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Introduction

The standard model (SM) of electroweak and strong interactions was formu-

lated by mid-1970s. It has proven to be an extraordinarily successful theory,

which has been consistently explaining every result obtained in experimental

studies of subatomic particles ever since. The only crucial element of the theory

that used to lack experimental confirmation until recently was the Higgs boson.

In 2012 it was finally discovered by the ATLAS and CMS collaborations [1,2],

ending an almost fifty-year-long quest. After the discovery, it is important to

investigate properties of the new particle in order to determine whether it is in-

deed the Higgs boson of the standard model or if there are deviations from the

expectations, providing hints for physics beyond the standard model (BSM).

A property of the Higgs boson that is of a particular interest is the strength of

its interaction with the top quark. In the standard model, elementary particles

obtain the mass through the interaction with the Higgs boson. The excep-

tionally large mass of the top quark then suggests that there might a special

relation between the two particles. In fact, the SM Yukawa coupling constant

of the top quark yt is enigmatically very close to unity, while coupling constants

of the remaining fermions are of the order of 10−2 or less. The value of yt can

be measured in the tt̄H production, whose cross section is proportional to y2
t .

The study in tt̄H can be complemented by investigating the tH production,

where the Higgs boson is created in association with a single top quark instead

of a pair. This process possesses a unique sensitivity to certain aspects of the

Yukawa interaction. In particular, it allows to determine the sign of yt, which

is defined with respect to the coupling between the Higgs and weak bosons.

This thesis is devoted to a search for the tH production with H → bb̄ and

semileptonic decays of the top quark. In the standard model, this process

has a very small cross section and cannot be observed with available data.
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However, its production rate increases by more than an order of magnitude

if yt = −1. The search targets the case with the enhanced cross section, but

a large tt̄ background makes this a challenging task nonetheless. In order to

improve the sensitivity, methods of multivariate analysis (MVA) are exploited.

Data used in this search have been recorded with the CMS detector in 2012 in

pp collisions at a centre-of-mass energy
√
s = 8 TeV. It corresponds to an inte-

grated luminosity of about 20 fb−1. In addition, 5 fb−1 of 7 TeV data recorded

in 2011 are available, but these data have not been utilized in the search be-

cause the resulting moderate increase in the integrated luminosity would not

boost the sensitivity significantly. No attempt has been made to analyse first

13 TeV data since the integrated luminosity recorded at the time of writing,

about 40 pb−1, is insufficient for this search.

This thesis is organized as follows. Chapter 1 briefly introduces the standard

model, focusing on the top quark and the Higgs boson. The tH production

is discussed, and experimental results relevant to this search are summarized.

In Chapter 2 the Large Hadron Collider (LHC) and the CMS detector are de-

scribed. Chapter 3 explains how individual particles are reconstructed from

detector signals. It also addresses reconstruction of derived objects and quan-

tities such as jets and missing ET and lists identification criteria applied in the

search. The reconstructed objects are exploited to define the event selection,

which is documented in Chapter 4. Simulated data used in the search are also

discussed there. Chapter 5 describes the multivariate analysis, providing also a

brief introduction to artificial neural networks. Finally, the statistical inference

is addressed in Chapter 6. It elaborates on the method applied to set an upper

limit on the tHq cross section, discusses considered uncertainties, and reports

the results. In addition, constraints obtained in complementary searches in

other Higgs boson decay channels and the overall combination are presented.

The search documented in this thesis was published as Ref. [3].



Chapter 1
Higgs boson and top quark

In this thesis the interaction between the Higgs boson and the top quark is

studied. Its theoretical description is provided by the standard model, although

in the following a special attention is given to possible BSM effects. Some of

them can be probed in the associated tH production.

1.1 Standard model

The standard model of electroweak [4–6] and strong [7–10] interactions de-

scribes all phenomena of the microscopic world. It does so using only a small

set of fundamental particles. The interactions between them are defined by

internal symmetries, as prescribed by the framework of gauge theories. The

symmetry of the standard model is spontaneously broken by the ground state,

in the event of which fundamental particles acquire masses.

1.1.1 Particle content

The majority of common matter, despite of the great diversity of its forms, is

constructed with just a few elementary particles. Atoms consist of negatively

charged electrons orbiting massive positively charged nuclei, which are com-

posed of protons and neutrons, collectively referred to as nucleons. Nucleons

are not elementary but consist of three valence quarks of two flavours: up and

down, or u and d. The composition of a proton and a neutron is uud and

9



10 Chapter 1. Higgs boson and top quark

udd respectively. The u and d quarks have non-integral electric charges +2/3

and −1/3, which gives integral charges to nucleons. Similar to electrons, quarks

have spin 1/2. In β decays another spin-1/2 elementary particle is produced, the

electron antineutrino ν̄e. The four particles u, d, e−, and νe, together with the

corresponding antiparticles, form the first generation of fermions, and they are

the only elementary fermions that contribute to common matter.

For some mysterious reason, two more fermion generations exist in nature.

The additional particles differ in mass but in other respects participate in

interactions in the same way as analogous fermions of the first generation.

The second generation consists of charm and strange quarks, muon, and muon

neutrino, and the third generation includes top and bottom quarks, τ lepton,

and τ neutrino. There is a pronounced mass hierarchy in which particles of each

successive generation (with a potential exception for neutrinos) are significantly

more massive than their counterparts in the previous generation. The top

quark, discovered in 1995 by the CDF and DØ collaborations [11, 12], is the

heaviest elementary particle and has a mass of about 173 GeV/c2, which is

similar to the mass of a tungsten atom. The large masses cause particles of

higher generations to decay to the first generation, which is why they do not

contribute to common matter. The presence of the forth generation populated

with even heavier fermions is strongly disfavoured after the discovery of the

Higgs boson [13].

Quarks can form a great variety of composite particles called hadrons. On

the other hand, free isolated quarks do not exist due to a phenomenon known

as colour confinement: an attempt to extract a single quark from a hadron

results in spontaneous creation of quark–antiquark pairs, which then combine

with the remnant of the hadron and the quark to form new hadrons. Main

types of hadron structure that are predicted by the quark model and have

been observed experimentally, are pairs of quarks and antiquarks (mesons) and

triplets of quarks or antiquarks (baryons). Recently, a pentaquark, a state

consisting of four quarks and an antiquark, has been observed by the LHCb

collaboration [14]. Hadrons can contain valence quarks of any flavour except

for the top quark. Due to its large mass, the top quark has a very short lifetime

and decays via electroweak interaction before a bound state can be formed.

Interactions between the fermions are mediated by several types of vector

bosons: photons, W± and Z0 bosons, and gluons, which are responsible for

the electromagnetic, weak, and strong interactions, respectively. Although all

fermions (except for, maybe, one flavour of neutrino) are massive and thus

participate also in gravitational interaction, it has no impact at experimentally

accessible energies. Photons are massless, allowing the electromagnetic forces
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to act at large distances. On the other hand, the W and Z bosons are heavy,

with masses of about 80.4 and 91.2 GeV/c2, and this limits the range of the

weak interaction. Gluons are also massless, but they carry colour charge and

thus are subject to the confinement, which constrains the strong force to the

range of about the size of a nucleon.

Elementary fermions and weak bosons obtain masses dynamically via inter-

action with the Higgs field, as will be described below. It should be noted,

however, that this mechanism accounts for only a few per cent of mass of

common matter, while the dominant contribution to the mass of nucleons is

provided by the strong interaction. The discovery of the excitation of the Higgs

field, the Higgs boson with a mass of about 125 GeV/c2, has completed the list

of particles of the standard model.

1.1.2 Standard model as a gauge theory

The standard model is a gauge quantum field theory based on the local sym-

metry group GSM = SU(3)C⊗SU(2)L⊗U(1)Y . All its fields are arranged into

representations of these subgroups, and the Lagrangian density L is constructed

to be invariant under GSM, which consequently makes the action S =
∫
Ld4x

invariant. The SU(3)C subgroup describes the strong interaction, while the

SU(2)L ⊗ U(1)Y symmetry describes the electroweak interaction. Conserved

charges related to these symmetries by the Noether theorem are colour, weak

isospin, and weak hypercharge. The SU(2)L ⊗ U(1)Y symmetry is, however,

spontaneously broken down to an U(1)Q symmetry, which corresponds to elec-

tromagnetic interactions and conserved electric charge.

The SU(3)C part of the theory describes quarks with fundamental represen-

tations of the group, thus introducing three components for the quark field of

each flavour, which correspond to the three colours. Since the symmetry group

has eight generators, there are eight corresponding gauge bosons, the gluon

fields Gaµ(x), a = 1, . . . , 8, which are described in the adjoint representation.

The Lagrangian of the SU(3)C sector is

LQCD = q̄i
(
i /Dij − δijmq

)
qj −

1

4
GaµνG

µν
a , (1.1)

where i and j are indices of the fundamental representations of the SU(3)C
group, summation over all repeated indices is implied, and the Feynman slash

notation is used, /D ≡ γµD
µ. In the first term in Eq. (1.1), a summation over

quark flavours is also implied. The covariant derivative is defined as

Dµ = ∂µ − igs
λa

2
Gaµ, (1.2)
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where gs is the coupling constant of the strong interaction, and λa are the

Gell–Mann matrices. The SU(3) group is non-abelian, and thus the gluon field

strength tensor Gaµν contains a term quadratic in field:

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν , (1.3)

where fabc are the structure constants of the group.

Transformations corresponding to the SU(2)L⊗U(1)Y symmetry act differently

on left- and right-handed chiral states

ψL =
1− γ5

2
ψ, ψR =

1 + γ5

2
ψ. (1.4)

The left-handed fermions are organized into SU(2)L doublets

QmL =

(
umL
dmL

)
, LmL =

(
νmL
emL

)
, (1.5)

which are the fundamental representation of the subgroup. Here index m =

1, . . . , 3 denotes the generation. Differently, the right-handed fermions νmR , emR ,

umR , dmR are not affected by the SU(2)L transformations, and thus they fall

into the trivial representation of this subgroup. The U(1)Y group acts on all

fermions except for the right-handed neutrinos, whose U(1)Y charge is zero.

Electroweak and electric charges of all fermions are shown in Table 1.1. Three

gauge bosons W i
µ, i = 1, . . . , 3, correspond to the SU(2)L symmetry. They are

described in the adjoint representation. The U(1)Y group adds a forth field Bµ.

Table 1.1: Fermion charges under SU(2)L, U(1)Y , and U(1)Q groups: electric

charge Q, weak isospin T3, and weak hypercharge YW, respectively. The three

charges are related as Q = T3 + YW/2. Fermions are split into left- and right-

handed chiral states. Each line refers to all three generations.

Fermions Q T3 YW

νL 0 +1/2 −1

eL −1 −1/2 −1

uL +2/3 +1/2 +1/3

dL −1/3 −1/2 +1/3

νR 0 0 0

eR −1 0 −2

uR +2/3 0 +4/3

dR −1/3 0 −2/3
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The Lagrangian of the electroweak sector reads as

LEW = iQ̄L /DQL + iūR /DuR + id̄R /DdR + iL̄L /DLL + iēR /DeR

− 1

4
W i
µνW

µν
i −

1

4
BµνB

µν + LHiggs + LYukawa, (1.6)

where a summation over the generations is implied. The covariant derivative

is defined as

Dµ = ∂µ − ig
σi

2
W i
µ − ig′

Y

2
Bµ, (1.7)

where g and g′ are the coupling constants for groups SU(2)L and U(1)Y , σi

are the Pauli matrices, and Y is the weak hypercharge of the field on which

the derivative acts. In case of SU(2)L singlets, the second term in Eq. (1.7) is

omitted. The field strength tensors are given by

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν , (1.8)

Bµν = ∂µBν − ∂νBµ, (1.9)

where εabc is the Levi–Civita symbol, which is the structure constant of the

SU(2) group.

The Higgs field is described by the Lagrangian

LHiggs = (DµΦ)†DµΦ− V (Φ†Φ), (1.10)

where Φ =
(
φ+, φ0

)T
is an SU(2)L doublet of complex scalar fields with a weak

hypercharge YH = 1. The covariant derivative follows the definition (1.7). The

potential of the Higgs field is chosen in the form

V (Φ†Φ) = µ2Φ†Φ + λ
(
Φ†Φ

)2
, (1.11)

and µ2 and λ > 0 are its parameters.

The last term in the Lagrangian (1.6) describes the Yukawa interaction between

the fermions and the Higgs field. It reads as

LYukawa = −Y umnQ̄LmΦ̃uRn − Y dmnQ̄LmΦdRn − Y emnL̄LmΦeRn + h. c. (1.12)

with Φ̃ = iσ2Φ∗. Here Y u,d,emn are Yukawa coupling constants for up- and down-

type quarks and charged (down-type) leptons, and indices m and n enumerate

generations. As will be shown later, these interactions are responsible for gen-

eration of fermion masses. Since at least two flavours of neutrino are massive,

the corresponding term −Y νmnLLmΦ̃νRn can be added to the Lagrangian. How-

ever, neutrino masses are very small, and they are neglected in the following

discussion by setting Y νmn = 0.
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1.1.3 Electroweak symmetry breaking

Although from experimental results elementary fermions are known to be mas-

sive, the electroweak Lagrangian (1.6) does not contain the corresponding mass

terms. In fact, a term −mf (f̄LfR + f̄RfL), which would assign a mass mf to

the fermion f , is not invariant under the SU(2)L transformations and thus can-

not be added explicitly. The four gauge electroweak bosons are also seemingly

massless, while the weak interaction must be mediated by massive particles in

order to have a short range. There apparent contradictions are resolved by the

Brout–Englert–Higgs mechanism [15–20]. It describes the spontaneous break-

ing of the SU(2)L⊗U(1)Y symmetry down to U(1)Q and generates masses for

fermions and weak bosons dynamically, as discussed below.

The ground state of the theory depends on the shape of the Higgs poten-

tial (1.11). If µ2 > 0, the vacuum expectation 〈0|Φ|0〉 is zero. On the other

hand, if µ2 < 0, |Φ| = 0 is the point of an unstable local maximum of the

potential, while the minimum is reached with

Φ†Φ =
v2

2
, v =

√
−µ

2

λ
. (1.13)

Without loss of generality, the ground state can be chosen so that

〈0|Φ|0〉 =
1√
2

(
0

v

)
. (1.14)

Here, the vacuum expectation of the electrically charged upper component of

the Higgs doublet is zero. Although the Lagrangian is invariant under SU(2)L⊗
U(1)Y transformations, the chosen ground state does not share this symmetry.

In fact, it breaks all generators of the group except for the combination 1/2 ·
σ3 + YH/2 · 12, which corresponds to the electric charge. The U(1)Q symmetry

is therefore respected by the ground state (1.14).

With the unitary gauge, perturbations of the scalar field around the chosen

vacuum can be parameterized as

Φ =
1√
2

(
0

v +H

)
, (1.15)

where H is a Hermitian field. If this is substituted into the Lagrangian (1.10),

terms that do not include gauge bosons read as

LHiggs ⊃
1

2
∂µH∂

µH − λv2H2 − λvH3 − λ

4
H4 +

λ

4
v4, (1.16)
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which reveals the mass of the Higgs boson mH =
√

2λv2. The terms quadratic

in v provide masses to weak bosons:

LHiggs ⊃
v2

8

(
g2|W 1

µ − iW 2
µ |2 + (gW 3

µ − g′Bµ)2
)

=

g2v2

8
W+
µ W

+µ +
g2v2

8
W−µ W

−µ +
(g2 + g′2)v2

8
ZµZ

µ + 0 ·AµAµ, (1.17)

where the mass eigenstates are defined as

W±µ ≡
W 1
µ ∓ iW 2

µ√
2

(1.18)

Aµ ≡
g′W 3

µ + gBµ√
g2 + g′2

, Zµ ≡
gW 3

µ − g′Bµ√
g2 + g′2

. (1.19)

These eigenstates correspond to the physical W and Z bosons with masses

mW = gv/2 and mZ = v
√
g2 + g′2/2, as well as the massless photon Aµ.

The Yukawa block with the parameterization (1.15) translates into

LYukawa = −Y umnūLmuRn
v +H√

2
−Y dmnd̄LmdRn

v +H√
2
−Y emnēLmeRn

v +H√
2

+h. c.

(1.20)

Terms proportional to v give masses to the fermions, while the remaining ones

are responsible for interactions with the Higgs boson. In general, the mass ma-

trices v/
√

2 ·Y are not diagonal, which means that the fermion fields considered

so far are not mass eigenstates. The mass matrices can be diagonalized with

the help of unitary matrices V uL,R:

− v√
2
ūLY

uuR + h. c. = − v√
2
ūLV

u†
L

(
V uL Y

uV u†R

)
V uRuR + h. c. =

− v√
2
ūLV

u†
L Y uDV

u
RuR + h. c., (1.21)

where Y uD = diag(mu,mc,mt), and a similar operation can be performed for

down-type quarks and charged leptons. The transformation matrices V u,d,eL,R

can be absorbed into definitions of fermion fields thus translating them into

the mass eigenstates. Since neutrino mass terms are ignored, there is no need

to reproduce their mass eigenstates, and then it is convenient to transform

these fields in the same way as charged leptons. After the change of the ba-

sis, the transformation matrices emerge in the charged current part of the

Lagrangian (1.6):

Lc. c. = − g√
2

(
ūmγ

µ 1− γ5

2
V CKM
mn dn + ν̄mγ

µ 1− γ5

2
em

)
W+
µ + h. c., (1.22)
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although only in the quark sector thanks to the chosen rotation for neutrinos.

Here V CKM = V uL V
d†
L is the Cabibbo–Kobayashi–Maskawa mixing matrix.

As can be seen from Eq. (1.21), the resulting masses of fermions read as

mf =
yfv√

2
, (1.23)

where yf is the appropriate component of the diagonalized Yukawa matrix YD.

Values of the Yukawa coupling constants are among the free parameters of

the standard model. Mysteriously, only top quark coupling constant is of the

natural scale, yt ∼ 1, whereas constants for other fermions are of the order

of 10−2 or smaller. Even more strangely, the top quark coupling constant is

very close to unity: yt = 0.995 ± 0.005 [21]. The standard model offers no

explanation for these experimental observations.

1.2 Associated tH production

The large mass of the top quark and, more specifically, the fact that its Yukawa

coupling constant is very close to unity, suggests that the quark might play a

special role in the electroweak symmetry breaking. Because of this, it is very

important to study the interaction between the Higgs boson and the top quark

in great detail. This thesis is focused on the production of Higgs boson in

association with a single top quark. Although the tt̄H process offers the most

straightforward way to study the interaction between the two particles, the

tH production provides a unique possibility to investigate certain aspects of

this interaction at tree level, which otherwise are only accessible through loops.

1.2.1 Theory

At the leading order, there are three modes of the tH production [22], which

result in different final states: tHq, where q denotes a quark of the first two

generations, tHW , and tHb. Equivalently, they can be classified into the t-

channel, the s-channel, and tW -associated production, as it is usually done for

production of single top quarks and shown in Fig. 1.1. Here the most attention

is given to the t-channel, or tHq, production, which has the largest cross section

of the three [22, 23]. The dominant Feynman diagrams contributing to the

process are shown in Fig. 1.2. Although the Higgs boson can also be attached

to the b-quark line, the corresponding amplitude is suppressed by the small

value of the Yukawa coupling of b quark.
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Figure 1.1: Representative Feynman diagrams for production of single top

quarks in the t channel (a), the s channel (b), and in association with a W bo-

son (c). To create corresponding diagrams for the tH production, a Higgs

boson can be attached to lines marked with blue circles.
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Figure 1.2: Dominant Feynman diagrams for the tH production in the

t channel.

In the standard model there is a large destructive interference between the two

diagrams shown in Fig. 1.2 [24, 25]. The resulting partial cancellation of the

two amplitudes makes the tHq production an interesting process to probe for a

deviation of couplings of the Higgs boson from their SM expectations since this

can potentially disturb the cancellation and cause a significant increase of the

cross section. In a simple yet generic case, the deviations of the couplings to

the top quark and the W boson can be parameterized with real-valued factors

κt, κW that scale the coupling strength with respect to the SM expectation.

Without loss of generality, κW > 0 is assumed. The SM case is reproduced with

κt = κW = 1, while setting one of the factors to zero excludes the contribution

from the corresponding diagram. In Ref. [26], the total amplitude for the central

hard scattering Wb → tH is derived in the high-energy regime s,−t,−u �
m2
t ,m

2
H ,m

2
W , where s = (pW + pb)

2, t = (pW − pH)2, and u = (pW − pt)2 are
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the Mandelstam variables of the central process. The amplitude is found to be

A =
g√
2

(
(κt − κW )

mt
√
s

mW v
·A(t/s, φ) +(

κW
2mW

v

s

t
+ (2κt − κW )

m2
t

mW v

)
·B(t/s, φ)

)
, (1.24)

where φ is the azimuthal angle with respect to the direction of the W boson and

explicit expressions for matrices A and B are given in Ref. [26]. If κt = κW ,

the first summand vanishes, and the amplitude is constant in the s → +∞
limit (where the ratio s/t, which is related to the angle of scattering, is kept

finite). Therefore, the cross section decreases as 1/s. On the other hand, if

κt 6= κW , the amplitude grows as
√
s leading to a constant cross section for large

values of s, thereby providing an enhancement. Although the first summand

must be eliminated to respect the unitarity constraints [24], with κt 6= κW the

perturbative unitarity is not lost until some large enough scale is reached. In

Ref. [26] it is estimated as

Λ = 12π
√

2
v2

mt|κt − κW |
, (1.25)

which gives Λ ∼ 10 TeV for κW = −κt = 1. This is a high scale even for 13 TeV

pp collisions at the LHC. Indeed, if the corresponding matrix element is convo-

luted with the parton distribution functions (PDF), the fraction of tHq events

where the invariant mass of the tH system exceeds 1 TeV is negligible [26].

This observation allows to consider the case of κt 6= κW as an effective theory

under the LHC conditions.

The κW = −κt = 1 case mentioned above is of a special interest. Although

absolute values of the coupling strengths can be measured in HW and tt̄H pro-

duction, these processes have no sensitivity to the relative sign of the couplings.

On the other hand, flipping of the sign causes a spectacular enhancement of

the tHq cross section. For pp collisions at
√
s = 8 TeV, it increases from about

18 fb in the SM case to 235 fb [26], i. e. by a factor of 13, significantly exceeding

the tt̄H cross section of about 130 fb [27]. Admitting that the SM rate is way

too low to be observed with the data recorded so far by the LHC, the large

enhancement for the flipped sign potentially allows to observe or exclude the

anomalous production, as has been suggested in a number of phenomenologi-

cal papers [23, 25, 26, 28–30]. An experimental study of this possibility is the

subject of this thesis.

It should be noted that the tH production is not the only process that is

sensitive to the relative sign of the coupling constants. Through a similar
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interference effect, it affects gg → ZH [31], gg → HH [26], and the branching

fraction of the H → γγ decay [23]. In the SM, the cross section of gg → ZH

is about 20 fb, and it is enhanced by a factor of 5 [31]. However, this process

is more difficult to study than the tHq production, in part, because of the

irreducible SM ZH background with a cross section of about 400 fb [31]. The

gg → HH production with an SM cross section of about 10 fb [32] is even

more challenging. The decay H → γγ predominantly occurs through a loop

with a top quark or a W boson. Its branching fraction is modified with a

scale factor κ2
γ , which can be approximately parameterized in the following

way [27, Eq. (113)]:

κ2
γ ≈ 0.07 · κ2

t + 1.61 · κ2
W − 0.68 · κtκW . (1.26)

As can be seen, the flipped sign increases the branching fraction by a factor of

about 2.4, which can be observed by measuring the ratio B(H → γγ)/B(H →
V V ∗), where V = W,Z, in inclusive Higgs boson production.

Although the last approach is the easiest of the three from the experimental

point of view, in Eq. (1.26) a strong assumption is made that there is no

contribution from new particles in theH → γγ loop. If this assumption is lifted,

the dependence of B(H → γγ) on κt and κW is largely unknown. Likewise,

the gg → ZH and HH production occurs through loops, and therefore an

interpretation of results obtained with these processes would suffer from the

same deep problem. In fact, the tH production is the only process available

experimentally that allows to probe the κt sign at tree level. Another process

with the tree-level sensitivity is the HWW production [33], but because of its

small cross section it can only be studied in future, when a very large amount

of data is available.

So far, only CP-conserving couplings have been considered. However, a pseu-

doscalar component can be introduced to the interaction between the top quark

and the Higgs boson:

Lt = −mt

v
(κt t̄t+ iκ̃t t̄γ5t) H. (1.27)

This can be viewed as a generalization of the κV = 1, κt = ±1 cases discussed

above, and the SM is reproduced by setting κt = 1, κ̃t = 0. The interference

between the two diagrams shown in Fig. 1.2 is also sensitive to the pseudoscalar

coupling scale factor κ̃t and, in particular, to the CP-violating phase ξt =

arctan(κ̃t/κt) [25,34]. Studies of the CP-violating top quark Yukawa coupling in

the tHq process are discussed in Refs. [35,36]. They can also be complemented

with studies of angular distributions in tt̄H events [35,37,38].
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1.2.2 Experimental results

Because of the Higgs boson involved, experimental constraints relevant to the

tH production can be set virtually only by the ATLAS [39] and CMS [40] exper-

iments. The CMS collaboration has performed searches for the tHq production

with κt = −1 in multiple decay channels of the Higgs boson [3, 41–43]. The

search in the H → bb̄ channel is the topic of this thesis, and results obtained

in the other channels will also be discussed. On the other hand, the ATLAS

collaboration has not attempted direct searches for this process but instead

included it as a background in a tt̄H, H → γγ search [44].

Both collaborations have performed global combinations of their measurements

of properties of the Higgs boson [45, 46], although in the case of CMS it does

not include the direct searches for tHq. The simplest model considered for

the combinations contains only two free parameters, κf and κV , which simul-

taneously rescale coupling constants of the Higgs boson to all fermions or all

vector bosons, respectively. Both ATLAS and CMS strongly favour κf ∼ 1

and κV ∼ 1, and although there is a second local maximum of the likelihood at

κf ∼ −1 and κV ∼ 1, this point is excluded at more than 95% confidence level

(CL). It should be noted, however, that the sensitivity to the sign of κf comes

exclusively from the H → γγ decay channel, which means that the κf = −1

case is disfavoured because because the naive enhancement of the branching

fraction B(H → γγ) by a factor of 2.4 is not compatible with data. This

observation is confirmed by the measurements of the double ratio

ργγ/WW∗ =
B(H → γγ)/B(H →WW ∗)

[B(H → γγ)/B(H →WW ∗)]SM

, (1.28)

which incorporate little to no model dependence. Their values are ργγ/WW∗ =

0.97+0.32
−0.25 and 1.21+0.41

−0.31 for ATLAS and CMS respectively, positively excluding

B(H → γγ)/ [B(H → γγ)]SM ≈ 2.4 if the branching fraction of the H →WW ∗

decay is not modified.

The apparent exclusion of the κt = −1 case based on the value of B(H → γγ)

only holds if the parameterization (1.26) is correct, which relies on the assump-

tion that no new particles potentially running in the H → γγ loop modify the

branching fraction. The results change when the Hγγ effective coupling, as

well as Hgg and HZγ ones, are controlled by independent parameters in the

fit, therefore removing any assumptions on their parameterizations in terms of

couplings of the Higgs boson to SM particles. The CMS result of κt = 1.60+0.34
−0.32

has been derived imposing κt > 0 and thus does not provide any information on

the sign. On the other hand, ATLAS allows negative values for κt and reports
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κt ∈ [−1.12,−1.00] ∪ [0.93, 1.60], (1.29)

assuming that the Higgs boson decays only to SM particles, ΓBSM = 0. This

result is further illustrated by the profile likelihood ratio as a function of κt,

which is shown in Fig. 1.3. The orange curve corresponds to a fit when all

loop-induced couplings of the Higgs boson are fully defined by modificators

of its tree-level couplings to SM particles. It is evident that the κt = −1

case is excluded at a more than 99.7% CL. The blue curve shows the results

in the case when all loop-induced couplings, including ggZH, can be varied

independently in the fit. In this generalized model the sensitivity to the sign

emerges exclusively from the tH contribution in the tt̄H, H → γγ search, and

the κt = −1 case is only disfavoured at about 68% CL.
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Figure 1.3: Experimental constraints on κt from a global fit to ATLAS data [46].

The red (green) horizontal line indicates the cut-off value of the profile likeli-

hood ratio corresponding to a 68% (95%) CL interval for κt.

The strength of the HWW coupling is also measured in the global fit. The

following values are found using the same generalized model with ΓBSM = 0 as

discussed above:

κW = 0.92+0.14
−0.15 (ATLAS), κV = 0.96+0.14

−0.15 (CMS), (1.30)

where the CMS fit assumes κW = κZ . These results are predictably more

precise than the measurements of the absolute value of κt. Their relatively small
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uncertainties imply that future searches for tH production can take κW = 1 as

a good approximation, and it will be more important to vary |κt|.

There are no direct constraints on the CP-violating top quark Yukawa coupling.

