the overall detector volume with rela-

tively low statistics. An overall agreement around 10-20% is observed

by comparing the MC results with the collision data, and these results

can be used to give feedback to the physics analyses for the evaluation of

the systematic uncertainties due to the Tracker material. The method

aims to improve both the details of the simulation of the material inside

the tracking volume, as well as the treatment of the material effects in

the track reconstruction. Therefore, it allows for an improvement in the

reconstruction model.

The second method, the Matrix Element Likelihood Method , relates

the full event information to the invariant matrix element of the physics

processes. The analysis approach has been formulated, developed and

fully validated with MC generated events, demonstrating the robust-

ness and the performance of the method. Depending on the sample size,

a sensitivity improvement of 10-20% is obtained, in comparison to the

method currently used in the CMS analysis. It has been shown that the

method can be used for hypothesis testing and parameter estimation, in-

corporating both theoretical and experimental systematic uncertainties.

The search method has subsequently been applied to the collision data,

in a mass window where the highest excess is seen; numerical computa-

tions show a local significance of 1.3σ around M(µ+µ−) = 1050 GeV/c2,

compatible with the CMS measurement. Furthermore, an upper limit is

set at this signal mass for the tested Sequential Z′ signal cross section
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times branching fraction.

The analysis approach described here, implemented in independent soft-

ware, is computationally limited, but improvements in the performance

are a possible subject for future studies. In case a possible significant

excess is seen in the invariant-mass distribution of di-muon events, the

method can be used to determine the model parameters that describe

best the observed data. This can be the subject of future developments

as well.

The upcoming program of the LHC proton-proton collisions, at an in-

creased center-of-mass-energy of 13 and 14 TeV, will make it possible to

explore the higher invariant mass regions with di-muon events. The de-

scribed analysis methods could be very useful to investigate these regions

of the spectrum, in order to probe the existence or non-existence of new

heavy particles, as expected by many theoretical models. Considering

the fact that these high-mass regions will be statistically limited, sensi-

tive analysis methods will gain importance in the future LHC searches;

the analysis methods presented in this thesis can contribute to the future

studies in this direction. In case of an observation of a new phenomenon,

the method can be used to reveal the properties of this discovery.
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