

High energy photoproduction and photon-photon interactions at the LHC

X. Rouby

(on behalf of the Louvain Photon group) :

J. de Favereau, V. Lemaître, Y. Liu, S. Ovyn, T. Pierzchala,

K. Piotrzkowski, X. Rouby, N. Schul, M. Vander Donckt

Université catholique de Louvain Center for Particle Physics and Phenomenology (CP3)

$\gamma\gamma$ interactions

Outline :

- Equivalent photon approximation (EPA)
- γγ luminosities for the LHC
- Detection and tagging
- Cross section of main interest
 - $\gamma \gamma \rightarrow \mu^+ \mu^-$ LHC luminosity monitoring
 - $\Rightarrow \gamma \gamma \rightarrow W^+ W^- SM$
 - new physics

 γp interactions

Overview :

- Introduction to photon-proton procedure
- Detection and tagging
- Associated WH
- Single top
- Summary

a.

High energy photon-photon interactions at the LHC

Diff & Fwd Physics Hera/LHC – Antwerpen

3

EPA

 $\gamma\gamma$ luminosity

low γ virtuality (typical $q^2 \sim 0.01 \, GeV^2$)

luminosity peaked at low $W_{\gamma\gamma}$

sizable charged pair production up to $W_{\gamma\gamma}\approx 500GeV$

- factorization to
 - long distance photon exchange
 - → short distance $\gamma\gamma$ → X interaction
- zero degree scattered angles

clear signature - background suppression

Detection and tagging

-> talk on Hector by J. de Favereau

$\gamma\gamma$ cross sections

	$\gamma\gamma ightarrow \mu\mu$		
R	p		p
			γ · · · · · · · · · · · · · · · · · · ·
UCL	γ		
X. Rouby			
EPA		· · ·	• •
yy luminosity		$ \eta < 2.5$	
		pt(µ)>3 GeV	pt(µ)>10 GeV
yy detection	σαcc	21600 fb	1340 fb
cross sections	σ_{acc} (with RP)	7260 fb	1270 fb
$\gamma\gamma \rightarrow \mu\mu$	· · ·	I	I I

 $\gamma\gamma \rightarrow \mu\mu$ will be used for:

- pp luminosity monitoring ~ 800 events/12h (for L= $10^{33} cm^{-2} s^{-1}$)
- calibration of RP to set photon energy scale and RP acceptance including misalignment of beam optics

yy cross sections

Oct. 25th, 2007

$\gamma\gamma$ cross sections

A.

EPA

 $\gamma\gamma$ luminosity $\gamma\gamma$ detection

cross sections

 $\gamma\gamma \rightarrow \mu\mu$

 $\gamma\gamma \rightarrow WW$

SUSY pairs

Summary

Summary - outlook

- LHC is a $\gamma\gamma$ collider
- $\gamma\gamma \rightarrow \mu\mu$: interesting for luminosity monitoring and RP calibration
- $\gamma\gamma$ -> WW : limits on 4-vector coupling could be really improved
- SUSY pairs could be measured for high lumi runs

2

High energy photoproduction at the LHC

Diff & Fwd Physics Hera/LHC – Antwerpen

11

2

LHC : a new HERA collider !

Photoproduction is traditionally studied at e-p colliders

 $pp \; (\gamma q/g \rightarrow XY) \; p$

• γp events can also be tagged at the LHC

e.g. Using Large Rapidity Gaps (LRG)

• Higher luminosity than $\gamma\gamma$ events

Probe electroweak sector up to/beyond
 2 TeV !

Using EPA

$$\sigma_{pp} = \int \sigma_{\gamma q/g} (\hat{W}_{\gamma q/g}) f_{\gamma}(x_1) f_{q/g}(x_2, Q^2) dx_1 dx_2$$

where
$$\hat{W}_{\gamma q/g}^2 = 4 E_p x_1 x_2$$

BUT pp events are more dangerous backgrounds than in $\gamma\gamma$ interactions!

Diff & Fwd Physics Hera/LHC – Antwerpen

B

UCI

X. Rouby

yp processes

Experimental

 $\gamma p \rightarrow WHq'$

Single Top

Summary

a.