According to studies of angular distributions in decays H → V V ∗ [41, 47], the

Higgs boson is a CP-even scalar. Although the pure pseudoscalar hypothesis

is strongly disfavoured, a substantial admixture of the CP-odd state is still

allowed. Moreover, in a general case the amount of CP violation may differ

between decays to weak bosons and fermions. In Ref. [48] a global combination

of ATLAS and CMS results has been performed to set an upper limit |κ̃t| < 0.4

by exploiting the contribution of the top quark to the Hgg and Hγγ loop-

induced couplings. However, the most stringent constraint is currently imposed

by the upper limit on the electric dipole moment (EDM) of the electron, |de| <
8.7 · 10−27 e · cm [49], which translates to |κ̃| < 0.01 [48]. At the same time,

it should be noted that the interpretation of the EDM results assumes the SM

interaction between the Higgs boson and the electron and can also be modified

in extensions of the SM. Thus, a direct search for CP violation in top quark

Yukawa coupling should be performed in future.
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Experimental setup

This search is performed with experimental data recorded by the CMS de-

tector [40], which is installed at the Large Hadron Collider (LHC) [50]. The

facility was built by the European organization for nuclear research (CERN)

between 1998 and 2008 near Geneva, Switzerland.

2.1 Large Hadron Collider

The LHC is currently the largest and the most powerful particle collider. It

is hosted in the 26.7 km underground tunnel previously occupied by the LEP

collider, which lies between 45 to 170 m below the surface.

2.1.1 Design and nominal operating parameters

The LHC is a synchrotron designed to collide protons at a centre-of-mass energy

of
√
s = 14 TeV and provide a luminosity of the order of 1034 Hz/cm2. It

is also capable of colliding fully stripped lead ions 208Pb82+ at an energy of√
sNN = 2.76 TeV per nucleon, but this operation regime is of no interest for

this search and will not be discussed further in the text. The machine and its

design parameters are briefly described below following Ref. [50].

The unprecedentedly high target luminosity demands large beam currents and

thus cannot be achieved with proton-antiproton beams, which could be accom-

modated within a single beam pipe. The LHC uses two adjacent beam pipes,

23
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in which protons or lead ions circulate in opposite directions. The LHC ring

consists of eight circular arcs and eight straight sections. The straight sections

are about 0.5 km long, as dictated by the pre-existing tunnel, and accommodate

collision points, beam injection and extraction facilities, collimation systems,

and radio-frequency systems to accelerate particles. There are four collision

points, where the beams can be crossed. In the two high-luminosity points,

located at diametrically opposite straight sections, the general-purpose AT-

LAS [39] and CMS experiments are installed. The other two collision points

are occupied by the LHCb [51] and ALICE [52] experiments, which are designed

to study b physics and heavy ions respectively.

The LHC relies on approximately 9 000 magnets of about 50 different types.

Central to its operation are 1 232 dipole magnets that keep the beams on their

quasi-circular orbits and whose bending power limits the maximal achievable

centre-of-mass energy. Superconducting niobium-titanium coils are used to

provide the nominal magnetic field of 8.3 T, with an ultimate limit of 9.0 T.

The corresponding nominal current is 11.9 kA. The magnets are maintained at

a temperature of 1.9 K. At this temperature the liquid helium used as coolant is

superfluid and thus provides an exceptionally high thermal conductivity, which

allows to refrigerate large structures efficiently. The magnets follow a twin-

bore design. The two bores, each housing a beam pipe, have separate coils

but share common mechanical structure, cryostat, and iron yoke and thus are

magnetically coupled. This choice was motivated by the lack of space in the

LEP tunnel, which would not allow to install two independent proton rings.

Each dipole magnet, embedded into a cryostat, has a cylindrical shape with a

length of about 16 m and a diameter of 1 m and weights about 35 t. In addition

to the dipoles, 392 twin-bore superconducting quadrupole magnets focus the

beams, and a number of multipole magnets introduce fine corrections to the

magnetic optics of the LHC. Other groups of magnets are utilized for beam

injection and extraction and instrument the straight sections with collision

points, where the two beams are guided into a single beam pipe and squeezed

to provide the desired luminosity. In particular, at the two high-luminosity

collision points the beams are squeezed by quadrupole triples, decreasing their

radius from about 1 mm to 17µm. The total energy stored by the LHC magnets

is about 10 GJ, mostly contained in the dipoles.

Protons are accelerated by superconducting radio-frequency cavity systems.

The cavities are made of copper, with niobium sputtering, and are maintained

at a temperature of 4.5 K. There are eight cavities per beam, each capable

of delivering an accelerating voltage of 2 MV. They operate at a frequency

of about 400.8 MHz, which corresponds to a harmonic number of 35 640 with

respect to the revolution frequency of 11 245 Hz. The total energy contained in
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a single beam under nominal conditions is about 360 MJ, and it can be reached

in about 20 minutes.

Since the LHC is a synchrotron, it is not capable of accelerating particles

starting from zero energy. Instead, it uses an injector chain consisting of other

CERN accelerators, which have been upgraded to meet challenges of this task.

The injection can be done in various ways, resulting in different LHC bunch

structures. Here the standard filling scheme is described [53]. Protons, which

are obtained by ionizing hydrogen atoms, are first accelerated to an energy

of 50 MeV in a linear accelerator Linac 2. They then are injected into the

Proton Synchrotron Booster (PSB), which increases the energy to 1.4 GeV. In

the next accelerator in the chain, the Proton Synchrotron (PS), the LHC bunch

structure starts to be formed. The PSB can accelerate up to four bunches at a

time. The PS captures six bunches from two consecutive cycles of the PSB. It

splits each bunch into three and then accelerates them to an energy of 25 GeV.

Afterwards, the bunches are split in two twice, thus producing 72 bunches

from the six PSB ones. At this point the LHC bunch spacing of 24.97 ns is

formed. Finally, bunches in the PS are shortened to 4 ns. Depending on the

step of the LHC filling procedure, bunches from two, three, or four PS cycles

are accumulated in the Super Proton Synchrotron (SPS). They are accelerated

to an energy of 450 GeV and shortened to 1.7 ns. Twelve cycles of the SPS are

used to fill the LHC. With the nominal bunch spacing, there are 3 564 bunch

places along the LHC ring. However, only 2 808 are filled because of the time

needed for operation of injection magnets. They are organized into 39 groups of

72 bunches. Within each group the bunch spacing is 24.97 ns, but the groups are

separated by larger gaps. The largest continuous gap is 119 bunches in length

(3µs), and it is used for beam dump, providing a safe time window to power

on the extraction magnet. After the LHC is filled, protons are accelerated to

the target energy, during which bunches are further shortened to 1 ns (at the

4σ level).

The minimal LHC filling time is about 20 minutes. Taking into account also

the time needed to reach the nominal LHC energy and to ramp the magnets

down to 450 GeV after a beam dump, the minimal total turnaround time is

about 1 hour. This is reasonably shorter than the design luminosity lifetime

of about 15 hours, which is the time starting from the beginning of a fill after

which the luminosity decreases by a factor of e.

For a physics analysis, the most important properties of an accelerator are its

collision energy and instantaneous luminosity. The latter can be calculated as

L =
N2
b nbfrevγr
4πεnβ∗

F, (2.1)
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where Nb is the number of protons in one bunch, nb is the number of col-

liding bunches, frev is the revolution frequency, εn is the normalized trans-

verse beam emittance, β∗ is the amplitude function at the collision point, and

γr = Ebeam/mp is the relativistic γ factor. Here the expression πεnβ
∗/γr gives

the area of the transverse beam cross section at the interaction point. In the

nominal LHC configuration εn = 3.75 · 10−6 m · rad, Nb = 1.15 · 1011 protons,

and frev = 11 245 Hz. The number of colliding bunches and the amplitude

function depend on the collision point. At the two high-luminosity points the

beams are squeezed to β∗ = 55 cm and all bunches collide, i. e. nb = 2 808. In

the vicinity of each collision point both beams share the same beam pipe of

about 130 m in length. If the beams were collinear, this would result in about

30 parasitic collisions along the common beam pipe. In order to prevent this,

the beams are crossed at an angle θc ≈ 300µrad. In Eq. (2.1) the resulting

decrease of the luminosity is described by the geometric factor

F = 1

/√
1 +

(
θcσz

2 rbeam

)2

, (2.2)

where σz is the bunch length and rbeam =
√
εnβ∗/γr is the beam radius at the

interaction point.

If the luminosity is high enough, several pp interactions can occur within the

same bunch crossing. Their average number can be found as

µ =
σtotL

nbfrev
, (2.3)

where σtot is the total cross section of the pp inelastic scattering. For the

nominal LHC conditions µ ≈ 20. This effect, known as “pile-up”, increases the

number of particles recorded in a single event and degrades performance of the

event reconstruction. In addition, if a detector does not provide a fast enough

response, its signals can be polluted by pp interactions that happened in the

previous or following bunch crossings (so-called, “out-of-time pile-up”).

2.1.2 Operation

Commissioning of the LHC with beams was started in 2008, but it was soon

followed by a severe incident [54]. A faulty electric connection between a dipole

and a quadrupole magnets produced an electric arc, which punctured the he-

lium distribution line and provoked a destructive release of a large amount of he-

lium into the insulation vacuum of the cryostat. The release also caused a signif-

icant mechanical damage, affecting 51 main magnets (dipoles and quadrupoles).
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Recovery from the incident delayed the start of the LHC by one year and led

to a revision of its operating parameters. First collisions for physics analyses,

which were delivered to the experiments in 2010, were produced at a centre-

of-mass energy of
√
s = 7 TeV, factor two lower than the design value. The

luminosity was also low, reaching a peak value of about 0.2 · 1033 Hz/cm2 only

in the end of year (see Fig. 2.1), which resulted in a total integrated luminosity

delivered to the CMS experiment of about 44 pb−1 [55]. However, in 2011 the

luminosity was increased significantly, reaching a maximum of 4.0·1033 Hz/cm2,

and about 6 fb−1 of data were delivered to the CMS. In 2012 the collision

energy was raised to 8 TeV. During this year, the LHC operated with a bunch

spacing of 50 ns and about 1 380 bunches per beam [56], most of which collided

at the high-luminosity points. At these points the beams were squeezed to

β∗ = 60 cm, providing a maximal luminosity of 7.7 ·1033 Hz/cm2 and delivering

about 23 fb−1 of data. The mean number of pp interactions in a bunch crossing

was about 21 on the average but varied with the luminosity (see its distribution

in Fig. 2.2). The period 2010 – 2013, referred to as the Run I, was followed

by the first long shutdown of the LHC (LS1), during which the machine was

prepared for operation with a higher collision energy and detectors of the LHC

experiments were upgraded.
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Figure 2.1: Per-day peak instantaneous luminosity at the CMS collision point

during Run I [55].

In 2015 the LHC Run II was started. The centre-of-mass energy was boosted to√
s = 13 TeV. During the initial period, the LHC operated at a bunch spacing

of 50 ns, delivering about 0.1 fb−1 of data under these conditions, and then it

was switched to the nominal 25 ns bunch spacing. By beginning of September

2015, the instantaneous luminosity at 25 ns bunch spacing peaked at about

0.9 · 1033 Hz/cm2, while it is expected that a value of 1.8 · 1034 Hz/cm2 might

be reached by the end of the Run II in 2018 [57].
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Figure 2.2: Distribution of the mean number of pp interaction per bunch cross-

ing, as recorded at the CMS collision point in 2012 [55].

2.2 CMS detector

The Compact Muon Solenoid (CMS) is one of the two general-purpose detec-

tors installed at the high-luminosity LHC collision points. It is located in an

underground cavern in Cessy, France, occupying LHC Point 5. The detector

has an approximately cylindrical shape, with a length of 21.6 m and a diameter

of 14.6 m. The total weight of the structure is about 12 500 t. The detector

is described in detail in Ref. [40], and its design performance is discussed in

Refs. [58, 59].

The coordinate system adopted by the experiment has its origin in the nom-

inal collision point inside the detector. The x axis points radially inwards,

towards the centre of the LHC ring, while the y axis aims vertically up. The

z axis, therefore, points towards the Jura mountains, in the direction of the

anticlockwise beam. A cylindrical coordinate system is also used. The radial

distance is calculated as r =
√
x2 + y2, and the azimuthal angle φ is measured

with respect to the x axis in the (x, y) plane. The pseudorapidity is defined

as η = − ln tan(θ/2), where the polar angle θ is measured with respect to the

z axis.

Active elements of the detector are organized into a layered structure, as shown

in Fig. 2.3. Closest to the interaction point is the inner tracking system, which

allows to identify trajectories of electrically charged particles. It is surrounded

by calorimeters, which measure energies of photons, electrons, and hadrons

via total absorption. The outermost system consists of gaseous detectors and



2.2. CMS detector 29

registers muons, which are the only detectable particles capable of penetrating

the calorimeters and steel absorbers.

C ompac t Muon S olenoid

Pixel Detector

Silicon Tracker

Very-forward
Calorimeter

Electromagnetic�
Calorimeter

Hadron
Calorimeter

Preshower

Muon�
Detectors

Superconducting Solenoid

Figure 2.3: View of the CMS detector. Main elements are labelled.

The inner tracker and the calorimeters are accommodated inside a supercon-

ducting solenoid, which provides the magnetic field required to measure mo-

mentum of a particle based on the curvature of its trajectory. It has a length

of 13 m and an inner diameter of 6 m. The niobium-titanium coil operates

at a temperature of 4.5 K, which is maintained by liquid helium refrigerant.

The magnet is designed to produce a highly homogeneous axial field inside

the solenoid, with a magnetic flux density of 4.0 T in the centre. The nominal

electric current required for this is 19.1 kA, and the stored energy is 2.6 GJ.

However, in order to increase the longevity of the magnet, it is operated with

a current lower than the nominal, resulting a field of 3.8 T [60]. The magnetic

flux is returned through a 10 000 t yoke, which accounts for the most of the

weight of the detector and provides mechanical support to the whole structure.

Operational regime of the LHC presents a number of challenges to be met by

the CMS experiment. The short time between bunch crossings requires a fast

operation of the trigger and read-out systems and a good time resolution of

detectors. With the large number of particles stemming from pile-up interac-

tions, a high granularity is needed to provide a sufficiently low occupancy. In

addition, detectors and front-end electrons must be capable of operating under

radiation levels caused by the high rate of particles coming from the interaction

region.
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2.2.1 Inner tracking system

The inner tracking system provides measurements of trajectories of charged

particles originating from the interaction point. This information can be uti-

lized to measure momentum of a particle from the curvature of the trajectory

and to reconstruct primary and secondary vertices, which is important to rec-

ognize pile-up interactions and identify jets stemming from b quarks.

The tracking system is based entirely on silicon technology, which meets the

requirements of high granularity, speed, and radiation hardness. The tracker

has a length of 5.8 m and an outer diameter of 2.5 m. It is cooled to about

+4°C in order to increase the longevity under the harsh radiation conditions,

in particular, to protect against a potential damage that can be caused by an

increased leakage current. The tracker consists of several components, as shown

in Fig. 2.4.
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neighbouring modules, which allows them to overlap, thereby avoiding gaps in the acceptance.

Each TEC is composed of nine disks, each containing up to seven concentric rings of silicon strip
modules, yielding a range of resolutions similar to that of the TOB.

To refer to the individual layers/disks within a subsystem, we use a numbering convention
whereby the barrel layer number increases with its radius and the endcap disk number increases
with its |z|-coordinate. When referring to individual rings within an endcap disk, the ring number
increases with the radius of the ring.

The modules of the pixel detector use silicon of 285 µm thickness, and achieve resolutions
that are roughly the same in rf as in z, because of the chosen pixel cell size of 100⇥ 150 µm2 in
rf ⇥ z. The modules in the TIB, TID and inner four TEC rings use silicon that is 320 µm thick,
while those in the TOB and the outer three TEC rings use silicon of 500 µm thickness. In the barrel,
the silicon strips usually run parallel to the beam axis and have a pitch (i.e., the distance between
neighbouring strips) that varies from 80 µm in the inner TIB layers to 183 µm in the inner TOB
layers. The endcap disks use wedge-shaped sensors with radial strips, whose pitch varies from
81 µm at small radii to 205 µm at large radii.

The modules in the innermost two layers of both the TIB and the TOB, as well as the modules
in rings 1 and 2 of the TID, and 1, 2 and 5 of the TEC, carry a second strip detector module, which
is mounted back-to-back to the first and rotated in the plane of the module by a ‘stereo’ angle of
100mrad. The hits from these two modules, known as ‘rf ’ and ‘stereo hits’, can be combined
into matched hits that provide a measurement of the second coordinate (z in the barrel and r on the
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Figure 2.4: Half view of the inner tracking system [61]. Pixel detectors are

shown in red. Blue lines mark back-to-back strip modules, which can measure

the coordinate along the strip direction.

The innermost component is the pixel detector, which faces a very high flux

of particles because of its location close to the interaction point. It consists

of three cylindrical layers with radii of 4.4, 7.3, and 10.2 cm and a length of

53 cm, which are completed on each side by two endcap rings at z = ±34.5 and

±46.5 cm with an inner (outer) radius of 6 cm (15 cm). The pixel cell size is

100× 150µm2. The detector has a total active area of about 1 m2, resulting in

66 · 106 read-out channels. The occupancy under the nominal LHC conditions

is of the order of 10−4 per pixel and bunch crossing.

The pixel detector is surrounded by the silicon strip tracker. Similar to the

pixel detector, it includes elements of two types: cylindrical layers and annuli
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perpendicular to the beam axis. Strips in the cylindrical layers a parallel to the

beam axis, while in the annuli they follow the radial direction. The elements

can be organized into four groups shown in Fig. 2.4. Tracker inner barrel and

discs (TIB and TID) instrument radial distances from 20 to 55 cm and include

four cylindrical layers and three annuli at each end. In the TIB the strip pitch

varies between 80 and 120µm, while in the TID the mean pitch ranges from

about 100 to 140µm. The TIB and TID are environed by the tracker outer

barrel (TOB), which extends up to a radius of 116 cm and consists of six barrel

layers with a strip pitch between 120 and 180µm approximately. The region

124 < |z| < 282 cm is instrumented with the tracker endcaps (TEC). Each of

the two TEC is composed of nine annuli carrying up to seven rings with the

mean strip pitch varying from about 100 to 180µm. The strip length ranges

from 10 cm in the innermost layers to 25 cm in the outer region. The coordinate

along the strip direction can be measured by pairs of back-to-back detector

modules rotated by 100 mrad, which are marked in Fig. 2.4. The silicon strip

tracker has an active area of about 200 m2 and 9.3 · 106 individual strips. The

typical occupancy varies between 1% and 2− 3% depending on the region.

Both the pixel detector and the strip tracker provide a coverage up to |η| ≈ 2.5.

Each track within the acceptance has three high-precision hits in the pixel

detector and at least about nine hits in the strip tracker, of which at least about

four are delivered by the back-to-back modules. For tracks with a transverse

momentum pT ∼ 100 GeV/c this allows a pT resolution of 1−2% up to |η| ≈ 1.6,

beyond which the resolution degrades because of the reduced level arm. The

material budget of the inner tracker is about 0.4X0 at |η| ≈ 0, where X0 is the

radiation length, and reaches a maximum of 2.0X0 at |η| ≈ 1.4.

2.2.2 Electromagnetic calorimeter

The inner tracker is surrounded by the electromagnetic calorimeter (ECAL).

It absorbs electrons and photons but does not contain enough material to stop

typical hadrons.

The ECAL is made of lead tungstate (PbWO4) crystals. This material has a

high density (8.3 g/cm3), short radiation length (0.89 cm), and small Molière

radius (2.2 cm), which allows to construct a compact calorimeter with a high

granularity. It also has a short scintillation decay time, delivering about 80%

of the light yield within 25 ns. The light output, however, strongly depends on

the temperature. To overcome this difficulty, the calorimeter is maintained at

a temperature of (18.00± 0.05)°C.
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The ECAL is partitioned into a barrel and two endcaps, as shown in Fig. 2.5.

The barrel part covers pseudorapidity range of |η| < 1.479 and consists of 61 200

crystals mounted in a quasi-projective geometry. The inner radius of the barrel

is 129 cm. Each crystal has a truncated pyramidal shape, with a cross section

of 22× 22 mm2 at the front face and 26× 26 mm2 at the rear face; the length

is 230 mm, which corresponds to 25.8X0. The granularity in the (η, φ) plane

is approximately 0.0174× 0.0174. The scintillation light is registered with the

help of avalanche photodiodes mounted on the rear faces of the crystals.

The endcaps, whose front elements are located at coordinates z = ±315.4 cm,

cover the rapidity range 1.479 < |η| < 3.0. Each endcap includes 7 324 crystals,

which also arranged in a quasi-projective geometry. The crystals have a cross

section of about 30 × 30 mm2 and a length of 220 mm (24.7X0). The light

is detected with vacuum phototriodes, which are better suited for the axial

magnetic field and the larger level of radiation.

As measured in a test beam, the energy resolution for electrons with an en-

ergy of 20 GeV is about 1%, and it improves to below 0.5% for energies above

100 GeV [58].

y
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Preshower (ES)

Barrel ECAL (EB)

Endcap

 = 1.653
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 = 2.6
 = 3.0

ECAL (EE)

Figure 2.5: The electromagnetic calorimeter and the preshower.

In front of each endcap a preshower detector (PS) is installed, as shown in

Fig. 2.5. Its aim is to distinguish between photons and neutral pions de-

caying into pairs of closely spaced photons. It also allows to improve posi-

tion measurement for electrons and photons. The preshower covers a region

1.653 < |η| < 2.6. It does not instrument the barrel because in the central

region neutral pions have a smaller energy for the same transverse momentum,

and the calorimeter granularity is sufficient to resolve the two photons. The

preshower has thickness of 20 cm and consists of two layers of lead, each of

which is followed by a silicon strip detector. At |η| ≈ 1.653 the thickness of
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the two lead radiators measures as 2 and 1X0 respectively, and most photons

start showering before they reach the second sensitive layer. Strips in the both

layers have a pitch of 1.9 mm. They are oriented orthogonally, which allows a

two-dimensional measurement of the position. Similar to the silicon tracker,

the preshower is cooled to below -5°C.

2.2.3 Hadronic calorimeters

Hadrons are registered with the help of several detector components, which are

shown in yellow in Fig. 2.6. The barrel part (HB) is installed between the ECAL

and the superconducting solenoid. It is complemented by two endcaps (HE).

Additional hadron outer detectors (HO) are mounted in the barrel around the

solenoid in order to catch potential tails of hadronic showers. The forward

region is equipped with two dedicated calorimeters (HF).
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Figure 1: Schematic view of the CMS detector. Top: longitudinal view of one quarter of the
detector. Bottom: transverse view at z = 0. The barrel muon detector elements are denoted
as MBZ/N/S, where Z=�2,...+2 is the barrel wheel number, N=1...4 the station number and
S=1...12 the sector number. Similarly, the steel return yokes are denoted YBZ/N/S.

Figure 2.6: A quarter view of the CMS detector in the (y, z) plane [62].

The HB is a sampling calorimeter covering the region |η| . 1.3. It occupies

a radial distance from 177 to 295 cm and consists of 36 identical azimuthal

wedges, which are constructed out of flat absorber plates parallel to the beam

axis. Each wedge is further segmented into four sectors in the azimuthal an-

gle. The innermost and outermost absorber plates, with a thickness of 40 and

75 mm respectively, are made of stainless steel in order to provide an additional

structural support. The intermediate absorber plates, 14 in total, are made of
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brass and have a thickness of 50.5 or 56.5 mm. This translates into a total ab-

sorber thickness of 5.8 nuclear interaction lengths λI at η = 0, which increases

to 10.6λI at |η| = 1.3. Between the absorber plates, plastic scintillating tiles

are inserted, about 70 000 in total. They are organized into 17 sensitive cylin-

drical layers, which are divided into 32 segments along the z direction. The

resulting segmentation in the (η, φ) plane is approximately 0.087× 0.087. The

scintillation light is collected by wavelength-shifting fibres and then registered

with the help of hybrid photodiodes. Tiles within the same projective tower

are read out collectively except for the four belts of towers closest to the HE

(two belts on each side), in which the read-out is done independently for two

longitudinal segments in each tower.

The HE covers the range 1.3 . |η| < 3.0. It follows the sampling design and

consists of 17 layers of brass absorber, each 79 mm thick, and 18 layers of plastic

scintillator, which are built of 2 × 10 458 tiles. The combined thickness of the

HE and EE is about 10λI. The granularity in the (η, φ) plane is 0.087× 0.087

for |η| < 1.6 and approximately 0.17 × 0.17 in the more forward region. The

scintillation light is collected and registered in the same way as in the HB.

Three belts of projective towers closest to the beam pipe have three longitudinal

segments that are read out independently, which allows to apply an additional

calibration in order to recover from the radiation damage. Most of remaining

towers are divided into two longitudinal segments.

In the central region the thickness of the HB is sometimes not sufficient to

provide the full containment for hadronic showers. Their tails can be registered

by an additional scintillator detector, the HO, which instruments the region

|η| < 1.3. It utilizes the magnet as an additional absorber with an effective

thickness of 1.4λI at η = 0. The scintillator tiles are mounted at a radial

distance of 407 cm, directly in front of the innermost layer of muon detectors.

In the region |z| < 127 cm the HO includes a second layer of tiles at a radial

distance of 382 cm. A 19.5 cm thick steel absorber is inserted between the two

HO layers, extending the combined thickness of the ECAL, HB, and HO to a

minimum of 11.8λI, except for the transition region between the barrel and

the endcaps. The granularity of the HO in the (η, φ) plane is 0.087 × 0.087,

provided by 2 730 tiles. Same as in the HB and HE, the read-out is performed

with the help of wavelength-shifting fibres and hybrid photodiodes.

The HF instruments the region 3.0 < |η| < 5.2. Because of its forward location,

the detector experiences a large flux of particles and thus must be able to op-

erate under very harsh radiation conditions, which has driven its design. Each

of the two detectors has a cylindrical shape with an outer radius of 130 cm and

a hole for the beam pipe with a radius of 12.5 cm. The front face of the HF is
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located 11.2 m away from the interaction point. The detector exploits a 165 cm

thick steel absorber, which corresponds to about 10λI. It is penetrated by

quartz fibres parallel to the beam axis. Showers developing inside the absorber

are detected with the help of Cherenkov light emitted when particles of the

shower pass through the fibres. The HF is thus mostly sensitive to the elec-

tromagnetic component of showers. The fibres form a rectangular grid in the

(x, y) plane with a step size of 5 mm. They are bundled to provide 0.175×0.175

segmentation in the (η, φ) plane. Only half of the fibres run through the full

depth of the calorimeter, and the other half start at a depth of 22 cm from the

front face of the detector. The two sets are read out separately and allow to dis-

tinguish between electromagnetic and hadronic showers since the former ones

deposit a large fraction of their energy within first 22 cm of the absorber, while

hadronic showers produce a more uniform deposition. The Cherenkov light

from the quartz fibres is detected with the help of photomultipliers, which are

protected from the radiation by dedicated shielding and connected to the fibres

with the help of light guides.

The relative energy resolution of the HB, as measured with a test beam of

charged pions, is σ/E = 120%/
√
E⊕9.5%, where the pion energy E is measured

in GeV [63]. The resolution of the HE is 153%/
√
E ⊕ 6.3% [64]. The presence

of the ECAL causes a visible degradation of the resolution, and in order to

obtain realistic results the both measurements were performed with a sector of

the ECAL installed in front of the HCAL wedge. The HF resolution for pions

is 198%/
√
E⊕9% [65]. Since there is no dedicated electromagnetic calorimeter

in the region |η| > 3 and instead the HF attempts to discriminate between

hadronic and electromagnetic showers based on the signatures read from the

short and long fibres, it is also important to know the HF performance with

electrons. The corresponding resolution is 280%/
√
E ⊕ 11%.

2.2.4 Muon system

The muon system identifies muons and provides means to trigger on them. It

also improves momentum resolution for muons with pT & 1 TeV, complement-

ing measurements from the inner tracker. The system is mounted inside the

return yoke of the magnet, representing the outermost detector layer of the

CMS. Three different types of gaseous detectors are utilized, providing a total

of 25 000 m2 of sensitive planes.

In the barrel region the muon rate is low, the magnetic field is mostly con-

strained within the steel yoke, and the neutron-induced background is small.

These conditions allow to utilize drift tube chambers (DT), which instrument
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the region |η| < 1.2. They are assembled from rectangular drift cells, which

have a cross section of 13× 42 mm2 and a length of about 2.4 m. In the centre

of each cell an anode wire with a diameter of 50µm is stretched. The cham-

bers are organized into four concentric cylinders called stations, as shown in

Fig. 2.7. Each station is divided in twelve azimuthal sectors and five wheels

along the z direction. DT chambers of the three inner stations consist of three

superlayers, each made of four layers of drift cells staggered by half a cell.

Two of the superlayers have the wires aligned along the beam axis to bring

the precision of a measurement in the (r, φ) plane to about 100µm. They are

separated along the radial direction as much as possible to improve the angular

resolution. Between them the third superlayer is inserted, whose wires are ori-

ented orthogonally to provide a measurement of the z coordinate. This third

superlayer is missing in chambers of the outermost station. The DT system

contains about 172 000 sensitive wires in total.

In the endcap regions the muon rates and background levels are high, and mag-

netic field is high and non-uniform. Cathode strip chambers (CSC) are used

there to cover the region 0.9 < |η| < 2.4. They are multi-wire proportional

chambers consisting of six gas gaps, each one instrumented with cathode strips

and anode wires. Cathode strips run radially and provide a φ measurement,

while information read out from the anode wires is used to measure the pseu-

dorapidity. The pitch varies with the radial distance, and its typical value is of

the order of 1 cm; the anode wire spacing is about 3 mm. There are four CSC

stations in each endcap, as shown in Fig. 2.8. The total active area is about

5 000 m2. There are about 220 000 cathode strip read-out channels and 180 000

anode wire channels. Spacial resolution in the (r, φ) plane varies between 75µm

in the inner part of the first station to 150µm in other chambers.

