Recent developments of CERN RD39 Cryogenic Tracking detectors Collaboration

Xavier Rouby (UCL)

On behalf of CERN RD39 Collaboration

http://rd39.web.cern.ch/RD39/

Xavier Rouby Center for Particle Physics and Phenomenology (CP3) Université Catholique de Louvain Chemin du cyclotron 2 1348 Louvain-Ia-Neuve xavier.rouby@cern.ch

Outline

- Introduction
- Current injected detectors
- LHe temperature TCT setup
- Edgeless silicon detectors

Introduction

Charge collection efficiency :

$$CCE = CCE_{GF} \times CCE_{t} = \frac{W}{d} e^{-t_{dr}/\tau_{t}}$$

 CCE_{GF} : geometrical factor (*w* : depletion depth , *d* : detector thickness) CCE_{t} : trapping concerns

$$w = \sqrt{\frac{2\varepsilon\varepsilon_0 V}{eN_{eff}}}$$
 and $\frac{w}{d} = \sqrt{\frac{V}{V_{fd}}}$

 $N_{\mbox{\tiny eff}}$: effective doping concentration

- t_{dr} : carrier drift time
- $au_{ au}$: trapping time
- V_{fd} : full depletion voltage

Trapping time

Trapping time : strong dependence on irradiation level

$$\tau_t = \frac{1}{\sigma v_{th} N_t}$$

 $v_{th} \sim 10^7 \text{cm s}^{-1}$ thermal velocity (saturation)

- $\sigma\,$: capture cross section of the trap
- N_t : concentration of such traps <-> fluence Φ_n

Fluences / effective thickness :

- At LHC : for Φ_n = 10¹⁴ n_{eq}/cm² , τ_t ~ 20 ns ! <=> 2 mm : not a problem
- At SLHC : for $\Phi_n = 10^{16} n_{eq}/cm^2$, $\tau_t \sim 0.2 \text{ ns } ! <=> 20 \ \mu\text{m}$: effective thickness 4

 $1/\tau_t = \gamma \Phi_n$ H.W. Kraner et al., Nuclear Instruments and Methods in Physics Research A326 (1993) 350-356

- γ_{e} = 7.50×10⁻⁷ cm²/s , γ_{h} = 3.75 \times 10⁻⁷ cm²/s
- for $\Phi_{\rm n}$ = 10^{16} $n_{\rm eq}^{}/cm^2$: $\tau_{t,e}^{}$ = 0.13 ns , $~\tau_{t,h}^{}$ = 0.26 ns

Trapping distance (or *effective charge collection distance* d_{eff}): $d_{eff} \le \tau_t \times V_s = 20 \ \mu m << \min(d,w)$

Detrapping time

Strong dependance on temperature :

- N_c : electric state density
- E_t : trap energy level (deep or shallow)

Shall	ow leve	el : A c	enter (0	D-V) E _c	= -0.1	8 eV w	ith σ =	≈ 10 -15 (cm ²

T(K)	300	150	100	77	60	55	50	48	47	46
$ au_{ m d}$	3.7 ns	3.9 µs	4 ms	2 s	1.22	1.2	53	302	2.1	5.47
					hrs	days	days	days	years	years

Freezing traps Fill Freeze T<77K T> 77K E_C E_C filled Electron trap **Electron trap** Hole trap Hole trap filled E_V $\mathbf{E}_{\mathbf{V}}$

T(K)	300	150	100	77	60	55	50	48	47	46
$ au_{ m d}$	3.7 ns	3.9 µs	4 ms	2 s	1.22	1.2	53	302	2.1	5.47
					hrs	days	days	days	years	years

CID

LHe TCT setup

Sub Liquid Nitrogen temperature : CCE measurements with a fast TCT setup at CERN

Transient Current Technique -> picosecond laser (30ps FWHM, λ = 678nm)

- Laser on n+ implant : hole injection
- Laser on p+ implant : electron injection

By the TCT measurement

- the full depletion voltage
- effective trapping time
- the sign of the space charge in the bulk.

Detection of the dominant type of charge carrier, electron or hole, which drifts across the whole detector

He Cryostat -> temperature range : [2K ; 300K] : "LHe-TCT"

Calibration & CCE measurements are under way

TCT computer interface

Edgeless silicon detectors

New cut technique under study : plasma cut sensors

- plasma cut edgeless sensors

- here : regular CMS baby detectors

Sensors :

- Single-sided
- FZ
- 1.5 cm long microstrips
- 320µm thick
- p+/n/n+/Al

Irradiation with 20MeV neutrons foreseen next months

Plasma etching

Etch parameters:

- Temperature -110°C
- ICP-Power 1-2 kW
- CCP-Power 1-3 W
- SF6 flow max. 100 sccm
- O2 flow 12-20 sccm
- Pressure 10-20 mTorr

Plasma etching

IV curves before etching

baby detectors current, before cut

IV curves after etching

Leakage current on the plasma-cut detector (cut perpendicular to the strips)

X. Rouby RESMDD Florence 0ct. 11, 2006

Louvain Laser setup

Setup

Setup for CCE measurement in Louvain, including :

- a picosecond pulsed laser (677n
- a wideband bipolar amplifier
- a vacuum tank
- a temperature controller
 - + LNi cooling
- computer controlled environmen
- other usual machinery

Neutron beam

Fast neutron beam

The neutron irradiation will be performed with the fast neutron beam :

- based on ${}^{9}Be + d \rightarrow n + X$, using a 50 MeV deuteron beam on a 1 cm thick beryllium target
- the deuteron beam is accelerated by the Louvain-la-Neuve isochronous cyclotron

http://www.cyc.ucl.ac.be

http://www.fynu.ucl.ac.be/themes/he/RD50/index.html

X. Rouby RESMDD Florence 0ct. 11, 2006

Edgeless module prototype

Sensors :

- Single-sided
- 1.5 cm long microstrips
- 320µm thick
- p+/n/n+/Al
- few nA/cm² at $V_{\rm fd}\,$, before cut.
- 10^5 times higher (100 μ A), after the cut
- Standard laser-dicing (BNL) + chemical treatment
- Two geometries : along the strip (a few µm) ; angular cut (a few degrees)

Electronics :

CMS tracker front-end hybrids (with 4 APV25 readout chips)

Perspectives

•

•

٠