Mesure des processus induits par des photons dans CMS et détection des protons diffusés au LHC

Etude des collisions entre photons au LHC

Xavier Rouby – 26 septembre 2008 Université catholique de Louvain

Introduction:

le Modèle Standard,

le LHC et CMS

La matière

Noyau :

les protons et neutrons ne
sont pas des particules
élémentaires mais sont
constitutés des quarks u et d

1 Ångström (=100,000 fm)

Nuage électronique :

les électrons sont des particules élémentaires

matière antimatière

Le Modèle Standard

matière antimatière

forces

Regroupe toutes nos

connaissances actuelles sur

les particules élémentaires.

Le Modèle Standard "contient": - 24 fermions élémentaires

- 3 interactions fondamentales

Electromagnétisme	Force faible	Force forte
(1 photon)	(2 W et 1 Z)	(8 gluons)

26/09/2008

Energies et masses

Chaque particule possède une masse donnée et peut être créée grâce

à des collisions entre des faisceaux de particules accélérées.

LHC : Large Hadron Collider

<u>But</u> : étudier la structure de la matière par des collisions entre particules à très hautes énergies

CERN – Genève (Suisse)

Large Hadron Collider

- 100 mètres sous terre
- 27 km de circonférence ATLAS
 - 2 faisceaux de protons
 - 7 TeV par faisceau

ALICE

CMS

- 4 points d'interaction
- 4 expériences

Xavier Rouby

Large Hadron Collider

- 100 mètres sous terre
- s 27 km de circonférence
 - 2 faisceaux de protons

Large Hadron Collider

- 2835 x 2835 paquets (bunches)
- 10¹¹ protons par bunch
- 40 000 000 croisements de faisceau

par seconde

L'expérience CMS

Détecteur central (vue explosée)

Expérience "généraliste" pour

étudier la physique du Modèle

Standard et au-delà (Higgs,

SUSY, ...).

L'expérience CMS

Le détecteur comporte une succession de couches différentes, pour l'identification et la mesure des particules.

CMS : détecteurs distants

Nécessité d'augmenter la couverture de détection en se

plaçant le plus proche possible de la ligne de faisceau.

CMS : détecteurs distants

CMS comporte donc également des détecteurs éloignés du point d'interaction, pour mesurer ces particules émises à très petits angles.

Les collisions au LHC

Les protons n'étant pas des particules élémentaires (p = uud), les collisions au LHC mènent, en général, à un grand nombre de particules produites dans l'état final.

Si les protons interagissent par l'échange d'un ou plusieurs photons, ils ont une certaine probabilité de rester intacts et de survivre à l'interaction.

Echange d'un ou plusieurs photons

Conséquences expérimentales :

• L'état final observé contient beaucoup moins de particules.

Etat final plus propre!

• Au moins un proton est diffusé à très petit angle vers l'avant.

Le proton émis à petit angle permet de séparer les interactions proton-proton des interactions photon-proton

Détections des protons émis à très petits angles

Un proton émis à très petit angle peut s'échapper de CMS par le tube du faisceau, sans être détecté.

S'il a perdu de l'énergie, sa trajectoire sera différente de celle des protons du faisceau.

Il est possible de
 l'observer en utilisant les
 détecteurs situés le long de
 la ligne de faisceau

Détections des protons émis à très petits angles

Pour mesurer ces protons il faut donc :

des détecteurs spécialisés très proches du faisceau
 Détecteurs sans bords et au silicium

Détections des protons émis à très petits angles

Pour mesurer ces protons il faut donc :

- des détecteurs spécialisés très proches du faisceau
 Détecteurs sans bords et au silicium
- un simulateur permettant de calculer précisément la trajectoire de ces protons

Hector, un simulateur rapide pour le transport de particules dans des lignes de faisceau

Détecteurs de

protons diffusés

Détecteurs de protons diffusés

Les protons *diffusés vers l'avant* ont une énergie proche de celle du faisceau, mais légèrement inférieure. Leur trajectoire suit, plus ou moins, celle du faisceau.

Il est donc possible de détecter ces protons à l'aide de senseurs placés à **quelques millimètres** du faisceau.

Détecteurs de protons diffusés

Plus le détecteur est proche du faisceau, plus grande est la

gamme des énergies qu'il couvre.

Nécessité de minimiser la distance entre le <u>bord</u> physique et la <u>zone sensible</u> du détecteur. Cette distance doit être de quelques dizaines de microns.

On parle alors de *détecteur sans bord.*

Détecteurs "sans bord"

Solution : détecteurs sans bord au silicium

→ Développement de détecteurs *coupés.*

Détecteurs "sans bord"

Avec l'aide de O. Militaru et G. Pierre

<u>Une possibilité simple</u> : couper un détecteur "avec bord" au travers de sa zone sensible afin de créer 2 détecteurs "sans bord".

Découpe au laser

Découpe au plasma

Désavantage : les dégâts dus à la découpe du détecteur augmentent

considérablement le bruit. Une basse température pourrait aider.