The rapidity range |η| < 1.6 is additionally instrumented by resistive plate

chambers (RPC). Each chamber is a parallel-plate gaseous detector consisting

of two continuous anodes and a shared cathode segmented into strips. RPC

provide a coarser position measurement than DT or CSC but have an excellent

time resolution of about 1 ns, which allows an unambiguous assignment of a

muon to the bunch crossing. In total six layers of RPC arranged into four

stations are installed in the barrel, accompanied by three layers in each endcap,

as shown in Fig. 2.8. In the barrel strips are aligned along the beam axis, in the

endcaps while they follow the radial direction. In both cases the pitch varies

corresponding to a fixed azimuthal angle of 5/16°. The strip length is about 80

or 120 cm in the barrel, depending on the station, and ranges from about 25

to 80 cm in the endcaps. The total surface area is about 3 000 m2, with 105

read-out channels.
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Figure 7.3: Layout of the CMS barrel muon DT chambers in one of the 5 wheels. The chambers in
each wheel are identical with the exception of wheels –1 and +1 where the presence of cryogenic
chimneys for the magnet shortens the chambers in 2 sectors. Note that in sectors 4 (top) and 10
(bottom) the MB4 chambers are cut in half to simplify the mechanical assembly and the global
chamber layout.

the several layers of tubes inside the same station. With this design, the efficiency to reconstruct a
high pT muon track with a momentum measurement delivered by the barrel muon system alone is
better than 95% in the pseudorapidity range covered by 4 stations, i.e., ⌃ < 0.8. The constraints of
mechanical stability, limited space, and the requirement of redundancy led to the choice of a tube
cross section of 13 ⇤ 42 mm2.

The many layers of heavy tubes require a robust and light mechanical structure to avoid sig-
nificant deformations due to gravity in the chambers, especially in those that lie nearly horizontal.
The chosen structure is basically frameless and for lightness and rigidity uses an aluminium honey-
comb plate that separates the outer superlayer(s) from the inner one (figure 7.4). The SLs are glued
to the outer faces of the honeycomb. In this design, the honeycomb serves as a very light spacer,
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Figure 2.7: Cross section of the CMS detector in the (r, φ) plane showing the

DT system.
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Figure 2.8: A quarter view of the CMS detector showing muon systems.
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The muon system provides a muon identification efficiency of 95% to 99%, de-

pending on the pseudorapidity and transverse momentum. The large amount

of material in the calorimeters, the solenoid, and the return yoke, nearly elim-

inates the possibility of punch-through particles reaching the system. The

design momentum resolution, as measured by the muon system alone, is of the

order of 10% for pT . 200 GeV/c and increases to 15 – 40% for pT ∼ 1 TeV/c,

depending on the pseudorapidity.

During the long shutdown of 2013 – 2015, a planned upgrade was performed in

the CMS muon system. The forth CSC station in each endcap was completed

by installing ME/4/2 chambers (see Fig. 2.6). In addition, coverage of the

RPC system was extended to |η| < 2.1. These detectors were foreseen in the

original CMS design, but their presence was not required during the Run I as

the LHC operated at a luminosity lower than the nominal.

2.2.5 Trigger system

The CMS detector has been designed to operate with a bunch crossing interval

of 25 ns, which corresponds to a (peak) collision rate of 40 MHz. It is not possi-

ble to store and process this amount of data, and thus a prompt decision should

be taken on whether a particular event is to be stored for further analyses or

discarded. This is done with the help of the trigger system. The CMS collab-

oration has adopted a two-level trigger system, consisting of the level 1 trigger

(L1T) and the high-level trigger (HLT). L1T exploits custom-designed, largely

programmable electronics. It bases its decision on information from calorime-

ters and muon system but does not exploit the inner tracker. It analyses every

bunch crossing and decides whether to accept the event within 3.2µs. The

output rate is limited to 100 kHz by the time needed to read out full detector

information. In order to provide a safety margin, the limit for the expected

maximal output rate is set to 90 kHz. Events that pass the L1T are subject

to a refined selection performed by the HLT. The HLT is a software system

implemented in a farm of about 104 commercial processors. The average pro-

cessing time is limited to 200 ms, but some rare events can be analysed for

about 1 s. By the end of LHC Run I, the average HLT output rate has reached

about 1 kHz, only 400 Hz of which were reconstructed promptly. The remaining

accepted events were stored without immediate processing and reconstructed

later, in between or after data-taking periods, when computing resources were

available (so-called “data parking”). After the LS1, the maximum output rate

was increased to 1 kHz, excluding the bandwidth for potential data parking.

The HLT has access to full detector information. It exploits simplified versions
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of the same event reconstruction algorithms as executed offline. These algo-

rithms will be discussed in the next chapter, and this section focuses on the

L1T.

The calorimeter part of the L1T starts by constructing trigger towers that

sum transverse energy from electromagnetic and hadronic calorimeters. In the

barrel region the tower size in the (η, φ) plane is 0.087×0.087, which corresponds

to 5× 5 ECAL crystals and a single HCAL cell. It increases to 0.35× 0.087 in

the most forward regions of the endcaps and to 0.5× 0.35 in HF. The regional

calorimeter trigger (RCT) identifies electron/photon candidates and calculates

transverse energy sums in trigger regions, which are defined as groups of 4× 4

or single trigger towers in ECAL+HCAL or HF respectively. It also provides

information about calorimeter deposits to calculate isolation of muons. In each

trigger region with |η| < 2.5 one isolated and one non-isolated e/γ candidate

with greatest ET is found. A tower with the largest energy deposit is identified,

to which the energy of a broad-side neighbour tower with largest ET is added.

A candidate is required to pass a selection on the lateral profile of the shower

in the ECAL, namely that the shower is contained within a block of 2 × 5

crystals. An additional requirement on the ratio between energy deposits in

the ECAL and HCAL is applied. An isolated candidate must, in addition to it,

pass a selection on the sum of ECAL ET depositions in the eight surrounding

trigger towers. The surrounding towers must also satisfy the requirements on

the lateral shower shape and the ratio of ECAL and HCAL depositions. On

top of this, at least one quiet corner of five trigger towers surrounding the hit

tower is required. Four isolated and four non-isolated candidates with greatest

ET are identified per each of 18 RCT crates, each of which covers a region of

∆η × ∆φ = 5.0 × 0.7. RCT also sums the transverse energy in every region

and calculates τ veto bits, which are set if the active trigger towers occupy

a continuous region of a size larger than 2 × 2 trigger towers since τ jets are

typically narrower than quark or gluon jets.

The global calorimeter trigger (GCT) produces jets by clustering trigger re-

gions, whose energies have been calculated by RCT. A jet is defined as a block

of 3 × 3 trigger regions, which translates into 12 × 12 trigger towers in the

central region (|η| < 3) and 3 × 3 towers in the HF. If none of the nine trig-

ger regions fail the τ veto, the jet is pronounced a τ candidate. The jets are

ordered in ET and four leading ones in each category of central, forward, and

τ jets are selected. GCT also calculates energy sums such as HT, the scalar

sum of ET of all trigger regions, and missing transverse energy 6ET, or the

imbalance in the vectorial sum of ~ET, as well as jet multiplicities for several

pT thresholds. It receives the e/γ candidates and isolation bits for muons from

RCT and propagates this information further.
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All three muon systems contribute to the L1T, complementing each other. In

each DT chamber, track segments in the (r, φ) plane are constructed from hits

in the two φ superlayers. These track segments, together with hit positions

in the z superlayers, are exploited by DT track finder (DTTF) to reconstruct

full tracks. This is done independently in the (r, φ) and (r, z) planes. In the

(r, φ) plane a source track segment is extrapolated to the next station based on

a pre-calculated trajectory originating at the nominal interaction point. If a

compatible segment is found, it is linked to the source segment. This allows to

reconstruct the full projection of the trajectory. Tracks in the (r, z) plane are

reconstructed directly from the hit pattern in the plane. The two projections

are then matched in order to derive the full three-dimensional trajectory.

Each CSC chamber contains multiple layers of cathode strips and anode wires.

Track segments are first reconstructed independently by cathode and anode

electronics, and then the two projections are combined into three-dimensional

track segments. Track segments from different chambers are joined into com-

plete tracks by CSC track finder (CSCTF). It identifies pairwise combination

of segments that are compatible with the hypothesis of a single track extrapo-

lated from the interaction point. In the region |η| ∼ 1 the track reconstruction

is performed by utilizing information from both CSC and DT systems.

The RPC trigger does not attempt to reconstruct full tracks. Instead, it

searches for coincident hits, profiting from its excellent time resolution, and

measures the bending in the (r, φ) plane by comparing strip signals in projec-

tive trigger towers against predefined hit patters.

Information from the three muon trigger systems is combined by the global

muon trigger (GMT). It receives up to four muon candidates from DT, CSC,

barrel and endcap RPC systems, each. From GCT it also receives information

about energy deposits in each calorimeter region of size ∆η×∆φ = 0.35×0.35,

which is used to assess isolation of muon candidates. In addition to it, GCT

provides a bit of compatibility with minimum ionization particle. DT and

CSC candidates are matched to barrel and endcap RPC candidates respec-

tively based on spacial coordinates, and if the match succeeds, their kinematic

parameters are merged. Duplicate muons between the barrel and the endcaps

are removed.

Trigger objects and global event properties, such as HT or 6ET, constructed

by GCT and GMT are forwarded to the global trigger (GT), which takes the

decision to accept or reject the event. It supports up to 128 algorithmic trigger

rules. The most basic algorithms apply a selection on transverse energy or

momentum of a single trigger object, but they can also be more complicated,

involving multiple objects and applying topological selection such as asking for
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an η window. In addition, up to 64 technical triggers are supported. They

are based on trigger signal received directly from subdetectors and used for

purposes of calibration or commissioning. If needed, individual triggers can be

masked, in case of which they do not affect the final GT decision. In addition,

triggers can be prescaled so that only every kth positive decision of a trigger

with the prescale factor k is taken into account in the GT. It is typical to define

several sets of prescales, or prescale columns, for the same trigger menu in order

to allow it to be used for a range of instantaneous luminosities. Triggers with

low thresholds can be prescaled at higher luminosities in order to respect the

limitation on the maximal output rate. The prescale column can be changed

without pausing the data taking. It is though guaranteed to be fixed during

a luminosity section, a time period equal to 218 LHC orbits, or approximately

23.3 s. The GT accepts an event if it has satisfied at least one trigger rule,

taking into account the mask and the prescales. If this happens, the event is

further scrutinized by the HLT.
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Chapter 3
Event reconstruction

Particles of various types are produced in high-energy pp collisions, but only

few live long enough to reach the detector. They are electrons, photons, muons,

some hadrons (predominantly, pions, kaons, protons, and neutrons), and neu-

trinos. Neutrions cannot be registered because of their weak interaction with

matter, while others generate response in different detector systems of the

CMS. Charged particles produce signals in the inner tracker. Electrons and

photons are absorbed in the ECAL. Hadrons traverse the ECAL and deposit

most of their energy in the HCAL. Finally, muons can penetrate all layers

of the CMS and reach the gaseous chambers. Signals obtained from different

detector systems are combined and analysed to reconstruct the particles, de-

ducing their types and measuring properties. The reconstructed particles are

then exploited to test hypotheses about the pp collision, such as assessing its

compatibility with the tHq production.

This chapter discusses the algorithms adopted to reconstruct particles and de-

rived objects such as jets. The reconstruction is done in the same way for

recorded collisions and their simulation. In addition, similar procedures are

applied for the fast event reconstruction run in the HLT. In this case the al-

gorithms are tuned to achieve a greater speed while keeping a sufficient recon-

struction efficiency, but they usually follow the same general scheme as their

counterparts in the offline reconstruction. The HLT reconstruction is thus not

discussed here, and its details can be found in Refs. [66, 67].

43
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3.1 Tracking

Reconstruction of tracks of charged particles is a crucial task. It allows a pre-

cise measurement of particle momenta via magnetic spectrometry. Tracks are

exploited to reconstruct primary vertices, and a good vertexing capability is

needed in order to mitigate the effect of pile-up by recognizing tracks that orig-

inate from additional pp collisions. Tracking is also vital to identification of

jets that stem from hadronization of b quarks. At the same time, track recon-

struction is a challenging task at the LHC. Under the nominal conditions, of

the order of 103 charged particles can be produced in a bunch crossing, orig-

inating from an average of 20 pp interactions. This makes tracking a difficult

combinatorial problem, especially because an accurate measurement of jet mo-

menta requires reconstruction of particles with transverse momenta well below

1 GeV/c. Furthermore, the reconstruction should be fast enough in order to

run at the HLT level.

Algorithm deployed for reconstruction of tracks in the inner tracking system

is summarized below. It has been evolving over time, but the general concept

remained unchanged. Ref. [61] and references therein provide a detailed de-

scription of this algorithm as well as related vertex reconstruction and discuss

their performance. A general overview of approaches used for track and vertex

reconstruction can be found in Ref. [68].

3.1.1 Track parameterization

A helix track can be described by five parameters. It is customary to specify

its position with respect to a reference point rO = (xO, yO, zO), such as recon-

structed primary vertex. The perigee parameterization [69], which is adopted

here, relies on the point of closest approach, in the transverse plane, of the track

to the reference point, rP = (xP , yP , zP ). The track can be parameterized as

(d0, dz, φ, θ, κ). Here dz = zO − zP is the longitudinal impact parameter, φ

and θ are the azimuthal and polar angles of the direction of the particle mo-

mentum p at the point rP . The signed transverse impact parameter d0 (see

Fig. 3.1) has an absolute value |d|, where vector d is the projection of rP − rO
on the transverse plane. By convention, d0 is positive if d × pT � z and neg-

ative otherwise. The last parameter κ is the track curvature multiplied by the

electric charge of the particle.
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Figure 3.1: Perigee track parameterization in the transverse plane. The track is

shown by the blue line. O and P are projections of the reference point and the

point of closest approach on the transverse plane. In this case the transverse

impact parameters d0 is positive.

3.1.2 Hit reconstruction

Before the track reconstruction is started, zero-suppressed signals in individual

pixel and strip modules are clustered to produce hits. In case of strip modules,

coordinate of a hit is found as the charge-weighted average of positions of strips

included in the cluster. Although in pixel modules the clustering is performed

in two dimensions, position of a hit along each of the two module axes is

determined from a one-dimensional projection of the corresponding cluster to

the given axis. Two different algorithms are used depending on the step of the

track reconstruction.

In the simpler first-pass version, which also performs the calculation faster, the

geometrical centre of the projected cluster is used as the initial approximation.

It is then improved by taking into account the ratio between the charges in the

two boundary pixels of the projected cluster as well as the expected width of

the projection. The expected width is calculated based on the incidence angle

of the track relative to the plane of the detector. If the track is not known, it is

approximated by a straight line drawn from the geometric centre of the inner

tracker.

The more advanced algorithm, so-called template-based reconstruction, utilizes

the full shape of the projected charge distribution. The coordinate of the hit

is determined by fitting the distribution with templates derived from detailed

simulation of a pixel module. The templates are parameterized by the incidence
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angle of the track. They also account for the radiation damage, allowing to

partly recover from the corresponding degradation of performance.

Coordinates of both pixel and strip hits are corrected for the Lorentz drift of the

charges within the body of the silicon detectors. In addition to the positions,

their uncertainties are also estimated. The positions are then translated to a

global coordinate system, and the uncertainties are updated taking into account

possible misalignment of the tracker modules.

3.1.3 Iterative tracking

Reconstructed hits are used as the basis to find tracks of individual particles.

This is a twofold task, which includes identification of hits produced by the

same particle and determination of parameters for its trajectory. The track-

ing algorithm adopted by the CMS is referred to as the combinatorial track

finder (CTF), which is an adaptation of the combinatorial Kalman filter [70].

The Kalman filter, first applied in the context of the high-energy physics in

Ref. [71], is advantageous because it addresses the both aspects of the track re-

construction. The CTF is applied iteratively. In early iterations it reconstructs

tracks that are easiest to find, e. g. those with large transverse momenta and

produced in the vicinity of the interaction region. Then hits associated with

tracks are removed, and subsequent iterations attempt to find more difficult

tracks, profiting from the reduced combinatorial complexity. Each iteration

includes four steps, which are discussed below one by one.

At the beginning of each iteration, initial track candidates, or seeds, are gen-

erated. They are constructed using only three-dimensional hits, either from

the pixel detector or the back-to-back strip modules. The pixel hits are re-

constructed using the first-pass algorithm. The five track parameters can be

extracted using three such hits or two hits and an additional constraint on the

point of origin of the track. For this constraint, the centre of the beam spot

or primary vertices reconstructed with a simplified algorithm using only pixel

hits, are utilized; their reconstruction will be described in Section 3.2. The

seeds are subjected to the filtering based on the estimated transverse momen-

tum and compatibility with the imposed point of origin. It can also be checked

that charge distributions of the hits agree with the expectation based on the

track parameters, especially the incidence angles. The specific filtering criteria

and requirements on the types of seeds (pixel or strip hits and their number)

vary with the iteration of the algorithm. At late iterations seeds contain only

hits from strip modules, and this allows to find tracks produced outside of the

pixel detector volume.
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At the second step, the Kalman filter is exploited to find tracks. The filter

starts with a coarse estimate of the track parameters provided by the seed and

improves it by propagating the track to successive detector layers, adding hits

from there, and updating the parameters accordingly. Parameters of a track

candidate estimated at the current layer are used to identify which adjacent lay-

ers of the detector can be intersected by extrapolation of the trajectory, taking

into account current uncertainties. The extrapolation is performed analyti-

cally, assuming a homogeneous magnetic field and ignoring possible Coulomb

scattering and energy losses. In the found layer, all silicon modules compatible

with the trajectory are identified. Starting from this point, a more accurate

propagator is used, which accounts for an increased uncertainty due to the

multiple scattering and adjusts the momentum for the expected mean energy

loss given by the Bethe–Bloch equation. All hits in these modules that are

(loosely) compatible with the track candidate are selected. If there are none,

a ghost hit can be added to the track in order to represent the possibility that

a particle produced no detectable ionization in the module. Then new track

candidates are formed from each original candidate by adding exactly one of

the compatible hits (which might be a ghost). The new hits are used to update

the track parameters by combining the information from the added hits with

the extrapolated trajectory of the original track candidate. The procedure is

repeated until the track candidate leaves the tracker volume, receives too many

ghost hits, or its pT drops below a threshold. In addition, track candidates that

have the lowest compatibility with the included hits are removed at each iter-

ation. When the search for hits in the outward direction identifies a sufficient

number of them, all or some of the seed hits are removed from the track, and an

inwards search is initiated. This allows to recover hits in the inner region. Fi-

nally, duplicate reconstructed tracks, which are identified based on the fraction

of shared hits, are removed.

At the third step, the trajectory is refitted using a Kalman filter and smoother.

The pixel hits are reconstructed with the template-based algorithm. The filter

starts from the innermost hit, using the track parameters estimated by run-

ning the filter on few innermost hits. The filter processes hits in the outward

direction. It is followed by a second run of a Kalman filter, in the inward di-

rection, which starts with the obtained parameters of the track. Optimal track

parameters at the position of each hit are then evaluated by averaging of the

estimates by the two filters. In this step the propagation accounts for the in-

homogeneity of the magnetic field, solving the underlying differential equation

numerically using the fourth-order Runge–Kutta method. This is especially

important for the region |η| > 1, where the inhomogeneity is greatest. Finally,

tracks are cleaned against spurious hits that show a poor compatibility with the
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rest of the track, and refitted again if needed, repeating this until no outliers

are found.

The above steps produce a significant fraction of fake tracks, which do not

correspond to any real charged particles. In order to remove them, the tracks

are subjected to a quality selection. The requirements address the number of

layers with hits, number of three-dimensional hits, number of layers without

hits, the χ2 fit quality of the track, the compatibility with the centre of the

beam spot and at least one pixel vertex. The specific criteria depend on the

iteration number.

The four steps presented above are repeated for each iteration of the CTF

algorithm, resulting several track collections. The collections from different

iterations are then merged, and duplicate tracks are removed. Efficiency of

reconstruction of isolated muon tracks with pT > 1 GeV/c is above 99%. On

the other hand, up to 20%, depending on the pseudorapidity, of tracks of

isolated pions with pT & 1 GeV/c are not reconstructed as a result of nuclear

interactions in the material of the tracker; the inefficiency increases further in

case of pions with smaller transverse momenta.

3.2 Primary vertices and beam spot

Using reconstructed tracks, points at which individual pp interactions occurred

can be identified [61]. Reconstruction of primary vertices is carried out in two

steps. First, tracks are clustered to find groups that are likely to originate from

the same vertex. Then in each group a fit is performed to determine the vertex

position. Reconstructed vertices as well as tracks alone can be used to deduce

position and size of the beam spot, or the luminous region in which collisions

take place.

3.2.1 Track clustering

Tracks exploited in reconstruction of primary vertices are subjected to an ad-

ditional selection. They are required to contain a sufficient number of hits,

in total and in the pixel system alone, and comply with a requirement on the

minimal χ2 fit quality. In addition, tracks with large transverse impact param-

eters with respect to the centre of the beam spot are excluded. On the other

hand, no selection on the transverse momentum is applied in order to allow

reconstruction of vertices that lack high-pT tracks.



3.2. Primary vertices and beam spot 49

Selected tracks are clustered on the basis of z coordinates of the points of their

closest approach to the centre of the beam spot. The procedure is described in

detail in Refs. [61,72]. It exploits the deterministic annealing algorithm [73] to

find the number of clusters Nc and their positions ẑk, k = 1, . . . , Nc. The co-

ordinate zi of track i is used together with its uncertainty σi. Prior assessment

of whether the track can originate from a primary vertex, which can be done

based on such properties as the transverse impact parameter, is incorporated

by the parameter pi ∈ [0, 1]. It is interpreted as a probability to admit the track

to the clustering. Given that track i is admitted, its assignment to cluster k is

treated as a random event with an unknown conditional probability pik, which

satisfies the normalization condition∑
k

pik = 1 ∀i. (3.1)

The level of compatibility between the tracks and suggested cluster positions

is quantified with the distortion function

E =
∑
i

∑
k

pipikEik, Eik =
(zi − ẑk)2

σ2
i

, (3.2)

where indices i and k refer to tracks and clusters respectively. A straightforward

minimization of the distorsion would introduce an independent cluster for each

track so that E = 0. Instead, it is minimized while keeping the Shannon

entropy of the system

S = −
∑
i

(1− pi) ln(1− pi)−
∑
i

∑
k

pipik ln(pipik) (3.3)

at a constant level. This constrained optimization task can be equivalently

formulated as minimization of the Lagrange function

F = E − T (S − S0), (3.4)

where T is the Lagrangian multiplier and S0 is the chosen level of entropy,

whose specific value, however, is not important for the following discussion.

Similarly to the well-known simulated annealing algorithm [74,75], an analogy

with a thermodynamical system can be built. In this case the distortion func-

tion E, the entropy S, and the parameter T are identified with the internal

energy of the system, its thermodynamical entropy (defined up to an arbitrary

additive constant), and the temperature. The Lagrange function F plays a

role of Helmholtz free energy. If the temperature and volume of the system are

kept fixed, its equilibrium state is given by the minimum of the Helmholtz free

energy.
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Minimization of F with respect to the association probabilities pik while im-

posing the normalization constraint (3.1), yields the Boltzmann distribution:

pik =
exp (−Eik/T )∑
k′ exp (−Eik′/T )

. (3.5)

Minimization with respect to ẑk gives the equation for positions of the clusters:

ẑk =

∑
i pipikzi/σ

2
i∑

i pipik/σ
2
i

. (3.6)

Eqs. (3.5), (3.6) can be solved iteratively for a given temperature T . The

optimal number of clusters to be imposed in these equations is not known

a priori. It is convenient to assume that the number is arbitrarily large, but

positions of some clusters are identical. In the following the groups of coinciding

clusters are treated as effective clusters. In this basis, Eq. (3.5) translates into

piq =
wq exp (−Eiq/T )∑
q′ wq′ exp (−Eiq′/T )

, (3.7)

where wq is the fraction of all clusters that have identical position ẑq and

thus form effective cluster q. Optimal relative weights of effective clusters are

calculated as

wq =

∑
i pipiq∑
i pi

, (3.8)

and their positions are still given by Eq. (3.6) if indices k, k′ are understood

to enumerate effective clusters.

The algorithm starts at a large temperature. In the limit T → +∞ all assign-

ment probabilities piq are equal, and there is only a single effective cluster at

ẑ
(0)
1 |T→+∞ =

∑
i pizi/σ

2
i∑

i pi/σ
2
i

(3.9)

with a weight w
(0)
1 = 1. The temperature is gradually decreased, performing

the annealing. When it falls below the critical value

T ∗q = 2
∑
i

pipiq
σ2
i

(
zi − ẑq
σi

)2
/∑

i

pipiq
σ2
i

, (3.10)

it becomes advantageous to split the effective cluster in two. This event is

analogous to a phase transition in a thermodynamical system. The splitting is

forced, setting positions and weights of the daughter effective clusters to

ẑ
(1)
1 = ẑ

(0)
1 − δ, ẑ

(1)
2 = ẑ

(0)
1 + δ, (3.11)

w
(1)
1 = w

(1)
2 = w

(0)
1 /2, (3.12)
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where δ is some small separation. As annealing continues, positions and weights

of the clusters are adjusted by solving Eqs. (3.6)–(3.8). The algorithm then

proceeds recursively, splitting daughter effective clusters when the temperature

drops below the corresponding critical values (3.10).

If continued down to T = 0, the algorithm would generate an independent

cluster for each track. To achieve a compromise between the ability to resolve

closely spaced vertices and the risk of assigning tracks originating from the same

vertex to multiple clusters, the algorithm is stopped at a temperature Tmin = 4,

which is an empirical threshold. At this point the same track can be assigned to

several clusters with comparable probabilities. To perform a strict assignment,

the annealing is continued down to T = 1, but clusters are not allowed to split

further. The assignment probabilities are modified by including an additional

term in the denominator:

p̃iq =
wq exp (−Eiq/T )

exp (−E0/T ) +
∑
q′ wq′ exp (−Eiq′/T )

. (3.13)

This breaks the normalization condition (3.1), allowing to downweight tracks

that are poorly compatible with any cluster. In addition, each cluster is re-

quired to contain at least two tracks that are incompatible with all other clus-

ters. Otherwise, the cluster is removed, and its tracks get reassigned. When

the annealing finishes at T = 1, final clusters are constructed by keeping as-

signments with probabilities p̃iq > 1/2. It is possible that some tracks are not

included into any cluster.

3.2.2 Vertex fitting

Tracks included into each cluster constructed at the previous step are assumed

to originate from the same primary vertex. The unknown three-dimensional

vertex position v is found with the help of the adaptive vertex fitting algo-

rithm [76]. The central element of the algorithm is minimization of the loss

function

E(v) =
∑
i

wiχ
2
i (v), χi =

di
σi
, (3.14)

where di is the approximate distance from track i to the vertex position, σi is

its uncertainty, and wi is the weight, which will be discussed below. In order

to simplify calculation of the distance di, tracks are approximated by straight

lines in the vicinity of the current estimated vertex position.

The cluster can mistakenly include tracks that originate from other vertices,

as well as misreconstructed tracks. Under these conditions, a straightforward
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minimization of
∑
i χ

2
i , which represents the method of least squares, may not

provide a reliable estimate of the vertex position. Instead, a robust estimate in

the presence of outliers is built by performing an annealing with dynamically

adjusted track weights

wi = 1

/(
1 + exp

(
χ2
i − χ2

c

2T

))
, (3.15)

where empirical constant χc = 3 defines a threshold at which w = 1/2, and

T is the temperature controlling the annealing. Outlying tracks, which have

large values of χ2, can be suppressed by small weights. The exact amount

of suppression depends on the temperature. The algorithm starts from a high

temperature, at which all tracks have similar weights, and then the temperature

is gradually decreased, allowing to downweight the outliers. During the cooling,

the loss function (3.14) is minimized iteratively. The algorithm stops when

T = 1 is reached. After the annealing is finished, weights typically have values

close to either 1 or 0. Tracks with weights smaller than 1/2 are interpreted as

outliers, while others are said to be compatible with the vertex.

The quality of the least-squares vertex fit with n tracks is usually quantified

with the minimal value of the loss function
∑
i χ

2
i , which follows the χ2 dis-

tribution with 2n − 3 degrees of freedom. The latter is not true for the loss

function (3.14) because its probabilistic interpretation is altered by the track

weights. An effective number of degrees of freedom

ñd = 2
∑
i

wi − 3 (3.16)

is used instead to characterise the quality of the fit. In this study, a vertex

is considered reliably reconstructed if ñd > 4, which roughly corresponds to a

requirement of at least four tracks compatible with the vertex. In addition, pri-

mary vertices are required to be contained in a cylinder r < 2 cm, |z| < 24 cm.

Because of the presence of overlapping pp collisions, several primary vertices

are typically reconstructed in a single event. They are sorted in the decreasing

order in the variable

Σp2T =
∑
i

(
max(pTi − σpTi, 0)

)2
, (3.17)

where pTi is the transverse momentum of track i, σpTi is its uncertainty, and

the sum runs over all tracks assigned to the vertex. The vertex with the largest

value of Σp2T is identified with the principal pp collision, while others are at-

tributed to the pile-up.
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3.2.3 Pixel primary vertices

As described in Section 3.1, a simplified vertex reconstruction is needed to build

tracks. It relies only on hits in the pixel detector and runs much faster than

the full reconstruction. The algorithm starts from pixel triplets formed in the

same manner as described in the context of track reconstruction. The triplets

are fitted to build pixel tracks, to which a selection on transverse momentum is

applied. The tracks are clustered based on z coordinates of points of their clos-

est approach to the centre of the beam spot with the help of the gap algorithm.

