Contact
Name
Marco Musich
Position
Visitor
Member since June 2015
Email
marco.musicern.ch
My personal homepage
Research statement
Experimental particle physicist working with at the CMS experiment at the LHC collider of the CERN laboratory. Currently involved in searches for signals of new physics beyond the Standard Model, development of alignment and calibration techniques.
Projects
I am involved in the following research directions:

CMS Tracker commissioning and performance assessment

The CMS silicon strip tracker is the largest device of its type ever built. There are 24244 single-sided micro-strip sensors covering an active area of 198m2.
Physics performance of the detector are being constantly assessed and optimized as new data comes.
Members of UCL are playing a major role in the understanding of the silicon strip tracker and in the maintenance and development of the local reconstruction code.

External collaborators: CMS tracker collaboration.

Search for Higgs bosons in the ll tau tau final state with the CMS experiment at the LHC

A resonance consistent with the stanadard model Higgs boson with mass of about 125 GeV was discovered in 2012 by the CMS and ATLAS experiments at the LHC. Using the available dataset (2011+2012 LHC runs) evidence was later found of the existence of the SM-predicted decay into a pair of tau leptons. The CP3 Louvain group has been involved in the channel where the Higgs boson is produced in association with the Z boson and decays into a pair of tau leptons.

A search for additional Higgs bosons in the general framework of models with two Higgs doublets (2HDM) was then performed by the same CP3 group using the same final state and the full Run-1 data. Models with two Higgs doublets feature a pseudoscalar boson, A, two charged scalars (H+-) and two neutral (h0 and H0) scalars, one of which is identified with the 125 GeV SM-like Higgs resonance. In some scenarios the most favored decay chain for the discovery of the additional neutral bosons is H0-->ZA-->llττ (or llbb). The search was carried out in collaboration with another group in CP3 who looks at the llbb final state.

An update of both the SM search and the exotic one is expected using the Run-2 dataset using more advanced techniques and by adding the llee and llmumu channels.

Search for long-lived heavy neutral leptons with CMS

Many well motivated new physics extensions of the SM include new particles whose decay width is very small and hence have a decay length which is macroscopic. One very attractive and minimal extension of the standard model is one with right-handed neutrinos with Majorana masses below the electroweak scale (low scale see-saw). This addition is able to generate both the light neutrino masses and the baryon asymmetry of the universe via low scale leptogenesis. In what is probably the most studied model that invokes the low scale seesaw, the Neutrino Minimal Standard Model [2], one of the three right-handed neutrinos is a dark matter candidate. A large allowed region of phase space for right handed neutrinos spans masses between 1 and 50 GeV with corresponding lifetimes (cτ) ranging from 10^3 to 10^-4 m. For higher masses the right handed neutrino basically decays promptly and for lower masses the probability that it decays within the detector volume is virtually zero thus giving rise to missing transverse momentum in the detector. These latter two extreme cases can be captured experimentally by standard searches at the general purpose LHC experiments, while the intermediate case is the natural target of the so-called “displaced” searches, which are highly peculiar and challenging analyses at the LHC in high demand for dedicated data reconstruction tools in order to extend their sensitivity. We intend to search for long-lived sterile neutrinos decaying at displaced vertices into a charged light lepton and hadrons. A fundamental ingredient of this search is the identification of charged tracks emerging from highly displaced vertices.

Search for massive long-lived charged particles with the CMS detector at the LHC

The CMS detector at the LHC is used to search for yet unobserved heavy (mass >100 GeV/c$^2$), long-lived (lifetime > 1 ns), electrically charged particles, called generically HSCPs.
HSCPs can be distinguished from Standard Model particles by exploiting their unique signature: very high momentum and low velocity. These features are a consequence of their high mass and the relatively limited LHC collision energy. Two experimental techniques are used to identify such hypothetical heavy and low-velocity particles: the measurement of the ionization energy loss rate using the all-silicon tracker detector and the time-of-flight measurement with the muon detectors.

UCL members have developed the ionization energy loss identification technique and have lead the CMS HSCP search since 2010, when the first HSCP paper became one of the first published LHC search papers. Updated results, using the 2011 dataset, were then published followed by a comprehensive paper including also searches for fractional and multiply-charged particles published using the full CMS Run-1 dataset. The results obtained by analysing the 2015 Run 2 data at 13 TeV have also been published.

The analysis, which is very inclusive, doesn't find evidence of HSCP. It currently excludes, among various models, the existence of quasi-stable gluinos, predicted by certain realizations of supersymmetry, and Drell-Yan-produced staus with masses lower than about 1.3 TeV and 350 GeV, respectively. These and the other limits set by the analysis are the most stringent to date. The CMS HSCP papers total to date more than 300 citations.


Show past projects.
Publications in CP3
All my publications on Inspire

2017

The Phase-2 Upgrade of the CMS Tracker
CMS collaboration
[Full text] CERN-LHCC-2017-009 ; CMS-TDR-014
Refereed paper. 13th December.


[UCLouvain] - [SST] [IRMP] - [SC]
Contact : Jérôme de Favereau
Research
Job opportunities Post-doctoral positions in BSM phenomenology at colliders and in astrophysics
Postdoctoral Position on advanced analysis techniques applied to the CMS di-Higgs study
Post-doctoral positions in collider phenomenology and particle astrophysics
EOS be.h : 10 PhD positions