γp processes

X. Rouby

yp processes

Experimental γp -> WHq' Single Top Summary

• Significant cross sections up to 2 TeV

- Alternative way to pp interactions to study
 - 1. Higgs search
 - 2. Top physics (e.g. |V_{tb}|)
 - 3. New phenomena up to 2 TeV
- Very good S/B expected

Oct. 25th, 2007

Monte Carlo production

Experimental aspects

X. Rouby

γp processes
Experimental
γp -> WHq'
Single Top
Summary

Detection and tagging

Very low luminosity phase (<10³³ cm⁻² s⁻¹)

- Small event pile-up
 - Large rapidity gap (LRG) signature can be used
- For example, forward energy flows (into $3 < |\eta| < 5$) in one of the two hemispheres less than 50 GeV

Advantage : independent on very forward detectors features (Roman Pots)

Drawback : - low integrated luminosity expected

- kinematics is less constrain

• Expected integrated luminosity of 1 fb⁻¹ Low luminosity phase (~ 10^{33} cm⁻² s⁻¹)

- Use of very forward detector is mandatory !
- Exclusivity cuts can be applied (e.g. vetoing soft tracks from event vertex)
- Expected integrated luminosity of 10-30 fb⁻¹ Diff & Fwd Physics Hera/LHC – Antwerpen

Associated WH photoproduction

X. Rouby

γp processes
Experimental
γp -> WHq'
Single Top
Summary

- Associated production of WH has significant cross section at LHC !
- tt less overwhelming than in pp case!

Five topologies where studied

- WH \rightarrow lvbb, l=e, μ , τ , - WH \rightarrow W $\tau^+\tau^- \rightarrow$ jjl⁺l⁻, l=e, μ ,
- WH \rightarrow W $\tau^+\tau^- \rightarrow$ jjl⁺ τ_{μ} , l=e, μ ,
- WH \rightarrow WW⁺W⁻ \rightarrow III, I=e, μ , τ ,
- WH \rightarrow WW⁺W⁻ \rightarrow jjl[±]l[±], l=e, μ , τ .

0.12

3.69

0.01

Irreducible backgrounds (tt, Wt, Wzg', WWW, Wllg' Wbbg')

29.9

Results after application of acceptance cuts

0.03

7.35

0.07

1.26

Obtained using MadGraph/MadEvent

- Very small statistics 📫 not a discovery channel
- Interesting sensitivity for 2 topologies : $l\nu bb$ and $jjl^{\pm}l^{\pm}$
- For analysis, more specified cuts can be applied.

Diff & Fwd Physics Hera/LHC – Antwerpen

 $\sigma_{_{acc}}$

 $\sigma_{_{acc}} \, \text{bkg}$

3-

0.22

0.27

Single top photoproduction

Limit on k_{tuy} could be significantly improved even at very low luminosity !

3680

123.8

198.1

Oct. 25th, 2007

0.05

0

0.05

0.1

0.15

0.2

0.25

 $r_{tc\gamma}$ – Antwerpen

a.

Summary

CCUCL

X. Rouby

γp processes Experimental γp -> WHq' Single Top

Summary

Summary - outlook

- High energy γp interactions have significant cross section at the LHC
- $\gamma p \rightarrow WHq'$ (100 fb⁻¹) events only sensitive for 2 topologies : lvbb and $jjl^{\pm}l^{\pm}$
 - Analysis are ongoing for those 2 cases, using analysis cuts.
- Wt-channel (10 fb⁻¹) seems very promising
 - For the di-leptonic topology, $|V_{tb}|$ uncertainty is similar to the one obtained using pp->Wt
 - For the semi-leptonic topology, one needs to tackle pp backgrounds

- Anomalous top (1 fb⁻¹) can also be probed using very low integrated luminosity

a.

Back-up slides

Diff & Fwd Physics Hera/LHC – Antwerpen

3

UCL

Fast simulation of a LHC-like detector

Longitudal view of the detector

Diff & Fwd Physics Hera/LHC – Antwerpen

3-

Equivalent photon approximation

low γ virtuality (typical $q^2 \sim 0.01 \, GeV^2$) \Rightarrow

- factorization to
 - → long distance photon exchange
 - short distance $\gamma\gamma \rightarrow X$ interaction
- zero degree scattered angles

$$\sigma_{pp} = \int \sigma(W_{\gamma\gamma}) \frac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}} dW_{\gamma\gamma}$$

$$\sigma(pp \rightarrow (\gamma \gamma \rightarrow X)pp)$$