The clustering algorithm scans an ordered list of the track coordinates {zi},
starting from the smallest value, and finds all pairs of consecutive coordinates

(zi, zi+1) such that the separation zi+1−zi is larger than the predefined thresh-

old ∆zmax. Cluster boundaries are put between the coordinates in each pair.

The resulting consecutive blocks of coordinates define the track clusters. For

each cluster that contains at least two tracks, the vertex position is determined

with the adaptive vertex fitting algorithm described above.

3.2.4 Beam spot

The shape of the beam spot can approximately be described by a biaxial ellip-

soid, which is typically displaced slightly from the nominal centre of the inner

tracker and may be tilted with respect to the detector axes. Unlike other recon-

structed quantities, parameters of the beam spot are determined by averaging

over many events. The shortest period of time considered for the averaging is

given by the length of a luminosity section.

The most straightforward way to measure parameters of the beam spot is to

analyse the three-dimensional distribution of reconstructed primary vertices.

An alternative approach [77] exploits the correlation between the transverse

impact parameter d0 and the azimuthal angle φ of a track at the point of the

closest approach to the expected centre of the beam spot. If the transverse size

of the beam spot is neglected, the two parameters be related by the equation

d0(φ, z∗) =
(
xBS + (z∗ − zBS) tan θ

(x)
BS

)
sinφ −(

yBS + (z∗ − zBS) tan θ
(y)
BS

)
cosφ, (3.18)

where z∗ is the coordinate of the point of closest approach, (xBS, yBS, zBS) are

coordinates of the actual centre of the beam spot, and angles θ
(x)
BS , θ

(y)
BS define

the orientation of the main axis of the beam spot. The position of the beam
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spot in the transverse plane and the two tilt angles are found by minimizing

χ2 =
∑
i

(
d0i − d0(φi, z

∗
i )

σi

)2

, (3.19)

where the sum runs over tracks considered for the calculation, and the uncer-

tainty σi includes the uncertainty of d0i and the transverse size of the beam

spot. This method cannot determine zBS and the size of the beam spot, which

are instead deduced from the distribution of primary vertices and used as inputs

to the algorithm.

It is also possible to determine the transverse size of the beam spot, σx and

σy, using tracks [61]. A displacement of a primary vertex with respect to the

centre of the beam spot due to its finite size introduces a correlation between

transverse impact parameters of a pair of tracks that originate from the vertex:

〈
d

(1)
0 d

(2)
0

〉
=
σ2
x + σ2

y

2
cos (φ1 − φ2)− σ2

x − σ2
y

2
cos (φ1 + φ2) . (3.20)

Here φ1 and φ2 are azimuthal angles of the two tracks at the points of their

closest approach to the centre of the beam spot, whose position must be known.

Although the method relies on reconstruction of primary vertices, it is not

sensitive to the resolution of determination of vertex position.

3.3 Muon reconstruction

Muon reconstruction uses information from both the inner tracker and the

muon system. The latter one provides means for muon identification and im-

proves momentum resolution for high-pT muons. The trajectory in the inner

tracker is reconstructed as described in Section 3.1. In addition to it, an in-

dependent reconstruction is performed from signals in the muon system alone,

producing so-called stand-alone muon track [58].

The stand-alone reconstruction starts by building track segments or single hits

at the level of individual chambers of the muon system [78]. In the RPC

detectors activated strips are clustered to produce hits, whose positions are

determined as the centres of mass of the clusters. However, more elaborate

procedures are applied in case of the DT and CSC.

In the DT chambers, the (r, φ) and (r, z) projections are first considered inde-

pendently. Drift distances are calculated in activated cells, taking into account

the magnetic field and the incidence angle, which is approximated using the di-

rection to the nominal interaction point. Both possible hits that originate from
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the right-left ambiguity are considered for every cell. The algorithm selects

a pair of hits in two different layers, starting from the most separated ones.

The pair must be compatible with a track pointing to the nominal interaction

point. Hits compatible with the straight track segment defined by the pair

are searched for in all layers, and a linear fit is performed. The procedure is

repeated to find other segment candidates in the given projection. Then can-

didates with a poor χ2 fit quality as well as duplicates are removed. Positions

of hits used for each candidate are then improved by taking into account the

incidence angle of the reconstructed track segment, and the linear fit is redone

with the updated hits. Finally, the two projections are combined, keeping all

possible combinations.

In the CSC detectors, hits are reconstructed independently in each of the six

layers. First, strips are clustered, and azimuthal coordinates of future hits are

found by fitting distributions of collected charge in the clusters. Radial coor-

dinates are given by positions of read-out groups of anode wires, and the hits

are reconstructed by considering all possible combinations from the two pro-

jections that agree in timing. Similar to the case of the DT, track segments are

approximated by straight lines, and their reconstruction starts by considering

pairs of hits from the first and the last layers that are roughly compatible with

the direction to the beam spot. Compatible hits from the intermediate layers

are added to the segment candidate, and a linear fit is performed. The track

segment is accepted if it contains at least four hits and the fit quality is decent.

In this case its hits are masked out, and the procedure is repeated.

After the detector-level reconstruction is completed, stand-alone muon tracks

are built combining information from individual chambers with the help of

the Kalman filter [71]. The procedure starts from the innermost layer of the

muon system. When the track candidate is propagated to the next station, the

algorithm searches for compatible measurements and uses them to improve the

current estimate of the track parameters. The propagation is done taking into

account the energy loss in the material, the effect of multiple scattering, and

the inhomogeneous magnetic field. The DT track segments and RPC hits are

exploited in the Kalman filter directly. On the other hand, individual CSC hits

are used instead of the reconstructed track segments because the segments have

been reconstructed assuming no magnetic field, which is a poor approximation

in the endcap region. The procedure is iterated until the outermost layer of the

muon system is reached. Then a backward Kalman filter is applied to calculate

the track parameters at the innermost layer and extrapolate the track to the

central region of the detector, where a requirement of compatibility with the

first primary vertex is imposed.
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Two approaches are used to combine the stand-alone muon track reconstruc-

tion and the iterative tracking [79]. With the global muon reconstruction, for

each stand-alone track a matching CTF track is found by propagating the both

tracks onto a common surface. The hits of the both tracks are then refitted

using the Kalman filter. If the momentum calculated in the global fit is com-

patible with the measurement from the inner tracker alone and in both cases

pT > 200 GeV/c, the muon is assigned the momentum from the global fit. Oth-

erwise, the momentum is set according to the measurement in the inner tracker

only.

In the second approach, the tracker muon reconstruction, all CTF tracks with

a sufficiently large transverse momentum are propagated to the muon system,

taking into account the energy loss, the multiple scattering, and the inhomo-

geneous magnetic field. If at least one DT or CSC track segment matches the

reconstructed track, it is qualified as a tracker muon. Because of the looser re-

quirement on activity in the muon system, this approach is more efficient than

the global reconstruction for muon with a small momentum pT . 5 GeV/c.

About 99% of muons produced in pp collisions within the geometrical accep-

tance of the muon system and having sufficiently large momentum are recon-

structed as either global or tracker muons, and often both. Fig. 3.2 shows

momentum resolution measured in a sample of Z → µ+µ− events. There are

also specialized algorithms to reconstruct cosmic or high-pT muon, but they

are out of the scope of this thesis. Performance of the muon reconstruction is

discussed in detail in Ref. [79].
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Figure 3.2: Muon momentum resolution, as determined by two complementary

methods [79].
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3.4 Electron reconstruction

Electrons are reconstructed by combining trajectory measurements obtained

from the inner tracking system and energy depositions in the ECAL. The main

challenge for the reconstruction is the bremsstrahlung, which an electron under-

goes while traversing material of the tracker. On average, an electron radiates

from about 30% to 90% of its total energy, depending on the pseudorapidity,

before reaching the ECAL [80]. A special algorithm [80] has been developed

to ensure an efficient reconstruction under these conditions. It combines two

complementary approaches. First one starts from an ECAL cluster [81] and

delivers best performance for high-pT isolated electrons. However, its efficiency

degrades for electrons with pT . 10 GeV/c since their tracks have large curva-

ture and bremsstrahlung photons can thus be distributed over a large area of

the ECAL. In this case it is more efficient to start the electron reconstruction

from track candidates [80,82]. This second approach was initially developed in

the context of the particle-flow (PF) reconstruction [82,83], which is the subject

of the next section. It is capable of reconstructing electrons with a transverse

momentum down to 2 GeV/c, even if they are surrounded by hadronic activity.

The two approaches, ECAL- and tracker-seeded, are tightly entangled. They

are described below.

3.4.1 Clustering of ECAL energy depositions

The ECAL-seeded reconstruction starts by clustering energy depositions in the

ECAL. For an accurate measurement, it is important to collect the energy of

bremsstrahlung photons, which mainly spreads along the φ direction due to the

bending of the electron trajectory in the magnetic field. Different clustering

algorithms are applied in the barrel and the endcap regions [84].

In the barrel, the so-called “hybrid” algorithm is used. It starts from a seed

crystal with the largest transverse energy ET. A window of 5× 35 crystals, or

approximately 0.09 × 0.6, in η × φ centred at the seed is constructed. Inside

the window, all 5 × 1 arrays of crystals in η × φ with sufficient total energy

depositions are selected, and adjacent arrays are clustered together. The set of

all clusters in the 5× 35 window that satisfy a certain selection on the energy,

is called a supercluster (SC).

A different algorithm, the “multi-5×5”, is applied in the ECAL endcaps. It uses

as seeds crystals with an energy larger than those of their four side neighbours

(the “Swiss cross” pattern). A cluster of 5 × 5 crystals is built around every

seed. The clusters can partly overlap, but energy of each crystal can only be
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attributed to a single cluster. The clusters are iterated in a decreasing order

in the transverse energy of their seeds. Around each cluster with a sufficiently

large total transverse energy, a 0.14 × 0.6 window in η × φ is created, and an

SC is formed out of all clusters that fall into the window and have not been

assigned to a different SC at a previous iteration. Then the energy deposited

in the preshower detector is added. This is done by projecting the energy-

weighted positions of all clusters in an SC to the two sensitive layers of the PS

and constructing a rectangular window in η× φ large enough to accommodate

projections of all clusters, with some margin added. The energy recorded in

the window is attributed to the SC.

The tracker-seeded reconstruction also profits from an ECAL clustering, but of

a different type. The seeds are chosen as crystals with locally maximal energy

depositions and then clusters are formed by adding adjacent crystals whose

energy depositions are not compatible with electronic noise. More details about

the algorithm will be given in Section 3.5.1. In the following, the resulting

clusters are referenced under the name of PF clusters.

3.4.2 Tracking

The standard track reconstruction described in Section 3.1 is not optimal in case

of electrons. The Kalman filter (KF) it exploits assumes Gaussian fluctuations

in the measurements, while the energy losses due to bremsstrahlung are highly

non-Gaussian. In the Bethe–Heitler model [85] they can be described by a

probability density function

p(z) =
(− ln z)

t/ ln 2−1

Γ(t/ ln 2)
, (3.21)

where z is the fraction of energy remaining after the electron has travelled

in the material a path of length t, measured in units of radiation length. A

more accurate reconstruction is achieved with the help of the Gaussian sum

filter (GSF) algorithm [86], which models the observation error with a mixture

of several Gaussian components and this way can approximate the distribu-

tion (3.21). Unlike the KF, the algorithm operates with multiple state vectors

and corresponding covariance matrices, but in other aspects it is similar to

the KF and follows the same alternating sequence of propagation and update

steps. Indeed, it can be understood as several KF running in parallel [87], each

corresponding to an individual Gaussian component. The track parameters

can be estimated either from a weighted average of all components or a sin-

gle most probable component. The second approach has been chosen for the

reconstruction [81].
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Before the GSF track reconstruction can be performed, track seeds are con-

structed. The seeds consist of two or three hits in the pixel detector or the

TEC. In case of the seeds with two hits, pixel vertices are exploited to provide

the missing constraint needed to define the track candidate. Two complemen-

tary approaches are followed.

The ECAL-seeded reconstruction exploits the SC constructed as described

above to find seeds. SC are selected by imposing requirements on the min-

imal transverse energy and the maximal value of H/ESC, where ESC is the

energy of the SC and H is the sum of energy depositions in the HCAL around

the direction of the electron. For each selected SC, its energy and position

are used to construct an approximate electron trajectory that originates at the

nominal interaction point. This is done assuming a perfect helix, and both

electric charge hypotheses are considered. The points of intersections of the

approximate trajectories with innermost layers of the tracker designate poten-

tial positions of the seed hits. They are checked for coincidence with hits of

the standard tracker seeds. The first hits are searched for using wide windows

in z × φ or z × r, which also depend on the value of ESC. When the first hits

are matched, this information is used to refine the helices, and the windows for

the second hits are tightened. Finally, a tracker seed is selected if its first two

hits are matched with the predictions from an SC.

A different algorithm is used with the tracker-seeded reconstruction. The KF

track is accurate when an electron undergoes little to no bremsstrahlung. The

algorithm profits from this by attempting to match the standard CTF tracks

to PF clusters. The matching is done based on the track position propagated

to the ECAL and electron energies measured from the track curvature and

the PF cluster. The tracks that fail this condition are analysed further. If the

bremsstrahlung radiation is significant, the KF cannot follow the true trajectory

efficiently and stops collecting hits early or produces a track with a low χ2 fit

quality. Tracks with such properties are refitted with the GSF algorithm. Then

a multivariate analysis (MVA) is performed to select candidate electron tracks

based on the χ2 fit quality of the KF and GSF tracks and geometrical and

energy matching between the tracker and ECAL measurements. Seeds of the

tracks selected by either of the two methods are exploited in the subsequent

electron reconstruction. Compared to the ECAL-seeded reconstruction, this

approach is more efficient in case of low-pT or non-isolated electrons, as well as

in the transition region between the barrel and the endcaps.

Seeds identified by either the ECAL- or tracker-seeded reconstruction are then

utilized to construct electron tracks. First, hits contributing to the track are

found. Similar to the CTF tracking, this is done with the help of the KF. It
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starts from an estimate of the track parameters obtained from the seed and then

repeatedly propagates the trajectory to the next detector layer, searching for a

compatible hit and adding it to the track candidate. The algorithm accounts

for the mean energy losses given by the Bethe–Heitler equation (3.21), but

their distribution is not modelled correctly. Instead, relatively loose criteria

are applied to identify compatible hits in order to maintain a good efficiency.

If multiple compatible hits are found, several track candidates are created and

developed. To avoid following on hits from converted bremsstrahlung photons,

tracks with missing hits are disfavoured.

Once all hits of a track candidate have been collected, the trajectory is fitted

with the GSF. It provides accurate estimates of electron momentum both at

the point of the closest approach to the centre of the beam spot, pin, and

on the surface of the ECAL, pout. Then the fraction of energy lost due to

bremsstrahlung can be quantified as fbrem = (pin − pout)/pin.

3.4.3 Track-cluster association

After GSF tracks are reconstructed, they are associated to ECAL SC to produce

electron candidates. ECAL-seeded tracks are paired with the corresponding

hybrid or multi-5×5 SC, requiring certain loose selection based on geometrical

matching. On the other hand, a more elaborate procedure is applied in case of

tracker-seeded candidates.

Tracker-seeded candidates are associated with PF SC, which are constructed

as follows. First, the GSF track is propagated to the ECAL surface, and the

matching PF cluster is included in the SC. Then for each layer of the tracker, a

straight line tangent to the track is followed to the ECAL, approximating the

path of a potential bremsstrahlung photon. If a matching PF cluster is found, it

is added to the SC. This procedure allows to recover the most of bremsstrahlung

radiation, but converted photons can be missed. They are found with the help

of a dedicated algorithm that uses displaced CTF tracks and profits from an

MVA pattern recognition. If photons reconstructed from the conversion are

compatible with the electron track, they are associated with the SC. Finally,

if the GSF track has at the same time been seeded by an ECAL SC, all PF

clusters that are geometrically matched to the seed SC, are also added to the

PF SC.

The compatibility between a GSF track and the associated PF SC is assessed

with an MVA classifier, which combines information on properties of the track

and the SC, as well as the quality of geometrical and kinematic matching be-

tween the two. A weak selection is applied on the minimal level of compatibility.
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It can happen that two nearby GSF tracks are associated with the same SC,

especially if a bremsstrahlung photon carries a significant fractions of the initial

energy of the electron and undergoes a conversion. In this case a single track

is selected, based on the number of missing hits, the ESC/p ratio, and the type

of the seed of the track (ECAL-seeded tracks are preferred to tracker-seeded

ones).

The overall efficiency of reconstruction of electron candidates in Z → e+e−

events is about 93%. It includes building of SC, reconstruction of GSF tracks,

and establishing the association between the two.

3.4.4 Estimation of momentum

The electron momentum is calculated as a weighted average of the GSF track

momentum p and the energy of the associated SC ESC. The relative weight

in the combination is found using an MVA regression, which bases its decision

on the values of p and ESC, along with their estimated uncertainties, and

additionally exploits the bremsstrahlung class of the electron. The classification

of the bremsstrahlung patter is based on the fbrem fraction and the ECAL

footprint, mostly, the number of clusters in the SC. Three main classes include

electrons with little radiation, those with a large amount of bremsstrahlung,

which, however, is emitted in a single step, and electrons that produce a massive

bremsstrahlung, essentially starting showering inside the tracker volume.

A number of corrections affect the momentum measurement. First, the energy

response of individual ECAL crystals is calibrated before the clustering, includ-

ing a correction for the temporary degradation caused by irradiation. Using

an MVA regression, the SC energy as a whole is corrected for the leakage of

the energy in the gaps between the crystals, in the HCAL, or outside of the

SC window, and also for a contribution from pile-up. Finally, the combined

momentum is adjusted using samples of Z, J/ψ,Υ→ e+e− events.

For electrons from Z boson decay, the resulting momentum resolution varies

from 1.7% to 4.5%, depending on the bremsstrahlung pattern and pseudora-

pidity. As can be seen from Fig. 3.3, above an energy of about 35 GeV, the

measurement is dominated by the ECAL response, but for E . 15 GeV the

track momentum is more precise than the ECAL measurement.
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Figure 3.3: Electron momentum resolution after combining p and ESC mea-

surements, compared to estimates based on track momentum and SC energy

alone [80]. Open circles correspond to the Gaussian core of the distribution.

3.4.5 Determination of charge

Electric charge of an electron can be deduced from the curvature of its GSF

track. However, this judgement can be impaired in a case when the electron

emits a photon and it undergoes conversion. In order to determine the charge

in a robust way, the method using the GSF track is complemented by two

independent measurements. The first one exploits the curvature of the KF

track, which is matched to the GSF one by requiring that at least one hit in

the innermost region of the tracker is shared between the two tracks. The

second method deduces the charge from the position, in the (r, φ) plane, of the

first hit of the GSF track with respect to the line connecting the beam spot and

the SC. The charge of the electron is then chosen as the one shared by at least

two of the three measurements. The probability of charge misidentification by

this method can be measured from a sample of events with same-sign electron

pairs whose invariant mass is close to the mass of the Z boson.
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3.5 Particle-flow reconstruction

The particle-flow (PF) approach [82, 83] attempts to reconstruct each stable

particle originating in an event individually. It combines information from all

relevant detector systems to achieve the best performance. At the same time,

it avoids potential double counting from assigning the same signals to multi-

ple particle candidates. The CMS detector is particularly well-suited for the

PF reconstruction. Thanks to its excellent tracking capabilities, trajectories of

particles with transverse momentum down to 150 MeV/c can be reconstructed.

The high granularity of the ECAL allows to resolve energy depositions of indi-

vidual particles in jets with pT ∼ 102 GeV/c. Although the HCAL has a much

coarser granularity, its energy resolution is nevertheless sufficient to deduce the

present of neutral hadrons by comparing energy depositions in the HCAL with

momenta of associated tracks.

In the central pseudorapidity region, the PF reconstruction results in a list of

muons, electrons, photons, charged and neutral hadrons. Muons and electrons

are reconstructed independently as described in the previous sections and used

as inputs to the PF algorithm. This section is thus focused on reconstruction

of charged and neutral hadrons and photons.

3.5.1 PF blocks

Basic input elements considered in the PF-based reconstruction are CTF tracks

and calorimeter clusters. They are grouped by building an association between

tracks and clusters or clusters in different calorimeters. The association is done

with the help of a linking algorithm, which constructs possible pairs of elements

and quantifies the quality of the link in each pair. All elements linked together,

directly or via other elements, are grouped into a PF block, which supposedly

aggregates all parts of the footprint of a single particle in the detector.

The clustering of energy deposits is performed independently in each subde-

tector: EB, EE, HB, HE, and the two layers of the PS. The same algorithm is

used in all cases, and it was already briefly discussed in the context of electron

reconstruction. First, seeds are identified as cells with locally maximal energy

depositions, above certain thresholds. Then clusters are formed by iteratively

aggregating all cells that have a common side with a cell already included in

the cluster and have an energy larger than a threshold. Same cell can be shared

among several clusters. In such case, its energy is divided between the clusters

according to the distances to their centres. On the other hand, in the HF each

calorimeter cell is treated as an independent cluster.
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The linking between a track and a calorimeter cluster is done as follows. The

track is extrapolated from its last identified hit in the tracker to the two layers

of the PS, to the ECAL, as a depth corresponding to the expected maximum

of a typical longitudinal electron shower profile, or to the HCAL, at a depth

of one nuclear interaction length. The track is then linked to a cluster if the

extrapolated position is within the boundaries of the cluster, possibly with some

margin to account for the gaps between cells or modules, uncertainty of the

position of the shower maximum, and effects of multiple scattering. The link

quality is calculated as the angular distance between the extrapolated track

position and the cluster position.

A link between two calorimeter clusters is established if the position of the

cluster in the more granular detector (PS or ECAL) falls within the cluster

envelope in the less granular one (ECAL or HCAL). Similarly to the linking

between a track and a cluster, an additional margin can be introduced for the

matching. The quality of the link is given by the angular distance between

positions of the two clusters.

3.5.2 PF algorithm

Individual particles are reconstructed from PF blocks. But before this can be

done, elements of the blocks that correspond to reconstructed muons and elec-

trons, are identified and removed, including the small calorimeter depositions

of muons. Remaining CTF tracks are subjected to further selection, excluding

those whose relative uncertainty on pT is larger than the expected uncertainty

for charged hadrons from calorimeters alone.

Although all reconstructed electrons are removed from PF blocks, an addi-

tional selection is applied in case of muons. The selection is hierarchical and

consists of three steps. First, isolated global muons are identified and ac-

cepted. A muon is considered isolated for the purpose of PF reconstruction

if the sum of pT of tracks and ET of calorimeter depositions in a cone of size

∆R =
√

∆η2 + ∆φ2 = 0.3 around the muon is smaller than 10% of the muon

pT. Muons that do not meet this requirement are analysed further. If a muon

satisfies a selection on the minimal number of hits and the compatibility of

energy depositions in the calorimeters with expectations, it is also accepted.

Finally, if some of remaining muons passes a relaxed selection on the number

of hits, its track satisfies an additional requirement on the compatibility with

hits in the muon stations, and the ratio between the calorimeter energy deposi-

tions and the track momentum is inconsistent with the hypothesis of a charged
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hadron, the muon is accepted as well. Muons that do not satisfy any of the

three variants of the selection, are not excluded from PF blocks.

Remaining PF blocks give rise to charged hadrons, photons, and neutral hadrons.

More rarely additional muons can also be reconstructed. In order to achieve

the best energy resolution, calorimeter depositions are calibrated, and these

corrections depend on the target particle type. Energies of photons are de-

duced solely from the ECAL, and the calibration accounts for the energy loss

due to the clustering thresholds. A more involved correction is applied in case

of hadrons. Their energies are calculates as linear combinations of energy de-

positions in the ECAL and HCAL. The combination coefficients depend on the

pseudorapidity of the HCAL cluster and the total uncalibrated energy of the

hadron candidate. Same calibration is applied to charged and neutral hadrons.

Both hadron and photon calibration are derived from simulation and validated

with collision data [88].

A single PF block can contain multiple tracks, ECAL or HCAL clusters, with

an elaborate link structure. It is simplified before the further processing, which

might result in a splitting of the block. If a track is linked to several HCAL

clusters, only the link to the closest one is kept. On the other hand, multiple

tracks are allowed to be linked to a single HCAL cluster because of the coarse

HCAL granularity. Also only link of a track to the closest ECAL cluster is

kept if there are several ones. There might be additional ECAL clusters that

originate from early showers of charged hadrons, in which case they should be

linked to the corresponding tracks to avoid double counting of the energy of

the hadrons, or overlapping photons, and then the links should be removed to

allow reconstruction of the photons. To choose between the two possibilities,

the ECAL clusters linked to tracks are first ordered according to their distance

to the closest track. The list is then scanned, and the clusters are accepted one

by one until the total calibrated energy of the corresponding HCAL cluster, if

any, and all accepted ECAL clusters is smaller than the sum of momenta of

the tracks. Links between the tracks and the accepted ECAL clusters are kept,

and links to the remaining clusters in the list are removed.

In rare cases, the total calorimeter energy, calibrated under the hadron hy-

pothesis, is smaller than the total track momentum in the block by a large

amount. If it happens, an attempt to attribute the excess momentum to a

muon is undertaken. The muon selection described above is loosened, and the

additional muons are checked against the tracks in the PF block. If a match

is found, it is added to the reconstructed muons. If, on the other hand, the

excess cannot be explained by muons, the tracks are removed from the block

in the decreasing order of their absolute pT uncertainty, until all tracks with
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the uncertainty above a certain threshold have been removed or the total track

momentum is about to become smaller than the calorimeter energy.

Each of the remaining tracks in the PF block gives rise to a charged hadron

candidate, whose momentum and energy are obtained from the track momen-

tum under the π± mass hypothesis. If the calibrated calorimeter energy is

compatible with the sum of momenta of all associated tracks within the uncer-

tainties, it is used to refine the momentum measurements. This correction is

especially important for high-pT particles or in the forward region, where the

track momentum is measured with a larger uncertainty.

Neutral particles are then reconstructed. Their presence in the vicinity of a

track (or multiple tracks linked to the same HCAL cluster) is indicated by an

excess of the calorimeter energy calibrated for hadrons, with respect to the

track momentum. In this case a photon is formed from the ECAL energy

deposition, with the dedicated calibration applied. If this is not sufficient to

fully account for the excess, the remaining part of it is attributed to a neutral

hadron. Photons are preferred to neutral hadrons in the ECAL because, on

the average, about 25% of the jet energy is carried by photons, while neutral

hadrons deposit in the ECAL only about 3% of the jet energy. All remaining

ECAL and HCAL clusters are not linked to any track. They are interpreted

as photons and neutral hadrons respectively.

A special albeit much simpler approach is followed to reconstruct particles in

the HF. The HF lies outside of the tracker coverage, and thus no informa-

tion about the charge of particles is available. Two types of candidates are

reconstructed from the clusters: hadrons and electromagnetic particles, which

combine photons and electrons. The discrimination between the two is per-

formed based on signals from the long and short read-out fibres.

3.6 Physics objects

PF candidates are not used directly to define an event selection or construct ob-

servables. Additional identification criteria are applied to muons and electrons

in order to suppress leptons that do not stem from the hard interaction, as

well as misreconstructed leptons. Properties of quarks and gluons at the high

energy scale are approximated with the help of jets, which are constructed by

clustering of numerous PF candidates. Finally, all PF candidates are exploited

to find the missing transverse energy 6ET. Reconstruction of these physics ob-

jects is described below. In this search τ leptons and photons are not used

directly, and thus they are not addressed here.
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Performance of reconstruction of physics objects can be degraded by the pile-

up. To mitigate its impact, some PF candidates are excluded from consider-

ation via a procedure called charged hadron subtraction (CHS) [89]. Charged

hadrons are associated with primary vertices, depending on the clusters in

which their tracks have been included during the vertex reconstruction de-

scribed in Section 3.2.1. Hadrons associated with any vertex except for the

first one, are assumed to originate from overlapping pp collisions and thus can

be removed. At the same time, hadrons that are not associated with any vertex,

are kept.

Although the CHS is effective for charged hadrons, this technique cannot re-

move neutral component of the pile-up nor it is applicable in the forward region.

In this case the average contribution from the pile-up, charged and neutral com-

ponents together, can be found using the mean angular density of transverse

momentum of pile-up particles. The density can be estimated on the event-by-

event basis [90] as

ρ = median

[
p

(j)
T

A(j)

]
, (3.22)

which is calculated using jets clustered from all PF candidates according to

the kT algorithm [91, 92] with a distance parameter of 0.6. Here p
(j)
T and A(j)

are transverse momentum of jet j and its geometric area respectively. Under

typical conditions, the density given by the Eq. (3.22) is insensitive to jets from

the hard interaction.

3.6.1 Muons

In this search global muons with pT > 10 GeV/c and |η| < 2.5 are considered.

To be selected, a muon must additionally meet the following set of identification

requirements, which are based on the tight selection documented in Ref. [79].

It is required to pass the PF identification, described in Section 3.5.2. The

goodness-of-fit of the global track must satisfy χ2/n.d.f. < 10, and the track

must include at least one hit in a muon chamber. The corresponding tracker

track is required to be matched to track segments in at least two muon sta-

tions, which implies that the muon is reconstructed also as a tracker muon.

The transverse and longitudinal impact parameters of the tracker track with

respect to the first primary vertex must satisfy |d0| < 2 mm and |dz| < 5 mm,

respectively. Finally, the muon is required to have hits in at least six tracker

layers, including at least one hit in the pixel detector. Collective efficiency of

these identification criteria is reported in Fig. 3.4.
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Figure 3.4: Efficiency of tight identification criteria applied to muons [93]. The

drop at |η| ∼ 0.25 is caused by a gap between DT wheels.

