

Study of High-Energy Photon Induced Physics at the LHC

CP3 15/06/2004 Xavier Rouby / Jérôme de Favereau

Contents (1)

- 1. An Introduction to $\gamma\gamma$ Physics
 - Motivation
 - Roman pots
 - Processes
- 2. Generating Events
- 3. Beam Simulation
- 4. Dedicated Detectors
- 5. Future Plans

Introduction

1. Motivation

- 1. New class of events at the LHC !
- 2. Tagging is possible using detectors far from the IP;
- 3. Initial state reconstruction and cleaner events allows e⁺e⁻ - type analysis;
- 4. Energy and Luminosity of photon interactions are high.

Measurement of **position** and **angle** for the reconstruction of the photon energy and virtuality

Which processes are we interested in ?

All Charged particle pairs :

- W bosons
- Top quarks
- Supersymmetric particles

• .

But also :

- Higgs production
- Possible $\gamma\gamma$ diffraction due to magnetic monopoles
- ... The list is still open !

Contents (2)

- 1. An Introduction to $\gamma\gamma$ Physics
- 2. Generating Events
 - PHOTIA
 - First W results
 - Standard Model
 - Anomalous
- 3. Beam Simulation
- 4. Dedicated Detectors
- 5. Future Plans

- Basic processes generated using PYTHIA 6.210
- Anomalous couplings and all processes not included in PYTHIA : COMPHEP
- But the main challenge was to get a realistic spectrum of the photon energy : PHOTHIA

PHOTHIA can handle 3 cases :

- $\gamma\gamma \ll$ elastic \gg : both photons have low virtuality (Q²), both protons can be detected thanks to the energy loss x = $\Delta E/E$;
- $\gamma\gamma \ll$ inelastic \gg : one of the protons does not survive the interaction (dissociative mass < 20 GeV);
- γp : only one proton emits a photon. This photon is emitted elastically, so the proton can be detected.

- Measurement of a possible anomalous γWW coupling via parameters κ and λ
- Possible Signature of Large Extra Dimension ?
- Background to other γγ processes

UCL

Cross sections estimated with PHOTHIA :

Process	σ_{pp} (pb)	Events/year*
γγ -> WW (el.)	0.12	2,400
$\gamma\gamma \rightarrow WW$ (in.)	1.24	24,800
γp -> WX	10.2	204,000

* At low lumi = 2*10³³ cm⁻² s⁻¹

First look at leptonic final states : $\gamma p \rightarrow W \rightarrow I_V$

Efficiency at L1 and HLT (ORCA 8_1_2) L1 : 48 % HLT : 29 %

 Anomalous γWW coupling effects computed with CalcHep based on effective lagrangian :

$$L = e \left(W_{\mu\nu}^{\dagger} W^{\mu} A^{\nu} - W^{\mu\nu} W_{\mu}^{\dagger} A_{\nu} + \kappa W_{\mu}^{\dagger} W_{\nu} A^{\mu\nu} + \frac{\lambda}{M_{W}^{2}} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} A^{\nu\rho} \right)$$

• Current results (Moriond 2004) :

$$-0.063 < \Delta \kappa < 0.026$$

 $-0.039 < \lambda < 0.005$

First W results : anomalous (II) UCL

Effect on the distributions (electrons) :

 $\gamma p \rightarrow W$, $\lambda = 0$, .03, .05, .1

Effect on the total cross-sections (preliminary):

Contents (3)

- 1. An Introduction to $\gamma\gamma$ Physics
- 2. Generating Events
- 3. Beam Simulation
 - Tagging with roman pots
 - Design of roman pots
- 4. Dedicated Detectors
- 5. Future Plans

The principle is simple :

- Allows to tag low Q² photons;
- Measurement of position and angle of the proton at the RP leads to a good reconstruction of the photon Energy and Q²

$$Q^2 \simeq E^2(\theta_x^2 + \theta_y^2)$$

Simulation of the beam optics effect : First simplified simulation

Now working on a (more) realistic Matrixbased simulation :

$$\begin{pmatrix} \mathbf{x} \\ \mathbf{x'} \\ \mathbf{y} \\ \mathbf{y'} \end{pmatrix}_{\mathrm{RP}} = \mathbf{M} \begin{pmatrix} \mathbf{x} \\ \mathbf{x'} \\ \mathbf{y} \\ \mathbf{y'} \end{pmatrix}_{\mathrm{IP}} , \quad \mathbf{M} = \prod_{i} \mathbf{M}_{i} , \quad \mathbf{x'} = \frac{\partial \mathbf{x}}{\partial \mathbf{s}}$$

The problem is that nobody knows what the matrix really is...

* Height of the elements gives an idea of their strength

Requirements on detector candidates :

- Radiation hardness (fluence reaching 10¹⁵n/cm²)
- As close as possible from the beam (~1mm)
- Insensitivity of the edge as small as possible
- Compatible with the CMS DAQ (for easy integration)

Proposed solution :

Edgeless Silicon Microstrip Detector operated at cryogenic temperatures

Contents (4)

- 1. An Introduction to $\gamma\gamma$ Physics
- 2. Generating Events
- 3. Beam Simulation
- 4. Dedicated Detectors
 - Sensor technology
 - Detection electronics and tests
- 5. Future Plans

Taking part to the CERN RD-39 collaboration (with the GREAT help from O. Militaru), a first prototype of edgeless detector is under construction.

- 320µm thick, n type silicon substrate
- single sided sensor
- 196 parallel straight strips with 120 μ m pitch.
- 2.5 x 2.0 cm²
- cut in BNL with 2 geometries (parallel and *angular* cuts)
- no guard rings means cryogenic operation

The low temperature (<200K) helps

- improving the leakage current
- improving the radiation hardness
- getting a better S/N ratio and a faster signal

but requires

- a dedicated tooling for cooling
- deep tests of readout electronics

To ease the integration of such new detectors into the CMS DAQ, the candidate for acquisition electronics is the CMS tracker front-end hybrid

pros

- 100% compatible with CMS !
- good knowledge of it
- easily tested here

cons

- not meant for low temperature operation

==> Characterization needed at low temperature !

Preliminary results (I) UCL

First tests, down to 207K last February and first results (on one single hybrid)

Faster signal response, better gain, constant noise, lower pedestal

More hybrid were tested, last weeks

Increasing pedestal, constant noise... (No info on signal response or gain yet)

Contents (5)

- 1. An Introduction to $\gamma\gamma$ Physics
- 2. Generating Events
- 3. Beam Simulation
- 4. Dedicated detectors
- 5. Future plans

Tomorrow and next weeks

1) Monte Carlo's and phenomenology

- get distributions at detector level
- use them to compute sensitivity to anomalous couplings
- 2) Hybrid test and detector assembly
 - enhancing the automation of analyses of hybrid tests.
- 3) Beam line simulation

- including real element parameters

UCL

Next year(s?)

1) Monte Carlo's and phenomenology

- get distributions at detector level
- use them to compute sensitivity to anomalous couplings
- other processes

2) Hybrid test and detector assembly

- enhancing the automation of analyses of hybrid tests.
- detector assembly and test in the cold
- test beam at CERN (Sept 2004 ?)

3) Beam line simulation

- including real element parameters
- drawing conclusions related to detector design