Technologie prometteuse mais pas encore mature pour le LHC

Rappel :

Pour mesurer ces protons il faut donc :

- des détecteurs spécialisés très proches du faisceau Détecteurs sans bords et au silicium
- un simulateur permettant de calculer précisément la trajectoire de ces protons

Hector, un simulateur rapide pour le transport de particules dans des lignes de faisceau

Hector, the simulator

Travail commun avec J. de Favereau

Simulation précise et rapide du transport de particules dans la ligne de faisceau du LHC permettant :

- 1° De caractériser les détecteurs distants
- 2° De lier les positions des particules mesurées par ces détecteurs aux données prises par CMS

Hector, the simulator

- 1° Caractérisation des détecteurs distants :
 - Acceptance
 - Niveau de radiation
 - Positionnement optimal
 - Impact de l'épaisseur du bord

Si un proton a perdu une quantité d'énergie donnée, sera-t-il mesuré ?

Hector, the simulator

2° Lien entre les mesures des détecteurs distants et de CMS

A partir des positions et angles mesurés, l'énergie du proton et son angle de diffusion peuvent être déduits.

Reconstruction des propriétés cinématiques du proton mesuré.

Production exclusive

d'une paire de muons

Production exclusive de paires de muons

Avec l'aide de S. Ovyn et J. J. Hollar

Deux protons interagissent en émettant chacun un photon. La collision photon-photon produit une paire $\mu^+\mu^-$.

Temps

Dû à l'émission des photons, les protons sont diffusés élastiquement à très petits angles.

- Muons mesurés dans CMS.
- Protons visibles dans les

détecteurs distants.

26/09/2008

Production exclusive de paires de muons

Motivations:

- Processus très bien compris théoriquement.
- Sélection facile; peu de processus possèdent la même signature
- Très bonne détection et mesure des muons par CMS
- L'observation de ces événements permet de mesurer la luminosité intégrée (L) fournie par le LHC dans CMS. Ce paramètre expérimental est crucial pour la comparaison entre la théorie (σ) et l'expérience (N): $N = L \sigma$

Production exclusive de paires de muons

- Sélection de ces événements par CMS grâce aux caractéristiques suivantes :
 - 1° Présence d'<mark>uniquement</mark> deux muons dans CMS

2° Equilibre très prononcé entre la direction et l'impulsion de chacun des muons dans le plan transverse

34

Xavier Rouby

Conclusions

- Développements techniques :
 - Détecteurs en silicium sans bord. Prototypes prometteurs mais technologie non mature pour le LHC.

Conclusions

- Développements techniques :
 - Détecteurs en silicium sans bord. Prototypes prometteurs mais technologie non mature pour le LHC.
- Développements logiciels :
 - Simulations du transport de particules dans des lignes de faisceau (Hector). Utilisé par CMS/TOTEM/FP420.

Hector

Conclusions

- Développements techniques :
 - Détecteurs en silicium sans bord. Prototypes prometteurs mais technologie non mature pour le LHC.
- Développements logiciels :
 - Simulations du transport de particules dans des lignes de faisceau (Hector). Utilisé par CMS/TOTEM/FP420.
- Analyses de données par simulation :
 - Etude de la production exclusive de paires de muons.
 Evénements très importants pour la mesure de luminosité intégrée au LHC et la calibration des détecteurs distants.

En quelques mots...

Merci pour votre attention

26/09/2008

Xavier Rouby

avec Hector

Informations complémentaires

Flux équivalent de photons

Dans le cadre des interactions par échange de photons, le faisceau de protons peut être vu comme un flux incident de photons.

L'approximation *EPA* permet de factoriser mathématiquement

Collision (pp) = collision ($\gamma \gamma$) x flux₁(γ) x flux₂(γ) $d\sigma_{pp} = \sigma_{\gamma\gamma}(x_1, x_2, s) \ dN(x_1, Q_1^2) \ dN(x_2, Q_2^2)$

l'émission de photons par les protons du processus de collision

Mesure de la luminosité

A l'aide de l'analyse effectuée précédemment, on obtient l'efficacité totale de sélection attendue

 $\mathcal{L} = \frac{N_{\rm obs} - N_{\rm bkg}}{\epsilon \ \sigma}$

La section efficace σ est très bien connue théoriquement, avec une précision meilleure que 1%.

Scenario (i): $L_{true} = 100 \text{ pb}^{-1}$ $L_{meas} = 96.8 \pm 6.1(stat) \pm 1.0(th) \pm 2.9(syst) \text{ pb}^{-1}.$

Scenario (ii): $L_{true} = 100 \text{ pb}^{-1}$ with forward calorimeter veto $L_{meas} = 99.4 \pm 5.3(stat) \pm 1.0(th) \pm 2.9(syst) \text{ pb}^{-1}.$

Production des mésons Upsilon

Y = (bb)

Section efficace mal connue

Masse très bien connue

L'Upsilon est un outil de calibration très utile

Il sera très rapidement observé dans CMS [MeV]