In order to suppress muons that stem from decays of hadrons in jets, the muon

is also required to be isolated, satisfying I∆β < 0.12, where the relative ∆β-

corrected isolation is defined as

I∆β =
1

pT

(
Ih± + max

(
Ih0 + Iγ − β · IPU

h± , 0
))
. (3.23)

Here pT is the transverse momentum of the muon and Ih±, h0, γ are sums of

transverse momenta of charged and neutral hadrons and photons, in a cone

of size of ∆R =
√

∆η2 + ∆φ2 = 0.4 around the muon. IPU
h± is the contribu-

tion from charged pile-up hadrons, which are identified by the CHS procedure.

The unknown contribution from neutral pile-up particles is assumed to be pro-

portional to IPU
h± , which allows to correct the total contribution of neutral

PF candidates Ih0 + Iγ . The proportionality factor β = 0.5 is motivated by

the expected ratio of numbers of neutral and charged pions [94]. It is validated

by requiring that the corrected contribution from neutral PF candidates is sta-

ble with respect to the number of overlapping pp collision. Efficiency of the

isolation requirement is shown in Fig. 3.5.

A muon that meets the above requirements is referred to as a “tight” muon. For

the purpose of the event selection, also a relaxed identification is introduced,

defining a “loose” muon. It is only required to pass the PF identification and

satisty pT > 10 GeV/c, |η| < 2.5, and I∆β < 0.2.

This search exploits a single-muon trigger, whose requirements will be described

in Section 4.4. Its efficiency is shown in Fig. 3.6. The drop at |η| ∼ 0.25 is a
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result of a gap between DT wheels. The asymmetry in the |η| > 2.1 region is

caused by non-functional CSC chambers.

Figure 3.5: Efficiency of the isolation requirement I∆β < 0.12 [93].

Figure 3.6: Efficiency of the muon trigger exploited in this search [93].

3.6.2 Electrons

An electron is considered if it satisfies the kinematic selection pT > 20 GeV/c

and |η| < 2.5. It is further required to pass an MVA identification [80], which

combines three groups of observables. The first group represents information
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from the tracker. Example observables of this kind are fbrem and χ2 fit quality

of the GSF track and the associated KF track. The second group characterizes

the calorimeter footprint through such properties as the geometrical size of

the SC along the η and φ directions or the variable R9 = E3×3/ESC, where

E3×3 is the energy deposited in a 3×3 matrix of ECAL crystals centred at the

highest-ET crystal of the SC. The lateral spread of the shower is described by

the variable σηη defined as

σ2
ηη = s2

η

∑
i

(ηi − η̄5×5)
2
wi

/∑
j

wj , wi = ln
Ei
E5×5

+ const, (3.24)

as well as σφφ, which is calculated in a similar way. The sum runs over crystals

in a 5 × 5 matrix centred at the highest-ET crystal, Ei is the energy of the

crystal i, E5×5 is the total energy deposited in the 5 × 5 matrix, and η̄5×5 is

its energy-weighted mean position in the η projection. To make the observable

insensitive to the varying size of the gap between crystals, the coordinates ηi
and η̄5×5 are expressed in units of crystals, and the average crystal size sη is

included to correct the overall scale. The third group of input variables includes

observables that quantify the quality of matching between the track and the

SC. The geometric matching is described by differences ∆η and ∆φ between

the track direction and the position of the SC, while the compatibility in energy

is assess through such variables as ESC/p and 1/ESC−1/p, where p is the track

momentum.

The MVA identification was constructed for electrons that pass a loose selection

intended mimic requirements applied in the HLT. An electron is thus also

required to pass this selection, which includes such observables as the number

of missing hits in the GSF track, σηη, H/ESC, and several versions of isolation.

In addition, the transition region between the EB and EE, 1.4442 < |ηSC| <
1.5660, is excluded.

The electron must not originate from a photon conversion. To suppress this

contribution, no missing hits are allowed in the electron track. Futhermore,

conversion vertices are reconstructed from pairs of electron tracks, exploiting

the distinctive topology with the two tracks being nearly collinear at the vertex.

If the electron is identified with a conversion vertex, it is rejected. Impact

parameters of the electron with respect to the primary vertex are also used to

exclude conversions.

Finally, the electron is required to be isolated, Iρ < 0.1, using the ρ-corrected

isolation

Iρ =
1

pT
(Ih± + max (Ih0 + Iγ − ρ ·Aeff, 0)) (3.25)
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with a cone of size ∆R = 0.3. Here ρ is the angular pT density (3.22). The

effective area Aeff, which depends on the pseudorapidity of the electron, is

adjusted to compensate for the neutral component of the pile-up.

Similarly to the case of muons, the requirements above define a “tight” electron.

They are complemented with a “loose” selection that accepts electrons with

pT > 20 GeV/c, |η| < 2.5, and Iρ < 0.15.

Efficiency of the full tight electron selection described above is shown in Fig. 3.7.

In this search also a single-electron trigger is utilized. Its requirements will be
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Figure 3.7: Efficiency of the tight electron selection in data (left) and simulation

(right) [95].
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Figure 3.8: Efficiency of the electron trigger exploited in this search as measured

in data (left) and obtained from simulation (right) [95].
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summarized in Section 4.4, and the corresponding efficiency is provided in

Fig. 3.8.

3.6.3 Jets

Jets are built from PF candidates, after removing charged hadrons identified by

the CHS procedure. To ensure that particles reconstructed as leptons are not

accounted for the second time as jet constituents, loose muons and electrons

are also removed. The remaining particles are clustered using the anti-kT

algorithm [96] with a distance parameter of 0.5.

Produced jets are checked against loose identification requirements [97]. In

order to be accepted, a jet must consist of at least two PF candidates. If

the jet lies in the central region |η| < 2.4, it must contain at least one charged

constituent, and a non-zero fraction of the jet energy is required to be attributed

to charged hadrons. Finally, the jet is rejected if more than 99% of its energy

is carried solely by particles of one of the following classes: neutral hadrons,

photons, or electrons. These identification criteria are met by about 99% of

physics jets.

There is a systematic difference between energies of reconstructed and corre-

sponding particle-level jets, as illustrated by Fig. 3.9. Energies of reconstructed

jets are corrected [98,99] in order to account for the contribution from pile-up,

non-linearity of the calorimeter response, a slight detector mismodelling, and

other effects. The corrections are applied sequentially, in three steps. They are
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multiplicative and rescale the energy of a jet and the magnitude of its momen-

tum simultaneously, while the direction of the momentum is kept unchanged.

Jet energy receives some contribution from overlapping pp collisions. The

charged component is partly removed by the CHS, and the remaining energy is

subtracted by the first correction of the jet energy scale (JES), which is derived

using so-called hybrid jet area method. The jet four-momentum is rescaled by

a factor

Chybrid(pT, η, A, ρ) = 1−
(
ρ0(η) + ρ · β(η) ·

(
1 + γ(η) · log(pT)

))
· A
pT
, (3.26)

where pT and η are uncorrected transverse momentum and pseudorapidity of

the jet, A is its geometric area, and ρ is the angular pT density. Essentially,

this correction subtracts an amount of ρA from the jet pT, although a number

of amendments are introduced to achieve the best performance. Parameters

ρ0(η), β(η), and γ(η) are derived from simulation, by comparing jets in the

same dijet events reconstructed with and without the pile-up overlay. With a

pile-up of 20 interactions, Chybrid ≈ 0.85 for central jets with pT = 30 GeV/c,

and the correction factor approaches 1 as the jet pT increases.

When applied to recorded events, the pile-up correction is slightly modified by

adding a scale factor to the expression in parentheses in Eq. (3.26). This scale

factor accounts for a difference between expected and observed contribution

from pile-up.

At the second step, a simulated-response calibration is applied. It is derived

purely from simulation and corrects the energy of a reconstructed jet such that

on average is equals the energy of the corresponding particle-level jet. Particle-

level jets are clustered, applying the same algorithm as for reconstructed jets,

from all stable simulated particles that stem from the nominal pp collision

in a bunch crossing, except for neutrinos. They are matched to the closest

reconstructed jets within a cone of size ∆R = 0.25. The correction factor

is derived as a function of the jet transverse momentum (with the pile-up

correction applied) and pseudorapidity. For jets with pT = 30 GeV/c, this

correction factor is about 1.1 in the barrel and increased up to 1.3 in the

forward region.

Lastly, residual corrections are applied to recorded data in order to account for

small differences between the data and simulation. The corrections are derived

in two steps. First, the residual dependence of the jet response on the pseudo-

rapidity is measured in dijet events. In selected events, one jet is restricted to

the barrel region |η| < 1.3, where the response is stable. The second jet scans

the whole pseudorapidity range. By studying the balance between the two jets,
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the response as a function of the pseudorapidity is measured relative to the av-

erage response in the barrel. This is done in several bins in jet pT. After the

derived intermediate correction is applied, an absolute pT calibration is per-

formed using jets in the barrel. Samples of Z → µ+µ− + jet, Z → e+e− + jet,

γ + jet, and multijet events are exploited. In the first three samples, the jet is

balanced against the Z boson or the photon, and the calibration profits from

a good energy resolution of the reconstructed vector boson. In multijet events,

a high-pT jet in the barrel region is balanced against a system of two or more

jets with lower transverse momenta. This allows to access larger values of pT

than can be done with Z/γ+ jet events. The pT corrections are derived with a

global fit combining all four samples. The overall residual corrections are less

than 3% in the barrel, less than 10% in the endcaps, and about 10% in the HF,

with an exception of the transition region 3.0 . |η| . 3.2 where the corrections

reach 20%.

Uncertainties of the full JES corrections are shown in Fig. 3.10. Typical values

are below 1% in the central region. For most of jets considered in this search

the uncertainties do not exceed 2%.

The JES correction addresses the average jet response but not the jet energy

resolution (JER), which characterizes the variation of the response. In simula-

tion, the resolution is derived from the spread of the distribution of pT/p
gen
T ,

where pgen
T is the transverse momentum of a particle-level jet and pT is the

corrected transverse momentum of the matched reconstructed jet, with the

matching done as described above. As shown in Fig. 3.11 (a), the resolution

in simulation is about 20% for jets with pT = 30 GeV/c and a pile-up of 20

interactions. The JER is also measured in recorded data, using dijet and γ+jet

events. Similarly to the JES calibration, the measurements profit from the bal-

ance conditions between the two jets or the photon and jet. The resolution is

observed to be worse than expected from simulation, by up to 10% in the barrel

and up to 40% elsewhere (see Fig. 3.11 (b)). This discrepancy is eliminated by

smearing reconstructed jets in simulation. Their four-momenta are rescaled by

a factor

CJER =
max

(
pgen

T + s(η) · (pT − pgen
T ), 0

)
pT

, (3.27)

where pT is the corrected transverse momentum of the reconstructed jet and

s(η) is the ratio of the resolution in data and simulation, measured as a function

of the jet pseudorapidity.

This search exploits central jets (|η| < 2.4) with pT > 20 GeV/c and forward

jets (2.4 < |η| < 4.7) with pT > 40 GeV/c. The higher threshold in the forward

region is motivated by a mismodelling of the detector response observed there.
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In addition, pseudorapidities of forward jets are modified in order to mask the

mismodelling. This problem will be discussed in detail in Section 4.3.
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Figure 3.10: Uncertainties of JES corrections [100]. The ones considered in
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number of overlapping pp collisions. Right: Difference between JER in data
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3.6.4 Identification of b-quark jets

The signature of the signal process considered in this search includes b quarks.

It is thus important to identify reconstructed jets that stem from fragmentation

of b quarks. This identification [101] is performed based on tracks associated

with a jet. Due to the tracker coverage, the algorithm is restricted to jets with

|η| < 2.4.

A subset of CTF tracks is exploited to deliver the b-tagging decision about

a given jet. A track is associated with the jet if it falls within a cone of

size ∆R = 0.3 around the jet axis and its spatial distance from the axis at

the point of closest approach is sufficiently small. The track is required to

satisfy a selection that identifies well-reconstructed high-purity tracks. It must

have pT > 1 GeV/c, contain enough hits in the whole tracker and the pixel

detector alone, and pass a selection on the χ2 fit quality. Based on the impact

parameters, the track must also be loosely compatible with the first primary

vertex. In addition, the decay length, which is defined as the distance from

the primary vertex to the point of closest approach of the track to the jet axis,

must be smaller than 5 cm.

The b-tagging can be done with tracks alone, by judging the presence of

B hadrons from larger impact parameters of the tracks of their decay products.

However, its performance can be improved if secondary vertices corresponding

to B hadrons are reconstructed and their properties are analysed. When this

is done, a tighter selection is applied to tracks in order to reduce the combi-

natorial complexity. Secondary vertices are reconstructed with the help of the

same adaptive vertex fitting algorithm as used to reconstruct primary vertices,

profiting from its robustness in the presence of outliers. The reconstruction

is performed in an iterative manner. At each iteration, the algorithm finds a

vertex and ranks tracks based on their compatibility with the vertex by as-

signing them weights (3.15). All tracks that receive weights larger than 1/2,

are removed from subsequent iterations. The procedure is repeated until no

new vertex candidates are found. Reconstructed secondary vertices are then

subjected to a selection. A secondary vertex is rejected if it shared more than

65% of tracks with the primary vertex or statistical significance of the radial

distance between the two vertices is not larger enough. An additional selec-

tion on the maximal radial distance to the primary vertex and the mass of the

secondary vertex is applied to suppress vertices formed by decays of long-lived

mesons, such as K0, or interactions of particles with the detector material.

Finally, the flight direction of the B hadron candidate, which is approximated

by a straight line drawn from the primary to the secondary vertex, must lie

within a cone of size ∆R = 0.5 around the jet axis.
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Properties of the reconstructed secondary vertices and track-based information

are utilized in the multivariate combined secondary vertex algorithm (CSV),

which is exploited in this search. It uses such characteristics of the vertices

as the significance of the flight distance, vertex mass, number of tracks asso-

ciated with the vertex, the ratio of the total momentum of these tracks to all

tracks in the jet, and others. If no secondary vertex is found for a jet, the algo-

rithm attempts to construct a “pseudovertex” by grouping tracks with impact

parameters of a large significance. Some of the input variables, such as the

vertex mass, can still be calculated in this case. If even the “pseudovertex”

cannot be reconstructed, the algorithm restricts itself to purely track-based

observables, such as number of tracks associated with the jet and significances

of three-dimensional impact parameters of the tracks.

Several working points are available for the CSV algorithm. In this search the

tight one is exploited. Fig. 3.12 shows the corresponding b-tagging efficiencies

measured in simulation in this analysis. Typical probability to accept a b-quark

jet is about 55%, while the probability to incorrectly accept a light-flavour jet,

which stems from an u, d, or s quark or a gluon, is of the order of 0.1%.
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Figure 3.12: Efficiencies of b-tagging as determined from simulation.

3.6.5 Missing ET

The final state of the signal process considered in this search includes a semilep-

tonically decaying top quark, t→ b`ν. Although the neutrino produced in this

decay cannot be detected, its presence can still be inferred by implying mo-

mentum conservation in the plane transverse to the beam axis. The potential

imbalance of measured momentum is described by the missing transverse en-
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ergy 6ET. It is found as

~6Euncorr.

T = −
∑
i

~pT(i), (3.28)

where ~pT(i) is the vectorial transverse momentum of PF candidate i, and the

sum runs over all PF candidates, including those that have been identified by

the CHS procedure. In order to better approximate the true missing momen-

tum, several additive corrections are applied to this quantity [100].

First correction profits from the improved description of the detector response

obtained through the JES calibration. For instance, it allows to account for the

non-linearity of the calorimeter response for jets. The correction is calculated

as
~CJES = −

∑
j

(
~p full

T (j)− ~pPU
T (j)

)
, (3.29)

where ~p full
T (j) and ~pPU

T (j) are vectorial transverse momenta of jet j with full

and only pile-up corrections applied, respectively, and the sum runs over all

jets with pfull
T > 10 GeV/c. The threshold is motivated by the domain of

validity of the JES corrections. Essentially, this 6ET correction removes from

the sum (3.28) PF candidates clustered into jets and replaces them with the

jet momenta, while keeping the contribution from pile-up.

Contribution to the sum (3.28) from pile-up candidates can be split into three

components:
~6E PU

T = ~6E CHS

T + ~6E no PV

T + ~6E neutral

T , (3.30)

which represent, respectively, particles identified by the CHS procedure, re-

maining charged pile-up particles that are not associated to any primary ver-

tex and thus cannot be recognized by the CHS, and neutral pile-up particles.

The probability to produce neutrinos in an inelastic pp interaction is small,

and therefore in ideal conditions 6E PU
T = 0. However, an apparent momentum

misbalance is caused by detector response to neutral particles, whose energies

are measured with an inferior precision compared to charged ones. To profit

from the precise measurement of the CHS component, the momentum balance

is imposed in the overlapping pp collisions, and the remaining two components

of the 6ET are estimated as

~6E neutral

T + ~6E no PV

T = −R · ~6E CHS

T , (3.31)

where the proportionality factor R accounts for the detector response. It is

derived from simulation and parameterized as a function of 6E CHS
T . Then the full

estimated pile-up contribution is removed from the total 6ET with a correction

~CPU = −
(

1−R
(
6E CHS

T

))
· ~6E CHS

T . (3.32)
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Although a uniform distribution is expected for the azimuthal angle of ~6ET,

some modulation has been observed in both recorded data and simulation. It

is caused by imperfect detector alignment, inefficiencies in individual detector

modules and cells, a residual φ dependence in calibrations, and a shift of the

beam spot from the nominal position. The φ asymmetry is more pronounced

for larger pile-up. It is corrected by a summand

~Cφ = − (~c0 + ~cv · nPV) , (3.33)

where nPV is the number of reconstructed primary vertices, which serves as an

estimate of the amount of pile-up, and parameters ~c0 and ~cv are determined

from samples of Z → µ+µ− events. This correction is different between data

and simulation.

Finally, the corrected missing ET is calculated as

~6ET = ~6Euncorr.

T + ~CJES + ~CPU + ~Cφ. (3.34)

In Ref. [100] 6ET resolution is studied in Z(→ ``)+jets and γ+jets events. The

measurements profit from an accurate determination of momenta of Z bosons

and photons and the absence of genuine 6ET, balancing the vector boson against

the hadronic recoil, which gives the dominant contribution to the 6ET resolution.

Effectively, ~6ET is recalculated from PF candidates of the hadronic recoil and

compared to the transverse momentum of the vector boson ~qT. Resolution

is calculated independently for parallel and perpendicular components of the

hadronic recoil, u‖ and u⊥, which are defined in Fig. 3.13. Obtained results

are presented in Fig. 3.14 as functions of the vector boson momentum qT.

~6ET

~qT

~uT

u‖

u⊥
(x, y) plane

Figure 3.13: Transverse momentum balance in a Z/γ+jets event. Here ~qT and

~uT are momenta of the vector boson and the hadronic recoil.
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Figure 3.14: 6ET resolution curves for parallel (left) and perpendicular (right)

components of the hadronic recoil [100].

3.7 Reconstruction of neutrino

This search targets events that contain single semileptonically decaying top

quarks. A special procedure is needed to reconstruct the top quarks since

their decay products include undetectable neutrinos. Only events with single

charged leptons are considered. The lepton is identified with the one from the

t→ b`ν decay, and it is assumed that the accompanying neutrino provides the

dominant contribution to the measured 6ET. Although the transverse momen-

tum of the neutrino can be approximated as ~pT(ν) ≈ ~6ET, the z component of

its momentum is unknown. It is determined by imposing the W boson mass

constraint

(E(`) + E(ν))2 − (~p(`) + ~p(ν))2 = m2
W , (3.35)

following an approach described in Ref. [102]. This requirement leads to a

quadratic equation for the z component pz(ν), whose solutions are

pz(ν) =
Λ · pz(`)
p2

T(`)
±
√

Λ2 · p2
z(`)

p4
T(`)

− E2(`) · p2
T(ν)− Λ2

p2
T(`)

, (3.36)

where

Λ =
m2
W

2
+ ~pT(`) · ~pT(ν). (3.37)
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The solutions are first evaluated taking ~pT(ν) = ~6ET. If the radicand is positive,

two real-valued solutions are present, and the one that is smaller in absolute

value is chosen. This preference is motivated by a comparison to the true mo-

mentum of the neutrino from top quark decays performed in simulated events.

However, in some cases the quadratic equation does not have real-valued so-

lutions for ~pT(ν) = ~6ET. As can be shown, this is equivalent to the relation

mT(W ) > mW , where the transverse W boson mass mT(W ) is defined as

m2
T(W ) ≡ (pT(`) + pT(ν))2 − (~pT(`) + ~pT(ν))2 =

2 pT(`) pT(ν) · (1− cos ∆φ(`, ν)). (3.38)

If momenta of the charged lepton and the neutrino were known exactly and

the W boson was on its mass shell, the condition mT(W ) 6 mW would hold.

The main reason it can be broken is the experimental resolution of 6ET. To

find pz(ν) under these circumstances, ~pT(ν) is allowed to depart from ~6ET.

It is modified to make the radicand in Eq. (3.36) zero while minimizing the

Euclidean distance |~pT(ν)− ~6ET|. The z component of the neutrino momentum

is then calculated as pz(ν) = Λ · pz(`)/p2
T(`), setting ~pT(ν) in Eq. (3.37) to the

found value.

For the purpose of reconstruction of the semileptonically decaying top quark,

~pT(ν) is always set to the measured ~6ET, regardless of whether the solutions (3.36)

are real-valued or not.
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The final state of the signal process considered in this search includes a top

quark and a Higgs boson. The search targets the H → bb̄ decay, which has

the largest branching ratio of about 58% for a Higgs boson with a mass about

125 GeV/c2 [27]. In order to suppress the abundant multijet background, only

semileptonic decays of the top quark are considered. Moreover, no attempt

to reconstruct τ leptons is made, and only final states with a muon or an

electron are selected. Fig. 4.1 shows an example Feynman diagram with all

decays. The muon or electron from the top quark decay is complemented by

neutrino, which creates a moderate 6ET. There are four b quarks, three of which

stem from decays of the Higgs boson or the top quark. The forth b quark

sometimes has a small transverse momentum or falls outside of the tracker

coverage, and thus it is not always registered as a b-quark jet. The quark q′

recoils against the W boson and has a prominent non-central distribution in

pseudorapidity [22], which is a feature shared with the t-channel production of

single top quarks [103]. Finally, additional jets can be produced in initial- and

final-state radiation. This experimental signature of signal events defines the

event selection and determines the list of most important background processes.

4.1 Simulation

Properties of signal and background processes are predicted with the help of

Monte Carlo simulation (MC). This section discusses the simulation in general

and provides specific details about the datasets exploited in this search.

83
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q
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q′

b̄

b

b̄

b

`+

ν

W

b

t
H

W

Figure 4.1: Example Feynman diagram for tHq production with all decays

shown.

4.1.1 Event generation and detector simulation

First, an event stemming from the process of interest is generated. Starting

from the pp collision, it is developed until stable and long-lived particles are

produced, which can reach the detectors. A number of methods are exploited

in the event generation, and a review can be found in Ref. [21, Chapter 40].

The event generation is followed by simulation of the detector response to the

produced particles. The whole sequence is briefly summarized below.

The event generation is typically factorized into several steps, which are char-

acterized by different energy scales. It starts by considering the collision of

individual partons, or the hard interaction, at a scale µ � ΛQCD, where

ΛQCD ∼ 200 MeV is the characteristic QCD scale. By calculating Feynman

diagrams, the collision can be described up to a fixed order in the perturbative

expansion in the QCD or electroweak coupling constants. The matrix element

(ME) created from amplitudes corresponding to the Feynman diagrams, fully

describes distributions of particles in the final state for a given initial state.

To produce the final distribution, the matrix element is convoluted with the

proton parton distribution functions (PDF) [21, Chapter 19]. The resulting

multidimensional distribution is then sampled with a Monte Carlo method to

generate the desire number of parton-level events.

Partons in the generated hard-scattering events undergo repeated 1→ 2 branch-

ings, producing parton showers (PS). The branching probabilities are given by

the Dokshitzer-–Gribov—Lipatov—Altarelli-–Parisi (DGLAP) equations [104–
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106], which are derived in the collinear approximation and thus do not de-

scribe large-angle emissions accurately. As a final-state shower evolves, the

associated energy scale decreases until a cut-off value µ0 ∼ 1 GeV is reached

and the shower is stopped to avoid entering in the non-perturbative regime.

On the other hand, initial-state showers start from a low scale and then reach

the scale of the hard scattering. But since their outcome, which is the initial

state of the matrix element, is known, it it more practical to model them in

the decreasing order in the scale by reversing the DGLAP evolution equations.

At a scale µ ∼ ΛQCD the confinement takes place, and the coloured particles

produced in the parton showers form colourless hadrons. Since the perturba-

tion theory breaks down at low energies, it cannot be deployed to describe

the hadronization from first principles. Instead, several empirical approaches

exist, of which the most widely used is the Lund string model [107, 108]. The

model assumes that the potential of the colour field produced by a pair of

colour-connected quarks depends linearly on the distance between them. This

is effectively described by a string with a tension κ ∼ 1 GeV/fm that connects

the two quarks. As the quarks move apart, the string stretches, and when

it has deposited a sufficient energy, it can break into two strings producing a

quark-antiquark pair. Each of the resulting strings can break in its turn. The

produced pairs of quarks then hadronize into mesons. Also baryons can be

formed if a pair of diquarks is created at a string break. In a more complex

configuration when a pair of quarks is indirectly connected in colour via one

or more intermediate gluons, the string starts from one quark and ends at the

second one, while passing by the gluons. Each gluon is thus connected to two

segments of the string, forming a transverse kink. To first approximation, each

segment fragments in a way similar to the qq̄ string.

At the last step of event generation, primary hadrons produced in the hadroniza-

tion are decayed according to branching ratios measured in experiment. An-

gular distributions of their decay products are often described in a simplified

way. The final list of particles includes only stable ones and those that live

long enough to reach the detector, such as pions and kaons.

Detector response to the generated particles is simulated with the help of the

Geant 4 program [109,110]. The particles are propagated through the detector,

using a detailed description of its geometry. Interactions with the detector

material are simulated taking into account an exhaustive list of contribut-

ing processes. It includes but is not limited to ionization, multiple scatter-

ing, bremsstrahlung, photon conversion, absorption of hadrons, and inelastic

hadron–nucleus scattering. Simulation of additional pp collisions is overlaid

with primary signals to model the effect of pile-up. To take the out-of-time
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pile-up into account, additional collisions are admixed not only in the nom-

inal bunch crossing but also in several bunch crossings before and after the

nominal one. Based on the signals in sensitive elements of the detector, elec-

tronic read-out is simulated, and this information is used to perform the event

reconstruction, which was described in the previous chapter.

4.1.2 Signal process

Out of the three modes of the tH production introduced in Section 1.2.1, only

the dominant t-channel process (see Fig. 1.2) is considered. MadGraph 5.1.5.11 [111]

is exploited to generate signal events pp → tHb̄j, with subsequent decays

H → bb̄ and t→ b`ν, ` = e, µ, τ . Here the t̄Hbj final state is also implied, and

j denotes any quark except for b and t. At NLO there is an interference with

the s-channel process. To remove it, Feynman diagrams with W -boson reso-

nances are excluded from the definition of the signal. The four-flavour scheme

is used, i. e. b quarks do not contribute to the proton structure functions. Com-

pared to the five-flavour scheme, it is known to reproduce exclusive observables

better [34,112].

Masses are set as follows: mH = 125.0, mt = 172.5, mb = 4.8 GeV/c2. Model

parameters are further modified by flipping the sign of the top quark Yukawa

coupling. The factorization and renormalization scales are fixed to 100 GeV, or

approximately (mH +mt)/3, as suggested by authors of Ref. [26] in a private

communication.

Parton-level events produced by the MadGraph generator are showered and

hadronized using Pythia 6.4.26 [113] with the Z2∗ tune [114]. Decays of τ lep-

tons are handled by the Tauola 2.7 package [115], which improves description of

angular distributions of decay products. The PDF set used is CTEQ6L1 [116].

The dataset is normalized to a cross section of 234+5
−0 fb [26], excluding branch-

ing ratios of H → bb̄ and t → b`ν decays. It is calculated at the NLO pre-

cision in αs. The uncertainty corresponds to a variation of the renormaliza-

tion/factorization scale.

In addition to the target tHq production with yt = −1, the corresponding

SM process has been studied. Fig. 4.2 provides several example distributions

obtained with samples of parton-level events. It includes transverse momenta

and pseudorapidities of the top quark, the Higgs boson, and the recoil quark q′

(figures (a) to (d)), the invariant mass of the tH system (e) and the cosine

of the angle between the lepton from the decay t → b`ν and the recoil quark,
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Figure 4.2: Example parton-level distributions for tHq production with

yt = ±1.
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calculated in the rest frame of the tH system, (f). As can be seen, the distri-

butions differ between the two cases, sometimes drastically. For this reason, it

has been decided to focus the search on the yt = −1 case exclusively and not

to attempt to reinterpret it for other values of the Yukawa coupling.

4.1.3 Top quark pair production

As will be shown in Section 4.4, tt̄ is by far the dominant background. A

sample of pp→ tt̄ events, with up to three additional quarks or gluons, is gen-

erated using MadGraph 5.1.4.8. The renormalization and factorization scales

are adjusted dynamically, as will be discussed below. Parton showering and

hadronization are modelled in the same way as for the signal process. The cross

section is 246+6
−8 (scale)±6 (PDF) pb [117], calculated at the NNLO+NNLL ac-

curacy.

Inclusion of additional partons in the final state of the matrix element allows to

describe large-angle emissions accurately. On the other hand, soft and small-

angle emissions lead to divergences in the ME calculation and thus must be

described through parton showers. In general, the choice between the two ap-

proaches is ambiguous. Same n-jet configuration can be produced from an

appropriate n-parton ME final state through soft and collinear radiation or

from a final state with n − 1 partons where a hard emission creates an addi-

tional jet. This double counting is avoided with the help of the kT-jet MLM

prescription [118, 119], which also sets renormalization scales of QCD vertices

in the ME and PS in a consistent manner.

The infrared and collinear divergences in the ME are excluded by requiring

that the kT distance [91] between each pair of partons in the final state, as

well as pT of each of them, is larger than a threshold qME
cut = 20 GeV. Then

the final state is clustered using the kT algorithm in an attempt to reconstruct

the effective history of emissions. Only clusterings that are compatible with

Feynman diagrams included in the ME, are allowed, and this is done before

the top quarks are decayed. The clustering proceeds until the central 2 → 2

scattering is recovered. Although typically the two top quarks are included

in the two different final branches of the central scattering, they can also be

clustered in the same branch if the tt̄ system is boosted. Profiting from the

recovered emission history, the renormalization scale µR in each QCD vertex

is set to the kT measure of that vertex. The factorization scale µF is chosen as

the kT measure of the central 2→ 2 scattering.

At the next step, the event is showered, setting µF as the starting scale of the

shower. Created partons, excluding those that originate from the top quarks,
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are clustered into jets using the kT algorithm with a maximal allowed separation

of qcut = 40 GeV. Then the n partons in the ME final state are iterated in the

decreasing order in pT. At each iteration the current parton is matched to the

closest jet in the kT metric, with a maximal allowed separation of qcut. This

jet is not considered for matching in the subsequent iterations. If some of the

ME partons cannot be matched to a jet, the event is rejected and thus does

not enter the final dataset. This can happen, for instance, if two ME partons

are not separated enough and produce a common jet after the PS. Such event

should be rejected because the same jet configuration can be reproduced from

a final state with n− 1 partons. In addition to the requirement that every ME

parton is matched to a jet, no unmatched jets are allowed in events with n < 3.

On the other hand, for n = 3, which is the highest multiplicity considered in

the sample, additional jets are allowed as long as their kT separation from the

closest ME parton is smaller than the minimal separation between ME partons

in the event. After this filtering, the simulated sample provides a consistent

description of both hard and soft emissions.

Because of the multiple b quarks in the final state of the signal process, it is

useful to classify tt̄ events based on the number of additional b-quark jets. This

is done using the same approach as the one applied in Ref. [120] in the H → bb̄

decay channel. The procedure operates with b and c quarks found in the event

after the parton shower. Products of t→ bW and W → cs decays are removed

from the list of partons. Each parton is matched to the closest reconstructed

in the ∆R metric, with a maximal distance of 0.5. A jet is then identified as

a b- or c-quark jet if there is at least one quark of the given flavour matched

to it, with the precedence given to b quarks. Finally, the event is classified as

tt̄bb̄, tt̄b, or tt̄c(c̄) if it contains at least two b-quark jets, exactly one b-quark

jet, or at least one c-quark jet, respectively. These three classes are collectively

referred to as the tt̄+ HF category. All remaining events are attributed to the

tt̄+ LF category.

4.1.4 Minor backgrounds

In addition to the tHq and tt̄ production, a number of backgrounds with smaller

impacts are considered in this search. The list of processes, together with

event generators used to model the hard scattering, is provided in Table 4.1,

which includes also tHq and tt̄ for the sake of completeness. Predominantly,

LO generators are exploited, although subprocesses with additional quarks or

gluons in the final state of the hard scattering are included in some cases.

The only exception is single top quark production, which is modelled at the



90 Chapter 4. Datasets and event selection

Table 4.1: Processes simulated in this study. LO cross sections are calculated

directly by the event generator. When the cross section is calculated by the

CMS collaboration, only a reference to the tool used is provided.

Process Generator Cross section

tHq MadGraph 234 fb NLO [26]

tt̄ MadGraph 246 pb NNLO+NNLL [117]

tt̄H Pythia 6 130 fb NLO [27]

t, t-channel POWHEG 87 pb approx. NNLO [125]

t, tW -channel POWHEG 22.2 pb approx. NNLO [125]

t, s-channel POWHEG 5.6 pb approx. NNLO [125]

W → `ν MadGraph 37.5 nb NNLO [126]

Z/γ∗ → `+`− MadGraph 3.5 nb NNLO [126]

WW Pythia 6 55 pb NLO [127]

WZ Pythia 6 13 pb LO

ZZ Pythia 6 5.2 pb LO

NLO accuracy using the POWHEG framework [121–124]. Regardless of the

generator used for the hard scattering, parton showers and hadronization are

modelled with the help of Pythia.

In some auxiliary studies, the processes listed in Table 4.1 are accompanied

by simulation of non-prompt production of muons or electrons. This com-

ponent receives contributions from multijet events, where the leptons can be

produced in decays of hadrons, and production of prompt photons, which can

then undergo conversion in the detector material creating electrons. The two

contributions are generated with Pythia and MadGraph respectively. In order

to save computing resources, a filtering is applied to multijet events, rejecting

those that are unlikely to contain well-identified muons or electrons after the

event reconstruction.

4.2 Corrections to simulation

Generally, MC simulation needs to be tuned in order to describe recorded data

precisely. In part, the required adjustments are incorporated into low-level

calibrations and definitions of physics objects, an example of which is the JER

smearing discussed in Section 3.6.3. This section describes several remaining

corrections that are implemented as per-event weights.
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The pile-up profile imposed in simulated samples does not agree exactly with

the one observed in data. It is deduced from measurements of average instan-

taneous luminosity in each luminosity section [128], taking into account the

(effective) total cross section of inelastic pp scattering. Simulated events are

then weighted to reproduce the data distribution in the number of additional

pp interactions.

There are some differences between data and simulation in efficiencies of lepton

identification and trigger selection, which were presented in Section 3.6. The

reported efficiencies were measured in samples of Z → `+`− events [93, 95]

using the tag-and-probe method [129], and they are parameterized by lepton

transverse momentum and pseudorapidity. To correct for the difference in

efficiencies, each simulated event is assigned a weight equal to the ratio of the

efficiencies in data and simulation, evaluated with pT and η of the only tight

lepton found in the event.

From measurements of the differential cross section of tt̄ production [130, 131]

it is known that the adopted approach to generate tt̄ events leads to a harder

top quark pT spectrum than observed in data. This mismodelling is fixed by

assigning each tt̄ event an additional weight

wtop pT =
√
ea+b·pT(t1) · ea+b·pT(t2), (4.1)

where pT(t1,2) are transverse momenta of the two top quarks, as read from the

generator content of the event, and a and b are parameters obtained from the

differential measurements.

Performance of the b-tagging algorithm is observed to be slightly inferior to

what is expected from simulation [101]. This problem is addressed by the last

correction, which exploits ratios of b-tagging efficiencies in data and simulation,

or b-tagging scale factors, measured in Ref. [132] and shown in Fig. 4.3. For

a given simulated event, the probability to reproduce the observed b-tagging

configuration is

PMC =
∏

i∈tagged

εi ·
∏

j /∈tagged

(1− εj), (4.2)

where εi is the b-tagging efficiency for jet i, as measured in simulation, and

the first (second) product is calculated over b-tagged (not b-tagged) jets. The

probability to reproduce the same b-tagging configuration with efficiencies as

in data reads as

Pdata =
∏

i∈tagged

siεi ·
∏

j /∈tagged

(1− sjεj), (4.3)

where si is the scale factor for jet i, which depends on jet pT, |η|, and flavour.

The flavour of a jet is determined by PS partons that are found in a cone of
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size 0.3 around the jet axis, giving precedence to heavier partons. The event is

then assigned a weight

wb tag = Pdata/PMC =
∏

i∈tagged

si ·
∏

j /∈tagged

1− sjεj
1− εj

. (4.4)

The b-tagging efficiencies that enter this formula are determined from simula-

tion after the full event selection but b-tagging requirement is applied. They

are parameterized by jet pT, |η|, and flavour and derived independently for

each process with a significant contribution.
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Figure 4.3: Difference in b-tagging efficiencies between data and simulation.

The scale factors are derived in a single bin in jet pseudorapidity.

4.3 Mismodelling of jet pseudorapidity

An evident mismodelling of the jet distribution in pseudorapidity has been

observed in this search. Fig. 4.4 (a) demonstrates a discrepancy in the 2t region,

which is a control region dominated by tt̄ events and will be defined in the next

section. The pseudorapidity of the most forward jet in an event, shown in the

figure, is an especially important observable in this search because the presence

of a forward jet is a distinctive feature of the sought-for signal.

The main features of the discrepancy are a prominent depression in the data-

to-simulation ratio at |η| ∼ 2.7, a steep slope in the |η| & 3 region, and a

smaller slope in the central region. The same behaviour is observed also in

two other control regions that are dominated by the Drell–Yan process and

W boson production, and therefore the problem can be attributed to either
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Figure 4.4: Mismodelling of the pseudorapidity of the most forward jet in an

event in the 2t region. In the left-hand plot a non-standard jet definition is

used, loosening the pT selection to pT > 20 GeV/c throughout the pseudora-

pidity range. In the right-hand plot the variable jet pT threshold introduced in

Section 3.6.3 is used, and a wide binning is applied in the forward region. The

hashed area displays the impact of JES systematic uncertainty. Simulation is

normalized to observed event yield.

detector simulation or event reconstruction. As shown in Fig. 4.4 (a), the

disagreement is not covered by systematic uncertainties in jet energy scale. A

further investigation has revealed that it does not vanish when the jet pile-

up ID [133] is applied or the CHS is disabled in the reconstruction.

The behaviour in the |η| & 3 region can be understood as an effect of binning

adopted for the residual jet energy corrections. They suffer from statistical

uncertainties in the forward region, and because of this the corrections are

derived in a single bin for jets with |η| > 3.14. As a result, the data-to-

simulation ratio in this domain is corrected on average only, and there is no

guarantee that details of the distribution within the region are reproduced

accurately.

The depression at |η| ∼ 2.7 is likely to be connected to a bias in jet pseudo-

rapidity. As shown in Fig. 4.5, there is a systematic difference between the

reconstructed jet η and the pseudorapidity of the corresponding particle-level

jet. This results in a migration of jets with particle-level |η| ∼ 2.5 or 3.1

to reconstructed |η| ∼ 2.7, creating a local excess in the jet distribution. A

qualitatively similar, albeit smaller, migration has been observed in a limited

production of improved simulation that profits from a better description of
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detector conditions and fixes a known problem in the simulation of the electro-

magnetic calorimeter [134]. Junging from a more accurate description of the

data provided by this simulation, the η migration is assumed to be responsible

for the depression.
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Figure 4.5: Difference between pseudorapidities of a reconstructed jet and the

particle-level jet matched to it (left-hand plots) and the standard deviation of

the difference (right-hand plots). In the upper row, the quantities are plotted

as functions of the reconstructed jet pT and η while in the lower row η of the

matched particle-level jet is used instead. The matching is performed as in

Ref. [133].

Although the jet η bias can be measured in simulation, studying it in data is

a complicated task, and for this reason no attempt to correct for the bias has

been made. However, Fig. 4.5 reveals that the jet migration is mostly restricted

to the region 2.4 . |η| . 3.2, altering details of the distribution in η inside the

region but not affecting the overall normalization in the area. To make the

analysis insensitive to the migration, the whole region is treated as a single

bin in pseudorapidity, allowing the analysis to access the overall number of jets
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in the region but masking mismodelled details of their distribution. Similarly,

jets with |η| > 3.2 are covered by another single bin in order to reflect the

parameterization of jet energy corrections. This also accounts for the smaller

migration of jets with |η| ∼ 3.4 towards larger |η| values.

As will be discussed in detail later, the analysis exploits MVA techniques to

separate the signal from backgrounds, and jet pseudorapidity as well as whole

jet four-momenta are used to construct input variables. In order to emulate

the wide bins, the pseudorapidity of forward jets is modified as follows:

η 7→ η′ =


η if |η| < 2.4,

2.8 · sign(η) if 2.4 < |η| < 3.2,

3.5 · sign(η) if |η| > 3.2.

(4.5)

This transformation is applied to all jets in both data and simulation, before

any observable is calculated, which makes the MVA insensitive to the mismod-

elling of the bias and the response in the most forward region. It alters the

meaning of the jet pseudorapidity turning it into an effective quantity rather

than a physical observable, but this does not jeopardize validity of the mea-

surement since for an MVA-based analysis it is important to have all its inputs

modelled properly whereas they might not have a strict physical meaning. The

transformation could also be viewed as an emulation of a hypothetical detector,

whose calorimeters have no granularity within 2.4 < |η| < 3.2 and |η| > 3.2

regions.

The mismodelling and the jet η bias are more pronounced for jets with smaller

transverse momenta. In order to exclude the most affected domain, only jets

with pT > 40 GeV/c are considered hereafter in the |η| > 2.4 region. As

shown in Fig. 4.4 (b), the higher pT threshold together with the wide binning

in pseudorapidity successfully protect against the mismodelling in the forward

region. In the central region this observable is modelled within a 10% precision

for the bulk of events, which, however, is larger than the uncertainty of jet

energy scale. As will be discussed in Section 6.2.4, this uncertainty can be

doubled without any significant impact on results of the search.

4.4 Event selection

Semileptonic decay of the top quark in the targeted experimental signature is

the most prominent feature that allows to discriminate signal events from the

overwhelming multijet background, which is therefore exploited in the trigger

selection. Depending on the flavour of the lepton, events are attributed to
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either muon or electron channel. In the muon channel, an event is accepted by

the trigger if it contains a muon with pT > 24 GeV/c and |η| < 2.1, while in the

electron channel the presence of an electron with pT > 27 GeV/c and |η| < 3 is

required. In both cases the lepton must additionally meet a set of identification

requirements resembling those introduced in Section 3.6. The two triggers were

not prescaled during the whole period of 2012 data taking and accumulated an

integrated luminosity of 19.7±0.5 fb−1 each. Their decisions are also emulated

for simulated events, which are required to pass the trigger selection.

The remaining event selection is described in terms of physics objects defined

in Section 3.6. It starts by requiring that an event contains exactly one muon

(electron) that meets the tight selection and additionally has pT > 26 GeV/c

(30 GeV/c). In order to suppress contribution from the Drell–Yan process and

other backgrounds where multiple prompt leptons are produced, the event is

rejected if it contains additional loose leptons of any flavour.

The final state of the signal process includes four b quarks (see Fig. 4.1), one of

which might escape detection, as it was mentioned above. Therefore, the event

selection requires the presence of either three or four b-tagged jets. The two

possibilities are considered independently and eventually define two different

selection bins, which are hereafter referred to as 3t and 4t regions. Occa-

sionally, a version of the event selection with exactly two b-tagged jets is also

used as a tt̄ control region. In this 2t region events are additionally required

to contain at least three jets with |η| < 2.4 (they include the two b-tagged

jets), which is needed in order to calculate some of observables that will be

discussed in the next chapter. Furthermore, in all the three regions an event

must contain at least one jet that fails the b-tagging requirement, which allows

to accommodate for the recoil jet and possible radiation. As can be seen from

Fig. 4.6, it is important that jets with relatively small transverse momentum,

down to 20 GeV/c, are considered in the central region. Although both tHq

and semileptonic tt̄ events usually contain high-pT jets, the low jet pT thresh-

olds are essential to detect all jet decay products of the Higgs boson or the top

quarks.

The small contribution from multijet background that survives the selection

up to this point, is removed efficiently with a requirement 6ET > 35 (45) GeV

in the muon (electron) channel. The tighter selection in the electron channel

is motivated by the generally larger rate of non-prompt electrons. In addition,

an event is required to contain at least four jets with pT > 30 GeV/c. This

suppresses the multijet background even further and also reduces significantly

a contribution from W boson production.

Finally, rare anomalous or problematic events are removed. They can demon-
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Figure 4.6: Distributions of parton transverse momenta in tHq (a, b) and

semileptonic tt̄ events (c, d) after the lepton step of the event selection:

(a) b quarks from decays H → bb̄ and t → b`ν and the softest b quark out

of the three, (b) recoil quark q′, (c) leading and subleading b quarks from de-

cays of top quarks in tt̄, (d) leading and subleading light-flavour quarks from

the hadronic decay of a top quark.

strate a number of types of abnormal behaviour: no primary vertices that

satisfy the quality requirements given in Section 3.2.2, anomalous noise in the

HCAL, unnaturally large apparent energy depositions in few problematic cells

of the ECAL, aborted track reconstruction, coherent noise in the strip tracker, a

spectacular mismatch between the number of tracks and activity in the ECAL,

a jet overlapping with a masked problematic region in the ECAL, a muon

originating from beam halo, and other signatures.

Most important requirements of the event selection are summarized in Ta-

ble 4.2. Event yields after this selection are reported in Tables 4.3, 4.4, and

Figs. 4.7, 4.8 show distributions of several basic observables. In the tables
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Table 4.2: Summary of the event selection to define signal regions.

Muon channel Electron channel

Exactly one tight muon

with pT > 26 GeV/c and |η| < 2.1

Exactly one tight electron

with pT > 30 GeV/c and |η| < 2.5

No additional loose leptons of any flavour

6ET > 35 GeV 6ET > 45 GeV

Three or four b-tagged jets with pT > 20 GeV/c

At least one non-b-tagged jet with pT > 20 GeV/c if |η| < 2.4

and pT > 40 GeV/c otherwise

At least four jets with pT > 30 GeV/c

and figures, the “electroweak” category combines W , Z/γ∗, WW , WZ, and

ZZ production. As can be seen, the selected regions are dominated by the

tt̄ background, with only a small contribution from the signal.

There is a pronounced ∼ 30% difference between observed and expected yields

in the signal regions, which is attributed to an underestimation of the contribu-

tion from the tt̄+HF components. As described in Section 4.1.3, these processes

are modelled at the leading order, as a part of the inclusive tt̄ sample. In the

context of the tt̄bb̄ production, it is known that cross sections of these processes

can be very sensitive to the choice of the µR,F scale and can receive significant

NLO k-factors unless a special choice of the scale and kinematic selection is

made [135]. Experimental studies [136–138] indicate that their contribution

might be underestimated in the exploited simulation, reporting enhancement

of some tens per cent (with large uncertainties). To account for this, additional

systematic uncertainties are assigned to the normalization of tt̄ + HF compo-

nents, as will be discussed in the dedicated section. Observed normalization

factors will be reported in Section 6.3.1.

There is only a limited number of events in the 4t region in data, which is a

consequence of the usage of the tight working point of the b-tagging algorithm.

This can potentially impair the sensitivity of the search through the increased

statistical uncertainties. A looser working point has been checked by perform-

ing the whole analysis, up to the calculation of the expected upper limit on

the signal cross section, with the modified definition of a b-tagged jet. This

resulted in a weaker limit, thereby justifying the choice of the tight working

point.

Contribution from the multijet background in the signal regions, as estimated
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Table 4.3: Observed and expected event yields after the selection in the 3t re-

gion. Only statistical uncertainty is shown for simulation.

Process Muon channel Electron channel

Data 1514 1028

tt̄ 1058±5 718±4

Single top 39±3 27±3

Electroweak 17+
−

7
5 11±7

tt̄H 12.87±0.17 9.35±0.15

Total background 1128±9 767±10

tHq, yt = −1 7.54±0.03 5.15±0.02

S/B ratio 0.7% 0.7%
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Figure 4.7: Distributions of example basic observables in the 3t region. Simu-

lation is normalized to the integrated luminosity.
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Table 4.4: Observed and expected event yields after the selection in the 4t re-

gion. Only statistical uncertainty is shown for simulation.

Process Muon channel Electron channel

Data 48 32

tt̄ 29.1±0.8 19.8±0.7

Single top 1.1+
−

0.8
0.6 1.2±1.0

Electroweak 4+
−

6
4 5+

−
6
4

tt̄H 1.72±0.06 1.43±0.05

Total background 37+
−

6
4 29+

−
7
4

tHq, yt = −1 0.835±0.010 0.580±0.009

S/B ratio 2.3% 2.0%
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Figure 4.8: Distributions of example basic observables in the 4t region. Simu-

lation is normalized to the integrated luminosity.
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with simulation, is negligible. This result is additionally verified with a data-

driven approach based on the so-called ABCD method (see, for instance, Ref. [139]

for a discussion). The cross-check is performed independently for each lepton

channel and b-tag multiplicity. For each signal region, here denoted A, three

additional control regions B, C, D are defined, respectively, by requiring that

the lepton fails the tight selection while passing the loose one, inverting the

6ET selection, or the combination of both. Each of the three regions is rela-

tively enriched in the multijet background, and the numbers of events NB,C,D
stemming from it are found by subtracting from the observed yields expecta-

tions for all remaining processes. The number of multijet events in the signal

region A is then estimated as

NA =
NB ·NC
ND

. (4.6)

This estimation assumes factorization of the distribution of multijet events in

the four regions, which is verified in simulation. The data-driven approach

confirms that the contribution from this process is negligible, and it is ignored

henceforth.

Another minor background that is neglected in this search is the tZq produc-

tion. It occurs through a t-channel exchange of a W boson, similarly to the

production of single top quarks in the t channel (see Fig. 1.1 (a)). The Z boson

can be radiated from any of the four quark lines as well as from the W boson.

With a subsequent Z → bb̄ decay, this process mimics closely the signal signa-

ture. It also has a similar inclusive cross section of about 240 fb (NLO) [140].

However, since the branching ratio of the Z → bb̄ decay is only about 15% [21],

which is significantly smaller than B(H → bb̄) ≈ 58%, the contribution from

the tZq production to the event yields is expected to be factor 4 smaller than

the one from the signal. This process can thus be safely ignored, compared to

other backgrounds.
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Chapter 5
Multivariate analysis

The small signal-to-background ratio after the event selection makes it neces-

sary to apply methods of multivariate analysis (MVA) in order to additionally

discriminate between the tHq production with yt = −1 and its backgrounds.

A number of approaches are used to address similar problems in the field of

high energy physics [141]. In this search, artificial neural networks (NN) have

been adopted. The ultimate result of the MVA discrimination is that each

event is assigned a real-valued number that quantifies its compatibility with

the signal hypothesis as opposed to the background one. This information is

directly exploited in the subsequent statistical inference, without defining any

additional event selection.

The two signal regions, 3t and 4t, differ in background composition as well as

event distributions in kinematic and b-tagging observables. This suggests that

construction of a dedicated neural network for each region might be required in

order to deliver the maximal discrimination power. It has been found, however,

that the improvement with respect to using a single neural network for both

regions is negligible. For this reason, the two regions are considered together

throughout this chapter.

5.1 Artificial neural networks

Artificial neural networks are one of the oldest methods of non-linear multivari-

ate analysis. Over their seventy-year history, a great diversity of approaches has

103
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been developed to address various problems, ranging from function approxima-

tion to visualization of multidimensional data. In the following neural networks

are briefly discussed in the context of a classification problem, while a compre-

hensive overview can be found in Ref. [142]. An implementation provided by

the TMVA package [143] has been used in this search.

The central element of neural networks is an artificial neuron. Historically pro-

posed to model biological neural systems [144], a neuron calculates a response y

to a given vector of inputs x:

y = h

(
n∑
i=1

wixi + w0

)
. (5.1)

Here weights w are parameters of the neuron, and h is the activation function.

Typically, a smoothed step function is used for activation, and in this search

the hyperbolic tangent has been chosen.

A network is formed by connecting several neurons together, such that re-

sponses of some of the neurons are passed as inputs to others. The connection

can be performed in different ways. The most commonly used architecture,

which is also utilized in this search, is the multilayer perceptron with a single

hidden layer. The network is organized into three layers, and outputs of neu-

rons in a given layer are connected to inputs of all neuron in the next layer, as

shown in Fig. 5.1. The input layer (leftmost in the figure) serves as the entry

point of the network and trivially propagates its inputs to neurons of the hidden

layer. Its neurons, in their turn, calculate responses following Eq. (5.1) and

feed them as inputs to neurons of the output layer (rightmost in the figure),

whose responses represent decision of the whole network. In this search neural

networks with a single neuron in the output layer are considered.

x1

x2

y

Figure 5.1: Multilayer perceptron with a single hidden layer.
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A neural network of such architecture can be viewed as a mapping Rn 7→ R,

with the weights being the parameters of the mapping. The number of neurons

in the hidden layer controls its potential complexity. According to the universal

approximation theorem [145–147], a multilayer perceptron with a single hidden

layer can approximate any continuous function on a compact subset of Rn,

provided that a sufficient number of hidden neurons is used. Of a particular

interest in high energy physics are classification problems, where one attempts

to attribute an event to the signal or background process based on a set of

observables x. The problem is typically addressed by constructing a neural

network that, for the given inputs x, yields a response close to 1 for signal-like

events and 0 for background-like ones.

Neural networks are constructed by the means of supervised learning, utilizing

a set of example events with known classification decisions (the training set).

Technically, the construction, or the training, is performed by minimizing a

loss function. A typical choice of the loss function, which is also adopted in

this search, is the mean squared error

E(w) =
1

N

N∑
i=1

(
y(xi;w)− ŷi

)2
, (5.2)

where y(xi;w) is the NN response for event i and ŷi is the desired classification

decision, here chosen to be 1 (0) for signal (background) events. Another com-

monly used loss function is the cross-entropy 1/N
∑
i(−ŷi ln yi − (1− ŷi) ln(1−

yi)), which can be obtained by maximization of the likelihood of correct clas-

sification of the training set. In both cases the response of a trained neural

network approximates the purity ns(x)/(ns(x) + nb(x)), where ns,b(x) are

concentrations of signal and background events at point x.

Typical dimensionality of the w space is O(102−103), and thus minimization of

the loss function is a non-trivial problem. Historically, it was first successfully

solved by the (error) backpropagation algorithm [148]. This is an iterative

minimization algorithm based on the gradient descent. At each iteration, called

epoch, the gradient ∇E is calculated analytically, profiting from the knowledge

of the neuron function (5.1). Then the weights are updated as

w → w′ = w − η∇E, (5.3)

where the learning rate η > 0 is a parameter of the algorithm, which is usually

adjusted during the training. In this search the gradient descent is replaced by

a more advanced Broyden—Fletcher-–Goldfarb—Shanno (BFGS) algorithm.

This is a quasi-Newton method, which makes use of a numerical approximation

of the Hessian matrix to provide a faster convergence.
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The training continues until a minimum of E(w) is reached (so-called exhaus-

tive training). However, since a neural network has a large number of free

parameters, it can potentially describe noise in the training data rather then

the desired underlying relationships. This would result in a poor generalization

ability and, therefore, a larger value of the loss function when calculated on

new data that have not been included in the training. This problem of overfit-

ting is common to all methods based on the supervised learning. In this search

it is addressed in a robust way, by splitting available example events into two

sets. Only the first one, the training set, is utilized to construct the neural

network, while the second testing set is used to measure its performance. As

a consequence of the law of large numbers, an estimation obtained with the

testing set converges to the true value even if the overfitting has occurred. Dis-

tributions of the NN response calculated from the testing set are exploited in

the subsequent statistical analysis.

Although neural networks are capable of approximating very complex functions,

in practice a preparatory transformation of input variables is often helpful to

achieve best performance. In this search observables whose distributions have

long tails, such as transverse momenta and reconstructed masses, are replaced

by their logarithms. In addition, all input variables are linearly transformed to

lie within the range [−1, 1]. After this transformation all input variables have

similar typical scales.

5.2 Jet combinatorics

In order to maximize the performance of the NN discrimination between the

tHq production and backgrounds, an effort should be put into construction

of input variables that provide a good separation between the two classes.

Because of the multijet final state considered in this search and the involved

combinatorics, it is not trivial to define observables that exploit efficiently the

presence of resonances such as Higgs bosons and top quarks. To address this

problem, origin of reconstructed jets is hypothesized in an attempt to identify

whether they stem from decay of a given resonance. Various kinematic and

other properties (e. g. b-tagging information) are exploited to deduce the likely

origin of each jet. Knowing it allows to reconstruct the resonances and define

dedicated input variables, such as the transverse momentum of the Higgs boson,

for example. The procedure is described in detail later in this section.

The signal region is dominated by the tt̄ background, largely with tt̄ → ` +

jets decays. It is thus advantageous to exploit also observables that utilize
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Event selection

tHq MVA reco tt̄ MVA reco

tHq
observables

tt̄
observables

global
observables

tHq vs bkg discrimination

Figure 5.2: Groups of input variables for the neural network for event classifi-

cation.

information on resonances in this process, an example being the mass of the

hadronically decaying top quark. Similarly to what is done in case of the

signal process, a dedicated procedure is applied to find likely origins of jets in

a semileptonic tt̄ event and in this way reconstruct the two top quarks.

In every event that passes the selection summarized in Table 4.2, likely origins

of jets are deduced under the tHq and semileptonic tt̄ hypotheses in parallel,

as shown in the scheme in Fig. 5.2. In each case a set of observables intrinsic

to the assumed hypothesis is constructed. These observables, which will be

discussed in the next section, are used as input variables for the neural network

to discriminate between signal and background events. The procedures for the

jet assignment are described in detail below.

5.2.1 Determination of likely jet origins

The jet assignment under the both hypotheses, tHq and semileptonic tt̄, is

performed following the same general scheme. It is discussed in detail for the

case of the signal hypothesis, and the tt̄ hypothesis is briefly addressed later,

highlighting the differences.

The goal of the procedure is to identify reconstructed jets that correspond to the

four quarks in the final state tHq → 3bq`ν. A signal event passing the selection

contains 5.4 reconstructed jets on the average. The procedure considers all

possible ways to choose four jets and assign them to the four quarks in the

final state. One particular way represents a potential interpretation of the

event. In a simulated signal event it is possible to determine whether a given

interpretation is correct or wrong. If all jets in the interpretation are matched
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to appropriate quarks within a cone of size ∆R =
√

∆η2 + ∆φ2 = 0.3, the

interpretation is considered correct. Otherwise, if the angular distance ∆R from

at least one quark to the jet assigned to it is larger than the threshold 0.3, the

interpretation is wrong. By construction, one reconstructed jet can be assigned

to one quark at maximum. Because not all jets are reconstructed, jets stemming

from different quarks can merge, final-state radiation can alter direction of a

jet, and for other reasons, not every event has a correct interpretation.

To simplify the involved jet combinatorics, a few simple constraints are imposed

during the construction of potential event interpretations. The jets from decays

of the top quark and the Higgs boson are required to be central (|η| < 2.4). In

addition, only jets that are not b-tagged can be assigned to the recoil quark.

These requirements are met by ∼ 99% of correct interpretations, while they

limit the number of wrong interpretations. Still, a signal event has about 60

interpretations on the average.

Each interpretation can be described with a set of observables sensitive to the

choice of the four jets. Several such observables are combined in a dedicated

neural network, which is constructed to distinguish between correct and wrong

interpretations. Every tHq event used for training gives one entry to each of the

signal and background categories: the correct interpretation and one randomly

chosen wrong interpretation. If an event does not have a correct interpretation,

it is excluded from training.

A number of observables have been considered as potential input variables for

the neural network. The candidates, which included basic kinematic properties

of the reconstructed Higgs boson and top quark, various angular correlations, b-

tagging information, and other details, were ranked by their separation power.

The separation power, interpreted here as the divergence between distributions

of correct and wrong interpretations, can be quantified in various ways [149].

Several definitions were utilized, ranging from the unsophisticated area of the

intersection of the two probability density functions to the Jensen–Shannon

divergence, which is related to the Shannon entropy. Finally, 12 input variables

have been chosen based on the ranking and physics value. The first group of

observables is related to the reconstructed Higgs boson: mass, ∆R distance

between the two jets stemming from its decay, number of b-tagged jets among

the two, transverse momentum of the jet with smallest pT, pseudorapidity of

the most forward jet from the decay. The second group is constructed from

identified decay products of the top quark: invariant mass of the b-quark jet

and the lepton, number of b-tagged jets (zero or one), ∆R distance between

the b-quark jet and the reconstructed W boson, product of electric charges of
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Figure 5.3: Distributions of correct and wrong event interpretations in input

variables for the jet assignment under the tHq hypothesis. Part 1.

the jet and the lepton. The jet charge [150] is defined as

Q =
1

pT

∑
i

Q(i) pT(i), (5.4)
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Figure 5.4: Distributions of correct and wrong event interpretations in input

variables for the jet assignment under the tHq hypothesis. Part 2.

where Q(i) and pT(i) are the electric charge and transverse momentum of the

ith PF candidate clustered into the jet, and pT is the jet transverse momentum.

Correlations between the Higgs boson and the top quark are also considered.
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They are represented by the ∆R distance between the two reconstructed objects

and the relative HT, defined as (pT(t) + pT(H) + pT(j′))/HT, where j′ is the

recoil jet and HT is the sum of 6ET and transverse momenta of the lepton and

all reconstructed jets. The last observable used is the pseudorapidity of the

recoil jet. Distributions of correct and wrong interpretations in these input

variables are shown in Figs. 5.3, 5.4.

The neural network is constructed as described in the previous section. In order

to cope with the dimensionality of the problem, 30 neurons are included in the

hidden layer. Distributions of the NN response and the corresponding receiver

operating characteristic (ROC) are provided in Fig. 5.5. A good performance

is evident, with no signs of overfitting.
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Figure 5.5: Distributions of correct and wrong event interpretations for the

jet assignment neural network under the tHq hypothesis (left) and the corre-

sponding ROC curve (right).

The procedure of the jet assignment under the semileptonic tt̄ hypothesis aims

at identifying reconstructed jets that correspond to the four quarks in the final

state tt̄ → 2b2q`ν. Correct and wrong interpretations are defined similar to

what is done for the signal process. The number of wrong interpretations is

limited by a requirement that only central b-tagged jets can be assigned to the

two b quarks. With an average of 5.7 reconstruced jets in a semileptonic tt̄ event

passing the selection, this results in a mean number of about 35 interpretations

per event.

Correct and wrong interpretations are distinguished by an additional neural

network. Its input variables are selected following the same procedure as de-

scribed above. In total, 13 observables are used. Most of them refer to the

hadronically decaying top quark: transverse momentum and pseudorapidity,
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mass of the reconstructed W boson, difference between the masses of the top

quark and the W boson, ∆R distance between the two light-flavour jets, ∆R
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Figure 5.6: Distributions of correct and wrong event interpretations in input

variables for jet assignment under the semileptonic tt̄ hypothesis. Part 1.
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distance between the b-quark jet and the W boson, number of b-tagged jets

among the two light-flavour ones, sum of electric charges of the two light-flavour

jets, multiplied by the charge of the lepton. Other observables are related to

the leptonically decaying top quark: transverse momentum, invariant mass of

the b-quark jet and the lepton, ∆R distance between the jet and the recon-

structed W boson. Finally, there are observables that combine properties of

both resonances: relative HT, defined as (pT(thad) + pT(tlep))/HT, and differ-

ence of electric charges of the two b-quark jets, multiplied by the charge of the

lepton. Distributions of correct and wrong interpretations in these variables

are shown in Figs. 5.6 – 5.8.

The neural network constructed to identify correct interpretations of semilep-

tonic tt̄ events also contains 30 neurons in the hidden layer. Distributions of

its response and the corresponding ROC curve are provided in Fig. 5.9.
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Figure 5.7: Distributions of correct and wrong event interpretations in input

variables for jet assignment under the semileptonic tt̄ hypothesis. Part 2.
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Figure 5.8: Distributions of correct and wrong event interpretations in input

variables for jet assignment under the semileptonic tt̄ hypothesis. Part 3.

The constructed neural networks are exploited to perform the jet assignment

in events that pass the selection. For the hypothesis in question, all possible

interpretations that meet the requirements on b-tagging and centrality, are

constructed. The NN response is calculated for each interpretation, and the one

with the largest response is accepted. The chosen interpretation unambiguously

identifies decay products of the resonances.

It should be emphasized that the developed procedures do not assess the overall

level of compatibility of an event with the assumed hypothesis. Instead, they

find the most likely interpretation of the event even if the compatibility is low.
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Figure 5.9: Distributions of correct and wrong event interpretations for the jet

assignment neural network under the tt̄ hypothesis (left) and the corresponding

ROC curve (right).

5.2.2 Efficiency of the jet assignment

The ROC curves shown in Figs. 5.5, 5.9 illustrate the performance of the dis-

crimination between correct and wrong event interpretations, which, however,

is not related directly to the efficiency of the jet assignment. The latter is quan-

tified by the fraction of cases in which the predicted jet origin agrees with the

true one. The true origin of a reconstructed jet is defined in the following way:

all quarks considered in the hypothesis in question are checked, and the one

with the smallest ∆R distance from the jet is chosen. However, if this distance

is larger than 0.3, the jet is said not to originate from any of the considered

quarks.

The resulting efficiencies are reported in Tables 5.1, 5.2. Three versions are

provided, which differ in what events are utilized to calculate the efficiency:

all events passing the selection (type I in the tables); only events in which the

quark in question has a matching reconstructed jet (type II); only events that

have correct interpretations (type III). Definitions of types I and III can also

be used for groups of quarks, such as decay products of the Higgs boson.

In the ideal case when origins of all reconstructed jets are determined correctly,

the type III efficiencies are 100%. At the same time, type I efficiencies can be

significantly smaller because a quark does not necessarily gives birth to a single

reconstructed jet not overlapping with jets from other quarks. In particular,

the low type I efficiency in case of the tt̄ hypothesis is a consequence of a soft

spectrum of the subleading light-flavour jet (see Fig. 4.6 (d)), whose transverse
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momentum is often smaller than the jet pT threshold. It should also be noted

that in reality the 100% type III efficiency cannot be reached since, due to the

quantum nature of the problem, it is impossible to determine with certainty,

for instance, whether a b quark stems from the decay of the Higgs boson or the

top quark.

Table 5.1: Efficiency of the jet assignment under the tHq hypothesis.

Object(s)
Efficiency, %

I II III

b from t→ b`ν 57 61 66

at least one b from H → bb̄ 86 — 92

both b from H → bb̄ 51 — 65

recoil quark 52 78 79

all four quarks 22 — 44

Table 5.2: Efficiency of the jet assignment under the semileptonic tt̄ hypothesis.

Object(s)
Efficiency, %

I II III

b from t→ b`ν 64 70 66

b from t→ bqq̄′ 58 64 68

at least one q from W → qq̄′ 63 — 90

both q from W → qq̄′ 11 — 57

all quarks from t→ bqq̄′ 9 — 47

all four quarks 6 — 37

As can be seen from the Tables 5.1, 5.2, the probability to identify correctly all

jets in the final state is larger than the product of probabilities to reconstruct

each individual object (the top quark, the Higgs boson, and the recoil quark in

case of the tHq hypothesis and the two top quarks for semileptonic tt̄). The

underlying correlation is a result of a competition for jets. If, for instance, a

jet has been assigned to the top quark, it cannot be utilized to reconstruct the

Higgs boson. A drawback of this procedure, here referred to as the global jet

assignment, is that an incorrect reconstruction of one object might compromise

the others. In order to investigate this aspect, an alternative procedure for jet

assignment has been developed, in which each individual object is reconstructed

independently, with the help of a dedicated neural network. The same jet can

potentially be associated with more than one object. In Fig. 5.10 the two

approaches are compared in terms of the ROC curve of the neural network

for event classification, which will be discussed in the next section. As can
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Figure 5.10: Performance of the event classification neural network with differ-

ent approaches for the jet assignment.

be seen, they yield similar performance. The global jet assignment has been

chosen because of its simpler implementation.

For a reference, the jet assignment has also been performed by choosing event

interpretations that minimizes the difference between masses of the recon-

structed resonances and their expectations. In case of the tHq hypothesis

the loss function is defined as

χ2
mass =

(mt − m̂t)
2

σ̂2
t

+
(mH − m̂H)2

σ̂2
H

, (5.5)

where mt,H are masses of the top quark and the Higgs boson as reconstructed

in the current event interpretation, and m̂t,H and σ̂t,H are the expected masses

and their standard deviations, as derived using correct interpretations. The

recoil jet is chosen as the most forward non-b-tagged jet. The jet assignment

under the semileptonic tt̄ hypothesis is performed in a similar way, building

the loss function from the masses of the two top quarks. Fig. 5.10 reveals that

this simple approach results in a smaller discrimination power compared to the

MVA jet assignment.

5.3 Event classification

Every event in the 3t and 4t regions is probed for compatibility with the signal

hypothesis as opposed to the background one. This is done with the help of an
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additional neural network, which exploits three groups of input variables, as

illustrated in Fig. 5.2. Observables in the first two groups are constructed by

utilizing the two jet assignment procedures, which are applied in parallel and

help to highlight peculiar features of the tHq and semileptonic tt̄ processes.

The third group contains observables that do not rely on the jet assignment.

Input variables for the event classification neural network have been chosen by

refining a tentative list of about 60 observables, which reflected basic kinematic

properties of reconstructed resonances and their decay products, angular cor-

relations between the objects, b-tagging decisions, electric charges, and global

event characteristics. In particular, all input variables exploited for the jet

assignment were included in the list. The tentative list was reduced to about

20 observables following the same approach of ranking based on the separation

power as described in Section 5.2.1. It was then optimized further while keep-

ing the performance of the event classification neural network approximately

constant. The optimization was performed in a recursive manner, removing one

observable at a time. At each step, all possible candidate sets of n − 1 input

variables were constructed by discarding one of the observables, and the neural

network was retrained with every new candidate set. The set that resulted in

the smallest degradation of the performance of the neural network, quantified

by the area under the ROC curve and other measures, was accepted. The pro-

cedure was repeated until the degradation became significant. The resulting

set of input variables is optimal in the sense that removing any of them would

cause a visible deterioration of the performance.

The final list contains 8 input variables. The largest group consists of observ-

ables that rely on the jet assignment under the tHq hypothesis: transverse

momentum of the reconstructed Higgs boson, number of b-tagged jets among

its decay products, pseudorapidity and transverse momentum of the recoil jet.

Among observables defined under the semileptonic tt̄ hypothesis, only those

related to the hadronically decaying top quark have been selected: mass, ∆R

distance between the light-flavour jets stemming from its decay, and the num-

ber of b-tagged jets among them. The only selected observable that does not

exploit the jet assignment is the electric charge of the lepton. Distributions of

signal and background events in the input variables are shown in Figs. 5.11,

5.12. It is worth noting that the mass of the reconstructed Higgs boson, also

shown in the Fig. 5.11 for the sake of completeness, does not provide a sufficient

separation and for this reason has not been exploited in the neural network.

The explanation is that the multijet final state of tt̄ events that dominate the

signal region often allows finding a pair of jets that are compatible with prop-

erties of the decay products of the Higgs boson. On the other hand, the mass

of the hadronically decaying top quark is a strong discriminator because it
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is constructed from a triplet of jets and as such is more robust against the

combinatorics.
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Figure 5.11: Distributions of signal and background events in the input vari-

ables for the event classification NN. Part 1. Although the Higgs boson mass

is not used as an input, it is shown in the figure for completeness.



120 Chapter 5. Multivariate analysis

Q(l)
1.5− 1.0− 0.5− 0.0 0.5 1.0 1.5

P
ro

ba
bi

lit
y 

de
ns

ity
 [a

. u
.]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Simulation Preliminary CMS 8 TeV

 tHq 

 bkg 0%
 / 

0%
,  

O
ve

rf
lo

w
: 

0%
 / 

0%
U

nd
er

flo
w

: 

] [GeV]t) [t
had

m(t
150 200 250 300 350

P
ro

ba
bi

lit
y 

de
ns

ity
 [a

. u
.]

0

5

10

15

20

3−10× Simulation Preliminary CMS 8 TeV

 tHq 

 bkg 

2%
 / 

18
%

,  
O

ve
rf

lo
w

: 
2%

 / 
3%

U
nd

er
flo

w
: 

]t) [t
Whad

, q
Whad

R(q∆
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

P
ro

ba
bi

lit
y 

de
ns

ity
 [a

. u
.]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Simulation Preliminary CMS 8 TeV

 tHq 

 bkg 0%
 / 

3%
,  

O
ve

rf
lo

w
: 

2%
 / 

1%
U

nd
er

flo
w

: 

]t) [t
Whad

#tagged(q
0.5− 0.0 0.5 1.0 1.5 2.0 2.5

P
ro

ba
bi

lit
y 

de
ns

ity
 [a

. u
.]

0.0

0.2

0.4

0.6

0.8

Simulation Preliminary CMS 8 TeV

 tHq 

 bkg 0%
 / 

0%
,  

O
ve

rf
lo

w
: 

0%
 / 

0%
U

nd
er

flo
w

: 

Figure 5.12: Distributions of signal and background events in the input vari-

ables for the event classification NN. Part 2.

It has been verified that all input variables are described by simulation at a

satisfactory level. The corresponding distributions in all four signal regions are

shown in Figs. 5.13, 5.14. In all these figures MC expectations are rescaled

to the observed event yield in order to facilitate comparison of the shapes,

while the normalization is subject to significant systematic uncertainties, which

will be discussed in the dedicated section. In fact, one of the discriminative

observables chosen initially, the sphericity, has been discarded because of a

pronounced mismodelling.

The event classification neural network has been trained with about 4 · 104

events in the signal and background categories each. The background category

is populated by a mixture of semileptonic tt̄, dileptonic tt̄, and tt̄H events,

and the three considered processes are normalized to the corresponding cross

sections. On the other hand, the signal process is rescaled in such a way
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Figure 5.13: Distributions of input variables for the event classification NN in

the 3t region, sum of muon and electron channels. Simulation is normalized to

the observed event yield to facilitate comparison of shapes.
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Figure 5.14: Distributions of input variables for the event classification NN in

the 4t region, sum of muon and electron channels. Simulation is normalized to

the observed event yield to facilitate comparison of shapes.
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that it matches the total background normalization since this transformation is

known to improve the classification performance in the case of a small signal-to-

background ratio. Sets of tHq and semileptonic tt̄ events utilized in the training

overlap with those exploited to construct the jet assignment neural networks.

It would also be useful to include t- and tW -channel single top processes, but

the available number of simulated events passing the selection (O(100)) makes

it impossible. Other minor backgrounds have not been considered for training

because of their small impact; in addition, this preserves more simulated events

to be used in the statistical inference.

The neural network contains 30 neurons in the hidden layer, which has been

found to give the best performance after comparing several configurations with

the number of hidden neurons ranging from 5 to 50. Distributions of signal

and background events in the response of the constructed neural network, as

well as its ROC curve are shown in Fig. 5.15. No signs of overfitting are visible.

However, it should be stressed that even if overfitting occurred, it would not

compromise validity of results of the search because the subsequent statistical

analysis is based solely on events that have not been utilized in the training.
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Figure 5.15: Distributions of the event classification NN response for signal

and background events (left) and the corresponding ROC curve (right).

Fig. 5.16 demonstrates a good agreement between data and simulation in the

response of the event classification neural network in the tt̄ control region. Dis-

tributions in the signal regions were purposely not reviewed until the statistical

analysis was finished. They will be reported in the next chapter. This policy,

known as blinding, is applied to protect against potential subjective bias, which

occurs when an analysis is unintentionally adjusted to reproduce desired be-

haviour in the signal region. On the other hand, distributions of input variables
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shown in Figs. 5.13 – 5.14 could be checked safely because none of them alone

provides sufficient discrimination between signal and background.
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Figure 5.16: Distributions of the event classification NN response in the 2t re-

gions. Simulation is normalized to the observed event yield to facilitate com-

parison of shapes.



Chapter 6
Statistical analysis

In order to search for the signal process, data distributions in response of

the neural network introduced in the previous chapter are compared to those

deduced from the simulation. The presence of the anomalous tHq production

with yt = −1 is probed against the pure SM, where the tHq process is neglected

because of its small cross section. Although this search is model-dependent and

the expected cross section for the signal process is known accurately, it is still

convenient to probe for a range of alternatives with varying signal cross section.

Results of the search are reported in the form of upper limits on the production

cross section.

This chapter describes the adopted procedure to calculate the upper limits, with

a brief introduction to relevant statistical concepts. Systematic uncertainties

considered in this search are discussed next. Finally, the upper limits are

reported.

6.1 Upper limits

In the field of high-energy physics, the problem of interval estimation is ad-

dressed in a number of different ways [21, Chapter 38]. The approach followed

in this work has been agreed upon between the ATLAS and CMS collabora-

tions in the context of searches of the Higgs boson [151]. Formulated in the

frequentist interpretation of statistics, the method exploits the “LHC-type”

test statistic for upper limits and accounts for nuisance parameters with the

125
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help of the profile construction. The CLs criterion is used to define the critical

region of the underlying statistical test.

A pivotal element of the following discussion is the likelihood function, which

defines the statistical model used. In this search data are described in the form

of histograms, and the likelihood function is therefore built as a product of

Poissonian terms corresponding to the bins of the histogram:

L(µ, ν) =
∏
i

(
µ · si(ν) + bi(ν)

)ni

ni!
e−(µ·si(ν)+bi(ν)). (6.1)

Here ni is the number of data events observed in bin i, si and bi are expected

numbers of events stemming from the signal process and all backgrounds re-

spectively. It is customary to consider a scale factor µ > 0 modifying the signal

cross section, where µ = 1 corresponds to the nominal value, i. e. the cross sec-

tion predicted under the yt = −1 model. Expectations si and bi depend on (a

vector of) nuisance parameters ν that encode systematic uncertainties.

6.1.1 Hypothesis tests and confidence intervals

Construction of confidence intervals (including one-sided limits as a special

case) can be treated as a problem of hypothesis testing. In this case the interval

for a parameter of interest of the statistical model is given by the union of all

values of the parameter that are not excluded by the test. In the context

of putting constraints on the signal strength, the null hypothesis is chosen to

assume the presence of both signal, with some fixed signal strength µ that

is put under the test, and background; in the following it is also referred to

as the s + b hypothesis. The alternative hypothesis, hereafter also mentioned

as the b-only hypothesis for short, assumes that the sample is populated by

background events only. It can be constructed as a special case of the s + b

hypothesis by taking µ = 0. Although in general both hypotheses contain a

number of parameters, which correspond to systematic uncertainties, for the

sake of simplicity in the current discussion the hypotheses are considered to

be simple, i. e. they do not contain any parameters and therefore completely

define population distributions.

In order to construct a test, one needs to define a test statistic. It is a value

calculated from the sample that quantifies its compatibility with the null hy-

pothesis as opposed to the alternative one. The statistic is often chosen to

increase monotonically for the increasing (decreasing) compatibility with the

s+ b (b-only) hypothesis. The concrete statistic exploited in this search will be
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introduced later, but a good example is the ratio of the likelihood for the s+ b

and b-only hypotheses:

λ(µ) =
Ls+b
Lb

=
L(µ)

L(0)
, (6.2)

where the nuisance parameters in the likelihood function (6.1) are ignored be-

cause the hypotheses are assumed to be simple.

Definition of a test is completed by choosing the critical value of the statistic.

In order to perform the test with the results of an experiment, the observed

value t of the statistic is calculated and then compared to the critical value t∗.
The s + b hypothesis is accepted if t > t∗, and rejected otherwise. Values

of the test statistic for which the null hypothesis is rejected (i. e. t < t∗)
form the critical region. Since in practical applications it is not possible to

discriminate the two hypotheses with all certainty, the result of the test might

be mistaken. The probability to incorrectly reject the s + b hypothesis when

it is true, which is to commit a type I error, is called the size of the test α.

When simple hypotheses are considered, the size of the test coincides with its

significance level. A complementary property is the probability to incorrectly

accept the false s + b hypothesis (type II error). This probability β is related

to the power of the test (1−β). Fig. 6.1 provides a graphical representation of

both error probabilities. Usually the significance level α is fixed to a predefined

value (typical choices are 1% or 5%), and one tries to find a test with maximal

power while respecting the constraint on the significance level. According to

the Neyman–Pearson lemma, the optimal test for simple hypotheses is the one

that utilizes the likelihood-ratio statistic (6.2).
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Figure 6.1: An illustration to hypothesis testing. Distributions of the test

statistic t under s + b and b-only hypotheses are shown. The solid (hatched)

area corresponds to the probability of type I (type II) error.
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In practice, finding the critical value of the test statistic for the desired sig-

nificance level can be a computationally intensive task. An equivalent but

sometimes more convenient approach is to calculate the p-value under the s+ b

hypothesis for the observed test statistic. The p-value is defined as the proba-

bility to obtain an observation of the same or a larger level of incompatibility

with the hypothesis in question when compared to the actual observation. With

the chosen direction of ordering of the statistic (larger values indicate better

compatibility with the s+ b hypothesis), the p-value for an observation tobs is

calculated as

ps+b =

tobs∫
−∞

f (t | µ) dt, (6.3)

where f(t | µ) is the distribution of the test statistic under the s + b hypoth-

esis with the given signal strength µ. If ps+b is larger than the predefined

significance level, the s+ b hypothesis is accepted; otherwise it is rejected.

The outcome of the test depends on the signal strength µ assumed in the s+ b

hypothesis. The union of all values of µ for which the s + b hypothesis is

not excluded constitutes the confidence interval for µ. The interval is said to

correspond to a confidence level of 1−α. The confidence interval is a function

of the sample and thus varies when the experiment is repeated. The fraction

of repeated experiments when the interval includes the true value of µ is called

the coverage probability. In an ideal case the coverage probability equals the

confidence level (which can be understood as the target coverage probability).

However, this condition can not always be satisfied, and a real interval might

under- or over-cover.

6.1.2 CLs criterion

When the procedure introduced above is applied to low-sensitivity searches,

it might lead to seemingly counter-intuitive results. In an experiment that is

not sensitive enough to discriminate the s + b and b-only hypotheses (which

occurs with necessity in every search if a sufficiently small signal cross section

is probed), the two distributions of the test statistic in Fig. 6.1 are (virtually)

indistinguishable. However, the rate of type I error is by construction fixed

to the size of the test α and does not depend on the distribution of the test

statistic under the b-only hypothesis at all. As a result, even if the experiment

possesses no sensitivity to the s + b hypothesis, it rejects the hypothesis with

a probability α on a purely random basis.
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Although the described behaviour is perfectly valid from the statistical point

of view, it is not usually desirable in publication of a physical result, where it

is preferable not to claim an exclusion of a hypothesis to which the experiment

has no sensitivity. The reason of the controversy is that confidence intervals

(and frequentist statistics in general) address the question of the likelihood of

observed data under an assumption of a given hypothesis; in contrast to it,

what physicists are really interested in is the likelihood of a hypothesis, given

the observed data. The latter question is in focus of the Bayesian school of

statistics and requires introduction of prior probabilities, which are subjective

in nature and thus not always desirable for reporting results.

To overcome the inconvenience in case of a low sensitivity, the CLs criterion

was proposed [152–154]. It exploits a statistic

CLs =
ps+b

1− pb
, (6.4)

where ps+b and pb are p-values under s+ b and b-only hypotheses respectively

(see Fig. 6.2). Note that since a smaller value of the test statistic t corresponds

to a better compatibility with the b-only hypothesis,

pb =

+∞∫
tobs

f (t | 0) dt (6.5)

(compare to Eq. (6.3)). The s + b hypothesis is rejected if CLs < α, where α

is the desired significance level. As before, the union of all values of the signal

strength µ for which the s + b hypothesis is not rejected, forms an allowed

interval for µ that formally corresponds to a confidence level 1− α.
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Figure 6.2: Definition of the CLs statistic. The figure shows distributions of

the test statistic t under the s+b and b-only hypotheses and the observed value

tobs. The solid (hatched) area equals ps+b (1− pb).
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As can be seen from Eq. (6.4), CLs > ps+b, which means that the CLs criterion

leads to a deliberately conservative coverage. Because of this property, result-

ing intervals do not have same meaning as the frequentist confidence intervals

discussed before. Nevertheless, if the test statistic t separates the s + b and

b-only hypotheses efficiently, CLs approaches ps+b for large values of t; if, in

addition, pb ≈ 1 for the chosen critical value t∗, i. e. t∗ is large enough, results

of the test based on the ps+b criterion are reproduced. On the other hand, in

the problematic case of a low sensitivity ps+b ≈ 1 − pb and hence CLs ≈ 1,

which prevents the exclusion.

It should be stressed out that the intervals obtained using the CLs criterion

are neither frequentist confidence nor Bayesian credible intervals. The criterion

has been developed as an ad hoc procedure and does not have solid foundations

in the statistical theory. Nevertheless, it possesses useful practical properties

and has been proven functional in a number of searches performed at LEP [155]

and Tevatron [156] colliders, and in recent years also at LHC [1,2].

6.1.3 Nuisance parameters

The likelihood-ratio statistic (6.2) is only proven optimal to test simple hy-

potheses, whereas in real-life applications statistical models usually contain

nuisance parameters. Several approaches have been proposed to incorporate

them, and overviews can be found in Refs. [157–159]. The most straightforward

way is to perform the full Neyman construction over all nuisance parameters

using the likelihood-ratio statistic. For every fixed point ν in the allowed space

of nuisance parameters an interval Xν for the signal strength µ is constructed.

Since with the fixed nuisances the s + b and b-only hypotheses are effectively

simple, the chosen statistic is optimal for each point ν individually. All inter-

vals are then united to ensure a conservative coverage for µ: X =
⋃
Xν . The

resulting interval X contains all values of µ for which the s + b hypothesis is

not excluded at least for some point in the ν-space.

Although being very simple conceptually, this approach is usually impractical

because it demands large computational resources. Another drawback is that

the requirement to ensure at least the nominal coverage for all allowed values

of the nuisance parameters can lead to a severe over-coverage for their true

values [157].

The latter problem can be mitigated by using as the test statistic the profile

likelihood ratio

λp(µ) =
L(µ, ν̂µ)

L(µ̂, ν̂)
, (6.6)
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where µ̂ and ν̂ maximize the likelihood L unconditionally and ν̂µ maximizes

it for the given µ. Since signal strength is non-negative, it is often required

that the likelihood in the denominator is maximized respecting the physical

constraint µ̂ > 0. If nuisances are neglected, the ratio λp simplifies to the

well-known Feldman–Cousins ordering rule [160]. An important property of

the statistic (6.6) is that λp, when calculated for the given experiment, does

not depend on the nuisance parameters. This gives a hope to obtain a similar

test, which is a test whose critical region is independent from the choice of

point in the ν-space. However, the independence is only approximate because,

despite being eliminated from the definition of the test statistic, the nuisances

still affect its distributions f(λp | µ′, ν) under the s+ b and b-only hypotheses

(with µ′ = µ and µ′ = 0 respectively) and therefore also the p-values (6.3)

and (6.5).

The approximate similarity of a test based on the statistic (6.6) also allows

to reduce the demand for computational power, as suggested in Ref. [161].

With the full Neyman construction of CLs intervals, a signal strength µ is

excluded if CLs(µ, ν) < α for all allowed values of ν. As can be seen from the

definition (6.4),

max
ν

(
CLs(µ, ν)

)
6 CL∗s(µ) ≡ ps+b(µ, ν̃µ)

1− pb(ν̃0)
, (6.7)

where

ν̃µ = arg max
ν

(
ps+b(µ, ν)

)
, ν̃0 = arg max

(
pb(ν)

)
. (6.8)

Thus, asking for CL∗s(µ) < α provides a conservative coverage. The true values

of the nuisance parameters (probably, except for those related to signal only)

are, of course, same for the s + b and b-only hypotheses, and having the two

potentially different values (6.8) is only an artificial approach to estimate CLs
from above. The very calculation of ν̃µ and ν̃0 is a difficult problem, but since

larger p-values indicate better compatibility with the hypothesis in question,

they can be approximated by the conditional maximum-likelihood estimates

ν̂µ and ν̂0. If the similarity were exact, it would be sufficient to perform the

construction for a single (arbitrary) point in the ν-space; with the approximate

similarity choosing the most favourable point for each hypothesis provides an

approximation to the full Neyman construction. This approach is discussed

under the name of profile construction in Refs. [158, 159]. It provides a good

scalability with the number of nuisance parameters. Note, however, that the

conservative coverage is not guaranteed, and the profile construction can still

result in under-coverage if the p-values calculated with nuisances ν̂µ and ν̂0

depart sufficiently from their maximal values.
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The actual test statistic exploited in this search is

q̃(µ) = −2 ln
L(µ, ν̂µ)

L(µ̂, ν̂)
, 0 6 µ̂ 6 µ, (6.9)

as introduced in Ref. [162]. Together with other related statistics, it is some-

times referenced by the name of “LHC-type” statistic, distinguishing it from

definitions adopted in LEP and Tevatron experiments. The argument of the

logarithm coincides with the profile likelihood ratio (6.6) except for the con-

straint on µ̂ imposed in maximisation of the denominator. The first inequality

µ̂ > 0 signals that physical values of the signal strength are non-negative.

The requirement µ̂ 6 µ indicates that if data are better described by a signal

strength larger than µ, it should not be regarded as an evidence against the

signal strength µ. This makes the statistic q̃ produce intervals that are not de-

tached from zero and can therefore be reinterpreted to obtain upper limits on

the signal strength. The logarithm and the numeric factor, being a monotonous

transformation, simply serve a purpose of making analytical calculations more

convenient. However, because of the negative sign, larger values of q̃ indicate

a worse compatibility with the s+ b hypothesis, in contrast to the convension

adopted before.

6.1.4 Distribution of test statistic

The last missing components needed to test for a particular signal strength are

distributions of the test statistic under the s+ b and b-only hypotheses, which

are required to calculate the p-values in the definition of CLs (6.4). They can

be constructed with the help of Monte Carlo simulation, but this approach

is usually computationally expensive. Alternatively, the distributions can be

approximated analytically in the large-sample limit [162], i. e. when contents ni
of all bins in Eq. (6.1) are sufficiently large. According to the Wilks theorem,

when certain general conditions are met and the s + b hypothesis is true, the

quantity −2 lnλp(µ) asymptotically follows the χ2-distribution with one degree

of freedom, independently of the nuisance parameters.

This result is generalized in Ref. [163] for the case of a hypothesis with a signal

strength µ′ that can differ from the one assumed in λp(µ). It is found that

−2 lnλp(µ) ≈ (µ− µ̂)2

σ2
, µ̂ ∼ N (µ′, σ2), (6.10)

where, as before, µ̂ denotes the point of global maximum of the likelihood. As

can be seen, the Wilks result is reproduced for µ′ = µ, whereas in general case
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the statistic −2 lnλp(µ) follows the non-central χ2-distribution with one degree

of freedom.

The only unknown parameter in Eq. (6.10) is the standard deviation σ of the

normal distribution for µ̂. As demonstrated in Ref. [162], it can be approxi-

mated as

σ2 ≈ σ2
A = − (µ− µ′)2

2 · lnλA(µ)
, (6.11)

where

λA(µ, ν) =
LA(µ, ν̂µ)

LA(µ′, ν)
, (6.12)

and LA is the likelihood function (6.1) evaluated for so-called Asimov sample.

It is an artificial sample defined by setting observations ni in Eq. (6.1) to their

expectations for the s+ b hypothesis with a signal strength µ′:

ni,A = µ′ · si + bi. (6.13)

Although values ni,A can be non-integer, this does not pose a problem since

the corresponding terms cancel out in the ratio (6.12). Note that if µ′ 6= µ, the

standard deviation σA reveals sensitivity to nuisance parameters via λA.

From Eq. (6.10) one can derive analytical expression for the distribution of the

statistic q̃. The resulting cumulative distribution reads as [162]

F
(
q̃(µ) | µ′, ν

)
=


Φ
(√

q̃(µ)− µ−µ′
σ

)
for 0 < q̃(µ) 6 µ2/σ2,

Φ

(
q̃(µ)−(µ2−2µµ′)/σ2

2µ/σ

)
for q̃(µ) > µ2/σ2,

(6.14)

where Φ is the cumulative distribution function of the standard normal distri-

bution. Using these results to evaluate the p-values in Eq. (6.7), the CLs value

can be estimated from above as

CL∗s(µ) =
1− F

(
q̃(µ) | µ, ν̂µ

)
1− F

(
q̃(µ) | 0, ν̂0

) , (6.15)

where the nuisance parameters are set according to the profile construction.

If the number of events used to construct the likelihood (6.1) is not large

enough, the approximations made are not valid. Under these conditions the

asymptotic expression (6.15) is known to be biased, claiming stronger exclusion

in the absence of signal [151]. In this case distributions must be derived from

Monte Carlo simulation.
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6.1.5 Overview

In practice the upper limit is found by solving numerically the equation

CLs(µ) = α, (6.16)

where 1−α is the desired confidence level. The central element of this procedure

is probing for a particular signal strength µ. This step is summarized below.

First, the likelihood function (6.1) is constructed for the observed data. It is

maximized with respect to the nuisance parameters, for the s + b and b-only

hypotheses independently, finding their values that will be used for the profile

construction:

ν̂obs
µ = arg max

ν

(
L(µ, ν)

)
, ν̂obs

0 = arg max
ν

(
L(0, ν)

)
. (6.17)

Observed value of the test statistic q̃obs is calculated according to Eq. (6.9),

assuming the signal strength under the test.

In the asymptotic regime this is sufficient to calculate the observed value of the

CLs statistic from Eq. (6.15). If the analytical approximation cannot be used,

pseudoexperiments are generated under the s+ b and b-only hypotheses. They

are constructed by sampling the number of observed counts in each bin of the

likelihood (6.1) from its expectation according to the Poisson distribution:

ni ∼ Pois
(
µ′ · si

(
ν̂obs
µ′
)

+ bi
(
ν̂obs
µ′
))
, (6.18)

where µ′ = µ (µ′ = 0) for the s+b (b-only) hypothesis. The test statistic q̃(µ) is

calculated for each pseudoexperiment, and this way the distributions f(q̃(µ) |
µ′, ν̂obs

µ′ ) are constructed. Note that although the nuisance parameters are fixed

in the pseudoexperiments, they are allowed to vary in calculation of the test

statistic (6.9). The distributions are then exploited to calculate the p-values in

Eq. (6.4) and find the value of CLs.

If CLs(µ) < α, the upper limit is larger than µ, and vice versa. The procedure

summarized above is repeated to probe other values of the signal strength until

the solution to Eq. (6.16) is found.

An important sanity check is to calculate the upper limit expected under the b-

only hypothesis. This is done by generating b-only pseudoexperiments with ν =

ν̂obs
0 and calculating the upper limit for each of them. The most straightforward

way would be to repeat exactly the procedure described above, treating each

pseudoexperiment as if it were real data. However, if the distributions of the

test statistic are to be constructed with Monte Carlo simulation, this would
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require enormous computational resources. The limitation is overcome by re-

using the distributions f(q̃(µ) | µ′, ν̂obs
µ′ ) constructed with the nuisances fitted to

real data, instead of the current pseudoexperiment. This is an approximation,

but it is believed to be suitable [164].

From the constructed distribution of expected upper limits usually the median

and 1σ and 2σ bands are reported. An incompatibility between the observed

and the expected limit is an indirect evidence that data are not described well

by the b-only hypothesis.

A software implementation of the outlined procedure is available in a set of

internal CMS tools based on the RooStats project [165]. They are widely

used by the collaboration in analyses involving the Higgs boson and have been

exploited in this search as well.

6.2 Systematic uncertainties

The statistical model used in this search accounts for statistical uncertainties

by construction via the Poissonian terms in the likelihood (6.1). Systematic

uncertainties, on the other hand, need to be incorporated explicitly by means

of the nuisance parameters. In the simplest case they only affect the overall

expected event yield from the signal or (a component of) the background while

preserving the shape of the NN discriminator distribution. In general, however,

also the shape of the distribution can be altered. In the following the two groups

of uncertainties are referred to as rate-only and shape-changing, respectively.

Many systematic uncertainties are continuous by nature, that is they are de-

scribed by real-valued nuisance parameters. Although the continuous parametriza-

tion is trivial to implement for rate-only uncertainties, for shape-changing ones

the direct construction of the discriminator distribution for every value of the

corresponding nuisance parameter is computationally impractical. Instead, it

is customary to construct the distributions for only two variations of each inde-

pendent nuisance parameter, which are conventionally referred to as “up” and

“down” variations. The expected number of events λ(i) from the given physics

process in bin i of the histogram is then deduced from the nominal value λ
(i)
0

and the two systematic variations λ
(i)
+ and λ

(i)
− . In this search the following

parametrization is exploited:

λ(i)(ν) = λ
(i)
0 +

(
∆λ

(i)
+ −∆λ

(i)
−

2
+

(
∆λ

(i)
+ + ∆λ

(i)
−

2

)
· θ(ν)

)
· ν, (6.19)

∆λ
(i)
± = λ

(i)
± − λ(i)

0 , (6.20)
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where the parameter ν, which can be identified with one of the nuisance pa-

rameters in Eq. (6.1), is varied simultaneously for all bins of the histogram,

and θ(ν) is a smooth step function defined as

θ(ν) =

{
1/8 · ν

(
ν2
(
3 ν2 − 10

)
+ 15

)
if |ν| 6 1,

sign(ν) otherwise.
(6.21)

The function (6.19) and its first and second derivatives are continuous. It

reproduces the nominal and the reference “up” and “down” discriminator dis-

tributions for ν = 0,±1 and provides a linear extrapolation for |ν| > 1.

An important property of the parametrization (6.19) is that λ(ν) lies between

λ+ and λ− for |ν| < 1, provided that λ0 also falls between the systematic

variations. It is known as “vertical” interpolation. Although such approach is

adequate for this search, it should be noted that in some situations it is not

suitable, most notably to interpolate between two peaking distributions with

different positions of the peaks. Other methods have been designed to address

this problem [166,167].

6.2.1 Experimental uncertainties

First, uncertainties of experimental origin are discussed. They reflect the cur-

rent confidence in the detector performance and can potentially be decreased

in future, by achieving more precise calibrations and development of better

experimental techniques.

Since this search exploits a tight selection on b-tagging, uncertainties on the

b-tagging scale factors are important. Their impact is evaluated by varying

the scale factors in Eq. (4.4) within their uncertainties [132]. The scale factors

for b- and c-quark jets are varied simultaneously and are controlled by a single

nuisance parameter. Since no dedicated measurements for c-quark jets are

available, uncertainties for them are set twice as large as for b-quark jets. Scale

factors for light-flavour jets are varied independently. The b-tagging uncertainty

is thus described by two independent parameters.

Effect of uncertainty in the jet energy scale (JES) calibration is found by rescal-

ing four-momenta of all jets with pT > 10 GeV/c by factors 1 +αj , where αj is

varied in the range allowed by JES uncertainties for jet j. Momenta of all jets

are rescaled simultaneously, and thus this uncertainty is controlled by a single

nuisance parameters. It has been checked, however, that splitting the total

uncertainty into several independent sources [98] does not alter the results.
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Uncertainties on jet energy resolution (JER) are included by varying the smear-

ing factors in Eq. 3.27 within their uncertainties [98]. It affects all jets with

pT > 10 GeV/c for which a matching particle-level jet is present. Variations

for all jets are done simultaneously.

Variations of jet momenta affect 6ET through its corrections. In this way un-

certainties on JES and JER are accounted in 6ET. In addition to them, the

unclustered missing ET, which is calculated from jets with pT < 10 GeV/c and

PF candidates not clustered in jets, is varied by 10% resulting in an indepen-

dent uncertainty.

Uncertainties in pile-up originate from uncertainties in the cross section of the

total inelastic pp scattering and the luminosity uncertainty. It is conserva-

tively estimated by rescaling the effective total inelastic cross section, which is

exploited in the reweighting in Section 4.2, by 5%. Integrated luminosity to

which predictions from simulation are normalized, is assigned an uncertainty

of 2.6% [128].

Finally, differences between data and simulation in efficiencies of lepton iden-

tification and trigger selection are conservatively covered by 2% rate-only un-

certainties, independently in the electron and muon channels.

6.2.2 Theoretical uncertainties

Another group of uncertainties is related to theoretical inputs. They represent

the level of confidence in modelling of considered physics processes, excluding

the simulation of the detector response.

Cross sections used to normalize signal and background processes are varied

according to uncertainties provided in the references in Section 4.1. The varia-

tions reflect the arbitrariness in the choice of the renormalization and factoriza-

tion scales, commonly set to same value µR,F, and uncertainties in the parton

distribution functions (PDF). They are summarized in Table 6.1. Scales µR,F

in tt̄ and single top production are taken to be fully correlated. Similarly, PDF

uncertainties are grouped by the dominant initial state.

An important background is the tt̄ production in association with heavy-flavour

quarks. As discussed in Section 4.4, it is expected that cross sections of these

processes are not predicted accurately by the simulation. To protect against

this, additional normalization uncertainties of +50%
−30% are assigned to the tt̄bb̄,

tt̄b, and tt̄c(c̄) processes, independently.
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Table 6.1: Uncertainties on cross sections. Uncertainties in same column are

varied simultaneously.

Process
µR,F scale PDF

t V V V tt̄H gg qq̄ qg

tHq 2%

tt̄H 12.5% 9%

tt̄ 3% 2.6%

t 2% 4.6%

W 1.3% 4.8%

V V 3.5%

Uncertainties due to the arbitrariness in the renormalization/factorization scales µR,F

in the signal process and the tt̄ background are estimated with the help of

dedicated samples. They have been produced by varying the scale, which is

dynamic in case of tt̄, by a factor of 2 in each direction. These uncertainties

affect the acceptance and, potentially, the shape of the distributions in NN

response, while variations in the cross sections are accounted with independent

nuisance parameters as described above. For this reason the samples with var-

ied µR,F scales are normalized to the nominal cross sections. In the tt̄ process,

the variations for the tt̄bb̄, tt̄b, and tt̄c(c̄) components and also tt̄ production

without additional heavy-flavour quarks are controlled by independent nuisance

parameters.

Dedicated tt̄ samples are also exploited to evaluate the effect of the choice of

the threshold used to match matrix element and parton shower calculations.

In the nominal sample jets are separated with a measure of kT > 40 GeV, while

in the samples with the upwards and downwards variation the threshold is set

to 60 and 30 GeV respectively. Similar to the µR,F scale uncertainty, variations

in the four subcomponents are done independently.

The last uncertainty accounts for the correction of the pT spectrum of top

quarks in the tt̄ production, as described in Section 4.2. In order to quantify

its impact, the corresponding reweigthing is either disabled or the event weights

are squared, redoubling the effect of the reweighting.

6.2.3 Statistical uncertainties in simulation

The last considered type of systematic uncertainty accounts for statistical fluc-

tuations in MC samples. As a direct consequence of the optimization strategy

for the event selection, this uncertainty is typically small for the signal process
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but can be significant for backgrounds. The expected number of events in a

given bin stemming from a process with a cross section σ is calculated as

λ =
σL
N

n∑
i=1

wi, (6.22)

where L is the intergrated luminosity, N is the total number of events in the

sample, n is the number of events, out of N , that pass the selection and fall in

the chosen bin, and wi are their weights. The number n follows the binominal

or, in a typical case of n � N , the Poissonian distribution, which propagates

into an uncertainty on the expectation λ.

In this search the problem is addressed by introducing an additional nuisance

parameter per bin and per sample, following the approach of Ref. [168]. The

expected number of events is allowed to vary around the estimation (6.22)

within the uncertainty

∆λ =
σL
N

√√√√ n∑
i=1

w2
i . (6.23)

The extensive approach results in about 550 additional nuisance parameters,

to be compared to about 30 parameters to describe all other uncertainties. The

problem is simplified by neglecting the uncertainty in bins where ∆λ/λ < 5%;

however, this removes only ∼ 100 parameters. A drastic reduction of the di-

mensionality could be achieved if only one nuisance parameter were introduced

per bin to reflect the combined uncertainty from all contributing samples [169].

This approach, however, has not been implemented in the tool used for the

statistical inference.

6.2.4 Supplementary studies

It is important to verify that the statistical model describes the data with-

out pathologies. To do so, a maximum-likelihood fit is performed keeping all

parameters of the model floating, and constraints imposed on every nuisance

parameter by the data are investigated. For each parameter ν independently a

profile likelihood is constructed by maximizing over all remaining parameters θ:

L(ν, θ̂ν) = max
θ
L(ν, θ). (6.24)

The constraints on ν are found with the usual approach of MINOS [170], solving

against ν the equation

−2 lnL(ν, θ̂ν) = −2 lnL(ν̂, θ̂) + 1, (6.25)
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Table 6.2: Impacts of different groups of systematic uncertainties on the upper

limit. They are evaluated by excluding one group at a time from the statistical

model.

Source Impact, %

b-tagging, b-, c-jets < 1

b-tagging, light-flavour jets < 1

JES 3

JER < 1

unclustered 6ET 1

pile-up < 1

luminosity < 1

lepton ID < 1

cross sections, Q2 scale < 1

cross sections, PDF < 1

tt̄bb̄ rate < 1

tt̄b rate < 1

tt̄c(c̄) rate 1

µR,F scale, tHq and tt̄ 4

ME/PS matching scale 2

top pT reweighting 2

MC uncertainty < 1

where (ν̂, θ̂) is the point of global maximum given by the maximum-likelihood

fit.

No pathological constraints have been observed in this investigation. In all cases

where a nuisance parameter is constrained tighter than dictated by the nominal

uncertainty, it has been understood as a result of a conservative estimation of

the uncertainty.

Although this question has no direct relevance to the validity of results of this

search, it is interesting to quantify the impact of different sources of systematic

uncertainties on the upper limit on the anomalous tHq production. First, the

expected limit is calculated using the asymptotic approximation described in

Section 6.1.4. To evaluate the impact of a group of uncertainties, the limit is

then recalculated having the corresponding nuisance parameters in Eq. (6.9)

fixed to the maximum-likelihood fit results. This produces a tighter limit, and

the improvement is taken as the quantitative measure of the impact of the

group of uncertainties. The results are shown in Table 6.2.

In response to the mismodelling of jet pseudorapidity described in Section 4.3,
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the impact of doubling of jet energy scale uncertainty is also investigated. The

variation corresponding to this uncertainty source is doubled while all other

systematic uncertainties are treated in the standard way. Then the expected

limit is calculated using the asymptotic approximation, and a degradation of

0.7% with respect to the standard value is observed.

6.3 Results

In this section the upper limit on the cross section of the anomalous tHq pro-

duction is reported. The search has been focused on the H → bb̄ decay, but

complementary results in other decay channels are also summarized and a com-

bination of all channels is presented.

6.3.1 Results in the H → bb̄ decay channel

The statistical model described above is exploited to set an upper limit on

the signal cross section. For this purpose the 3t and 4t regions are considered

independently and are further divided into muon and electron channels. In each

of the resulting four regions the NN response is described with the help of a

histogram containing 15 equidistant bins. From these histograms the likelihood

function (6.1) is constructed.

In order to verify that the statistical model is capable of providing an accurate

description of the data, a maximum-likelihood fit is performed. Fig. 6.3 shows

the resulting distributions of the NN response, which are constructed from the

histograms exploited in the definition of the likelihood function. All simulated

processes are normalized to the results of the fit, and systematic uncertainties

are constrained accordingly. Of special interest are normalizations of the tt̄+HF

components. Compared to expectations, they are scaled by factors 1.3 ± 0.2,

1.4 ± 0.2, and 1.2 ± 0.3 for tt̄bb̄, tt̄b, and tt̄c(c̄) respectively. Together with

adjustments of other nuisance parameters, this leads to an accurate description

of the data.

An alternative way to characterize the compatibility between the data and

simulation is presented in Fig. 6.4. It shows all bins from the four histograms

in Fig. 6.3, ordered by the signal-to-background ratio (and grouped together

for similar values of the ratio). It can be seen that, because of the small

contribution from the signal process, the data are compatible with both s + b

and b-only hypotheses.
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Figure 6.3: Distributions of NN response in the 3t and 4t regions, muon and

electron channels. All processes are normalized to results of the maximum-

likelihood fit to data. In these plots the “electroweak” category includes also

single top quark production.
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The upper limit is set following procedure documented in Section 6.1. As dis-

cussed in Section 6.1.4, the distributions of the test statistic, which are needed

to calculate the upper limit, can be constructed by means of MC simulation or

using an analytical approximation. Both approaches have been tried and lead

to different results, which indicates that conditions for the analytical approxi-

mation do not hold. For this reason, the much more computationally intensive

MC-based approach is followed to obtain final results. The calculated upper

limits at the 95% confidence level are reported in Table 6.3, for the 3t and 4t re-

gions separately and for their combination. The uncertainties in the expected

limits correspond to the 15.9% and 84.1% quantiles, whereas the nominal val-

ues are given by the medians. As can be seen, the limit in the 4t region is

weaker than in the 3t one despite the higher purity. This is a consequence of

the larger statistical uncertainties. Another interesting observation is that the

observed combined limit is weaker than the 3t alone. This is understood as a

result of the 4t limit fluctuating about 2σ above the expectation.

The final result of this search is an upper limit on the cross section of the

associated production of single top quarks and Higgs bosons in the t channel,

with the kinematics of the yt = −1 case. The found value is 7.6 times the

expectation for the flipped-sign model. After substituting the expected cross

section, this result translates into an upper limit σyt=−1
tHq < 1.8 pb at the 95%

confidence level.

Table 6.3: Upper limits on the anomalous tHq production at 95% CL, measured

in units of the expected cross section σyt=−1
tHq ≈ 234 fb.

Region
Upper limit

Observed Expected

3t, µ+ e 7.0 5.7+2.4
−1.9

4t, µ+ e 19.8 10.6+4.2
−2.8

combination 7.6 5.1+2.1
−1.4

6.3.2 Combination with other decay channels

In addition to the search for the anomalous tHq production with H → bb̄ [3],

several other Higgs boson decay channels have been utilized by the CMS col-

laboration [41–43]. All searches target semileptonic decays of the top quark,

while the Higgs boson can decay to a pair of photons, W bosons, or τ leptons.

In the final state with H →WW or ττ at least one of the products is expected
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to decay leptonically, and considered signatures are 3`, `±`±, `±`±τ∓h , where

` = µ, e and τh denotes a hadronically decaying τ lepton. All these searches

adopt data-driven methods to estimate important backgrounds.

Upper limits obtained in each search are shown in Table 6.4. The multilepton

(H → WW, τ`τ`) channel demonstrates an expected sensitivity similar to the

H → bb̄ search. On the other hand, the search in the diphoton channel is more

sensitive. The reason for this is not only the very clean final state, but also the

fact that the enhancement of the branching ratio B(H → γγ) due to yt = −1 is

treated as an additional evidence in favour of the anomalous tHq production.

Table 6.4: Upper limits on the anomalous tHq production at 95% CL. Searches

in other Higgs boson decay channels.

Decay channel
Upper limit

Observed Expected

H → γγ 4.1 4.1

H →WW, τ`τ` 6.7 5.0+2.1
−1.4

H → τ`τh 8.9 11.0+5.8
−3.6
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Figure 6.5: Combined limit as a function of the assumed B(H → γγ).

All CMS searches for the tHq production are combined in Ref. [41]. This

requires an assumption on Higgs boson branching ratios. Although they are

known in SM [27] and in the yt = −1 model [23], where only B(H → γγ) is

directly affected by the sign of the Yukawa coupling, the H → γγ decay should
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be treated with care. In contrast to other considered decays, it occurs through

a loop-induced coupling and, as discussed in Section 1.2, can potentially re-

ceive significant BSM corrections. To report results in a robust way, no specific

assumption on the value of B(H → γγ) is made, and the combination is per-

formed for a range of possible values of the branching ratio. The results are

shown in Fig. 6.5. If the enhancement of factor 2.4 is imposed, as predicted by

the pure yt = −1 model, the observed combined upper limit reads as 2.8, with

an expectation of 2.2+0.8
−0.6, both expressed in the units of σyt=−1

tHq ≈ 234 fb.



146 Chapter 6. Statistical analysis



Summary and outlook

A search for the associated tH production in the t channel has been performed

in the CMS experiment. It targets the case of an anomalous top quark Yukawa

coupling constant yt = −1, where the sign is defined with respect to the cou-

pling between Higgs and W bosons. In the considered final state, the top quark

decays producing a muon or an electron, which provides means to suppress the

overwhelming multijet background, and the H → bb̄ decay is chosen for its

large branching fraction. The event selection takes advantage of multiple b-

quark jets in the final state, as well as a jet in the forward region, which is a

prominent feature of the t-channel process. Nonetheless, the selected sample

of events is dominated by the tt̄ background, which has motivated the use of

MVA methods to discriminate between the signal process and backgrounds.

Construction of efficient input variables in a multijet final state is a challenging

task. It is addressed by identifying jets that are likely to originate from frag-

mentation of decay products of the Higgs boson or the top quarks. Following

a novel approach, the identification of jet origin is performed under both tHq

and semileptonic tt̄ hypotheses in parallel, which allows to construct a dedi-

cated set of input variables for each hypothesis. Both sets, together with some

additional observables, are exploited to identify signal-like events. Finally, re-

sponse of the MVA discriminator is fitted to data to set an upper limit on the

tHq cross section. The limit at the 95% confidence level is measured to be

σyt=−1
tHq < 1.8 pb, which is factor 7.6 larger that the expected cross section for

the yt = −1 case.

This analysis is complemented by analogous searches that target decays of the

Higgs boson to a pair of photons, W bosons, or τ leptons. The search in

the H → γγ channel faces the small branching fraction of this decay but, on

the other hand, profits from a great reduction of background. Clean experi-
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mental signatures are also obtained in the channels with H → WW ∗/ττ and

semileptonic decays of the top quark as they can result in final states with two

same-sign leptons (muons or electrons) or three leptons. Results of searches

for the tHq production with yt = −1 in all considered decay channels were

combined. In order to do so, assumptions on the branching fractions had to

be made. Probabilities of all considered decays except for H → γγ were set

to their SM values because these decays occur at tree level and thus are not

expected to be altered by BSM contributions significantly. On the other hand,

the branching fraction B(H → γγ) can potentially be modified by new particles

running in the loop. To take this into account, the combined limit was calcu-

lated as a function of the assumed value of B(H → γγ). For the SM branching

fraction an upper limit σyt=−1
tHq < 0.9 pb is found at the 95% confidence level.

This exceeds the expected cross section by a factor of 3.8.

The search in the H → bb̄ channel was performed using about 20 fb−1 of 8 TeV

data, and its sensitivity is limited by statistical uncertainties (which equally

applies to other decay channels). At
√
s = 13 TeV a fourfold increase of the

signal cross section is expected. Although the signal-to-background ratio will

not change significantly because the tt̄ cross section also increases by a factor

of 3.3, the larger production rate will allow to reproduce the 8 TeV result al-

ready with 5 fb−1 of 13 TeV data. According to a simple projection [171], the

exclusion of the yt = −1 case with the H → bb̄ channel alone can be achieved

with an integrated luminosity of 100 fb−1. It should be noted that with this

amount of data the sensitivity of the search is entirely limited by systematic

uncertainties, which means that if the projection holds, this channel will never

allow to observe the much more rare SM tHq production. However, it can be

expected that both theoretical and experimental uncertainties decrease in fu-

ture as a result of improved physics modelling and better understanding of the

detector. In addition, there are several ways to advance the search. The most

promising option, which was not available in past for technical reasons, is to

utilize full jet b-tagging information in construction of input variables, rather

than only checking if the jet is b-tagged according to the chosen working point.

This will not only provide additional information for the MVA discrimination,

but might also allow to loosen the b-tagging requirements in the event selection.

In addition to the test for yt = −1, the tH production allows to examine

the interaction between the top quark and the Higgs boson in several other

ways, which can become topics of further investigation in future. The pre-

sented search can be generalized to derive two-dimensional constraints in the

(κt, κW ) plane, where κW modifies the strength of the interaction between the

Higgs and W bosons, and κt ≡ yt/y
SM
t = yt. Although independently |κt|

and |κW | can be better constrained by studying the tt̄H and HW production,
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the tH process can provide complementary information thanks for the involved

interference. The interference also allows to access the potential CP-violating

phase in the top quark Yukawa coupling. Finally, the tH production can occur

through flavour-changing neutral currents (FCNC) involving the Higgs boson,

and thus this process can be exploited to probe for FCNC [172, 173], comple-

menting searches in tt̄, t→ Hq.
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